RI HAB Munitoring Revision; 3 Revision Date: February 2018 Page 1 of 32

Quality Assurance Project Plan (QAPP)

Rhode Island Freshwater Harmful Algal Bloom Monitoring Rhode Island Department of Environmental Management (RIDEM) Office of Water Resources

Approval List:

Brin

Brian Zalewsky, Project Lead Supervising Environmental Planner Office of Water Resources, RIDEM

8

2119/18

Elizabeth Scott, Program Supervisor, Project QA Officer, and Contract Officer Deputy Chief of Water Quality & Standards Office of Water Resources, RIDEM

1 Jour 19

PA

Sherry Poucher, Health Advisories Environmental Scientist Environmental Health, RI State Health Laboratory

19 Evan Philo, Toxin Analysis

Principal Environmental Laboratory Scientist/Accreditation Lead Lab, RI State Health Laboratory

3/1/2018 ala in Ren Nota Conlon,

Nota Conlon, Quality Assurance Project Plan Coordinator USEPA Region 1- New England Regional Laboratory

Hilary Snook Technical Lead

Technical Lead USEPA Region 1- New England Regional Laboratory

Jennifer Brady EPA Project Officer USEFA Region 1- New England

Contents

3
3
5
6
8
8
9
1
1
1
1
0
0
1
2
2
4
4

Introduction

The Rhode Island Department of Environmental Management (RIDEM) and the Rhode Island Department of Health (HEALTH) work cooperatively to detect the presence of cyanobacteria blooms, evaluate the potential risks to the public, and, when necessary, issue health advisories notifying the public of health concerns. The agencies jointly issue health/recreational advisories when any of the following three guidelines are met:

- Evidence of a visible cyanobacteria scum or mat or lake/pond-wide cyanobacteria bloom.
- Cyanobacteria cell count exceeding 70,000 cells/mL.
- Toxin (Microcystin-LR) level of lysed cells meeting or exceeding 4 ppb (μg/l).

Health advisories instruct individuals to avoid all contact with the affected waterbody, including recreational activities such as swimming, boating, or fishing. People are also advised to not eat fish from the affected waterbody or to allow pets to wade or swim in, or drink untreated water from the affected waters. Health advisories remain in effect for the remainder of what is considered to be the recreation season (until November 1st), unless follow-up sampling by a city, town, or third party indicate that the advisory can be lifted. Health advisories may be lifted after two successive and representative sampling rounds, two weeks apart, demonstrate no evidence of a cyanobacterial scum or mat and demonstrate cyanobacteria cell counts and toxin levels below threshold concentrations.

RIDEM's Office of Water Resources (OWR) receives reports annually about nuisance algal conditions and cyanobacteria blooms from municipal staff, lake and watershed associations, and the broader public. In the past seven (7) years, a total of 32 waterbodies have had recreational/health advisories issued with an average of ten (10) waterbodies per year. Twelve (12) of the 32 waterbodies are public drinking water supplies and nearly all the remaining waterbodies have a public boat/canoe launch or are heavily used for recreational activities.

Purpose and Description

The objective of this Quality Assurance Project Plan (QAPP) is to present the organization, objectives, and specific quality assurance/quality control (QA/QC) procedures associated with the harmful algal bloom monitoring and evaluation that RIDEM and HEALTH plan for 2017-2018. This includes waterbody evaluation, water sample collection, and sample analysis for various algal toxins as well as cyanobacteria ID and enumeration.

Organization Chart

Table 1: Personnel	involved with	2017 HAB	monitoring ar	nd evaluation.
	mitter with	LOI / IMID	monitoring u	ia craiaation.

Personnel	Affiliation & Contact Information	Project Responsibilities				
	Seasonal Intern, TMDL	Field Reconnaissance/Site				
Seasonal Intern	(401)222-4700	Evaluation				
		Water Quality Sampling				
	Supervising Environmental Planner, TMDL	Project Load/Consultation on				
Brian Zalewsky	(401)222-4700 x 7145	HAP advisorias				
	brian.zalewsky@dem.ri.gov	HAD advisories				
	Supervising Environmental Planner, Monitoring/					
Iono Couvora	Nutrient Criteria	Consultation on HAB Advisories				
Jalle Sawyers	(401)222-4700 x 7239					
	jane.sawyers@dem.ri.gov					
	Deputy Chief of Water Quality & Standards,	Program Supervisor Project OA				
Elizabeth Spott	Office of Water Resources	Officer				
Elizabeth Scott	(401)222-4700 x 7300	Consultation on HAP Advisories				
	elizabeth.scott@dem.ri.gov	Consultation on FAB Advisories				
	Principal Environmental Lab Scientist, RIDOH	Lead-Laboratory/ Toxin				
Evan Philo	(401)222-5553					
	evan.philo@health.ri.gov	Allarysis				
	RIDOH Environmental Health Dept.	Health Advisories/ Consultation				
Sharry Douchar	Environmental Scientist, RIDOH					
Sherry Foucher	(401)222-7727	oli HAB advisories/ issuance of				
	Sherry.Poucher@health.ri.gov	advisories				
	Quality Assurance Project Plan Coordinator					
Nora Conlon	USEPA Region 1- New England Regional	Approval of QAPP				
	Laboratory					
	617-918-8335					
	Conlon.nora@Epa.gov					

Project Lead

The Project Lead is responsible for the implementation of the study and its related QAPP. Consequently, the RIDEM Project Lead is responsible for:

- Developing a sufficient QAPP and distributed to all project personnel,
- Ensuring overall goal and requirements of the QAPP are met through effective planning and organizing,
- Establish adequate lines of communication,
- Ensuring Standard Operating Procedures (SOPs) that outline current practices are written, approved, and distributed to project personnel,
- Assure all data products are reviewed and approved according to accepted policies and guidelines before release.
- Provide field and sample collection training and equipment to seasonal personnel.

Program Supervisor

The Program Supervisor/Project QA Officer's responsibility include:

- Assure the project is properly organized and has adequate lines of communication
- Make certain program roles are clearly understood,
- Ensuring Standard Operating Procedures (SOPs) that outline current practices are written, approved, and distributed to project personnel,
- Complete program-level corrective actions on an as-needed basis,
- Review reports to ensure quality assurance (QA) goals are met.

Field Monitoring Staff

A seasonal intern will conduct field reconnaissance and be responsible for following field/sampling SOPs and project QAPPs. All collection and delivery of samples will be performed by intern as well. Responsibilities include:

- Ensuring the sampling schedule is maintained
- Completing the monitoring staff commitments for all surveys
- Ensuring adequate lines of communication
- Follow all quality assurance/quality control (QA/QC) requirements
- Managing the bi-weekly field sampling activities to ensure field procedures and activities conform to the requirements of the applicable SOPs
- Resolving day-to-day problems in the implementation of the monitoring study
- Audit records and field data for accuracy, validity, and completeness
- Communicating problems to Project Lead.
- Organization/filing of results electronically
- Developing and maintaining database of results

Monitoring for 2017 and 2018

Thirty-two (32) waterbodies will be evaluated for the presence of cyanobacteria blooms on a bi-weekly basis from late June through October. Table 2 lists the waterbodies that will be evaluated during this time and the general location where initial access is gained. All 32 waterbodies have an established history of cyanobacteria blooms, as evidenced by: elevated levels of cyano-toxins, cyanobacterial cell counts greater than 70,000 cells/mL, and/or visible evidence of waterbody-wide cyanobacteria bloom. Many of these waterbodies have had health/ recreational advisories issued for these reasons in the past 6 years. Some waterbodies are also documented as having elevated levels of chlorophyll-a and/or total phosphorous. Maps of waterbodies with planned access points are included in Appendix B.

The evaluation consists of a site visit and visual examination of as much of the waterbody as possible from the shoreline of public access areas and/or private property, when permission is granted. Photographs are taken at various locations at each site regardless of the presence or absence of a bloom in order to keep continuous visual records of RIDEM visits. If a cyanobacteria bloom is evident (scum, dense mat, extensive clumps, spilled paint or pea soup appearance, streaking, etc.), a sample is collected following QA/QC methods and submitted to the State Health Laboratory for cyanotoxin analysis and enumeration/ID. Field sheets are completed at each site as well which record various weather conditions, recreational activities, where the bloom is present on the waterbody if at all, and if a sample was collected.

In Rhode Island, a recreational advisory is issued if a visible scum/mat exists waterbodywide, microcystin levels exceed 4 ppb, or total cyanobacteria cell count exceeds 70,000 cells/mL. In mid-July, the State Health Laboratory added the capability to conduct enumeration/ID of bloom samples submitted. All waterbodies in Table 2 will be visually evaluated bi-weekly, regardless of whether a cyanobacteria bloom is present. If a waterbody with an existing advisory exhibits no evidence of a bloom it is re-sampled for toxin analysis and cyanobacteria enumeration/ ID on a bi-weekly basis. An advisory is rescinded if two successive toxin results (2 weeks apart) show levels below the 4 ppb EPA advisory level and there is no evidence of a bloom present.

Study/Monitoring Objectives

This monitoring plan is meant to be applicable for the years 2017-2018 and is designed to address the following objectives:

- Routinely evaluate the occurrence and extent of harmful algal blooms (HAB's) in 32 waterbodies with a known history of toxin production and/or exceedances of cyanobacteria cell count advisory threshold.
- Evaluate toxin concentrations during and after active HABs throughout the sampling season (bi-weekly from June-October). Toxins include total microcystins, anatoxin, nodularin, and cylindrospermopsin.
- Compare toxin concentrations with visual observations of blooms
- Provide adequate information for both issuance and rescindment of health advisories.
- Respond to and evaluate reports of cyanobacteria blooms from the public and other agencies about any waterbodies not included in Table 2.

|--|

Name	Town	Waterbody ID	Primary Access
Almy Pond	Newport	RI0010047L-01	Put in off Coggeshell Ave on South side
Blackamore Pond	Cranston	RI0006018L-06	Put in off Waterman Ave
Cunliff Lake-Roger Williams Park (RWP)	Providence	RI0006017L-05	Put in at Trailhead parking area
Deep Spring Lake -RWP	Providence	RI0006017L-05	Put in across from Cunliff parking lot
Easton Pond- North	Newport	RI0007035L-03	Put in on access road off Bliss Mine Rd
Easton Pond- South	Newport	RI0007035L-04	Put in on access road off Bliss Mine Rd.
Edgewood Lake	Providence	RI0006017L-05	Put in off Edgewood Blvd
Elm Lake- RWP	Providence	RI0006017L-05	Put in South side of FC Greene Memorial Blvd
Gardiner Pond	Middletown	RI0007035L-01	Put in off Hanging Rock Rd.
Japanese Gardens- RWP	Providence	RI0006017L-05	Put in near Carousel
J.L. Curran Reservoir	Cranston	RI0006016L-02	Put in at access area off Seven Mile Rd
Lawton Valley Reservoir	Portsmouth	RI0007035L-06	Put in at access road off Flanagan Rd
			Put in at cement ramp near baseball field
Mashapaug Pond	Providence	RI0006017L-06	at end of Access Rd or Providence
			Boating Center
Melville Ponds	Portsmouth	RI0007029R-04	Put in near elementary school at fishing dock
Nonquit Pond	Tiverton	RI0007035L -08	Put in off Neck Rd
Omega Pond	East Providence	RI0004009L-03	Put in off Rodger Williams Ave near Railroad crossing
Paradise Pond	Middletown	RI0007035L-02	Put in at 600 Paradise Ave
Pleasure Lake- RWP	Providence	RI0006017L-05	Put in off Natural History Ave
Polo Lake-RWP	Providence	RI0006017L-05	Put in near zip line exit
Roosevelt Lake-RWP	Providence	RI0006017L-05	Put in off Fredrick C Green Memorial Blvd
Scott Pond	Lincoln	RI0001003L-01	Put in at fishing area off Rte. 122
Sisson Pond	Portsmouth	RI0007035L-10	Put in at access road off Union St.
Slack Reservoir	Smithfield-	R100020071_03	Put in at public beach off Green Lake
	Johnston	K10002007E-05	Drive
Slater Memorial Park Pond	Pawtucket	RI0004009R-01A	Put in near paddleboat rentals
Spectacle Pond	Cranston	RI0006017L-07	Put in at baseball field (Carlton St) or Providence Jewelry Museum (light craft/dirt access)
St. Mary's Pond	Portsmouth	RI0007035L-05	Put in at access road off Union St.
Stafford Pond	Tiverton	RI0007037L-01	Put in at DEM Boat Ramp or Pelletier Ln
Ten Mile River	East Providence	RI0004009R-01B	Put in on North Broadway
Turner Reservoir	Rumford	RI0004009L-01B	Put in at access road off Newman Ave
Warwick Pond	Warwick	RI0007024L-02	Put in at cement ramp off at end of Wells Ave
Watson Reservoir	Little Compton	RI0007035L-07	Put in on access road off Old Main Rd
Willow Lake- RWP	Providence	RI0006017L-05	Put in near bridge or paddle boat rentals

Field Sampling Methods

Protocols

Photographs

During field reconnaissance, photos are taken at various locations at each site regardless of the presence of a bloom. They provide documentation of conditions of the waterbody at that time. Photographs serve the purpose of capturing the range of conditions present such as conditions near shore, percent coverage of bloom, and other general observations. Pictures are taken from generally the same area if a waterbody is sampled more than once. Once in the office the photos are downloaded to a designated network drive and folder for storage.

Field Sheets

The cyanobacteria bloom field data/observation sheet (Appendix A) will be filled out completely- taking careful note of weather conditions, area on lake where bloom is occurring and the characteristics of the bloom. Forms are completed for each site regardless of bloom presence. Once in the office field sheets are scanned and uploaded to a designated network drive for storage and future reference while hard copies are filed in the Office of Water Resources at DEM.

Water Samples

All public access areas along waterbody such as boat ramps, fishing access, and beach areas will be monitored and sampled if necessary. Water samples are analyzed for various algal toxins and enumeration/ID is conducted to determine genera of cyanobacteria forming bloom, and qualitative estimates of colony density, as detailed below. Cyanotoxin samples will be collected in 50mL amber glass vials obtained from the State Health Laboratory with the use of a sampling stick. Samples are taken from the densest portion of the bloom while making sure to not uptake floating debris. Vials are inverted on the surface of the water and up righted in order to collect sample. Samples are then labeled (with Date, Time, Location, and Office Division) and kept in a cooler on ice for transport to the State Health Laboratory with a completed Chain of Custody form (Appendix A).

Analytical Sampling/Methods

Analytical Laboratory and Analytes Measured

The Rhode Island State Health Laboratory, located in Providence, analyzes samples for algal toxins. In addition to total microcystins, the lab also analyzes samples for the following additional algal toxins: nodularin, anatoxin, and cylindrospermopsin. The State Health Laboratory also conducts enumeration/ID to evaluate the genera of cyanobacteria forming bloom. Appendix C displays the table of contents page of the toxin analysis SOP as well as the first page of the cyanobacteria enumeration and identification SOP. The analytical SOP for toxin analysis and enumeration/ID SOP are available as separate documents and are attached to the submission of this QAPP to EPA for review.

Cyanotoxin samples are run using a Direct Aqueous Injection UPLC/MS/MS analysis of the following toxins: Total Microcystins, Microcystin-YR, Microcystins-RR and LR (Desmethylated), Microcystin-WR, Microcystin-RR, Microcystin-LY, Microcystin-LW, Microcystin-LR, Microcystin-LF, Cylindrospermopsin, Anatoxin, Nodularin, and Microcystin-LA. RIDOH screens for the following genera in ID and enumeration of samples: *Anabaena, Aphanizomenon, Chlorella, Cylindrospermopis, Microcystis, Nodularia, Plantothrix, and Woronochina*. Table 3 provides analytical methods and reporting limits for all algal toxins.

Parameter	Analytical Method	Reporting Level	Holding Times		
		(µg/L)	(Days)		
Total Microcystin	Direct Aqueous Injection UPLC/MS/MS	4 µg/L	28		
Microcystin-YR	Direct Aqueous Injection UPLC/MS/MS	4 µg/L	28		
Microcystin-RR (desmethylated)	Direct Aqueous Injection UPLC/MS/MS	4 µg/L	28		
Microcystin-LR (desmethylated)	Direct Aqueous Injection UPLC/MS/MS	4 µg/L	28		
Microcystin-WR	Direct Aqueous Injection UPLC/MS/MS	4 µg/L	28		
Microcystin-RR	Direct Aqueous Injection UPLC/MS/MS	4 µg/L	28		
Microcystin-LY	Direct Aqueous Injection UPLC/MS/MS	4 µg/L	28		
Microcystin-LW	Direct Aqueous Injection UPLC/MS/MS	4 µg/L	28		
Microcystin-LR	Direct Aqueous Injection UPLC/MS/MS	4 µg/L	28		
Microcystin-LF	Direct Aqueous Injection UPLC/MS/MS	4 µg/L	28		
Cylindrospermopsin	Direct Aqueous Injection UPLC/MS/MS	8 μg/L	28		
Anatoxin	Direct Aqueous Injection UPLC/MS/MS	3 µg/L	28		
Nodularin	Direct Aqueous Injection UPLC/MS/MS	0.005 µg/L	28		
Microcystin-LA	Direct Aqueous Injection UPLC/MS/MS	4 µg/L	28		

Table 3: Analytical methods and reporting limits for algal toxin analysis

Quality Control and Quality Assurance *Field Work*

Water samples are collected using the same SOPs in the 2011 QAPP: Rhode Island Department of Environmental Management Cyanobacteria Monitoring Program prepared by ESS Group Inc. No field equipment (such as secchi depth, temperature, dissolved oxygen, specific conductance) are used so corresponding SOPs from the 2011 QAPP are not applicable. Changes to monitoring frequency and number of waterbodies monitored are the notable changes to the QAPP. Number of waterbodies has increased to 29 across the state, mostly in urban areas with boating or fishing access and monitoring of sites has increased in frequency from once a month to a bi-weekly basis.

The project is considered complete and representative of the waterbodies when all waterbodies have been visited according to the established schedule, as safety and weather allows, and the recreational season is complete (typically November 1). To address accuracy and bias in field procedures, standardized, repeatable sample collection methods and chemical analysis procedures will be used for each sample. Given that this project is a rapid response/early warning protocol, evaluation of precision by collection of duplicates or blanks is not appropriate.

Toxin Analysis

Samples are submitted to the State Health Laboratory for toxin analysis and quantitative ID/colony count. The lab analyzes the following toxins: total microcystins, anatoxin, cylindrospermopsin, and nodularin. Analysis is conducted according to the Direct Aqueous Injection UPLC/MS/MS SOP (see Appendix C). The State Health Laboratory maintains an SOP for the toxin analysis and follows all QC/QA procedures for the laboratory procedures within the SOP, including criteria to qualify analytical results. Results from the toxin analysis will be compared to EPA-recommended benchmarks for recreational guidance and to previous years' results.

Other

Corrective Action

Monitoring staff will maintain close communication with the Project Lead. Changes to the sampling schedule, or any other aspects of the study, will only be made in accordance with the Project Lead. All field and laboratory personnel are responsible for notifying the Project Lead of circumstances that may necessitate any changes. Work plan amendments will reflect any changes to the project.

Chain of Custody

Proper handling of samples and procedures protect the integrity of samples from the initial sampling time, through transport, sample receipt, preparation, and analysis. All chain of custody procedures will be followed for the Rhode Island Department of Health (RIDOH) and Department of Environmental Management (RIDEM).

Data Management

All field sheets and Chain of Custody (COC) Forms will be maintained in the respective hard copy folders. Scanned copies of field sheets and Certificates of Analysis are saved electronically. An excel file records all results for toxin analysis and identification/enumeration.

Final Report

A report will be prepared by the Seasonal Intern to summarize field and analytical results from the sampling year.

Appendix A Harmful Algal Bloom Field Data Sheet and Chain of Custody Form

Cyanobacteria Bloom Fi	<u>eldsheet</u>
Date Collector(s)	
Name of Waterbody City/Town	
Describe where on the lake you see the bloom. (If none, write none)	
Closest address or landmark to bloom	
Which sections of the lake have a bloom? (Select all that apply)	Weather conditions (Select all that apply)
North East North East South East	Raining Sunny Windy*
South West North West South West	Cloudy Overcast Humid
GPS coordinates of the bloom location (Please use Deicmal Degree format, e.g. 42.632721, -73.748382)	If windy, direction and approximate speed:
Latitude	
Longitude	
Is the bloom near a public beach? Are people actively swimm	ing, boating, or fishing in the bloom?
	nknown
Unknown Yes No	us, or other animals:
Is the bloom near a state boat ramp/fishing dock? Describe extent and type of	f dead organisms:
Yes	Ť
Unknown	
Does the water look like any of the descriptions below? (Select all that appy)	Extent of cyanobacteria bloom on open water:
Hairy, silky strands on rocks, plants, or water Color:	Very limited (some coves, limited shoreline)
Dots/clumps on or in the water Color:	< 30% cover
Streaks on the water surface Color:	Between 30 & 75% cover
Pea soup appearance within the water Color:	> 75% (lake wide)
Spilled paint appearance on surface of the water Color:	
Other	
Were samples taken? If yes, how many samples; when and where were they collect	ted?
Ves No	
Additional notes:	
1	

Figure 1: Field sheets used for field reconnaissance

ED ICED FOR TRANSPORT Sample Submission Form/Chain of Custody Rhode Island Department of Health Laboratories 50 Orms Street, Providence, RI 02904											
Legal Sample											
Client: DWQ / BOT / SWM						Colle	ected by DWQ				
A. Client ID#: B. Client Name:		Ru	in #:		M S	al Rep reet:	ort To:				
	Ċ	ty:									
порил на (прельзит клани).											
Collected By:	Collected	Date:					_ т	me:			Matrix: Water X Other
C. Facility:	D. 1	ype:				E	Sample	Point:			
E. Collection Point											
Collection Point Address:	Name			840					othe		
(req a for Lead & Copper)	Nanio			out					FIELD TESTS:		
(Circle One) Sample Type: (RT/ RP/TG/CO/	SP(chg.)/SP	(no chg.)	Orig#:		pH:		в	emp:	CL Res	idual:	CMB. CL. Residual:
Inorganics Lab	DUP		Meta	als	DL	IP		Organics L	ab	FB	Sanifary Microbiology
Grouped Tests	— <u>—</u>	WL3	6 Mercu	JIY (245.1	1)		_PE4	-CARB (53	1.1)	-	SM2 – MF Total Colform
WLB – Sanitary Chem.	_	_WL65 L	.ead & (Copper(2	00.8)		_PE1	2-Pest/PCE	3 (608)	_	SM3 – SPC
WEC - Group II-DEM	—					_	PEI	4-CDU/UD(2P (304)	—	SM34/SM53 - Coliform
WLD – User Fee WIM – C or P Systems	_	Metals fo	Dr New :	Systems		· —	_PE2	1-HERB/ (5 2-Dest/DCE	(15.3)	_	(TCR)
WLN – Routine Metals+			WL75	Antimony	; _		_PE2 PE3	1-Pest/PCE	3+ (505) 3+ (505)		SM37 – Enterolert FW
WLO – N Systems		_	WL76	Arsenic	_		_PE4	0-Endrin (S	505) í	_	CME4 Basel Tast
WL11 Cyanide (335.4)	_	_	WL77	Barlum	_		_PE2	7-Haloaceti	c Acids	_	q-PCR enterococci
WL13 pH	_	_	WL78	Beryllum			PE_			_	SM38 - A-1 MPN
WL16 Nitrate (353.2) WL18 Alkalinity (2320B)	—		WL79 WL81	Cadmiuri Chromiur	n		_102 T03	-THM (524) PWVOC (3	.2) 524.2)	—	SM43 – Coliphage SM1- MPN, # tubes
WL20 Chloride (300.0)	=	_	WL64	Copper			T04	-PET HCS	s toś	=	SM26-Coliform Container
WL21 Fluoride (300.0)	_		WL82	Iron	_					_	SM27–SPC Container
WL22 Hardness (2340B)			_WL63	Lead		_		1-UFVOC (2-WQVOC	(524/603) (524.2)		
	2	_	WL83	Mangane	se			4-USR Fee	B/N Ext		Harmful Algal Blooms
	_		WL84 N	Vickel Selenium	, =		то	20 PFOA Pf	-OS	_	SM28 Cyanobacteria Count
(300.2)	_	_	WL86	Silver	' =					_	
WL62 Metals - DEM WL62Ee Total Iron - DEM	_		_WL87	Thailium Zinc	' <u> </u>	-					Cyanotoxins
WL WL	WL62F e Total Iron – DEMWL68 ZINCHAB01 TOXIN DEM LCM										
Metals Routine Set WL67 Full Set (200.8)		WLG	8 Full S	set (200.8	3)	•					HAB02 TOXIN DW ELISA
WL69 Magnesium	_	_	_WL78	Berylijum	· _						HAB03 TOXIN DW LCMS
WL70 Potassium		_	WL81	Chromiur	m						
WL71 Sodium	_	_	WL84	Nickel	_					KEY	(
WL72 Calcium	_	_	WL76	Arsenic	_	. ,	A: CLI	ENT ID#:	= 7 DIG	IT PW	s #
WL73 Sodium Composite(20			WL85	Selenium	<u> </u>		B: CLI	ENT NAME	= PUBL	IC WA	TER SYSTEM NAME
		_	_WL79 _WL75	caomiun Antimorv	n / _		D: TYP	PE	= FACIL	AME	(DISTRIBUTION, WELL#)
		_	WL77	Barlum	_	. 6	E: SAN	MPLE POIN	T = SAMP		DINT CODE
		_	WL87	Thailium	_	F	F: COL	LL. POINT	= SAMP	LELO	CATION (KITCHEN SINK,
Must Be Completed For Legal	Sample		_		_					;	3 BAY SINK, WELL, ETC)
Test Code	Conta	iner	-	Preserv	ative Ad	lded		Omerication			
N	umber	туре	BY L	ab	By Col	ector		special int	structions		
				Ch	ain of C	ustody	v				
Relinquished By	Date	Tin	ne	Rec	elved B	y		Date	Time	·	Comments
										\neg	
├ ───		_					┣──			-+	
							1				
07/31/2017 HL											

Figure 2: Chain of Custody Form for toxin analysis and algal ID/enumeration.

Appendix B Maps of Sampling Sites

Almy Pond RI0010047L-01

University of Phode Island Environmental Data Center (URIEDC), Rhode Island Department of Environmental Management (RIDEM) | RIEMA | RIGIS, University of Rhode Island Environmental Data Center | Exil, HERE |

Blackamore Pond RI0006018L-06

Sources: Earl, HERE, DeLorme, Intermap, Increment P Corp, GEBCO, USOS, RAO, NPS, NICOAN, GeoBlane, ION, Kadaster NL, Ordnance Survey, Earl Japan, METI, Earl China (Hong Kong), swisstop, Maphylinda, O Coardinate/Maphylinda, and the OSI Liver Community

, University of Rhode Inland Environmental Data Center (URIEDC), Rhode Island Depertment of Environmental Management (RIDEM) | RIDIA | RIDIA, University of Rhode Island Environmental Data Center | Enri, HERE |

North and South Easton's Pond RI0007035L-03;-04

METI, Earl China (Hong Ki

of Rhode Island Environmental Data Center (URIEDC), Rhode Island Department of Environmental Management (RIDEM) | RIEMA | RIGIS, Un [Earl, HERE] ty of Rhode late nd Er

J.L. Curran Reservoir RI0006016L-02

Sources: Earl, HERE, DeLorne, Internap, Increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Earl Japan, METI, Earl China (Hong Kong), svisstop, Mapnyinda, O OpenStraetWap contributions, and the GIS User Community

iversity of Rhode Latend Environmental Data Center (URIEDC), Rhode Island Department of Environmental Management (RDEM) | RIEMA | RIGES, University of Rhode Island Environmental Data Center | Envi, HERE |

Lawton Valley Reservoir, Sisson and Saint Mary's Pond

Sources: Earl, HERE, DeLorme, Intermap, Increment P Corp, GEBCO, USOB, RAO, NPS, NRCAN, Geoblane, ION, Kastester NL, Orchance Survey, Earl Japan, METI, Earl China (Hong Kong), avisatop, Mapnyinda, O Coenfitterkflag.contributions, and the OIS User Community

wenity of Rhode Island Environmental Data Center (URIEDC), Rhoda Island Depertment of Environmental Management (RIDEM) | RiEMA | RIGIS, University of Rhoda Island Environmental Data Center | Esri, HERE |

Melville Ponds RI0007029L-01

Sources: Earl, HERE, DeLorme, Intermap, Increment P Corp, GEBCO, USOS, RAO, NPS, NRCAN, Geobase, IGN, Kadaster NL, Ordnance Survey, Earl Japan, METI, Earl China (Hong Kong), svisstop, Mapreyinds, O CoenStructifus contribution, and the GIS User Community

Iniversity of Phode Island Environmental Data Center (UREDC), Rhode Island Department of Environmental Management (RIDEM) | RHMA | RIGIS, University of Rhode Island Environmental Data Center | Esci, HERE |

Nonquit Pond and Watson Reservoir RI0007035L-08;-07

Sources: Earl, HERE, DeLome, Intermap, Increment P Corp, GEBCO, USOS, FAO, NPC, NICCAN, Geodase, IGN, Kadaster NL, Ordnance Survey, Earl Japan, METI, Earl China (Hong Kong), svissbop, Mapmyinda, O CoardStartMap contribution, and the GIS User Community

wenity of Rhode Island Environmental Data Center (URIEDC), Rhode Island Depertment of Environmental Management (RIDEM) (RIEMA | RIGHS, University of Rhode Island Environmental Data Center | Earl, HERE |

Omega Pond, Ten Mile River, and Turner Reservoir

Sources: Earl, HERE, DeLome, Intermap, Increment P Corp, GEBCO, USOS, FAO, NPC, NICCAN, Geodase, IGN, Kadaster NL, Ordnance Survey, Earl Japan, METI, Earl China (Hong Kong), svissbop, Mapmyinda, O CoardStartMap contribution, and the GIS User Community

University of Rhode Island Environmental Data Center (URIEDC), Rhode Island Department of Environmental Management (RIDEM) | RIGIS, University of Rhode Island Environmental Data Center | Enri, HERE |

enity of Rhode Island Environmental Data Center (URIEDC), Rhode Island Department of Environmental Management (RIDEM) | RIEMA | RIGIS, University of Rhode Island Environmental Data Center | Earl, HERE |

Roger Williams Park RI0006017L-05

Sources: Earl, HERE, DeLorme, Intermap, Increment P Corp, GEBCO, USGS, RAO, NIFS, NIFCAN, Geodase, IGM, Kadaster NJ, Orchance Survey, Earl Japan, METI, Earl China (Hong Kong), svisstop, Mapnyinda, O CoenStratMap contribution, and the GIS User Community

University of Rhode Island Environmental Data Center (URIEDC), Rhode Island Department of Environmental Management (RDEM) (REMA) RIGIS, University of Rhode Island Environmental Data Center (ERIER)

Scott Pond RI0001003L-01

Sources: Earl, HERE, DeLorme, Intermap, Increment P Corp, GEBCO, USOB, RAO, NPS, NRCAN, Geoblane, ION, Kastester NL, Orchance Survey, Earl Japan, METI, Earl China (Hong Kong), avisatop, Mapnyinda, O Coenfitterkflag.contributions, and the OIS User Community

versity of Rhode Island Environmental Data Center (UREDC), Rhode Island Department of Environmental Management (RDEM) | RIEMA | RIGIS, University of Rhode Island Environmental Data Center | Esci, HERE |

Slack Reservoir RI0002007L-03

Sources: Earl, HERE, DeLores, Intermap, Increment P Corp., GEBCO, USOS, RAO, NPS, NIRCAN, Geoßase, IGN, Kadaster NL, Ordnance Survey, Earl Japan, METT, Earl Chica (Hong Kong), svisstop, Mapreyinda, O OpenStraetMap contributions, and the GIS User Community

iversity of Rhode Island Environmental Data Center (UREDC), Rhode Island Department of Environmental Management (RIDEM) | RIGK), University of Rhode Island Environmental Data Center | Envi, HERE |

Slater Memorial Park Pond RI0004009R-01A

Sources: Earl, HERE, DeLorme, Intermap, Increment P Corp, GEBCO, USOS, RAO, NPS, NICCAN, Geoblane, ION, Kadaster NL, Ordnance Survey, Earl Japan, METI, Earl China (Hong Kong), svisstop, Mapnyinda, O Coard/Eard/Mapcontiliations, and the OIS User Community

, University of Rhode Inland Environmental Data Center (URIEDC), Rhode Island Depertment of Environmental Management (RIDEM) | RIDMA | RIGIS, University of Rhode Island Environmental Data Center | Enci, HERE |

Spectacle and Mashapaug Pond RI0006017L-07; -06

Sources: Earl, HERE, DeLome, Intermap, Increment P Corp, GEBCO, USOS, RAO, MPS, NICCAN, Geoblane, ION, Kastester NL, Ordnance Survey, Earl Japan, METI, Earl China (Hong Kong), existiopo, Mapmyinda, O Coentitient/Map contributions, and the GIS User Community

University of Rhode Island Environmental Data Center (UREDC), Rhode Island Department of Environmental Management (RIDEM) (RIDEM) (RIGES, University of Rhode Island Environmental Data Center (Environmental Data Center) Environmental Data Center) Environmental Data Center (Environmental Data Center) Environmental Data Center) Environmental Data Center (Environmental Data Center) Envir

Stafford Pond RI0007037L-01

Sources: Earl, HERE, DeLome, Internap, Internap, Increment P Corp., GEBCO, USOS, RAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Orchance Survey, Earl Japan, METI, Earl China (Hong Kong), swisstop, Mapnyinda, O CoarditraetMap contributions, and the GIS User Community

University of Phode Island Environmental Data Center (URIEDC), Rhode Island Depertment of Environmental Management (HIDEM) | RIEMA | RGIS, University of Phode Island Environmental Data Center | Exit, HERE |

Warwick Pond RI0007024L-02

Sources: Earl, HERE, DeLorme, Intermap, Increment P Corp, GEBCO, USOS, RAO, NPS, NIKCAN, Geoblane, ION, Kadaster NJ, Ordnance Survey, Earl Japan, METI, Earl China (Hong Kong), svisetop, Mapnyinda, O Coenfitterkflag.confituation, and the OIS User Community

emity of Rhode Island Environmental Data Center (URIEDC), Rhode Island Depertment of Environmental Management (RIDEM) | RIDMA | RIGIS, University of Rhode Island Environmental Data Center | Ent. HERE |

Appendix C Health Lab Analytical SOP (Toxin Analysis)-Table of Content Page (full document attached separately)

Rhode Island State Health Laboratories 50 Orms Street, Providence, RI Section: Environmental Laboratory: Organic Chemistry

ID No.: 4249 Revision 4 Published Date: 10/26/2016 3:33:55 PM Approved By: Henry Leibovitz

Select Cyanobacterial Toxins by Direct Aqueous Injection UPLC/MS/MS

TABLE OF CONTENTS

1.	Title	2
2.	References	2
3.	Scope and Principle of the Analysis	2
4.	Interferences	3
4.1	. Glassware Cleaning	3
4.3	2. Sample Bottle Cleaning	3
4.3	3. Use of High Purity Reagents and Solvents	3
4.4	4. Analysis of Laboratory Reagent Blanks	4
5.	Safety Issues	4
б.	Apparatus and Equipment	4
б.)	Sample Bottles	4
6.2	2. Glassware and Apparatus	4
б.:	3. Instrumentation and Operating Conditions	5
7.	Reagents, Standards and Solutions	б
7.1	. Reagents	б
7.3	2. Certified Stock Standards	б
7.3	3. Preparation of Working Standards	7
7.4	4. Standard Labeling, Record Keeping and Replacement	8
8.	Sample Collection, Preservation and Handling	8
9.	Calibration and Standardization	9
9.1	I. Preparation of Calibration Standards	9
9.3	2. Calibration Standard Analysis	9
10.	Quality Control	10
10	 Continuing Calibration Verification / MRL Check Standards (CCVs) 	10
10	2. Initial Demonstration of Capability (IDC)	11
10	3. MDL Determination (MDL)	11
10	.4. Laboratory Reagent Blanks (LRB)	12
10	.5. Laboratory Fortified Sample Matrix (LFM)	12
10	.6. Surrogate Standard (SS)	13
10	7. Control Charts	13
10	.8. Frequency and Limits of Acceptability	14
11.	Analytical Procedure	15
11	1. Sample Lysing Procedure	15
11	2. LC/MS System Initialization	15
11	3. Sample List Setup	17
11	4. Starting the Run	19
11	.5. Sample Preparation Procedure	19
11	.6. System Shutdown	20
12.	Identification Of Analytes and Calculations	22
12	1. Sample Quantitation	22
13.	Preventive Maintenance	24

Printouts of this document should be considered uncontrolled. To accomplish work, the published version of the document should be viewed online.

Document Type: Standard Operating Procedure

Pre-Qualtrax Document ID: Page 1 of 24

Health Lab Analytical SOP (Algal Enumeration/ID)-1st page (full document attached separately)

Rhode Island State Health Laboratories 50 Orms Street, Providence, RI Section: Environmental Laboratory: Water Microbiology

ID No.: 731 Revision 1 Published Date: Approved By:

Cyanobacteria Harmful Algal Bloom Identification and Enumeration

1. Title: Cyanobacteria Harmful Algal Bloom Identification and Enumeration.

2. References:

 STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 22^{ad} EDITION, 10-17.

3. Scope and Principle of the Analysis:

3.1. Fresh water samples are analyzed for the identification and enumeration of potentially harmful cyanobacteria species. The cyanobacteria genera of interest include: Anabaena, Microcystis, Aphanizomenon, Planktothrix, with a screen for other potentially toxic organisms. Freshwater samples will be taken from drinking water reservoirs and recreational freshwater then identification will be performed using a visual identification key. Cyanobacteria will be identified, and enumerated as units/mL by using a Sedgewick Rafter counting chamber for calculations.

Our results will supplement those of cyanobacteria toxin monitoring performed by Food Chemistry to be utilized by RIDEM and HEALTH to determine appropriate public health action.

4. Safety Issues

- 4.1. The samples may contain cyanotoxins. These potent toxins are easily absorbed through the skin and can cause damage to humans. Each sample should be treated as though it contains dangerous levels of cyanotoxin.
- 4.2. Gloves should be worn when handling the samples.
- 4.3. Samples are disposed of in a histology bucket after the read.

5. Interferences

- 5.1. There are "look-alike" species that may be frequently mistaken for certain harmful species and must be distinguished for the count.
- 5.2. Photos of harmful species, used for reference, will be taken by the Nikon Eclipse E400 camera microscope. Each photo will be labeled with the location site of the sample and archived digitally in a folder on the L drive sorted and named by the sample's date and Element work order number.
- 6. Glassware:
 - 1.1.1. 1.0mL Sedgewick Rafter counting chamber.
 - 1.1.2. 24x50mm coverslip

2. Instrumentation:

- 2.1.1. Microscope equipped with 10X and 40X lenses.
- 2.1.2. Nikon Eclipse E400 camera

3. Sample Collection, Preservation and Storage

Printouts of this document should be considered uncontrolled. To accomplish work, the published version of the document should be viewed online

Document Type:

Pre-Qualtrax Document ID: Page 1 of 3