

Mr. Jeffrey Crawford Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street Providence, RI 02908-5767 ARCADIS U.S., Inc. 300 Metro Center Boulevard Suite 250 Warwick Rhode Island 02886 Tel 401.738.3887 Fax 401.732.1686

www.arcadis-us.com

SER-1

Subject:

September 2011 Quarterly Monitoring Report for Springfield Street School Complex

Dear Mr. Crawford:

ARCADIS US, Inc. (ARCADIS) conducted quarterly monitoring of soil gas, indoor air, the cap, and the sub-slab ventilation system between September 28, 2011 and October 3, 2011. The monitoring was performed in accordance with the *Long-Term Operation and Maintenance Plan and Site Contingency Plan* (O&M Plan) contained in the *Remedial Action Work Plan* prepared by ATC dated April 2, 1999, revised May 3, 1999 and May 9, 1999. The *Remedial Action Work Plan* (RAWP) was approved by the Rhode Island Department of Environmental Management (RIDEM) in a letter dated June 4, 1999.

This work is subject to the Limitations contained in Attachment A. Results of monitoring are provided in the following sections and in the attachments.

COVER MONITORING

ARCADIS conducted a visual survey of the site on September 28, 2011 for evidence of significant soil cover erosion, or for any areas where the orange snow fencing indicator barrier was visible. ARCADIS did not observe any areas where the orange indicator barrier was visible during this monitoring event.

SUB-SLAB VENTILATION SYSTEM

The sub-slab ventilation system was inspected by ARCADIS during the quarterly monitoring on September 28, 2011. The two elementary school blowers and the two middle school blowers were operating normally upon arrival.

Samples of influent and effluent (before and after the carbon canisters) air were collected at each blower and screened for methane, carbon dioxide, oxygen, carbon monoxide, hydrogen sulfide, and organic vapors using a Landtec GEM2000 plus and a MiniRae 2000. Results of screening are provided on Table 1. Methane, carbon

Date:

November 11, 2011

Contact:

Donna H. Pallister, PE

Phone:

401.738.3887

Email:

Donna.pallister@arcadisus.com

Our ref:

WK012152.0007

monoxide, hydrogen sulfide and organic vapors were not detected in any of the samples. Carbon dioxide was detected at a concentration of 0.0 to 0.5% at each location; five of the sample concentrations were greater than the RAWP Action Level of 1000 ppm (0.1%).

INDOOR AIR MONITORING

Indoor air monitoring was conducted on September 28, 2011 using a QRAE plus multi-gas meter (methane, hydrogen sulfide, oxygen), a Mini Rae photoionization detector (organic vapors), and a Fluke 975 Airmeter (carbon dioxide, carbon monoxide). School was in session during the monitoring event. Results of monitoring are provided in the Table 2. Carbon dioxide measurements were made with a Fluke 975 Airmeter indoor air quality meter. The Fluke 975 has a range of 0 to 5,000 ppm, with a resolution of 1 ppm.

The outside temperature on September 28, 2011 was 76 °F. Carbon dioxide was measured outside in the school parking lot at 480 ppm.

All readings were below the RAWP Action Levels. Methane, carbon monoxide, hydrogen sulfide, and organic vapors were not detected, and carbon dioxide was within the expected range for an occupied building.

Concentrations of carbon dioxide inside occupied buildings are expected to be higher than the concentrations in outdoor air because the building occupants expel carbon dioxide. Therefore, in indoor air, the concentration of carbon dioxide is typically used as an indicator of the effectiveness of the heating, ventilating, and air conditioning (HVAC) system in circulating outdoor air into the building. The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) have prepared ASHRAE Standard 62.1-2007 titled Ventilation for Acceptable Indoor Air Quality. The purpose of the Standard is to specify minimum ventilation rates and other measures to provide indoor air quality that is acceptable to human occupants and that minimize adverse health effects. A discussion regarding carbon dioxide concentrations in indoor air contained in Informative Appendix C of the Standard states: "... maintaining a steady-state CO₂ concentration in a space of no greater than about 700 ppm above outdoor air levels will indicate that a substantial majority of visitors entering a space will be satisfied with respect to human bioeffluents (body odor)." This is the basis for ASHRAE's recommendations for concentrations of carbon dioxide in indoor air. The average concentrations measured inside the site buildings were less than 700 ppm above the ambient outdoor concentrations.

The Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) for carbon dioxide in the workplace is 5,000 ppm. All readings were below this concentration.

The control panels for the methane monitors at both schools were inspected on September 28, 2011. The methane monitor control panels had stickers that indicated that the monitors were calibrated by Diamond Technical Services within the month prior to the inspection. Diamond Technical Services calibrates the sensors on a monthly basis.

Calibration Certificates from Diamond Calibration indicate that many of the sensors read above 0 when calibrated to the zero gas. This prevents the sensors from giving a fault alarm if the reading drops below zero due to a sudden temperature change, and still provides a conservative measure of protection because the alarm limit does not change.

GROUNDWATER MONITORING

The new and existing groundwater monitoring wells were sampled by ARCADIS on October 3, 2011.

Prior to sampling, the depth to water was gauged, and a volume of water equivalent to approximately three well volumes was removed from the well. Groundwater samples were collected in laboratory prepared sample jars and delivered under chain-of-custody protocol to Contest Laboratory in East Longmeadow, Massachusetts for analysis for volatile organic compounds by EPA method 8260. The laboratory report is provided as Attachment C. Results of analysis of groundwater samples are summarized in Table 3.

Chloroform was detected in the groundwater sample collected from MW-6 at a concentration equal to the laboratory detection limit of 2.0 ug/L. There is no RIDEM GB Groundwater Objective for chloroform. Trichloroethylene was detected in ATC-4 at 1.1 ug/L, significantly below the RIDEM GB Groundwater Objective of 540 ug/L. No other target analytes were detected in any of the groundwater samples.

SOIL GAS MONITORING

Soil gas monitoring was conducted at 27 locations on October 3, 2011. The sampling was conducted by placing an air sampling gripper cap on each well and attaching a piece of tubing. A volume of air equivalent to approximately 3 well volumes was removed from each well using a Sensidyne BDXII air sampling pump. Soil gas was

then screened using a Landtec GEM 2000 Plus Landfill Gas Analyzer and a MiniRae Photoionization Detector (PID).

Air samples were also collected in Tedlar bags from wells WB-2 and MPL-6. The Tedlar bags were submitted to Con-test Analytical Laboratory for analysis for VOC via EPA method TO-14.

Soil Gas Field Monitoring Results

Soil gas samples were screened for methane, carbon monoxide, hydrogen sulfide, carbon dioxide, oxygen, and total VOCs. Soil gas survey results are provided in Table 4. Methane, hydrogen sulfide and organic vapors were not detected in any samples. Carbon monoxide was detected in EPL-2 at 4 ppm. Carbon monoxide was not detected in any other wells.

Carbon dioxide was detected in soil gas at concentrations ranging from 0.0% to 14.3% during the October monitoring event. The carbon dioxide Remedial Action Work Plan Action Level is 0.1% and 24 readings exceeded the action level. The maximum concentration detected during the June round was 10.5%, and the maximum concentration of carbon dioxide detected during February was 6.5%. This is consistent with the pattern shown during previous rounds of declining carbon dioxide concentrations in the winter, and increasing concentrations in the summer and early fall. Graphs presenting carbon dioxide, oxygen, and methane concentrations over time for selected representative wells are presented in Attachment D.

The presence of carbon dioxide in soil gas is an indicator of subsurface bacterial activity and does not represent a threat to users of the property. The highest concentration of carbon dioxide was found in well MPL-6, located on the northern end of the property near Hartford Avenue. The monitoring locations on the northern end of the property adjacent to large expanses of paved parking lot, sidewalk, and streets have typically had the highest carbon dioxide concentrations.

Soil Gas Laboratory Results

Soil gas samples were collected from soil gas wells MPL-6 and WB-2 in Tedlar bags and submitted to Con-Test Analytical Laboratories for analysis by method TO-14. Results of the analysis are summarized in Table 5, and the laboratory report is provided in Attachment C. The results of analysis were generally consistent with the concentrations and compounds which have been detected in previous monitoring events.

The Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs) are provided in Table 5 for comparison purposes even though they are not applicable to soil gas, because it does not represent exposure point concentrations. The PELs are the average concentrations that OSHA allows to be present in a workplace without any respiratory protection or exposure controls. The concentrations detected in soil gas were well below the OSHA PELs.

CONCLUSIONS

Methane, hydrogen sulfide, carbon monoxide and organic vapor concentrations did not exceed RAWP action levels in any soil gas or indoor air samples. Carbon dioxide concentrations exceeded the action level at soil gas locations and subslab system monitoring points. The detection of carbon dioxide in soil gas is typical of what has been detected during previous monitoring events and appears to be a result of naturally occurring bacterial activity in the subsurface.

If you have any questions or require any additional information, please contact the undersigned at 401-738-3887, extension 25.

Sincerely,

ARCADIS U.S., Inc.

Donna H. Pallister, PE, LSP Senior Environmental Engineer

Sonna H Pallett

Copies:

C. Jones, Providence Schools
A. Sepe, City of Providence
Providence Public Building Authority

ARCADIS

Figure

ARCADIS

Tables

Table 1
System Monitoring Notes
Springfield Street School Complex
Providence, Rhode Island
September 28, 2011

Monitoring Location	Methane % by volume Landtec	Carbon Dioxide % by volume	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
Elementary School inlet 1	0.0	0.5	20.3	0	0	0.0
Elementary School inlet 2	0.0	0.4	20.4	0	0	0.0
Elementary School Outlet	0.0	0.5	20.2	0	0	0.0
Middle School front shed inlet	0.0	0.0	20.7	0	0	0.0
Middle School front shed after 2 nd carbon	0.0	0.0	20.6	0	0	0.0
Middle School back shed inlet	0.0	0.3	20.2	0	0	0.0
Middle School back shed after 2 nd carbon	0.0	0.4	20.2	0	0	0.0
Remedial Action Work Plan Action Levels	0.5	1,000 ppm (0.1%)	NA	9 ppm	10 ppm	5 ppm

Measurements made with: Land tec GEM2000, MiniRAE 2000, Q-RAE multigas meter

Sampling date: September 28, 2011

Measured by: D. Pallister

Table 2 Indoor Air Monitoring Results Springfield Street School Complex Providence, Rhode Island September 28, 2011

Monitoring Location	Methane as % LEL	Carbon Dioxide PPM	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
E.S. Front office	0	532	21.4	0	0	0.0
E.S. Elevator	0	590	21.4	0	0	0.0
E.S. Faculty Work Room	0	708	21.4	0	0	0.0
E.S. Gym	0	674	21.4	0	0	0.0
E.S. Stairway B	0	575	21.4	0	0	0.0
E.S. Room 110	0	631	21.5	0	0	0.0
E.S. Library	0	725	21.4	0	0	0.0
E.S. Room 111 Music/Art Room	0	671	21.4	0	0	0.0
E.S. Cafeteria	0	826	21.4	0	0	0.0
E.S. GS-8	0	735	21.5	0	0	0.0
Stairway C	0	682	21.5	0	0	0.0

Table 2 Indoor Air Monitoring Notes Springfield Street School Complex September 28, 2011

Monitoring Location	Methane as % LEL	Carbon Dioxide PPM	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
M.S. Front Office	0	580	21.4	0	0	0.0
GS-14	0	442	21.3	0	0	0.0
M.S. Stairway near Hartford Ave. GS-07	0	500	21.4	0	0	0.0
M.S. Near sensor #16 in hall outside cafeteria	0	398	21.3	0	0	0.0
M.S. Faculty Work Room	0	479	21.4	0	0	0.0
M.S. GS-03 Across from Boys Bathroom	0	440	21.4	0	0	0.0
M.S. Second Floor - Library	0	607	21.4	0	0	0.0
M.S. Cafeteria	0	410	21.3	0	0	0.0
Custodian Closet	0	400	21.4	0	0	0.0
Elevator	0	639	21.4	0	0	0.0

Table 2 Indoor Air Monitoring Notes Springfield Street School Complex September 28, 2011

Monitoring Location	Methane as % LEL	Carbon Dioxide PPM	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
M.S. Front Hall near sensor #4	0	499	21.4	0	0	0.0
M.S. Hallway across from elevator near sensor #9	0	379	21.3	0	0	0.0
M.S. Near sensor GS 06 hallway right end	0	533	21.4	0	0	0.0
M.S. stairway near Elem. sensor GS-1	0	404	21.4	0	0	0.0
Remedial Action Work Plan Action Levels	0.5	1,000 ppm (0.1%)	NA	9 ppm	10 ppm	5 ppm

Notes:

E.S. indicates Elementary School, M.S. indicates Middle School

Measurements made with: MiniRAE 2000, Q-RAE Multigas Meter, Fluke 975 Airmeter

PPM = Parts per million

Outdoor conditions: carbon monoxide = 0 ppm, carbon dioxide = 480 ppm, temperature = 76 °F.

Table 3 Summary of Ground Water Sampling Results Springfield Street School Complex Springfield Street Providence, Rhode Island

												Samp	ling Dates ar	nd Results	in μg/L																									RIDEM GB
																	10/27&28/																							Groundwate
Well	Detected Compounds	s 2/28/2001	7/20/2001	*9- 12/200	1 8/1/2002	8/28/2002	12/19/2002	2 3/18/200	3 7/17/200	3 11/5/200	3 1/22/2004	5/21/2004	8/17/2004	12/2/2004	4/6/2005	7/27/2005	2005	2/2/2006	4/27/2006	8/31/2006	11/15/2006	3/27/2007	5/21/2007	8/20/2007	11/13/2007	2/12/2008	5/21/2008	8/26/2008	11/18/2008	2/17/2009	5/7/2009	8/25/2009	11/18/2009	3/1/2010	5/20/2010	8/25/2010	11/19/2010	0 2/24/2011	6/16/2011 10/3/20	11 Objective
ATC-1																																								
	Benzene	6.1	ND .	18.9	0.9	ND	ND	ND	ND ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND .	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND .	ND	ND	ND ND	140
	n-butylbenzene	1.7	ND	2.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND	ND	ND	ND ND	NA
	sec-Butylbenzene	1.1	ND	4.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	NA
	tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	NA NA
	Ethylbenzene	4.5	ND	12.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND ND	1600
	Isopropylbenzene	. ND	ND	1.8	ND	ND	ND	ND	ND ND	ND	ND	ND	. ND	ND .	ND	ND	ND	ND	ND .	ND	ND	ND .	ND	ND	ND ND	ND	ND	ND ND	ND	ND	. ND	ND .	ND	ND	ND	ND .	ND	ND	ND ND	NA NA
	n-Propylbenzene	ND	ND	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	NA NA
	MTBE	12.4	7.0	28.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	5000
	Trichloroethylene	ND	ND	ND	ND	ND	ND	ND	1.27	ND	ND	ND	ND	ND	1.10	ND	ND	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	540
I	Toluene	2.5	ND	8.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	1700
	1,2,4-Trimethylbenzene	2.2	ND .	8.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	NA
	1,3,5-Trimethylbenzene		ND	5.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	NA NA
	Xylenes	14.6	ND	37	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	NA
	1,1,2-Trichloroethane	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	NA NA
ATC-2																																								
	Chloroform	0.9	ND	ND	1.0	ND	ND	ND	ND	ND	NS	1.1	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	Closed Close	
																																							4/2011 4/201	1
MW-6																																							ND	
	Chloroform									-																													ND 2.0	NA NA
Installed																																								
ATC-3																																								
	Toluene	ND	ND	ND	ND	NS	ND	ND	ND	ND	3.03	ND	ND	ND	ND	ND	ND	3.0	ND	4.5	13.1	ND	2.3	1.3	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	Closed Close	
																																		_					4/2011 4/201	
MW-7							-											ļ								_													ND ND	NA NA
Installed ATC-4																																		_						
ATC-4		ND	ND	0.5	0.0	ND	ND	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	NO NO	440
	Benzene Chlorobenzene	ND 2.6	ND ND	2.5	0.6 2.7	ND 5.40	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.5 ND	ND 0.60	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 4.00	ND 1.90	ND ND	ND ND	ND 4.0	ND ND	ND ND	ND ND	ND 1	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS ND	140 70
				57.3		5.18																ND ND		1.80				1.2				4.5				ND				
	1,4-dichlorobenzene	4.2	ND ND	9.2 ND	3.4	3.36 ND	ND	ND	ND 1.19	ND	ND 1.00	0.80	1.6	2.1	ND ND	ND	ND ND	ND ND	ND	1.2	1.1 ND		1.2	2.1	2.1	ND	ND	2.1 ND	1.4 ND	ND	1.7 ND	1.5	ND ND	ND	ND ND	ND ND	1.5	NS	NS ND	NA 5000
	1,2,4-Trimethylbenzene	ND ND	ND ND	1.7	ND ND	ND ND	ND ND	ND ND	1.19 ND	9.55 ND	1.06 ND	2.90 ND	0.6 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS ND	5000 NA
	tert-Amyl Methyl Ether	e ND	ND	1.7	IND	ND .	IND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND.	ND	ND	IND	ND	ND	ND	ND	ND	ND	ND	ND	. ND	. ND	ND	ND	ND	ND	ND	INS	NO ND	- INA
	(TAME)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5	ND	NS	NS ND	NA
	Trichloroethylene	IND	IND	ND	IND	IND	IND	IND	IND	IND	IND.	IND	IND	IND	IND	ND	IND	IND	IND	IND	IND	IND	ND	IND	IND	IND.	IND	ND.	IND	ND	ND	ND ND	ND	ND	ND	ND	ND	NS	NS 1.1	540
	Thomoroeutylene	+	-		+		 	-	+	+	-	+	1					-				+				1		 		ND	IND	IND	IND	IND	IND	IND	IND	INO	1.1	J40
ATC-5		_			+		<u> </u>																											 				+		+
A10-5	MTBE	ND	ND	2.2	NS	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	Closed Close	d 5000
	Chloroform	ND	ND	ND	ND	ND ND	ND	ND	ND	NS	ND	ND	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	NS	NS		4/2011 4/201	
	CHIOIOIOIIII	IND	IND	ND	IND	IND	IND	IND	IND	INO	IND	IND	0.0	IND	IND	IND	IND	IND	IND	IND	IND	IND	IND	IND	IND	IND	IND	IND	טאו	IND	IND	IND	IND	IND	IND	INO	INO	INO	4/2011 4/201	INA
MW-8	 	+			+		 	1		-			1		-							+				1		1			†							1	ND ND	NA
Installed		+	1																													l		 				+	IND IND	INA
Sample		ATC	ATC	ATC	ATC	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	ARCADIS :	ARCADIS	ARCADIS	ARCADIS	ARCADIS	ARCADIS ARCAD	nIS SIG
Sample	т Бу.	AIC	AIC	AIC	AIC	LFR	LFR	LFK	LFR	LFR	LFK	LFK	LFR	LFR	LFR	LFR	LFR	LFR	LFK	LFR	LFR	LFR	LFK	LFR	LFR	LFR	LFR	LFR	LFR	LFK	LFK	LFR	LFR	AITCADIO I	AINCADIS	AUCHDIO	ARCADIS	ANCADIS	ANCADIO ANCAL	
	1	1	1	1			1			1	1	1	1		1			1				1		1	1	1	1	1	1		1	1		1 1			1	1	1	1

*ATC Monitoring Report for September through December 2001 did not list date samples were collected. ND is not detected above method detection limit NS is not sampled NA= No applicable standard published MTBE is Methyl tent-Butyl Ether μg/L = micrograms per liter

Table 4
Soil Gas Survey Field Notes
Springfield Street School Complex
Providence, Rhode Island
October 3, 2011

Monitoring Well	Methane % by volume	Carbon Dioxide % by volume	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
WB-1	0.0	5.5	11.0	0	0	0.0
WB-2	0.0	1.4	19.6	0	0	0.0
WB-3	0.0	0.2	21.1	0	0	0.0
WB-4	0.0	0.0	21.2	0	0	0.0
WB-5	0.0	0.0	21.2	0	0	0.0
WB-6	0.0	0.0	21.2	0	0	0.0
WB-7	NM	NM	NM	NM	NM	NM
WB-8	0.0	0.0	21.1	0	0	0.0
WB-12	0.0	3.5	17.5	0	0	0.0
WB-13	0.0	2.1	14.9	0	0	0.0
WB-14	0.0	3.4	15.4	0	0	0.0
WB-15	0.0	8.0	8.3	0	0	0.0
EPL-1	0.0	1.3	19.1	0	0	0.0
EPL-2	0.0	1.6	17.7	4	0	0.0
EPL-3	0.0	6.6	12.2	0	0	0.0
EPL-4	0.0	2.5	16.6	0	0	0.0
EPL-5	0.0	5.7	11.7	0	0	0.0
ENE-1	0.0	3.9	14.1	0	0	0.0

Table 4
Soil Gas Survey Field Notes
Springfield Street School Complex
Providence, Rhode Island
October 3, 2011

Monitoring Well	Methane % by volume	Carbon Dioxide % by volume	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
MG1	0.0	2.4	13.7	0	0	0.0
MG2	0.0	4.5	15.2	0	0	0.0
MG3	0.0	3.8	15.6	0	0	0.0
MG4	0.0	3.5	15.6	0	0	0.0
MG5	0.0	2.3	16.8	0	0	0.0
MPL2	0.0	7.1	9.6	0	0	0.0
MPL3	0.0	11.4	0.7	0	0	0.0
MPL5	0.0	13.3	3.5	0	0	0.0
MPL6	0.0	14.3	2.9	0	0	0.0
MPL7	0.0	13.6	3.7	0	0	0.0
MPL8	0.0	8.4	10.5	0	0	0.0
Remedial Action Work Plan Action Levels	0.5%	1,000 PPM	NA	9 PPM	10 PPM	5 PPM

Sampled by: Chris Jamison

Weather Conditions: Cloudy, 60F

Sampling Equipment: Landtec GEM 2000 Plus, MiniRae 2000 PID

NM = Not measured. Well WB-7 contained water to top of casing on day of sampling.

Parameter	OSHA PELs																	Resu	ılts of Analys	is in parts pe	r billion by	volume (PPB	v)													7			
	(PPBv)																																						7
											MPL-6																			WB-2									
Date Collected:		2/20/2007	5/17/2007	8/22/2007	11/14/2007	2/12/2008	5/21/2008	8/26/2008	11/26/2008	2/10/2009	5/7/2009	8/25/2009	11/19/2009	3/1/2010	5/21/2010	8/25/2010	11/19/2010	2/24/2011	6/14/2011	10/3/2011	2/20/2007	5/17/2007	8/22/2007	11/14/2007	2/12/2008	5/21/2008	8/26/2008	11/26/2008	2/26/2009	5/12/2009	8/25/2009	11/18/2009	3/1/2010	5/21/2010	8/25/2010	11/19/2010	2/24/2011	6/14/2011	10/3/2011
Benzene	1,000	ND	0.36	0.74	ND	ND	0.51	1.0	0.3	0.31	0.31	2.40	0.29	0.18	0.52	0.37	0.25	ND	0.38	0.48	ND	0.29	ND	ND	ND	0.21	0.46	0.23	0.24	ND	2.1	0.39	0.16	0.22	0.30	0.18	ND	0.45	0.22
Carbon Tetrachloride	10,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.093	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.06	ND	0.062	ND	ND	ND	ND	ND	ND
Chlorobenzene	75,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.058	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.053	ND	0.073	ND	ND	ND	ND	ND	ND
Chloroethane	1,000,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	50,000	ND	3.2	0.48	ND	ND	0.25	ND	0.10	ND	ND	0.15	0.12	0.12	0.13	ND	ND	ND	ND	0.13	ND	ND	ND	ND	ND	ND	ND	0.06	ND	ND	0.22	0.38	0.07	0.12	ND	0.15	ND	ND	0.59
Chloromethane	100,000	ND	0.24	0.36	ND	ND	0.28	0.88	0.36	0.39	0.16	0.77	0.13	0.26	0.22	0.31	0.12	ND	0.50	0.22	ND	0.11	ND	ND	ND	0.2	0.56	0.23	0.54	ND	0.28	0.2	0.22	0.23	0.35	0.11	ND	0.34	0.25
Dichlorodifluoromethane (Freon 12)	1,000,000	ND	ND	0.28	ND	ND	0.53	0.78	0.31	0.44	0.44	0.43	0.28	0.61	0.48	0.45	0.34	0.51 B	0.68	0.33	ND	0.5	0.57	0.66	0.57	0.49	0.66	0.4	0.51	0.55	0.57	0.44	0.66	0.49	0.60	0.44	0.51 B	0.48	0.63
1,3-Dichlorobenzene	None	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.30	1.70	ND	0.14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.31	0.74	ND	0.20	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	75,000	ND	ND	0.54	ND	ND	ND	0.65	ND	0.13	ND	0.27	0.44	0.051	0.27	0.13	ND	0.23	ND	0.94	ND	0.16	0.37	ND	ND	ND	ND	ND	0.15	ND	0.3	0.25	0.056	0.12	ND	ND	0.23	ND	0.84
1,1-Dichloroethane	100,000	ND	ND	0.28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	None	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cis-1,2-Dichloroethylene	200,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloro-1,1,2,2-tetrafluoroethane	1,000,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.36	ND	ND	ND	ND	ND	ND	ND	ND
(Freon 114)																																				1	1	, !	
Ethylbenzene	100,000	ND	0.75	0.7	2.3	0.65	1.3	3.9	0.4	0.36	3.8	5.6	1.1	0.14	0.44	0.14	0.22	1.80	3.10	1.0	ND	0.55	0.46	3.2	0.78	0.41	1.3	0.33	0.42	2.0	4.6	0.6	0.16	0.37	0.10	0.23	1.8	2.5	0.94
Methylene Chloride	100,000	ND	ND	0.84	3.5	2	2.6	3.8	2.9	1.7	2.2	1.9	1.5	1.7	3.2	2.7	1.4	1.7	2.6	2.8	ND	0.53	0.5	4.9	2.5	3.4	3.0	2.3	1.1	2.0	1.8	1.8	1.9	3.2	5.1	1.5	1.7	2.5	2.7
Styrene	100,000	ND	1.6	1.5	1.4	ND	1.1	3.0	0.3	0.36	2.8	3.2	1.0	0.26	10	1.7	0.3	0.51	0.76	2.1	ND	1	1.1	0.69	ND	0.5	1.5	0.1	0.47	1.3	3.1	0.51	0.33	3.6	1.1	0.37	0.51	0.80	1.8
Tetrachloroethylene	100,000	ND	0.19	0.27	4.6	1.9	0.99	4.1	0.6	0.33	0.65	4.0	0.76	0.19	0.21	0.47	0.25	0.34	6.00	1.1	ND	0.16	0.81	3.2	2.7	0.64	1.6	0.8	0.32	16	3.2	0.43	0.13	0.37	0.44	0.18	0.34	4.70	0.60
Toluene	200,000	4.9	17	7.2	15	6.9	7.7	64	4	4.1	30	21	5	0.84	32	1.2	0.83	2.40	7.30	9.1	4.6	12	5.3	10	9.3	3	30	1.8	2.3	12	21	2.6	1.4	8.8	1.1	0.75	2.4	6.1	7.8
1,1,1-Trichloroethane	350,000	ND	ND	0.36	ND	ND	ND	0.27	ND	ND	ND	ND	ND	ND	0.19	0.24	ND	ND	ND	ND	ND	ND	38	ND	1.3	ND	ND	ND	ND	ND	ND	0.052	ND	ND	0.14	ND	ND	0.31	ND
Trichloroethylene	100,000	ND	ND	0.25	0.53	1	4.1	3.6	1.7	ND	0.26	0.098	0.91	0.067	0.24	3.0	0.63	ND	0.78	1.2	ND	ND	4.6	ND	ND	3	2.8	0.97	0.32	ND	0.095	0.26	ND	0.37	0.70	0.15	ND	0.59	0.18
Trichlorofluoromethane (Freon 11)	1,000,000	ND	ND	0.7	0.65	ND	0.27	1.3	0.5	0.28	0.72	0.96	0.60	0.44	6.0	0.82	0.44	0.31	0.94	2.4	ND	0.41	0.43	ND	ND	0.26	0.54	0.3	0.41	2.8	2	0.51	0.47	1.2	1.1	0.28	0.31	0.93	2.20
1,1,2-Trichloro-1,2,2,-Trifluoroethane	1,000,000	ND	ND	0.27	ND	ND	ND	ND	0.06	ND	ND	0.06	0.083	0.069	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.07	ND	ND	0.06	0.11	0.076	ND	ND	ND	ND	ND	ND
(Freon 113)																																				1	1	, !	
1,3,5-Trimethylbenzene	None	ND	0.12	ND	ND	ND	0.28	3.7	0.1	ND	8.1	0.5	0.31	0.057	ND	ND	ND	1.0	1.4	0.56	ND	ND	ND	0.57	ND	ND	0.67	0.2	0.13	1.4	0.41	0.18	0.071	ND	ND	ND	1.0	1.3	0.47
1,2,4-Trimethylbenzene	None	ND	ND	0.44	1.6	1.3	1.3	9.1	0.3	0.24	15	1.6	1.3	0.23	0.72	0.13	0.39	3.10	3.20	2.6	ND	1	0.26	1.7	1.1	0.66	1.6	0.66	0.52	3.2	1.2	0.9	0.28	0.62	0.10	0.38	3.1	3.3	2.0
Vinyl chloride	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.087	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
M/p-Xylene	100,000	1.4	3.1	2.4	5.3	2.2	3.7	11	1	0.95	11	15	3	0.41	1.2	0.42	0.59	5.10	8.40	4.0	1.2	2.5	1.8	10	2.6	1.3	3.7	0.94	1.4	6.1	13	1.5	0.52	0.93	0.32	0.59	5.1	7.0	3.5
o-Xvlene	100,000	ND	0.61	0.68	1.8	0.69	1.6	5.0	0.4	0.32	8.0	4.3	1.2	0.15	0.34	0.12	0.23	2.30	3.90	1.6	ND	0.56	0.48	3.5	0.8	0.64	1.5	0.43	0.45	2.3	3.3	0.6	0.18	0.26	ND	0.24	2.3	3.4	1.4

Notes: ND = Not detected Only detected compounds are listed, see laboratory report for complete list on analytes. B = compound also detected in blank

ARCADIS

Appendix A
Limitations & Service Constraints

LIMITATIONS AND SERVICE CONSTRAINTS

GENERAL REPORTS/DOCUMENT

The opinions and recommendations presented in this report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by ARCADIS and the party for whom this report was originally prepared. This report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry. No representation, warranty, or guarantee, express or implied, is intended or given. To the extent that ARCADIS relied upon any information prepared by other parties not under contract to ARCADIS, ARCADIS makes no representation as to the accuracy or completeness of such information. This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared for a particular purpose. Only the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user's sole risk.

Results of any investigations or testing and any findings presented in this report apply solely to conditions existing at the time when ARCADIS's investigative work was performed. It must be recognized that any such investigative or testing activities are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the project site may vary from those at the locations where data were collected. ARCADIS's ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities. As such, 100% confidence in environmental investigation conclusions cannot reasonably be achieved.

ARCADIS, therefore, does not provide any guarantees, certifications, or warranties regarding any conclusions regarding environmental contamination of any such property. Furthermore, nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

ARCADIS

Appendix B Laboratory Results

October 11, 2011

Donna Pallister Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250 Warwick, RI 02886

Project Location: Springfield Street

Client Job Number:

Project Number: WK012152.0007

Laboratory Work Order Number: 11J0111

Holy L. Tolson

Enclosed are results of analyses for samples received by the laboratory on October 4, 2011. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Holly L. Folsom Project Manager

Arcadis US, Inc. - Warwick, RI REPORT DATE: 10/11/2011

300 Metro Center Blvd., Suite 250 Warwick, RI 02886

ATTN: Donna Pallister

PURCHASE ORDER NUMBER: 5131

PROJECT NUMBER: WK012152.0007

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 11J0111

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Springfield Street

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
MPL-6	11J0111-01	Air		EPA TO-14A	
WB-2	11J0111-02	Air		EPA TO-14A	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA TO-14A

Qualifications:

Holding times and stability of samples taken in tedlar bags have not been determined

Analyte & Samples(s) Qualified:

11J0111-01[MPL-6], 11J0111-02[WB-2]

Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the high side.

Analyte & Samples(s) Qualified:

Carbon Tetrachloride, Chloroethane, Trichlorofluoromethane (Freon 11)

B038890-BS1, 11J0111-01[MPL-6], 11J0111-02[WB-2]

Continuing calibration did not meet method specifications and was biased on the high side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the high side.

Analyte & Samples(s) Qualified:

Carbon Tetrachloride, Chloroethane, Trichlorofluoromethane (Freon 11)

Culu

B038890-BS1, 11J0111-01[MPL-6], 11J0111-02[WB-2]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Michael A. Erickson Laboratory Director

ANALYTICAL RESULTS

Project Location: Springfield Street Date Received: 10/4/2011 **Field Sample #: MPL-6**

Sample ID: 11J0111-01Sample Matrix: Air
Sampled: 10/3/2011 13:20

Sample Description/Location: Sub Description/Location:

Canister ID: Canister Size: Flow Controller ID: Sample Type: Work Order: 11J0111 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type: Flow Controller Calibration

RPD Pre and Post-Sampling:

EPA TO-14A

Sample Flags: A-09	ppl	bv		ug/ı	m3		Date/Time	
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Benzene	0.48	0.10		1.5	0.32	2	10/5/11 0:12	WSD
Bromomethane	ND	0.10		ND	0.39	2	10/5/11 0:12	WSD
Carbon Tetrachloride	ND	0.10		ND	0.63	2	10/5/11 0:12	WSD
Chlorobenzene	ND	0.10		ND	0.46	2	10/5/11 0:12	WSD
Chloroethane	ND	0.10		ND	0.26	2	10/5/11 0:12	WSD
Chloroform	0.13	0.10		0.65	0.49	2	10/5/11 0:12	WSD
Chloromethane	0.22	0.10		0.45	0.21	2	10/5/11 0:12	WSD
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	10/5/11 0:12	WSD
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	10/5/11 0:12	WSD
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	10/5/11 0:12	WSD
1,4-Dichlorobenzene	0.94	0.10		5.7	0.60	2	10/5/11 0:12	WSD
Dichlorodifluoromethane (Freon 12)	0.33	0.10		1.6	0.49	2	10/5/11 0:12	WSD
1,1-Dichloroethane	ND	0.10		ND	0.40	2	10/5/11 0:12	WSD
1,2-Dichloroethane	ND	0.10		ND	0.40	2	10/5/11 0:12	WSD
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	10/5/11 0:12	WSD
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	10/5/11 0:12	WSD
1,2-Dichloropropane	ND	0.10		ND	0.46	2	10/5/11 0:12	WSD
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	10/5/11 0:12	WSD
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	10/5/11 0:12	WSD
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.10		ND	0.70	2	10/5/11 0:12	WSD
Ethylbenzene	1.0	0.10		4.5	0.43	2	10/5/11 0:12	WSD
Hexachlorobutadiene	ND	0.10		ND	1.1	2	10/5/11 0:12	WSD
Methylene Chloride	2.8	1.0		9.7	3.5	2	10/5/11 0:12	WSD
Styrene	2.1	0.10		8.8	0.43	2	10/5/11 0:12	WSD
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	10/5/11 0:12	WSD
Tetrachloroethylene	1.1	0.10		7.2	0.68	2	10/5/11 0:12	WSD
Toluene	9.1	0.10		34	0.38	2	10/5/11 0:12	WSD
1,2,4-Trichlorobenzene	ND	0.20		ND	1.5	2	10/5/11 0:12	WSD
1,1,1-Trichloroethane	ND	0.10		ND	0.55	2	10/5/11 0:12	WSD
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	10/5/11 0:12	WSD
Trichloroethylene	1.2	0.10		6.2	0.54	2	10/5/11 0:12	WSD
Trichlorofluoromethane (Freon 11)	2.4	0.10	L-05, V-06	13	0.56	2	10/5/11 0:12	WSD
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.10		ND	0.77	2	10/5/11 0:12	WSD
1,2,4-Trimethylbenzene	2.6	0.10		13	0.49	2	10/5/11 0:12	WSD
1,3,5-Trimethylbenzene	0.56	0.10		2.8	0.49	2	10/5/11 0:12	WSD
Vinyl Chloride	ND	0.10		ND	0.26	2	10/5/11 0:12	WSD
m&p-Xylene	4.0	0.20		17	0.87	2	10/5/11 0:12	WSD
o-Xylene	1.6	0.10		6.9	0.43	2	10/5/11 0:12	WSD

ANALYTICAL RESULTS

Project Location: Springfield Street Date Received: 10/4/2011 Field Sample #: MPL-6 Sample ID: 11J0111-01

Sample Matrix: Air Sampled: 10/3/2011 13:20 Sample Description/Location: Sub Description/Location:

Canister ID: Canister Size: Flow Controller ID: Sample Type: Work Order: 11J0111

Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type: Flow Controller Calibration

RPD Pre and Post-Sampling:

EPA TO-14A

	EFA	10-14A	
Sample Flags: A-09	ppbv	ug/m3	Date/Time
Analyte	Results RL	Flag Results RL	Dilution Analyzed Analyst
Surrogates	% Recovery	% REC Limits	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
4-Bromofluorobenzene (1)	94.5	70-130	10/5/11 0:12

ANALYTICAL RESULTS

Project Location: Springfield Street Date Received: 10/4/2011 Field Sample #: WB-2

Sample ID: 11J0111-02 Sample Matrix: Air Sampled: 10/3/2011 14:45 Sample Description/Location: Sub Description/Location:

Canister ID: Canister Size: Flow Controller ID: Sample Type:

Work Order: 11J0111 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type:

Flow Controller Calibration RPD Pre and Post-Sampling:

			CD L TO 111			RPD Pre and Post-Sa	ampinis.	
Sample Flags: A-09		l	EPA TO-14A					
· -	ppl			ug/			Date/Time	
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Benzene	0.22	0.10		0.70	0.32	2	10/5/11 0:51	
Bromomethane	ND	0.10		ND	0.39	2	10/5/11 0:51	
Carbon Tetrachloride	ND	0.10		ND	0.63	2	10/5/11 0:51	
Chlorobenzene	ND	0.10		ND	0.46	2	10/5/11 0:51	
Chloroethane	ND	0.10		ND	0.26	2	10/5/11 0:51	
Chloroform	0.59	0.10		2.9	0.49	2	10/5/11 0:51	
Chloromethane	0.25	0.10		0.52	0.21	2	10/5/11 0:51	
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	10/5/11 0:51	
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	10/5/11 0:51	WSD
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	10/5/11 0:51	WSD
1,4-Dichlorobenzene	0.84	0.10		5.1	0.60	2	10/5/11 0:51	WSD
Dichlorodifluoromethane (Freon 12)	0.63	0.10		3.1	0.49	2	10/5/11 0:51	WSD
1,1-Dichloroethane	ND	0.10		ND	0.40	2	10/5/11 0:51	WSD
1,2-Dichloroethane	ND	0.10		ND	0.40	2	10/5/11 0:51	WSD
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	10/5/11 0:51	WSD
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	10/5/11 0:51	WSD
1,2-Dichloropropane	ND	0.10		ND	0.46	2	10/5/11 0:51	WSD
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	10/5/11 0:51	WSD
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	10/5/11 0:51	WSD
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.10		ND	0.70	2	10/5/11 0:51	WSD
Ethylbenzene	0.94	0.10		4.1	0.43	2	10/5/11 0:51	WSD
Hexachlorobutadiene	ND	0.10		ND	1.1	2	10/5/11 0:51	WSD
Methylene Chloride	2.7	1.0		9.3	3.5	2	10/5/11 0:51	WSD
Styrene	1.8	0.10		7.5	0.43	2	10/5/11 0:51	WSD
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	10/5/11 0:51	WSD
Tetrachloroethylene	0.60	0.10		4.1	0.68	2	10/5/11 0:51	WSD
Toluene	7.8	0.10		29	0.38	2	10/5/11 0:51	WSD
1,2,4-Trichlorobenzene	ND	0.20		ND	1.5	2	10/5/11 0:51	WSD
1,1,1-Trichloroethane	ND	0.10		ND	0.55	2	10/5/11 0:51	WSD
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	10/5/11 0:51	WSD
Trichloroethylene	0.18	0.10		0.95	0.54	2	10/5/11 0:51	WSD
Trichlorofluoromethane (Freon 11)	2.2	0.10	L-05, V-06	13	0.56	2	10/5/11 0:51	WSD
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.10		ND	0.77	2	10/5/11 0:51	WSD
1,2,4-Trimethylbenzene	2.0	0.10		9.9	0.49	2	10/5/11 0:51	WSD
1,3,5-Trimethylbenzene	0.47	0.10		2.3	0.49	2	10/5/11 0:51	WSD
Vinyl Chloride	ND	0.10		ND	0.26	2	10/5/11 0:51	WSD
m&p-Xylene	3.5	0.20		15	0.87	2	10/5/11 0:51	WSD
o-Xylene	1.4	0.10		6.0	0.43	2	10/5/11 0:51	WSD
•								

ANALYTICAL RESULTS

Project Location: Springfield Street Date Received: 10/4/2011 Field Sample #: WB-2 Sample ID: 11J0111-02

Sample ID: 11J0111-02Sample Matrix: Air
Sampled: 10/3/2011 14:45

Sample Description/Location: Sub Description/Location: Canister ID:

Canister ID:
Canister Size:
Flow Controller ID:
Sample Type:

Work Order: 11J0111 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type:

Flow Controller Calibration RPD Pre and Post-Sampling:

EPA TO	11	٨

	EIA		
Sample Flags: A-09	ppbv	ug/m3	Date/Time
Analyte	Results RL	Flag Results RL	Dilution Analyzed Analyst
Surrogates	% Recovery	% REC Limits	
4-Bromofluorobenzene (1)	93.4	70-130	10/5/11 0:51

Sample Extraction Data

Prep Method: TO-15 Prep-EPA TO-14A Lab Number [Field ID]	Batch	Pressure Dilution	Pre Dilution	Pre-Dil Initial mL	Pre-Dil Final mL	Default Injection mL	Actual Injection mL	Date
11J0111-01 [MPL-6] 11J0111-02 [WB-2]	B038890 B038890	1	1	N/A N/A	1000 1000	400 400	200 200	10/04/11 10/04/11

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

	pp	bv	ug/ı	ug/m3		Source		%REC		RPD	
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag
Batch B038890 - TO-15 Prep											
Blank (B038890-BLK1)					Prepared & A	Analyzed: 10	0/04/11				
Benzene	ND	0.025									
Bromomethane	ND	0.025									
Carbon Tetrachloride	ND	0.025									
and the	3.75										

 Surrogate: 4-Bromofluorobenzene (1)
 7.20
 8.00
 90.1
 70-130

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl Chloride

m&p-Xylene

o-Xylene

Trichlorofluoromethane (Freon 11)

Surrogate: 4-Bromofluorobenzene (1)

1,1,2-Trichloro-1,2,2-trifluoroethane (Freon

Trichloroethylene

5.64

4.69

4.94

6.95

4.86

5.42

5.44

5.92

10.9

5.29

7.64

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

Analyte	ppb Results	ov RL	ug/n Results	n3 RL	Spike Level	Spike Level Source ppbv Result		%REC Limits	RPD	RPD Limit	Flag
Batch B038890 - TO-15 Prep	Results	KL	Results	KL	рроч	Robuit	%REC	Limito	1012	Limit	1 1115
Baten B038890 - 1O-15 Prep											
LCS (B038890-BS1)					Prepared & A	Analyzed: 10	/04/11				
Benzene	4.46				5.00		89.2	70-130			
Bromomethane	6.22				5.00		124	70-130			
Carbon Tetrachloride	6.63				5.00		133 *	70-130			L-05, V-06
Chlorobenzene	4.83				5.00		96.6	70-130			
Chloroethane	6.59				5.00		132 *	70-130			L-05, V-06
Chloroform	5.04				5.00		101	70-130			
Chloromethane	5.70				5.00		114	70-130			
1,2-Dibromoethane (EDB)	4.95				5.00		99.0	70-130			
1,2-Dichlorobenzene	5.13				5.00		103	70-130			
1,3-Dichlorobenzene	5.30				5.00		106	70-130			
1,4-Dichlorobenzene	5.20				5.00		104	70-130			
Dichlorodifluoromethane (Freon 12)	5.80				5.00		116	70-130			
1,1-Dichloroethane	4.76				5.00		95.2	70-130			
1,2-Dichloroethane	5.58				5.00		112	70-130			
1,1-Dichloroethylene	4.94				5.00		98.7	70-130			
cis-1,2-Dichloroethylene	4.84				5.00		96.8	70-130			
1,2-Dichloropropane	4.64				5.00		92.9	70-130			
cis-1,3-Dichloropropene	5.38				5.00		108	70-130			
trans-1,3-Dichloropropene	5.15				5.00		103	70-130			
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	5.92				5.00		118	70-130			
Ethylbenzene	5.18				5.00		104	70-130			
Hexachlorobutadiene	5.88				5.00		118	70-130			
Methylene Chloride	5.00				5.00		100	70-130			
Styrene	5.18				5.00		104	70-130			
1,1,2,2-Tetrachloroethane	4.70				5.00		93.9	70-130			
Tetrachloroethylene	5.08				5.00		102	70-130			
Toluene	4.99				5.00		99.8	70-130			
1,2,4-Trichlorobenzene	6.05				5.00		121	70-130			

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

10.0

5.00

8.00

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

113

93.8

98.8

139

97.1

108

109

118

109

106

95.4

L-05, V-06

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
A-09	Holding times and stability of samples taken in tedlar bags have not been determined
L-05	Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for thi compound is likely to be biased on the high side.
V-06	Continuing calibration did not meet method specifications and was biased on the high side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the high side.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA TO-14A in Air	
Benzene	AIHA,FL,NY
Bromomethane	AIHA,FL,NY
Carbon Tetrachloride	AIHA,FL,NY
Chlorobenzene	AIHA,FL,NY
Chloroethane	AIHA,FL,NY
Chloroform	AIHA,FL,NY
Chloromethane	AIHA,FL,NY
1,2-Dichlorobenzene	AIHA,FL,NY
1,3-Dichlorobenzene	AIHA,FL,NY
1,4-Dichlorobenzene	AIHA,FL,NY
Dichlorodifluoromethane (Freon 12)	AIHA,FL,NY
1,1-Dichloroethane	AIHA,FL,NY
1,2-Dichloroethane	AIHA,FL,NY
1,1-Dichloroethylene	AIHA,FL,NY
cis-1,2-Dichloroethylene	AIHA,FL,NY
1,2-Dichloropropane	AIHA,FL,NY
cis-1,3-Dichloropropene	AIHA,FL,NY
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	AIHA,FL,NY
Ethylbenzene	AIHA,FL,NY
Hexachlorobutadiene	AIHA,FL,NY
Methylene Chloride	AIHA,FL,NY
Styrene	AIHA,FL,NY
1,1,2,2-Tetrachloroethane	AIHA,FL,NY
Tetrachloroethylene	AIHA,FL,NY
Toluene	AIHA,FL,NY
1,2,4-Trichlorobenzene	AIHA,FL,NY
1,1,1-Trichloroethane	AIHA,FL,NY
1,1,2-Trichloroethane	AIHA,FL,NY
Trichloroethylene	AIHA,FL,NY
Trichlorofluoromethane (Freon 11)	AIHA,FL,NY
1,2,4-Trimethylbenzene	AIHA,FL,NY
1,3,5-Trimethylbenzene	AIHA,FL,NY
Vinyl Chloride	AIHA,FL,NY
m&p-Xylene	AIHA,FL,NY
o-Xylene	AIHA,FL,NY

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	American Industrial Hygiene Association	100033	01/1/2012
MA	Massachusetts DEP	M-MA100	06/30/2012
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2011
NY	New York State Department of Health	10899 NELAP	04/1/2012
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2012
RI	Rhode Island Department of Health	LAO00112	12/30/2011
NC	North Carolina Div. of Water Quality	652	12/31/2011
NJ	New Jersey DEP	MA007 NELAP	06/30/2012
FL	Florida Department of Health	E871027 NELAP	06/30/2012
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2012
WA	State of Washington Department of Ecology	C2065	02/23/2012
ME	State of Maine	2011028	06/9/2013

The second secon
ANALYTICAL LABORATORY

CHAIN OF CUSTODY RECORD

N 01028	Ï
	Page
	-

S'S JEHINE MEETER	Regeived by: (signature)		Hernougher Signature)	ス ま え 米	THE WEGO DE SIGNATURE OF THE SIGNATURE O	11/11/10/12	Relinguisting by: (signature)	The state of the s		Laboratory Comments:	TREP BLACK	MV-8	A+C-4	MA 2 - C	MW was	A Comment	WB-Z	MPL-6	Field ID Sample Description	yes proposal date	Proposal Provided? (For Billing purposes)	Sampled By: CHRTS 14MTSOX	Project Location: 今天工场和见一		Attention: VIIII TY TY TY		Address: 33 NFTR CFUTER	Company Name: ATCADTS	a display of the second of the	ANALYTICAL LABORATORY	
10/4/17/0	Date/Time:		Date/Time:		Date/Time:	1010/11 14/80	Date/Timey	A DESIGNATION OF THE PROPERTY			名	B	Z	Ø,	Z	Ž	S	9	Lab#	□ yes □ no	State Form Required?	***************************************	Contraction of the second			282	3		www.comestlabs.com	Fax: 413-525-6405 Email: Info@contestlabs.com	Phone: 413-525-2332
* Require lab approval	□ *72-Hr □ *4-Day	□ *24-Hr □ *48-Hr	RUSH *	A CLE	10-Day	☐ 7-Day	5	Secretaria de la companio de la comp			1000/1	73		1063/1 T:00	6:45	05:31 11/20/a		5.20	Start Stop Date/Time Date/Time	Date Sampled	D OTHER	Email: Ochwo (2011):S	Fax #	OFAX ØEMAIL (DATA DELIVERY (check one):	Client PO #	Project # <u>WWO17157</u> .	Telephone:(Wi) Z	NS	Marke Barrier	
лат түү илим менен калан к		Special Requirements or DL's:		Data Enhancement Project/RCP?		Regulations? //		M. High: M.	be high in cc	Please use i		Y	*	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	*	x	X	+	Comp- *Matrix Conc. osite Grab Code Code			OPDF OGISKEY	350	WWEBSITE CLIENT	Jeck one).		720,25		i di	10 22	CHAIN OF CUSTODY RE
		'S'					Requirements	M - High; M - Medium; L - Low; (be high in concentration in Matrix/Conc. Code Box.	he following codes to	×	*	×	8	X	8	*	X	7() X		14 87	Ú	<u> </u>			T C	/ F	[2] [6]		
0 = other	SL = sludge	S = soil/solid	A = air	DW= drinking water	WW= wastewater	GW= groundwater	*Matrix Code:	C - Clean; U - Unknown	%/Conc. Code Box:	use the following codes to let Con-Test know if a			unio de la California d							CONTRACTOR E	Allentinen automore					ANALYSIS REQUESTED			Athanis Grand U.	EAST LONGMEADOW, MA 01028	39 SPRUCE ST, 2ND FLOOR
0 = Other	B = Sodium bisulfate	S = Sulfuric Acid	N = Nitric Acid	W = Wethano		lced	rvation (A CONTRACTOR OF THE PROPERTY O		a specific sample may		CONTENTION OF THE STATE OF THE						2022444444444444												/, MA 01028	
THE STATE OF THE S	ate		······································	Britis James also de	T = Na thiosulfate	X = Na hydroxide	odes:	The state of the s		ay								Comments	in declaration of the second o	9-011e	Tatioglas bag	Securities can	Signal Si	Papingio		Cont. Code:	~Cont.Code		# of contains	e 14 c	Page of 15

AIR Only Receipt Checklist

39 Spruce St. East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405

CLIE	NT NAME:	Accodes		RE	CEIVED BY:	<u>50</u>	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DATE: 10 (4/1)
	s the chain	s) of custody relinquis agree with the sample , explain:		∍d?		Yes	No No	·
3) Are		oles in good condition , explain:	?		(Yes	No	
5) Are	-	amples "On Hold"? USH or SHORT HOLD	ING TIME sam	1ples	s? Time	Yes (No	Stored where:
6) Loc	ation where	samples are stored:	Aic Lo		(Walk		only)	ntract samples? Yes No if not already approved
		Air Me	dia rece	;iv(ed at Co	on-Te	est	
		4.4			# of Co	ntainers		Types (Size, Duration)
pling a		Summa Cans						
r Sampling Media		Tedlar Bags			(A))		1 11-62
Air		Tubes						
Flow Controllers		Regulators					·········	
Confi	ngan ngapa za unatokunan karika kalangan	Restrictors		TATAL SECTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSO	all painters are assume; cold from the contract result across representatives and the collections of the collections and the collections are assumed as a collection of the collections are assumed as a collection of the collections are a collection of the collections are a collections are a collection of the collections are a collections are a collections are a collection of the collections are a collection of the collections are a collection of the collec	**		
Extras		Tubing			}			
Ext		Other		ı				
Unuse	ed Summas	:			Unused Reg	ulators:		
1) Wa	ıs all medi	a (used & unused cl	necked into t	:he V	WASP?			
		rned summa cans, F und Excel Spreadsh		k Re	gulators dod	cumente	ed as	returned in the Air Lab
Labor	atory Comr	nents:	:					

October 10, 2011

Donna Pallister Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250 Warwick, RI 02886

Project Location: Springfield St.

Client Job Number:

Project Number: WK012152.0007

Laboratory Work Order Number: 11J0094

Holy L. Tolson

Enclosed are results of analyses for samples received by the laboratory on October 4, 2011. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Holly L. Folsom Project Manager

Arcadis US, Inc. - Warwick, RI REPORT DATE: 10/10/2011

300 Metro Center Blvd., Suite 250 Warwick, RI 02886 ATTN: Donna Pallister

PURCHASE ORDER NUMBER:

PROJECT NUMBER: WK012152.0007

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 11J0094

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Springfield St.

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
ATC-1	11J0094-01	Ground Water		SW-846 8260C	
MW-7	11J0094-02	Ground Water		SW-846 8260C	
MW-6	11J0094-03	Ground Water		SW-846 8260C	
ATC-4	11J0094-04	Ground Water		SW-846 8260C	
MW-8	11J0094-05	Ground Water		SW-846 8260C	
TRIP BLANK	11J0094-06	Trip Blank Water		SW-846 8260C	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8260C

Qualifications:

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

Carbon Disulfide, Dichlorodifluoromethane (Freon 12)

B038567-BSD1

Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

2,2-Dichloropropane, Dichlorodifluoromethane (Freon 12), trans-1,3-Dichloropropene

Culu

 $11J0094-01[ATC-1], 11J0094-02[MW-7], 11J0094-03[MW-6], 11J0094-04[ATC-4], 11J0094-05[MW-8], 11J0094-06[TRIP\ BLANK], B038567-BLK1, B038567-BS1, B038567-BSD1$

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy are associated with reported result.

Analyte & Samples(s) Qualified:

1,4-Dioxane

11J0094-01[ATC-1], 11J0094-02[MW-7], 11J0094-03[MW-6], 11J0094-04[ATC-4], 11J0094-05[MW-8], 11J0094-06[TRIP BLANK], B038567-BLK1, B038567-BS1, B038567-BSD1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Michael A. Erickson Laboratory Director

Project Location: Springfield St. Sample Description: Work Order: 11J0094

Date Received: 10/4/2011
Field Sample #: ATC-1

Sampled: 10/3/2011 16:30

Sample ID: 11J0094-01
Sample Matrix: Ground Water

Acetame	Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Bellet B	Acetone	ND	50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Revenue	Acrylonitrile	ND	5.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Remodelemente No 10	tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Permochiloromethane ND 10	Benzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Bromode Brom	Bromobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Brownendame	Bromochloromethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Bomomethane	Bromodichloromethane	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
2-Balanone (MEK) ND 20 μg/L 1 SW-846 8260C 10/571 10/671 0.50 MFF 16-Buly Alkohol (TIA) ND 20 μg/L 1 SW-846 8260C 10/571 10/671 0.50 MFF 16-Buly Alkohol (TIA) ND 10 μg/L 1 SW-846 8260C 10/571 10/671 0.50 MFF 16-Buly Beazene ND 1.0 μg/L 1 SW-846 8260C 10/571 10/671 0.50 MFF 16-Buly Beazene ND 1.0 μg/L 1 SW-846 8260C 10/571 10/671 0.50 MFF 16-Buly Beazene ND 1.0 μg/L 1 SW-846 8260C 10/571 10/671 0.50 MFF 16-Buly Ebyl Ebber (TIBE) ND 0.50 μg/L 1 SW-846 8260C 10/571 10/671 0.50 MFF 16-Buly Ebyl Ebber (TIBE) ND 0.50 μg/L 1 SW-846 8260C 10/571 10/671 0.50 MFF 16-Buly Ebyl Ebber (TIBE) ND 0.50 μg/L 1 SW-846 8260C 10/571 10/671 0.50 MFF 16-Buly Ebyl Ebber (TIBE) ND 0.50 μg/L 1 SW-846 8260C 10/571 10/671 0.50 MFF 16-Buly Ebyl Ebyl Ebber (TIBE) ND 0.50 μg/L 1 SW-846 8260C 10/571 10/671 0.50 MFF 16-Buly Ebyl Ebyl Ebyl Ebyl Ebyl Ebyl Ebyl Eb	Bromoform	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
International Content	Bromomethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Part	2-Butanone (MEK)	ND	20	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Second Period	tert-Butyl Alcohol (TBA)	ND	20	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Part	n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
International Content Int	sec-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Carbon Disulfide	tert-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Curbon Tetrachloride ND 5.0 µg/L 1 SW-846 8200C 10/5/11 10/6/11 0.50 MF Chlorodenzene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MF Chlorodenzene ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF Chlorodenzene ND 2.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF Chlorodenzene ND 2.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF Chlorodenzene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF Chlorodenzene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 4-Chlorodenzene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.2-Dibromorethane (EDB) ND 0.0 0 µg/L	tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Chlorobenzene ND 1.0 mg/L 1 SW-346 8260C 10/5/11 10/6/11 0.50 MFF	Carbon Disulfide	ND	10	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Chlorodibromomethane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF	Carbon Tetrachloride	ND	5.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Chloroethane	Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Chloroform ND 2.0 gg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF	Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Chloromethane ND 2.0	Chloroethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
2-Chlorotoluene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 4-Chlorotoluene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,2-Dibromo-s-chloropropane (DBCP) ND 5.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,2-Dibromo-thane (EDB) ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,2-Dibromo-thane (EDB) ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,2-Dichlorobenzene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichlorobenzene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichlorobenzene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichlorobenzene ND 2.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichlorochrane (Freon 12) ND 2.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichlorochrane (Freon 12) ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichlorochrane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichlorochrane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichlorochrane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichlorochrane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichlorochrylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichlorochrylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichlorochrylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichlorochrylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichlorochrylene ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichlorochrylene ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11	Chloroform	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
4-Chlorotoluene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dibromo-3-chloropropane (DBCP) ND 5.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dibromoethane (EDB) ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dibromoethane (EDB) ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dibromoethane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dibromoethane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dibromoethane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dibromoethane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dibromoethane (Freen 12) ND 2.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibromoethane (Freen 12) ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibromoethane (Freen 12) ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibromoethane (Freen 12) ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibromoethane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibromoethane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibromoethane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibromoethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dibropropane ND 1.0	Chloromethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,2-Dibromo-3-chloropropane (DBCP) ND 5.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,2-Dibromoethane (EDB) ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,2-Dichlorobenzene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichlorobenzene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,4-Dichlorobenzene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,4-Dichlorobenzene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,4-Dichlorobenzene ND 2.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloroethane ND 1.0 μg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloroethane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,2-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,2-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,2-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,2-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,2-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6	2-Chlorotoluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1.2-Dibromoethane (EDB) ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.2-Dichlorobenzene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.3-Dichlorobenzene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.4-Dichlorobenzene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.4-Dichlorobenzene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.4-Dichloroc-butene ND 2.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.1-Dichlorochane ND 1.0 μg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.1-Dichlorochane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.1-Dichlorochane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.1-Dichlorochane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.1-Dichlorochylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.2-Dichlorochylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.2-Dichlorochylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.3-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.3-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.1-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.1-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.1-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.1-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.1-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.1-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1.1-Dichloropropane ND 0.50 μg/L 1 SW-846 8260	4-Chlorotoluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Dibromomethane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichlorobenzene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichlorobenzene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,4-Dichlorobenzene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,4-Dichlorobenzene ND 2.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichlorodifluoromethane (Freon 12) ND 2.0 µg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichlorodifluoromethane (Freon 12) ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichlorodenzene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,2-Dichlorobenzene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichlorobenzene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,4-Dichlorobenzene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,4-Dichloro-2-butene ND 2.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF Dichlorodifluoromethane (Fron 12) ND 2.0 µg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloroethane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,2-Dichloroethane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 0 1,1-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,1-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,2-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,2-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0.50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/	1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,3-Dichlorobenzene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,4-Dichlorobenzene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF trans-1,4-Dichloro-2-butene ND 2.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF Dichlorodifluoromethane (Freon 12) ND 2.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloroethane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50	Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,4-Dichlorobenzene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF trans-1,4-Dichloro-2-butene ND 2.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF Dichlorodifluoromethane (Freon 12) ND 2.0 µg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloroethane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF cis-1,2-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloroptopane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloroptopane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 <th< td=""><td>1,2-Dichlorobenzene</td><td>ND</td><td>1.0</td><td>μg/L</td><td>1</td><td></td><td>SW-846 8260C</td><td>10/5/11</td><td>10/6/11 0:50</td><td>MFF</td></th<>	1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
trans-1,4-Dichloro-2-butene ND 2.0 µg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0:50 MFF Dichlorodifluoromethane (Freon 12) ND 2.0 µg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloroethane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF cis-1,2-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 1.0 µg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF	1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Dichlorodifluoromethane (Freon 12) ND 2.0 μg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloroethane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF cis-1,2-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF trans-1,2-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloropropane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 0.50 μg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0:50 MFF <td< td=""><td>1,4-Dichlorobenzene</td><td>ND</td><td>1.0</td><td>μg/L</td><td>1</td><td></td><td>SW-846 8260C</td><td>10/5/11</td><td>10/6/11 0:50</td><td>MFF</td></td<>	1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,1-Dichloroethane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloroethane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF cis-1,2-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF trans-1,2-Dichloroethylene ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloroptopane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 1.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroptopane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 μg/L 1 SW-846 8260C 10/5/11	trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,2-Dichloroethane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF cis-1,2-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF trans-1,2-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,2-Dichloropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 1.0 µg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropene ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF	Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1	V-05	SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,1-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF cis-1,2-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF trans-1,2-Dichloroethylene ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF trans-1,2-Dichloropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 2,2-Dichloropropane ND 1.0 µg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 2.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF	1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
cis-1,2-Dichloroethylene ND 1.0	1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
trans-1,2-Dichloroethylene ND 1.0	1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,2-Dichloropropane ND 1.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,3-Dichloropropane ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 2,2-Dichloropropane ND 1.0 µg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropene ND 2.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF cis-1,3-Dichloropropene ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF	cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,3-Dichloropropane ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 2,2-Dichloropropane ND 1.0 μg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropene ND 2.0 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF cis-1,3-Dichloropropene ND 0.50 μg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF	trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
2,2-Dichloropropane ND 1.0 µg/L 1 V-05 SW-846 8260C 10/5/11 10/6/11 0:50 MFF 1,1-Dichloropropene ND 2.0 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF cis-1,3-Dichloropropene ND 0.50 µg/L 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF	1,2-Dichloropropane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,1-Dichloropropene ND 2.0 $\mu g/L$ 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF cis-1,3-Dichloropropene ND 0.50 $\mu g/L$ 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF	1,3-Dichloropropane	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
cis-1,3-Dichloropropene ND 0.50 $\mu g/L$ 1 SW-846 8260C 10/5/11 10/6/11 0:50 MFF	2,2-Dichloropropane	ND	1.0	$\mu g/L$	1	V-05	SW-846 8260C	10/5/11	10/6/11 0:50	MFF
	1,1-Dichloropropene	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
$trans-1, 3- Dichloropropene \\ ND \\ 0.50 \\ \mu g/L \\ 1 \\ V-05 \\ SW-846 8260C \\ 10/5/11 \\ 10/6/11 \\ 0:50 \\ MFF$	cis-1,3-Dichloropropene	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
	trans-1,3-Dichloropropene	ND	0.50	$\mu g/L$	1	V-05	SW-846 8260C	10/5/11	10/6/11 0:50	MFF

Project Location: Springfield St. Sample Description: Work Order: 11J0094

Date Received: 10/4/2011
Field Sample #: ATC-1

Sampled: 10/3/2011 16:30

Sample ID: 11J0094-01
Sample Matrix: Ground Water

		VO	latile Organic Comp	pounds by GC	_/NIS				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Hexachlorobutadiene	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Naphthalene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Tetrahydrofuran	ND	10	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Toluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,2,3-Trichlorobenzene	ND	5.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,3,5-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Trichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 0:50	MFF
Surrogates		% Recovery	Recovery Limits		Flag				
1,2-Dichloroethane-d4		91.6	70-130					10/6/11 0:50	_
Toluene-d8		97.4	70-130					10/6/11 0:50	
4-Bromofluorobenzene		94.4	70-130					10/6/11 0:50	

Project Location: Springfield St. Sample Description: Work Order: 11J0094

Date Received: 10/4/2011
Field Sample #: MW-7

Sampled: 10/3/2011 16:45

Sample ID: 11J0094-02
Sample Matrix: Ground Water

	_						Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Benzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Bromomethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
2-Butanone (MEK)	ND	20	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
tert-Butyl Alcohol (TBA)	ND	20	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
n-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
sec-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
tert-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Carbon Disulfide	ND	10	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Carbon Tetrachloride	ND	5.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Chlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Chlorodibromomethane	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Chloroethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Chloroform	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Chloromethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
2-Chlorotoluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
4-Chlorotoluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,2-Dibromoethane (EDB)	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Dibromomethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,2-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,3-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1	V-05	SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
2,2-Dichloropropane	ND	1.0	μg/L	1	V-05	SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
trans-1,3-Dichloropropene	ND	0.50	μg/L	1	V-05	SW-846 8260C	10/5/11	10/6/11 1:21	MFF

Project Location: Springfield St. Sample Description: Work Order: 11J0094

Date Received: 10/4/2011 Field Sample #: MW-7

Sampled: 10/3/2011 16:45

Sample ID: 11J0094-02 Sample Matrix: Ground Water

Diethyl Ether Diisopropyl Ether (DIPE) 1,4-Dioxane Ethylbenzene Hexachlorobutadiene 2-Hexanone (MBK) Isopropylbenzene (Cumene) p-Isopropyltoluene (p-Cymene) Methyl tert-Butyl Ether (MTBE)	ND ND	2.0	Units	Dilution					Analyst
Diisopropyl Ether (DIPE) 1,4-Dioxane Ethylbenzene Hexachlorobutadiene 2-Hexanone (MBK) Isopropylbenzene (Cumene) p-Isopropyltoluene (p-Cymene)			μg/L	1	Flag	Method SW-846 8260C	10/5/11	Analyzed 10/6/11 1:21	MFF
1,4-Dioxane Ethylbenzene Hexachlorobutadiene 2-Hexanone (MBK) Isopropylbenzene (Cumene) p-Isopropyltoluene (p-Cymene)	IND	0.50	μg/L μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Ethylbenzene Hexachlorobutadiene 2-Hexanone (MBK) Isopropylbenzene (Cumene) p-Isopropyltoluene (p-Cymene)	ND	50	μg/L μg/L	1	V-16	SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Hexachlorobutadiene 2-Hexanone (MBK) Isopropylbenzene (Cumene) p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L μg/L	1	V-10	SW-846 8260C	10/5/11	10/6/11 1:21	MFF
2-Hexanone (MBK) Isopropylbenzene (Cumene) p-Isopropyltoluene (p-Cymene)	ND	0.50	μg/L μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Isopropylbenzene (Cumene) p-Isopropyltoluene (p-Cymene)	ND	10	μg/L μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
	ND	1.0	μg/L μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Wednyr tert-Butyr Ether (WTBE)	ND ND	1.0		1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Methylene Chloride	ND ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
4-Methyl-2-pentanone (MIBK)	ND ND	10	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Naphthalene	ND ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
n-Propylbenzene	ND ND		μg/L			SW-846 8260C SW-846 8260C	10/5/11		MFF
Styrene	ND ND	1.0	μg/L	1		SW-846 8260C SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,1,1,2-Tetrachloroethane		1.0	μg/L					10/6/11 1:21	
	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Tetrachloroethylene Tetrachydrofyran	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,3,5-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
o-Xylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:21	MFF
Surrogates		% Recovery	Recovery Limits	s	Flag				
1,2-Dichloroethane-d4		92.4	70-130					10/6/11 1:21	
Toluene-d8		98.8	70-130					10/6/11 1:21	

Project Location: Springfield St. Sample Description: Work Order: 11J0094

Date Received: 10/4/2011
Field Sample #: MW-6

Sampled: 10/3/2011 17:00

Sample ID: 11J0094-03
Sample Matrix: Ground Water

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Benzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Bromobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Bromochloromethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Bromodichloromethane	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Bromoform	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Bromomethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
2-Butanone (MEK)	ND	20	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
tert-Butyl Alcohol (TBA)	ND	20	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
n-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
sec-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
tert-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Carbon Disulfide	ND	10	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Carbon Tetrachloride	ND	5.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Chlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Chlorodibromomethane	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Chloroform	2.0	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1	V-05	SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
2,2-Dichloropropane	ND	1.0	μg/L	1	V-05	SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,1-Dichloropropene	ND	2.0	μg/L μg/L	1	, 00	SW-846 8260C	10/5/11	10/6/11 1:53	MFF
cis-1,3-Dichloropropene	ND	0.50	μg/L μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
trans-1,3-Dichloropropene					V 05				
uans-1,3-Diemoropropene	ND	0.50	$\mu g/L$	1	V-05	SW-846 8260C	10/5/11	10/6/11 1:53	MFF

Project Location: Springfield St. Sample Description: Work Order: 11J0094

Date Received: 10/4/2011 Field Sample #: MW-6

Sampled: 10/3/2011 17:00

Sample ID: 11J0094-03 Sample Matrix: Ground Water

		Vo	olatile Organic Com	pounds by GC	C/MS				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Hexachlorobutadiene	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Naphthalene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,3,5-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
o-Xylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 1:53	MFF
Surrogates		% Recovery	Recovery Limits	S	Flag				
1,2-Dichloroethane-d4		92.3	70-130					10/6/11 1:53	
Toluene-d8		98.0	70-130					10/6/11 1:53	
4-Bromofluorobenzene		95.2	70-130					10/6/11 1:53	

Surrogates	% Recovery	Recovery Limits	Flag	
1,2-Dichloroethane-d4	92.3	70-130		10/6/11 1:53
Toluene-d8	98.0	70-130		10/6/11 1:53
4-Bromofluorobenzene	95.2	70-130		10/6/11 1:53

Project Location: Springfield St. Sample Description: Work Order: 11J0094

Date Received: 10/4/2011
Field Sample #: ATC-4

Sampled: 10/3/2011 17:15

Sample ID: 11J0094-04
Sample Matrix: Ground Water

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Benzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Carbon Disulfide	ND	10	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1	V-05	SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
2,2-Dichloropropane	ND	1.0	μg/L	1	V-05	SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
trans-1,3-Dichloropropene	ND	0.50	μg/L	1	V-05	SW-846 8260C	10/5/11	10/6/11 2:25	MFF

Project Location: Springfield St. Sample Description: Work Order: 11J0094

Date Received: 10/4/2011
Field Sample #: ATC-4

Sampled: 10/3/2011 17:15

Sample ID: 11J0094-04

Sample Matrix: Ground Water

		Vo	latile Organic Comp	pounds by GC	/NIS				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Hexachlorobutadiene	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Naphthalene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,3,5-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Trichloroethylene	1.1	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:25	MFF
Surrogates		% Recovery	Recovery Limits		Flag				
1,2-Dichloroethane-d4		93.5	70-130					10/6/11 2:25	<u></u>
Toluene-d8		98.9	70-130					10/6/11 2:25	
4-Bromofluorobenzene		94.3	70-130					10/6/11 2:25	

Project Location: Springfield St. Sample Description: Work Order: 11J0094

Date Received: 10/4/2011
Field Sample #: MW-8

Sampled: 10/3/2011 17:36

Sample ID: 11J0094-05

Sample Matrix: Ground Water

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Acrylonitrile	ND	5.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Benzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
2-Butanone (MEK)	ND	20	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Carbon Disulfide	ND	10	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Carbon Tetrachloride	ND	5.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Chloromethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1	V-05	SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
2,2-Dichloropropane	ND	1.0	μg/L	1	V-05	SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
trans-1,3-Dichloropropene	ND	0.50	μg/L	1	V-05	SW-846 8260C	10/5/11	10/6/11 2:56	MFF

Project Location: Springfield St. Sample Description: Work Order: 11J0094

Date Received: 10/4/2011
Field Sample #: MW-8

Sampled: 10/3/2011 17:36

Sample ID: 11J0094-05

Sample Matrix: Ground Water

		Vo	latile Organic Comp	ounas by GC	_/NIS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Diethyl Ether	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Diisopropyl Ether (DIPE)	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,4-Dioxane	ND	50	$\mu g/L$	1	V-16	SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Hexachlorobutadiene	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
2-Hexanone (MBK)	ND	10	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Isopropylbenzene (Cumene)	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Naphthalene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,3,5-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,2,3-Trichloropropane	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/6/11 2:56	MFF
Surrogates		% Recovery	Recovery Limits		Flag				
1,2-Dichloroethane-d4		92.3	70-130					10/6/11 2:56	
Toluene-d8		99.4	70-130					10/6/11 2:56	
4-Bromofluorobenzene		94.2	70-130					10/6/11 2:56	

Project Location: Springfield St. Sample Description: Work Order: 11J0094

Sampled: 10/3/2011 00:00

Date Received: 10/4/2011

Field Sample #: TRIP BLANK

Sample ID: 11J0094-06

Sample Matrix: Trip Blank Water

			Volatile Organic Co	inpounds by Go	C/NIS		_		
Analyte	Results	RL	Units	Dilution	Flog	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1	Flag	SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Acrylonitrile	ND	5.0	μg/L μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
tert-Amyl Methyl Ether (TAME)	ND ND	0.50	μg/L μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Benzene	ND	1.0	μg/L μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Bromobenzene	ND	1.0	μg/L μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Bromochloromethane	ND	1.0	μg/L μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Bromodichloromethane	ND	0.50	μg/L μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Bromoform	ND	1.0	μg/L μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
2-Butanone (MEK)	ND	20	μg/L μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
tert-Butyl Alcohol (TBA)	ND ND	20	μg/L μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
sec-Butylbenzene	ND	1.0	μg/L μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
tert-Butylbenzene	ND	1.0		1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
tert-Butyl Ethyl Ether (TBEE)	ND ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Carbon Disulfide	ND ND	10	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Carbon Tetrachloride	ND ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Chlorobenzene	ND ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Chloroform	ND ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Chloromethane	ND ND	2.0	μg/L	1		SW-846 8260C	10/5/11		MFF
2-Chlorotoluene			μg/L	1				10/5/11 22:10	
4-Chlorotoluene	ND	1.0	μg/L			SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,2-Dibromoethane (EDB)	ND ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Dibromomethane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
trans-1.4-Dichloro-2-butene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
, , , , , , , , , , , , , , , , , , , ,	ND	2.0	μg/L	1	17.05	SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Dichlorodifluoromethane (Freon 12) 1,1-Dichloroethane	ND	2.0	μg/L	1	V-05	SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
2,2-Dichloropropane	ND	1.0	μg/L	1	V-05	SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
trans-1,3-Dichloropropene	ND	0.50	$\mu g/L$	1	V-05	SW-846 8260C	10/5/11	10/5/11 22:10	MFF

Project Location: Springfield St. Sample Description: Work Order: 11J0094

Date Received: 10/4/2011

Field Sample #: TRIP BLANK

Sampled: 10/3/2011 00:00

Sample ID: 11J0094-06

Sample Matrix: Trip Blank Water

Volatila	Organic	Compounds	by CC/MS
voiatile	Organic	Compounds	DV CrC//VIS

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Hexachlorobutadiene	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Naphthalene	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,3,5-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
o-Xylene	ND	1.0	μg/L	1		SW-846 8260C	10/5/11	10/5/11 22:10	MFF
Surrogates		% Recovery	Recovery Limits	s	Flag			10/5/11 22 10	

Surrogates	% Recovery	Recovery Limits	Flag	
1,2-Dichloroethane-d4	92.6	70-130		10/5/11 22:10
Toluene-d8	99.0	70-130		10/5/11 22:10
4-Bromofluorobenzene	95.1	70-130		10/5/11 22:10

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
11J0094-01 [ATC-1]	B038567	5	5.00	10/05/11	
11J0094-02 [MW-7]	B038567	5	5.00	10/05/11	
11J0094-03 [MW-6]	B038567	5	5.00	10/05/11	
11J0094-04 [ATC-4]	B038567	5	5.00	10/05/11	
11J0094-05 [MW-8]	B038567	5	5.00	10/05/11	
11J0094-06 [TRIP BLANK]	B038567	5	5.00	10/05/11	

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

				Result			RPD	Limit	Notes
		_	Prepared & A	Analyzed: 10	/05/11		_	_	_
ND	50	μg/L							
ND	5.0	$\mu g/L$							
ND	0.50	μg/L							
ND	1.0	$\mu g/L$							
ND	1.0	$\mu g/L$							
ND	1.0	$\mu g \! / \! L$							
ND	0.50	μg/L							
ND	1.0	μg/L							
ND	2.0	μg/L							
ND	20	μg/L							
ND	20								
ND									
ND									
ND									
ND									
ND									
	1.0								
	5.0								
	0.50	μg/L μg/L							
	1.0	μg/L μg/L							
	1.0	μg/L μg/L							
ND ND	1.0	μg/L							
ND	1.0	μg/L							
ND	2.0	μg/L							
ND	2.0	μg/L							V-05
ND	1.0	μg/L							
ND	1.0	μg/L							
ND	1.0	μg/L							
ND	1.0	$\mu g \! / \! L$							
ND	1.0	$\mu g/L$							
ND	1.0	$\mu \text{g/L}$							
ND	0.50	$\mu \text{g/L}$							
ND	1.0	$\mu \text{g/L}$							V-05
ND	2.0	$\mu \text{g/L}$							
ND	0.50	μg/L							
ND	0.50	μg/L							V-05
ND	2.0	μg/L							
ND									_
ND	50	μg/L							V-16
ND									
ND	0.50								
ND									
ND	1.0	μg/L							
ND									
	ND N	ND	ND 5.0 µg/L ND 0.50 µg/L ND 1.0 µg/L ND 1.0 µg/L ND 1.0 µg/L ND 1.0 µg/L ND 0.50 µg/L ND 0.50 µg/L ND 1.0 µg/L ND 2.0 µg/L ND 20 µg/L ND 1.0 µg/L ND 5.0 µg/L ND 2.0 µg/L ND 2.0 µg/L ND 2.0 µg/L ND 1.0 µg/L ND 0.50 µg/L	ND 50	ND 50 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 1.0 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 0.50 μg/L	ND 5.0 µg/L ND 0.50 µg/L ND 1.0 µg/L ND 0.50 µg/L ND 1.0 µg/L ND 2.0 µg/L ND 20 µg/L ND 20 µg/L ND 1.0 µg/L ND 2.0 µg/L ND 1.0 µg/L ND 0.50 µg/L	ND 50	ND 50 µg/L ND 0.50 µg/L ND 0.50 µg/L ND 1.0 µg/L ND 2.0 µg/L ND 2.0 µg/L ND 2.0 µg/L ND 1.0 µg/L ND 2.0 µg/L ND 2.0 µg/L ND 2.0 µg/L ND 2.0 µg/L ND 1.0 µg/L ND 0.50 µg/L	ND 50 µg/L ND 5.0 µg/L ND 0.50 µg/L ND 1.0 µg/L ND 2.0 µg/L ND 2.0 µg/L ND 1.0 µg/L ND 5.0 µg/L ND 2.0 µg/L ND 1.0 µg/L ND 2.0 µg/L ND 2.0 µg/L ND 2.0 µg/L ND 1.0 µg/L ND 0.50 µg/L ND

QUALITY CONTROL

Spike

Source

RPD

%REC

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

lt %REC	Limits	RPD	Limit	Notes
1: 10/05/11				
02.0	70.120			
93.9	70-130			
98.0 96.5	70-130 70-130			
	70-130			
1: 10/05/11	=0.460			
129	70-160			
96.8	70-130			
86.1	70-130			
105	70-130			
105	70-130			
110	70-130			
88.6	70-130			
88.9	70-130			
63.9	40-160			
102	40-160			
81.0	40-160			
97.4	70-130			
102	70-130			
102	70-130			
82.3	70-130			
82.5	70-130			
89.3	70-130			
113	70-130			
88.7	70-130			
91.0	70-130			
	123 68.1 109	68.1 40-160	68.1 40-160	68.1 40-160

QUALITY CONTROL

Spike

Source

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes	
Batch B038567 - SW-846 5030B											
LCS (B038567-BS1)				Prepared &	Analyzed: 10/	05/11					
4-Chlorotoluene	11.1	1.0	μg/L	10.0		111	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	8.20	5.0	μg/L	10.0		82.0	70-130				
1,2-Dibromoethane (EDB)	11.4	0.50	μg/L	10.0		114	70-130				
Dibromomethane	10.9	1.0	μg/L	10.0		109	70-130				
1,2-Dichlorobenzene	10.7	1.0	μg/L	10.0		107	70-130				
1,3-Dichlorobenzene	10.8	1.0	μg/L	10.0		108	70-130				
1,4-Dichlorobenzene	10.8	1.0	μg/L	10.0		108	70-130				
trans-1,4-Dichloro-2-butene	7.94	2.0	μg/L	10.0		79.4	70-130				
Dichlorodifluoromethane (Freon 12)	4.36	2.0	μg/L	10.0		43.6	40-160			V-05	Ť
1,1-Dichloroethane	10.9	1.0	μg/L	10.0		109	70-130				
1,2-Dichloroethane	10.2	1.0	μg/L	10.0		102	70-130				
1,1-Dichloroethylene	10.2	1.0	$\mu g/L$	10.0		102	70-130				
cis-1,2-Dichloroethylene	10.7	1.0	$\mu g/L$	10.0		107	70-130				
trans-1,2-Dichloroethylene	11.7	1.0	$\mu g/L$	10.0		117	70-130				
1,2-Dichloropropane	10.3	1.0	$\mu g/L$	10.0		103	70-130				
1,3-Dichloropropane	10.6	0.50	$\mu g/L$	10.0		106	70-130				
2,2-Dichloropropane	7.40	1.0	$\mu g/L$	10.0		74.0	40-130			V-05	†
1,1-Dichloropropene	9.99	2.0	$\mu g/L$	10.0		99.9	70-130				
cis-1,3-Dichloropropene	8.57	0.50	$\mu g/L$	10.0		85.7	70-130				
trans-1,3-Dichloropropene	8.66	0.50	μg/L	10.0		86.6	70-130			V-05	
Diethyl Ether	10.9	2.0	μg/L	10.0		109	70-130				
Diisopropyl Ether (DIPE)	9.86	0.50	μg/L	10.0		98.6	70-130				
1,4-Dioxane	116	50	μg/L	100		116	40-130			V-16	†
Ethylbenzene	11.2	1.0	μg/L	10.0		112	70-130				
Hexachlorobutadiene	10.2	0.50	μg/L	10.0		102	70-130				
2-Hexanone (MBK)	95.9	10	μg/L	100		95.9	70-160				†
Isopropylbenzene (Cumene)	12.5	1.0	μg/L	10.0		125	70-130				
p-Isopropyltoluene (p-Cymene)	10.5	1.0	μg/L	10.0		105	70-130				
Methyl tert-Butyl Ether (MTBE)	10.2	1.0	μg/L	10.0		102	70-130				
Methylene Chloride	11.8	5.0	μg/L	10.0		118	70-130				
4-Methyl-2-pentanone (MIBK)	96.2	10	μg/L	100		96.2	70-160				†
Naphthalene	10.3	2.0	μg/L	10.0		103	40-130				†
n-Propylbenzene	11.1	1.0	μg/L	10.0		111	70-130				'
Styrene	11.1	1.0	μg/L	10.0		112	70-130				
1,1,1,2-Tetrachloroethane		1.0	μg/L μg/L	10.0		102	70-130				
1,1,2,2-Tetrachloroethane	10.2	0.50	μg/L μg/L	10.0		102	70-130				
Tetrachloroethylene	10.8	1.0	μg/L μg/L	10.0		113	70-130				
Tetrahydrofuran	11.3	10	μg/L	10.0		76.6	70-130				
Toluene	7.66	1.0	μg/L μg/L	10.0		106	70-130				
1,2,3-Trichlorobenzene	10.6	5.0									
1,2,4-Trichlorobenzene	10.6	1.0	μg/L	10.0		106	70-130				
1,3,5-Trichlorobenzene	10.2		μg/L	10.0		102	70-130				
* *	9.22	1.0	μg/L	10.0		92.2	70-130				
1,1,1-Trichloroethane	9.28	1.0	μg/L	10.0		92.8	70-130				
1,1,2-Trichloroethane	11.2	1.0	μg/L	10.0		112	70-130				
Trichlore flyene (Trans 11)	10.7	1.0	μg/L	10.0		107	70-130				
Trichlorofluoromethane (Freon 11)	9.42	2.0	μg/L	10.0		94.2	70-130				
1,2,3-Trichloropropane	10.1	2.0	μg/L	10.0		101	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.2	1.0	μg/L	10.0		102	70-130				
1,2,4-Trimethylbenzene	10.4	1.0	μg/L	10.0		104	70-130				
1,3,5-Trimethylbenzene	10.6	1.0	μg/L	10.0		106	70-130				
Vinyl Chloride	6.45	2.0	$\mu g/L$	10.0		64.5	40-160				†

RPD

%REC

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B038567 - SW-846 5030B											_
LCS (B038567-BS1)				Prepared &	Analyzed: 10	/05/11					
m+p Xylene	22.1	2.0	μg/L	20.0		111	70-130				
o-Xylene	11.2	1.0	$\mu g\!/\!L$	10.0		112	70-130				
Surrogate: 1,2-Dichloroethane-d4	22.5		μg/L	25.0		89.8	70-130				_
Surrogate: Toluene-d8	25.2		μg/L	25.0		101	70-130				
Surrogate: 4-Bromofluorobenzene	24.7		μg/L	25.0		98.8	70-130				
LCS Dup (B038567-BSD1)				Prepared &	Analyzed: 10	/05/11					
Acetone	134	50	μg/L	100	.,	134	70-160	3.74	25		— †
Acrylonitrile	9.94	5.0	μg/L	10.0		99.4	70-130	2.65	25		
tert-Amyl Methyl Ether (TAME)	8.44	0.50	μg/L	10.0		84.4	70-130	1.99	25		
Benzene	9.99	1.0	μg/L	10.0		99.9	70-130	5.26	25		
Bromobenzene	10.4	1.0	μg/L	10.0		104	70-130	1.34	25		
Bromochloromethane	10.4	1.0	μg/L	10.0		105	70-130	4.85	25		
Bromodichloromethane	8.34	0.50	μg/L μg/L	10.0		83.4	70-130	6.05	25		
Bromoform	8.34 9.07	1.0	μg/L μg/L	10.0		90.7	70-130	2.00	25		
Bromomethane		2.0	μg/L μg/L								†
2-Butanone (MEK)	6.41	2.0	μg/L μg/L	10.0 100		64.1 108	40-160 40-160	0.312 5.71	25 25		†
tert-Butyl Alcohol (TBA)	108	20	μg/L μg/L	100		94.6	40-160	15.5	25 25		†
n-Butylbenzene	94.6	1.0	μg/L μg/L			94.9	70-130		25		1
sec-Butylbenzene	9.49	1.0		10.0				2.60			
-	9.70		μg/L	10.0		97.0	70-130	4.93	25		
tert-Butylbenzene	9.86	1.0	μg/L	10.0		98.6	70-130	3.78	25		
tert-Butyl Ethyl Ether (TBEE)	7.96	0.50	μg/L	10.0		79.6	70-130	3.34	25		
Carbon Disulfide	6.77	10	μg/L	10.0		67.7 *		19.7	25	L-07	
Carbon Tetrachloride	8.26	5.0	μg/L	10.0		82.6	70-130	7.80	25		
Chlorobenzene	10.7	1.0	μg/L	10.0		107	70-130	5.44	25		
Chlorodibromomethane	8.65	0.50	μg/L	10.0		86.5	70-130	2.51	25		
Chloroethane	7.99	2.0	μg/L	10.0		79.9	70-130	13.0	25		
Chloroform	11.5	2.0	μg/L	10.0		115	70-130	7.13	25		
Chloromethane	6.18	2.0	μg/L	10.0		61.8	40-160	9.70	25		Ť
2-Chlorotoluene	10.2	1.0	μg/L	10.0		102	70-130	5.96	25		
4-Chlorotoluene	10.8	1.0	μg/L	10.0		108	70-130	3.02	25		
1,2-Dibromo-3-chloropropane (DBCP)	8.92	5.0	μg/L	10.0		89.2	70-130	8.41	25		
1,2-Dibromoethane (EDB)	11.4	0.50	μg/L	10.0		114	70-130	0.527	25		
Dibromomethane	10.8	1.0	$\mu g \! / \! L$	10.0		108	70-130	0.645	25		
1,2-Dichlorobenzene	10.5	1.0	μg/L	10.0		105	70-130	1.89	25		
1,3-Dichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	4.16	25		
1,4-Dichlorobenzene	10.5	1.0	$\mu g/L$	10.0		105	70-130	2.92	25		
trans-1,4-Dichloro-2-butene	8.32	2.0	$\mu g/L$	10.0		83.2	70-130	4.67	25		
Dichlorodifluoromethane (Freon 12)	3.59	2.0	$\mu g/L$	10.0		35.9 *	40-160	19.4	25	L-07, V-05	†
1,1-Dichloroethane	10.4	1.0	$\mu \text{g/L}$	10.0		104	70-130	5.36	25		
1,2-Dichloroethane	10.0	1.0	$\mu g/L$	10.0		100	70-130	1.39	25		
1,1-Dichloroethylene	9.46	1.0	$\mu g/L$	10.0		94.6	70-130	7.63	25		
cis-1,2-Dichloroethylene	10.0	1.0	$\mu g/L$	10.0		100	70-130	6.17	25		
trans-1,2-Dichloroethylene	10.9	1.0	$\mu g/L$	10.0		109	70-130	7.34	25		
1,2-Dichloropropane	10.0	1.0	$\mu g/L$	10.0		100	70-130	2.65	25		
1,3-Dichloropropane	10.5	0.50	$\mu g/L$	10.0		105	70-130	1.23	25		
2,2-Dichloropropane	7.00	1.0	$\mu g/L$	10.0		70.0	40-130	5.56	25	V-05	†
1,1-Dichloropropene	9.75	2.0	$\mu g/L$	10.0		97.5	70-130	2.43	25		
cis-1,3-Dichloropropene	8.32	0.50	μg/L	10.0		83.2	70-130	2.96	25		
trans-1,3-Dichloropropene	8.54	0.50	$\mu g/L$	10.0		85.4	70-130	1.40	25	V-05	
Diethyl Ether	10.2	2.0	μg/L	10.0		102	70-130	6.42	25		
Diisopropyl Ether (DIPE)	9.06	0.50	μg/L	10.0		90.6	70-130	8.46	25		

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B038567 - SW-846 5030B											
LCS Dup (B038567-BSD1)				Prepared &	Analyzed: 10	0/05/11					
1,4-Dioxane	119	50	μg/L	100		119	40-130	1.80	50	V-16	 † ‡
Ethylbenzene	10.6	1.0	μg/L	10.0		106	70-130	5.24	25		
Hexachlorobutadiene	9.92	0.50	μg/L	10.0		99.2	70-130	3.17	25		
2-Hexanone (MBK)	103	10	μg/L	100		103	70-160	7.00	25		†
Isopropylbenzene (Cumene)	11.8	1.0	$\mu g/L$	10.0		118	70-130	6.01	25		
p-Isopropyltoluene (p-Cymene)	10.2	1.0	$\mu g/L$	10.0		102	70-130	2.31	25		
Methyl tert-Butyl Ether (MTBE)	9.97	1.0	μg/L	10.0		99.7	70-130	1.89	25		
Methylene Chloride	11.2	5.0	μg/L	10.0		112	70-130	5.57	25		
4-Methyl-2-pentanone (MIBK)	102	10	$\mu g/L$	100		102	70-160	6.06	25		†
Naphthalene	11.7	2.0	$\mu g/L$	10.0		117	40-130	12.8	25		†
n-Propylbenzene	10.6	1.0	$\mu g/L$	10.0		106	70-130	5.06	25		
Styrene	10.8	1.0	$\mu g/L$	10.0		108	70-130	4.36	25		
1,1,1,2-Tetrachloroethane	9.93	1.0	$\mu g/L$	10.0		99.3	70-130	2.49	25		
1,1,2,2-Tetrachloroethane	11.0	0.50	$\mu g/L$	10.0		110	70-130	1.74	25		
Tetrachloroethylene	10.7	1.0	$\mu g/L$	10.0		107	70-130	5.56	25		
Tetrahydrofuran	8.04	10	$\mu g/L$	10.0		80.4	70-130	4.84	25		
Toluene	10.2	1.0	$\mu g/L$	10.0		102	70-130	4.53	25		
1,2,3-Trichlorobenzene	11.5	5.0	$\mu g/L$	10.0		115	70-130	7.41	25		
1,2,4-Trichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	2.62	25		
1,3,5-Trichlorobenzene	9.18	1.0	μg/L	10.0		91.8	70-130	0.435	25		
1,1,1-Trichloroethane	9.06	1.0	μg/L	10.0		90.6	70-130	2.40	25		
1,1,2-Trichloroethane	11.1	1.0	μg/L	10.0		111	70-130	1.43	25		
Trichloroethylene	10.2	1.0	μg/L	10.0		102	70-130	4.88	25		
Trichlorofluoromethane (Freon 11)	8.61	2.0	μg/L	10.0		86.1	70-130	8.99	25		
1,2,3-Trichloropropane	11.2	2.0	μg/L	10.0		112	70-130	10.9	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.46	1.0	μg/L	10.0		94.6	70-130	7.53	25		
1,2,4-Trimethylbenzene	9.92	1.0	$\mu g/L$	10.0		99.2	70-130	4.24	25		
1,3,5-Trimethylbenzene	10.1	1.0	$\mu g/L$	10.0		101	70-130	5.20	25		
Vinyl Chloride	5.82	2.0	μg/L	10.0		58.2	40-160	10.3	25		†
m+p Xylene	21.3	2.0	$\mu g/L$	20.0		106	70-130	3.83	25		
o-Xylene	10.5	1.0	$\mu g/L$	10.0		105	70-130	5.71	25		
Surrogate: 1,2-Dichloroethane-d4	22.4		μg/L	25.0		89.4	70-130				
Surrogate: Toluene-d8	24.6		$\mu g/L$	25.0		98.5	70-130				
Surrogate: 4-Bromofluorobenzene	24.8		$\mu g/L$	25.0		99.2	70-130				

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, bu the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
V-05	Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy are associated with reported result.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260C in Water		
Acetone	CT,NH,NY,ME	
Acrylonitrile	CT,NY,ME,RI	
tert-Amyl Methyl Ether (TAME)	NH,NY,ME	
Benzene	CT,NH,NY,ME,RI	
Bromochloromethane	NH,NY,ME	
Bromodichloromethane	CT,NH,NY,ME,RI	
Bromoform	CT,NH,NY,ME,RI	
Bromomethane	CT,NH,NY,ME,RI	
2-Butanone (MEK)	CT,NH,NY,ME	
tert-Butyl Alcohol (TBA)	NH,NY,ME	
n-Butylbenzene	NY,ME	
sec-Butylbenzene	NY,ME	
tert-Butylbenzene	NY,ME	
tert-Butyl Ethyl Ether (TBEE)	NH,NY,ME	
Carbon Disulfide	CT,NH,NY,ME	
Carbon Tetrachloride	CT,NH,NY,ME,RI	
Chlorobenzene	CT,NH,NY,ME,RI	
Chlorodibromomethane	CT,NH,NY,ME,RI	
Chloroethane	CT,NH,NY,ME,RI	
Chloroform	CT,NH,NY,ME,RI	
Chloromethane	CT,NH,NY,ME,RI	
2-Chlorotoluene	NY,ME	
4-Chlorotoluene	NY,ME	
Dibromomethane	NH,NY,ME	
1,2-Dichlorobenzene	CT,NY,ME,RI	
1,3-Dichlorobenzene	CT,NH,NY,ME,RI	
1,4-Dichlorobenzene	CT,NH,NY,ME,RI	
trans-1,4-Dichloro-2-butene	NH,NY,ME	
Dichlorodifluoromethane (Freon 12)	NH,NY,ME,RI	
1,1-Dichloroethane	CT,NH,NY,ME,RI	
1,2-Dichloroethane	CT,NH,NY,ME,RI	
1,1-Dichloroethylene	CT,NH,NY,ME,RI	
cis-1,2-Dichloroethylene	ME	
trans-1,2-Dichloroethylene	CT,NH,NY,ME,RI	
1,2-Dichloropropane	CT,NH,NY,ME,RI	
1,3-Dichloropropane	NY,ME	
2,2-Dichloropropane	NH,NY,ME	
1,1-Dichloropropene	NH,NY,ME	
cis-1,3-Dichloropropene	CT,NH,NY,ME,RI	
trans-1,3-Dichloropropene	CT,NH,NY,ME,RI	
Diisopropyl Ether (DIPE)	NH,NY,ME	
Ethylbenzene	CT,NH,NY,ME,RI	
Hexachlorobutadiene	CT,NH,NY,ME	
2-Hexanone (MBK)	CT,NH,NY,ME	
Isopropylbenzene (Cumene)	NY,ME	
p-Isopropyltoluene (p-Cymene)	CT,NH,NY,ME	
Methyl tert-Butyl Ether (MTBE)	CT,NH,NY,ME	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260C in Water	
Methylene Chloride	CT,NH,NY,ME,RI
4-Methyl-2-pentanone (MIBK)	CT,NH,NY,ME
Naphthalene	NH,NY,ME
n-Propylbenzene	CT,NH,NY,ME
Styrene	CT,NH,NY,ME
1,1,1,2-Tetrachloroethane	CT,NH,NY,ME
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME,RI
Tetrachloroethylene	CT,NH,NY,ME,RI
Toluene	CT,NH,NY,ME,RI
1,2,3-Trichlorobenzene	NH,NY,ME
1,2,4-Trichlorobenzene	CT,NH,NY,ME
1,3,5-Trichlorobenzene	ME
1,1,1-Trichloroethane	CT,NH,NY,ME,RI
1,1,2-Trichloroethane	CT,NH,NY,ME,RI
Trichloroethylene	CT,NH,NY,ME,RI
Trichlorofluoromethane (Freon 11)	CT,NH,NY,ME,RI
1,2,3-Trichloropropane	NH,NY,ME
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NY
1,2,4-Trimethylbenzene	NY,ME
1,3,5-Trimethylbenzene	NY,ME
Vinyl Chloride	CT,NH,NY,ME,RI
m+p Xylene	CT,NH,NY,ME,RI
o-Xylene	CT,NH,NY,ME,RI
The CON-TEST Environmental Laboratory operates ur	oder the following certifications and accreditations:

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	American Industrial Hygiene Association	100033	01/1/2012
MA	Massachusetts DEP	M-MA100	06/30/2012
CT	Connecticut Department of Publile Health	PH-0567	09/30/2011
NY	New York State Department of Health	10899 NELAP	04/1/2012
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2012
RI	Rhode Island Department of Health	LAO00112	12/30/2011
NC	North Carolina Div. of Water Quality	652	12/31/2011
NJ	New Jersey DEP	MA007 NELAP	06/30/2012
FL	Florida Department of Health	E871027 NELAP	06/30/2012
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2012
WA	State of Washington Department of Ecology	C2065	02/23/2012
ME	State of Maine	2011028	06/9/2013

ANALYTICAL LABORATORY	con-test®

ਰ	Ğ
testlabs.com	
ᆲ	
Ϋ́	
႘	
ž	
ᅬ	
_ 1	
7	

\dashv	-
LON	
NGMEA	(
MOD	ייסטר טיי, בועט י בטטיי
, MA	500
01028	•

Men 4.8	. ?	I MUNICIPAL INCIDENT		No Service		(b)	Rélinaus shed by (signature)			Laboratory Comments:	TRIP BLANK	MW-8	ATC-4	MW-6	Mw-7	ATC-1	WB-Z	MPL-6	!	yes proposal date	Proposal Provided? (For Billing purposes)	sampled by: (HIETS JAMTSON	174/199		Attention: LONNA PALISTER	WAILWILL ICL	`	Address: 30 MFTRO CFLIER	Company Name: ATCADIS		ICAL LABORATORY	All CON-test®
1705	}	2011 11-11-0	Date/Time:	11-111 July 1	Date/Time:	10/03/11 19:00	Date/Timey				90	000	20	20	67	0			Lab#	ges g no	State Form Required?		5)	\			\	BWD		www.contestlabs.com	Email: info@contestlabs.com	Phone: 413-525-2332 Fax: 413-525-6405
* Require lab approval	□ *72-Hr □ *4-Day	□ *24-Hr □ *48-Hr	RUSH	45	10-Day	7-Day	Turnaround **				10/63/11	16/04/11 17:36	10bd/, 17:15	1063/11 17:00	10/11/16:45	16:30 1/20/a	oloshu 14,45	0/03/11 15:20	Start Stop Date/Time Date/Time	Date Sampled	D OTHER	Format: DEXCEL D	Tax #	EMAIL	DELIVERY (Client PO #	Project # WILO 12152. Con	Telephone:(401) 738	7		CHAIN
		Special Requirements or DL's:		Data Enhancement Project/RCP?		Regulations? 1	Detection Limit Requirements	H - High; M - Medium; L - Low;	be high in concent	Please use the fol		Y	4	x &	x 08	x &	X	<i>+ A X</i>	Comp- osite Grab Code Code	7		D PDF D GIS KEY		@WEBSITE CLIENT				52.0007	38-388/ N		17202	CHAIN OF CUSTODY RECORD
0 =	SL	S	Α =	DY ADV		GW			be high in concentration in Matrix/Conc. Code Box:	lowing codes to le	×	*	×	8	×	7			10) X —		87 87	e de)		<u>></u>	< <	/ 子	- 16	•	
O = other	SL = sludge	S = soil/solid	A = air	DW = drinking water		GW = groundwater	*Matrix Code:	C - Clean; U - Unknown	onc. Code Box:	Please use the following codes to let Con-Test know if a specific sample may																	ANALYSIS REQUESTED					39 SPRUCE ST, 2ND FLOOR EAST LONGMEADOW, MA 01028
O = Other	B = Sodium bisulfate	S = Sulfuric Acid	N = Nitric Acid	M = Methanol	H = HCL T:	I = Iced X	**Preservation Codes:			specific sample me																	ESTED					
	ī t e			***************************************	T = Na thiosulfate	X = Na hydroxide	des:			y.			<u> </u>		1	L	<u> </u>	Comments:		0 =Other	T=tedlar bag	S=summa can	V vici	P=plastic	G =glass	A=amber glass	~Cont. Code:	~Cont.Code	**Preserv C	# of conta	e 25	Page of 26

INCOÉRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT. TURNAMOUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS

AIHA, NELAC & WBE/DBE Certified

39 Spruce St.
East Longmeadow, MA. 01028
P: 413-525-2332

F: 413-525-6405 www.contestlabs.com

Sample Receipt Checklist

CLIENT NAME: MCCOCIS		_RECEIVED E	BY: <u>SD</u>	_DATE: <i> 0/4/ </i>
1) Was the chain(s) of custody relir	nguished and sign	ned?	(Yes) No	No CoC Included
2) Does the chain agree with the sa			Yes) No	110 000 included
If not, explain:	•			
3) Are all the samples in good conc If not, explain:	lition?		Yes No	
4) How were the samples received:				
On Ice Direct from Sam	ipling 🔲	Ambient _	In Cooler(s)	
Were the samples received in Temp	perature Compliar	nce of (2-6°C)		N/A
	•			3.6
5) Are there Dissolved samples for		·· '		3
Who was notified		Timo	Yes No	,
6) Are there any RUSH or SHORT H			Yes (N	}
Who was notified		-	Yes (No)
o may notified	Date		Pormission to sub	entroot completed Nov. No.
7) Location where complete and the		\frown		ontract samples? Yes No
7) Location where samples are stored:		-) if not already approved
		[C	Client Signature:	
	ntainers rec	ceived at		afficient de la companya de la comp
	# of containers	911		# of containers
1 Liter Amber		1	3 oz amber/clear jar	
500 mL Amber		(15) 100°	oz amber/clear jar	
250 mL Amber (8oz amber)		2	oz amber/clear jar	
1 Liter Plastic			Air Cassette	
500 mL Plastic			Hg/Hopcalite Tube	1
250 mL plastic	./		Plastic Bag / Ziploc	
40 mL Vial - type listed below Colisure / bacteria bottle	10	# \	PM 2.5 / PM 10	
Dissolved Oxygen bottle			PUF Cartridge	
Encore			SOC Kit TO-17 Tubes	
Flashpoint bottle		No	n-ConTest Contain	er
Perchlorate Kit			Other glass jar	0.
Other			Other	
Laboratory Comments:				
40 mL vials: # HCI	# Methanol			Time and Date Frozen:
# Bisulfate	# DI Water			
# Thiosulfate	Unpreserved			
Do all samples have the proper Aci	•	N/A _		Doc# 277
Do all samples have the proper Bas	se pH: Yes No	N/A _		Rev. 1 May 2011

ARCADIS

Appendix C
Soil Gas Parameter Graphs

Soil Gas Well EPL1 Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time Springfield Street School Complex Providence, Rhode Island

—■ Methane — Oxygen — Carbon Dioxide

Soil Gas Well EPL4
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island

Soil Gas Well MG2 Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time Springfield Street School Complex Providence, Rhode Island

Soil Gas Well MPL5 Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time Springfield Street School Complex Providence, Rhode Island

Soil Gas Well WB1
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island

Soil Gas Well WB7
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island

Soil Gas Well WB15 Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time Springfield Street School Complex Providence, Rhode Island

Soil Gas Well MPL-7 Fluctuations in Methane, Oxygen and Carbon Dioxide

