11 Northeastern Boulevard Salem, NH 03079-1953 603.870.4500 Fax: 603.870.4501

March 25, 2010 Project 130274

Mr. Joseph T. Martella, II Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street Providence, RI 02908-5767

Re: Status Report: February 2010 Activities Former Gorham Manufacturing Facility 333 Adelaide Avenue, Providence, RI Site Remediation Case No. 97-030

Dear Mr. Martella:

Shaw Environmental, Inc. (Shaw) has prepared this status report on behalf of Textron, Inc. (Textron). This status report is associated with the remediation of tetrachloroethene (PCE) contaminated groundwater at the former Gorham Manufacturing Facility at 333 Adelaide Avenue, Providence, Rhode Island (Figure 1).

PCE is the primary contaminant of concern for groundwater in this area. As discussed in the Remedial Action Work Plan (RAWP) and subsequent revisions, the PCE source area in the vicinity of the former building W is the area of concern with a site-specific remedial goal of 7,700 micrograms per liter (ug/L). This area was treated using in-situ applications of sodium permanganate. Figure 2 shows the most recent treatment area.

This status report describes groundwater monitoring activities conducted in accordance with the proposed groundwater monitoring program submitted to the Rhode Island Department of Environmental Management (RIDEM) in February 2007 (Shaw – Groundwater Monitoring Program letter, dated February 1, 2007).

Mr. Joseph T. Martella, II March 25, 2010 Page 2 of 4

FIELD ACTIVITIES

The following field activities were conducted on February 11, 2010.

Monitoring Activities

Field parameters were measured in treatment area wells and compliance wells on February 11, 2010. Field measurements included oxidation/reduction potential (ORP), dissolved oxygen (DO), pH, temperature, and specific conductance (SC). Groundwater elevation and light non-aqueous phase liquid (LNAPL) thickness measurements were also collected. During the synchronous gauging, light non-aqueous phase liquid (LNAPL) was detected in MW-221S at a thickness of 0.59 feet. Field parameter and gauging results are presented in Tables 1 and 2.

Groundwater Sampling

Groundwater samples were collected for analysis for volatile organic compounds (VOCs) (EPA Method 8260B) on February 11, 2010 from 21 monitoring wells within and around the treatment area, including compliance wells. (Monitoring well MW-201D was not sampled as it was under a snow bank and therefore not accessible.) One duplicate sample was collected from MW-101S (MW-101S DUP) for VOC analysis. One sample was collected for total petroleum hydrocarbon (TPH) analysis (modified EPA Method 8015 B) from monitoring well CW-6. One duplicate sample was collected from CW-6 (CW-6 DUP) for TPH analysis. Samples were collected for lead analysis (EPA Method 6010B) from monitoring wells MW-109D and GZA-3. One duplicate sample was collected from GZA-3 (GZA-3 DUP) for lead analysis. Groundwater samples were delivered to AMRO Environmental Laboratories Corporation in Merrimack, New Hampshire for analysis.

SUMMARY OF ANALYTICAL DATA

A summary of the analytical data associated with the groundwater sampling conducted in February 2010 is contained in Table 3. Copies of the laboratory analytical reports are attached to this report. The PCE concentration found in well MW-207S was above the treatment goal of 7,700 ug/L.

A summary of the compliance well results is contained in Table 4. The results for the compliance wells indicate that exceedances occurred for the Adelaide Avenue wells MW-112, MW-209D, and MW-218D (PCE) and MW-218S (vinyl chloride).

FUTURE ACTIVITIES

The next sampling event is scheduled for August 2010.

Mr. Joseph T. Martella, II March 25, 2010 Page 3 of 4

If you have any questions regarding this report, please contact Ed Van Doren at (603) 870-4530.

Sincerely,

SHAW ENVIRONMENTAL, INC.

Edward P. Van Doran

Edward P. Van Doren Project Manager

Attachments:

Figures Figure 1 – Site Plan Figure 2 – Injection Well Locations

Tables

Table 1 – Summary Field Parameters Table 2 – Groundwater Elevations Table 3 – VOCs in Groundwater Table 4 – Compliance Wells Analytical Results

Laboratory Analytical Reports

cc: Craig Roy, RIDEM OWR Greg Simpson, Textron Jamieson Schiff, Textron Dave Heislein, MACTEC Thomas Dellar, City of Providence Jeff Morgan, Stop & Shop Ronald Ruth, Sherin and Lodgen Mr. Joseph T. Martella, II March 25, 2010 Page 4 of 4

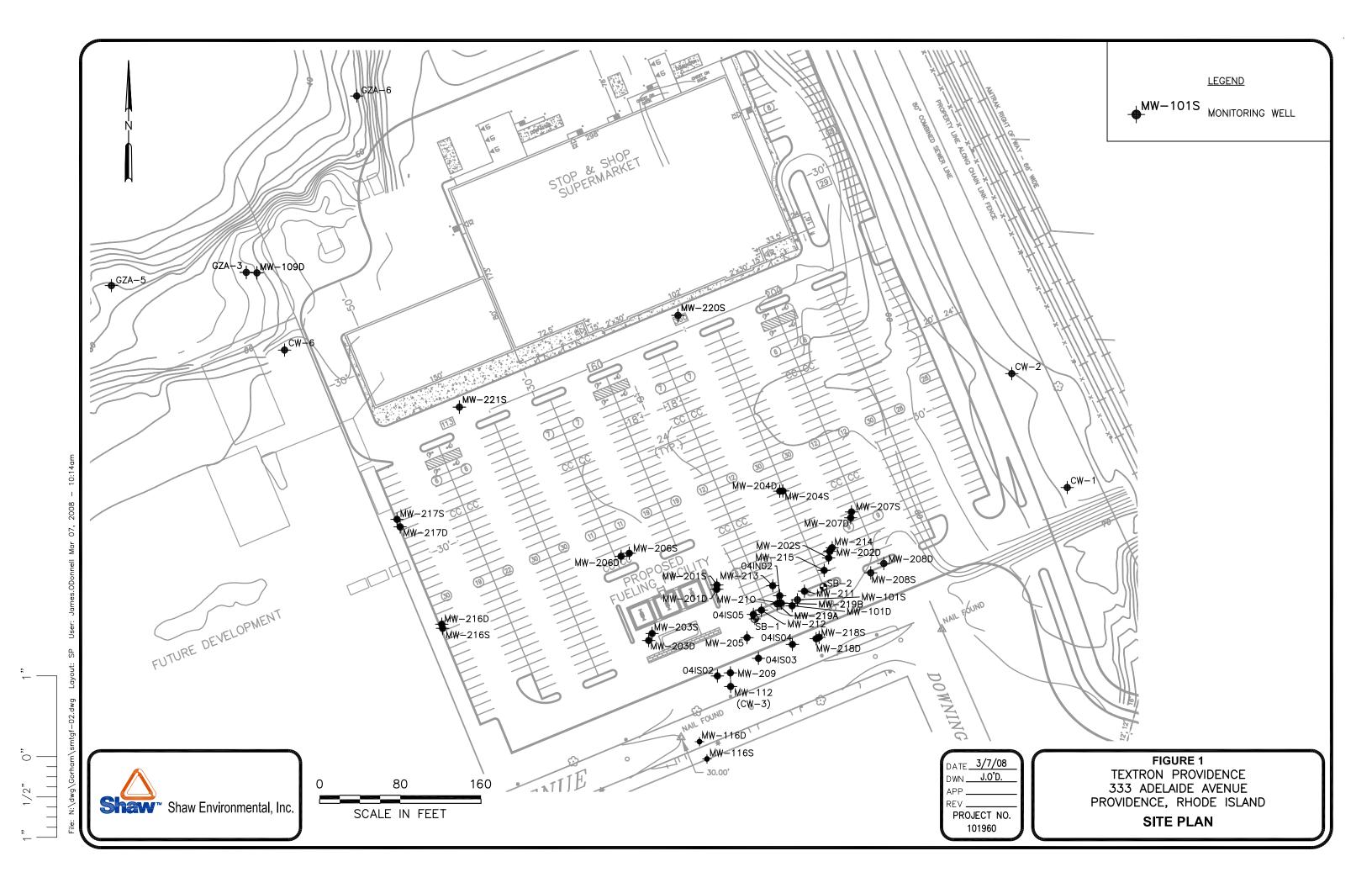
CERTIFICATIONS

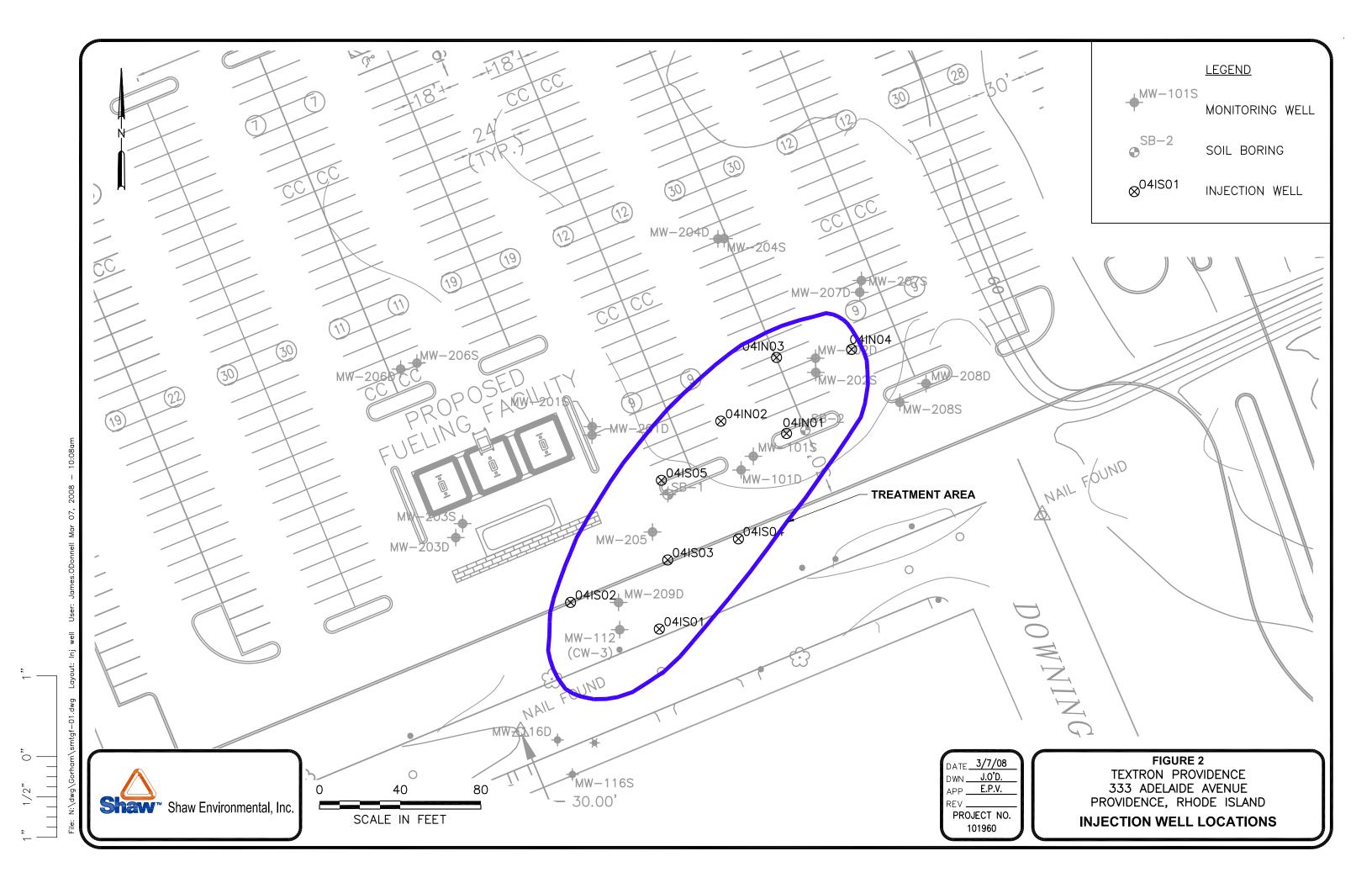
The following certifications are provided pursuant to Rule 9.19 of the Remediation Regulations:

I, Edward P. Van Doren, as an authorized representative of Shaw Environmental, Inc. and the person responsible for the preparation of this Status Report dated March 25, 2010, certify that the information contained in this report is complete and accurate to the best of my knowledge.

Edward P. Van Doren Project Manager

31/2010


Date:


We, Textron, Inc., as the party responsible for submittal of this Status Report, certify that this report is a complete and accurate representation of the contaminated site and the release, and contains all known facts surrounding the release, to the best of our knowledge.

Certification on behalf of Textron Inc.

Gregory L. Simpson Project Manager

Date

Table 1Summary Field ParametersFebruary 2010

Former Gorham Manufacturing Facility Providence, Rhode Island

						Oxidation
			Tomostoturo	Conductivity	Dissolved	Reduction Potential
	DATE	рН	Temperature (deg. C°)	Conductivity	Oxygen	
SITE_ID	DATE			(mS/cm)	(mg/L)	(mV)
CW-01	2/11/2010	6.31	13.74	0.856	0.77	-2.1
CW-02	2/11/2010	6.28	12.97	0.539	1.51	252.8
CW-06	2/11/2010	6.78	14.58	0.736	0.81	-107.6
GZA-3	2/11/2010	6.80	12.05	0.684	2.23	58.0
MW-101D	2/11/2010	6.33	14.29	0.983	14.10	88.8
MW-101S	2/11/2010	5.72	13.89	1.070	10.60	95.9
MW-109D	2/11/2010	7.38	13.86	0.698	0.35	-93.5
MW-112	2/11/2010	5.64	13.52	0.681	2.72	221.8
MW-116D	2/11/2010	5.04	13.69	0.364	1.16	330.7
MW-116S	2/11/2010	5.67	12.88	0.167	7.37	260.3
MW-202D	2/11/2010	5.78	14.82	0.641	0.18	192.8
MW-202S	2/11/2010	6.00	15.25	0.614	0.41	176.0
MW-207D	2/11/2010	6.20	13.81	1.111	0.63	178.3
MW-207S	2/11/2010	6.06	15.27	1.027	0.50	184.1
MW-209D	2/11/2010	7.04	12.85	0.231	0.81	69.1
MW-216D	2/11/2010	6.35	14.30	0.381	0.41	12.8
MW-216S	2/11/2010	6.47	16.02	0.886	1.12	-92.5
MW-217D	2/11/2010	6.46	14.28	0.375	0.19	-55.7
MW-217S	2/11/2010	6.38	15.11	2.488	0.61	198.1
MW-218D	2/11/2010	5.78	13.92	0.369	3.40	169.3

Notes:

C° = degrees Celsius

mS/cm = millisiemens per centimeter

mg/L = milligrams per liter

mV = milli volts

Table 2 Groundwater Elevations February 2010

Well ID	Date	Reference Elevation (Feet)	Depth to Water (Feet)	LNAPL Thickness (Feet)	Groundwater Elevation (Feet)
CW-01	2/11/2010	99.52	25.19	0	74.33
CW-02	2/11/2010	98.86	24.48	0	74.38
CW-06	2/11/2010	99.52	24.72	0	74.80
GZA-3	2/11/2010	NA	17.53	0	NA
MW-101D	2/11/2010	98.91	24.39	0	74.52
MW-101S	2/11/2010	98.90	24.25	0	74.65
MW-109D	2/11/2010	NA	18.79	0	NA
MW-112	2/11/2010	100.63	25.91	0	74.72
MW-116D	2/11/2010	98.92	24.09	0	74.83
MW-116S	2/11/2010	99.40	24.60	0	74.80
MW-201D	2/11/2010	98.80	NM	NA	NA
MW-202D	2/11/2010	98.17	23.74	0	74.43
MW-202S	2/11/2010	98.06	23.60	0	74.46
MW-207D	2/11/2010	98.18	23.70	0	74.48
MW-207S	2/11/2010	98.28	23.80	0	74.48
MW-209D	2/11/2010	99.90	25.40	0	74.50
MW-216D	2/11/2010	98.69	24.92	0	73.77
MW-216S	2/11/2010	99.58	24.88	0	74.70
MW-217D	2/11/2010	98.65	24.77	0	73.88
MW-217S	2/11/2010	98.71	24.39	0	74.32
MW-218D	2/11/2010	99.67	25.00	0	74.67
MW-218S	2/11/2010	99.61	25.02	0	74.59
MW-220S	2/11/2010	99.41	24.85	0	74.56
MW-221S	2/11/2010	98.92	25.60	0.59	73.87
	ured, under snow				

Former Gorham Manufacturing Facility Providence, Rhode Island

Groundwater elevations are based on an arbitrary reference datum

established for the site.

Table 3 Groundwater Analytical Results February 2010 Former Gorham Manufacturing Facility Providence, Rhode Island

	CW-01	CW-02	CW-06	CW-06	GZA-3	GZA-3	MW-101D	MW-101S	MW-101S	MW-109D	MW-112	MW-116D	MW-116S
	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010
CONSTITUENT	Primary	Primary	Primary	Duplicate 1	Primary	Duplicate 1	Primary	Primary	Duplicate 1	Primary	Primary	Primary	Primary
VOC (ug/L)													
1,1-Dichloroethane	29	<2			<2		<20	<2	<2	<2	<20	<2	<2
1,1-Dichloroethene	280	<1			1.8		<10	<1	<1	<1	<10	<1	<1
1,2,4-Trimethylbenzene	<20	<2			<2		<20	<2	<2	<2	<20	<2	<2
1,3,5-Trimethylbenzene	<20	<2			<2		<20	<2	<2	<2	<20	<2	<2
2-Butanone	<100	<10			<10		<100	<10	<10	<10	<100	<10	<10
Acetone	<100	<10			<10		<100	<10	11	<10	<100	<10	<10
cis-1,2-Dichloroethene	1000	<2			57		<20	16	14	<2	<20	<2	<2
Ethylbenzene	<20	<2			<2		<20	<2	<2	<2	<20	<2	<2
m/p-xylene	<20	<2			<2		<20	<2	<2	<2	<20	<2	<2
Methyltert-butylether	<20	<2			<2		<20	<2	<2	<2	<20	<2	<2
Naphthalene	<50	<5			<5		<50	<5	<5	<5	<50	<5	<5
o-Xylene	<20	<2			<2		<20	<2	<2	<2	<20	<2	<2
Tetrachloroethene	<20	<2			3.7		890	21	20	<2	540	<2	<2
Toluene	<20	<2			<2		<20	<2	<2	<2	<20	<2	<2
trans-1,2-Dichloroethene	26	<2			<2		<20	<2	<2	<2	<20	<2	<2
Trichloroethene	4800D	<2			29		<20	<2	<2	<2	<20	<2	<2
Vinyl chloride	<20	<2			9.5		<20	2	<2	<2	<20	<2	<2
Xylene (total)	<20	<2			<2		<20	<2	<2	<2	<20	<2	<2
TPH (mg/L)													
Unidentified TPH			5.5	5.7									
Dissolved Metals (ug/L)													
Lead					<13	<13				<13			

Notes:

< = Less than the laboratory reporting limit

ug/L = Micro grams per liter, parts per billion

mg/L = Milligrams per liter, parts per million

TPH = Total Petroleum Hydrocarbons

--- = Not analyzed for.

D = Result reported from a diluted sample

Table 3 Groundwater Analytical Results February 2010 Former Gorham Manufacturing Facility Providence, Rhode Island

	MW-202D	MW-202S	MW-207D	MW-207S	MW-209D	MW-216D	MW-216S	MW-217D	MW-217S	MW-218D	MW-218S
	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010
CONSTITUENT	Primary										
VOC (ug/L)											
1,1-Dichloroethane	<20	<20	<2	<20	<2	<2	2	<2	<2	<20	<2
1,1-Dichloroethene	<10	<10	<1	<10	4.1	<1	<1	<1	<1	<10	<1
1,2,4-Trimethylbenzene	<20	<20	<2	<20	<2	<2	12	<2	<2	<20	<2
1,3,5-Trimethylbenzene	<20	<20	<2	<20	<2	<2	9.1	<2	<2	<20	<2
2-Butanone	<100	<100	<10	<100	<10	<10	<10	<10	<10	<100	24
Acetone	<100	<100	<10	<100	<10	<10	10	<10	<10	<100	99
cis-1,2-Dichloroethene	60	62	<2	28	11	<2	66	8.6	21	<20	3.4
Ethylbenzene	<20	<20	<2	<20	<2	<2	2.6	<2	<2	<20	<2
m/p-xylene	<20	<20	<2	<20	<2	<2	6.6	<2	<2	<20	<2
Methyltert-butylether	<20	<20	<2	<20	5	5.1	<2	2.4	<2	<20	<2
Naphthalene	<50	<50	<5	<50	<5	<5	21	<5	<5	<50	<5
o-Xylene	<20	<20	<2	<20	<2	<2	9	<2	<2	<20	<2
Tetrachloroethene	580	270	140	26000	810D	<2	<2	<2	17	590	<2
Toluene	<20	<20	<2	<20	<2	<2	2.4	<2	<2	<20	<2
trans-1,2-Dichloroethene	<20	<20	<2	<20	<2	<2	<2	<2	<2	<20	<2
Trichloroethene	<20	<20	2.2	93	360D	2.2	<2	12	<2	38	<2
Vinyl chloride	<20	<20	<2	<20	<2	<2	<2	<2	<2	<20	3.1
Xylene (total)	<20	<20	<2	<20	<2	<2	16	<2	<2	<20	<2
TPH (mg/L)											
Unidentified TPH											
Dissolved Metals (ug/L)											
Lead											

Notes:

< = Less than the laboratory reporting limit

ug/L = Micro grams per liter, parts per billion

mg/L = Milligrams per liter, parts per million

TPH = Total Petroleum Hydrocarbons

--- = Not analyzed for.

D = Result reported from a diluted sample

Table 4 Compliance Wells Analytical Results February 2010 Former Gorham Manufacturing Facility Providence, Rhode Island

Mashapaug Pond Compliance	e Wells			
Sample ID	GZA-3	GZA-3	MW-109D	Compliance
Date Collected	2/11/2010	2/11/2010	2/11/2010	Standard ¹
CONSTITUENT		Duplicate		
Metals (mg/L)				
Lead	<0.013	<0.013	<0.013	0.03
VOCs (ug/L)				
1,1-Dichloroethane	<2	NA	<2	50,000
1,1-Dichloroethene	1.8	NA	<1	50,000
cis-1,2-Dichloroethene	57	NA	<2	50,000
Tetrachloroethene	3.7	NA	<2	5,000
Trichloroethene	29	NA	<2	20,000
Vinyl chloride	9.5	NA	<2	1,200

TPH Remediation Area Well			
Sample ID	CW-6	CW-6	Compliance
Date Collected	2/11/2010	2/11/2010	Standard ¹
CONSTITUENT		Duplicate	••••••
TPH (mg/L)	5.5	5.7	20

Sewer Interceptor Area Wells			
Sample ID	CW-1	CW-2	Compliance
Date Collected	2/11/2010	2/11/2010	Standard ²
CONSTITUENT			
VOCs (ug/L)			
1,1-Dichloroethane	29	<2	120,000
1,1-Dichloroethene	280	<1	23,000
cis-1,2-Dichloroethene	1000	<2	69,000
trans-1,2-Dichloroethene	26	<2	79,000
Tetrachloroethene	<20	<2	NS
Trichloroethene	4800D	<2	87,000

Adelaide Avenue Wells					
Sample ID	MW-112	MW-209D	MW-218D	MW-218S	Compliance
Date Collected	2/11/2010	2/11/2010	2/11/2010	2/11/2010	Standard ³
CONSTITUENT					
VOCs (ug/L)					
cis-1,2-Dichloroethene	<20	11	<20	3.4	2,400
1,1-Dichloroethene	<10	4.1	<10	<1	7
Benzene	<10	<1	<10	<1	140
Chloroform	<20	<2	<20	<2	1,900
Methyl tert-butyl ether	<20	5	<20	<2	5,000
Tetrachloroethene	540	810D	590	<2	150
Trichloroethene	<20	360D	38	<2	540
Vinyl chloride	<20	<2	<20	3.1	2

Notes:

1. These Site specific compliance standards were taken from the approved RAWP dated April 1, 2001 and/or the RIDEM Remediation Regulations.

2. These compliance standards taken from Table 5 - Upper Concentration Limits for GB Groundwater, RIDEM Remediation Regulations.

3. These compliance standards taken from Table 4 -GB Groundwater Objectives of the RIDEM Remediation Regulations or in the case of vinyl chloride the compliance standard was taken from Table 3 of the Remediation Regulations and for chloroform the compliance standard was calculated from the algorithm in Appendix F of the Remediation Regulations (calculations attached as Appendix C of Status Report dated September 18, 2007).

from the algorithm in Appendix F of the Remediation Regulations (calculations attached as Appendix C of Status Report dated September 18, 2007) mg/L - milligrams per liter

ug/L - micrograms per liter

< - compound was not detected below the laboratory reporting limit, concentration shown is the reporting limit.

VOCs - volatile organic compounds

TPH - total petroleum hydrocarbons

NA - Indicates that the analysis was not performed.

NS - Indicates that no applicable standard exists. Compound does not have a lower explosive limit (LEL).

N:\Shared\Projects\101960 Gorham\RIDEM Status Rpts\2010\Feb 2010\Tables\Table 4 Compliance Wells_ Feb10.xlsx

A Laboratories Corporation

111 Herrick Street, Merrimack, NH 03054 TEL: (603) 424-2022 • FAX: (603) 429-8496 www.amrolabs.com

March 18, 2010

ANALYTICAL TEST RESULTS

Ed VanDoren Shaw Environmental & Infrastructure, Inc. 11 Northeastern Boulevard Salem, NH 030791953 TEL: (603) 870-4530 FAX: (603) 870-4501

Subject: 130274 Textron

Workorder No.: 1002033

Dear Ed VanDoren:

AMRO Environmental Laboratories Corp. received 25 samples on 2/12/2010 for the analyses presented in the following report.

The enclosed sample results are revised based upon further review of the the analytical data or legitimate changes made at your request.

AMRO is accredited in accordance with NELAC and certifies that these test results meet all the requirements of NELAC, where applicable, unless otherwise noted in the case narrative.

Please be advised that any unused sample volume and sample extracts will be stored for a period of thirty (30) days from this report date. After this time, AMRO will properly dispose of the remaining sample(s). If you require further analysis, or need the samples held for a longer period, please contact us immediately.

This report consists of a total of \underline{OR} pages. This letter is an integral part of your data report. If you have any questions regarding this project in the future, please refer to the Order Number above.

Sincerely,

Caja

Nancy Stewart Vice President

State Certifications:

NH (NELAC): 1001, MA; M-NH012, CT: PH-0758, NY: 11278 (NELAC), ME: NH012 and 1001, NJ: NH125, RI: 00105, U.S. Army Corps of Engineers (USACE), Naval Facilities Engineering Service Center (NFESC).

Hard copy of the State Certification is available upon request.

CLIENT: Project: Lab Order: Date Received:	Shaw Environmental & Infra 130274 Textron 1002033 2/12/2010	structure, Inc.	Work Order Sample Summary			
Lab Sample ID	Client Sample ID		Collection Date	Collection Time		
1002033-01A	CW-1		2/11/2010	2:15 PM		
1002033-02A	CW-6	· · · · · ·	2/11/2010	2:45 PM		
1002033-03A	CW-6 Dup		2/11/2010	2:50 PM		
1002033-04A	MW-202 D		2/11/2010	8:15 AM		
1002033-05A	MW-202 S		2/11/2010	7:30 AM		
1002033-06A	MW-218 S		2/11/2010	8:25 AM		
1002033-07A	MW-218 D		2/11/2010	9:50 AM		
1002033-08A	MW-217 S		2/11/2010	11:30 AM		
1002033-09A	MW-217 D		2/11/2010	12:00 PM		
1002033-10A	MW-112		2/11/2010	12:30 PM		
1002033-11A	MW-207 S		2/11/2010	8:10 AM		
1002033-12A	MW-207 D		2/11/2010	8:05 AM		
1002033-13A	MW-101 S		2/11/2010	8:25 AM		
1002033-14A	MW-101 S Dup		2/11/2010	8:30 AM		
1002033-15A	MW-101 D	an a	2/11/2010	8:40 AM		
1002033-16A	MW-216 S		2/11/2010	11:50 AM		
1002033-17A	MW-216 D		2/11/2010	11:30 AM		
1002033-18A	MW-116 D		2/11/2010	1:15 PM		
1002033-19A	MW-116 S		2/11/2010	1:20 PM		
1002033-20A	CW-2		2/11/2010	2:05 PM		
1002033-21A	MW-209 D		2/11/2010	12:45 PM		
1002033-22A	MW-109 D		2/11/2010	3:50 PM		
1002033-22B	MW-109 D	е.	2/11/2010	3:50 PM		
1002033-23A	GZA-3		2/11/2010	3:30 PM		
1002033-23B	GZA-3		2/11/2010	3:30 PM		
1002033-24A	GZA-3 Dup		2/11/2010	3:35 PM		
1002033-25A	Trip Blank	· · · ·	2/11/2010	2:50 PM		

Date: 18-Mar-10

1

2

18-Mar-10

DATES REPORT

Client:Shaw Environmental & Infrastructure, Inc.Project:130274 Textron

1002033

Lab Order:

Troject.	130274 Texulon	·		tanin and the second				
Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name			Analysis Date	
		·		Preparatory Test Name		Prep Date	Batch ID	TCLP Date
1002033-01A	CW-1	2/11/2010 2:15:00 PM	Groundwater	EPA 8260B VOLATILES by GC/MS			2/15/2010	
		e e e e e e e e e e e e e e e e e e e		EPA 5030B		2/11/2010	R44059	
				EPA 8260B VOLATILES by GC/MS			2/16/2010	
		· .				2/11/2010	R44062	
1002033-02A	CW-6	2/11/2010 2:45:00 PM		TPH by GC/FID (modified 8015B)	·······	<u></u>	2/19/2010	
		X	·	AQPREP SEP FUNNEL: FING		2/15/2010	20001	
1002033-03A	CW-6 Dup	2/11/2010 2:50:00 PM		TPH by GC/FID (modified 8015B)	· · · ·	-	2/19/2010	
	•					2/15/2010	20001	
1002033-04A	MW-202 D	2/11/2010 8:15:00 AM		EPA 8260B VOLATILES by GC/MS			2/17/2010	
	· · · · · · · · · · · · · · · · · · ·			EPA 5030B	. *	2/11/2010	R44074	
1002033-05A	MW-202 S	2/11/2010 7:30:00 AM		EPA 8260B VOLATILES by GC/MS			2/16/2010	
			~			2/11/2010	R44062	
1002033-06A	MW-218 S	2/11/2010 8:25:00 AM		EPA 8260B VOLATILES by GC/MS			2/16/2010	
		· · · ·				2/11/2010	R44062	
1002033-07A	MW-218 D	2/11/2010 9:50:00 AM		EPA 8260B VOLATILES by GC/MS			2/16/2010	
· · · · · · · · · · · · · · · · · · ·		·				2/11/2010	R44062	
1002033-08A	MW-217 S	2/11/2010 11:30:00 AM	`	EPA 8260B VOLATILES by GC/MS			2/15/2010	
	· · · · · · · · · · · · · · · · · · ·					2/11/2010	R44059	
1002033-09A	MW-217 D	2/11/2010 12:00:00 PM		EPA 8260B VOLATILES by GC/MS			2/15/2010	
		·	· · · ·	·		2/11/2010	R44059	
1002033-10A	MW-112	2/11/2010 12:30:00 PM		EPA 8260B VOLATILES by GC/MS			2/16/2010	
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		2/11/2010	R44062	
1002033-11A	MW-207 S	2/11/2010 8:10:00 AM		EPA 8260B VOLATILES by GC/MS			2/17/2010	
		•				2/11/2010	R44074	

18-Mar-10

DATES REPORT

Lab Order: 1002033

Client: Shaw Environmental & Infrastructure, Inc.

Project:	130274 Textron	· · · · · · · · · · · · · · · · · · ·				
Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name Preparatory Test Name	Prep Date	Analysis Date Batch ID TCLP Date
1002033-11A	MW-207 S	2/11/2010 8:10:00 AM	Groundwater	EPA 8260B VOLATILES by GC/MS EPA 5030B	2/11/2010	2/16/2010 R44062
1002033-12A	MW-207 D	2/11/2010 8:05:00 AM		EPA 8260B VOLATILES by GC/MS	2/11/2010	2/17/2010 R44074
1002033-13A	MW-101 S	2/11/2010 8:25:00 AM	· · · ·	EPA 8260B VOLATILES by GC/MS	2/11/2010	2/15/2010 R44059
1002033-14A	MW-101 S Dup	2/11/2010 8:30:00 AM		EPA 8260B VOLATILES by GC/MS	2/11/2010	2/15/2010 R44059
1002033-15A	MW-101 D	2/11/2010 8:40:00 AM		EPA 8260B VOLATILES by GC/MS	2/11/2010	2/17/2010 R44074
1002033-16A	MW-216 S	2/11/2010 11:50:00 AM		EPA 8260B VOLATILES by GC/MS	2/11/2010	2/15/2010 R44059
1002033-17A	MW-216 D	2/11/2010 11:30:00 AM		EPA 8260B VOLATILES by GC/MS	2/11/2010	2/15/2010 R44059
1002033-18A	MW-116 D	2/11/2010 1:15:00 PM		EPA 8260B VOLATILES by GC/MS	2/11/2010	2/15/2010 R44059
1002033-19A	MW-116 S	2/11/2010 1:20:00 PM		EPA 8260B VOLATILES by GC/MS	2/11/2010	2/15/2010 R44059
1002033-20A	CW-2	2/11/2010 2:05:00 PM		EPA 8260B VOLATILES by GC/MS	2/11/2010	2/15/2010 R44059
1002033-21A	MW-209 D	2/11/2010 12:45:00 PM	· .	EPA 8260B VOLATILES by GC/MS	2/11/2010	2/16/2010 R44062
		. t		EPA 8260B VOLATILES by GC/MS	2/11/2010	2/15/2010 R44059

18-Mar-10

DATES REPORT

Lab Order:1002033Client:Shaw Environmental & Infrastructure, Inc.

Project:	130274 Textron	· · · · · · · · · · · · · · · · · · ·					L
Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name	······································	Analysis Date	
				Preparatory Test Name	Prep Date	Batch ID	TCLP Date
1002033-22A	MW-109 D	2/11/2010 3:50:00 PM	Groundwater	EPA 8260B VOLATILES by GC/MS		2/16/2010	
·				EPA 5030B	2/11/2010	R44062	
1002033-22B				EPA 6010B ICP METALS, DISSOLVED		2/16/2010	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	2/16/2010	20003	i .
1002033-23A	GZA-3	2/11/2010 3:30:00 PM		EPA 8260B VOLATILES by GC/MS		2/15/2010	
				EPA 5030B	2/11/2010	R44059	
1002033-23B				EPA 6010B ICP METALS, DISSOLVED		2/16/2010	
	·			EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	2/16/2010	20003	
1002033-24A	GZA-3 Dup	2/11/2010 3:35:00 PM		EPA 6010B ICP METALS, DISSOLVED		2/16/2010	
· · · ·	· · ·				2/16/2010	20003	
1002033-25A	Trip Blank	2/11/2010 2:50:00 PM	Trip Blank	EPA 8260B VOLATILES by GC/MS	······································	2/16/2010	
				EPA 5030B	2/11/2010	R44062	
	······································			· · · · ·		· · · · · · · · · · · · · · · · · · ·	·,

- CI

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-23A

Date: 18-Mar-10

Client Sample ID: GZA-3 Collection Date: 2/11/2010 3:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/M	\$ · ·	SW8260B			Analyst: SK
Dichlorodifluoromethane	ND.	5.0	µg/L	· 1	2/15/2010 6:14:00 PM
Chloromethane	ND	5.0	µg/L	່ 1	2/15/2010 6:14:00 PN
Vinyl chloride	9.5	2.0	µg/L	1	2/15/2010 6:14:00 PN
Chloroethane	ND	5.0	µg/L	[°] 1	2/15/2010 6:14:00 PM
Bromomethane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Diethyl ether	ND	5.0	µg/L	. 1	2/15/2010 6:14:00 PM
Acetone	ND	10	μg/L	1	2/15/2010 6:14:00 PM
1,1-Dichloroethene	1.8	1.0	μg/L	1	2/15/2010 6:14:00 PM
Carbon disulfide	ND	2.0	µg/L	· 1	2/15/2010 6:14:00 PN
Methylene chloride	ND	5.0	µg/L	1	2/15/2010 6:14:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	· 1	2/15/2010 6:14:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
2-Butanone	ND	10	μg/L	1	2/15/2010 6:14:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PN
cis-1,2-Dichloroethene	57	2.0	µg/L	1	2/15/2010 6:14:00 PM
Chloroform	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Tetrahydrofuran	ND	10	µg/L	. 1	2/15/2010 6:14:00 PM
Bromochloromethane	ND	2.0	μg/L	. 1	2/15/2010 6:14:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	- 1	2/15/2010 6:14:00 PM
Benzene	ND	1.0	µg/L	1	2/15/2010 6:14:00 PM
Trichloroethene	29	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,2-Dichloropropane	ND	2.0	μg/L	· 1.	2/15/2010 6:14:00 PN
Bromodichloromethane	ND	2.0	μg/L	1	2/15/2010 6:14:00 PN
Dibromomethane	ND	2.0	μg/L	1	2/15/2010 6:14:00 PN
4-Methyl-2-pentanone	ND	10		1	2/15/2010 6:14:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2010 6:14:00 PN
Toluene	ND	2.0	μg/L	· 1	2/15/2010 6:14:00 PN
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2010 6:14:00 PN
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
2-Hexanone	ND	· 10		1	2/15/2010 6:14:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Tetrachloroethene	3.7	2.0	µg/L	1	2/15/2010 6:14:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/15/2010 6:14:00 PN

. .

56

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-23A

Date: 18-Mar-10

Client Sample ID: GZA-3 Collection Date: 2/11/2010 3:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	[`] 2.0	μg/L	. 1	2/15/2010 6:14:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Ethylbenzene	ND	2.0	μg/L	. 1 .	2/15/2010 6:14:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
o-Xylene	ND	2.0	µg/L	.1	2/15/2010 6:14:00 PM
Styrene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Bromoform	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1 -	2/15/2010 6:14:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
2-Chlorotoluene	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
tert-Butylbenzene	ND ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
sec-Butylbenzene	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	[•] 1	2/15/2010 6:14:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/15/2010 6:14:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Naphthalene	ND	5.0	µg/L	<u>í</u> 1	2/15/2010 6:14:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Surr: Dibromofluoromethane	107	82-122	%REC	1	2/15/2010 6:14:00 PM
Surr: 1,2-Dichloroethane-d4	91.6	73-135	%REC	1	2/15/2010 6:14:00 PM
Surr: Toluene-d8	101	82-117	%REC	1	2/15/2010 6:14:00 PM
Surr: 4-Bromofluorobenzene	96.2	77-119	%REC	1	2/15/2010 6:14:00 PM

	I Uninental La	JUI ALUI IES	s Corp.			
	Shaw Environmental 130274 Textron	& Infrastructu	re, Inc.		Lab Order	r: 1002033
Lab ID:	1002033-22		- 112 - 112	Collection Collection		010 3:50:00 PM
Client Sample ID:	MW-109 D				atrix: GROU	NDWATER
Analyses		Result	RL	Qual Units	DF	Date Analyzed
CP METALS DISS	OLVED SW-846		SW6010B			Analyst: AL
Lead		ND	13.0	µg/L	1	2/16/2010 7:54:12 PM
Lab ID:	1002033-23			Collection]	Date: 2/11/20	10 3:30:00 PM
				Collection 7	lime:	
Client Sample ID:	GZA-3	•		Ma	atrix: GROU	NDWATER
Analyses		Result	RL	Qual Units	DF	Date Analyzed
CP METALS DISS	OLVED SW-846	5	SW6010B	•		Analyst: AL
Lead		ND	13.0	μg/L	1	2/16/2010 8:40:06 PM
Lab ID:	1002033-24			Collection I Collection 7		10 3:35:00 PM
Client Sample ID:	GZA-3 Dup				atrix: GROU	NDWATER
Analyses		Result	RL	Qual Units	DF	Date Analyzed
CP METALS DISS	OLVED SW-846	S	SW6010B	· · · ·		Analyst: AL
Lead		ND	13.0	µg/L	. 1	2/16/2010 8:46:03 PM

Date: 18-Mar-10

Environmental Laboratories Corporation

111 Herrick Street, Merrimack, NH 03054 TEL: (603) 424-2022 • FAX: (603) 429-8496 www.amrolabs.com

March 05, 2010

ANALYTICAL TEST RESULTS

Ed VanDoren Shaw Environmental & Infrastructure, Inc. 11 Northeastern Boulevard Salem, NH 030791953 TEL: (603) 870-4530 FAX: (603) 870-4501

Subject: 130274 Textron

Workorder No.: 1002033

Dear Ed VanDoren:

AMRO Environmental Laboratories Corp. received 25 samples on 2/12/2010 for the analyses presented in the following report.

AMRO is accredited in accordance with NELAC and certifies that these test results meet all the requirements of NELAC, where applicable, unless otherwise noted in the case narrative.

The enclosed Sample Receipt Checklist details the condition of your sample(s) upon receipt. Please be advised that any unused sample volume and sample extracts will be stored for a period of 60 days from sample receipt date (90 days for samples from New York). After this time, AMRO will properly dispose of the remaining sample(s). If you require further analysis, or need the samples held for a longer period, please contact us immediately.

This report consists of a total of _____ pages. This letter is an integral part of your data report. All results in this project relate only to the sample(s) as received by the laboratory and documented in the Chain-of-Custody. This report shall not be reproduced except in full, without the written approval of the laboratory. If you have any questions regarding this project in the future, please refer to the Workorder Number above.

Sincerely,

Nancy Stewart Vice President

State Certifications: NH (NELAC): 1001, MA: M-NH012, CT: PH-0758, NY: 11278 (NELAC), ME: NH012 and 1001, NJ: NH125, RI: 00105, U.S. Army Corps of Engineers (USACE), Naval Facilities Engineering Service Center (NFESC).

1

Hard copy of the State Certification is available upon request.

Date: 01-Mar-10

CLIENT:	Shaw Environmental & Infrastructure, Inc.
Project:	130274 Textron
Lab Order:	1002033
Date Received:	2/12/2010

Work Order Sample Summary

1

Lab Sample ID	Client Sample ID	Collection Date	Collection Time
1002033-01A	CW-1	2/11/2010	2:15 PM
1002033-02A	CW-6	2/11/2010	2:45 PM
1002033-03A	CW-6 Dup	2/11/2010	2:50 PM
1002033-04A	MW-202 D	2/11/2010	8:15 AM
1002033-05A	MW-202 S	2/11/2010	7:30 AM
1002033-06A	MW-218 S	2/11/2010	8:25 AM
1002033-07A	MW-218 D	2/11/2010	9:50 AM
1002033-08A	MW-217 S	2/11/2010	11:30 AM
1002033-09A	MW-217 D	2/11/2010	12:00 PM
1002033-10A	MŴ-112	2/11/2010	12:30 PM
1002033-11A	MW-207 S	2/11/2010	8:10 AM
1002033-12A	MW-207 D	2/11/2010	8:05 AM
1002033-13A	MW-101 S	2/11/2010	8:25 AM
1002033-14A	MW-101 S Dup	2/11/2010	8:30 AM
1002033-15A	MW-101 D	2/11/2010	8:40 AM
1002033-16A	MW-216 S	2/11/2010	11:50 AM
1002033-17A	MW-216 D	2/11/2010	11:30 AM
1002033-18A	MW-116 D	2/11/2010	1:15 PM
1002033-19A	MW-116 S	2/11/2010	1:20 PM
1002033-20A	CW-2	2/11/2010	2:05 PM
1002033-21A	MW-209 D	2/11/2010	12:45 PM
1002033-22A	MW-109 D	2/11/2010	3:50 PM
1002033-22B	MW-109 D	2/11/2010	3:50 PM
1002033-23A	GAZ-3	2/11/2010	3:30 PM
1002033-23B	GAZ-3	2/11/2010	3:30 PM
1002033-24A	GZA-3 Dup	2/11/2010	3:35 PM
1002033-25A	Trip Blank	2/11/2010	2:50 PM

01-Mar-10

DATES REPORT

Lab Order: 1002033

Client: Shaw Environmental & Infrastructure, Inc.

Project: 130274 Textron

Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name Preparatory Test Name		Prep Date	Analysis Date Batch ID	TCLP Date
1002033-01A	CW-1	2/11/2010 2:15:00 PM	Groundwater	EPA 8260B VOLATILES by GC/MS			2/15/2010	
,	· . · ·			EPA 5030B		2/11/2010	R44059	
		-		EPA 8260B VOLATILES by GC/MS			2/16/2010	
			· · ·			2/11/2010	R44062	
1002033-02A	CW-6	2/11/2010 2:45:00 PM		TPH by GC/FID (modified 8015B)			2/19/2010	
· · · · ·				AQPREP SEP FUNNEL: FING		2/15/2010	20001	
1002033-03A	CW-6 Dup	2/11/2010 2:50:00 PM		TPH by GC/FID (modified 8015B)			2/19/2010	
						2/15/2010	20001	
1002033-04A	MW-202 D	2/11/2010 8:15:00 AM		EPA 8260B VOLATILES by GC/MS			2/17/2010	
r			•	EPA 5030B		2/11/2010	R44074	
002033-05A	MW-202 S	2/11/2010 7:30:00 AM		EPA 8260B VOLATILES by GC/MS			2/16/2010	
	· .					2/11/2010	R44062	
002033-06A	MW-218 S	2/11/2010 8:25:00 AM		EPA 8260B VOLATILES by GC/MS			2/16/2010	· · · · · · · · · · · · · · · · · · ·
		н. Тарана (1997)		• · · ·		2/11/2010	R44062	
1002033-07A	MW-218 D	2/11/2010 9:50:00 AM		EPA 8260B VOLATILES by GC/MS			2/16/2010	
						2/11/2010	R44062	·
002033-08A	MW-217 S	2/11/2010 11:30:00 AM		EPA 8260B VOLATILES by GC/MS			2/15/2010	
						2/11/2010	R44059	
002033-09A	MW-217 D	2/11/2010 12:00:00 PM		EPA 8260B VOLATILES by GC/MS		· · · · · · · · · · · · · · · · · · ·	2/15/2010	
	N 1	·				2/11/2010	R44059	
002033-10A	MW-112	2/11/2010 12:30:00 PM	-	EPA 8260B VOLATILES by GC/MS			2/16/2010	
· ·					•	2/11/2010	R44062	
002033-11A	MW-207 S	2/11/2010 8:10:00 AM		EPA 8260B VOLATILES by GC/MS			2/17/2010	
					· ·	2/11/2010	R44074	

01-Mar-10

DATES REPORT

Client: Shaw Environmental & Infrastructure, Inc.

1002033

Project: 130274 Textron

Lab Order:

Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name			Analysis Date	
	:	·	······································	Preparatory Test Name	• • • • • •	Prep Date	Batch ID	TCLP Date
002033-11A	MW-207 S	2/11/2010 8:10:00 AM	Groundwater	EPA 8260B VOLATILES by GC/MS			2/16/2010	
. ·				EPA 5030B		2/11/2010	R44062	
002033-12A	MW-207 D	2/11/2010 8:05:00 AM		EPA 8260B VOLATILES by GC/MS			2/17/2010	
						2/11/2010	R44074	
002033-13A	MW-101 S	2/11/2010 8:25:00 AM		EPA 8260B VOLATILES by GC/MS			2/15/2010	
			· · · ·			2/11/2010	R44059	
002033-14A	MW-101 S Dup	2/11/2010 8:30:00 AM		EPA 8260B VOLATILES by GC/MS			2/15/2010	
						2/11/2010	R44059	
002033-15A	MW-101 D	2/11/2010 8:40:00 AM		EPA 8260B VOLATILES by GC/MS			2/17/2010	
		•				2/11/2010	R44074	
002033-16A	MW-216 S	2/11/2010 11:50:00 AM		EPA 8260B VOLATILES by GC/MS		••••••••••••••••••••••••••••••••••••••	2/15/2010	
	· · · ·	· · ·				2/11/2010	R44059	
002033-17A	MW-216 D	2/11/2010 11:30:00 AM		EPA 8260B VOLATILES by GC/MS			2/15/2010	· · · · · · · · · · · · · · · · · · ·
						2/11/2010	R44059	
002033-18A	MW-116 D	2/11/2010 1:15:00 PM		EPA 8260B VOLATILES by GC/MS			2/15/2010	· · · · · · · · · · · · · · · · · · ·
						2/11/2010	R44059	•
002033-19A	MW-116 S	2/11/2010 1:20:00 PM		EPA 8260B VOLATILES by GC/MS			2/15/2010	
						2/11/2010	R44059	
002033-20A	CW-2	2/11/2010 2:05:00 PM		EPA 8260B VOLATILES by GC/MS			2/15/2010	
						2/11/2010	R44059	
002033-21A	MW-209 D	2/11/2010 12:45:00 PM	· · · ·	EPA 8260B VOLATILES by GC/MS		<u> </u>	2/16/2010	
						2/11/2010	R44062	
•	· · · · · · · · · · · · · · · · · · ·	• .		EPA 8260B VOLATILES by GC/MS			2/15/2010	
						2/11/2010	R44059	

01-Mar-10

DATES REPORT

Lab Order:1002033Client:Shaw Environmental & Infrastructure, Inc.

Project:	130274 Textron					
Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name		Analysis Date
·	· ·			Preparatory Test Name	Prep Date	Batch ID TCLP Date
1002033-22A	MW-109 D	2/11/2010 3:50:00 PM	Groundwater	EPA 8260B VOLATILES by GC/MS		2/16/2010
			· · ·	EPA 5030B	2/11/2010	R44062
1002033-22B				EPA 6010B ICP METALS, DISSOLVED		2/16/2010
· · · · ·	· · · · · · · · · · · · · · · · · · ·			EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	2/16/2010	20003
1002033-23A	GAZ-3	2/11/2010 3:30:00 PM		EPA 8260B VOLATILES by GC/MS		2/15/2010
· · ·				EPA 5030B	2/11/2010	R44059
1002033-23B				EPA 6010B ICP METALS, DISSOLVED	· .	2/16/2010
		·		EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	2/16/2010	20003
1002033-24A	GZA-3 Dup	2/11/2010 3:35:00 PM		EPA 6010B ICP METALS, DISSOLVED	-	2/16/2010
ה 			-		2/16/2010	20003
1002033-25A	Trip Blank	2/11/2010 2:50:00 PM	Trip Blank	EPA 8260B VOLATILES by GC/MS		2/16/2010
			9	EPA 5030B	2/11/2010	R44062

AMRO Environmental Laboratories Corporation 111 Herrick Street

Merrimack, NH 03054

CHAIN-OF-CUSTODY RECORD

59757

Office: (603) 424-2022 Fax: (603) 429-8496

web: www.amrolabs.com

Project No.: 130 274	Project Name: Tary	tron	Project State: 1	27			ect Ma	nager	:					Samp	lers (S	Signa	ture):				AMRO	Project	No.:
P.O.#:	Results Needed by:		State: 1	<u>≻</u> ⊥-,	<u>lē</u> .	<u>D</u> i	lon	De	rei	<u>.</u>			>	-0					~			020	
μ	Results Needed by:					·			R	EQU	JEST	ГED	ANA	LYS	ES							Remark	(S
QUOTE #:	Seal Intact?	1			09																		
	Yes No N/A		Size		57		Í					. •	с. н. С		· · ·								
			8		3					-													
			Cont.		57						- 4				•								
	Date/Time				121	2																	
Sample ID.:	Sampled		of		J	1 mar								1									
		trix	al #	d q	100			ĺ															
		Matrix	Total #	Comp. Grab	1											- -							
CW-1	2.11.10 1415	Grw	2	×	X	<u> </u>			1		+						 ·	 				<u></u>	
0-6	1445		2/12		1	X					-+			-									
CW-6 Dut	1450		2/14			X	7								·			·	. <u>.</u>				
MW-202 D	0815		3		X												·						
Mw-2025	0730		i										·					:					
11-2-218 S	0335																				· .	<u></u>	
MW-219D	0950						÷										· ·						
MW-217-5	1/30																						
MW-217D	1200		·												i								
Mw-112	V 1230														 :					{		<u> </u>	
Preservative: Cl-HCl, MeOH, N	V-HN03, S-H2SO4, N	la-NaOH, O	- Other					<u> </u>			+												
Send Results To:		PRIORITY T	URNAROUN	D TIME	AUTHO	RIZATI	ON	ME	TALS		8 RC	CRA		13 PP	<u>_</u>	1	23 TA			14 M	CP	1	
		Before submit	tting samples	for expec	ited TA	F, you r	nust	Met	hod:	6	010] 21	00.7			Meta			1	. –	· .	
		have a codec						· · ·			 							, <u> </u>					
PHONE #:	FAX #:	AUTHORIZ	ATION No.:		BY				olved N							YES							
E-mail:	FAA #.								P Presu ES		ve Ce IO	ertain	ty Req	uired		MCP YES		ods Ne NO	eded:		Required	Reporting GW-1	Limits:
Rekinquished By	:	Date/	'Time				R	leceive		<u>II</u>	0							port p	acka		S-2	- GW-2	
(Naily			0 180	SZ	la	age	, [•] S e	200	20								l need		•		S-3	GW-3	·]
Jadqui S	ade	2/12	10 120					2								EDD	requ	ired:			Other:		
h If Javison		2/12/10	1400		0	A	les	5															
Please print clearly, legibly and con be logged in and the turnaround tin			Samples ari received on				vill be tr	afked	and bil	lled as	5							n in wi sample			KNOWI CONTA	VSITE MINATIO	ON:
any ambiguities are resolved.		· .	L									col	lected	trom I	highly	conta	minate	ed sites	s.				
White: Lab Copy	Yellow: Client Copy							S	HEET	<u> </u>		0	F	<u>ک</u>		AMRO	COC200	04. Rev.	3 08/18	8/04			

AMRO Environmental Laboratories Corporation 111 Herrick Street

Merrimack, NH 03054

CHAIN-OF-CUSTODY RECORD

59759

Office: (603) 424-2022 Fax: (603) 429-8496

web: www.amrolabs.com

Project No.: 130 274	Project Name: Te 🗴	from	Project	eT.		Project	Manag	er:				. 5	Samp	lers (Signa	ture)	;			AMRO	Project N	0.:
P.O.#:	Results Needed by:	<u></u>	Jotate.		1-1	Von	Du	1 4 1	U	1	72	r f	18	se	Ċl	Tit	~~~				220	
ι.Ο.π.	Results Needed by:		1 2 2		L				REQ	UES'	ΓED	AŃA	LÝS	ES						F	Remarks	
		1	15 10 V		60							-										
QUOTE #:	Seal Intact?		375		821															· .		
	Yes No N/A		Size		1																·	
			& S		40											[·						
					i.												ł					
	Date/Time		Cont.								н -											
Sample ID.:	Sampled		of		J											1	ŀ					
	Sampicu	rix	ul #	ماف	0																	
		Matrix	Total #	Comp. Grab	1																	
Mw-2075	2.11.10 0310	GW	五人	X	X		1									<u> </u>	l	<u> </u>		L		
MW-207D	1 0305				X																	
MW-1015	0325				X									•						· ·		
MW-1015 DUP	0830				K	·											 -					
Mw-101D	0840				K																	
MW-216 5	1150				X		•							· ·								
MW-216D	1130				K																	
MW-116D	1315				K																······.	
MW-1165 CW-2	1320				K						·				2					<u></u>		
	V 1405	V	$\mathbf{\nabla}$	J	×																	
Preservative: Cl-HCl, MeOH, N	I-HN03, S-H2SO4, N	Ia-NaOH, O	- Other									. 1										
Send Results To:		PRIORITY T					M	ETAL	S	8 R	CRA		13 PP]	23 TA	۱L		14 M	CP 🗌		
			tting samples				М	ethod:		6010] 20)0.7		Other	r Meta	uls:					
		have a codec AUTHORIZ	AUTHORIZ						• • • •			. 10						- · [
PHONE #:	FAX #:		ATION NO.:		BY	:			d Meta						YES							
E-mail:	I'AA #.			. • C			M	CP Pr YES	esuto	tive C NO	ertain	ty Req	uired	2	MCP YES	Meth	ods No NO			S-1	Reporting L GW-1	imits:
A Relinauished By:		Date/	/Time					ived By		110	<u>_</u>					RO re				S-2	GW-2	FT
- Relinquished By:		Zill	0 180	$\overline{\mathbf{N}}$	10	laci	50	يرف	30-	<u></u>						l neec				S-3	GW-3	\square
, Sign		2/12			LK G	Jains	à-		· . ·				· .		EDD) requ	ired:			Other:		
WH Clavian		2/10/10	1400		20	larl	ey															
Please print clearly, legibly and com be logged in and the turnaround tim			Samples arr received on				e trafki	ed and	billed a	as	the	ARO p labor	atory i	n case	es whe	re the	sampl	les wei		KNOWN CONTAI	SITE MINATION	N:
any ambiguities are resolved. White: Lab Copy	Yellow: Client Copy											llected		<u> </u>								
winter Lab Copy	renow. Chem Copy							SHEI	et 🥣	<u> </u>	0	FR	·		AMRO	COC20(04. Rev.	3 08/1	8/04			

AMRO Environmental Laboratories Corporation 111 Herrick Street

Merrimack, NH 03054

CHAIN-OF-CUSTODY RECORD

Office: (603) 424-2022 Fax: (603) 429-8496 web: www.amrolabs.com

Project No.: 130 974	Project Name: Te	ctoon	Project	RI	·		ject M							Samp	lers (Signa	ture)	:			AMRC) Project	No.:
P.O.#:	Results Needed by:	 	State:		E	<u>o v</u>	in	De	10			<u> </u>	*				- \	<u> </u>			10	020	33
	recould freeded by.					$\overline{\Rightarrow}$	<u>}.</u>		·	REQ	UES	TED	ANA	LYS	ES							Remarl	ks
					0	0/1/0				, A.) -										•	
QUOTE #:	Seal Intact?				6	12											1						
	Yes No N/A		Size		5	X				•					-		• .		-			· · ·	
			& Si		τc	c/d				· .													÷.,
			1		54	3									-								
			Cont.		11 . ~			- X - 1	1				ł										
Sample ID.:	Date/Time		*1		1,61	1					-									1.			
Sample ID	Sampled		# of		U	3	· .									1		 					
		tri	al≢	d q		05																	
		Matrix	Total ;	Comp	1 2																		
MW-209D	2.11.10 1245	30	2			<u> </u>	L	[]								 		<u> </u>] :				
MW-109D	1 1550	- Silver	3.		X																		
			in m	$+\uparrow$		X	·			·			<u>.</u>				. 	ļ	· .				· · · · · · · · · · · · · · · · · · ·
MGGZA-3	1530		3		X	X																	
GZH-3 DWP	+ 1535	V.	1			×											1						
GZA-3 DWP	V 1450	V	1		X					·									ļ		· · · ·		
								<u> </u>												+	<u> </u>		
				╢┈┼┈		-	· · · · ·										ļ		ļ		L		
																	L						
· · · ·															·							· · · · · ·	······································
	and the second second	· .			1	<u> </u>																	
Preservative: Cl-HCl, MeOH, N	J-HN03, S-H2SO4, N	a-NaOH O	- Other			1	•													<u> </u>	·		
Send Results To:		PRIORITY T				DIZAT			ETAL	l	0 10	CRA		13 PP	- Г	<u> </u> 	23 T/		<u> </u>				·
		Before submit						11	ethod:		6010			13 FF 00.7	· •	Other				.14 M]	• .
		have a codec					muot		, inou.		0010	· L	4	00.7	ليب	Other	IVICIA	us					
		AUTHORIZ			BY			Dis	solved	d Meta	ls Fie	d Filt	ered?			YES		NO	ьE	i .			
PHONE #:	FAX #:							M	CP Pro	esump	tive C	ertain	tv Rec	uired	2	MCP	Meth	ods Ne	eeded		Required	Reporting	Limits:
E-mail:					÷				YES		NO		.,	Juniou		YES		NO			S-1	GW-1	
Relinquished By:		, Date/	Time					Receiv	ved By									port p		ige	S-2	GW-2	
& Oanly		2/11	018	37	Ta	epe	· · · ·		s a								l neec			0	S-3	GW-3	
V.J. Sale	10-	712		200		Var	TAMA) requ				Other:		
Wharm	· · · · · · · · · · · · · · · · · · ·	2/12/10	1.460		1 10	ON)	ile	n									•	÷ .					
Please print clearly, legibly and con			Samples a	rriving al	ter 12:0	0 noon			d and	billed a	as	AA	NRO F	olicy r	equire	es notil	ticatio	n in w	riting	to	KNOWI		
be logged in and the turnaround tin any ambiguities are resolved.	ne clock will not start un	CII'''	received of	n the folle	owing da	у.					•			atory i from i						re	CONTA	MINATI	ON:
	Yellow: Client Copy		L	<u> </u>					SHE		3	يبينك البيب	E F	10111				04 Rev		8/04			

Login Account for multiple users

Subject: FW: Textron Samples (AMRO 1002033)

From: Sasso, Vallerie [mailto:Vallerie.Sasso@shawgrp.com] Sent: Friday, February 12, 2010 4:37 PM To: Login Account for multiple users Cc: VanDoren, Edward Subject: RE: Textron Samples (AMRO 1002033) Hi Connie, Sorry for the confusion.

MW-109 = MW-109D MW-109D is the correct well ID that should be used.

The following wells listed on the COC with no analysis check off, should be analyzed for VOCs by EPA 8260.

MW-202S MW-218S MW-218D MW-217S MW-217D MW-112

Let me know if you have any more questions. I'll be here until 6:00.

Vallerie Sasso

Vallerie.Sasso@Shawgrp.com

From: Login Account for multiple users [mailto:login@amrolabs.com] Sent: Friday, February 12, 2010 4:09 PM To: VanDoren, Edward Cc: Sasso, Vallerie Subject: Textron Samples (AMRO 1002033)

Hi Ed -

I am adding the previous question to this email so that you can answer them together.

Our courier picked up the samples today and I see that not all of the analyses are checked off on page 1. Do you want us to hold those, or do you want all of the samples run? If you do, could you check off the rest and fax the COC over to us?

Also, on page 3, we have samples labeled **MW-109** for VOCs and lead, taken at 1550. There is a Chain ID of **MW-109D** with the same time. Did we receive the correct samples and, if so, which ID is correct? If the Chain is incorrect could you adjust it also?

Thanks!

Connie in Receiving

AMRO Environmental Laboratories Corporation 111 Herrick Street

Merrimack, NH 03054

CHAIN-OF-CUSTODY RECORD

59757

Office: (603) 424-2022 Fax: (603) 429-8496 web: www.amrolabs.com

Project No.: 130 274 Project Name: Tex fron **Project Manager:** Samplers (Signature): AMRO Project No.: 1-1) Von Dorch P.O.#: Results Needed by: **REOUESTED ANALYSES** Remarks 0 OUOTE #: Seal Intact? 9 Yes No N/A Stze 50 20 3 4d Cont. 19 Date/Time 0 Sample ID.: Ъ Sampled S Total # Matrix Comp. 2 Grab 12.11.10 1415 $C \omega - 1$ 3 Grw × Х 6.60-10 2/12 1445 х 1 C.W-6 Dut 1450 2/12 Y. MW-202 D 0815 2 Х Mis-202 S 0730 M.D-218 S 0825 MW-218D 0950 MW-217.5 1130 MW-217D 1200 MW-112 17230 11/ V ~ 4 Preservative: Cl-HCl, MeOH, N-HN03, S-H2SO4, Na-NaOH, O- Other Send Results To: PRIORITY TURNAROUND TIME AUTHORIZATION METALS 8 RCRA 13 PP 23 TAL 14 MCP Before submitting samples for expedited TAT, you must Method: Other Metals: 6010 200.7 have a coded AUTHORIZATION NUMBER AUTHORIZATION No.: YES 🖾 NO 🗌 BY. Dissolved Metals Field Filtered? PHONE #: FAX #: MCP Methods Needed: MCP Presumptive Certainty Required? **Required Reporting Limits:** E-mail: YES NO YES S-1 GW-1 NO Relinquished By: AMRO report package S-2 Date/Time GW-2 Received By Marin 7/11/10 1805 S-3 GW-3 level needed: EDD required: Other: Please print clearly, legibly and completely. Samples can not Samples arriving after 12:00 noon will be tracked and billed as AMRO policy requires notification in writing to KNOWN SITE be logged in and the turnaround time clock will not start until received on the following day. the laboratory in cases where the samples were CONTAMINATION: any ambiguities are resolved. collected from highly contaminated sites. Yellow: Client Copy White: Lab Copy SHEET OF 2 AMROCOC2004. Rev.3 08/18/04

AMRO Environmental Laboratories Corporation

SAMPLE RECEIPT CHECKLIST

111 Herrick Street Merrimack, NH 03054 (603) 424-2022

Client: $SHAW$	AMRO II	D:		1002033
Project Name: TEXTROAL	Date Rec.			2-12-10
Ship via: (circle one) Fed Ex., UPS (AMRO Courier,)	Date Due	:		2-19-10
Hand Del., Other Courier, Other				
Items to be Checked Upon Receipt	Yes	No	NA	Comments
1. Army Samples received in individual plastic bags?				<u> </u>
2. Custody Seals present?				
3. Custody Seals Intact?				
4. Air Bill included in folder if received?				
5. Is COC included with samples?				
6. Is COC signed and dated by client? 7. Laboratory receipt temperature. TEMP = 5°				
		<u></u>		
Samples rec. with ice <u>v</u> ice packs <u>neither</u>				
8. Were samples received the same day they were sampled?		~~		
Is client temperature = or $<6^{\circ}C$?				
If no obtain authorization from the client for the analyses.				
Client authorization from: Date: Obtained by:				
9. Is the COC filled out correctly and completely?		1		SEE EMAIL
10. Does the info on the COC match the samples?	<u> </u>	1		SEE EMAIL
11. Were samples rec. within holding time?	V			
12. Were all samples properly labeled?	V			
13. Were all samples properly preserved?				
14. Were proper sample containers used?	V			
15. Were all samples received intact? (none broken or leaking)				
16. Were VOA vials rec. with no air bubbles?			~	
17. Were the sample volumes sufficient for requested analysis?				
18. Were all samples received?				
19. VPH and VOA Soils only:	T. I		~~~	
Sampling Method VPH (circle one): M=Methanol, E=EnCore (air-tight container)				
Sampling Method VOA (circle one): M=Methanol, SB=Sodium Bisulfate, E=EnCo	ore, B=Bulk			
If M or SB:				<u></u>
Does preservative cover the soil?		,		
If NO then client must be faxed.				
Does preservation level come close to the fill line on the vial?				· · · · · · · · · · · · · · · · · · ·
If NO then client must be faxed.				
Were vials provided by AMRO?				
If NO then weights MUST be obtained	L from alia			<u></u>
		····	<mark>in in en en</mark>	
Was dry weight aliquot provided? If NO then fax client and inform the V		SAD		
	T T	5.41		
20. Subcontracted Samples:			1	
What samples sent:				
Where sent:				
Date:				
Analysis:	·			
TAT:	1			<u></u>
1. Information entered into:				
Internal Tracking Log?	L.			
Dry Weight Log?			\checkmark	
Client Log?			~	
Composite Log?			1	
Filtration Log?			~	
Received By: CC Date: 2-12-10 Logged in By: 4	CC -		Date:	2-12-10
Labeled By: CC Date: $2 - 12 - 10$ Checked By:	MG		Date:	2-15-10

AMRO Environmental Laboratories Corporation

111 Herrick Street Merrimack, NH 03054

Sample= Soil	·		•				AMRO ID:	1002	$v \supset \bigcirc$	
ample= Waste										•
		T	1	T	· · · · · · · · · · · · · · · · · · ·		-	Traingan indersigen and and and and and and and a second second second second second second second second second	1	Final
		÷				List				adjuste
						Preserv.		Volume	Final	pH (aft
		Volume	Preserv.	Initial	Acceptable? Y		Solution ID #	Preservative	adjusted	16 or 2
Sample ID	Analysis	1	Listed	pH*	or N	AMRO	of Preserv.	Added	pH	hours)
OIA,		2-40 M1	Hel			- made		Audeu	<u> </u>	i nours,
04A-23A	goace.	~ 10 m	1101							
	Rai		1101							
25A		1-4011								
		2-1LA		<2	У					
22B.23B.	Diss Pb	1-500P	HNO3	2	y					
24A										
								••••••••••••••••••••••••••••••••••••••		
							<u> </u>			
						-				
<u></u>										
				ľ						
				· · · · · · · · · · · · · · · · · · ·						
	ľ									
										<u></u>
			·	<u></u>						
						· · · · · · · · · · · · · · · · · · ·				
···										
										and the second
						·····				
										
			·····						<u></u>	
		·								
							 			
		· · · · · · · · · · · · · · · · · · ·								
						·····				*****
		·····								
								-		
										
									·····	
if the laboratory	L	<u> </u>	<u> </u>							

pH Checked By:

pH Checked By:

pH adjusted By:

12^{pH} adj.(16 or 24hrs)By: Date: qc/qcmemos/forms/samplerec Rev. 19 04/20/09

Date: 05-Mar-10

CLIENT:Shaw Environmental & Infrastructure, Inc.Project:130274 TextronLab Order:1002033

CASE NARRATIVE

GC/MS VOLATILES:

1. A Laboratory Control Sample (LCS) was performed on 02/15/10 (Batch ID:R44059).

1.1 The % Recovery for 1 analyte out of 68 analytes was outside the laboratory control limits.

2. A Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were performed on sample MW 217 S (1002033-08) Batch ID: R44059.

2.1 The % Recovery for 1 analyte out of 68 analytes in the MS was outside the laboratory control limits.

2.2 The % Recovery for 2 analytes out of 68 analytes in the MSD was outside the laboratory control limits.

3. A Laboratory Control Sample (LCS) was performed on 02/16/10 (Batch ID:R44062).

3.1 The % Recovery for 1 analyte out of 68 analytes was outside the laboratory control limits.

4. A Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were performed on sample MW -109 D (1002033-22) Batch ID: R44062.

4.1 The % Recovery for 5 analytes out of 68 analytes in the MS was outside the laboratory control limits.

4.2 The % Recovery for 2 analytes out of 68 analytes in the MSD was outside the laboratory control limits.

5. A Laboratory Control Sample (LCS) and Laboratory Sample Duplicate (LCSD) were performed on 02/17/10 (Batch ID:R44074).

5.1 The % Recovery for 2 analytes out of 68 analytes in the LCS was outside the laboratory control limits.

5.2 The %RPD for 4 analytes out of 68 analytes was outside the laboratory control limits.

6. A Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were performed on sample MW -207 D (1002033-22) Batch ID: R44074.

6.1 The % Recovery for 1 analyte out of 68 analytes in the MSD was outside the laboratory control limits.

CLIENT:Shaw Environmental & Infrastructure, Inc.Project:130274 TextronLab Order:1002033

CASE NARRATIVE

6.2 The %RPD for 1 analyte out of 68 analytes was outside the laboratory control limits.

TPH by GC/FID:

1. No QC deviations were observed.

METALS:

1. No QC deviations were observed.

DATA COMMENT PAGE

Organic Data Qualifiers

- ND Indicates compound was analyzed for, but not detected at or above the reporting limit.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than the method detection limit.
- H Method prescribed holding time exceeded.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- # See Case Narrative

Micro Data Qualifiers

TNTC Too numerous to count

Inorganic Data Qualifiers

ND or U	Indicates element was analyzed for, but not detected at or above the reporting limit.
J	Indicates a value greater than or equal to the method detection limit, but less than the quantitation limit.
Н	Indicates analytical holding time exceedance.
В	Indicates that the analyte is found in the associated blank, as well as in the sample.
MSA	Indicates value determined by the Method of Standard Addition
E	This flag identifies compounds whose concentrations exceed the calibration range of the instrument for tha specific analysis.
R	RPD outside accepted recovery limits
RL	Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
S	Spike Recovery outside accepted recovery limits.
W	Post-digestion spike for Furnace AA analysis is out of control limits (85-115), while sample absorbance is less than 50% of spike absorbance.
*	Duplicate analysis not within control limits.
+ .	Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995
#	See Case Narrative

Report Comments:

- 1. Soil, sediment and sludge sample results are reported on a "dry weight" basis.
- 2. Reporting limits are adjusted for sample size used, dilutions and moisture content, if applicable.

Date: 01-Mar-10

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-01A

Client Sample ID: CW-1 Collection Date: 2/11/2010 2:15:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	ţ	SW8260B			Analyst: SK
Dichlorodifluoromethane	ND	50	µg/L	10	2/15/2010 6:48:00 PM
Chloromethane	ND	50	µg/L	10	2/15/2010 6:48:00 PM
Vinyl chloride	ND	20	µg/L	10	2/15/2010 6:48:00 PM
Chloroethane	ND	50	µg/L	10	2/15/2010 6:48:00 PM
Bromomethane	ND	20	μg/L	10	2/15/2010 6:48:00 PM
Trichlorofluoromethane	ND	20 ⁻	µg/L	10	2/15/2010 6:48:00 PM
Diethyl ether	ND	50	µg/L	10	2/15/2010 6:48:00 PM
Acetone	ND	100	.µg/L	10	2/15/2010 6:48:00 PM
1,1-Dichloroethene	280	10	μg/L	10	2/15/2010 6:48:00 PM
Carbon disulfide	ND	20	· μg/L	10	2/15/2010 6:48:00 PM
Methylene chloride	ND	50	µg/L	10	2/15/2010 6:48:00 PM
Methyl tert-butyl ether	ND	20	µg/L	10	2/15/2010 6:48:00 PM
trans-1,2-Dichloroethene	26	20	μg/L	10	2/15/2010 6:48:00 PM
1,1-Dichloroethane	29	20	µg/L	10	2/15/2010 6:48:00 PM
2-Butanone	ND	100	µg/L	10	2/15/2010 6:48:00 PM
2,2-Dichloropropane	ND -	20	µg/L	10	2/15/2010 6:48:00 PM
cis-1,2-Dichloroethene	1,000	20	µg/L	10	2/15/2010 6:48:00 PM
Chloroform	ND	20	µg/L	10	2/15/2010 6:48:00 PM
Tetrahydrofuran	ND	100	μg/L	10	2/15/2010 6:48:00 PM
Bromochloromethane	ND	20	μg/L	10	2/15/2010 6:48:00 PM
1,1,1-Trichloroethane	ND	20	µg/L	10	2/15/2010 6:48:00 PM
1,1-Dichloropropene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
Carbon tetrachloride	ND	20	µg/L	10	2/15/2010 6:48:00 PM
1,2-Dichloroethane	ND	20	µg/L	10	2/15/2010 6:48:00 PM
Benzene	ND	10	μg/L	10	2/15/2010 6:48:00 PM
Trichloroethene	4,800	200	μg/L	100	2/16/2010 12:47:00 PM
1,2-Dichloropropane	ND	20	µg/L	10	2/15/2010 6:48:00 PM
Bromodichloromethane	ND	20	μg/L	10	2/15/2010 6:48:00 PM
Dibromomethane	ND	20	µg/L	. 10	2/15/2010 6:48:00 PM
4-Methyl-2-pentanone	ND .	100	μg/L	10	2/15/2010 6:48:00 PM
cis-1,3-Dichloropropene	ND	10	µg/L	10	2/15/2010 6:48:00 PM
Toluene	ND	20	μg/L	10	2/15/2010 6:48:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	10	2/15/2010 6:48:00 PM
1,1,2-Trichloroethane	ND	20	μg/L	10	2/15/2010 6:48:00 PM
1,2-Dibromoethane	ND	20	µg/L	10	2/15/2010 6:48:00 PM
2-Hexanone	ND	100	μg/L	10	2/15/2010 6:48:00 PM
1,3-Dichloropropane	ND	20	µg/L	10	2/15/2010 6:48:00 PM
Tetrachloroethene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
Dibromochloromethane	ND	20	µg/L	10	2/15/2010 6:48:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-01A

Date: 01-Mar-10

Client Sample ID: CW-1 Collection Date: 2/11/2010 2:15:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	20	μg/L	10	2/15/2010 6:48:00 PM
1,1,1,2-Tetrachloroethane	ND ·	20	µg/L	10	2/15/2010 6:48:00 PM
Ethylbenzene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
m,p-Xylene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
o-Xylene	ND	20	μg/L	10	2/15/2010 6:48:00 PM
Styrene	ND	20	μg/L	10	2/15/2010 6:48:00 PM
Bromoform	ND	20	μg/L	10	2/15/2010 6:48:00 PM
Isopropylbenzene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	2/15/2010 6:48:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	2/15/2010 6:48:00 PM
Bromobenzene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
n-Propylbenzene	ND	ź 20	μg/L	10	2/15/2010 6:48:00 PM
2-Chlorotoluene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
4-Chlorotoluene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
1,3,5-Trimethylbenzene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
tert-Butylbenzene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
sec-Butylbenzene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
4-Isopropyltoluene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
1,3-Dichlorobenzene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
1,4-Dichlorobenzene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
n-Butylbenzene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
1,2-Dichlorobenzene	ND	20	μg/L	10	2/15/2010 6:48:00 PM
1,2-Dibromo-3-chloropropane	ND	50	µg/L	10	2/15/2010 6:48:00 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	2/15/2010 6:48:00 PM
Naphthalene	ND	50	μg/L	10	2/15/2010 6:48:00 PM
1,2,3-Trichlorobenzene	ND	20	μg/L	. 10	2/15/2010 6:48:00 PM
Surr: Dibromofluoromethane	107	82-122	%REC	. 10	2/15/2010 6:48:00 PM
Surr: 1,2-Dichloroethane-d4	88.6	73-135	%REC	10	2/15/2010 6:48:00 PM
Surr: Toluene-d8	102	82-117	%REC	10	2/15/2010 6:48:00 PM
Surr: 4-Bromofluorobenzene	97.4	77-119	%REC	10	2/15/2010 6:48:00 PM

17

CLIENT: Shaw Environmental & Infrastructure, Inc. Lab Order: 1002033 **Project:** 130274 Textron Lab ID: 1002033-04A

Date: 01-Mar-10

Client Sample ID: MW-202 D Collection Date: 2/11/2010 8:15:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
PA 8260B VOLATILES BY GC/MS	· · ·	SW8260B			Analyst: SK
Dichlorodifluoromethane	ND	50	μg/L	10	2/17/2010 2:02:00 PM
Chloromethane	ND	50	μg/L	10	2/17/2010 2:02:00 PM
Vinyl chloride	ND	20	µg/L	10	2/17/2010 2:02:00 PM
Chloroethane	ND	50	µg/L	10	2/17/2010 2:02:00 PM
Bromomethane	ND	20	μg/L	10	2/17/2010 2:02:00 PM
Trichlorofluoromethane	ND	20	µg/L	10	2/17/2010 2:02:00 PM
Diethyl ether	ND	50	µg/L	10	2/17/2010 2:02:00 PM
Acetone	ND	100	µg/L	10	2/17/2010 2:02:00 PM
1,1-Dichloroethene	ND	10	µg/L	10	2/17/2010 2:02:00 PM
Carbon disulfide	ND	20	μg/L	10	2/17/2010 2:02:00 PN
Methylene chloride	ND	50	μg/L	10	2/17/2010 2:02:00 PM
Methyl tert-butyl ether	ND	20	µg/L	10	2/17/2010 2:02:00 PN
trans-1,2-Dichloroethene	ND	20	µg/L	10	2/17/2010 2:02:00 PN
1,1-Dichloroethane	ND	20	µg/L	10	2/17/2010 2:02:00 PN
2-Butanone	ND	100	µg/L	10	2/17/2010 2:02:00 PM
2,2-Dichloropropane	ND	20	μg/L	10	2/17/2010 2:02:00 PN
cis-1,2-Dichloroethene	60	20	μg/L	10	2/17/2010 2:02:00 PN
Chloroform	ND	20	µg/L	10	2/17/2010 2:02:00 PM
Tetrahydrofuran	ND	100	µg/L	10	2/17/2010 2:02:00 PN
Bromochloromethane	ND	20	µg/L	10	2/17/2010 2:02:00 PN
1,1,1-Trichloroethane	ND	20	µg/L	10	2/17/2010 2:02:00 PM
1,1-Dichloropropene	ND	20	µg/L	10	2/17/2010 2:02:00 PM
Carbon tetrachloride	ND	20	µg/L	10	2/17/2010 2:02:00 PM
1,2-Dichloroethane	ND	: 20	µg/L	10	2/17/2010 2:02:00 PM
Benzene	ND	10	μg/L	10	2/17/2010 2:02:00 PM
Trichloroethene	ND	20	µg/L	10	2/17/2010 2:02:00 PM
1,2-Dichloropropane	ND	20	µg/L	10	2/17/2010 2:02:00 PM
Bromodichloromethane	ND	20	µg/L	10	2/17/2010 2:02:00 PM
Dibromomethane	ND	20	µg/L	10	2/17/2010 2:02:00 PM
4-Methyl-2-pentanone	ND	100	µg/L	10	2/17/2010 2:02:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	10	2/17/2010 2:02:00 PN
Toluene	ND	20	µg/L	10	2/17/2010 2:02:00 PN
rans-1,3-Dichloropropene	ND	10	μg/L	10	2/17/2010 2:02:00 PN
1,1,2-Trichloroethane	ND	20	µg/L	. 10	2/17/2010 2:02:00 PN
1,2-Dibromoethane	ND	20	µg/L	10	2/17/2010 2:02:00 PN
2-Hexanone	ND	100	μg/L	10	2/17/2010 2:02:00 PN
1,3-Dichloropropane	ND	20	µg/L	10	2/17/2010 2:02:00 PN
Tetrachloroethene	580	20	μg/L	10	2/17/2010 2:02:00 PM
Dibromochloromethane	ND	20	μg/L	10	2/17/2010 2:02:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-04A

Date: 01-Mar-10

Client Sample ID: MW-202 D Collection Date: 2/11/2010 8:15:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	20	µg/L	10	2/17/2010 2:02:00 PM
1,1,1,2-Tetrachloroethane	ND	20	μg/L	10	2/17/2010 2:02:00 PN
Ethylbenzene	ND	20	µg/L	10	2/17/2010 2:02:00 PN
m,p-Xylene	ND	20	µg/L	10	2/17/2010 2:02:00 PN
o-Xylene	ND	20	µg/L	10	2/17/2010 2:02:00 PN
Styrene	ND	20	µg/L	10	2/17/2010 2:02:00 PN
Bromoform	ND	20	µg/L	10	2/17/2010 2:02:00 PM
Isopropylbenzene	ND	20	μg/L	10	2/17/2010 2:02:00 PN
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	2/17/2010 2:02:00 PN
1,2,3-Trichloropropane	ND	20	µg/L	10	2/17/2010 2:02:00 PN
Bromobenzene	ND	20	µg/L	10	2/17/2010 2:02:00 PN
n-Propylbenzene	ND	20	µg/L	10	2/17/2010 2:02:00 PM
2-Chlorotoluene	ND	20	µg/L	10	2/17/2010 2:02:00 PM
4-Chlorotoluene	ND	20	µg/L	10	2/17/2010 2:02:00 PM
1,3,5-Trimethylbenzene	ND	20	µg/L	-10	2/17/2010 2:02:00 PM
tert-Butylbenzene	ND	20	µg/L	10	2/17/2010 2:02:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	10	2/17/2010 2:02:00 PM
sec-Butylbenzene	ND	20	µg/L	10	2/17/2010 2:02:00 PM
4-Isopropyltoluene	ND	20	µg/L	10	2/17/2010 2:02:00 PM
1,3-Dichlorobenzene	ND	20	µg/L	10	2/17/2010 2:02:00 PM
1,4-Dichlorobenzene	ND	20	µg/L	10	2/17/2010 2:02:00 PM
n-Butylbenzene	ND	20	µg/L	. 10	2/17/2010 2:02:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10	2/17/2010 2:02:00 PM
1,2-Dibromo-3-chloropropane	ND	50	μg/L	10	2/17/2010 2:02:00 PM
1,2,4-Trichlorobenzene	ND	20	μg/L	10	2/17/2010 2:02:00 PN
Hexachlorobutadiene	ND	. 20	µg/L	10	2/17/2010 2:02:00 PN
Naphthalene	ND	50	µg/L	10	2/17/2010 2:02:00 PN
1,2,3-Trichlorobenzene	ND	20	µg/L	10	2/17/2010-2:02:00 PN
Surr: Dibromofluoromethane	96.0	82-122	%REC	10	2/17/2010 2:02:00 PN
Surr: 1,2-Dichloroethane-d4	102	73-135	%REC	10	2/17/2010 2:02:00 PM
Surr: Toluene-d8	92.4	82-117	%REC	10	2/17/2010 2:02:00 PN
Surr: 4-Bromofluorobenzene	93.0	77-119	%REC	10	2/17/2010 2:02:00 PN

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-05A

Date: 01-Mar-10

Client Sample ID: MW-202 S Collection Date: 2/11/2010 7:30:00 AM Matrix: GROUNDWATER

nalyses	Result	RL	Qual I	Units	DF	Date Analyzed
PA 8260B VOLATILES BY GC/MS		SW8260B		· .	•	Analyst: SK
Dichlorodifluoromethane	ND	50	ŀ	ıg/L	10	2/16/2010 1:56:00 PM
Chloromethane	ND	50	F	ıg/L	10	2/16/2010 1:56:00 PN
Vinyl chloride	. ND	20		ug/L	10	2/16/2010 1:56:00 PN
Chloroethane	ND	50		ig/L	10	2/16/2010 1:56:00 PN
Bromomethane	ND	20	ч с Н	ıg/L	10	2/16/2010 1:56:00 PN
Trichlorofluoromethane	ND	20	μ	ıg/L	10	2/16/2010 1:56:00 PM
Diethyl ether	ND	50		ıg/L	10	2/16/2010 1:56:00 PN
Acetone	ND	100	Ļ	ıg/L	10	2/16/2010 1:56:00 PN
1,1-Dichloroethene	ND	10	, l	ıg/L	10	2/16/2010 1:56:00 PM
Carbon disulfide	ŇD	20		ıg/L	10	2/16/2010 1:56:00 PN
Methylene chloride	ND	50		ig/L	10	2/16/2010 1:56:00 PM
Methyl tert-butyl ether	ND	- 20	μ	ig/L	10	2/16/2010 1:56:00 PN
trans-1,2-Dichloroethene	ND	20	Ч	ig/L	10	2/16/2010 1:56:00 PM
1,1-Dichloroethane	ND	20	ų	ıg/L	10	2/16/2010 1:56:00 PM
2-Butanone	ND	100	μ	ig/L	10	2/16/2010 1:56:00 PM
2,2-Dichloropropane	ND	20	, P	ıg/L	10	2/16/2010 1:56:00 PM
cis-1,2-Dichloroethene	62	20	μ	ıg/L	10	2/16/2010 1:56:00 PM
Chloroform	ND	. 20	μ	ıg/L	10	2/16/2010 1:56:00 PM
Tetrahydrofuran	ND	100	μ	ıg/L	10	2/16/2010 1:56:00 PM
Bromochloromethane	ND	20	μ	ıg/L	10	2/16/2010 1:56:00 PM
I,1,1-Trichloroethane	ND	20	μ	ig/L	10	2/16/2010 1:56:00 PM
1,1-Dichloropropene	ND	20	μ	g/L	10	2/16/2010 1:56:00 PM
Carbon tetrachloride	ND	20	μ	g/L	10	2/16/2010 1:56:00 PM
1,2-Dichloroethane	ND	20	μ	g/L	10	2/16/2010 1:56:00 PM
Benzene	, ND	10	μ	g/L	10	2/16/2010 1:56:00 PM
Trichloroethene	ND	20	μ	g/L	10	2/16/2010 1:56:00 PM
1,2-Dichloropropane	ND	20	·μ	g/L	10	2/16/2010 1:56:00 PM
Bromodichloromethane	ND	20	μ	g/L	10	2/16/2010 1:56:00 PM
Dibromomethane	ND	20	μ	g/L	10	2/16/2010 1:56:00 PM
1-Methyl-2-pentanone	ND	100	μ	g/L	10	2/16/2010 1:56:00 PM
cis-1,3-Dichloropropene	. ND	10	μ	g/L	10	2/16/2010 1:56:00 PM
Toluene	ND	20	μ	g/L	10	2/16/2010 1:56:00 PM
rans-1,3-Dichloropropene	ND_	10	μ	g/L	10	2/16/2010 1:56:00 PN
,1,2-Trichloroethane	ND	20	μ	g/L	10	2/16/2010 1:56:00 PM
1,2-Dibromoethane	ND.	20	·μ	g/L	10	2/16/2010 1:56:00 PM
2-Hexanone	ND	100	. μ	g/L	10	2/16/2010 1:56:00 PM
1,3-Dichloropropane	ND	20	μ	g/L	10	2/16/2010 1:56:00 PN
Tetrachloroethene	270	20	μ	g/L	10	2/16/2010 1:56:00 PN
Dibromochloromethane	ND	20		g/L	10	2/16/2010 1:56:00 PN

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-05A

_

Date: 01-Mar-10

Client Sample ID: MW-202 S Collection Date: 2/11/2010 7:30:00 AM Matrix: GROUNDWATER

Analyses	Result	RL QI	ial Units	DF	Date Analyzed
Chlorobenzene	ND	20	μg/L	10	2/16/2010 1:56:00 PM
1,1,1,2-Tetrachloroethane	ND	20	µg/L	10	2/16/2010 1:56:00 PM
Ethylbenzene	ND	. 20	µg/L	10	2/16/2010 1:56:00 PM
m,p-Xylene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
o-Xylene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
Styrene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
Bromoform	ND	20	μg/L	10	2/16/2010 1:56:00 PM
Isopropylbenzene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	2/16/2010 1:56:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	2/16/2010 1:56:00 PM
Bromobenzene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
n-Propylbenzene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
2-Chlorotoluene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
4-Chlorotoluene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
1,3,5-Trimethylbenzene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
tert-Butylbenzene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
sec-Butylbenzene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
4-Isopropyltoluene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
1,3-Dichlorobenzene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
1,4-Dichlorobenzene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
n-Butylbenzene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
1,2-Dichlorobenzene	ND	20	μg/L	10	2/16/2010 1:56:00 PM
1,2-Dibromo-3-chloropropane	ND	50	µg/L	10	2/16/2010 1:56:00 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
Naphthalene	ND	50	µg/L	10	2/16/2010 1:56:00 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	10	2/16/2010 1:56:00 PM
Surr: Dibromofluoromethane	106	82-122	%REC	10	2/16/2010 1:56:00 PM
Surr: 1,2-Dichloroethane-d4	106	73-135	%REC	10	2/16/2010 1:56:00 PM
Surr: Toluene-d8	102	82-117	%REC	10	2/16/2010 1:56:00 PM
Surr: 4-Bromofluorobenzene	94.2	77-119	%REC	10	2/16/2010 1:56:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-06A

Date: 01-Mar-10

Client Sample ID: MW-218 S Collection Date: 2/11/2010 8:25:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Unit	s	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		SW8260B		•		Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L		1	2/16/2010 1:21:00 PM
Chloromethane	ND	5.0	µg/L		1	2/16/2010 1:21:00 PM
Vinyl chloride	3.1	2.0	μg/L		1	2/16/2010 1:21:00 PM
Chloroethane	ND	5.0	µg/L		1	2/16/2010 1:21:00 PM
Bromomethane	ND	2.0	µg/L		1	2/16/2010 1:21:00 PM
Trichlorofluoromethane	ND	2.0	µg/L		1	2/16/2010 1:21:00 PM
Diethyl ether	ND	5.0	µg/L		1	2/16/2010 1:21:00 PM
Acetone	99	10	µg/L		1	2/16/2010 1:21:00 PM
1,1-Dichloroethene	ND	1.0	µg/L		1	2/16/2010 1:21:00 PM
Carbon disulfide	ND	2.0	µg/L		1	2/16/2010 1:21:00 PM
Methylene chloride	ND	5.0	µg/L	,	1	2/16/2010 1:21:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L		1	2/16/2010 1:21:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L		1	2/16/2010 1:21:00 PM
1,1-Dichloroethane	ND	2.0	µg/L		1	2/16/2010 1:21:00 PM
2-Butanone	24	. 10	µg/L	•	1	2/16/2010 1:21:00 PM
2,2-Dichloropropane	ND	2.0	µg/L		1	2/16/2010 1:21:00 PM
cis-1,2-Dichloroethene	3.4	2.0	µg/L		1	2/16/2010 1:21:00 PM
Chloroform	ND	2.0	µg/L		1	2/16/2010 1:21:00 PM
Tetrahydrofuran	ND	10	µg/L		1	2/16/2010 1:21:00 PM
Bromochloromethane	ND	2.0	µg/L		1.	2/16/2010 1:21:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L		1	2/16/2010 1:21:00 PM
1,1-Dichloropropene	ND	2.0	µg/L		1	2/16/2010 1:21:00 PM
Carbon tetrachloride	. ND	2.0	µg/L		1	2/16/2010 1:21:00 PM
1,2-Dichloroethane	ND	2.0	µg/L		1	2/16/2010 1:21:00 PM
Benzene	ND	1.0	µg/L		1	2/16/2010 1:21:00 PM
Trichloroethene	ND	2.0	µg/L		1	2/16/2010 1:21:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	i.	1	2/16/2010 1:21:00 PM
Bromodichloromethane	ND	2.0	µg/L		1	2/16/2010 1:21:00 PM
Dibromomethane	ND	2.0	µg/L		1	2/16/2010 1:21:00 PM
4-Methyl-2-pentanone	ND	10	µg/L		1	2/16/2010 1:21:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L		1	2/16/2010 1:21:00 PM
Toluene	ND	2.0	µg/L		1	2/16/2010 1:21:00 PM
rans-1,3-Dichloropropene	ND	1.0	µg/L		1	2/16/2010 1:21:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L		1.	2/16/2010 1:21:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	· *	1	2/16/2010 1:21:00 PM
2-Hexanone	ND	10	µg/L	- * 	1	2/16/2010 1:21:00 PM
1,3-Dichloropropane	ND	2.0	μg/L		1	2/16/2010 1:21:00 PM
Tetrachloroethene	ND	2.0	µg/L	` <i>_</i>	1	2/16/2010 1:21:00 PM
Dibromochloromethane	ND	2.0	μg/L		1	2/16/2010 1:21:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-06A

Date: 01-Mar-10

Client Sample ID: MW-218 S Collection Date: 2/11/2010 8:25:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/16/2010 1:21:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	2/16/2010 1:21:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/16/2010 1:21:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/16/2010 1:21:00 PM
o-Xylene	ND	2.0	µg/L	¹¹ 1	2/16/2010 1:21:00 PM
Styrene	ND	2.0	µg/L	1	2/16/2010 1:21:00 PM
Bromoform	ND	2.0	µg/L	1	2/16/2010 1:21:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/16/2010 1:21:00 PN
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/16/2010 1:21:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/16/2010 1:21:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/16/2010 1:21:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/16/2010 1:21:00 PN
2-Chlorotoluene	ND	2.0	μg/L	1	2/16/2010 1:21:00 PN
4-Chlorotoluene	ND	2.0	μg/L	1	2/16/2010 1:21:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	2/16/2010 1:21:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/16/2010 1:21:00 PN
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/16/2010 1:21:00 PM
sec-Butylbenzene	ND	2.0	µg/L	⁵ 1	2/16/2010 1:21:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/16/2010 1:21:00 PN
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/16/2010 1:21:00 PN
1,4-Dichlorobenzene	ND	2.0	μ g/L	1	2/16/2010 1:21:00 PM
n-Butylbenzene	ND	2.0	µg/L	. 1	2/16/2010 1:21:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	2/16/2010 1:21:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/16/2010 1:21:00 PN
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/16/2010 1:21:00 PN
Hexachlorobutadiene	ND	2.0	μg/L	. 1	2/16/2010 1:21:00 PN
Naphthalene	ND	5.0	μg/L	. 1	2/16/2010 1:21:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	、 1 `	2/16/2010 1:21:00 PM
Surr: Dibromofluoromethane	102	82-122	%REC	1	2/16/2010 1:21:00 PM
Surr: 1,2-Dichloroethane-d4	101	73-135	%REC	1	2/16/2010 1:21:00 PN
Surr: Toluene-d8	103	82-117	%REC	1	2/16/2010 1:21:00 PN
Surr: 4-Bromofluorobenzene	95.0	77-119	%REC	1	2/16/2010 1:21:00 PM

Date: 01-Mar-10

CLIENT:	Shaw Environmental & Infrastructure, Inc.
Lab Order:	1002033
Project:	130274 Textron
Lab ID:	1002033-07A

Client Sample ID: MW-218 D Collection Date: 2/11/2010 9:50:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Un	nits DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	· · ·	SW8260B		· .	Analyst: SK
Dichlorodifluoromethane	ND	50	μg/	L 10	2/16/2010 2:30:00 PM
Chloromethane	ND	50	μg/	Ľ 10	2/16/2010 2:30:00 PM
Vinyl chloride	ND	20	μg/		2/16/2010 2:30:00 PM
Chloroethane	ND	50	µg/	L 10	2/16/2010 2:30:00 PM
Bromomethane	ND	20	μg/	L 10	2/16/2010 2:30:00 PM
Trichlorofluoromethane	ND	20	µg/	L 10	2/16/2010 2:30:00 PM
Diethyl ether	ND	50	μg/	L 10	2/16/2010 2:30:00 PM
Acetone	ND	100	,hđ	L 10	2/16/2010 2:30:00 PM
1,1-Dichloroethene	ND		/gµ	L 10	2/16/2010 2:30:00 PM
Carbon disulfide	ND	20	µg/	L 10	2/16/2010 2:30:00 PM
Methylene chloride	ND	50	μg/		2/16/2010 2:30:00 PM
Methyl tert-butyl ether	/ ND	20	μg/	L 10	2/16/2010 2:30:00 PM
trans-1,2-Dichloroethene	ND	20	μg/	L 10	2/16/2010 2:30:00 PM
1,1-Dichloroethane	ND	20	μg/	L 10	2/16/2010 2:30:00 PM
2-Butanone	ND	100	μg/	L 10	2/16/2010 2:30:00 PM
2,2-Dichloropropane	ND	20	μg/	L 10	2/16/2010 2:30:00 PM
cis-1,2-Dichloroethene	ND	20	μg/	L 10	2/16/2010 2:30:00 PM
Chloroform	ND	20	μg/	L 10	2/16/2010 2:30:00 PM
Tetrahydrofuran	ND	100	μg/	L 10	2/16/2010 2:30:00 PM
Bromochloromethane	ND	20	μg/	L 10	2/16/2010 2:30:00 PM
1,1,1-Trichloroethane	ND	. 20	µg/	L 10	2/16/2010 2:30:00 PM
1,1-Dichloropropene	ND	20	µg/	L 10	2/16/2010 2:30:00 PM
Carbon tetrachloride	ŅD	20	μg/		2/16/2010 2:30:00 PM
1,2-Dichloroethane	ND	20	μg/	L 10	2/16/2010 2:30:00 PM
Benzene	ND	10	μg/	L 10	2/16/2010 2:30:00 PM
Trichloroethene	38	20	· µg/	L 10	2/16/2010 2:30:00 PM
1,2-Dichloropropane	ND	20	μg/	L 10	2/16/2010 2:30:00 PM
Bromodichloromethane	ND	20	΄ μg/	L 10	2/16/2010 2:30:00 PM
Dibromomethane	ND	20	μg/	L 10	2/16/2010 2:30:00 PM
4-Methyl-2-pentanone	ND	100	μg/	L 10	2/16/2010 2:30:00 PM
cis-1,3-Dichloropropene	ND	10	μg/	L 10	2/16/2010 2:30:00 PM
Toluene	ND	20	μg/	L' 10	2/16/2010 2:30:00 PM
trans-1,3-Dichloropropene	ND	10	μg/	L 10	2/16/2010 2:30:00 PM
1,1,2-Trichloroethane	ND	20	μg/		2/16/2010 2:30:00 PM
1,2-Dibromoethane	ND	20	μg/		2/16/2010 2:30:00 PM
2-Hexanone	ND	100	μg/		2/16/2010 2:30:00 PM
1,3-Dichloropropane	ND	20	μg/l		2/16/2010 2:30:00 PM
Tetrachloroethene	590	20	μg/l		2/16/2010 2:30:00 PM
Dibromochloromethane	ND	20	μg/l		2/16/2010 2:30:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-07A

Date: 01-Mar-10

Client Sample ID: MW-218 D Collection Date: 2/11/2010 9:50:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Chlorobenzene	ND -	20	µg/L	10	2/16/2010 2:30:00 PM
1,1,1,2-Tetrachloroethane	ND	20	µg/L	10	2/16/2010 2:30:00 PM
Ethylbenzene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
m,p-Xylene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
o-Xylene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
Styrene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
Bromoform	ND	20	µg/L	10	2/16/2010 2:30:00 PM
Isopropylbenzene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	2/16/2010 2:30:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	2/16/2010 2:30:00 PM
Bromobenzene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
n-Propylbenzene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
2-Chlorotoluene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
4-Chlorotoluene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
1,3,5-Trimethylbenzene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
tert-Butylbenzene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	.10	2/16/2010 2:30:00 PM
sec-Butylbenzene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
4-Isopropyltoluene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
1,3-Dichlorobenzene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
1,4-Dichlorobenzene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
n-Butylbenzene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10 .	2/16/2010 2:30:00 PM
1,2-Dibromo-3-chloropropane	ND	50	µg/L	10	2/16/2010 2:30:00 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
Naphthalene	ND	50	µg/L	10	2/16/2010 2:30:00 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	10	2/16/2010 2:30:00 PM
Surr: Dibromofluoromethane	109	82-122	%REC	10	2/16/2010 2:30:00 PM
Surr: 1,2-Dichloroethane-d4	108	73-135	%REC	10	2/16/2010 2:30:00 PM
Surr: Toluene-d8	104	82-117	%REC	10	2/16/2010 2:30:00 PM
Surr: 4-Bromofluorobenzene	98.4	77-119	%REC	10	2/16/2010 2:30:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-08A

Date: 01-Mar-10

Client Sample ID: MW-217 S Collection Date: 2/11/2010 11:30:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	S	W8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/15/2010 11:57:00 AN
Chloromethane	ND	5.0	µg/L	1	2/15/2010 11:57:00 AN
Vinyl chloride	ND	2.0	μg/L	1	2/15/2010 11:57:00 AN
Chloroethane	ND	5.0	μg/L	[`] 1	2/15/2010 11:57:00 AM
Bromomethane	ND	2.0	µg/L	1	2/15/2010 11:57:00 AN
Trichlorofluoromethane	ND	2.0	µg/L	. 1.	2/15/2010 11:57:00 AN
Diethyl ether	ND	5.0	µg/L	1	2/15/2010 11:57:00 AN
Acetone	ND	10	µg/L	1	2/15/2010 11:57:00 AN
1,1-Dichloroethene	ND	1.0	µg/L	1	2/15/2010 11:57:00 AN
Carbon disulfide	ND	2.0	µg/L	1	2/15/2010 11:57:00 AN
Methylene chloride	ND	5.0	µg/L	1	2/15/2010 11:57:00 AN
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/15/2010 11:57:00 AN
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AN
1,1-Dichloroethane	ND	2.0	µg/L	1	2/15/2010 11:57:00 AN
2-Butanone	ND	10	µg/L	1	2/15/2010 11:57:00 AN
2,2-Dichloropropane	ND	· 2.0	μg/L	1	2/15/2010 11:57:00 AN
cis-1,2-Dichloroethene	21	2.0	µg/L	1	2/15/2010 11:57:00 AN
Chloroform	ND	2.0	μg/L	1	2/15/2010 11:57:00 AN
Tetrahydrofuran	ND	10	μg/L	1	2/15/2010 11:57:00 AN
Bromochloromethane	ND ¹	2.0	µg/L	1	2/15/2010 11:57:00 AN
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
1,1-Dichloropropene	ND	2.0	μg/L	1	2/15/2010 11:57:00 AM
Carbon tetrachloride	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
Benzene	ND	1.0	µg/L	1	2/15/2010 11:57:00 AM
Trichloroethene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
Bromodichloromethane	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
Dibromomethane	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/15/2010 11:57:00 AM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2010 11:57:00 AM
Toluene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AN
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2010 11:57:00 AN
1,1,2-Trichloroethane	ND	2.0	μg/L	1	2/15/2010 11:57:00 AM
1,2-Dibromoethane	ND	2.0	μg/L	1	2/15/2010 11:57:00 AM
2-Hexanone	ND	10	µg/L	1	2/15/2010 11:57:00 AN
1,3-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 11:57:00 AN
Tetrachloroethene	17	2.0	μg/L	1	2/15/2010 11:57:00 AN
Dibromochloromethane	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-08A

Date: 01-Mar-10

Client Sample ID: MW-217 S Collection Date: 2/11/2010 11:30:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	2/15/2010 11:57:00 AM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
Ethylbenzene	ND	2.0	µg/L	1 .	2/15/2010 11:57:00 AM
m,p-Xylene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
o-Xylene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
Styrene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
Bromoform	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
Isopropylbenzene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
Bromobenzene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
n-Propylbenzene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
2-Chlorotoluene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
4-Chlorotoluene	ND ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
tert-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
sec-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	2/15/2010 11:57:00 AM
n-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/15/2010 11:57:00 AM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
Naphthalene	ND	5.0	µg/L	1	2/15/2010 11:57:00 AM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 11:57:00 AM
Surr: Dibromofluoromethane	109	82-122	%REC	1	2/15/2010 11:57:00 AM
Surr: 1,2-Dichloroethane-d4	107	73-135	%REC	1	2/15/2010 11:57:00 AM
Surr: Toluene-d8	102	82-117	%REC	1	2/15/2010 11:57:00 AM
Surr: 4-Bromofluorobenzene	96.4	77-119	%REC	1	2/15/2010 11:57:00 AM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-09A

Date: 01-Mar-10

Client Sample ID: MW-217 D Collection Date: 2/11/2010 12:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual l	U nits	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		SW8260B		10 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -		Analyst: SK
Dichlorodifluoromethane	ND	5.0		ıg/L	1	2/15/2010 12:32:00 PM
Chloromethane	ND	5.0	۰,	ig/L	1 1 1 1 1	2/15/2010 12:32:00 PM
Vinyl chloride	ND	2.0	 •	ıg/L	1	2/15/2010 12:32:00 PM
Chloroethane	ND	5.0	· · ·	ıg/L	at star	2/15/2010 12:32:00 PM
Bromomethane	ND	2.0	· F	ıg/L	1	2/15/2010 12:32:00 PM
Trichlorofluoromethane	ND	2.0	•	ig/L	. 1 - 1878 (2/15/2010 12:32:00 PM
Diethyl ether	ND	5.0	L.	ig/L	1	2/15/2010 12:32:00 PM
Acetone	ND	10	F	ig/L	1.	2/15/2010 12:32:00 PM
1,1-Dichloroethene	ND	1.0		ig/L	1	2/15/2010 12:32:00 PM
Carbon disulfide	ND	2.0	Ļ	ig/L	1	2/15/2010 12:32:00 PM
Methylene chloride	ND	5.0		ig/L	5 *1 -	2/15/2010 12:32:00 PM
Methyl tert-butyl ether	2.4	2.0		ig/L	1	2/15/2010 12:32:00 PM
trans-1,2-Dichloroethene	ND	2.0		ig/L	1	2/15/2010 12:32:00 PM
1,1-Dichloroethane	ND	2.0	Ļ	ig/L	1	2/15/2010 12:32:00 PM
2-Butanone	ND	10		ig/L	1	2/15/2010 12:32:00 PM
2,2-Dichloropropane	ND	2.0		ig/L	1	2/15/2010 12:32:00 PM
cis-1,2-Dichloroethene	8.6	2.0	μ	g/L	1	2/15/2010 12:32:00 PM
Chloroform	ND	2.0	μ	g/L	1	2/15/2010 12:32:00 PM
Tetrahydrofuran	ND	10		g/L	1	2/15/2010 12:32:00 PM
Bromochloromethane	ND	2.0	μ	g/L	1	2/15/2010 12:32:00 PM
1,1,1-Trichloroethane	ND	2.0		g/L	1	2/15/2010 12:32:00 PM
1,1-Dichloropropene	ND	2.0	μ	g/L	1	2/15/2010 12:32:00 PM
Carbon tetrachloride	ND	2.0		g/L	1	2/15/2010 12:32:00 PM
1,2-Dichloroethane	ND	2.0		g/L	11.11.1	2/15/2010 12:32:00 PM
Benzene	ND	1.0		g/L	1	2/15/2010 12:32:00 PM
Trichloroethene	12	2.0		g/L	1 1 1997 - 1995	2/15/2010 12:32:00 PM
1,2-Dichloropropane	ND	2.0		g/L	1	2/15/2010 12:32:00 PM
Bromodichloromethane	ND	2.0		g/L	1	2/15/2010 12:32:00 PM
Dibromomethane	ND	2.0		g/L	1	2/15/2010 12:32:00 PM
4-Methyl-2-pentanone	ND	10		g/L	1	2/15/2010 12:32:00 PM
cis-1,3-Dichloropropene	ND	1.0		g/L	1	2/15/2010 12:32:00 PM
Toluene	ND	2.0		g/L	1	2/15/2010 12:32:00 PM
trans-1,3-Dichloropropene	ND	1.0		g/L	1	2/15/2010 12:32:00 PM
1,1,2-Trichloroethane	ND	2.0		g/L	1	2/15/2010 12:32:00 PM
1,2-Dibromoethane	ND	2.0		g/L	1	2/15/2010 12:32:00 PM
2-Hexanone	ND	10		g/L	1	2/15/2010 12:32:00 PM
1,3-Dichloropropane	ND	2.0	-	g/L	1	2/15/2010 12:32:00 PM
Tetrachloroethene	ND	2.0		g/L	1	2/15/2010 12:32:00 PM
Dibromochloromethane	ND	2.0	•	g∕∟	1	2/15/2010 12:32:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-09A

Date: 01-Mar-10

Client Sample ID: MW-217 D Collection Date: 2/11/2010 12:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
m,p-Xylene	ND	2.0	µg/L	1.	2/15/2010 12:32:00 PM
o-Xylene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
Styrene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
Bromoform	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/15/2010 12:32:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
Naphthalene	ND	5.0	µg/L	1	2/15/2010 12:32:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 12:32:00 PM
Surr: Dibromofluoromethane	102	82-122	%REC	1	2/15/2010 12:32:00 PM
Surr: 1,2-Dichloroethane-d4	104	73-135	%REC	1	2/15/2010 12:32:00 PM
Surr: Toluene-d8	99.8	82-117	%REC	1	2/15/2010 12:32:00 PM
Surr: 4-Bromofluorobenzene	98.1	77-119	%REC	1	2/15/2010 12:32:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-10A

Date: 01-Mar-10

Client Sample ID: MW-112 Collection Date: 2/11/2010 12:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DI	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		SW8260B			Analyst: SK
Dichlorodifluoromethane	ND	50	µg/L	. 10	2/16/2010 3:05:00 PM
Chloromethane	ND	50	µg/L	10	2/16/2010 3:05:00 PM
Vinyl chloride	ND	20	μg/L	10	2/16/2010 3:05:00 PM
Chloroethane	ND	50	μg/L	10	2/16/2010 3:05:00 PM
Bromomethane	ND	20	µg/L	10	2/16/2010 3:05:00 PM
Trichlorofluoromethane	ND	20	µg/L	10	2/16/2010 3:05:00 PM
Diethyl ether	ND	50	μg/L	10	2/16/2010 3:05:00 PM
Acetone	ND	100	μg/L	10	2/16/2010 3:05:00 PM
1,1-Dichloroethene	ND	10	µg/L	10	2/16/2010 3:05:00 PM
Carbon disulfide	ND	20	µg/L	10	2/16/2010 3:05:00 PM
Methylene chloride	ND	50	µg/L	10	2/16/2010 3:05:00 PM
Methyl tert-butyl ether	ND	20	µg/L	10	2/16/2010 3:05:00 PM
trans-1,2-Dichloroethene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
1,1-Dichloroethane	ND	20	µg/L	10	2/16/2010 3:05:00 PM
2-Butanone	ND	100	µg/L	10	2/16/2010 3:05:00 PM
2,2-Dichloropropane	ND	20	µg/L	10	2/16/2010 3:05:00 PM
cis-1,2-Dichloroethene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
Chloroform	ND	20	µg/L	10	2/16/2010 3:05:00 PM
Tetrahydrofuran	ND	100	µg/L	10	2/16/2010 3:05:00 PM
Bromochloromethane	ND	20	µg/L	10	2/16/2010 3:05:00 PM
1,1,1-Trichloroethane	ND	20	μg/L	10	2/16/2010 3:05:00 PM
1,1-Dichloropropene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
Carbon tetrachloride	ND	20	µg/L	10	2/16/2010 3:05:00 PM
1,2-Dichloroethane	ND	20	µg/L	10	2/16/2010 3:05:00 PM
Benzene	ND	10	μg/L	10	2/16/2010 3:05:00 PM
Trichloroethene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
1,2-Dichloropropane	ND	20	μg/L	10	2/16/2010 3:05:00 PM
Bromodichloromethane	ND	20	µg/L	10	2/16/2010 3:05:00 PM
Dibromomethane	ND	20	μg/L	10	2/16/2010 3:05:00 PM
4-Methyl-2-pentanone	ND	100	µg/L	10	2/16/2010 3:05:00 PM
cis-1,3-Dichloropropene	ND	10	µg/L	10	2/16/2010 3:05:00 PM
Toluene	ND	20	μg/L	10	2/16/2010 3:05:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	10	2/16/2010 3:05:00 PM
1,1,2-Trichloroethane	ND	20	µg/L	10	2/16/2010 3:05:00 PM
1,2-Dibromoethane	ND	20	μg/L	10	2/16/2010 3:05:00 PM
2-Hexanone	ND	100	μg/L	10	2/16/2010 3:05:00 PM
1,3-Dichloropropane	ND	20	μg/L	10	2/16/2010 3:05:00 PM
Tetrachloroethene	540	20	μg/L	10	2/16/2010 3:05:00 PM
Dibromochloromethane	ND	20	μg/L	10	2/16/2010 3:05:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-10A

Date: 01-Mar-10

Client Sample ID: MW-112 Collection Date: 2/11/2010 12:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	20	µg/L	10	2/16/2010 3:05:00 PN
1,1,1,2-Tetrachloroethane	ND	20	µg/L	10	2/16/2010 3:05:00 PM
Ethylbenzene	ND	20	μg/L	10	2/16/2010 3:05:00 PN
m,p-Xylene	ND	20	µg/L	10	2/16/2010 3:05:00 PN
o-Xylene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
Styrene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
Bromoform	ND	20	µg/L	10	2/16/2010 3:05:00 PM
Isopropylbenzene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	2/16/2010 3:05:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	2/16/2010 3:05:00 PM
Bromobenzene	ND	20	μg/L	10	2/16/2010 3:05:00 PM
n-Propylbenzene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
2-Chlorotoluene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
4-Chlorotoluene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
1,3,5-Trimethylbenzene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
tert-Butylbenzene	ND	20	μg/L	10	2/16/2010 3:05:00 PM
1,2,4-Trimethylbenzene	ND	,20	µg/L	10	2/16/2010 3:05:00 PM
sec-Butylbenzene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
4-isopropyltoluene	ND	20	μg/L	10	2/16/2010 3:05:00 PM
1,3-Dichlorobenzene	ND	20	μg/L	10	2/16/2010 3:05:00 PM
1,4-Dichlorobenzene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
n-Butylbenzene	ND	20	μg/L	10	2/16/2010 3:05:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
1,2-Dibromo-3-chloropropane	ND	50	µg/L	10	2/16/2010 3:05:00 PM
1,2,4-Trichlorobenzene	. ND	20	µg/L	10	2/16/2010 3:05:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
Naphthalene	ND	50	µg/L	10	2/16/2010 3:05:00 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	10	2/16/2010 3:05:00 PM
Surr: Dibromofluoromethane	108	82-122	%REC	10	2/16/2010 3:05:00 PM
Surr: 1,2-Dichloroethane-d4	106	73-135	%REC	10	2/16/2010 3:05:00 PM
Surr: Toluene-d8	106	82-117	%REC	10	2/16/2010 3:05:00 PN
Surr: 4-Bromofluorobenzene	98.2	· 77-119	%REC	10	2/16/2010 3:05:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-11A

Date: 01-Mar-10

Client Sample ID: MW-207 S Collection Date: 2/11/2010 8:10:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	· · · · · · · · · · · ·	SW8260B	•		Analyst: SK
Dichlorodifluoromethane	ND	50	µg/L	10	2/16/2010 3:39:00 PM
Chloromethane	ND	50	µg/L	10	2/16/2010 3:39:00 PM
Vinyl chloride	ND	20	µg/L	10	2/16/2010 3:39:00 PM
Chloroethane	ND	50	µg/L	10	2/16/2010 3:39:00 PM
Bromomethane	ND	20	μg/L	10	2/16/2010 3:39:00 PM
Trichlorofluoromethane	ND	20	μg/L	10	2/16/2010 3:39:00 PM
Diethyl ether	ND	50	μg/L	10	2/16/2010 3:39:00 PM
Acetone	ND	100	µg/L	10	2/16/2010 3:39:00 PM
1,1-Dichloroethene	ND	10	μg/L	10	2/16/2010 3:39:00 PM
Carbon disulfide	ND	20	µg/L	10	2/16/2010 3:39:00 PM
Methylene chloride	ND	50	μg/L	10	2/16/2010 3:39:00 PM
Methyl tert-butyl ether	ND	20	µg/L	10	2/16/2010 3:39:00 PM
trans-1,2-Dichloroethene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
1,1-Dichloroethane	ND	20	µg/L	10	2/16/2010 3:39:00 PM
2-Butanone	ND	100	µg/L	10	2/16/2010 3:39:00 PM
2,2-Dichloropropane	ND	20	μg/L	10	2/16/2010 3:39:00 PM
cis-1,2-Dichloroethene	28	20	μg/L	10	2/16/2010 3:39:00 PM
Chloroform	ND	20	µg/L	10	2/16/2010 3:39:00 PM
Tetrahydrofuran	ND	100	μg/L	10	2/16/2010 3:39:00 PM
Bromochloromethane	ND	20	μg/L	10	2/16/2010 3:39:00 PM
1,1,1-Trichloroethane	ND	20	μg/L	10	2/16/2010 3:39:00 PM
1,1-Dichloropropene	ND .	20	μg/L	10	2/16/2010 3:39:00 PM
Carbon tetrachloride	ND	20	µg/L	10	2/16/2010 3:39:00 PM
1,2-Dichloroethane	ND	20	µg/L	10	2/16/2010 3:39:00 PM
Benzene	ND	10	µg/L	10	2/16/2010 3:39:00 PM
Trichloroethene	93	20	µg/L	10	2/16/2010 3:39:00 PM
1,2-Dichloropropane	ND	20	µg/L	10	2/16/2010 3:39:00 PM
Bromodichloromethane	ND	20	µg/L	10	2/16/2010 3:39:00 PM
Dibromomethane	. ND	20	µg/L	10	2/16/2010 3:39:00 PM
4-Methyl-2-pentanone	ND	100	μg/L	10	2/16/2010 3:39:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	10	2/16/2010 3:39:00 PM
Toluene	ND	20	μg/L	10	2/16/2010 3:39:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	10	2/16/2010 3:39:00 PM
1,1,2-Trichloroethane	ND	20	μg/L	10	2/16/2010 3:39:00 PM
1,2-Dibromoethane	ND	20	μg/L	10	2/16/2010 3:39:00 PM
2-Hexanone	ND	100	μg/L	10	2/16/2010 3:39:00 PM
1,3-Dichloropropane	ND	20	μg/L	10	2/16/2010 3:39:00 PM
Tetrachloroethene	26,000	400	μg/L	200	2/17/2010 1:28:00 PM
Dibromochloromethane	20,000 ND	400	μg/L	10	2/16/2010 3:39:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-11A

Date: 01-Mar-10

Client Sample ID: MW-207 S Collection Date: 2/11/2010 8:10:00 AM Matrix: GROUNDWATER

Analyses	Result	RL C	ual Units	DF	Date Analyzed
Chlorobenzene	ND	20	μg/L	10	2/16/2010 3:39:00 PM
1,1,1,2-Tetrachloroethane	ND	20	μg/L	10	2/16/2010 3:39:00 PM
Ethylbenzene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
m,p-Xylene	ND	20	μg/L	10	2/16/2010 3:39:00 PM
o-Xylene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
Styrene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
Bromoform	ND	20	µg/L	10	2/16/2010 3:39:00 PM
Isopropylbenzene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	2/16/2010 3:39:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	2/16/2010 3:39:00 PM
Bromobenzene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
n-Propylbenzene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
2-Chlorotoluene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
4-Chlorotoluene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
1,3,5-Trimethylbenzene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
tert-Butylbenzene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
sec-Butylbenzene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
4-Isopropyltoluene	ND	20	μg/L	10	2/16/2010 3:39:00 PM
1,3-Dichlorobenzene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
1,4-Dichlorobenzene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
n-Butylbenzene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
1,2-Dibromo-3-chloropropane	ND	50	· µg/L	10	2/16/2010 3:39:00 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
Hexachlorobutadiene	ND	20	μg/L	10	2/16/2010 3:39:00 PM
Naphthalene	ND	50	µg/L	10	2/16/2010 3:39:00 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	10	2/16/2010 3:39:00 PM
Surr: Dibromofluoromethane	113	82-122	%REC	10	2/16/2010 3:39:00 PM
Surr: 1,2-Dichloroethane-d4	103	73-135	%REC	10	2/16/2010 3:39:00 PM
Surr: Toluene-d8	103	82-117	%REC	10	2/16/2010 3:39:00 PM
Surr: 4-Bromofluorobenzene	93.9	77-119	%REC	10	2/16/2010 3:39:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-12A

Date: 01-Mar-10

Client Sample ID: MW-207 D Collection Date: 2/11/2010 8:05:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		SW8260B			Analyst: SK
Dichlorodifluoromethane	ND	· 5.0	µg/L	1	2/17/2010 12:54:00 PM
Chloromethane	ND	5.0	µg/L	1	2/17/2010 12:54:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
Chloroethane	ND	5.0	μg/L	1	2/17/2010 12:54:00 PM
Bromomethane	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
Diethyl ether	ND	5.0	μg/L	1	2/17/2010 12:54:00 PM
Acetone	ND	10	µg/L	1	2/17/2010 12:54:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	2/17/2010 12:54:00 PM
Carbon disulfide	ND	2.0	μg/L	1	2/17/2010 12:54:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/17/2010 12:54:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	1	2/17/2010 12:54:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	2/17/2010 12:54:00 PM
2-Butanone	ND	10	μg/L	1	2/17/2010 12:54:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	2/17/2010 12:54:00 PM
cis-1,2-Dichloroethene	ND	2.0	μg/L	1	2/17/2010 12:54:00 PM
Chloroform	ND	2.0	μg/L	1	2/17/2010 12:54:00 PM
Tetrahydrofuran	ND	10	μg/L	1	2/17/2010 12:54:00 PM
Bromochloromethane	ND	2.0	μg/L	1	2/17/2010 12:54:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
Carbon tetrachloride	ND	2.0	μg/L	1	2/17/2010 12:54:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	2/17/2010 12:54:00 PM
Benzene	ND	1.0	μg/L	1	2/17/2010 12:54:00 PM
Trichloroethene	2.2	2.0	μg/L	1	2/17/2010 12:54:00 PM
1,2-Dichloropropane	ND	2.0	μg/L	1	2/17/2010 12:54:00 PM
Bromodichloromethane	ND	2.0	μg/L	1	2/17/2010 12:54:00 PM
Dibromomethane	ND	2.0	μg/L	1	2/17/2010 12:54:00 PM
4-Methyl-2-pentanone	ND	2:0 10	μg/L	1	2/17/2010 12:54:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	2/17/2010 12:54:00 PM
Toluene	ND	2.0	μg/L	1	2/17/2010 12:54:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	. 1	2/17/2010 12:54:00 PM
1,1,2-Trichloroethane	ND	2.0		· 1	2/17/2010 12:54:00 PM
1,2-Dibromoethane	ND	2.0	μg/L μg/l		2/17/2010 12:54:00 PM
2-Hexanone	ND		µg/L	1	
1,3-Dichloropropane	ND	10	μg/L	1	2/17/2010 12:54:00 PM
Tetrachloroethene		2.0	µg/L	1	2/17/2010 12:54:00 PM
	140 ND	2.0	µg/L	. 1	2/17/2010 12:54:00 PM
Dibromochloromethane	ND.	2.0	μg/L	1	2/17/2010 12:54:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-12A

Date: 01-Mar-10

Client Sample ID: MW-207 D Collection Date: 2/11/2010 8:05:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
m,p-Xylene	ND	2.0	µg/L	. 1 .	2/17/2010 12:54:00 PM
o-Xylene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
Styrene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
Bromoform	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	2/17/2010 12:54:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/17/2010 12:54:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
Naphthalene	ND	5.0	µg/L	1	2/17/2010 12:54:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/17/2010 12:54:00 PM
Surr: Dibromofluoromethane	98.3	82-122	%REC	1	2/17/2010 12:54:00 PM
Surr: 1,2-Dichloroethane-d4	100	73-135	%REC	1	2/17/2010 12:54:00 PM
Surr: Toluene-d8	91.8	82-117	%REC	1	2/17/2010 12:54:00 PM
Surr: 4-Bromofluorobenzene	93.1	77-119	%REC	- 1	2/17/2010 12:54:00 PM

CLIENT:	Shaw Environmental & Infrastructure, Inc.
Lab Order:	1002033
Project:	130274 Textron
Lab ID:	1002033-13A

Date: 01-Mar-10

Client Sample ID: MW-101 S Collection Date: 2/11/2010 8:25:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	S	W8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L		2/15/2010 1:06:00 PM
Chloromethane	ND	5.0	µg/L	1	2/15/2010 1:06:00 PM
Vinyl chloride	2.0	2.0	µg/L	11 - 11 - 13 - 1	2/15/2010 1:06:00 PM
Chloroethane	ND	5.0	µg/L	<u>т</u> 1	2/15/2010 1:06:00 PM
Bromomethane	ND	2.0	µg/L	1	2/15/2010 1:06:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1. 1	2/15/2010 1:06:00 PM
Diethyl ether	ND	5.0	μg/L	1	2/15/2010 1:06:00 PM
Acetone	ND	10	µg/L	1	2/15/2010 1:06:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/15/2010 1:06:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/15/2010 1:06:00 PM
Methylene chloride	ND	5.0	μg/L	s d i tes i sur	2/15/2010 1:06:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	2/15/2010 1:06:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/15/2010 1:06:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/15/2010 1:06:00 PM
2-Butanone	ND	10	µg/L	1	2/15/2010 1:06:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 1:06:00 PM
cis-1,2-Dichloroethene	16	2.0	µg/L	1	2/15/2010 1:06:00 PM
Chloroform	ND	2.0	μg/L	1	2/15/2010 1:06:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/15/2010 1:06:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/15/2010 1:06:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1. 1. 1. 1.	2/15/2010 1:06:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	2/15/2010 1:06:00 PM
Carbon tetrachloride	ND	2.0	μg/L	1	2/15/2010 1:06:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	2/15/2010 1:06:00 PM
Benzene	ND	1.0	µg/L	1	2/15/2010 1:06:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/15/2010 1:06:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 1:06:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/15/2010 1:06:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/15/2010 1:06:00 PM
4-Methyl-2-pentanone	ND	. 10	μg/L	1	2/15/2010 1:06:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1 1 - 1 -	2/15/2010 1:06:00 PM
Toluene	ND	2.0	μg/L	1	2/15/2010 1:06:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2010 1:06:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	2/15/2010 1:06:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	1	2/15/2010 1:06:00 PM
2-Hexanone	ND	10	μg/L	1	2/15/2010 1:06:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	. 1 .	2/15/2010 1:06:00 PM
Tetrachloroethene	21	2.0	μg/L	1	2/15/2010 1:06:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/15/2010 1:06:00 PM
Distonochorometriane	ND	2.0	μy/L	1	2110/2010 1.00.00 FW

CLIENT:	Shaw Environmental & Infrastructure, Inc.
Lab Order:	1002033
Project:	130274 Textron
Lab ID:	1002033-13A

Date: 01-Mar-10

Client Sample ID: MW-101 S Collection Date: 2/11/2010 8:25:00 AM Matrix: GROUNDWATER

1,1,1,2-Tetrachloroethane Ethylbenzene m,p-Xylene o-Xylene Styrene Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene tert-Butylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene	ND ND ND ND ND ND ND ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM
Ethylbenzene m,p-Xylene o-Xylene Styrene Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene	ND ND ND ND ND ND ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1 1 1	2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM
m,p-Xylene o-Xylene Styrene Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene	ND ND ND ND ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM
o-Xylene Styrene Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene	ND ND ND ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1 1	2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM
Styrene Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene	ND ND ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1	2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM
Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene	ND ND ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1	2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM
Isopropylbenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene	ND ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1	2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene	ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1	2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM
1,2,3-Trichloropropane Bromobenzene n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene	ND ND ND ND ND	2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L	1	2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM
1,2,3-Trichloropropane Bromobenzene n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene	ND ND ND ND	2.0 2.0 2.0	μg/L μg/L μg/L μg/L	1	2/15/2010 1:06:00 PM 2/15/2010 1:06:00 PM
n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene	ND ND ND	2.0 2.0	μg/L μg/L μg/L	1 1 1	2/15/2010 1:06:00 PM
2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene	ND ND	2.0	μg/L μg/L	1 1	
4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene	ND		µg/L	1	2/15/2010 1:06:00 PM
1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene		2.0		and the second	
tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene			μg/L	.1	2/15/2010 1:06:00 PM
1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene	ND	2.0	μg/L	1	2/15/2010 1:06:00 PM
sec-Butylbenzene 4-Isopropyltoluene 1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 1:06:00 PM
4-Isopropyltoluene 1,3-Dichlorobenzene	ND	2.0	μg/L	1	2/15/2010 1:06:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	2/15/2010 1:06:00 PM
	ND .	2.0	μg/L	1	2/15/2010 1:06:00 PM
1 4-Dichlorobenzene	ND	2.0	μg/L	1	2/15/2010 1:06:00 PM
	ND	2.0	µg/L	1	2/15/2010 1:06:00 PM
n-Butylbenzene	ND	2.0	μg/L	. 1	2/15/2010 1:06:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	2/15/2010 1.06:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/15/2010 1:06:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	2/15/2010 1:06:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/15/2010 1:06:00 PM
Naphthalene	ND	5.0	µg/L	1	2/15/2010 1:06:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	2/15/2010 1:06:00 PM
Surr: Dibromofluoromethane 1	13	82-122	%REC	1	2/15/2010 1:06:00 PM
Surr: 1,2-Dichloroethane-d4 1	03	73-135	%REC	1	2/15/2010 1:06:00 PM
	01	82-117	%REC	1	2/15/2010 1:06:00 PM
Surr: 4-Bromofluorobenzene 99	3.9	77-119	%REC	1	2/15/2010 1:06:00 PM

CLIENT:	Shaw Environmental & Infrastructure, Inc.
Lab Order:	1002033
Project:	130274 Textron
Lab ID:	1002033-14A

Date: 01-Mar-10

Client Sample ID: MW-101 S Dup Collection Date: 2/11/2010 8:30:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	S	W8260B	•	· · · · ·	Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/15/2010 1:41:00 PM
Chloromethane	ND	5.0	µg/L	1	2/15/2010 1:41:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Chloroethane	ND	5.0	µg/L	1	2/15/2010 1:41:00 PM
Bromomethane	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/15/2010 1:41:00 PM
Acetone	11	10	μg/L	1	2/15/2010 1:41:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/15/2010 1:41:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Methylene chloride	ND	5.0	μg/L	1	2/15/2010 1:41:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
1,1-Dichloroethane	ND .	2.0	µg/L	,1	2/15/2010 1:41:00 PM
2-Butanone	ND	.10	µg/L	1	2/15/2010 1:41:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
cis-1,2-Dichloroethene	14	2.0	µg/L	1	2/15/2010 1:41:00 PM
Chloroform	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/15/2010 1:41:00 PM
Bromochloromethane	ND	2.0	μg/L	1	2/15/2010 1:41:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Benzene	ND	1.0	µg/L	1	2/15/2010 1:41:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/15/2010 1:41:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	2/15/2010 1:41:00 PM
Toluene	ND	2.0	μg/L	1	2/15/2010 1:41:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	2/15/2010 1:41:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
2-Hexanone	ND	10	µg/L	1	2/15/2010 1:41:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Tetrachloroethene	20	2.0	μg/L	1	2/15/2010 1:41:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/15/2010 1:41:00 PM

CLIENT:	Shaw Environmental & Infrastructure, Inc.
Lab Order:	1002033
Project:	130274 Textron
Lab ID:	1002033-14A

Date: 01-Mar-10

Client Sample ID: MW-101 S Dup Collection Date: 2/11/2010 8:30:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	· 1 ·	2/15/2010 1:41:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	2/15/2010 1:41:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
m,p-Xylene	ND	2.0	μg/L	1	2/15/2010 1:41:00 PM
o-Xylene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Styrene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Bromoform	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	2/15/2010 1:41:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
2-Chlorotoluene	ND	2.0	μg/L	1	2/15/2010 1:41:00 PM
4-Chlorotoluene	ND	2.0	μg/L	1	2/15/2010 1:41:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	2/15/2010 1:41:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
n-Butylbenzene	ND	2.0	μg/L	1	2/15/2010 1:41:00 PM
1,2-Dichlorobenzene	· ND	2.0	μg/L	1	2/15/2010 1:41:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	2/15/2010 1:41:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	2/15/2010 1:41:00 PM
Naphthalene	ND	5.0	μg/L	1	2/15/2010 1:41:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 1:41:00 PM
Surr: Dibromofluoromethane	109	82-122	%REC	1	2/15/2010 1:41:00 PM
Surr: 1,2-Dichloroethane-d4	106	73-135	%REC	1	2/15/2010 1:41:00 PM
Surr: Toluene-d8	103	82-117	%REC	1	2/15/2010 1:41:00 PM
Surr: 4-Bromofluorobenzene	96.1	77-119	%REC	1	2/15/2010 1:41:00 PM

Shaw Environmental & Infrastructure, Inc.
1002033
130274 Textron
1002033-15A

Date: 01-Mar-10

Client Sample ID: MW-101 D Collection Date: 2/11/2010 8:40:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	50	μg/L	10	2/17/2010 2:37:00 PM
Chloromethane	ND	50	μg/L	10	2/17/2010 2:37:00 PM
Vinyl chloride	ND	20	µg/L	10	2/17/2010 2:37:00 PM
Chloroethane	ND	50	µg/L	10	2/17/2010 2:37:00 PM
Bromomethane	ND	20	μg/L	10	2/17/2010 2:37:00 PM
Trichlorofluoromethane	ND	20	μg/L	10	2/17/2010 2:37:00 PM
Diethyl ether	ND	50	μg/L	10	2/17/2010 2:37:00 PM
Acetone	ND	100	μg/L	10	2/17/2010 2:37:00 PM
1,1-Dichloroethene	ND	10	μg/L	10	2/17/2010 2:37:00 PM
Carbon disulfide	ND	20	μg/L	10	2/17/2010 2:37:00 PM
Methylene chloride	ND	50	μg/L	10	2/17/2010 2:37:00 PM
Methyl tert-butyl ether	ND	20	µg/L	10	2/17/2010 2:37:00 PM
trans-1,2-Dichloroethene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
1,1-Dichloroethane	ND	20	µg/L	10	2/17/2010 2:37:00 PM
2-Butanone	ND	100	µg/L	10	2/17/2010 2:37:00 PM
2,2-Dichloropropane	ND	20	μg/L	10	2/17/2010 2:37:00 PM
cis-1,2-Dichloroethene	• ND	20	μg/L	10	2/17/2010 2:37:00 PM
Chloroform	ND	20	μg/L	10	2/17/2010 2:37:00 PM
Tetrahydrofuran	ND	100	µg/L	10	2/17/2010 2:37:00 PM
Bromochloromethane	ND	20	μg/L	10	2/17/2010 2:37:00 PM
1,1,1-Trichloroethane	ND	20	µg/L	10	2/17/2010 2:37:00 PM
1,1-Dichloropropene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
Carbon tetrachloride	ND	20	µg/L	10	2/17/2010 2:37:00 PM
1,2-Dichloroethane	ND	20	μg/L	10	2/17/2010 2:37:00 PM
Benzene	ND	10	µg/L	10	2/17/2010 2:37:00 PM
Trichloroethene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
1,2-Dichloropropane	ND	20	μg/L	10	2/17/2010 2:37:00 PM
Bromodichloromethane	ND	20	µg/L	10	2/17/2010 2:37:00 PM
Dibromomethane	ND	20	µg/L	10	2/17/2010 2:37:00 PM
4-Methyl-2-pentanone	ND	100	µg/L	10	2/17/2010 2:37:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	10	2/17/2010 2:37:00 PM
Toluene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	10	2/17/2010 2:37:00 PM
1,1,2-Trichloroethane	ND	20	μg/L	10	2/17/2010 2:37:00 PM
1,2-Dibromoethane	ND	20	μg/L	10	2/17/2010 2:37:00 PM
2-Hexanone	ND	100	μg/L	10	2/17/2010 2:37:00 PM
1,3-Dichloropropane	ND	20	μg/L	10	2/17/2010 2:37:00 PM
Tetrachloroethene	890	20	μg/L	10	2/17/2010 2:37:00 PM
Dibromochloromethane	ND	20	μg/L	10	2/17/2010 2:37:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-15A

.

Date: 01-Mar-10

Client Sample ID: MW-101 D Collection Date: 2/11/2010 8:40:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	20	μg/L	10	2/17/2010 2:37:00 PM
1,1,1,2-Tetrachloroethane	ND	20	µg/L	10	2/17/2010 2:37:00 PM
Ethylbenzene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
m,p-Xylene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
o-Xylene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
Styrene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
Bromoform	ND	20	µg/L	10	2/17/2010 2:37:00 PM
Isopropylbenzene	ND	20	μg/L	10	2/17/2010 2:37:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	2/17/2010 2:37:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	2/17/2010 2:37:00 PM
Bromobenzene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
n-Propylbenzene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
2-Chlorotoluene	ND	20	μg/L	10	2/17/2010 2:37:00 PM
4-Chlorotoluene	ND	20	μg/L	10	2/17/2010 2:37:00 PM
1,3,5-Trimethylbenzene	ND	20	μg/L	10	2/17/2010 2:37:00 PM
tert-Butylbenzene	ND	. 20	µg/L	10	2/17/2010 2:37:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
sec-Butylbenzene	ND	20	μg/L	10	2/17/2010 2:37:00 PM
4-Isopropyltoluene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
1,3-Dichlorobenzene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
1,4-Dichlorobenzene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
n-Butylbenzene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
1,2-Dibromo-3-chloropropane	ND	50	µg/L	10	2/17/2010 2:37:00 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	2/17/2010 2:37:00 PM
Naphthalene	ND	50	μg/L	10	2/17/2010 2:37:00 PM
1,2,3-Trichlorobenzene	ND	20	μg/L	10	2/17/2010 2:37:00 PM
Surr: Dibromofluoromethane	99.2	82-122	%REC	10	2/17/2010 2:37:00 PM
Surr: 1,2-Dichloroethane-d4	102	73-135	%REC	10	2/17/2010 2:37:00 PM
Surr: Toluene-d8	92.2	82-117	%REC	10	2/17/2010 2:37:00 PM
Surr: 4-Bromofluorobenzene	91.7	77-119	%REC	10	2/17/2010 2:37:00 PM

Shaw Environmental & Infrastructure, Inc. **CLIENT:** Lab Order: 1002033 **Project:** 130274 Textron Lab ID: 1002033-16A

=

Date: 01-Mar-10

Client Sample ID: MW-216 S Collection Date: 2/11/2010 11:50:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/M	S SI	N8260B		•	Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/15/2010 2:15:00 PM
Chloromethane	ND	5.0	µg/L	1	2/15/2010 2:15:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
Chloroethane	. ND	5.0	µg/L	1	2/15/2010 2:15:00 PM
Bromomethane	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/15/2010 2:15:00 PM
Acetone	10	10	µg/L	1	2/15/2010 2:15:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/15/2010 2:15:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
Methylene chloride	ND	5.0	μg/L	1	2/15/2010 2:15:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	1	2/15/2010 2:15:00 PM
1,1-Dichloroethane	2.0	2.0	µg/L	1	2/15/2010 2:15:00 PM
2-Butanone	ND	10	µg/L	1	2/15/2010 2:15:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
cis-1,2-Dichloroethene	66	2.0	µg/L	1	2/15/2010 2:15:00 PM
Chloroform	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/15/2010 2:15:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	-1	2/15/2010 2:15:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	2/15/2010 2:15:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
Benzene	ND	1.0	µg/L	1	2/15/2010 2:15:00 PM
Trichloroethene	ND	2.0	µg/L	· 1	2/15/2010 2:15:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	2/15/2010 2:15:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	. 1	2/15/2010 2:15:00 PM
Toluene	2.4	2.0	μg/L	1	2/15/2010 2:15:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	2/15/2010 2:15:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	2/15/2010 2:15:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
2-Hexanone	ND	10	µg/L	1	2/15/2010 2:15:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	2/15/2010 2:15:00 PM
Dibromochloromethane	ND	2.0	μg/L	, 1	2/15/2010 2:15:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-16A

Date: 01-Mar-10

Client Sample ID: MW-216 S Collection Date: 2/11/2010 11:50:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
Ethylbenzene	2.6	2.0	µg/L	1	2/15/2010 2:15:00 PM
m,p-Xylene	6.6	2.0	μg/L	1	2/15/2010 2:15:00 PM
o-Xylene	9.0	2.0	µg/L	1	2/15/2010 2:15:00 PM
Styrene	ND	2.0	μg/L	1	2/15/2010 2:15:00 PM
Bromoform	ND	2.0	µg/L	· 1 ···	2/15/2010 2:15:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	2/15/2010 2:15:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
1,3,5-Trimethylbenzene	9.1	2.0	µg/L	1, 1	2/15/2010 2:15:00 PM
tert-Butylbenzene	ND	2.0	μg/L	1	2/15/2010 2:15:00 PM
1,2,4-Trimethylbenzene	12	2.0	µg/L	1	2/15/2010 2:15:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	2/15/2010 2:15:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	. 1	2/15/2010 2:15:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	× 1	2/15/2010 2:15:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	2/15/2010 2:15:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
Naphthalene	21	5.0	µg/L	1	2/15/2010 2:15:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 2:15:00 PM
Surr: Dibromofluoromethane	104	82-122	%REC	1	2/15/2010 2:15:00 PM
Surr: 1,2-Dichloroethane-d4	104	73-135	%REC	1	2/15/2010 2:15:00 PM
Surr: Toluene-d8	102	82-117	%REC	1	2/15/2010 2:15:00 PM
Surr: 4-Bromofluorobenzene	98.4	77-119	%REC	1	2/15/2010 2:15:00 PM

CLIENT:	Shaw Environmental & Infrastructure, Inc.
Lab Order:	1002033
Project:	130274 Textron
Lab ID:	1002033-17A

Date: 01-Mar-10

Client Sample ID: MW-216 D Collection Date: 2/11/2010 11:30:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	S	W8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/15/2010 2:49:00 PM
Chloromethane	ND	5.0	µg/L	1	2/15/2010 2:49:00 PM
Vinyl chloride	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
Chloroethane	ND	5.0	µg/L	1	2/15/2010 2:49:00 PM
Bromomethane	ND	2.0	µg/L	. 1	2/15/2010 2:49:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
Diethyl ether	ND	5.0	μg/L	1	2/15/2010 2:49:00 PM
Acetone	ND	10	µg/L	1	2/15/2010 2:49:00 PM
1,1-Dichloroethene	ND ·	1.0	μg/L	1	2/15/2010 2:49:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
Methylene chloride	ND	5.0	μg/L	. 1	2/15/2010 2:49:00 PM
Methyl tert-butyl ether	5.1	2.0	μg/L	1	2/15/2010 2:49:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
2-Butanone	ND	10	μg/L	1	2/15/2010 2:49:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
cis-1,2-Dichloroethene	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
Chloroform	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
Tetrahydrofuran	ND	10	μg/L	1	2/15/2010 2:49:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
Carbon tetrachloride	ND	2.0	µg/L	.1	2/15/2010 2:49:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
Benzene	ND	1.0	μg/L	1	2/15/2010 2:49:00 PM
Trichloroethene	2.2	2.0	μg/L	1	2/15/2010 2:49:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
Bromodichloromethane	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
Dibromomethane	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	2/15/2010 2:49:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	2/15/2010 2:49:00 PM
Toluene	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	2/15/2010 2:49:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
1,2-Dibromoethane	ND	ي ي 2.0	µg/L	1	2/15/2010 2:49:00 PM
2-Hexanone	ND	,10	μg/L	1	2/15/2010 2:49:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	. 1	2/15/2010 2:49:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM

CLIENT:	Shaw Environmental & Infrastructure, Inc.
Lab Order:	1002033
Project:	130274 Textron
Lab ID:	1002033-17A

Date: 01-Mar-10

Client Sample ID: MW-216 D Collection Date: 2/11/2010 11:30:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Ç	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
Ethylbenzene	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
o-Xylene	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
Styrene	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
Bromoform	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
Bromobenzene	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
tert-Butylbenzene	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/15/2010 2:49:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 2:49:00 PM
lexachlorobutadiene	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
Naphthalene	ND	5.0	μg/L	1	2/15/2010 2:49:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	2/15/2010 2:49:00 PM
Surr: Dibromofluoromethane	97.7	82-122	%REC	1	2/15/2010 2:49:00 PM
Surr: 1,2-Dichloroethane-d4	96.7	73-135	%REC	1	2/15/2010 2:49:00 PM
Surr: Toluene-d8	100	82-117	%REC	1	2/15/2010 2:49:00 PM
Surr: 4-Bromofluorobenzene	103	77-119	%REC	1	2/15/2010 2:49:00 PM

Date: 01-Mar-10

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-18A

Client Sample ID: MW-116 D Collection Date: 2/11/2010 1:15:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		SW8260B		in an	Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/15/2010 3:23:00 PM
Chloromethane	ND	5.0	μg/L	1	2/15/2010 3:23:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/15/2010 3:23:00 PM
Chloroethane	ND	5.0	µg/L	1	2/15/2010 3:23:00 PM
Bromomethane	ND	2.0	µg/L	1	2/15/2010 3:23:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/15/2010 3:23:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/15/2010 3:23:00 PM
Acetone	ND	10	μg/L	1	2/15/2010 3:23:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	2/15/2010 3:23:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/15/2010 3:23:00 PM
Methylene chloride	ND	5.0	μg/L	1	2/15/2010 3:23:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	2/15/2010 3:23:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	1	2/15/2010 3:23:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	2/15/2010 3:23:00 PM
2-Butanone	ND	10	µg/L	. 1	2/15/2010 3:23:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 3:23:00 PM
cis-1,2-Dichloroethene	ND	2.0	µg/L	1	2/15/2010 3:23:00 PM
Chloroform	ND	2.0	µg/L	1	2/15/2010 3:23:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/15/2010 3:23:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/15/2010 3:23:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	2/15/2010 3:23:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	2/15/2010 3:23:00 PM
Carbon tetrachloride	ND	2.0	μg/L	1	2/15/2010 3:23:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	2/15/2010 3:23:00 PM
Benzene	ND	1.0	μg/L	1	2/15/2010 3:23:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/15/2010 3:23:00 PM
1,2-Dichloropropane	ND	2.0	μg/L	1	2/15/2010 3:23:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/15/2010 3:23:00 PM
Dibromomethane	ND	2.0	µg/L	. 1	2/15/2010 3:23:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	2/15/2010 3:23:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	2/15/2010 3:23:00 PM
Toluene	ND	2.0	μg/L	1	2/15/2010 3:23:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	2/15/2010 3:23:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	2/15/2010 3:23:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	1	2/15/2010 3:23:00 PM
2-Hexanone	ND	10	μg/L	1	2/15/2010 3:23:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	· 1	2/15/2010 3:23:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	2/15/2010 3:23:00 PM
Dibromochloromethane	ND	2.0	μg/L	, 1	2/15/2010 3:23:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-18A

Date: 01-Mar-10

Client Sample ID: MW-116 D Collection Date: 2/11/2010 1:15:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF Date Analy	zed
Chlorobenzene	ND	2.0	μg/L	1 2/15/2010 3:2:	3:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1 2/15/2010 3:23	3:00 PM
Ethylbenzene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
m,p-Xylene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
o-Xylene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
Styrene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
Bromoform	ND	2.0	μg/L	1 2/15/2010 3:23	3:00 PM
Isopropylbenzene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1 2/15/2010 3:23	
Bromobenzene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
n-Propylbenzene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
n-Butylbenzene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1 2/15/2010 3:23	3:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1 2/15/2010 3:23	3:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1 2/15/2010 3:23	3:00 PM
Naphthalene	ND	5.0	µg/L	1 2/15/2010 3:23	3:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1 2/15/2010 3:23	
Surr: Dibromofluoromethane	104	82-122	%REC	1 2/15/2010 3:23	
Surr: 1,2-Dichloroethane-d4	94.4	73-135	%REC	1 2/15/2010 3:23	
Surr: Toluene-d8	104	82-117	%REC	1 2/15/2010 3:23	
Surr: 4-Bromofluorobenzene	100	77-119	%REC	1 2/15/2010 3:23	

AMRO	Environmental	Laboratories	Corp.
------	---------------	--------------	-------

Date: 01-Mar-10

CLIENT: Shaw Environmental & Infrastructure, Inc. Lab Order: 1002033 **Project:** 130274 Textron Lab ID: 1002033-19A

Client Sample ID: MW-116 S Collection Date: 2/11/2010 1:20:00 PM Matrix: GROUNDWATER

Analyses	Result	RL (Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/15/2010 3:57:00 PM
Chloromethane	ND	5.0	µg/L	1	2/15/2010 3:57:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Chloroethane	ND	5.0	µg/L	1	2/15/2010 3:57:00 PM
Bromomethane	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Diethyl ether	ND	5.0	⊢ μg/L	1	2/15/2010 3:57:00 PM
Acetone	ND	10	µg/L	1	2/15/2010 3:57:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/15/2010 3:57:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/15/2010 3:57:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
2-Butanone	ND	10	µg/L	. 1	2/15/2010 3:57:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	2/15/2010 3:57:00 PM
cis-1,2-Dichloroethene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Chloroform	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Tetrahydrofuran	ND	10	µg/L	- 1	2/15/2010 3:57:00 PM
Bromochloromethane	ND	2.0	μg/L	1	2/15/2010 3:57:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Benzene	ND	1.0	µg/L	1	2/15/2010 3:57:00 PM
Trichloroethene	ND	2.0	μg/L	1	2/15/2010 3:57:00 PM
1,2-Dichloropropane	ND	2.0	μg/L	1	2/15/2010 3:57:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	2/15/2010 3:57:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2010 3:57:00 PM
Toluene	ND	2.0	μg/L	· 1	2/15/2010 3:57:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	2/15/2010 3:57:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	2/15/2010 3:57:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	1	2/15/2010 3:57:00 PM
2-Hexanone	ND	10	μg/L	1	2/15/2010 3:57:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	2/15/2010 3:57:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/15/2010 3:57:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-19A

Date: 01-Mar-10

Client Sample ID: MW-116 S Collection Date: 2/11/2010 1:20:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	2/15/2010 3:57:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Ethylbenzene	ND	. 2.0	µg/L	1	2/15/2010 3:57:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
o-Xylene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Styrene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Bromoform	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	2/15/2010 3:57:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/15/2010 3:57:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 3:57:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	2/15/2010 3:57:00 PM
Naphthalene	ND	5.0	µg/L	1	2/15/2010 3:57:00 PM
,2,3-Trichlorobenzene	ND	2.0	μg/L	1	2/15/2010 3:57:00 PM
Surr: Dibromofluoromethane	102	82-122	%REC	1	2/15/2010 3:57:00 PM
Surr: 1,2-Dichloroethane-d4	93.1	73-135	%REC	1	2/15/2010 3:57:00 PM
Surr: Toluene-d8	102	82-117	%REC	1	2/15/2010 3:57:00 PM
Surr: 4-Bromofluorobenzene	102	77-119	%REC	1	2/15/2010 3:57:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-20A

_

Date: 01-Mar-10

Client Sample ID: CW-2 Collection Date: 2/11/2010 2:05:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
PA 8260B VOLATILES BY GC/MS	1	SW8260B	· · ·		Analyst: SK
Dichlorodifluoromethane	' ND	5.0	µg/L	1	2/15/2010 4:32:00 PM
Chloromethane	ND	5.0	μg/L	· · ·	2/15/2010 4:32:00 PM
Vinyl chloride	ND	2.0	μg/L	1	2/15/2010 4:32:00 PM
Chloroethane	ND	5.0	μg/L	1.	2/15/2010 4:32:00 PM
Bromomethane	ND	2.0	μg/L	1	2/15/2010 4:32:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	2/15/2010 4:32:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/15/2010 4:32:00 PM
Acetone	ND	10	µg/L	1	2/15/2010 4:32:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	2/15/2010 4:32:00 PM
Carbon disulfide	ND	2.0	μg/L	1	2/15/2010 4:32:00 PM
Methylene chloride	ND	5.0	μg/L	1	2/15/2010 4:32:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
2-Butanone	ND	10	µg/L	1	2/15/2010 4:32:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
sis-1,2-Dichloroethene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
Chloroform	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
Fetrahydrofuran	ND	10	µg/L	1	2/15/2010 4:32:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
I,1,1-Trichloroethane	ND	2.0	µg/L	. 1	2/15/2010 4:32:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
,2-Dichloroethane	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
Benzene	ND	1.0	µg/L	1	2/15/2010 4:32:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
-Methyl-2-pentanone	ND	10	µg/L	. 1	2/15/2010 4:32:00 PM
is-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2010 4:32:00 PM
oluene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
ans-1,3-Dichloropropene	ND	1.0	µg/L	. 1	2/15/2010 4:32:00 PM
,1,2-Trichloroethane	ND	2.0	µg/L	1 .	2/15/2010 4:32:00 PM
,2-Dibromoethane	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
Hexanone	ND	10	µg/L	1	2/15/2010 4:32:00 PM
,3-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
etrachloroethene	ND	2.0	μg/L	1	2/15/2010 4:32:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/15/2010 4:32:00 PM

CLIENT:	Shaw Environmental & Infrastructure, Inc.
Lab Order:	1002033
Project:	130274 Textron
Lab ID:	1002033-20A

Date: 01-Mar-10

Client Sample ID: CW-2 Collection Date: 2/11/2010 2:05:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
Ethylbenzene	ND	2.0	µg/L	. 1.	2/15/2010 4:32:00 PM
m,p-Xylene	ND	2.0	µg/Ĺ	1 [°]	2/15/2010 4:32:00 PM
o-Xylene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
Styrene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
Bromoform	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	· 1	2/15/2010 4:32:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	. 1	2/15/2010 4:32:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
n-Propylbenzene	ND	2.0	µg/L	. 1	2/15/2010 4:32:00 PM
2-Chlorotoluene	ND	2.0	μg/L	. 1	2/15/2010 4:32:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	2/15/2010 4:32:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/15/2010 4:32:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
Naphthalene	ND	5.0	µg/L	1	2/15/2010 4:32:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 4:32:00 PM
Surr: Dibromofluoromethane	98.4	82-122	%REC	1	2/15/2010 4:32:00 PM
Surr: 1,2-Dichloroethane-d4	93.3	73-135	%REC	1	2/15/2010 4:32:00 PM
Surr: Toluene-d8	101	82-117	%REC	1	2/15/2010 4:32:00 PM
Surr: 4-Bromofluorobenzene	102	77-119	%REC	1	2/15/2010 4:32:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-21A

Date: 01-Mar-10

Client Sample ID: MW-209 D Collection Date: 2/11/2010 12:45:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual U	nits	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		SW8260B				Analyst: SK
Dichlorodifluoromethane	ND	5.0	μ	g/L	1	2/15/2010 5:06:00 PM
Chloromethane	ND	5.0		g/L	1	2/15/2010 5:06:00 PM
Vinyl chloride	ND	2.0		g/L	1	2/15/2010 5:06:00 PM
Chloroethane	ND	5.0		g/L	1	2/15/2010 5:06:00 PM
Bromomethane	ND	2.0	· Þí	g/L	1	2/15/2010 5:06:00 PM
Trichlorofluoromethane	ND	2.0	, µ	g/L	1	2/15/2010 5:06:00 PM
Diethyl ether	ND	5.0		g/L	1	2/15/2010 5:06:00 PM
Acetone	ND	10		g/L	1	2/15/2010 5:06:00 PM
1,1-Dichloroethene	4.1	1.0		g/L	1	2/15/2010 5:06:00 PM
Carbon disulfide	ND	2.0		j/L	1	2/15/2010 5:06:00 PM
Methylene chloride	ND	5.0		j/L	1	2/15/2010 5:06:00 PM
Methyl tert-butyl ether	5.0	2.0		j∕L ·	1	2/15/2010 5:06:00 PM
trans-1,2-Dichloroethene	ND	2.0		j/L	1	2/15/2010 5:06:00 PM
1,1-Dichloroethane	ND	2.0		j/L	1	2/15/2010 5:06:00 PM
2-Butanone	ND	10		j/L	1	2/15/2010 5:06:00 PM
2,2-Dichloropropane	ND	2.0		ı/L	1	2/15/2010 5:06:00 PM
cis-1,2-Dichloroethene	11	2.0		j/L	1	2/15/2010 5:06:00 PM
Chloroform	ND	2.0		ı/L	1	2/15/2010 5:06:00 PM
Tetrahydrofuran	ND	10		ı/L	1	2/15/2010 5:06:00 PM
Bromochloromethane	ND	2.0	μ		1	2/15/2010 5:06:00 PM
1,1,1-Trichloroethane	ND	2.0	μ		1	2/15/2010 5:06:00 PM
1,1-Dichloropropene	ND	2.0	μ		1	2/15/2010 5:06:00 PM
Carbon tetrachloride	ND	2.0	με		1	2/15/2010 5:06:00 PM
1,2-Dichloroethane	ND	2.0	μο		1	2/15/2010 5:06:00 PM
Benzene	ND	1.0	þg		1	2/15/2010 5:06:00 PM
Trichloroethene	360	20	μg		10	2/16/2010 12:13:00 PM
1,2-Dichloropropane	ND	2.0	μς		1	2/15/2010 5:06:00 PM
Bromodichloromethane	ND	2.0	μç		1	2/15/2010 5:06:00 PM
Dibromomethane	ND	2.0	μg		1	2/15/2010 5:06:00 PM
4-Methyl-2-pentanone	ND	10	μg		1	2/15/2010 5:06:00 PM
cis-1,3-Dichloropropene	ND	1.0	μ		1	2/15/2010 5:06:00 PM
Toluene	ND	2.0	μg		1	2/15/2010 5:06:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg		1	2/15/2010 5:06:00 PM
1,1,2-Trichloroethane	ND	2.0	μg		1	2/15/2010 5:06:00 PM
1,2-Dibromoethane	ND	2.0	μg		1	2/15/2010 5:06:00 PM
2-Hexanone	ND	10	μg		1	2/15/2010 5:06:00 PM
1,3-Dichloropropane	ND	2.0	μg		1	2/15/2010 5:06:00 PM
Tetrachloroethene	810	20	pd bh		10	2/16/2010 12:13:00 PM
Dibromochloromethane	ND	2.0	ρη`		1	2/15/2010 5:06:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-21A

-

Date: 01-Mar-10

Client Sample ID: MW-209 D Collection Date: 2/11/2010 12:45:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	2/15/2010 5:06:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
o-Xylene	ND ·	2.0	µg/L	1	2/15/2010 5:06:00 PM
Styrene	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
Bromoform	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	2/15/2010 5:06:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
Bromobenzene	ND	2.0	μg/L	1 -	2/15/2010 5:06:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	2/15/2010 5:06:00 PM
tert-Butylbenzene	ND	2.0	μg/L	1	2/15/2010 5:06:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
sec-Butylbenzene	ND	2.0	µg/L	. 1	2/15/2010 5:06:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
1,4-Dichlorobenzene	ND ·	2.0	µg/L	1	2/15/2010 5:06:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/15/2010 5:06:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	2/15/2010 5:06:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
Naphthalene	ND	5.0	µg/L	1	2/15/2010 5:06:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 5:06:00 PM
Surr: Dibromofluoromethane	103	82-122	%REC	[.] 1	2/15/2010 5:06:00 PM
Surr: 1,2-Dichloroethane-d4	91.4	73-135	%REC	1	2/15/2010 5:06:00 PM
Surr: Toluene-d8	101	82-117	%REC	1	2/15/2010 5:06:00 PM
Surr: 4-Bromofluorobenzene	97.8	77-119	%REC	1	2/15/2010 5:06:00 PM

CLIENT: Shaw Environmental & Infrastructure, Inc. Lab Order: 1002033 **Project:** 130274 Textron Lab ID: 1002033-22A

Date: 01-Mar-10

Client Sample ID: MW-109 D Collection Date: 2/11/2010 3:50:00 PM Matrix: GROUNDWATER

Analyses	Result	RL (Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B		· · ·	Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/16/2010 11:39:00 AM
Chloromethane	ND	5.0	µg/L	1	2/16/2010 11:39:00 AM
Vinyl chloride	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
Chloroethane	ND	5.0	µg/L	1	2/16/2010 11:39:00 AM
Bromomethane	ND	2.0	μg/L	1	2/16/2010 11:39:00 AM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
Diethyl ether	ND	5.0	µg/L	1	2/16/2010 11:39:00 AM
Acetone	ND	10	μg/L	1	2/16/2010 11:39:00 AM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/16/2010 11:39:00 AM
Carbon disulfide	ND	2.0	μg/L	1	2/16/2010 11:39:00 AM
Methylene chloride	ND	5.0	μg/L	1	2/16/2010 11:39:00 AM
Methyl tert-butyl ether	ND	2.0	μg/L	1	2/16/2010 11:39:00 AM
trans-1,2-Dichloroethene	ND	2.0	μg/L	1	2/16/2010 11:39:00 AM
1,1-Dichloroethane	ND	2.0	μg/L	1	2/16/2010 11:39:00 AM
2-Butanone	ND	10	μġ/L	1	2/16/2010 11:39:00 AM
2,2-Dichloropropane	ND	2.0	μg/L	1	2/16/2010 11:39:00 AM
cis-1,2-Dichloroethene	ND	2.0	μg/L	1	2/16/2010 11:39:00 AM
Chloroform	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
Tetrahydrofuran	ND	10	µg/L	1	2/16/2010 11:39:00 AM
Bromochloromethane	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	2/16/2010 11:39:00 AM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
Carbon tetrachloride	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
Benzene	ND	1.0	μg/L	1	2/16/2010 11:39:00 AM
Trichloroethene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
Bromodichloromethane	ND	2.0	μg/L	1	2/16/2010 11:39:00 AM
Dibromomethane	ND	2.0	μg/L	1	2/16/2010 11:39:00 AM
4-Methyl-2-pentanone	ND	10	μg/L	1	2/16/2010 11:39:00 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	2/16/2010 11:39:00 AM
Foluene	ND	2.0	μg/L	1	2/16/2010 11:39:00 AM
rans-1,3-Dichloropropene	ND	1.0	μg/L	1	2/16/2010 11:39:00 AM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	2/16/2010 11:39:00 AM
I,2-Dibromoethane	ND	2.0	μg/L	1	2/16/2010 11:39:00 AM
2-Hexanone	ND	10	μg/L	1	2/16/2010 11:39:00 AM
,3-Dichloropropane	ND	2.0	μg/L μg/L	1	2/16/2010 11:39:00 AM
Fetrachloroethene	ND	2.0			2/16/2010 11:39:00 AM
Dibromochloromethane	ND	2.0	µg/L µg/L	1	2/16/2010 11:39:00 AM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-22A

Date: 01-Mar-10

Client Sample ID: MW-109 D Collection Date: 2/11/2010 3:50:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	· 1	2/16/2010 11:39:00 AM
Ethylbenzene	ND	. 2.0	µg/L	1	2/16/2010 11:39:00 AM
m,p-Xylene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
o-Xylene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
Styrene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
Bromoform	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
Isopropylbenzene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1 -	2/16/2010 11:39:00 AM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
Bromobenzene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
n-Propylbenzene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
2-Chlorotoluene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
4-Chlorotoluene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
tert-Butylbenzene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
sec-Butylbenzene	ND	2.0	µg/L	· _ 1	2/16/2010 11:39:00 AM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
n-Butylbenzene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/16/2010 11:39:00 AM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
Naphthalene	ND	5.0	µg/L	1	2/16/2010 11:39:00 AM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/16/2010 11:39:00 AM
Surr: Dibromofluoromethane	105	82-122	%REC	1	2/16/2010 11:39:00 AM
Surr: 1,2-Dichloroethane-d4	102	73-135	%REC	1	2/16/2010 11:39:00 AM
Surr: Toluene-d8	101	82-117	%REC	1	2/16/2010 11:39:00 AM
Surr: 4-Bromofluorobenzene	97.6	77-119	%REC	1	2/16/2010 11:39:00 AM

55

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-23A

Date: 01-Mar-10

Client Sample ID: GAZ-3 Collection Date: 2/11/2010 3:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SI	W8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	μg/L	1	2/15/2010 6:14:00 PM
Chloromethane	ND	5.0	μg/L	`1 ^{``}	2/15/2010 6:14:00 PM
Vinyl chloride	9.5	2.0	µg/L	1	2/15/2010 6:14:00 PM
Chloroethane	ND	5.0	µg/L	1	2/15/2010 6:14:00 PM
Bromomethane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Diethyl ether	ND	5.0	μg/L	1	2/15/2010 6:14:00 PM
Acetone	ND	10	μg/L	1	2/15/2010 6:14:00 PM
1,1-Dichloroethene	1.8	1.0	µg/L	1	2/15/2010 6:14:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Methylene chloride	ND	5.0	μg/L	1	2/15/2010 6:14:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
2-Butanone	ND	10	μg/L	1	2/15/2010 6:14:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
cis-1,2-Dichloroethene	57	2.0	μg/L	1	2/15/2010 6:14:00 PM
Chloroform	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/15/2010 6:14:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Benzene	ND	1.0	μg/L	1	2/15/2010 6:14:00 PM
Trichloroethene	29	2.0	μg/L	1	2/15/2010 6:14:00 PM
1,2-Dichloropropane	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Dibromomethane	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	2/15/2010 6:14:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2010 6:14:00 PM
Toluene	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	2/15/2010 6:14:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
2-Hexanone	ND	10	µg/L	1	2/15/2010 6:14:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
Tetrachloroethene	3.7	2.0	μg/L	1	2/15/2010 6:14:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-23A

Date: 01-Mar-10

Client Sample ID: GAZ-3 Collection Date: 2/11/2010 3:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
o-Xylene	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
Styrene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Bromoform	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
4-Chlorotoluene	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	. 1	2/15/2010 6:14:00 PM
tert-Butylbenzene	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	2/15/2010 6:14:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
4-isopropyltoluene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	.1 .	2/15/2010 6:14:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Naphthalene	ND	5.0	µg/L	1	2/15/2010 6:14:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2010 6:14:00 PM
Surr: Dibromofluoromethane	107	82-122	%REC	1	2/15/2010 6:14:00 PM
Surr: 1,2-Dichloroethane-d4	91.6	73-135	%REC	1	2/15/2010 6:14:00 PM
Surr: Toluene-d8	101	82-117	%REC	1	2/15/2010 6:14:00 PM
Surr: 4-Bromofluorobenzene	96.2	77-119	%REC	1	2/15/2010 6:14:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-25A

_

Date: 01-Mar-10

Client Sample ID: Trip Blank Collection Date: 2/11/2010 2:50:00 PM Matrix: TRIP BLANK

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	sv	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	. 1	2/16/2010 11:05:00 AM
Chloromethane	ND	5.0	µg/L	1	2/16/2010 11:05:00 AM
Vinyl chloride	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
Chloroethane	ND	5.0	µg/L	1	2/16/2010 11:05:00 AN
Bromomethane	ND	2.0	μg/L	1	2/16/2010 11:05:00 AM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
Diethyl ether	ND	5.0	µg/L	1	2/16/2010 11:05:00 AM
Acetone	ND	10	µg/L	1	2/16/2010 11:05:00 AM
1,1-Dichloroethene	ND	1.0	µg/L	. 1	2/16/2010 11:05:00 AM
Carbon disulfide	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
Methylene chloride	ND	5.0	μg/L	1	2/16/2010 11:05:00 AM
Methyl tert-butyl ether	ND	2.0	μg/L	1	2/16/2010 11:05:00 AM
trans-1,2-Dichloroethene	ND	2.0	µg/L	. 1	2/16/2010 11:05:00 AM
1,1-Dichloroethane	ND	2.0	μg/L	1	2/16/2010 11:05:00 AM
2-Butanone	ND	10	μg/L	1	2/16/2010 11:05:00 AM
2,2-Dichloropropane	ND	2.0	μg/L	1	2/16/2010 11:05:00 AM
cis-1,2-Dichloroethene	ND	2.0	μg/L	1	2/16/2010 11:05:00 AM
Chloroform	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
Tetrahydrofuran	ND	10	µg/L	1	2/16/2010 11:05:00 AM
Bromochloromethane	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
1,1,1-Trichloroethane	ND	2.0	µg/L	. 1	2/16/2010 11:05:00 AM
1,1-Dichloropropene	ND	2.0	µg/L	. 1	2/16/2010 11:05:00 AM
Carbon tetrachloride	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/16/2010 11:05:00 AN
Benzene	ND	1.0	µg/L	1	2/16/2010 11:05:00 AM
Trichloroethene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/16/2010 11:05:00 AN
Bromodichloromethane	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
Dibromomethane	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/16/2010 11:05:00 AM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/16/2010 11:05:00 AM
Toluene	, ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
trans-1,3-Dichloropropene	ND	1.0	µg/L	· 1	2/16/2010 11:05:00 AM
1,1,2-Trichloroethane	ND	2.0	μġ/L	1	2/16/2010 11:05:00 AN
1,2-Dibromoethane	ND	2.0	µg/L	1	2/16/2010 11:05:00 AN
2-Hexanone	ND	10	µg/L	1	2/16/2010 11:05:00 AM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
Tetrachloroethene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AN
Dibromochloromethane	ND	2.0	μg/L	1	2/16/2010 11:05:00 AM

58

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1002033Project:130274 TextronLab ID:1002033-25A

Date: 01-Mar-10

Client Sample ID: Trip Blank Collection Date: 2/11/2010 2:50:00 PM Matrix: TRIP BLANK

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
Ethylbenzene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
m,p-Xylene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
o-Xylene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
Styrene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
Bromoform	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
Isopropylbenzene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	2/16/2010 11:05:00 AM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	2/16/2010 11:05:00 AM
Bromobenzene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
n-Propylbenzene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
2-Chlorotoluene	ND	2.0	μg/L	1	2/16/2010 11:05:00 AM
4-Chlorotoluene	ND	2.0	μg/L	1	2/16/2010 11:05:00 AM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	2/16/2010 11:05:00 AM
tert-Butylbenzene	ND	2.0	µg/L	. 1	2/16/2010 11:05:00 AM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
sec-Butylbenzene	ND	2.0	μg/L	1	2/16/2010 11:05:00 AM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
n-Butylbenzene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/16/2010 11:05:00 AM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
Naphthalene	ND	5.0	µg/L	1	2/16/2010 11:05:00 AM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/16/2010 11:05:00 AM
Surr: Dibromofluoromethane	103	82-122	%REC	1	2/16/2010 11:05:00 AM
Surr: 1,2-Dichloroethane-d4	101	73-135	%REC	1	2/16/2010 11:05:00 AM
Surr: Toluene-d8	103	82-117	%REC	1	2/16/2010 11:05:00 AM
Surr: 4-Bromofluorobenzene	98.1	77-119	%REC	1	2/16/2010 11:05:00 AM

59

60

Date: 18-Feb-10

CLIENT: Work Order: Project:	100203	nvironmental & Infrastr 3 Textron	ucture, Inc.						· ·	QC SUM		(REPO Method B	
Sample ID: mb-02	/15/10	Batch ID: R44059	Test Coo	de: SW8260	B Units	: µg/L		Analysis [)ate 2/15/2	2010 11:23:00 AM	Pren Dat	e: 2/15/2010	
Client ID:			Run ID:	V-3_100				SeqNo:	73179		riep Dat	e. 2/15/2010	I
Analyte		QC Sample Result	RL	Units	QC Spike Amount		%REC	LowLimit	HighLimit	Original Sample or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluoromet	thane	ND	5.0	μg/L									
Chloromethane		ND	5.0	μg/L									
Vinyl chloride		ND	2.0	µg/Ľ									
Chloroethane		ND	5.0	µg/L									
Bromomethane		ND	2.0	μg/L									
Trichlorofluorometh	iane	ND	2.0	μg/L	1								
Diethyl ether		ND	5.0	μg/L									
Acetone		ND	10	μg/L									;
1,1-Dichloroethene		ND	1.0	µg/L						•			
Carbon disulfide		ND	2.0	µg/L									
Methylene chloride	*	ND	5.0	µg/L									
Methyl tert-butyl eth	ner	ND	2.0	⊢ş/⊑			*						
rans-1,2-Dichloroet	thene	ND	2.0	µg/L									
1,1-Dichloroethane		ND	2.0	μg/L	·				•				
2-Butanone		ND	10	µg/L									
2,2-Dichloropropane	е	ND	2.0	µg/L					· .				
cis-1,2-Dichloroethe	ene	ND	2.0	μg/L									
Chloroform		ND	2.0	μg/L						. t			
Fetrahydrofuran		ND	10	µg/L									
Bromochloromethai	ne	NĎ	2.0	μg/L									
1,1,1-Trichloroethar		ND	2.0	μg/L									
1,1-Dichloropropene		ND	2.0	μg/L							N		
Carbon tetrachloride		ND	2.0	μg/L									
1,2-Dichloroethane		ND	2.0	μg/L									
Benzene		ND	1.0	μg/L									

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

	02033 0274 Textron	ND							- U	l si	IMMA	AK Y	СКЮН	76 N.V.A
Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane	0274 Textron	ND							•					UNI
1,2-Dichloropropane Bromodichloromethane Dibromomethane	·	ND										N	Aethod	Blanl
Bromodichloromethane Dibromomethane		ND	2.0	µg/L		<u></u>			 					
Dibromomethane		ND	2.0	μg/L										
		ND	2.0	µg/L										
A-Methyl-2-pentanono		ND	2.0	μg/L										
+-meanyr-z-pentanone	•	ND	10	µg/L	-									
cis-1,3-Dichloropropene	4 K.	ND	1.0	μg/L										
Toluene		ND	2.0	μg/L										
trans-1,3-Dichloropropene	e	ND	1.0	μg/L										
1,1,2-Trichloroethane		ND	2.0	µg/L										
1,2-Dibromoethane		ND	2.0	μg/L										
2-Hexanone		ND	10	μg/L										
1,3-Dichloropropane		ND	2.0	μg/L										
Tetrachloroethene		ND	2.0	μg/L										
Dibromochloromethane		ND	2.0	µg/L										
Chlorobenzene		ND	2.0	μg/L										
1,1,1,2-Tetrachloroethane	9	ND	2.0	µg/L										
Ethylbenzene		ND	2.0	µg/L				•						
m,p-Xylene		ND	2.0	µg/L										
o-Xylene		ND	2.0	µg/L							10 A.			
Styrene		ND	2.0	µg/L										
Bromoform		ND	2.0	μg/L										
Isopropylbenzene		ND	2.0	μg/L										
1,1,2,2-Tetrachloroethane	9	ND	2.0	μg/L										
1,2,3-Trichloropropane		ND	2.0	μg/L										
Bromobenzene		ND	2.0	μg/L										
n-Propylbenzene		ND	2.0	μg/L					•					
2-Chlorotoluene	•	ND	2.0	μg/L										
4-Chlorotoluene		ND	2.0	µg/L							N			
1,3,5-Trimethylbenzene		ND	2.0	μg/L										
tert-Butylbenzene		ND	2.0	μg/L										
1,2,4-Trimethylbenzene		ND	2.0	μg/L										

61

Date: 18-Feb-10

J - Analyte detected below quantitation limits R

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

CLIENT: Work Order: Project:	Shaw Environmer 1002033 130274 Textron	ıtal & Infrasti	ructure, Inc.							QCS	SUMM	ARY REPORT Method Blank
sec-Butylbenzene		ND	2.0	μg/L				-				
4-Isopropyltoluene		ND	2.0	µg/L								
1,3-Dichlorobenzen	e	ND	2.0	μġ/L	1			•				· · · · ·
1,4-Dichlorobenzen	e	ND	2.0	µg/L								
n-Butylbenzene		ND	2.0	µg/L								
1,2-Dichlorobenzen	e	ND	2.0	μg/L								
1,2-Dibromo-3-chlor	ropropane	ND	5.0	μg/L								
1,2,4-Trichlorobenze	ene	ND	2.0	µg/L								
Hexachlorobutadien	ie ·	ND	2.0	µg/L								
Naphthalene		ND	5.0	µg/L								
1,2,3-Trichlorobenze	ene	ND	2.0	µg/L								
Surr: Dibromofluc	promethane	27.85	2.0	μg/L	25	0	111	82	122		N	
Surr: 1,2-Dichlord	pethane-d4	27.12	2.0	µg/L	25	0	108	73	135		0	
Surr: Toluene-d8		25.95	2.0	µg/L	25	0	104	82	117	•	0	
Surr: 4-Bromofluc	probenzene	24.67	2.0	µg/L	25	0	98.7	77	119		0	

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

CLIENT: Shaw Environmental & Infrastructure, Inc. **QC SUMMARY REPORT** Work Order: 1002033 **Project:** 130274 Textron Method Blank Sample ID: mb-02/16/10 Batch ID: R44062 Test Code: SW8260B Units: µg/L Analysis Date 2/16/2010 10:31:00 AM Prep Date: 2/16/2010 Client ID: Run ID: V-3_100216A SeqNo: 731855 QC Sample QC Spike Original Sample **Original Sample** Analyte Result RL Units Amount Result %REC LowLimit HighLimit or MS Result %RPD RPDLimit Qua Dichlorodifluoromethane ND 5.0 µg/L Chloromethane ND 5.0 µg/L Vinyl chloride ND 2.0 µg/L Chloroethane ND 5.0 µg/L Bromomethane ND 2.0 μg/L Trichlorofluoromethane ND 2.0 µg/L Diethyl ether ND 5.0 μg/L Acetone ND 10 µg/L 1,1-Dichloroethene ND 1.0 µg/L Carbon disulfide ND 2.0 µg/L Methylene chloride ND 5.0 µg/L Methyl tert-butyl ether ND 2.0 µg/L trans-1.2-Dichloroethene ND 2.0 µg/L 1,1-Dichloroethane ND 2.0 μg/L 2-Butanone ND 10 µg/L 2,2-Dichloropropane ND 2.0 µg/L cis-1,2-Dichloroethene ND 2.0 µg/L Chloroform ND 2.0 µg/L Tetrahydrofuran ND 10 µg/L Bromochloromethane ND 2.0 µg/L 1,1,1-Trichloroethane ND 2.0 μg/L 1,1-Dichloropropene ND 2.0 µg/L Carbon tetrachloride ND 2.0 µg/L 1,2-Dichloroethane ND 2.0 µg/L Benzene ND 1.0 µg/L Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank

NA - Not applicable where J values or ND results occur

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

AMRO Environmental Laboratories Corp.

စ္မ

CLIENT: Work Order:	Shaw Environmenta 1002033	al & Infrastru	acture, Inc.		QC SUMMARY REPORT
Project:	130274 Textron				Method Blank
Trichloroethene		ND	2.0	µg/L	
1,2-Dichloropropane		ND	2.0	μg/L	
Bromodichlorometh	ane	ND	2.0	µg/L	
Dibromomethane	•	ND	2.0	µg/L	
4-Methyl-2-pentano		ND	10	μg/L	
cis-1,3-Dichloroprop	ene	ND	1.0	µg/L	
Toluene		ND	2.0	µg/L	
trans-1,3-Dichloropr		ND	1.0	µg/L	
1,1,2-Trichloroethan	e	ND	2.0	µg/L	
1,2-Dibromoethane		ND	2.0	µg/L	
2-Hexanone	· ·	ND	10	µg/L	
1,3-Dichloropropane	•	ND	2.0	µg/L	
Tetrachloroethene		ND	2.0	µg/L	
Dibromochlorometh	ane	ND	2.0	µg/L	
Chlorobenzene	·	ND	2.0	µg/L	
1,1,1,2-Tetrachloroe	thane	ND	2.0	µg/L	
Ethylbenzene		ND	2.0	µg/L	
m,p-Xylene		ND	2.0	µg/L	
o-Xylene		ND	2.0	µg/L	
Styrene		ND	2.0	µg/L	
Bromoform		ND	2.0	µg/L	
Isopropylbenzene		ND	2.0	µg/L	
1,1,2,2-Tetrachloroe	thane	ND	2.0	µg/L	
1,2,3-Trichloropropa	ne	ND	2.0	µg/L	
Bromobenzene		ND	2.0	µg/L	
n-Propylbenzene		ND	2.0	μg/L	
2-Chlorotoluene	•	ND	2.0	μg/L	
4-Chlorotoluene		ND	2.0	μg/L	
1,3,5-Trimethylbenz	ene	ND	2.0	μg/L	
tert-Butylbenzene		ND	2.0	μg/L	
1,2,4-Trimethylbenz	ene	ND	2.0	μg/L	

Date: 18-Feb-10

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

is R - RFD outside accepted recovery lim

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

64

CLIENT: Work Order: Project:	Shaw Environmen 1002033 130274 Textron	tal & Infra	structure, Inc.			-				QC SUMM	IARY REPORT Method Blank
sec-Butylbenzene	· · · · · · · · · · · · · · · · · · ·	ND	2.0	µg/L		· · · · · · · · · · · · · · · · · · ·	······································	<u></u>			
4-Isopropyltoluene		ND	2.0	µg/L			· ·				
1,3-Dichlorobenzene	•	ND	2.0	µg/L							
1,4-Dichlorobenzene	9	ND	2.0	µg/L					·		
n-Butylbenzene		ND	2.0	μg/L							1
1,2-Dichlorobenzene	•	ND	2.0	μġ/L							
1,2-Dibromo-3-chloro	opropane	ND	5.0	µg/L							
1,2,4-Trichlorobenze	ene	ND	2.0	µg/L							
Hexachlorobutadiene	9	ND	2.0	µg/L							
Naphthalene		ND	5.0	µg/L							
1,2,3-Trichlorobenze	ene	ND	2.0	µg/L				•			
Surr: Dibromofluo	romethane	26.21	2.0	µg/L	25	0	105	82	122	0	
Surr: 1,2-Dichloro	ethane-d4	25.19	2.0	µg/L	25	. 0	101	73	135	0	
Surr: Toluene-d8		26.48	2.0	μg/L	25	0	106	82	117	. 0	
Surr: 4-Bromofluo	robenzene	24.3	2.0	μg/L	25	0	97.2	77	119	0	

ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

Qualifiers:

66

Date: 18-Feb-10

CLIENT: Work Order: Project:	100203	nvironmental 3 Textron	& Infrastr	ucture, Inc.	•			QC SUMMARY REPORT Method Blank							
Sample ID: mb-02	17/10	Batch ID:	R44074	Test Code	: SW826	0B Units: µg/		Analysis Date 2/17/2010 11:46:00 AM Prep Date: 2/17/2010							
Client ID:				Run ID: V-3_100217A			SeqNo:	732030			.c. 2/1//2010				
Analyte		QC Sa F	ample Result	RL	Units	QC Spike Origir Amount	%REC	LowLimit	HighLimit	Original Sample or MS Resul		RPDLimit	Qua		
Dichlorodifluorome	hane		ND	5.0	µg/L										
Chloromethane			ND	5.0	µg/L										
Vinyl chloride			ND	2.0	µg/L										
Chloroethane			ND	5.0	µg/L					·					
Bromomethane		•	ND	2.0	µg/L							•			
Trichlorofluorometh	ane		ND	2.0	µg/L				-						
Diethyl ether			ND	5.0	µg/L										
Acetone			ND	10	µg/L										
1,1-Dichloroethene			ND	1.0	μg/L										
Carbon disulfide			ND	2.0	µg/L										
Methylene chloride			ND	5.0	µg/L										
Methyl tert-butyl eth	er		ND	2.0	µg/L										
trans-1,2-Dichloroe	hene		ND	2.0	µg/L										
1,1-Dichloroethane			ND	2.0	µg/L										
2-Butanone			ND	10	μg/L										
2,2-Dichloropropan	Э		ND	2.0	μg/L										
cis-1,2-Dichloroethe	ene		ND	2.0	μg/L		•								
Chloroform			ND	2.0	μg/L										
Tetrahydrofuran		·	ND	10	μg/L										
Bromochlorometha	ne		ND	2.0	μg/L										
1,1,1-Trichloroethar	ie		ND	2.0	μg/L										
1,1-Dichloropropen	9		ND	2.0	µg/L					S.,	<u>۲</u>				
Carbon tetrachlorid	e .		ND	2.0	µg/L	· .							,		
1,2-Dichloroethane			ND	2.0	µg/L						· •				
Benzene			ND	1.0	µg/L										

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

AMRO	Environmental	Laboratories	Corp.
------	---------------	--------------	-------

67

Date: 18-Feb-10

CLIENT:Shaw EnvironmWork Order:1002033Project:130274 Textro	nental & Infrastr on	ucture, In	c.	QC SUMMARY REPORT Method Blank
Trichloroethene	ND	2.0	µg/L	
1,2-Dichloropropane	ND	2.0	μg/L	
Bromodichloromethane	, ND	2.0	µg/L	
Dibromomethane	ND	2.0	µg/L	
4-Methyl-2-pentanone	ND	10	µg/L	
cis-1,3-Dichloropropene	ND	1.0	µg/L	
Toluene	ND	2.0	μg/L	
trans-1,3-Dichloropropene	ND	1.0	μg/L	
1,1,2-Trichloroethane	ND	2.0	µg/L	
1,2-Dibromoethane	ND	2.0	µg/L	
2-Hexanone	ND	10	μg/L	
1,3-Dichloropropane	ND	2.0	µg/L	
Tetrachloroethene	ND	2.0	µg/L	
Dibromochloromethane	ND	2.0	µg/L	
Chlorobenzene	ND	2.0	μg/L	
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	
Ethylbenzene	ND	2.0	µg/L	
m,p-Xylene	ND	2.0	µg/L	
o-Xylene	ND	2.0	μg/L	
Styrene	ND	2.0	µg/L	
Bromoform	ND	2.0	µg/L	
Isopropylbenzene	ND	2.0	µg/L	
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	
1,2,3-Trichloropropane	ND	2.0	μg/L	
Bromobenzene	ND	2.0	µg/L	
n-Propylbenzene	ND	2.0	µg/L	
2-Chlorotoluene	ND	2.0	μg/L	
4-Chlorotoluene	ND	2.0	μg/L	
1,3,5-Trimethylbenzene	ND	2.0	µg/L	
tert-Butylbenzene	ND	2.0	µg/L	
1,2,4-Trimethylbenzene	ND	2.0	µg/L	
Qualifiers: ND - Not Detected at the	Reporting Limit		S - Spike Rec	overy outside accepted recovery limits B - Analyte detected in the associated Method Blank
J - Analyte detected below	v quantitation limits		R - RPD outs	de accepted recovery limits NA - Not applicable where J values or ND results occur

CLIENT: Work Order:	Shaw Environmen 1002033	tal & Infrast	ructure, Inc.			1. J. J. M	,				QC SUMM	ARY REPORT
Project:	130274 Textron										-	Method Blank
sec-Butylbenzene	· · · · · · · · · · · · · · · · · · ·	ND	2.0	µg/L	·						•	
4-Isopropyitoluene		ND	2.0	µg/L			,				1	
1,3-Dichlorobenzen	e	ND	2.0	μg/L								
1,4-Dichlorobenzen	e	ND	2.0	μg/L								
n-Butylbenzene		ND	2.0	μg/L				•				
1,2-Dichlorobenzen	e	ND	2.0	μg/L								
1,2-Dibromo-3-chlor	ropropane	ND	5.0	μg/L							•	
1,2,4-Trichlorobenze	ene	ND	2.0	μg/L								
Hexachlorobutadien	ne	ND	2.0	μg/L								
Naphthalene		ND	5.0	µg/L								
1,2,3-Trichlorobenze	ene	ND	2.0	μg/L								
Surr: Dibromofluc	oromethane	23.6	2.0	μg/L	25		0	94.4	82	122	0	
Surr: 1,2-Dichloro	oethane-d4	24.43	2.0	µg/L	25	,	0	97.7	73	135	· · ·	
Surr: Toluene-d8		22.71	2.0	μg/L	25		0	90.8	82	100	· 0	
Surr: 4-Bromofluc	probenzene	23.6	2.0	µg/L	25		0	94.4	77	119	0	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 18-Feb-10

CLIENT: Work Order: Project:	1002033	ivironmental & Infrastr 3 Textron	ucture, Inc.							QC SUM Lat		Z REPO Control Sj	
Sample ID: Ics-02	/15/10	Batch ID: R44059	Test Code	: SW826	D B Units: μ	g/L		Analysis [Date 2/15/20	010 10:14:00 AM	Pren Dat	e: 2/15/2010	
Client ID:			Run ID:	V-3_100		-		SeqNo:	731799		T top Dat	2/13/2010	
		QC Sample			QC Spike Orig	inal Sample			• •	Original Sample			
Analyte		Result	RL	Units	Amount		%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qu
Dichlorodifluorome	thane	22.81	5.0	µg/L	20	0	114	10	150	0			
Chloromethane	i.	20.21	5.0	μg/L	20	0	101	37	150	0			
Vinyl chloride	11 (C)	21.53	2.0	μg/L	20	0	108	48	150	0			
Chloroethane		20.58	5.0	μg/L	20	0	103	54	142	0			
Bromomethane		19.04	2.0	μg/L	20	0	95.2	51	137	0			
Trichlorofluorometh	nane	23.87	2.0	μg/L	20	0	119	62	141	· 0			
Diethyl ether		20.57	5.0	µg/L	20	0	103	68	134	0			
Acetone		19.62	10	μg/L	20	0	98.1	. 9	150	0			
1,1-Dichloroethene	•	22.73	1.0	μg/L	20	0	114	68	146	· 0	κ.		
Carbon disulfide		21.12	2.0	µg/L	20	0	106	52	131	0			
Methylene chloride		22.51	5.0	µg/L	20	. 0	113	67	138	. 0			
Methyl tert-butyl eth	her	21.58	2.0	μg/L	20	0	108	63	139	0			
trans-1,2-Dichloroe	thene	21.58	2.0	μg/L	20	0	108	81	126	0			
1,1-Dichloroethane	1	22.55	2.0	µg/L	20	0 0	113	78	120	0			
2-Butanone		21.25	10	μg/L	20	0	106	41	150	0			
2,2-Dichloropropan	e	22.12	2.0	μg/L	20	0	111	71	150	0			
cis-1,2-Dichloroeth	ene	22.75	2.0	μg/L	20	0	114	78	121	· 0			
Chloroform		21.4	2.0	µg/L	20	0	107	82	123	0			
Tetrahydrofuran		23.5	10	µg/L	20	0	118	51	146	0. 0.			
Bromochlorometha	ine	23.89	2.0	µg/L	20	0	119	77	, 131	0			
1,1,1-Trichloroetha	ne	24.96	2.0	µg/L	20	0 0	125	81	127	0			
1,1-Dichloropropen	ie '	24.2	2.0	µg/L	20	0 0	120	76	119	, o			s
Carbon tetrachlorid		21.51	2.0	µg/L	20	0	108	76	129	0			0
1,2-Dichloroethane		20.96	2.0	µg/L	20	0	105	76	120	0 0			
Benzene		21.31	1.0	µg/L	20	ó	100	81	118	0			

Qualifiers: ND

69

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

CLIENT: Work Order:	Shaw Environ 1002033	mental & Infrast	ructure, Inc		· · ·					QC SUMMAR	Y REPORT
Project:	130274 Textr	on									Control Spike
Trichloroethene		21.98	2.0	μg/L	20	0	110	81	119	0	
1,2-Dichloropropan	e	22.81	2.0	µg/L	20	0	114	79	120	0	
Bromodichlorometh	ane	21.62	2.0	µg/L	20	0	108	77	131	0	
Dibromomethane		20.39	2.0	µg/L	20	0	102	76	128	0	
4-Methyl-2-pentanc	ne	20.13	10	µg/L	20	· 0	101	51	141	0	·
cis-1,3-Dichloropro	pene	20.38	1.0	µg/L	20	0	102	76	120	0	
Toluene		22.07	2.0	µg/L	20	0	110	83	119	0	
trans-1,3-Dichlorop	ropene	22.67	1.0	µg/L	20	0	113	66	128	0	
1,1,2-Trichloroethar	ne ·	21.01	2.0	μg/L	20	· 0	105	74	123	0	
1,2-Dibromoethane		21.37	2.0	μg/L	20	0	. 107	72	128	. 0	
2-Hexanone		18.7	10	µg/L	20	0	93.5	31	148	0	
1,3-Dichloropropan	e	20.73	2.0	µg/L	20	0	104	76	140	0	
Tetrachloroethene		22.15	2.0	μg/L	20	ů 0	111	81	122	0	
Dibromochlorometh	ane	19.77	2.0	μg/L	20	. O	98.8	63	124	0	
Chlorobenzene		19.62	2.0	μg/L	20	Õ	98.1	84	113	. 0	
1,1,1,2-Tetrachloroe	ethane	21.56	2.0	μg/L	20 .	ů 0	108	73	113	0	
Ethylbenzene		20.79	2.0	μg/L	20	ů 0	100	83	124	0	
m,p-Xylene		41.41	2.0	μg/L	40	õ	104	85	116	0	
o-Xylene		20.83	2.0	μg/L	20	ů 0	104 104	84	115	0	
Styrene		21.11	2.0	μg/L	20	õ	104	81	113	0	
Bromoform		17.75	2.0	μg/L	20	0	88.8	55	126	0	
Isopropylbenzene	•	20.79	2.0	μg/L	20	0	104	55 77	125) O	
1,1,2,2-Tetrachloroe	ethane	18.7	2.0	μg/L	20	0	93.5	62	125	0	
1,2,3-Trichloropropa		19.65	2:0	µg/L	20	0	98.2	62	134	0	
Bromobenzene		19.39	2.0	μg/L	20	0	97	78	132	0	
n-Propylbenzene		20.06	2.0	μg/L	20	0	100	77	127	-	
2-Chlorotoluene		19.28	2.0	μg/L	20	0	96.4	78	118	0	
4-Chlorotoluene	•	20.39	2.0	μg/L	20	0	30.4 102	78	110	0	
1,3,5-Trimethylbenz	ene	20.43	2.0	μg/L	20	0	102	80	120	0	-
ert-Butylbenzene		20.63	2.0	μg/L	20	0	102	81	120	. 0	
1,2,4-Trimethylbenz	ene	19.86	2.0	μg/L	20	0	99.3	80	120	0	ана станура (1996) •
Qualifiers: ND -	Not Detected at the	Reporting Limit		S - Spike Recov	ery outside accep	ted recovery	limits	B - Analyte d	etected in t	he associated Method Blank	

Date: 18-Feb-10

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

70

CLIENT: Work Order: Project:	Shaw Environmen 1002033 130274 Textron	tal & Infrastru	acture, Inc.				- -		\$	QC SUMMARY Laboratory	REPORT Control Spike
sec-Butylbenzene	-	21.07	2.0	µg/L	20	0	105	82	123	0	
4-IsopropyItoluene		20.33	2.0	µg/L	20	0	102	· 80	126	0	
1,3-Dichlorobenzene		20.8	2.0	µg/L	20	0	104	84	115	0	
1,4-Dichlorobenzene		19.34	2.0	µg/L	20	· 0	96.7	79	117	0	
n-Butylbenzene		20.65	2.0	µg/L	20	0	103	76	128	0	
1,2-Dichlorobenzene		19.51	2.0	µg/L	20	0	97.6	81	117	0	
1,2-Dibromo-3-chloro	ppropane	17.36	5.0	µg/L	20	0	86.8	47	136	0	
1,2,4-Trichlorobenze	ne	21.92	2.0	µg/L	20	0	110	73	126	0	
Hexachlorobutadiene	•	20.89	2.0	µg/L	20	0	104	77	134	0	
Naphthalene		19.64	5.0	µg/L	20	. 0	98.2	58	138	0	
1,2,3-Trichlorobenze	ne	19.83	2.0	µg/L	20	0	99.2	76	100	0	
Surr: Dibromofluor	omethane	25.2	2.0	μg/L	25	. 0	101	82	122	0	
Surr: 1,2-Dichloroe	ethane-d4	26.21	2.0	μg/L	25	0	105	73	135	0	
Surr: Toluene-d8		25.92	2.0	µg/L	25	0	104	82	117		
Surr: 4-Bromofluor	robenzene	25.75	2.0	µg/L	25	0	103	77	. 119	0	

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

Date: 18-Feb-10

Sample ID: Ics-02/16/10	Batch ID: R44062	Test Cod	e: SW8260	B Units: µ	a/l		Apolygia	Joto 2/4 C/20	40.0.00.00 444	D		
Client ID:		Run ID:	V-3_100		g/ L		SeqNo:	731856	10 9:22:00 AM	Prep Dat	e: 2/16/2010	
	QC Sample						Ocqivo.					
Analyte	Résult	RL	Units	QC Spike Orig Amount		%REC	LowLimit	(HighLimit	Driginal Sample or MS Result	9/ 000		~
Dichlorodifluoromethane	21.35	5.0								%RPD	RPDLimit	Q
Chloromethane	20.61	5.0	µg/L	20	0	107	10	150	0			
Vinyl chloride	22.67	2.0	μg/L μg/L	20	0	103	37	150	0			
Chloroethane	21.14	5.0	μg/L μg/L	20 20	0	113	48	150	0			
Bromomethane	19.24	2.0	μg/c μg/L	20	0	106	54	142	0			
Trichlorofluoromethane	22.51	2.0	μg/L	20	0	96.2 113	51 62	137	0			
Diethyl ether	21.19	5.0	μg/L	20	0	106	68	141	0			
Acetone	22.06	10	μg/L	20	0	110	9	134	0			
1,1-Dichloroethene	23.19	1.0	μg/L	20	0	116	9 68	150 146	0			
Carbon disulfide	20.89	2.0	μg/L	20	0	104	52	140	0			
Methylene chloride	21.85	5.0	μg/L	20	0	104	52 67	131	· 0			
Methyl tert-butyl ether	21.93	2.0	µg/L	20	. 0	100	63	130				
trans-1,2-Dichloroethene	21.63	2.0	µg/L	20	0	108	81	139	0			
1,1-Dichloroethane	22.37	2.0	µg/L	20	0	112	78	120	0			
2-Butanone	21.06	10	μg/L	20	0	105	41	150	0			
2,2-Dichloropropane	20.8	2.0	µg/L	20	0	104	71	150	0			
cis-1,2-Dichloroethene	23.17	2.0	µg/L	20	0	116	78	121	0			
Chloroform	21.26	2.0	µg/L	20	0	106	82	123	ő			
Tetrahydrofuran	23.39	10	µg/L	20 .	0	117	51	146	ů 0			
Bromochloromethane	24.4	2.0	µg/L	20	0	122	77	131	0			
1,1,1-Trichloroethane	24.38	2.0	µg/L	20	0	122	81	127	0			
1,1-Dichloropropene	24.32	2.0	μg/L	20	0	122	76	119	0	• *		s
Carbon tetrachloride	20.88	2.0	µg/L	20	0	104	76	129	0	· ·		5
1,2-Dichloroethane	21.04	2.0	μg/L	20	0	105	76	127	· 0	.*		
Benzene	21.94	. 1.0	µg/L	20	0	110	81	118	0			

Shaw Environmental & Infrastructure, Inc.

Date: 18-Feb-10

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

72

CLIENT:

CLIENT:	Shaw Environmen	tal & Infrastr	ructure, Inc.		9-9-14					ΟΓ ΩΙΜΜΑΡΥ ΡΕΡΟΡΤ
Work Order:	1002033									QC SUMMARY REPORT
Project:	130274 Textron				•					Laboratory Control Spike
Trichloroethene		22.5	2.0	μg/L	20	0	112	81	119	0
1,2-Dichloropropar		23.6	2.0	μg/L	20	0 .	118	79	120	0
Bromodichloromet	hane	21.87	2.0	µg/L	20	0	109	77	131	0
Dibromomethane		21.53	2.0	µg/L	20	0	108	76	128	0
4-Methyl-2-pentand		21.98	10	µg/L	20	0	110	51	, 141	0
cis-1,3-Dichloropro	pene	21.52	1.0	µg/L	20	0	108	76	120	0
Toluene		23.03	2.0	µg/L	20	0	115	83	119	0
trans-1,3-Dichlorop	ropene	22.56	1.0	µg/L	20	0	113	66	128	. 0 .
1,1,2-Trichloroetha	ne	21.93	2.0	µg/L	20	0	110	74	123	0
1,2-Dibromoethane)	22.03	2.0	μg/L	20	0.	110	72	123	0
2-Hexanone		19.37	10	μg/L	20	õ	96.8	31	148	
1,3-Dichloropropan	e	21.27	2.0	µg/L	20	0	.106	76	140	0
Tetrachloroethene		22.32	2.0	μg/L	20	õ	112	81	122	0
Dibromochloromet	nane	19.59	2.0	µg/L	20	0	98	63	124	0
Chlorobenzene		19.89	2.0	µg/L	20	0	99.4	84	120	0
1,1,1,2-Tetrachloro	ethane	20.87	2.0	µg/L	20	0	99.4 104	04 73	124	0
Ethylbenzene		20.64	2.0	µg/L	20	0	104	83	124	0
m,p-Xylene		42.07	2.0	µg/L	40	. 0	105	63 85		0
o-Xylene		21.12	2.0	µg/L	20	0	105		116	0
Styrene		20.62	2.0	μg/L	20	0	100	84 81	115	0
Bromoform		17	2.0	μg/L	20	0	85	55	118	0
Isopropylbenzene		20.64	2.0	μg/L	20	0	103	55 77	126	0
1,1,2,2-Tetrachloro	ethane	19.25	2.0	μg/L	20	0	96.2	62	125	0
1,2,3-Trichloroprop		19.74	2.0	μġ/L	20	0	90.2 98.7	62 62	134	0
Bromobenzene		19.25	2.0	μg/L	20	0	96.7 96.2		. 132	0
n-Propylbenzene		19.72	2.0	μg/L	20	· 0		78	119	0
2-Chlorotoluene		19.36	2.0	μg/L	20	0	98.6 96.8	77	127	0
4-Chlorotoluene		20.24	2.0	µg/L	20	0	90.0 101	78 77	118	0
1,3,5-Trimethylben:	zene	20.25	2.0	μg/L	20	0			119 120	0
tert-Butylbenzene	· · · · ·	20.23	2.0	μg/L	20	0	101	80	120	0
1,2,4-Trimethylben:	zene	19.71	2.0	µg/∟ µg/L	20 20	· 0	104 98.6	81 80	120 118	0 0
Qualifiers: ND	Not Detected at the Repo	orting Limit	S	- Spike Recov	ery outside accepte	d recovery	imits	B - Analyte de		he associated Method Blank

Date: 18-Feb-10

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

73

02033 0274 Textron	22.5 23.6 21.87	2.0	µg/L						QCS	SUMM			ORT
0274 Textron	23.6		ug/L										
	23.6		µg/L							Labora	tory C	ontrol	Spike
		20		20	0	112	81	119		0			
	21.87	2.0	µg/L	20	0	118	79	120		0			
·.	21.07	2.0	µg/L	20	0	109	77	131		0			
,	21.53	2.0	μg/L	20	0	108	76	128		0			
	21.98	10	μg/L	20	0	110	51	141		0			
	21.52	1.0	μg/L	20	0	108	76	120		0			
	23.03	2.0								-			
e	22.56									-			
	21.93	2.0								•			
·	22.03	-								•			
	19.37									-			
	21.27									•			
	22.32				-					•			
	19.59								•	-			
	19.89	2.0											
Э	20.87	2.0			-					-			
	20.64				-	•				•			
					-								
	21.12												
	20.62				-								
									·				
9										-			
-													
					-					-			
					-								
									. ·				
										1			
- *										•			
										-			
•				Λ.									
		22.56 21.93 22.03 19.37 21.27 22.32 19.59 19.89 20.87 20.64 42.07 21.12 20.62 17 20.64	$\begin{array}{ccccccc} 22.56 & 1.0 \\ 21.93 & 2.0 \\ 22.03 & 2.0 \\ 19.37 & 10 \\ 21.27 & 2.0 \\ 22.32 & 2.0 \\ 19.59 & 2.0 \\ 19.59 & 2.0 \\ 20.87 & 2.0 \\ 20.87 & 2.0 \\ 20.64 & 2.0 \\ 42.07 & 2.0 \\ 21.12 & 2.0 \\ 20.62 & 2.0 \\ 17 & 2.0 \\ 20.64 & 2.0 \\ 19.25 & 2.0 \\ 19.74 & 2.0 \\ 19.25 & 2.0 \\ 19.74 & 2.0 \\ 19.25 & 2.0 \\ 19.74 & 2.0 \\ 19.36 & 2.0 \\ 20.24 & 2.0 \\ 20.25 & 2.0 \\ 20.74 & 2.0 \\ 20.74 & 2.0 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.56 1.0 $\mu g/L$ 20 21.93 2.0 $\mu g/L$ 20 22.03 2.0 $\mu g/L$ 20 19.37 10 $\mu g/L$ 20 21.27 2.0 $\mu g/L$ 20 22.32 2.0 $\mu g/L$ 20 19.59 2.0 $\mu g/L$ 20 19.89 2.0 $\mu g/L$ 20 20.87 2.0 $\mu g/L$ 20 20.64 2.0 $\mu g/L$ 20 20.64 2.0 $\mu g/L$ 20 20.62 2.0 $\mu g/L$ 20 20.62 2.0 $\mu g/L$ 20 20.64 2.0 $\mu g/L$ 20 20.64 2.0 $\mu g/L$ 20 19.25 2.0 $\mu g/L$ 20 19.25 2.0 $\mu g/L$ 20 19.74 2.0 $\mu g/L$ 20 19.72 2.0 $\mu g/L$ 20 19.36 2.0 $\mu g/L$ 20 20.24 2.0 $\mu g/L$ 20 20.25 2.0 $\mu g/L$ 20 20.74 2.0 $\mu g/L$ 20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.56 1.0 $\mu g/L$ 200113 21.93 2.0 $\mu g/L$ 20 0110 22.03 2.0 $\mu g/L$ 20 0110 19.37 10 $\mu g/L$ 20 096.8 21.27 2.0 $\mu g/L$ 20 0106 22.32 2.0 $\mu g/L$ 20 0112 19.59 2.0 $\mu g/L$ 20 098 19.89 2.0 $\mu g/L$ 20 099.4 20.64 2.0 $\mu g/L$ 20 0103 42.07 2.0 $\mu g/L$ 20 0105 21.12 2.0 $\mu g/L$ 20 0106 20.62 2.0 $\mu g/L$ 20 0103 42.07 2.0 $\mu g/L$ 20 0103 17 2.0 $\mu g/L$ 20 0103 17 2.0 $\mu g/L$ 20 096.2 19.74 2.0 $\mu g/L$ 20 098.7 19.25 2.0 $\mu g/L$ 20 098.6 19.36 2.0 $\mu g/L$ 20 098.6 19.36 2.0 $\mu g/L$ 20 0101 20.25 2.0 $\mu g/L$ 20 0101 20.74 2.0 $\mu g/L$ 20 0101	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.56 1.0 $\mu g/L$ 20 0113 66 128 21.93 2.0 $\mu g/L$ 20011074123 22.03 2.0 $\mu g/L$ 20011072128 19.37 10 $\mu g/L$ 20096.831148 21.27 2.0 $\mu g/L$ 20010676122 22.32 2.0 $\mu g/L$ 2009863126 19.89 2.0 $\mu g/L$ 20099.484113 20.87 2.0 $\mu g/L$ 20010473124 20.64 2.0 $\mu g/L$ 20010383118 42.07 2.0 $\mu g/L$ 20010383118 42.07 2.0 $\mu g/L$ 20010381118 17 2.0 $\mu g/L$ 20010381118 17 2.0 $\mu g/L$ 20096.276122 20.62 2.0 $\mu g/L$ 20096.278119 19.25 2.0 $\mu g/L$ 20096.278119 19.72 2.0 $\mu g/L$ 20096.877127 19.36 2.0 $\mu g/L$ 20096.878118 20.24 2.0 $\mu g/L$ 20096.878118 20.24 2.0 $\mu g/L$ 20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.56 1.0 $\mu g/L$ 2001136011360 21.93 2.0 $\mu g/L$ 200110741230 22.03 2.0 $\mu g/L$ 200110721280 19.37 10 $\mu g/L$ 20096.8311480 21.27 2.0 $\mu g/L$ 200116761220 22.32 2.0 $\mu g/L$ 20098631260 19.59 2.0 $\mu g/L$ 20099.4841130 20.64 2.0 $\mu g/L$ 200103831180 20.64 2.0 $\mu g/L$ 200105851160 21.12 2.0 $\mu g/L$ 200103811180 20.62 2.0 $\mu g/L$ 200103811180 20.62 2.0 $\mu g/L$ 200103811180 19.25 2.0 $\mu g/L$ 20085551260 19.25 2.0 $\mu g/L$ 20098.6771270 1

Date: 18-Feb-10

74

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

CLIENT: Work Order: Project:	Shaw Environmen 1002033 130274 Textron	tal & Infrastı	ucture, Inc.							QC SUMMARY REPORT Laboratory Control Spike
sec-Butylbenzene		20.95	2.0	µg/L	20	0	105	82	· 123	0
4-Isopropyltoluene		20.08	.2.0	μg/L	20	0	100	80	126	0
1,3-Dichlorobenzene	Э	20.74	2.0	µg/L	20	0	104	84	115	0
1,4-Dichlorobenzene	Э.	19.04	2.0	µg/L	20	0	95.2	79	117	0
n-Butylbenzene		20.21	2.0	µg/L	20	0	101	76	128	0
1,2-Dichlorobenzene	Э	19.46	2.0	µg/L	20	0	97.3	81	117	0
1,2-Dibromo-3-chlor	opropane	16.65	5.0	µg/L	20	0	83.3	47	136	0
1,2,4-Trichlorobenze	ene	21.66	2.0	µg/L	20	0	108	73	126	0
Hexachlorobutadien	e	20.52	2.0	μg/L	20	0	103	77	134	0
Naphthalene		19.69	5.0	µg/L	20	0	98.4	58	138	0
1,2,3-Trichlorobenze	ene	20.05	2.0	µg/L	20	0	100	76	124	0
Surr: Dibromofluo	romethane	25.85	2.0	µg/L	25	0	103	82	122	0
Surr: 1,2-Dichloro	ethane-d4	24.37	2.0	µg/L	25	0	97.5	73	135	0
Surr: Toluene-d8		26,29	2.0	µg/L	25	0	105	82	117	. 0
Surr: 4-Bromofluo	probenzene	25.32	2.0	µg/L	25	0	101	77	119	0

Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

75

Date: 18-Feb-10

CLIENT: Work Order: Project:	100203	nvironmental & Infrastr 3 Textron	ucture, Inc.							QC SUM Lat		REPO Control S	
Sample ID: Ics-02	/17/10	Batch ID: R44074	Test Co	de: SW826 0)B Units: µ	g/L		Analysis [Date 2/17/20	10 10:04:00 AM	Prep Dat	e: 2/17/2010	
Client ID:			Run ID:	V-3_100	217A			SeqNo:	732032				
Analyte		QC Sample Result	RL	Units	QC Spike Orig Amount		%REC	LowLimit	(HighLimit	Original Sample or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluorome	thane	21.93	5.0	µg/L	20	0	110	10	150	0			
Chloromethane		21.88	5.0	µg/L	20	0	109	37	150	õ		•	
Vinyl chloride		23.19	2.0	µg/L	20	0	116	48	150	. 0			
Chloroethane		22.66	5.0	µg/L	20	0	113	54	142	0			
Bromomethane		20.55	2.0	µg/L	20	0	103	51	137	0			
Trichlorofluorometh	hane	24.66	2.0	µg/L	20	0	123	62	141	0			
Diethyl ether		21.52	5.0	µg/L	20	. 0	108	68	134	0			
Acetone		19.82	10	μg/L	20	0	99.1	9	150	0			
1,1-Dichloroethene	;	25.57	1.0	µg/L	20	0	128	68	146	0			
Carbon disulfide		22.36	2.0	µg/L	20	0	112	52	131	0			
Methylene chloride	;	22.92	5.0	µg/L	20	0	115	67	138	0			
Methyl tert-butyl etl	her	21.43	2.0	µg/L	20	0	107	63	139	. 0			
trans-1,2-Dichloroe	ethene	22.43	2.0	μg/L	20	···· 0	112	81	126	0			
1,1-Dichloroethane	•	23.39	2.0	µg/L	20	0	117	78	124	0			
2-Butanone		19.77	10	µg/L	20	0	98.8	41	150	0			
2,2-Dichloropropan	ie ^r	21.47	2.0	μg/L	20	. 0	107	71	150	0			
cis-1,2-Dichloroeth	ene	23.95	2.0	μg/L	20	0	120	78	121	.0			
Chloroform		21.69	2.0	μg/L	20	0	108	82	123	0			
Tetrahydrofuran		21.23	10	µg/L	20	0	106	51	146	0			
Bromochlorometha	ane	25.66	2.0	μg/L	20	0	128	77	131	0			
1,1,1-Trichloroetha	ine	25.93	2.0	μg/L	20	0	130	81	127	0			S
1,1-Dichloropropen	ne	24.93	2.0	μg/L	20	. 0	125	76	119	0			S
Carbon tetrachlorid	le	21.54	2.0	μg/L	20	0	108	76	129	0			
1,2-Dichloroethane)	21.44	2.0	µg/L	20	0	107	76	127	0			
Benzene		22.54	1.0	µg/L	20	0	113	81	118	0			

Qualifiers:

76

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

CLIENT:	Shaw Environ	mental & Infrast	ructure, Inc.						1	OC CURARA	
Work Order:	1002033									QC SUMMA	RY REPORT
Project:	130274 Textre	on								Laborato	ry Control Spike
Trichloroethene		22.63	2.0	μg/L	20	. 0	113	81	119	0	
1,2-Dichloropropan	e	23.75	2.0	µg/L	20	0	119	79	120	0	
Bromodichlorometh	nane	21.58	2.0	µg/L	20	0	108	77	131	0	
Dibromomethane		21.29	2.0	µg/L	20	0	106	76	128	0	
4-Methyl-2-pentance	one	20.27	10	µg/L	20	0	101	51	141	0	
cis-1,3-Dichloropro	pene	20.57	1.0	µg/L	20	0	103	76	120	0	
Toluene		23.2	2.0	µg/L	20	0	116	83	119	0	
trans-1,3-Dichlorop	ropene	21.79	1.0	µg/L	20	0	109	66	128	ů O	
1,1,2-Trichloroetha	ne	21.43	2.0	µg/L	20	0	107	74	123	ů O	
1,2-Dibromoethane	•	21.31	2.0	µg/L	20	0	107	72	128	0	
2-Hexanone		16.75	10	μg/L	20	0	83.8	31	148	0	
1,3-Dichloropropan	e,	20.76	2.0	μg/L	20	0	104	76	140	0	
Tetrachloroethene		22.73	2.0	μg/L	20	0	114	81	124	0	
Dibromochlorometh	nane	19.77	2.0	µg/L	20	0	98.8	63	124	0	
Chlorobenzene		19.89	2.0	μg/L	20	0	99.4	84	113	0	
1,1,1,2-Tetrachloro	ethane	21.81	2.0	μg/L	20	0	109	73	124	0	
Ethylbenzene		20.77	2.0	μg/L	20	0	104	83	118	0	
m,p-Xylene		42.23	2.0	μg/L	40	0	106	85	116	0	
o-Xylene		21.24	2.0	μg/L	20	· 0	106	84	115	0	
Styrene		20.71	2.0	μg/L	20	0	104	81	113	0	
Bromoform		16.2	2.0	μg/L	20	0	81	55	126	0	
Isopropylbenzene		21.72	2.0	μg/L	20	0	109	77	125	0	
1,1,2,2-Tetrachloro	ethane	19.13	2.0	μg/L	20	0	95.7	62	134	0	
1,2,3-Trichloropropa	ane	20.1	2.0	µg/L .	20	0	100	62	134	0	
Bromobenzene		19.92	2.0	µg/L	20	0	99.6	78	119	. 0	
n-Propylbenzene		20.59	2.0	μg/L	20	0	99.0 103	78	119	0	
2-Chlorotoluene		20.17	2.0	µg/L	20	0	103	78	127	0、	
4-Chlorotoluene		20.65	2.0	μg/L	20	0	103	78	118	0	
1,3,5-Trimethylbenz	zene	21.39	2.0	μg/L	20	0	103	80	119	0	
tert-Butylbenzene		21.61	2.0	μg/L	20	0	107	81	120	0	
1,2,4-Trimethylbenz	zene	20.57	2.0	μg/L	20	0	103	80	120	0	

Date: 18-Feb-10

J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

11

Qualifiers:

CLIENT: Work Order: Project:	Shaw Environmen 1002033 130274 Textron	tal & Infrast	ructure, Inc.		>			·		QC SUMMARY REPORT Laboratory Control Spike
sec-Butylbenzene		21.86	2.0	µg/L	20	0	109	82	123	0
4-Isopropyltoluene		21.12	2.0	µg/L	20	0	106	80	126	0
1,3-Dichlorobenzen		21.31	2.0	µg/L	20	0	107	84	115	0
1,4-Dichlorobenzen	8 4 4	20.06	2.0	µg/L	20	0	100	79	117	0
n-Butylbenzene		21.08	2.0	μg/L	20	0	105	76	128	0
1,2-Dichlorobenzen	8	19.78	2.0	µg/L	20	0	98.9	81	117	0
1,2-Dibromo-3-chlor	ropropane	16.1	5.0	µg/L	20	0	80.5	47	136	0
1,2,4-Trichlorobenze	ene	22.15	2.0	µg/L	20	0	111	73	126	0
Hexachlorobutadien	e	22.12	2.0	µg/L	20	0	111	77	134	0
Naphthalene		19.07	5.0	µg/L	20	. 0	95.4	58	138	0
1,2,3-Trichlorobenze	ene	20.42	2.0	µg/L	20	0	102	76	124	0
Surr: Dibromofluc	promethane	24.85	2.0	µg/L	25	0	99.4	82	122	ů
Surr: 1,2-Dichloro	ethane-d4	24.44	2.0	μg/L	25	0	97.8	73	135	Ő
Surr: Toluene-d8		25.54	2.0	μg/L	25	0	102	82	117	ů. Na stalova stalo
Surr: 4-Bromofluc	probenzene	24.43	2.0	μg/L	25	0	97.7	77	119	0

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

CLIENT: Work Order:	Shaw Ei 1002033	nvironmental & Infrastr 3	icture, Inc	•						QC SUM			
Project:	130274	Textron							-	Laboratory Co	ontrol Sp	ike Dupli	cate
Sample ID: Icsd-0	2/17/10	Batch ID: R44074	Test Co	de: SW8260B	Units: µ	ia/l	· · · · · · · · · · · · · · · · · · ·	Analysis I	Date 2/17/20	10 10:38:00 AM	Dron Det		
Client ID:		• •	Run ID:	V-3_10021		·9/ -		SeqNo:	732031	10 10:38:00 AW	Prep Date	e: 2/17/2010	
	r	QC Sample		—.				Begino.					
Analyte		Result	RL	Units	QC Spike Ori Amount	- ·	%REC	Loud insit		Driginal Sample	~~~~~		
Dichlorodifluorome	thene							LOWLINIL	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Chloromethane	mane	18.62	5.0	µg/L	20	0	93.1	10	150	21.93	16.3	20	
Vinyl chloride		17.98	5.0	µg/L	20	0	. 89.9	37	.150	21.88	19.6	20	
Chloroethane		20.02	2.0	µg/L	20	0	100	48	150	23.19	14.7	20	
Bromomethane		19.33	5.0	µg/L	20	0	96.7	54	142	22.66	15.9	20	
Trichlorofluorometh		17.38	2.0	µg/L	20	0	86.9	51	137	20.55	16.7	20	
	lane	21.82	2.0	µg/L	20	0	109	62	141	24.66	12.2	20	
Diethyl ether		17.58	5.0	µg/L	20	0	87.9	68	134	21.52	20.2	20	R
Acetone		18.91	10	µg/L	20	0	94.6	9	150	19.82	4.7	20	
1,1-Dichloroethene	•	21.25	1.0	μg/L	20	0	106	68	146	25.57	18.5	20	
Carbon disulfide		18.94	2.0	μg/L	20	0	94.7	52	- 131	22.36	16.6	20	
Methylene chloride		19.27	5.0	µg/L	20	Ò	96.4	67	138	22.92	17.3	20	
Methyl tert-butyl eth		17.67	2.0	μg/L	20	0	88.4	63	139	21.43	19.2	20	
trans-1,2-Dichloroe		18.98	2.0	µg/L	20	0	94.9	81	126	22.43	16.7	20	
1,1-Dichloroethane		19.79	2.0	µg/L	20	. 0	99	78	124	23.39	16.7	20	
2-Butanone		16.77	10	µg/L	20	0	83.8	41	150	19.77 [.]	16.4	20	
2,2-Dichloropropan		18.49	2.0	µg/L	20	0	92.5	71	150	21.47	14.9	20	
cis-1,2-Dichloroethe	ene	19.47	2.0	μg/L	20	0	97.4	78	121	23.95	20.6	20	R
Chloroform		18.38	2.0	µg/L	20	. 0	91.9	82	123	21.69	16.5	20	
Tetrahydrofuran		18.06	10	µg/L	20	0	90.3	51	146	21.23	16.1	20	
Bromochlorometha	ne	21.31	2.0	µg/L	20	0	107	77	131	25.66	18.5	20	
1,1,1-Trichloroetha	ne	22.06	2.0	µg/L	20	0	110	81	127	25.03	16 1	20	
1,1-Dichloropropen	е	21.49	2.0	µg/L	20	0	107	76	119	24.93	14.8	20	
Carbon tetrachlorid	е	18.52	2.0	µg/L	20	0	92.6	76	129	21.54	15.1	20	
1,2-Dichloroethane		18.06	2.0	µg/L	20	0	90.3	76	127	21.44	17.1	20	
Benzene		19.2	1.0	µg/L	20	0	96	81	118	22.54	16	20	

79

Qualifiers:

Date: 18-Feb-10

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

CLIENT: Work Order: Project:	Shaw Environme 1002033 130274 Textron	ntal & Infrast	ructure, Inc	2.							QC SUMN			
Trichloroethene		19.38	2.0	µg/L	20		0	96.9	81	119	22.63	15.5	20	
1,2-Dichloropropan		20.14	2.0	μg/L	20		0	101	79	120	23.75	16.5	20	
Bromodichlorometh	hane	18.53	2.0	µg/L	20		0	92.6	77	131	21.58	15.2	20	
Dibromomethane		17.99	2.0	µg/L	20		0	90	76	128	21.29	16.8	20	
4-Methyl-2-pentance		15.92	10	µg/L	20		0	79.6	51	141	20.27	24	20	R
cis-1,3-Dichloropro	pene	17.61	1.0	µg/L	20		0	88	76	120	20.57	15.5	20	
Toluene		19.61	2.0	µg/L	20		0	98	83	119 ້	23.2	16.8	20	
trans-1,3-Dichlorop	•	18.68	1.0	µg/L	20		0	93.4	66	128	21.79	15.4	20	
1,1,2-Trichloroetha		17.39	2.0	μg/L	20		0	87	74	123	21.43	20.8	20	R
1,2-Dibromoethane	9	18.1	2.0	µg/L	20		0	90.5	72	128	21.31	16.3	20	
2-Hexanone		18.07	10	µg/L	20		0	90.4	31	148	16.75	7.58	20	
1,3-Dichloropropan	e	21.9	2.0	µg/L	20		0	110	76	122	20.76	5.34	20	
Tetrachloroethene		24.36	2.0	µg/L	20		0	122	81	124	22.73	6.92	20	
Dibromochlorometh	nane	20.64	2.0	µg/L	20	•	0	103	63	126	19.77	4.31	20	
Chlorobenzene		21.12	2.0	µg/L	20		0	106	84	113	19.89	6	20	
1,1,1,2-Tetrachloro	ethane	22.97	2.0	µg/L	20		0	115	73	124	21.81	5.18	20	
Ethylbenzene		22.25	2.0	µg/L	20		0	111	83	118	20.77	6.88	20	
m,p-Xylene		44.65	2.0	µg/L	40		0	112	85	116	42.23	5.57	20	
o-Xylene		22.55	2.0	µg/L	20		0	113	84	115	21.24	5.98	20	
Styrene		22.09	2.0	μg/L	20		0	110	81	118	20.71	6.45	20	
Bromoform		16.99	2.0	µg/L	20		0	85	55	126	16.2	4.76	20	
Isopropylbenzene		23.86	2.0	µg/L	20		0	119	77	125	21.72	9.39	20	
1,1,2,2-Tetrachloro	ethane	19.8	2.0	μg/L	20		0	99	62	134	19.13	3.44	20	
1,2,3-Trichloroprop	ane	20.7	2.0	μg/L	20		0	104	62	132	20.1	2.94	20	
Bromobenzene		21.33	2.0	µg/L	20		0	107	78	119	19.92	6.84	20	
n-Propylbenzene		22.47	2.0	µg/L	20		0	112	77	127	20.59	8.73	20	
2-Chlorotoluene		21.66	2.0	µg/L	20		0	108	78	118	00.47	7.12	20	
4-Chlorotoluene		22.65	2.0	μg/L	20		õ	113	77	119	20.17	9.24	20	
1,3,5-Trimethylben:	zene	23.14	2.0	µg/L	20		Ō	116	80	120	20.00	5.24 7.86	20	
tert-Butylbenzene		23.08	2.0	μg/L	20	* .	0	115	81	120	21.59	6.58	20 20	
1,2,4-Trimethylben	zene	22.15	2.0	µg/L	20		õ	111	80	118	20.57	7.4	20	
Qualifiers: ND	ualifiers: ND - Not Detected at the Reporting Limit				outside ad	ccepted re	covery l	imits	B - Analyte d	etected in the	associated Method	Blank		

80

Date: 18-Feb-10

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

CLIENT: Work Order: Project:	Shaw Environmer 1002033 130274 Textron	ıtal & Infrastı	ructure, Inc.				•			QC SUMN		
sec-Butylbenzene		23.93	2.0	µg/L	20	0	120	82	123	21.86	9.04	20
4-Isopropyltoluene		22.6	2.0	µg/L	20	0	113	80	126	21.12	6.77	20
1,3-Dichlorobenzen	-	22.74	2.0	µg/L	20	0	114	84	115	21.31	6.49	20
1,4-Dichlorobenzen	e	21.22	2.0	µg/L	20	0	106	79	117	20.06	5.62	20
n-Butylbenzene		23.19	2.0	µg/L	20	0	116	76	128	21.08	9.53	20
1,2-Dichlorobenzen	e	21.81	2.0	µg/L	20	0	109	81	117	19.78	9.76	20
1,2-Dibromo-3-chlor	• •	18.03	5.0	µg/L	20	0	90.2	47	136	16.1	11.3	20
1,2,4-Trichlorobenz	ene	23.31	2.0	µg/L	20	0	117	73	126	22.15	5.1	20
Hexachlorobutadien	e	24	2.0	µg/L	20	0	120	77	134	22.12	8.15	20
Naphthalene		20.55	5.0	µg/L	20	0	103	58	138	19.07	7.47	20
1,2,3-Trichlorobenze	ene	21.49	2.0	µg/L	20	0	107	76	124	20.42	5.11	20
Surr: Dibromofluc	promethane	24.1	2.0	μg/L	25	0	96.4	82	122	, 20.12	0.11	0
Surr: 1,2-Dichloro	bethane-d4	24.19	2.0	µg/L	25	. 0	96.8	73	135	Õ	0	0
Surr: Toluene-d8		23.46	2.0	μg/L	25	0	93.8	82	117	0	0	0
Surr: 4-Bromofluc	probenzene	23.94	2.0	μg/L	25	0	95.8	77	119	0	0	0

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank NA - Not applicable where J values or ND results occur

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 18-Feb-10

CLIENT: Work Order: Project:	Shaw Env 1002033 130274 []	rironmental & Infrastr Sextron	ructure, Inc.	• •						QC SUM	•	Z REPO Matrix S ₁	
Sample ID: 100203	33-08Ams	Batch ID: R44059	Test Co	de: SW8260E	β Units: μ	g/L		Analysis (Date 2/15/20	10 7:22:00 PM	Prep Date	e: 2/11/2010	
Client ID: MW-21	17 S		Run ID:	V-3_1002	15A			SeqNo:	731796		1		
		QC Sample			QC Spike Orig	ninal Sample				Original Sample		•	
Analyte		Result	RL.	Units	Amount		%REC	LowLimit	HighLimit	Original Sample or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluorome	thane	118.3	25	µg/L	100 '	0	118	22	176	0			Qui
Chloromethane		127.4	25	μg/L	100	. 0	127	36	170	0			
Vinyl chloride		132.4	10	μg/L	100	1.31	131	54	156	0			
Chloroethane		131.3	25	μg/L	100	0	131	55	153				
Bromomethane		118.1	10	μg/L	100	0	118	47	113	0			s
Trichlorofluorometh	nane	127.1	10	μg/L	100	0.79	126	80	161	. 0			3
Diethyl ether		103.9	25	µg/L	100	0	104	55	128	0			
Acetone		81.05	50	μg/L	100	6.99	74.1	22	147	· 0			
1,1-Dichloroethene		136.8	5.0	μg/L	100	0	137	61	146	0			
Carbon disulfide		117.6	10	µg/L	100	0	118	39	153	0			
Methylene chloride		121.9	25	µg/L	100	0	122	44	147	0			
Methyl tert-butyl eth	her	109.4	10	μg/L	100	0	109	64	137	0			
trans-1,2-Dichloroe	thene	119.7	10	µg/L	100	0	120	68	140	0			
1,1-Dichloroethane		125.4	10	µg/L	100	0	125	66	139	0			
2-Butanone		82.9	50	µg/L	100	0	82.9	35	139	0			
2,2-Dichloropropan	e	102.2	10	µg/L	100	0	102	45	165	. 0			
cis-1,2-Dichloroethe	ene	142.8	10	µg/L	100	20.79	122	68	132	0			
Chloroform		109.3	10	µg/L	100	0	109	78	136	0			
Tetrahydrofuran		86.35	50	µg/L	100	0	86.4	27	139	0			
Bromochlorometha	ine	120.8	10	µg/L	100	0	121	72	132	0			
1,1,1-Trichloroetha	ne	133.8	10	µg/L	100	0	134	78	148	0			
1,1-Dichloropropen	е	136	10	µg/L	100	0	136	82	139	0	1 1		
Carbon tetrachlorid	e	109.4	10	μg/L	100	0	109	72	143	0			
1,2-Dichloroethane		102.4	10	μg/L	100	0	102	72	141	0			
Benzene		116.3	5.0	µg/L	100	. 0	116	73	135	0			

Qualifiers: NI

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

CLIENT:		mental & Infrast	ructure, Inc.	·						QC SUMMARY REPORT
Work Order:	1002033									-
Project:	130274 Textr	on								Sample Matrix Spike
Trichloroethene		127.6	10	µg/L	100	1.08	126	74	143	0
1,2-Dichloropropar		121.3	10	µg/L	100	0	121	66	136	0
Bromodichloromet	hane	108.2	10	μg/L	100	0	108	72	132	0
Dibromomethane		99.6	10	µg/L	100	0	99.6	71	132	0
4-Methyl-2-pentance		85.95	50	µg/L	100	0	.86	34	145	0
cis-1,3-Dichloropro	pene	102.8	5.0	µg/L	100	0	103	66	126	0
Toluene		120.8	10	µg/L	100	0	121	71	139	0
trans-1,3-Dichlorop	propene	104.2	5.0	µg/L	100	0	104	68	122	0
1,1,2-Trichloroetha	ine	99.65	10	µg/L	100	0	99.6	67	129	0
1,2-Dibromoethane	e	99.45	10	µg/L	100	. 0	99.4	67	137	0
2-Hexanone		75.25	50	µg/L	100	0	75.2	30	134	0
1,3-Dichloropropan	ie	101.6	10	µg/L	100	0	102	75	126	ů O
Tetrachloroethene	-	128.8	10	µg/L	100	17.24	112	70	150	0
Dibromochloromet	hane	92	10	µg/L	100	0	92	63	116	ů 0
Chlorobenzene		104.4	10	μg/L	100	0	104	76	130	0
1,1,1,2-Tetrachloro	bethane	112	10	µg/L	100	0	112	79	126	0
Ethylbenzene		113.2	10	. μg/L	100	0	113	80	133	0
m,p-Xylene		228.7	10	μg/L	200	0	114	81	131	0
o-Xylene		112.2	10	μg/L	100	0	112	78	130	0
Styrene		111.3	10	μg/L	100	0	111	72	140	0
Bromoform		71.75	10	μg/L	100	Õ	71.8	47	140	0
Isopropylbenzene		116.4	10	μg/L	100	Õ	116	81	144	0
1,1,2,2-Tetrachlord	bethane	85.15	10	μg/L	100	0	85.2	62	133	0
1,2,3-Trichloroprop		89.05	10	μg/L	100	0	89	60	143	0
Bromobenzene		104.1	10	µg/L	100	0	104	82	127	0
n-Propylbenzene		111.4	10	μg/L	100	· 0	111	76	142	0
2-Chlorotoluene		106.8	10	μg/L	100	0	107	75	134	0
4-Chlorotoluene		112	10	μg/L	100	0	112	74	134	0
1,3,5-Trimethylben	zene	111.2	10 10	µg/L	100	0	112	74 74	133	0
tert-Butylbenzene		115	10	μg/L	100	0	115	74 79	143	0
1,2,4-Trimethylben	zene	109.5	10	μg/L	100	0	110	79	140	0
,+ + + + + + + + + + + + + + + + +		100.0	10	P9'-	100			14	144	v

Date: 18-Feb-10

J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Qualifiers:

CLIENT: Work Order: Project:	Shaw Environmer 1002033 130274 Textron		tructure, Inc.	•	•					QC SUMMARY REPORT Sample Matrix Spike
sec-Butylbenzene		117.6	10	µg/L	100	0	118	76	149	0
4-IsopropyItoluene		110.2	10	µg/L	100	0	110	80	147	0
1,3-Dichlorobenzene		112	10	µg/L	100	· 0	112	78	129	0
1,4-Dichlorobenzene	e	102.3	10	µg/L	100	0	102	76	134	. 0
n-Butylbenzene	•	109.8	10	µg/L	100	0	110	68	153	0
1,2-Dichlorobenzene		101.8	10	µg/L	100	0	102	73	136	0
1,2-Dibromo-3-chlor	opropane	72.55	25	µg/L	100	0	72.6	41	123	0
1,2,4-Trichlorobenze	ene	105.3	10	µg/L	100	0	105	55	156	0
Hexachlorobutadien	e	91.35	10	µg/L	100	0	91.4	46	136	0
Naphthalene		89.8	25	µg/L	100	0	89.8	39	153	0
1,2,3-Trichlorobenze	ene	93.75	10	µg/L	100	0	93.8	41	161	0
Surr: Dibromofluo	romethane	131.2	10	µg/L	125	0	105	82	122	0
Surr: 1,2-Dichloro	ethane-d4	113	10	µg/L	125	0	90.4	73	135	0
Surr: Toluene-d8		127.4	10	µg/L	125	. 0	102	82	117	0
Surr: 4-Bromofluo	robenzene	122.8	10	µg/L	125	0	98.2	77	119	0

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

 \boldsymbol{S} - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank NA - Not applicable where J values or ND results occur

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 18-Feb-10

Qualifiers:

Date: 18-Feb-10

CLIENT: Work Order: Project:	Shaw Env 1002033 130274	vironmental & Infrastr Fextron	ucture, Inc.	•	· · ·					QC SUM Sample N			
Sample ID: 100203	33-08Amsd	Batch ID: R44059	Test Co	de: SW8260	B Units: µ	a/L		Analysis [Date 2/15/20	10 7:55:00 PM	Pren Date	e: 2/11/2010	
Client ID: MW-21	17 S		Run ID:	V-3_100		- ·J· –		SeqNo:	731797	10 7.33.00 1 1	T TEP Date	5. 2/11/2010	
								oeqivo.	131191				
Ameliate		QC Sample			QC Spike Orig	ginal Sample				Driginal Sample			
Analyte		Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qu
Dichlorodifluorome	thane	117.6	25	µg/L	100	0	118	22	176	118.3	0.551	20	
Chloromethane		132	25	µg/L	100	0	132	36	144	127.4	3.55	20	
Vinyl chloride		142.9	10	µg/L	100	1.31	142	54	156	132.4	7.59	20	
Chloroethane		138.4	25	µg/L	100	0	138	55	153	131.3	5.23	20	
Bromomethane		114.6	10	μg/L	100	0	115	47	113	118.1	3.01	20	s
Trichlorofluorometh	ane	132.1	10	μg/L	100	0.79	131	80	161	127.1	3.86	20	0
Diethyl ether		110.6	25	µg/L	100	0	111	55	128	103.9	6.25	20	
Acetone		89.5	50	µg/L	100	6.99	82.5	22	147	81.05	9.91	20	
1,1-Dichloroethene		144.9	5.0	μg/L	100	0	145	61	146	136.8	5.71	20	
Carbon disulfide		122.6	10	µg/L	100	0	123	39	153	117.6	4.2	20	
Methylene chloride		131.8	25	μg/L	100	0	132	44	147	121.9	7.77	20	
Methyl tert-butyl eth	her	112.5	10	μg/L	100	0	112	64	137	109.4	2.79	20	
trans-1,2-Dichloroe	thene	130.1	10	μg/L	100	· 0	130	68	140	119.7	8.33	20	
1,1-Dichloroethane		130.2	10	μg/L	100	0	130	66	139	125.4	3.83	20	
2-Butanone		83.75	50	µg/L	100	0	83.8	35	139	82.9	1.02	20	
2,2-Dichloropropan	е	103.8	10	µg/L	100	0	104	45	165	102.2	1.55	20	
cis-1,2-Dichloroethe	ene	152.3	10	μg/L	100	20.79	132	68	132	142.8	6.4	20	
Chloroform		116.8	10	μg/L	100	0	117	78	136	109.3	6.63	20	
Tetrahydrofuran		94.2	50	µg/L	100	0	94.2	27	139	86.35	8.7	20	
Bromochlorometha	ne	129.8	10	µg/L	100	0	130	72	132	120.8	7.1	20	
1,1,1-Trichloroethar	ne	142.4	10	μg/L	100	Ò	142	78	148	133.8	6.00	20	
1,1-Dichloropropen	е	139.7	10	μg/L	100	0	140	82	139	136	2.68	20	s
Carbon tetrachlorid	е	113.6	10	μg/L	100	0	114	72	143	109.4	3.77	20	5
1,2-Dichloroethane		106.4	10	μg/L	100	0	106	72	141	102.4	3.83	20	

Qualifiers:

Benzene

85

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

0

120

73

100

B - Analyte detected in the associated Method Blank

135

J - Analyte detected below quantitation limits

120.4

R - RPD outside accepted recovery limits

µg/L

NA - Not applicable where J values or ND results occur

116.3

3.42

20

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

5.0

CLIENT: Work Order: Project:	Shaw Environmen 1002033 130274 Textron	ıtal & Infrastr	ucture, Inc.	·			•			QC SUM Sample M		REPORT e Duplicate
Trichloroethene		128.6	10	µg/L	100	1.08	128	74	143	127.6	0.82	20
1,2-Dichloropropan		124.4	10	μg/L	100	0	124	66	136	121.3	2.52	20
Bromodichlorometh	hane	107.6	10	µg/L	100	0	108	72	132	108.2	0.463	20
Dibromomethane		102	10	µg/L	100	0	102	71	132	99.6	2.43	20
4-Methyl-2-pentanc		87.8	50	µg/L	100	0	87.8	34	145	85.95	2.13	20
cis-1,3-Dichloropro	pene	104.2	5.0	µg/L	100	0	104	66	126	102.8	1.4	20
Toluene		124.6	10	µg/L	100	0 -	125	71	139	120.8	3.1	20
trans-1,3-Dichlorop	propene	105.6	5.0	µg/L	100	0	106	68	122	104.2	1.33	20
1,1,2-Trichloroetha		101.4	10	µg/L	100	0	101	67	129	99.65	1.74	20
1,2-Dibromoethane	9	101.4	10	µg/L	100	0	101	67	137	99.45	1.89	20
2-Hexanone		74.6	50	µg/L	100	0	74.6	30	134	75.25	0.868	20
1,3-Dichloropropan	IC .	101.8	10	µg/L	100	· 0	102	75	126	101.6	0.197	20
Tetrachloroethene		134.6	10	µg/L	100	17.24	117	70	150	128.8	4.44	20
Dibromochlorometh	hane	90.35	10	µg/L	100	0	90.4	63	116	. 92	1.81	20
Chlorobenzene		105.7	10	µg/L	100	0	106	76	130	104.4	1.29	20
1,1,1,2-Tetrachloro	ethane	114.6	10	µg/L	100	0	115	79	126	112	2.25	20
Ethylbenzene	,	117.6	10	μg/L	100	0	118	80	133	113.2	3.86	20
m,p-Xylene		231.7	10	µg/L	200	. 0	116	81	131	228.7	1.3	20
o-Xylene		119	10	µg/L	100	. 0	119	78	130	112.2	5.93	20
Styrene		113.2	10	µg/L	100	0	113	72	140	111.3	1.69	20
Bromoform		71.8	10	µg/L	100	0	71.8	47	113	71.75	0.0697	20
Isopropylbenzene		121.8	10	µg/L	100	0	122	81	144	116.4	4.49	20
1,1,2,2-Tetrachloro	ethane	86.6	10	µg/L	100	0	86.6	62	133	85.15	1.69	20
1,2,3-Trichloroprop	ane	87.8	10	µg/L	100	0	87.8	60	143	89.05	1.41	20
Bromobenzene		103.6	10	µg/L	100	0	104	82	127	104.1	0.433	20
n-Propylbenzene		114.3	10	μg/L	100	0	114	76	142	111.4	2.61	20
2-Chlorotoluene		109.2	10	μg/L	100	- 0	109	75	134	106.9	0.07	20
4-Chlorotoluene		111.4	10	μg/L	100	0	111	74	133	112	0.493	20
1,3,5-Trimethylben:	zene	116	10	µg/L	100	0	116	74	143	111.2	4.22	20
tert-Butylbenzene		117.8	10	µg/L	100	0	118	79	140	115	2.41	20
1,2,4-Trimethylben	zene	112	10	μg/L	100	0	112	72	144	109.5	2.26	20

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

CLIENT: Shaw Environmental & Infrastructure, Inc. **QC SUMMARY REPORT** 1002033 Work Order: **Project:** 130274 Textron Sample Matrix Spike Duplicate sec-Butylbenzene 122.8 10 µg/L 100 0 123 76 149 117.6 4.33 20 4-Isopropyltoluene 114.1 10 µg/L 100 0 114 80 147 110.2 3.43 20 1,3-Dichlorobenzene 110.9 10 µg/L 100 0 111 78 129 112 0.987 20 1,4-Dichlorobenzene 103 10 µg/L 100 0 103 76 134 102.3 0.73 20 n-Butylbenzene 116.2 10 µg/L 100 0 116 68 153 109.8 5.71 20 1,2-Dichlorobenzene 104.1 10 µg/L 100 0 104 73 136 101.8 2.18 20 1,2-Dibromo-3-chloropropane 67.2 25 µg/L 100 0 67.2 41 123 72.55 7.66 20 1,2,4-Trichlorobenzene 111 10 µg/L 100 0 111 55 156 105.3 5.32 20 Hexachlorobutadiene 102 10 µg/L 100 0 102 46 136 91.35 11 20 Naphthalene 91.55 25 µg/L 100 0 91.6 39 89.8 153 1.93 20 1,2,3-Trichlorobenzene 96.5 10 µg/L 100 0 96.5 41 161 93.75 2.89 20 Surr: Dibromofluoromethane 136.2 10 µg/L 125 0 109 82 122 0 0 0 Surr: 1,2-Dichloroethane-d4 115.2 10 µg/L 125 0 92.2 73 135 0 0 0 Surr: Toluene-d8 131 10 µg/L 125 0 105 82 117 0 0 0 Surr: 4-Bromofluorobenzene 120.8 10 µg/L 125 0 96.6 77 119 0 0 0

Qualifiers: ND - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

NA - Not applicable where J values or ND results occur

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 18-Feb-10

Date:

Shaw Environmental & Infrastructure, Inc.

Work Order: 1002033 Project: 130274	Textron								QC SUM		(REPO Matrix S ₁	
Sample ID: 1002033-22Ams	Batch ID: R44062	Test Co	de: SW826 0	NR Linite: u	~/l		Applusia					
Client ID: MW-109 D	Baton 12. 144002	Run ID:		•	g/L				10 5:55:00 PM	Prep Date	e: 2/11/2010	
		Kun D.	V-3_100	216A			SeqNo:	731853				
	QC Sample			QC Spike Oriç	ginal Sample			(Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluoromethane	122.4	25	μg/L	100	. 0	122	22	176	0			
Chloromethane	126.7	25	µg/L	100	0	127	36	144	0			
Vinyl chloride	135.2	10	µg/L	100	0	135	54	156	0			
Chloroethane	140.2	25	µg/L	100	0	140	55	153	0			
Bromomethane	120.8	10	µg/L	100	0	121	47	113	0			s
Trichlorofluoromethane	137.3	10	µg/L	100	0	137	80	161	0			•
Diethyl ether	112.8	25	µg/L	100	0	113	55	128	0			
Acetone	102.5	50	µg/L	100	0	103	22	147	. 0			
1,1-Dichloroethene	144.8	5.0	µg/L	100	0	145	61	146	0			
Carbon disulfide	125.5	10	µg/L	100	0	126	39	153	0			
Methylene chloride	136.2	25	µg/L	100	0	136	44	147	. 0			
Methyl tert-butyl ether	116.2	10	µg/L	100	0	116	64	137	0		•	
trans-1,2-Dichloroethene	128.4	10	µg/L	100	0	128	68	140	0			
1,1-Dichloroethane	133	10	µg/L	· 100 ·	0	133	66	139	0			
2-Butanone	90.8	50	µg/L	100	0	90.8	. 35	139	0			
2,2-Dichloropropane	106.8	10	μg/L	100	0	107	45	165	0			
cis-1,2-Dichloroethene	133.6	10	µg/L	100	0	134	68	132	0			S
Chloroform	121.2	10	µg/L	100	0	121	78	136	0			
Tetrahydrofuran	98.2	50	µg/L	100	0	98.2	27	139	0			
Bromochloromethane	136.8	10	µg/L	100	0	137	72	132	0			s
1,1,1-Trichloroethane	148.9	. 10	µg/L	100	0	149	78	148	0			s
1,1-Dichloropropene	141	10	µg/L	100	0	141	82	139	. 0	۱.		S
Carbon tetrachloride	123.2	10	µg/L	100	0	123	. 72	143	0			
1,2-Dichloroethane	116.6	10	µg/L	100	0	117	. 72	141	0			
Benzene	123.8	5.0	µg/L	100	0	124	73	135	. 0			

QC SUMMARY REPORT

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 18-Feb-10

CLIENT:

CLIENT:	Shaw Environmen	tal & Infra	structure, Inc.							QC SU	мл	ADS	ע <i>ד</i> ו	Орт
Work Order:	1002033									QC SU				
Project:	130274 Textron										Sa	mple	Matri	x Spike
Trichloroethene	· · · · · · · · · · · · · · · · · · ·	125	10	µg/L	100	0	125	74	143)			
1,2-Dichloropropan	e	128.8	10	µg/L	100	0	129	66	136)			
Bromodichlorometh	nane	115.4	10	µg/L	100	Ó	115	72	132	()			
Dibromomethane		105.6	10	µg/L	100	0	106	71	132)		1	
4-Methyl-2-pentanc	one	86.5	50	µg/L	100	0	86.5	34	145		-)			
cis-1,3-Dichloropro	pene	103.6	5.0	µg/L	100	0	104	66	126)			
Toluene	•	127.2	10	μg/L	100	0	127	71	139)			•
trans-1,3-Dichlorop	ropene	106	5.0	µg/L	100	0	106	68	122)			
1,1,2-Trichloroetha	ne	110.8	10	μg/L	100	0	111	67	129)			
1,2-Dibromoethane		109.4	10	µg/L	100	0	109	67	137)			
2-Hexanone		67.45	50	µg/L	100	0	67.4	30	134)			
1,3-Dichloropropan	e	102.2	10	μg/L	100	0	102	75	126)			
Tetrachloroethene		122.4	10	µg/L	100	0	122	70	150)			
Dibromochlorometh	nane	97.35	10	μg/L	100	0	97.4	63	116	· (-			
Chlorobenzene		105.6	10	μg/L	100	0	106	76	130))			
1,1,1,2-Tetrachloro	ethane	113.2	10	µg/L	100	0	113	79	126					
Ethylbenzene		111	10	μg/L	100	0	111	80	133	` (
m,p-Xylene		227.1	10	μg/L	200	0 0	114	81	131	(-			
o-Xylene		113	10	µg/L	100	ů 0	113	78	130	· (
Styrene		112.2	10	µg/L	100	ů ·	112	72	140	(
Bromoform		74.95	10	μg/L	100	0	75	47	113	(
Isopropylbenzene		113.9	10	µg/L	100	ů 0	114	81	144					
1,1,2,2-Tetrachloro	ethane	87.05	10	µg/L	100	0	87	62	133		,)			
1,2,3-Trichloroprop		87.4	10	μg/L	100	Ō	87.4	60	143		,)			
Bromobenzene		99.3	10	μg/L	100	0	99.3	82	127).)			
n-Propylbenzene		110	10	µg/L	100	0	110	76	142) }			
2-Chlorotoluene		105	10	µg/L	100	0	105	75	142))			
4-Chlorotoluene		106.8	10	μg/L	100	. 0.	105	75 74	134)			
1,3,5-Trimethylbenz	zene	112	10	μg/L	100	0	107	74 74	133)			
tert-Butylbenzene		111.5	10	μg/L	100	0	112	74 79	143 140)			
1,2,4-Trimethylbenz	zene	105.9	10	μg/L	100	0	106	79 72	140		-			
·,_, · · · · · · · · · · · · · · · · · ·		100.0	ا ل	hAir		v	IVU	۲۷	144		,			

Date: 18-Feb-10

J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

68

Qualifiers:

CLIENT: Work Order: Project:	Shaw Environmer 1002033 130274 Textron	ntal & Infrastruc	ture, Inc.		· · · · ·					QC SUMMARY RE Sample Matr	
sec-Butylbenzene	,	114.7	10	µg/L	100	0	115	76	149	0	
4-Isopropyltoluene		108.6	10	µg/L	100	0	109	80	147	0	
1,3-Dichlorobenzene		107.8	10	µg/L	100	0	108	78	129	0	
1,4-Dichlorobenzene	9	101.4	10	µg/L	100	0	101	76	134	0	
n-Butylbenzene		108.9	10	µg/L	100	0	109	68	153	0	
1,2-Dichlorobenzene	9 .	101	10	µg/L	100	0	101	73	136	0	
1,2-Dibromo-3-chlor	• •	69.85	25	µg/L	100	0	69.8	41	123	0	
1,2,4-Trichlorobenze	ene _j	103.4	10	µg/L	100	0	103	55	156	0	
Hexachlorobutadien	8	99.9	10	µg/L	100	0	99.9	46	136	0	
Naphthalene		82.85	25	µg/L	100	0	82.8	39	153	0	
1,2,3-Trichlorobenze	ene	90.2	10	µg/L	100	0	90.2	41	161	0	
Surr: Dibromofiuo	romethane	140	10	µg/L	125	0	112	82	122	0	
Surr: 1,2-Dichloro	ethane-d4	123.9	10	μg/L	125	0	99.1	73	135	0	
Surr: Toluene-d8		133.8	10	µg/L	125	0	107	82	117	· 0	
Surr: 4-Bromofluo	robenzene	120.2	10	μg/L	125	0	96.1	77	119	0	

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

1002033

Shaw Environmental & Infrastructure, Inc.

Date: 18-Feb-10

QC SUMMARY REPORT

Sample ID: 1002033-22Amsd	Batch ID: R44062	Test Code:	SW8260B	Units: µg/L			Analysis D	Date 2/16/20	10 6:29:00 PM	Prep Date	e: 2/11/2010	
Client ID: MW-109 D		Run ID:	V-3_100216	A			SeqNo:	731854		•		
	QC Sample		Q	C Spike Origina	I Sample			C	Driginal Sample			
Analyte	Result	RL		Amount	Result		LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qu
Dichlorodifluoromethane	122.8	25	μg/L	100	0	123	22	176	122.4	0.367	20	
Chloromethane	134.5	25	μg/L	100	0	134	36	144	126.7	5.97	20	
Vinyl chloride	137.4	10	µg/L	100	0	137	54	156	135.2	1.61	20	
Chloroethane	135.5	25	µg/L	100	. 0	136	55	153	140.2	3.41	20	
Bromomethane	116	10	µg/L	100	0	116	47	113	120.8	4.01	20	s
Trichlorofluoromethane	140.5	10	µg/L	100	. 0	140	80	110	137.3	2.3	20	3
Diethyl ether	108.6	25	μg/L	100	. 0	109	55	128	112.8	3.8	20	
Acetone	84.8	50	µg/L	100	0	84.8	22	147	102.5	18.9	20	
1,1-Dichloroethene	144.6	5.0	μg/L	100	0	145	61	146	144.8	0.138	20	
Carbon disulfide	124.4	10	μg/L	100	0	124	39	153	125.5	0.921	20	
Methylene chloride	135.6	25	µg/L	100	0	136	44	147	136.2	0.442	20	
Methyl tert-butyl ether	117.8	10	μg/L	100	0	118	64	137	116.2	1.41	20	
trans-1,2-Dichloroethene	128.4	10	μg/L	100	0	128	68	140	128.4	0.0389	20	
1,1-Dichloroethane	132	10	µg/L	100	0	132	66	139	133	0.717	20	
2-Butanone	86.2	50	µg/L	100	. 0	86.2	35	139	90.8	5.2	20	
2,2-Dichloropropane	104.8	10	µg/L	100	0	105	45	165	106.8	1.89	20	
cis-1,2-Dichloroethene	130	10	µg/L	100	0	130	68	132	133.6	2.73	20	
Chloroform	121.1	10	µg/L	100	0	121	78	136	121.2	0.0413	20	
Tetrahydrofuran	95.85	50	µg/L	100	0	95.8	27	139	98.2	2.42	20	
Bromochloromethane	138.6	10	µg/L	100	0	139	. 72	132	136.8	1.34	20	S
1,1,1-Trichloroethane	142.7	10	µg/L	100	Ō	143	78	148	148.9	4.25	20	
1,1-Dichloropropene	138.8	10	µg/L	100	0	139	82	139	141	1.61	20	
Carbon tetrachloride	118.6	10	µg/L	100	0	119	72	143	123.2	3.85	20	•
1,2-Dichloroethane	113.2	10	µg/L	100	0	113	72	141	116.6	3	20	~
Benzene	124.6	5.0	µg/L	100	0	125	73	135	123.8	0.684	20	

CLIENT:

9

Work Order:

R - RPD outside accepted recovery limits

· , A

J - Analyte detected below quantitation limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

CLIENT:	Shaw Environme	ntal & Infrastr	ucture, Inc.					-		OC CUM		
Work Order:	1002033									QC SUM		
Project:	130274 Textron									Sample M	latrix Spik	e Duplicate
Trichloroethene		125.6	10	µg/L	100	0	126	74	143	125	0.519	20
1,2-Dichloropropane		130.6	10	µg/L	100	0	131	66	136	128.8	1.43	20
Bromodichlorometh	ane	115.8	10	µg/L	100	0	116	72	132	115.4	0.346	20
Dibromomethane		108.2	10	µg/L	100	0	108	71	132	105.6	2.38	20
4-Methyl-2-pentano		82.8	50	µg/L	100	0	82.8	34	145	86.5	4.37	20
cis-1,3-Dichloroprop	pene	102.8	5.0	µg/L	100	. 0	103	66	126	103.6	0.727	20
Toluene		127.5	10	µg/L	100	0	128	71	139	127.2	0.196	20
trans-1,3-Dichloropr	ropene	106	5.0	µg/L	100	0	106	68	122	106	0.0472	20
1,1,2-Trichloroethar	ne	110	10	µg/L	100	0	110	67	129	110.8	0.68	20
1,2-Dibromoethane		106.2	10	µg/L	100	0	106	67	137	109.4	3.06	20
2-Hexanone		70.3	50	µg/L	100	0	70.3	30	134	67.45	4.14	20
1,3-Dichloropropane	Э	102.8	10	µg/L	100	0	103	75	126	102.2	0.683	20
Tetrachloroethene		119.3	10	µg/L	100	0	119	70	150	122.4	2.65	20
Dibromochlorometh	ane	93.95	10 -	µg/L	100	0	94	63	116	97.35	3.55	20
Chlorobenzene		107.8	10	µg/L	100	0	108	76	130	105.6	1.97	20
1,1,1,2-Tetrachloroe	ethane	113	10 ·	µg/L	100	· 0	113	79	126	113.2	0.0884	20
Ethylbenzene		113.2	10	µg/L	100	0	113	80	133	111	1.96	20
m,p-Xylene		230.4	10	μg/L	200	0	115	81	131	227.1	1.46	20
o-Xylene		114.9	10	µg/L	100	0	115	78	130	113	1.62	20
Styrene		115.4	10	µg/L	100	0	115	72	140	112.2	2.86	20
Bromoform		73.1	10	µg/L	100	0	73.1	47	113	74.95	2.5	20
Isopropylbenzene		115	10	µg/L	100	0	115	81	144	113.9	0.918	20
1,1,2,2-Tetrachloroe	ethane	84.3	10	μg/L	100	0	84.3	62	133	87.05	3.21	20
1,2,3-Trichloropropa	ane	90.4	10	μg/L	100	0	90.4	60	143	87.4	3.37	20
Bromobenzene		103.2	10	µg/L	100	0	103	82	127	99.3	3.85	20
n-Propylbenzene		111.2	10	µg/L	100	ů 0	111	76	142	110	1.04	20
2-Chlorotoluene		108.2	10	μg/L	100	ů 0	108	75	134	105	2.05	20
4-Chlorotoluene	•	112.4	10	µg/L	100	0	112	74	134	105 、	5.05 5.11	20 20
1,3,5-Trimethylbenz	ene	113.2	10	μg/L	100	0	112	74	133 143	112	1.07	20 20
tert-Butylbenzene		113.8	10	µg/L	100	0	113	79	143 140	111.5	2.04	20
1,2,4-Trimethylbenz	ene	108	10	µg/L	100	0	108	79	140 144	105.9	2.04	20 20

Date: 18-Feb-10

ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

CLIENT:	Shaw Environm	nental & Infrast	ructure, Inc.				-					
Work Order:	1002033		,							QC SUM	MARY I	REPORT
Project:	130274 Textro	on								Sample M	atrix Spik	e Duplicate
sec-Butylbenzene		117.5	10	µg/L	100	0	118	76	149	114.7	2.41	20
4-Isopropyltoluene		109.2	10	µg/L	100	0	109	80	147	108.6	0.551	20
1,3-Dichlorobenzen	e	109.9	10	µg/L	100	0	110	78	129	107.8	1.88	20
1,4-Dichlorobenzen	e	105.2	10	µg/L	100	. 0	105	76	134	101.4	3.68	20
n-Butylbenzene		112.7	10	µg/L	100	0	113	68	153	108.9	3.43	20
1,2-Dichlorobenzen	e	102.6	10	μg/L	100	0	103	73	136	101	1.57	20
1,2-Dibromo-3-chlor	ropropane	70.7	25	µg/L	100	0	70.7	41	123	69.85	1.21	20
1,2,4-Trichlorobenze	ene	104.8	10	µg/L	100	0	105	55	156	103.4	1.34	20
Hexachlorobutadien	e	108.2	10	µg/L	100	0	108	46	136	99.9	8.02	20
Naphthalene		86.65	25	µg/L	100	0	86.7	39	153	82.85	4.48	20
1,2,3-Trichlorobenze	ene	91.25	10	µg/L	100	0	91.2	41	16 1	90.2	1.16	20
Surr: Dibromofluc	promethane	139.4	10	µg/L	125	0	111	82	122	0	0	0
Surr: 1,2-Dichloro	bethane-d4	125.5	10	µg/L	125	0	100	73	135	. 0	0	0
Surr: Toluene-d8		132.4	10	µg/L	125	0	106	82	117	· 0	0	0
Surr: 4-Bromofluc	probenzene	121.4	10	µg/L	125	0	97.2	77	119	0	0	0

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

a limits R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

93

Date: 18-Feb-10

Date: 18-Feb-10

CLIENT: Work Order: Project:	Shaw En 1002033 130274	vironmental & Infrasti Textron	ucture, Inc	•						QC SUM		REPO Matrix S	
Sample ID: 10020:	33-12Ams	Batch ID: R44074	Test Co	de: SW8260	B Units: µ	g/L		Analysis	Date 2/17/2	010 6:36:00 PM	Pren Date	e: 2/11/2010	
Client ID: MW-20	07 D		Run ID:	V-3_100				SeqNo:	732025			. 2/11/2010	
Analyte	·	QC Sample Result	RL	Units	QC Spike Orig Amount	ginal Sample Result		LowLimit		Original Sample or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluorome	thane	89.7	25	µg/L	100	0	89.7	22	176	. 0			
Chloromethane		98.1	25	µg/L	100	0	98.1	36	144	. 0			
Vinyl chloride		104.6	10	µg/L	100	0	105	54	156	0			
Chloroethane		106.5	25	µg/L	100	0	106	55	153	0			
Bromomethane		91.85	10	µg/L	100	0	91.8	47	113	0			
Trichlorofluorometh	nane	109.9	10	µg/L	100	0	110	80	161	0			
Diethyl ether		86.8	25	µg/L	100	0	86.8	55	128	0			
Acetone		67.7	50	µg/L	100	3.29	64.4	22	147	0			
1,1-Dichloroethene		110.7	5.0	µg/L	100	0	111	61	146	0			
Carbon disulfide		97.7	10	μg/L	100	0	97.7	39	153	0			
Methylene chloride		103.8	25	µg/L	100	0	104	44	147	0			
Methyl tert-butyl eth	ner	90	10	µg/L	100	0	90	64	137	0			
trans-1,2-Dichloroe	thene	103	10	µg/L	100	0	103	68	140	0			
1,1-Dichloroethane		104.3	10	µg/L	100	0	104	66	139	0			
2-Butanone		74.9	50	µg/L	100	0	74.9	35	139	. 0	· .		
2,2-Dichloropropan	е	85.35	10	μg/L	100	0	85.4	45	165	0	4		
cis-1,2-Dichloroethe	ene	103	10	μg/L	100	. 0	103	68	132	0			
Chloroform		96.1	10	µg/L	100	0	96.1	78	136	0			
Tetrahydrofuran	•	77.95	50	μg/L	100	0	78	27	139	0			
Bromochlorometha	ne	106	10	μg/L	100	0	106	72	132	0			
1,1,1-Trichloroetha	ne	115.6	10	μg/L	100	. 0	116	78	148	0			
1,1-Dichloropropen	e	111.2	10	μg/L	100	0	111	82	139	0	N		
Carbon tetrachlorid	е	95.45	10	μg/L	100	0	95.4	72	143	0			
1,2-Dichloroethane	·	89.95	10	μg/L	100	0	90	72	141	0		•	
Benzene		98.6	5.0	μg/L	100	0	98.6	73	135	0			

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

94

CLIENT:	Shaw Environmen	tal & Infrastr	ructure, Inc.			· · ·				QC SUMMARY REPORT
Work Order:	1002033									
Project:	130274 Textron				•					Sample Matrix Spike
Trichloroethene		102.2	10	µg/L	100	2.16	100	74	143	. 0
1,2-Dichloropropan	ie	102.7	10	µg/L	100	0	103	66	136	0
Bromodichlorometh	hane	94.35	10	µg/L	100	0	94.4	72	132	0
Dibromomethane		87.85	10	µg/L	100	. 0	87.8	71	132	0
4-Methyl-2-pentanc	one	66.8	50	µg/L	100	0	66.8	34	145	. 0
cis-1,3-Dichloropro	pene	82.15	5.0	µg/L	100	0	82.2	66	126	0
Toluene		100.4	10	μg/L	100	0	100	71	139	. 0
trans-1,3-Dichlorop	propene	85.85	5.0	µg/L	100	. 0	85.8	68	122	0
1,1,2-Trichloroetha	ne	87.65	10	µg/L	100	0	87.6	67	129	0
1,2-Dibromoethane)	85.45	10	µg/L	100	0	85.4	67	137	0
2-Hexanone		74.45	50	µg/L	100	0	74.4	30	134	0
1,3-Dichloropropan	ie .	109.2	10	µg/L	100	0	109	75	126	0
Tetrachloroethene		255.8	10	µg/L	100	140	116	70	150	0
Dibromochlorometh	hane	100.2	[`] 10	µg/L	100	0	100	63	116	0
Chlorobenzene		110.4	10	µg/L	100	0	110	76	130	0
1,1,1,2-Tetrachloro	ethane	120	10	µg/L	100	0	120	79	126	0
Ethylbenzene		117.2	10	μg/L	100	0	117	80	133	0
m,p-Xylene		239.6	10	µg/L	200	0	120	81	131	0
o-Xylene		118.4	10	µg/L	100	0	118	78	130	0
Styrene		116	10	µg/L	100	0	116	72	140	0
Bromoform		78.4	10	µg/L	100	0	78.4	47	113	0
Isopropylbenzene		123.8	10	μg/L	100	0	124	81	144	0
1,1,2,2-Tetrachloro	ethane	94.75	10	µg/L	100	0	94.8	62	133	0
1,2,3-Trichloroprop	ane	98.25	10	μg/L	100	0	98.2	60	143	0
Bromobenzene		111.4	10	µg/L	100	0	. 111	82	127	0
n-Propylbenzene		120.6	10	µg/L	100	0	121	76	142	0
2-Chlorotoluene		115.4	10	µg/L	100	0	115	75	134	0
4-Chiorotoluene		120.7	10	μg/L	100	0	121	74	133	0
1,3,5-Trimethylben:	zene	121.4	10	μg/L	100	0	121	74	143	0
tert-Butylbenzene	`	120.5	10	µg/L	100	0	120	79	140	0
1,2,4-Trimethylben	zene	115.8	10	µg/L	100	0	116	72	144	0
Qualifiers: ND	- Not Detected at the Rep	orting Limit	S	- Spike Recov	ery outside accep	ted recovery	imits	B - Analyte d	etected in	the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 18-Feb-10

CLIENT: Work Order: Project:	Shaw Environmen 1002033 130274 Textron	ıtal & Infrastru	cture, Inc.							QC SUMMARY REPOR Sample Matrix Spi	
sec-Butylbenzene		124.5	10	µg/L	100	0	124	76	149	0	
4-Isopropyltoluene		118.8	10	µg/L	100	0	119	80	147	0	
1,3-Dichlorobenzene	•	119	10	μg/L	100	0	119	78	129	0	
1,4-Dichlorobenzene	•	112	10	µg/L	100	0	112	76	134	0	
n-Butylbenzene		119.5	10	µg/L	100	0	120	68	153	0	
1,2-Dichlorobenzene		109.4	10	· μg/L	100	0	109	73	136	0	
1,2-Dibromo-3-chloro	opropane	77.4	25	µg/L	100	0	77.4	41	123	0	
1,2,4-Trichlorobenze	ne	111.9	10	µg/L	100	0	112	55	156	0	
Hexachlorobutadiene	Э	109.8	10	µg/L	100	0	110	46	136	0	
Naphthalene		90.75	25	µg/L	100	0	90.8	39	153	0	
1,2,3-Trichlorobenze	ne	97	10	µg/L	100	0	97	41	161	0	
Surr: Dibromofluo	romethane	129.4	10	µg/L	125	0	104	82	122	0	
Surr: 1,2-Dichloro	ethane-d4	120	10	µg/L	125	• 0	96	73	135	0	
Surr: Toluene-d8		117.6	10	µg/L	125	0	94.1	82	117	0	
Surr: 4-Bromofluo	robenzene	123.2	10	µg/L	125	0	98.6	77	119	0	

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

NA - Not applicable where J values or ND results occur

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 18-Feb-10

Date: 18-Feb-10

CLIENT: Work Order:	1002033	vironmental & Infrastr	ucture, Inc.			. 1				QC SUM			
Project:	130274	lextron			·					Sample N	latrix Sp	ike Dupli	cate
Sample ID: 100203	3-12Amsd	Batch ID: R44074	Test Code	: SW8260	B Units: µg	g/L		Analysis I	Date 2/17/20	10 7:10:00 PM	Prep Dat	e: 2/11/2010	
Client ID: MW-207	7 D		Run ID:	V-3_100	217A .			SeqNo:	732026				
		QC Sample		v	QC Spike Orig	inal Sample	,)			Driginal Sample			
Analyte		Result	RL	Units	Amount		%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Q
Dichlorodifluorometh	hane	85.7	25	µg/L	100	۰ 0	85.7	22	176	89.7	4.56	20	
Chloromethane		97.9	25	µg/L	100	0	97.9	36	144	98.1	0.204	20	
Vinyl chloride		104.7	10	µg/L	100	0	105	54	156	104.6	0.0956	20	
Chloroethane		103.4	25	µg/L	100	0	103	55	153	106.5	2.96	20	
Bromomethane		87.2	10	µg/L	100	0	87.2	47	113	91.85	5.19	20	
Trichlorofluorometha	ane	106.8	10	µg/L	100	. 0	107	80	161	109.9	2.91	20	
Diethyl ether		85.6	25	µg/L	100	0	85.6	55	128	86.8	1.39	20	
Acetone		69.1	50	µg/L	100	3.29	65.8	22	147	67.7	2.05	20	
1,1-Dichloroethene		113.8	5.0	µg/L	100	0	114	61	146	110.7	2.81	20	
Carbon disulfide		96.85	10	µg/L	100	0	96.8	39	153	97.7	0.874	20	
Methylene chloride		103.6	25	µg/L	100	0	104	44	147	103.8	0.0964	20	
Methyl tert-butyl etho		89.3	10	µg/L	100	0	89.3	64	137	90	0.781	20	
rans-1,2-Dichloroet	thene	102.1	10	µg/L	100	0	102	68	140	103	0.926	20	
1,1-Dichloroethane		103.2	[.] 10	µg/L	100	0	103	66	139	104.3	1.06	20	
2-Butanone		69.15	50	µg/L	100	0	69.2	35	139	74.9	7.98	20	
2,2-Dichloropropane	Э	83.05	10	µg/L	100	0	83	45	165	85.35	2.73	20	
cis-1,2-Dichloroethe	ene	99.9	10	µg/L	100	0	99.9	68	132	- 103	3.06	20	
Chloroform		92.25	10	µg/L	100	0	92.2	78	136	96.1	4.09	20	
Tetrahydrofuran		73.85	50	µg/L	100	0	73.8	27	139	77.95	5.4	20	
Bromochloromethan	ne	103.4	10	µg/L	100	0	103	72	132	106	2.44	20	
1,1,1-Trichloroethan	ne	112.2	10	µg/L	100	0	112	78	148	115.6 、	2.94	20	
1,1-Dichloropropene	e	108.6	10	µg/L	100	. 0	109	82	139		2.41	20	
Carbon tetrachloride	e	93.85	10	µg/L	100	0	93.8	72	143	95.45	1.69	20	
1,2-Dichloroethane		85.9	10	µg/L	100	0	85.9	72	141	89.95	4.61	20	
Benzene		94.4	5.0	μg/L	100	0	94.4	73	135	98.6	4.35	20	
Qualifiers: ND -	Not Detected	at the Reporting Limit	. S-	Spike Reco	overy outside acce	pted recovery	/ limits	B - Analy	te detected in	the associated Metho	od Blank		

76

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

NA - Not applicable where J values or ND results occur

CLIENT:	Shaw Environme	ntal & Infras	tructure, Inc.							00 010 0			•
Work Order:	1002033		,							QC SUM	MARY H	REPO	RT
Project:	130274 Textron									Sample M	atrix Spike	e Dupli	cate
Trichloroethene	· · · · · · · · · · · · · · · · · · ·	97.5	10	μg/L	100	2.16	95.3	74	143	102.2	4.76	20	
1,2-Dichloropropan		100.6	10	µg/L	100	0	101	66	136	102.7	2.12	20	
Bromodichlorometh	ane	88	10	µg/L	100	0	88	72	132	94.35	6.96	20	
Dibromomethane		78.85	10	μg/L	100	0	78.8	71	132	87.85	10.8	20	
4-Methyl-2-pentano	ne	59.1	50	μg/L	100	0	59.1	34	145	66.8	12.2	20	
cis-1,3-Dichloroprop	pene	80.5	5.0	μg/L	100	0	80.5	66	126	82.15	2.03	20	
Toluene		97.6	10	μg/L	100	0	97.6	71	139	100.4	2.83	20	
trans-1,3-Dichlorop	ropene	83.6	5.0	µg/L	100	0 -	83.6	68	122	85.85	2.66	20	
1,1,2-Trichloroethar	ne ·	81.4	10	µg/L	100	0	81.4	67	129	87.65	7.39	20	
1,2-Dibromoethane		82.5	10	µg/L	100	0	82.5	67	137	85.45	3.51	20	
2-Hexanone		65.9	50	μg/L	100	0	65.9	30	134	74.45	12.2	20	
1,3-Dichloropropane	e	99.8	10	μg/L	100	. 0	99.8	75	126	109.2	9	20	
Tetrachloroethene		205	10	μg/L	100	140	65	70	150	255.8	22	20	SR
Dibromochlorometh	ane	92.8	10	µg/L	100	0	92.8	63	116	100.2	7.72	20	on
Chlorobenzene		103.5	10	μg/L	100	0	104	76	130	110.4	6.41	20	
1,1,1,2-Tetrachloroe	ethane	110.4	10	μg/L	100	0	110	79	126	120	8.37	20	
Ethylbenzene		110.2	10	µg/L	100	0	110	80	133	117.2	6.11	20	
m,p-Xylene		225.9	10	μg/L	200	Ő	113	81	131	239.6	5.89	20	
o-Xylene		111.4	10	μg/L	100	0	111	78	130	118.4	5.89 6.14	20	
Styrene		110.2	10	μg/L	100	0	110	72	140	116	5.13	20	
Bromoform	·.	72.05	10	μg/L	100	0	72	47	140	78.4	3.13 8:44	20	
Isopropylbenzene		120.7	10	µg/L	100	0	121	81	144	123.8	2.58	20	
1,1,2,2-Tetrachloroe	ethane	88.3	10	μg/L	100	0	88.3	62	133	94.75	2.36 7.05	20	
1,2,3-Trichloropropa	ane .	94.15	10	μg/L	100	0 0	94.2	60	143	98.25	4.26	20	
Bromobenzene		106.5	10	μg/L	100	· 0	106	82	143	111.4	4.20	20	
n-Propylbenzene		117.7	10	μg/L	100	0	118	76	142	120.6	4.5 2.43	20	
2-Chlorotoluene		112.5	.10	μg/L	100	0	112	75	134	115.4	2.43	20	
4-Chiorotoluene		117.4	10	μg/L	100	0	117	74	134	120.7	2.5	20 20	
1,3,5-Trimethylbenz	zene	118.4	10	μg/L	100	0	118	74	143	120.7	2.54	20 20	
tert-Butylbenzene		119.8	10	μg/L	100	0	120	79	140	120.5	0.583	20	
1,2,4-Trimethylbenz	zene	114.2	10	μg/L	100	0	114	79	140	120.5	1.35	20 20	

Date: 18-Feb-10

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits S - Spike Recovery outside accepted recovery limitsR - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

y limits NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Qualifiers:

Work Order: 1	baw Environm 002033 30274 Textro	nental & Infrasti n	ructure, Inc.							QC SUM Sample M		REPORT e Duplicate
sec-Butylbenzene		124.2	10	µg/L	100	0.	124	76	149	124.5	0.201	20
4-Isopropyltoluene		117.2	10	µg/L	· 100	0	117	80	147	118.8	1.4	20
1,3-Dichlorobenzene		115.8	10	µg/L	100	0	116	78	129	119	2.73	20
1,4-Dichlorobenzene		107.6	10	µg/L	100	0	108	76	134	112	3.92	20
n-Butylbenzene		119.1	10	µg/L	100	0	119	68	153	119.5	0.377	20
1,2-Dichlorobenzene		108.1	10	μg/L	100	0	108	73	136	109.4	1.2	20
1,2-Dibromo-3-chlorop	· .	72.95	25	µg/L	100	0	73	41	123	77.4	5.92	20
1,2,4-Trichlorobenzene	e .	110	10	µg/L	100	0	110	55	156	111.9	1.71	20
Hexachlorobutadiene		116.6	10	µg/L	100	0	117	46	136	109.8	6.1	20
Naphthalene		88.05	25	µg/L	100	0	88	39	153	90.75	3.02	20
1,2,3-Trichlorobenzene)	95	.10	µg/L	100	0	95	41	161	97	2.08	20
Surr: Dibromofluoro	methane	127	10	µg/L	125	0	102	82	122	0	0	0
Surr: 1,2-Dichloroeth	nane-d4	117	10	µg/L	125	0	93.6	73	135	0	0	0
Surr: Toluene-d8		116.3	10	µg/L	125	0	. 93	82	117	. 0	Õ	0
Surr: 4-Bromofluorol	benzene	116.8	10	µg/L	125	0	93.4	77	119	0	0	0

Date: 18-Feb-10

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

CLIENT: Lab Order: Project: Lab ID:	Shaw Environmental a 1002033 130274 Textron 1002033-02A	& Infrastructur	e, Inc.		
Analyses	· .	Result	RL Q	ual Units	DF Date Analyzed
TPH BY GC/FIL) (MODIFIED 8015B)	S	W8015B		Analyst: KA
Gasoline		ND	0.050	mg/L	1 2/19/2010 7:21:00 PM
Mineral Spirits		ND	0.050	mg/L	1 2/19/2010 7:21:00 PM
Kerosene		ND	0.050	mg/L	1 2/19/2010 7:21:00 PM
Diesel Fuel/Fue	I Oil #2	ND	0.050	mg/L	1 2/19/2010 7:21:00 PM
Motor Oil/Hydra	ulic Oil	ND	0.10	mg/L	1 2/19/2010 7:21:00 PM
Unidentified Hyd	frocarbons	5.5	0.10	mg/L	1 2/19/2010 7:21:00 PM
Surr: o-Terph	enyl	77.3	31-131	%REC	1 2/19/2010 7:21:00 PM

Gasoline cannot be accurately determined by this method. Purge and trap sample introduction into a GC or GCMS is the recommended approach for gasoline. Due to the physical, chemical, and biological processes which affect the chemical composition of fuel mixtures exposed to the environment, the qualitative identity of a hydrocarbon mixture as a fuel product is not always conclusive by this method due to the method's reliance on chromatographic pattern recognition. A result provided for a specific fuel indicates that the mixture present in the sample has a chromatographic pattern similar to the laboratory's reference standard for that fuel mixture under specific GC operating conditions utilized at the time of analysis. A result identified as Unidentified Hydrocarbons is based upon the detector response obtained for the laboratory's Fuel Oil#2 reference standard and includes the entire chromatographic response for the sample between n-Alkanes of carbon numbers C9 to C36.

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits
 B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limitsE - Value above quantitation range

H - Method prescribed holding time exceeded.

- See Case Narrative

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

100

Date: 01-Mar-10

	Shaw Environment	al & Infrastruc	cture, Inc.	Client Sam	ple ID: CW-6 Dup
Lab Order: 1	002033			Tag Nu	imber:
Project: 1	30274 Textron			Collection	Date: 2/11/2010 2:50:00 PM
Lab ID: 1	002033-03A			N	fatrix: GROUNDWATER
Analyses	· · · · · · · · · · · · · · · · · · ·	Result	RL	Qual Units	DF Date Analyzed
	· · · · · · · · · · · · · · · · · · ·				
-			SW8015B		Analyst: K
Gasoline		ND	0.050	mg/L	1 2/19/2010 7:58:00 F
Gasoline Mineral Spirits		ND	0.050 0.050	mg/L	1 2/19/2010 7:58:00 F 1 2/19/2010 7:58:00 F
Gasoline Mineral Spirits Kerosene		ND ND	0.050 0.050 0.050	mg/L mg/L	1 2/19/2010 7:58:00 F 1 2/19/2010 7:58:00 F 1 2/19/2010 7:58:00 F
Gasoline Mineral Spirits Kerosene Diesel Fuel/Fuel Oil i	#2	ND ND ND	0.050 0.050 0.050 0.050	mg/L mg/L mg/L	1 2/19/2010 7:58:00 F 1 2/19/2010 7:58:00 F 1 2/19/2010 7:58:00 F 1 2/19/2010 7:58:00 F 1 2/19/2010 7:58:00 F
Gasoline Mineral Spirits Kerosene Diesel Fuel/Fuel Oil a Motor Oil/Hydraulic C	#2 Dil	ND ND ND	0.050 0.050 0.050	mg/L mg/L	1 2/19/2010 7:58:00 F 1 2/19/2010 7:58:00 F 1 2/19/2010 7:58:00 F
Mineral Spirits Kerosene Diesel Fuel/Fuel Oil i	#2 Dil	ND ND ND	0.050 0.050 0.050 0.050	mg/L mg/L mg/L	1 2/19/2010 7:58:00 F 1 2/19/2010 7:58:00 F 1 2/19/2010 7:58:00 F 1 2/19/2010 7:58:00 F 1 2/19/2010 7:58:00 F

Gasoline cannot be accurately determined by this method. Purge and trap sample introduction into a GC or GCMS is the recommended approach for gasoline. Due to the physical, chemical, and biological processes which affect the chemical composition of fuel mixtures exposed to the environment, the qualitative identity of a hydrocarbon mixture as a fuel product is not always conclusive by this method due to the method's reliance on chromatographic pattern recognition. A result provided for a specific fuel indicates that the mixture present in the sample has a chromatographic pattern similar to the laboratory's reference standard for that fuel mixture under specific GC operating conditions utilized at the time of analysis. A result identified as Unidentified Hydrocarbons is based upon the detector response obtained for the laboratory's Fuel Oil#2 reference standard and includes the entire chromatographic response for the sample between n-Alkanes of carbon numbers C9 to C36.

Qualifiers:

ND - Not Detected at the Reporting Limit

AMRO Environmental Laboratories Corp.

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded.

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

- See Case Narrative

- RL Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 01-Mar-10

Date: 04-Mar-10

CLIENT: Work Order: Project:	Shaw Env 1002033 130274 T	vironmental & Infras Fextron	tructure, Inc.	•						QC SUM		REPO Aethod B	
Sample ID: MB-20001 Client ID:		Batch ID: 20001		: SW8015I		g/L				010 5:31:00 PM	Prep Date	e: 2/15/2010	
Cheffit ID.		4 A.	Run ID:	GC-FING	1_100219A			SeqNo:	732275				
		QC Sample			QC Spike Orig	inal Sample				Original Sample			
Analyte		Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Gasoline		ND	0.050	mg/L									
Mineral Spirits		ND	0.050	mg/L									
Kerosene		ND	0.050	mg/L								•	
Diesel Fuel/Fuel Oil	#2	ND	0.050	mg/L				• * * * •					
Motor Oil/Hydraulic	Oil	ND	0.10	mg/L									
Unidentified Hydroc	arbons	ND	0.10	mg/L					· .				
Surr: o-Terpheny		0.08887	0.	mg/L	0.1	0	88.9	31	131	0			

Ĵ

Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 04-Mar-10

CLIENT: Work Order: Project:	1002033	nvironmental & Infra 3 Textron	structure, Inc.							QC SUM Lat		REPO	
Sample ID: LCS-20)001	Batch ID: 20001	Test Code:	SW8015	B Units: m	g/L		Analysis [Date: 2/19/20	10 6:08:00 PM	Prep Date	e: 2/15/2010	
Client ID:		•	Run ID:	GC-FING	1_100219A	/		SeqNo:	732276				
Analyte		QC Sample Result	RL	Units	QC Spike Orig Amount	inal Sample Result		LowLimit	HighLimit	Driginal Sample or MS Result	%RPD	RPDLimit	Qua
Diesel Fuel/Fuel Oil Surr: o-Terpheny		1.664 0.07578	0.050 0	mg/L mg/L	2 0.1	0 0	83.2 75.8	42 31	119 131	0 0			
Sample ID: LCSD-2	20001	Batch ID: 20001	Test Code:	SW8015	B Units: m	g/L		Analysis [Date: 2/19/20	10 6:45:00 PM	Prep Date	e: 2/15/2010	
Client ID:	•		Run ID:	GC-FING	i1_100219A			SeqNo:	732277		·		
Analyte	r.	QC Sample Result	RL	Units	QC Spike Orig Amount	inal Sample Result		LowLimit	(HighLimit	Driginal Sample	%RPD	RPDLimit	Qua
Diesel Fuel/Fuel Oil Surr: o-Terpheny		1.464 0.06497	0.050 0	mg/L mg/L	د 2 0.1	, 0	73.2 65	42 31	119 131	1.664	12.8 0	40 0	·

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

CLIENT:	Show Environmental	Pr Infrastra	tuno Ino			<u> </u>	1000000				
Project:	Shaw Environmental 130274 Textron		ture, Inc.		Lab	Order:	1002033				
Lab ID:	1002033-22			Collectio		2/11/201	0 3:50:00 PM				
Client Sample I	D: MW-109 D	×			Matrix: GROUNDWATER						
Analyses	· · · · ·	Result	RL	Qual Units		DF	Date Analyzed				
ICP METALS DI	SSOLVED SW-846		SW6010B				Analyst: AL				
Lead		ND	13.0	μg/L		1	2/16/2010 7:54:12 PM				
Lab ID:	1002033-23	1002033-23 Collection Date: 2/11/2010 3:30:00 P Collection Time: Collection Time:									
Client Sample II	D: GAZ-3				Matrix:	GROUN	DWATER				
Analyses		Result	RL	Qual Units		DF	Date Analyzed				
ICP METALS DIS	SSOLVED SW-846		SW6010B	• •		,	Analyst: AL				
Lead		ND	13.0	μg/L		1	2/16/2010 8:40:06 PM				
Lab ID:	1002033-24		· · · · · ·	Collectio	on Date: 2	2/11/201	0 3:35:00 PM				
				Collectio	n Time:		· · ·				
Client Sample II	D: GZA-3 Dup				Matrix: (GROUN	DWATER				
Analyses		Result	RL	Qual Units		DF	Date Analyzed				
CP METALS DIS	SSOLVED SW-846		SW6010B				Analyst: AL				

Date: 01-Mar-10

Date: 05-Mar-10

CLIENT: Work Order:	Shaw E 100203	Environmental & Infrast	ructure, Inc.			QC SUMMARY REPORT						
Project:	130274	1 Textron		·				-		N	Method Bl	lank
Sample ID mb-200	003	Batch ID: 20003	Test Cod	e: SW6010B Uni	ts: μg/L		Analysis [Date 2/16/10	7:36:32 PM	Prep Dat	e 2/16/10	
Client ID:			Run ID:	ICP-OPTIMA_1002	16A		SeqNo:	731917				
		QC Sample		QC Spike	Original Sample		•	C	Driginal Sample			
Analyte		Result	RL	Units Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Lead		ND	13	µg/L		. •						

105

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 05-Mar-10

CLIENT: Work Order: Project:	Shaw Environmental & Infras 1002033 130274 Textron	structure, Inc.					QC SUM Lat		REPO Control S ₁	
Sample ID Ics-2000	03 Batch ID: 20003	Test Code: SW60*		g/L	Analysis I	Date 2/16/10	0 7:42:23 PM	Prep Date	e 2/16/10	
Client ID:		Run ID: ICP-O	PTIMA_100216A		SeqNo:	731918	· ·			
Analyte	QC Sample Result	RL Units	QC Spike Orig Amount	inal Sample Result %REC	LowLimit	HighLimit	Original Sample or MS Result	%RPD	RPDLimit	Qua
Lead	1966	13 µg/L	1998	0 98.4	80	120	0			
Sample ID Icsd-200	003 Batch ID: 20003	Test Code: SW601	I 0B Units: μ	g/L	Analysis Date 2/16/10 7:48:21 PM			Prep Date	e 2/16/10	
Client ID:		Run ID: ICP-OI	PTIMA_100216A		SeqNo:	731919				
	QC Sample		QC Spike Orig	inal Sample		1	Original Sample			
Analyte	Result	RL Units	Amount	Result %REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Lead	1964	13 µg/L	1998	0 98.3	80	120	1966	0.0926	20	

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

ts R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

Date: 05-Mar-10

CLIENT: Work Order: Project:	1002033	nvironmental & Infrast 3 Textron	ructure, Inc	•						IMARY REPORT Sample Duplicate			
Sample ID 10020 Client ID: MW-1		Batch ID: 20003	Test Coo Run ID:	de: SW6010 ICP-OP	DB Units: µ TIMA_100216A	•		Analysis I SeqNo:	Date 2/16/10 731922	8:05:54 PM	Prep Dat	e 2/16/10	
Analyte		QC Sample Result	RL	Units	QC Spike Orig Amount		%REC	LowLimit		Original Sample or MS Result	%RPD	RPDLimit	Qua
Lead		2.215	13	µg/L	0	0	0	0	0	3.27	38.5	20	JR

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 05-Mar-10

CLIENT: Work Order: Project:	Shaw En 1002033 130274	vironmental & Infrast Textron	ructure, Inc.	•			· · · · · · · · · · · · · · · · · · ·			QC SUM		REPO Matrix S ₁	
Sample ID 1002 Client ID: MW-	033-22bms 109 D	Batch ID: 20003	Test Code: Run ID:		Units: μg/l MA_100216A	-		Analysis [SeqNo:	Date 2/16/1 731926	0 8:28:05 PM	Prep Dat	e 2/16/10	
Analyte	• • •	QC Sample Result	RL	Units	QC Spike Origin Amount	al Sample Result		LowLimit	HighLimit	Original Sample or MS Result	%RPD	RPDLimit	Qua
Lead		1931	13	µg/L	1998	3.27	96.5	75	125	0			
•	033-22bmsd 109 D	Batch ID: 20003	Test Code: Run ID:		Units: µg/l MA_100216A	•		Analysis [SeqNo:	Date 2/16/10 731927	0 8:34:02 PM	Prep Date	e 2/16/10	<u></u>
Analyte		QC Sample Result	RL	Units	QC Spike Origina Amount	al Sample Result	%REC	LowLimit	HighLimit	Original Sample or MS Result	%RPD	RPDLimit	Qua
Lead	·	1911	13	μg/L	1998	3.27	95.5	75	125	1931	1.04	20	

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.