

SITE INVESTIGATION REPORT

90 Bay Spring Avenue Barrington, Rhode Island

RIDEM Case No. 2013-024

Prepared for:

Mr. Jack Cutlip Bay Spring Realty Co. 909 North Main Street Providence, Rhode Island 02904

Your Trusted Advisors

Prepared by:

Resource Control Associates, Inc. 474 Broadway Pawtucket, RI 02860-1377

Environmental Consulting
Engineering
Construction Management

October 30, 2014

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1 1.2 1.3	Objective Notice of Release(s) Short Term Response Action(s)	1
1.4	Documentation of past incidents, releases, or investigations	
2.0	GENERAL SITE INFORMATION	5
2.1	Owner/Operator History	5
2.2 2.3	Previously Existing Environmental Information	7
2.3 2.4	Site Location	
3.0	GENERAL CHARACTERIZATION OF SITE AND SURROUNDING AREA	7
4.0	NATURE AND EXTENT OF CONTAMINATION	8
4.1	Additional Subsurface Investigation(s)	8
4.2 4.3	Classification of Surface and Ground Water Description of Contamination	
4.4	Concentration Gradients	
4.5	Background Concentrations of Hazardous Substances	11
4.6	Site Specific Hydrogeological Properties	
4.7 4.8	Topography, Surface Water and Run-Off Flow Patterns, Flooding Potential Entrainment and Volatilization of Hazardous Substances	
4.9	Management of Investigation Derived Waste	
5.0	QUALITY ASSURANCE AND QUALITY CONTROL EVALUATION	12
6.0	CONCLUSIONS	13
7.0	REMEDIAL ALTERNATIVE RECOMMENDATION	14
8.0	LIMITATIONS	14
9.0	REPORT AUTHORIZATION AND CERTIFICATION REQUIREMENTS	15
FIGUR	ES	
Figure		
Figure		
Figure Figure		
Figure		

TABLES

Table 1	Summary of Soil Analytical Results
Table 2	Summary of Groundwater Analytical Results
Table 3	Well Monitoring Form

APPENDICES

RIDEM SIR Checklist (Completed)
Copy of Release Notification Form
Supporting Documentation
Copy of Letter of Responsibility
Laboratory Analytical Reports
Drilling Logs
Waste Disposal Documentation
Photo Log
Additional Limitations

1.0 INTRODUCTION

On behalf of Bay Spring Realty Co., Resource Control Associates, Inc. (Resource Controls) has prepared this Site Investigation Report (SIR) for the property located at 90 Bay Spring Avenue in Barrington, Rhode Island (the Site). This report was prepared in compliance with Sections 7.00 and 8.00 of the Rhode Island Department of Environmental Management (RIDEM) Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases, (Remediation Regulations), as amended November 2011.

ASTM Phase I & II Environmental Site Assessment activities were conducted at the site in 2012/3. Recognized Environmental Conditions associated with former artificial leather manufacturing operations were identified and evaluated during the ASTM assessment activities. Several suspect structures were identified and metals and polycyclic aromatic hydrocarbons (PAHs) were detected in soil and groundwater above applicable RIDEM standards.

1.1 Objective (7.03.A)

The objective of the Site Investigation was to further evaluate Recognized Environmental Conditions identified during ASTM efforts, to adequately assess the nature and extent of contamination identified at the Site, and to evaluate and identify a proposed remedy for each release. Resource Controls conducted Site Investigation activities and prepared this report using the following general approach.

- Collection and analysis of soil and groundwater samples to evaluate the nature and extent of contamination at the Site.
- Completion of a UST closure, short –term response actions, and characterization of soil and groundwater for the purpose of off-site disposal.
- Preparation of an SIR with completed SIR checklist and an evaluation of remedial alternatives.

The Site is graphically represented on Figure 1 (Locus Map) and Figure 2 (Site Plan). A completed SIR Checklist is included as Appendix A.

1.2 Notification of Release(s) (7.03.B)

On May 16, 2013, on behalf of Bay Spring Realty Co., Resource Controls submitted a Hazardous Release Notification Form to the RIDEM Office of Waste Management for the detection of arsenic and polycyclic aromatic hydrocarbons (PAHs) above RIDEM's Method 1Direct Exposure Criteria in soil samples (MW-4/S-6 at 5.0 feet, RCA-1 at 0.5-2.0 feet, and RCA-3 at 0.5-2.0 feet) and the detection of dissolved arsenic above the RIDEM GA Groundwater Objective in a groundwater sample (MW-4). As indicated on the Release Notification Form, the source of PAH and arsenic contamination is attributed to the former use of the Site as an artificial leather manufacturer. A copy of the Release Notification Form is included as Appendix B. A copy of the ASTM Phase I and II ESA is provided as Appendix C.

On May 24, 2013, the RIDEM issued a Letter of Responsibility (LOR) to Bay Spring Realty Company for the "proper investigation and remediation of hazardous substances" on Site. A copy of the LOR is included as Appendix D.

1.3 Short Term Response Action(s) (7.03.B & 6.09)

On April 2, 2014, in accordance with the Remedial Regulations and the LOR, Resource Controls began additional subsurface investigation activities, as presented in Section 4.0 of this report. Investigation activities included the advancement of test pits and soil borings and the installation of monitoring wells to determine the nature and extent of identified releases at the Site.

During the advancement of test pits in suspect waste disposal/storage areas, contaminants were discovered and the following short-term response actions were implemented:

- Excavation and off-site disposal of arsenic and PAH impacted soil in two (2) locations in the western portion of the property along Adams Avenue (AOCs-2&3).
- Excavation and off-site disposal of suspect metals impacted soil from Waste Disposal Area No.1 in the southern portion of the property (AOC-4).
- Excavation and disposal of solid waste, degraded containers, and VOC impacted soil and water from the suspect "cistern" structure located in the central portion of the Site (AOC-5).
- Excavation and off-site disposal of suspect and degraded steel containers co-mingled with metals impacted soil (impacted from spent acid wastes) from the former facility's "Benzol House" (AOC-6).

RIDEM management was contacted prior to conducting any of the short term response actions noted above. A description of each effort is detailed below. Excavation and loading services were provided by Apple Valley Sand and Gravel of Smithfield, Rhode Island, and waste transport services were provided by Cyn Environmental. The following table summarizes the waste material derived from remedial activities and transported off-Site:

Matrix	Date Off- Site	Origin	Total Amount Transported	Receiving Facility
Soil	5/30/2014	Western Hot Spots, Waste Disposal Areas No. 1, "Benzol House" – Drum Storage Area,	97.06 tons	RIRRC Landfill Johnston, RI
Waste Water	8/28/2014	"Cistern" Area	3,618 gallons	Tradebe Treatment and Recycling Northeast, LLC Meriden, CT
Soil & Debris (primarily metal)	8/28/2014	"Cistern" Area	6.57 tons	Sunny Farm Landfill, LLC Fostoria, OH
Scrap Metal	6/4/2014	Site-wide	8.02 tons	Mid-City Scrap Iron & Salvage Westport, MA

Western Hot Spots:

On May 21, 2014, soil impacted with arsenic and PAHs were excavated from two areas along the western portion of the Site (RCA-1 and RCA-3). Each area was excavated 10 x 10 x 3-feet deep and confirmatory samples were collected from the sidewalls and the base of each excavation. Confirmatory results indicate that the significantly impacted soil has been removed from the area and only residually impacted soil remains. A soil ample collected along the southern sidewall of the RCA-1 excavation has an arsenic concentration of 7.3 mg/kg, which exceeds the RIDEM Residential and Industrial/Commercial criteria of 7 mg/kg.

Waste Disposal Area No. 1:

Analytical data collected from a test pit (TP-3) advanced during subsurface investigation activities on April 3, 2014 indicated concentrations of arsenic, chromium, lead, and PAHs above the RIDEM Residential and Industrial/Commercial criteria. Solidified coal tar was recognized in the TP-3 area. On May 21, 2014, coal tar and associated impacted soil was removed from the TP-3 area; and confirmatory samples indicate that concentrations of contaminants of concern remain above the RIDEM Industrial/Commercial criteria in Waste Disposal Area No. 1. Solidified coal tar has been removed and no concentrations were found above the RIDEM Upper Concentration Limits.

"Cistern" Area:

On May 21, 2014, decommissioning of the "cistern" disposal structure was initiated. Only arsenic, lead, PAH and TPH contaminants were found in soil immediately adjacent the structure during initial ASTM Phase II ESA work; however, high VOC impacted solid waste was identified inside the structure during decommissioning.

Approximately 50% of the impacted solid waste was removed from within the structure prior to exterior excavation. Solid waste was placed in a lined roll-off container. Impacted soil encountered during the excavation was placed on and under 6-mil poly awaiting characterization. The "cistern" was removed in roughly 5-foot sections and impacted solid waste was removed once accessible. The cylindrical structure was roughly 6-feet in diameter by roughly 15-feet deep and set in a large concrete base observed at 14 to 17-feet below grade. The final excavation area was roughly 30-feet in diameter at grade and 8-feet in diameter at the base, by 15-feet deep.

Dewatering was required to reach depths required to remove the steel "cistern" structure. A sump pump was set within the structure to draw down the water level within the structure pre-removal. A second sump pump setup was used outside of the steel structure for area dewatering during "cistern" removal at depth. All impacted water was piped to a frac tank for pre-disposal storage. During backfilling, a 12-inch diameter slotted sump pipe was set in the center of the former cistern location within approximately 10-cubic yards of ¾-inch stone. Following backfilling and during other field efforts, residual VOC impacted groundwater was pumped from the area into the frac tank.

Confirmatory soil samples suggest that waste material and significantly impacted soil has been removed from the

"Benzol House" - Drum Storage Area:

On May 30, 2014, metals impacted soil was excavated and live loaded for disposal at RIRRC landfill. Predisposal characterization was conducted on April 2, 2014. The vitrified clay building foundation along with significant metal debris was also removed during the area excavation. Confirmatory samples were collected from excavation sidewalls and base; results indicate that the waste and significantly impacted soil has been removed and managed off-site. Residual arsenic remains in the area at manageable concentrations.

In addition, on April 2, 2014, one (1) approximately 500-gallon single wall steel underground storage tank (UST), was removed in accordance with the RIDEM UST Regulations (AOC-1). The UST was identified during the ASTM activities as a potential waste acid holding tank. Field observations made during removal suggest that the UST was used for steam /water management purposes. UST closure activities were summarized in a UST Closure Assessment Report dated July 24, 2014.

Bills of lading and disposal receipts are included in Appendix G. Photo documentation of the short-term response actions is included as Appendix H.

A recommendation of remediation of hazardous substances found on Site is included in Section 7.0 of this report.

1.4 Documentation of past incidents, releases, or investigations (7.03.C)

A *Phase II Oil and Hazardous Waste Assessment* for the Site located at 90 Bay Spring Avenue, was completed by Geisser Engineering Corporation (Geisser Engineering) in February 1992. The property investigated during the February 1992 assessment, comprised both an eastern and western section, which are currently designated on the Town of Barrington Tax Assessor's Tax Map No. 2 as Lot 12 (the property adjoining the Site to the east across the Annawamscutt Brook), and Lot 154 (the Site), respectively. The following is a summary of information obtained from the 1992 Phase II report regarding Lot 154:

- The property was historically owned by the O'Bannon Corporation and produced textile and narrow fabrics in conjunction with another mill located at 85 Bay Spring Avenue.
- Lot 154 (the Site) was historically developed and contained manufacturing buildings, tank farms, storage buildings and sheds. At the time of the inspection, the following observations were noted: a slab of the former nitrated cotton storage building; concrete cradles which historically supported solvent and acid ASTs; a slab of the alcohol still and No. 12 storage building and an opening which may have been an underground acid storage pit; an empty 265-gallon AST located next to the No. 2 Stock House; three (3) electrical transformers owned by the Narragansett Electric Company, which are not expected to contain

PCBs; and a ditch filled with discarded clay pipes and rusted iron debris, which was observed on the southern section of Lot 154.

- In August 1992, one (1) monitoring well (MW-3) was installed on Lot 154 (the Site) to a depth of approximately 20 feet and one (1) monitoring well (MW-4) was installed in the location of the former pickle house on Lot 154 (the Site) due to acid storage tanks were historically located there.
- Two (2 composite soil samples were collected from the two (2) former locations of the solvent and acid tanks. Laboratory analytical results did not indicate any exceedances of applicable RIDEM soil criteria.
- A composite groundwater sample was submitted for laboratory analysis for VOCs, TPH and PCBs.
 Laboratory analytical results reported a benzene concentration of 6 micrograms per liter (ug/L), which
 exceeds the applicable RIDEM GA groundwater objective for benzene (5 ug/L). The benzene
 concentration was not considered an imminent health threat as the property is connected to the municipal
 water.

An *Update - Environmental Report* for the property located at 90 Bay Spring Avenue was completed by Geisser Engineering in January 1995. Investigation of the property was conducted to address any significant changes or site conditions which may have occurred since the completion of the 1992 Phase II report. Based on the inspections of the property and abutting properties, an interview with a representative of the owners of the property, and a review of environmental records at the RIDEM, Geisser Engineering concluded that the property had not been downgraded or changed for the worst since the completion of the 1992 Phase II site assessment.

A letter regarding "Test pits on Bay Spring Street Property" and dated June 30, 2003 was submitted from Geisser Engineering to Mr. David Malkin with Real Estate Investment, The following is a summary of information obtained from 2003 letter report:

- In May 2003, four (4) test pits (TP-1 through TP-4) ranging in depth from 3-feet to 8-feet were excavated on Lot 154 (the Site).
- A slurry and watery liquid was observed in TP-4, located to the south of the former acid pit area. The slurry appeared to originate from surrounding clay piping. No sample was collected from this location and the nature of the slurry was undetermined.
- Soil samples were collected from test pits as well as shovel-dug hand excavations and submitted for laboratory analysis for RCRA 8 metals and TPH.
- Laboratory analytical results reported arsenic concentrations that exceeded applicable RIDEM Residential Direct Exposure Criteria at all of the sample locations; one (1) exceedance of iron was reported in a sample collected adjacent to the former Pickle Building on the Site.
- Geisser Engineering concluded the following:
 - The Site can be developed with the understanding that underlying debris throughout portions of the property would either have to be removed, or that any proposed structures would have to be supported on pilings.
 - Due to the presence of arsenic detected in soil at or above 24 feet below the surface, certain developed areas will need to be overlain with asphalt or rendered inaccessible.
 - In addition, during the course of construction activities, laboratory analysis of additional soil samples would be needed to characterize any suspicious material.

An ASTM Phase I & II Environmental Site Assessment Report dated December 14, 2012 was completed by Resource Controls. The following summarizes the information provided in the 2012 ESA:

The Site was historically utilized for industrial purposes including artificial leather manufacturing.

- Five (5) solvent storage tanks, seven (7) acid storage tanks, one (1) acetone storage tank and several spent acid storage tanks in concrete pits were historically located on the Site. Documentation pertaining to the proper closure of these storage tanks was not discovered during site assessment activities.
- During test pit sampling on the Site in 2003, a slurry and watery liquid was observed in test pit TP-4, located to the south of the former acid pit area. The slurry appeared to originate from surrounding clay piping. No sample was collected from this location and the nature of the slurry was undetermined.
- Two (2) groundwater monitoring wells were installed on the Site during a subsurface investigation conducted in 1992. The groundwater sample that was submitted for laboratory analysis for VOCs, TPH and PCBs was a composite of samples from four (4) monitoring wells (two (2) on the Site and two (2) on the property to the east of the Site). Laboratory analytical results reported a benzene concentration of 6 ug/L, which exceeds the applicable RIDEM GA groundwater objective of 5 ug/L.
- The observation of several suspect structures and suspect disposal areas on the Site.
- To further investigate these concerns, Resource Controls developed a scope of work for subsurface investigation to characterize soil and groundwater conditions at the Site, as described below.

On November 21, 2012, Resource Controls conducted a subsurface investigation that included the installation of twelve (12) soil borings, five (5) of which were completed as groundwater monitoring wells., field screening of subsurface soil, and laboratory analysis of selected soil and groundwater samples. Soil boring and monitoring well locations were selected to address recognized environmental conditions identified during ASTM Phase I assessment activities and to maximize coverage of the Site. The locations of the soil borings and monitoring wells are depicted on the Site Plan (Figure 2). Based on field observations, soil screening using a photoionization detector, and sample proximity to locations of identified recognized environmental conditions, selected soil samples were submitted for laboratory analysis of volatile organic compounds (VOCs) by EPA Method 8260B, polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270, and RCRA 8 Metals by EPA Methods 7060A, 6010B, and 7470A.

On November 26, 2012 groundwater samples were collected from monitoring wells MW-1 through MW-5 via low flow sampling procedures. Samples were submitted for laboratory analysis of VOCs by EPA Method 8260B. In addition to VOCs, samples collected from monitoring wells MW-3 through MW-5 were submitted for laboratory analysis of semi-volatile organic compounds (SVOCs) by EPA Method 8270C and Total RCRA-8 Metals by EPA Methods 7060A, 6010B, and 7470A. Groundwater samples were collected again from MW-3 and MW-4 on February 13, 2013 and submitted for laboratory analysis of Total and Dissolved RCRA-8 Metals by EPA Methods 7060A, 6010B, and 7470A.

As mentioned in Section 1.2 of this SIR, results of the ASTM Phase II ESA triggered release notification to the RIDEM. Comprehensive SIR data summary tables include ASTM Phase II ESA results.

Copies of the above-noted 2012 Phase I & II ESA Report has been included within Appendix C (Supporting Documentation).

2.0 GENERAL SITE INFORMATION

2.1 Owner/Operator History (7.03.D)

Based on information reviewed at the Town of Barrington Tax Assessor's Office on October 26, 2012, the following provides a list of prior property owners, including a sequence of property transfers, as listed on the property record card.

Owner	Date	Book/Page
Group IV	1986	164/957
Group IV	1986	164/959

Shuster, Ralph (Trust)	1986	164/955
Shuster, Ralph (Trust)	1986	164/956
Bay Spring Realty Company	1992	222/1151
Bay Spring Realty Company	1994	275/264
GHG Fowler, Inc.	1996	319/203
Barrington Cove Limited Partnership	1997	339/114

According to the property record card obtained at the Tax Assessor's office, the Site is owned by Bay Spring Realty Co. and currently consists of vacant land.

Historical Aerials

Resource Controls reviewed aerial photographs (dated 1939, 1951-1952, 1962, 1981, 1997, 2003 and 2008) available for download through RIGIS. The following table summarizes the information obtained from the aerial photographs:

Year	Summary of Aerial Photographs
1939	The Site appears to be developed with approximately seven (7) buildings located in the northern portion of the Site and a water tower located on the western portion of the Site.
1951-1962	Several Site buildings appear to have been razed with four (4) building and a water tower still present.
1981	The Site appears to be vacant with the exception of one (1) water tower.
1997-2008	The Site appears vacant and in its current configuration.

Copies of the above-noted aerial photographs have been included as Figure 3.

Historical Sanborns

Resource Controls received historic Sanborn fire insurance maps from EDR on October 26, 2012. The following table summarizes the information obtained from the Sanborn maps:

Year	Summary of Sanborn Maps
1921	The Site is labeled as O'Bannon Corporation, manufacturers of artificial leather. The following buildings were identified on the Sanborn fire insurance map: A building, labeled as No. 11, with wash room, dryer house, nitrating department and dehydration department located in the center of the Site; Storage building for nitrated cotton; a 1000-gallong water tower; five (5) solvent storage tanks and one (1) acetone located to the west of the building No. 11; seven (7) acid storage tanks with an adjacent tank scale room located to the southwest of building No. 11; a coating room; laboratory, two (2) spent acid tanks in concrete pad enclosures located immediately south building No. 11; a garage on the southeastern portion of the Site, and; several storage buildings located throughout the Site. The main building, located to the east of the Site, appears to be the main building for the O'Bannon Corporation with at least two (2) coating rooms and a boiler room. A garage is located to the northwest of the Site across Bay Spring Avenue with at least one (1) 500-gallon gasoline UST depicted. Residential properties are located to the west of the Site.
1928	The Site appears to be similarly developed, but with a different property occupant and site usage. The Site is labeled as Collins & Aikman Corporation. All of the buildings on the Site are depicted as vacant with the exception of the main building to the east of the Site, which appears to be used for the storage of cotton yarn. The area to the west of the Site appears to be improved by more residential properties. The garage listed in the 1921 Sanborn appears to be unchanged.
1950	The Site appears changed from with the 1928 Sanborn with several buildings having been razed. Building No. 11, the garage, solvent storage tanks, acetone tanks, spent acid tanks, laboratory and some storage houses appear to have been razed. The main building to the east of the Site is now labeled as "Building". The area to the west of the Site appears to be further developed by residential housing. The garage located to the northwest of the Site appears to be an auto repair facility, with no UST depicted.
1961	The Site appears similar to the 1950 Sanborn with more storage buildings having been razed. The main building to the east of the Site appears to have been converted into loft apartments.

Copies of the above-noted Sanborn Maps have been included as Figure 4.

2.2 Previously Existing Environmental Information (7.03.E)

Available documentation of past incidents, releases or investigations was summarized in Section 1.4.

2.3 Current Use and Zoning (7.03.F)

According to a Zoning Map of the Town of Barrington dated 2011, the eastern portion of the Site is zoned "LM" (limited manufacturing) with a small portion of the western part of the Site zoned "R 10" (Residence 10).

The Site was historically utilized for industrial purposes including artificial leather manufacturing. ASTM Phase I and II site assessment activities and previously existing environmental information indicates that the following hazardous materials were used on the Site:

- Solvents
- Acid
- Acetone
- Cutting oil
- Hydraulic fluid
- Plating solutions and lubricants
- Fuel oil
- Sodium and zinc cyanides

2.4 Site Location (7.03.G & H)

For the purposes of this document, the Site is identified as the 5.57 acre parcel (Tax Map No. 2, Lot 154) located at 90 Bay Spring Avenue in Barrington, Rhode Island. A Locus Map showing the location of the Site relative to pertinent geographic features is included in Figure 1, and a Site Plan depicting relevant Site features is included as Figure 2.

3.0 GENERAL CHARACTERIZATION OF SITE AND SURROUNDING AREA (7.03.1)

The majority of land within 500 feet of the Site is developed, and is primarily occupied by residential properties. The Site is bounded to the south by Drowns Cove and the Providence River. The Site abuts Annawamscutt Brook to the east, beyond which lies an apartment complex. Adams Avenue abuts the Site to the west and Bay Spring Avenue abuts the site to the north, beyond which lies residential properties.

The following information addresses all criteria pertaining to sensitive receptors, as listed in Section 7.03.I on the SIR Checklist (Appendix A).

• The nearest surface water bodies are the Providence River (Drown Cove) and Annawamscutt Brook, which abut the Site to the south and east, respectively. According to the RIDEM Water Quality Regulations, amended December 2010, the Providence River "south of a line from a point on shore due east of Naushon Avenue in Warwick to the western terminus of Beach Road in East Providence and north of a line from Conimicut Point in Warwick to Old Tower at Nayatt Point in Barrington" is classified as SB{a}. Class SB describes seawater "designated for primary and secondary contact recreational activities; shellfish harvesting for controlled relay and depuration; and fish and wildlife habitat. They shall be suitable for aquacultural uses, navigation, and industrial cooling. These waters shall have good aesthetic value." The {a} denotes partial uses by CSO. Therefore, "these waters will likely be impacted by combined sewer overflows in accordance with approved CSO Facilities Plans and in compliance with rule 19.E.1 of these regulations and the Rhode Island CSO Policy. Therefore, primary contact recreational activities; shell fishing uses; and fish and wildlife habitat will likely be restricted."

The RIDEM Water Quality Regulations indicate that the Annawamscutt Brook is classified as "B". Class B describes freshwater "designated for fish and wildlife habitat and primary and secondary contact recreational activities. They shall be suitable for compatible industrial processes and cooling, hydropower, aquacultural uses, navigation, and irrigation and other agricultural uses. These waters shall have good aesthetic value."

- According to the RIDEM Environmental Resources Map review on June 25, 2014, the southern portion of the Site is classified as Estuarine Emergent Wetland. Areas classified as Scrub-Shrub Swamp and Forested Wetland are located approximately 300 feet to the northeast of the Site, and local conservation land is located approximately 100 feet to the southwest of the Site. An Environmental Resource Map of the site and surrounding area is included as Figure 5.
- There is currently no source of potable water at the Site.
- According to the State of Rhode Island Department of Health Private Well Information Viewer, nine (9) public water supply wells are known to be located within one (1) mile of the Site. Each is located upgradient of the Site.
- The underlying groundwater classification at the Site and surrounding area is "GA". "GA" areas are defined as groundwater resources "known or presumed to be suitable for drinking water use without treatment." Public water is available to the property from both Bay Spring Avenue and Adams Ave.

4.0 NATURE AND EXTENT OF CONTAMINATION

4.1 Additional Subsurface Investigation(s)

As discussed in Section 1.4, soil and groundwater samples were collected in November 2012 and February 2013 were collected to further investigate the concerns identified in the 2012 Phase I ESA. The following AOCs were identified during the ASTM efforts:

- AOC-1: UST Area
- AOC-2: RCA-1 Excavation Area
- AOC-3: RCA-3 Excavation Area
- AOC-4: Waste Disposal Area No. 1
- AOC-5: Cistern
- AOC-6: Drum Storage Area / "Benzol House"
- AOC-7: Waste Disposal Area No. 2
- AOC-8: Acid Storage Tanks
- AOC-9: Solvent Storage Tanks
- AOC-10: "Coating Room"
- AOC-11: "Acetone Tank"
- AOC-12: Surficial Contamination

In response to the May 24, 2013 LOR and following discussion with Mr. Tim Fleury, RIDEM Case Manager for the Site, Resource Controls collected additional soil and groundwater samples to evaluate the AOCs as summarized below. AOC and sample locations are depicted on the Site Plan (Figure 2). Soil and groundwater analytical results are summarized on Tables 1 and 2, and laboratory analytical reports are included as Appendix E.

The following table summarizes subsurface investigation and sampling activities conducted to date:

Date	Description	Analytical Data
11/21/2012	Installation of 12 soil borings, 5 of which were completed as groundwater monitoring wells: S-1/MW-1, S-2, S-3/MW-2, S-4/MW-3, S-5, S-6/MW-4, S-7, S-8, S-9, S-10/MW-5, S-11, S-12	VOCs, PAHs, RCRA Metals
11/26/2012	Sampled newly installed groundwater monitoring wells: MW-1 through MW-5	VOCs, SVOCs, and/or Total RCRA Metals
2/13/2013	Surficial soil sampling: RCA-1 through RCA-3	PAHs and RCRA Metals
2/13/2013	Sampled MW-3 and MW-4	Total and Dissolved RCRA Metals
4/2/2014	UST removal and excavation of impacted soils: S-101, S-102; RCA-1 remedial excavation confirmatory sampling: S-108 through S-112; RCA-3 remedial excavation confirmatory sampling: S-103 through S-107	RCRA Metals, Arsenic, PAHs, and/or TPH
4/3/2014	Advanced 7 test pits to address areas of concern: TP-1 through TP-7; Composite sampling of UST, RCA-1, and RCA-3 stockpiles	RCRA Metals, PAHs, TPH, VOCs, and/or MA Disposal Parameters
5/21/2014	Additional sampling of RCA-1 remedial excavation: S-206 through S-210; Additional sampling of RCA-3 remedial excavation: S-201 through S-205; Remedial excavation of Solid Waste Area No. 1 (TP-3): S-211through S-216; Advance 7 test pits to address areas of concern: TP-101 through TP-107; Sampling of stockpile from Cistern remedial excavation: Cistern Disposal	PAHs, RCRA Metals, and/or MA Disposal Parameters
5/28/2014	Cistern remedial excavation confirmatory sampling: S-301, S-302	VOCs, PAHs, and RCRA Metals
5/30/2014	Drum Storage Area excavation confirmatory sampling: S-303 through S-307	PAHs and RCRA Metals
5/30/2014	Sampling frac tank containing water from RW-1	TPH, PCBs, SVOCs, VOCs, Total RCRA Metals, Reactive Cyanide, Reactive Sulfide, pH, Flashpoint
6/4/2014	Installation of 6 soil borings, all of which were completed as groundwater monitoring wells: MW-101 through MW-106	VOCs and TPH
6/6/2014	Sampled MW-1, MW-2, MW-3, MW-5 and newly installed MW-101 through MW-106	VOCs and/or Total and Dissolved RCRA Metals
10/9/2014	Sampled MW-3, MW-5, MW-101, MW-104, MW-105 and MW-106	VOCs and/or Dissolved RCRA Metals

4.2 Classification of Surface and Ground Water (7.03.J)

As discussed in Section 3.0, the Providence River (Drown Cove), classified as SB{a}, and Annawamscutt Brook, classified as B, adjoin the Site along its southern and eastern borders, respectively. The underlying groundwater at the Site and surrounding area is classified as "GA".

Due to the Site's close proximity to the Providence River and Annawamscutt Brook, it is possible that soil erosion could transport site contaminants to surface water. However, the Site is vegetated near the water bodies and it is Resource Controls' opinion that impacts to surface water are minimal.

4.3 Description of Contamination (7.03.K)

As discussed in Section 1.2, PAHs and metals were detected in soil at the Site above applicable RIDEM standards during initial subsurface investigations. PAHs, arsenic, chromium, and lead were detected above RIDEM Residential Direct Exposure Criteria in soil samples collected during additional subsurface investigations that occurred between April and June 2014. A summary of soil analytical results is included on Table 1.

Arsenic and lead were detected in groundwater above the RIDEM GA Groundwater Objectives in MW-3, MW-4, and MW-101; and several VOCs were detected above the applicable RIDEM standards in RW-1. A summary of groundwater analytical results is included on Table 2.

The following information is based on the results of site investigation activities and addresses all criteria listed in Section 7.03.K on the SIR Checklist.

No "free liquids on the surface" were observed at the Site.

- Solidified coal tar was observed at AOC-4: Waste Disposal Area No. 1. This material was managed offsite during Short-term Response Actions, detailed in Section 1.3. Non-aqueous phase liquid (NAPL) has not been detected on Site. VOC concentrations reported in groundwater containerized during "cistern" removal efforts suggest that chlorinated solvents were disposed in the "cistern". Residual VOCs remain in the area of dewatering well RW-1; however, no VOCs were reported in monitoring wells down-gradient of the former "cistern".
- Concentrations of Hazardous Substances are included on Tables 1 and 2.
- As discussed in Section 3.3, the southern edge of the Site is occupied by wetlands that border the Providence River (Drown Cove). Based on the location of the releases and area topography, impacts to the wetland and surface water features may have occurred in the past. However, Phase II Subsurface Investigation findings suggest that continued impacts to these features is not likely.
- There is no known or suspected contamination of active man-made structures on Site.
- VOC odors were noted during the removal of solid waste and waste water from the "cistern" area. No stained soil was observed on the surface of the Site; however, coal tar and coal ash was noted in the solid waste disposal pit area, and artificial leather tinting residue was noted in the drum storage area ("Benzol House").
- No stressed vegetation was observed on Site.
- As discussed in Section 1.3, soil was excavated and disposed of off-site during short term response actions. Soil was stockpiled on the Site pending laboratory results and facility acceptance. Waste disposal documentation is presented in Section 4.9 and included as Appendix G.
- Environmental sampling locations are depicted on the Site Plan, included as Figure 2. Soil and groundwater analytical results are presented on Tables 1 and 2, respectively; and copies of laboratory analytical reports are included as Appendix E. Sampling procedures were discussed in Section 1.3 and 4.1.
- A list of Hazardous Substances is included on Table 1. The following Hazardous Substances were detected in one or more soil and/or groundwater sample above RIDEM Residential Direct Exposure Criteria:

acenaphthene	anthracene	benzo(a)anthracene
benzo(a)pyrene	benzo(b)fluoranthene	benzo(k)flouranthene
benzo[g,h,i]perylene	chrysene	dibenzo(a,h)anthracene
fluoranthene	fluorene	indeno[1,2,3-c,d]pyrene
napthene	phenanthrene	pyrene
arsenic	cadmium	chromium
lead	mercury	
111111	1 1 0 7 1 1 1	1 1 1 11 4
1,1,1-trichloroethane	1,1,2-trichloroethane	1,1-dichloroethene
1,2-dichloroethane	benzene	carbon tetrachloride
cis-1,2-dichloroethene	ethylbenzene	methyl chloride
tetrachloroethene	toluene	trichloroethene
vinyl chloride	xylenes (total)	

- Less the UST closure (Facility ID: UST #98) described in Section 1.3, based on the information available
 to date, the Site has not previously been or is currently under the jurisdiction of any program within the
 RIDEM or the Environmental Protection Agency. A portion of the Site falls within the jurisdiction of the
 CRMC. Assessment, UST closure, and short term response activities were completed under CRMC
 Assent No.: A2013-05-183.
- Based on the information available to date, the contamination falls within the jurisdiction of the RIDEM Remediation Regulations.

4.4 Concentration Gradients (7.03.L)

Concentration gradients of hazardous substances detected in soil throughout the site were not detected. Contamination associated with urban fill typically does not form concentration gradients in soil, remaining issues identified at the Site were associated with specific disposal or waste management areas (AOCs) identified during Phase I ESA assessment efforts.

Lead and arsenic groundwater impacts were identified immediately downgradient of bulk or spent acid storage areas. Residual VOCs were not detected in Site monitoring wells, but are expected in the immediate vicinity of RW-1 and the former location of the "cistern". Again, no gradients were established with the limited impacts identified.

Due to the contaminants of concern and the physical setting, significant impacts to other on-site media, surface water or soil-gas, are not anticipated nor have these media been evaluated.

4.5 Background Concentrations of Hazardous Substances (7.03.M)

The RIDEM Remediation Regulations define background as "the ambient concentrations of Hazardous Substances present in the environment that have not been influenced by human activities, or the ambient concentration of Hazardous Substances consistently present in the environment in the vicinity of the Contaminated-Site which are the result of human activities unrelated to Releases at the Contaminated-Site."

No specific investigations have been conducted at the Site to determine background concentrations of Hazardous Substances identified at the Site. However, soil samples collected below the urban fill material (> 3 ft below grade) from outside of areas of concern are considered to be representative of natural, background concentrations. Refer to laboratory data from soil samples S-2, S-101, S-102, S-303, MW-106, TP-2 (4.8'), TP-101 (10'), TP-102 (9.5'), TP-103 (4'), TP-104 (4'), TP-105 (10'), TP-106 (10'), and TP-107 (10').

4.6 Site Specific Hydrogeological Properties (7.03.N)

On June 6, 2014, Resource Controls gauged the depth to the water table at the Site and surveyed the top of casing elevation (TOC) of each monitoring well. The monitoring well TOC elevations were surveyed to an arbitrary benchmark elevation of 100.00 feet. The monitoring wells were most recently gauged on October 9, 2014. Based on well gauging data from October 9, 2010, depth to groundwater at the Site ranges from approximately 7.49 feet below grade to 13.16 feet below grade, and the inferred groundwater flow direction is to the south and southeast. Well monitoring forms documenting the gauging events are included as Table 3. A Water Table Elevation Contour Plan is included as Figure 6.

Native soil identified beneath urban fill, foundations and former facility structures were classified as fine sand with highly conductive hydrogeological properties. Drilling Logs are provided in Appendix F.

4.7 Topography, Surface Water and Run-Off Flow Patterns, Flooding Potential (7.03.0)

The Site is currently undeveloped, and therefore precipitation reaching the ground surface at the Site is expected to either infiltrate or flow off-Site to the south and east towards Drowns Cove and Annawamscutt Brook.

Based on information obtained from the Rhode Island Emergency Management Agency's Floodplain Mapping Tool, the Site is located within an area designated as "VE", "AE", and "0.2 Percent Annual Chance Flood Zone". The southern and eastern portion of the Site is a designated "VE" zone, which is defined as an area with "1 percent chance of flooding in any years and also face[s] hazards associated with coastal storm waves." The "VE" zone is bordered by an "AE" zone, which is defined as an area with "1 percent chance of flooding in any years, and a 26 percent chance of flooding over the life of a 30-year mortgage." The northwestern portion of the Site is a designated "0.2 Percent Annual Chance Flood Zone".

4.8 Entrainment and Volatilization of Hazardous Substances (7.03.P & Q)

Subsurface investigations conducted to date suggest that soil containing PAH and metals is located at depths less than eight (8) inches below grade. Therefore, under current Site conditions, there is potential for transport of Site-related contamination by wind or water erosion. However, since the Site is heavily vegetated, it is Resource Controls' opinion that this transport is minimal at this time. Appropriate erosional controls were utilized during investigation and short term response actions, and should be utilized during future earthwork efforts.

VOCs were detected in groundwater in the area of the former "cistern" waste disposal structure. Short term response actions were conducted to manage significant risks posed by the contaminants. Given the location of the residual VOC at the Site, volatilization of hazardous substances from groundwater into Site structures / indoor air is not expected.

4.9 Management of Investigation Derived Waste (7.03.U)

Resource Controls managed investigation derived waste along with short term response action derived waste. Manifests, bills of lading, and/or waste disposal receipts are included in Appendix G.

5.0 QUALITY ASSURANCE AND QUALITY CONTROL EVALUATION (7.03.V)

The RIDEM Remediation Regulations require a quality assurance and quality control (QA/QC) evaluation summary for sample handling and analytical procedures. As documented herein for the April, May and June 2014 analytical program, the analysis of soil and groundwater samples was completed using USEPA Methods 8260B, 8260C, 8015D, 6010B, 6010C, 1620A, 8270D, 7470A, and 7471B. The laboratory reports, included as Appendix E, document the laboratory QA/QC issues identified for each of the analyses. The following provides a summary of the identified issues:

- Several soil samples were diluted due to the nature of the sample matrix and therefore surrogate recoveries were below the calibration range or were not reported, and elevated reporting limits (RLs) were provided;
- Reporting Limits (RLs) were elevated proportionately due to the matrix issues on a few samples and could not be concentrated to the final method required volume;
- The "Cistern Disposal" sample was diluted to bring the concentration of the target analytes (8260C) within the calibration range;
- Additional samples were also diluted to bring the concentrations within the equipment calibration range. Elevated reporting limits are provided;
- Internal standard responses were outside of acceptance limits for several soil samples; and
- Blank Spike recovery was reported above upper control limits on several samples.

Detailed QA/QC reporting is included with each laboratory report provided in Appendix E. QA/QC issues identified do not significantly affect data usability. With respect to field QA/QC, soil and groundwater samples were collected using Resource Controls' standard operating procedures, which were prepared in accordance with EPA and/or RIDEM requirements. Once collected, the samples were placed in coolers containing ice packs, stored at a temperature of 4°C prior to pickup by the laboratory courier; all samples were managed under chain-of-custody protocol.

6.0 CONCLUSIONS

The following conclusions summarize the findings of this Site Investigation:

- The Site was historically utilized for industrial purposes including artificial leather and textile manufacturing. The Site is currently vacant wooded land and has been fenced and unoccupied since the 1950s/1960s. Remnants of the former manufacturing facility are evident throughout the Site in the form of concrete foundations, concrete AST saddles, steel and clay piping, and associated debris.
- ASTM Phase I ESA activities identified several Recognized Environmental Conditions (REC) at the Site, categorized by the following Areas of Concern (AOCs):
 - AOC-1: UST Area
 - o AOC-2: RCA-1 Excavation Area
 - AOC-3: RCA-3 Excavation Area
 - o AOC-4: Waste Disposal Area No. 1
 - o AOC-5: Cistern
 - o AOC-6: Drum Storage Area / "Benzol House"
 - o AOC-7: Waste Disposal Area No. 2
 - o AOC-8: Acid Storage Tanks
 - o AOC-9: Solvent Storage Tanks
 - o AOC-10: "Coating Room"
 - o AOC-11: "Acetone Tank"
 - o AOC-12: Surficial Contamination.
- ASTM Phase II ESA activities were conducted to evaluate the AOCs identified during the Phase I ESA, and metals and PAHs were detected in soil and groundwater above applicable RIDEM standards.
- Site Investigation activities were then conducted to further evaluate the AOCs and to delineate the nature
 and extent of contamination identified at the Site. Several test pit investigations converted to Short-term
 Response Actions as noted below:
 - o Excavation and off-site disposal of arsenic and PAH impacted soil in two (2) locations in the western portion of the property along Adams Avenue (AOCs-2&3).
 - Excavation and off-site disposal of suspect metals impacted soil from Waste Disposal Area No.1 in the southern portion of the property (AOC-4).
 - Excavation and disposal of solid waste, degraded containers, and VOC impacted soil and water from the suspect "cistern" structure located in the central portion of the Site (AOC-5).
 - Excavation and off-site disposal of suspect and degraded steel containers co-mingled with metals impacted soil (impacted from spent acid wastes) from the former facility's "Benzol House" (AOC-6).
- One (1) ~500-gallon single wall steel underground storage tank (UST), was removed in accordance with the RIDEM UST Regulations (AOC-1).
- Site Investigation and short-term response action confirmatory data suggests that significant wastes /
 contaminated soil and groundwater have been removed from the Site. Residual PAH and metals impacted
 soil, and metals and VOC impacted groundwater remain at the Site, including:
 - o AOC-1: UST Area residual arsenic and lead in groundwater
 - o AOC-2 & 3: RCA-1 & 3 Excavation Areas residual arsenic in soil
 - o AOC-4: Waste Disposal Area No. 1 residual arsenic, lead, chromium, & PAH in soil
 - o AOC-5 & 8: Cistern / Acid Storage Tank residual VOC & lead in groundwater
 - o AOC-6: Drum Storage Area / "Benzol House" residual arsenic in soil
- Refer to Tables 1 and 2 for a cumulative summary of soil and groundwater analytical results for the Site.

7.0 REMEDIAL ALTERNATIVE RECOMMENDATION

Several Short-term Response Actions were conducted during the Site Investigation. A total of 8.02 tons of scrap metal was managed offsite at Mid-City Scrap Iron & Salvage in Westport, Massachusetts; 97.06 tons of metals, PAH, TPH and VOC impacted soil was excavated and transported to the RIRRC Landfill in Johnston, Rhode Island; 6.57 tons of VOC-impacted soil and debris was excavated and transported to Sunny Farm Landfill, LLC in Fostoria, Ohio; and 3,618 gallons of VOC impacted groundwater was managed offsite at Tradebe Treatment and Recycling Northeast, LLC in Meriden, Connecticut.

Resource Controls developed remedial alternatives in compliance with Section 8.0 and Rule 7.04 of the Remediation Regulations. Based on the nature and extent of the contaminants of concern detected at the Site, Resource Controls considered the following remedial alternatives:

- Alternative 1- No additional action. Retain all impacted soil and groundwater on the Site; Site conditions remain unchanged.
- Alternative 2 Implement engineering and institutional controls (Environmental Land Use Restriction (ELUR) and Soil Management Plan (SMP)) at the Site to limit contact with the impacted soil and groundwater at the Site.
- Alternative 3 Application of appropriate remedial technologies, including: 1) excavation and off-Site disposal of impacted soil with concentrations above the RIDEM Residential Direct Exposure Criteria, 2) ex-situ treatment of impacted groundwater through pump and treat systems, 3) in-situ chemical oxidation and/or stabilization treatments, 4) installation of reactive barriers, or 5) a combination of these technologies.
- Alternative 4 A combination of Alternatives 2 & 3.

Natural attenuation monitoring is recommended with Alternatives 2, 3 and 4.

Resource Controls recommends Alternative 2 (implement engineering and institutional controls) as a cost-effective remedial alternative that is in compliance with the intent of the RIDEM Remediation Regulations, is consistent with current and future land use, and manages actual and potential risks to human health and the environment.

Alternative 2 is recommended following the completion of the remedial efforts discussed in Section 1.3 of this SIR (Short-term Response Actions). Significant issues were addressed under these remedial actions and residual issues shall be managed or monitored as a component of Alternative 2. Engineered barriers shall be defined as a component of future property redevelopment activities conducted in coordination with the RIDEM, CRMC and Barrington Town Planning Department. The application of Alternative 4 shall be considered upon evaluation of natural attenuation monitoring results and discussion with the RIDEM.

8.0 LIMITATIONS

This report addresses the environmental characteristics of the Site with regard to the release of or possible presence of oil and/or hazardous materials. It is not intended to guarantee that the Site is or is not free from conditions, materials or substances that could adversely impact the environment or pose a threat to public health and safety. Rather, it is intended to be used as a summary of available information on existing conditions, the conclusions of which are based upon a reasonable and knowledgeable review of evidence found in accordance with normally accepted industry standards, State and Federal protocols, and within the scope and budget established with the client. Should further research on the Site be warranted, Resource Controls must review any additional data obtained and the conclusions presented herein may be modified accordingly.

The conclusions stated herein are based on the available information summarized herein and refer only to the specific Site investigated. No warranty is implied or given and the report is subject to the terms and conditions of the contract.

REPORT AUTHORIZATION AND CERTIFICATION REQUIREMENTS [Section 7.05] 9.0

This SIR was completed in accordance with Sections 7.00 and 8.00 of the RIDEM Remediation Regulations; the following signed statements are included with regard to this SIR:

I certify that the Site Investigation Report are complete and accurate representation of the contaminated site and the release and contain all known facts surrounding the release to the best of my knowledge.

Den Cettles Mr. Jack Cutlip REAL ESTATE MANAGER

Bay Spring Realty Co.

We certify that information contained within the Site Investigation Report is complete and accurate to the best of our knowledge. This report has been prepared and reviewed by the undersigned staff in accordance with Resource Controls' standard Quality Control Procedures.

RESOURCE CONTROL ASSOCIATES, INC.

Danielle E. Getsinger

Project Manager and Senior Geologist

Mark J. House

Vice President and Principal Scientist

1955 (Photorevised 1970 and 1975) USGS Topographic Map - Bristol, Rhode Island-Massachusetts Quad

LOCUS MAP

DRAWN BY	PROJECT	PRINT DATE	FIGURE
EFG	7131A	04/18/2014	1

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	3A

Data Sources: Rhode Island Geographic Information System (RIGIS), Town of Barrington Tax Map No. 2 updated through December 31, 2011.

1951-52 AERIAL PHOTOGRAPH

JVF	7131	11/06/2012	3B
DRAWN BY	PROJECT	PRINT DATE	FIGURE

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	3C

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	3D

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	3E

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	3F

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	3G

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	4A

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	4B

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	4C

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	4D

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS - 500 Gallon UST

BAY SPRING REALTY CO. 90 BAY SPRING AVENUE BARRINGTON, RHODE ISLAND

	А	IOC-1: UST A	геа					AOC-2	2: RCA-1 Exca	avation									AOC-	-3: RCA-3 Exc	avation									AO	C-4: Waste Dis	posal Area No	.1						
Sample Identification Depth Sampled (feet)	MW-4/S-6 5.0	S-101 6	S-102 6	RCA-1 0.5-2	S-108 1.5	S-109 1.5	S-110 1.5	S-111 1.5	S-112 3	S-206 1.5	S-207 1.5	S-208 1.5	S-209 1.5	S-210 3	RCA-3 0.5-2	S-103 1.5	S-104 1.5	S-105 1.5	S-106 1.5	S-107 3	S-201 1.5	S-202 1.5	S-203 1.5	S-204 1.5	S-205 3	S-2 8.3	TP-2 2-2.5	TP-2 4.8	TP-3 5-5.5	TP-3 22.5	S-211 5.5	S-212 2.5	S-213 2.5	S-214 2.5	S-215 3	S-216 2	MW-106 6-6.5	RIDEM Soil Direct Exposu	
Date Sampled		4/2/2014	4/2/2014	2/13/2013	4/2/2014	4/2/2014	4/2/2014	4/2/2014	4/2/2014	5/21/2014	5/21/2014	5/21/2014	5/21/2014	5/21/2014	2/13/2013	4/2/2014	4/2/2014	4/2/2014	4/2/2014	4/2/2014	5/21/2014	5/21/2014	5/21/2014	5/21/2014	5/21/2014	11/21/2012	4/3/2014	4/3/2014	4/3/2014	4/3/2014	5/21/2014	5/21/2014	5/21/2014	5/21/2014	5/21/2014	5/21/2014	6/4/2014	Residential	I/C
VOLATILE ORGANIC COMPOUND																										0.5											0.077	546	40.05
1,1,1-Trichloroethane	< 0.0057																									<0.0041											<0.075	540	10,000
1,1-Dichloroethane 1,1-Dichloroethene	<0.0057 <0.0057										-															<0.0041 <0.0041											<0.075 <0.075	920 0.2	10,000 9.5
1,2,4-Trimethylbenzene	< 0.0057													-									_			0.0080		_								_		NS	NS
1,3,5-Trimethylbenzene	< 0.0057																									0.0107												NS	NS
4-Methyl-2-Pentanone	< 0.0568																									< 0.0406											45	1,200	10,000
Acetone	< 0.0568																									0.0968											< 0.380	7,800	10,000
Chloroform	< 0.0057																									<0.0041											<0.075	1.2	940
cis-1,2-Dichloroethene	<0.0057																									<0.0041		-									< 0.075	630	10,000
Ethylbenzene	<0.0057 <0.0057																									<0.0041 <0.0041											<0.075 <0.075	71 27	10,000 10,000
Isopropylbenzene Methyl acetate	<0.0057				-	-		-						-												<0.0041			-	-			-				0.083	NS	10,000 NS
Methylene Chloride	<0.0284		-																							< 0.0203											0.084	45	760
Naphthalene	< 0.0057																									0.0079												54	10,000
Styrene	< 0.0057																									< 0.0041											< 0.075	13	190
Toluene	< 0.0057																									< 0.0041											< 0.075	190	10,000
Trichloroethene	< 0.0057																									< 0.0041											< 0.075	13	520
Xylene O	< 0.0057																									<0.0041												110	10,000
Xylene P,M	<0.0114										-															<0.0081												110	10,000
Xylenes (Total) All other VOCs	<0.017 ND										-															<0.0122 ND											0.016 ND	110 NS	10,000 NS
	ND																								-"	ND											IND	INO	INS
TOTAL METALS (mg/kg)	10.0	2.2		25.7		7.0	4.2	40			1	Т				2.2	17	<11	2.2	2.5						г г	0.45	0.02	22	10	0.71	14	40	F 2	29	1.0	-	7	7
Arsenic Barium	18.9 65.6	2.3 13	5.9 12	25.7 43.6	6.5	7.3	4.3	4.9	5.5					-	6.0 13.5	2.2	1.7	<11	2.2	3.5							0.45 6.6	0.82 3.9	32 54	710	0.71 5.5	180	4.9 210	5.3 46	45	1.8 8.7		5,500	10,000
Cadmium	< 0.57	0.033	<0.21	<0.5	-										< 0.56												0.27	0.24	2.5	0.98	0.044	1.6	0.16	0.076	0.21	<0.21		39	1.000
Chromium (Total)	12.9	1.6	1.0	6.4											20.5												350	3.2	9,800	12	20	5,400	1,100	7.1	9.8	220		1,400	10,000
Lead	79.9	11	34	38.3											31.3												4.8	1.1	54	210	1.1	730	2,800	51	22	5.9		150	500
Mercury	1.96	0.026	0.12	0.164											0.394												0.11	< 0.019	3.1	0.19	<0.018	1.3	0.18	0.059	0.089	0.024		23	610
Selenium	<5.6	<4.2	<4.2	<14.9											<5.6												<4.0	<3.7	1.5	2.5	<4.0	2.3	1	0.76	7.3	<4.2		390	10,000
Silver	<0.57	<0.62	< 0.64	<0.5											<0.56												< 0.59	< 0.55	0.64	0.40	< 0.59	0.64	<0.61	< 0.59	< 0.55	< 0.63		200	10,000
TOTAL PETROLEUM HYDROCAR	RBONS (mg/kg))																																					
C10-C-28 Aliphatics		7.4	22																																		29	NS	NS
POLYNUCLEAR AROMATIC HYDI		(mg/kg)		0.447	1					0.400	0.400	0.400	0.400	0.400	0.000					T	0.0040	0.400	0.400	400	0.400			-	-		0.040	0.0	0.070	0.007	0.000	0.400	_	400	40.000
2-Methylnaphthalene Acenaphthene	<0.424 <0.424	<0.2	<0.22	<0.417 <0.417						< 0.180 < 0.180	< 0.180 < 0.180	< 0.190 < 0.190	< 0.180 < 0.180	< 0.180 < 0.180	<0.392 0.862						0.0042 0.0062	< 0.190 0.0031	< 0.190 < 0.190	< 190 0.0035	< 0.180 < 0.180		<0.18	<0.22	0.55	440	< 0.210 < 0.210	< 2.9 < 2.9	0.073 0.22	0.037 0.044	0.023 0.0043	< 0.190 0.0033		123 43	10,000 10,000
Acenaphthylene	<0.424	<0.2	<0.22	< 0.417				-		< 0.180	< 0.180	< 0.190	< 0.180	< 0.180	< 0.392						0.0062	< 0.190	< 0.190	< 190	< 0.180		<0.18	<0.22	<3.3	<870	< 0.210	< 2.9	< 2.0	0.044	0.0043	< 0.190		23	10,000
Anthracene	1.11	<0.2	<0.22	< 0.417	-					< 0.180	< 0.180	< 0.190	< 0.180	< 0.180	1.21				-		0.0041	0.0076	< 0.190	0.01	< 0.180		0.0078	<0.22	1.2	1,100	< 0.210	0.12	0.54	0.1	0.015	0.0067		35	10,000
Benzo(a)anthracene	3.34	0.0064	<0.22	0.47						0.01	0.015	< 0.190	0.02	< 0.180	4.09						0.056	0.026	0.013	0.043	< 0.180		0.092	0.016	2.4	1,800	< 0.210	0.58	1.5	0.54	< 0.190	0.047		0.9	7.8
Benzo(a)pyrene	2.27	<0.2	< 0.22	0.391						< 0.180	< 0.180	< 0.190	< 0.180	< 0.180	3.14						0.056	0.018	< 0.190	0.034	< 0.180		0.065	0.0097	1.9	1,600	< 0.210	1	1.2	0.47	0.05	0.037		0.4	0.8
Benzo(b)fluoranthene	3.83	<0.2	< 0.22	0.545						< 0.180	< 0.180	< 0.190	0.022	< 0.180	4.14						0.077	0.023	< 0.190	0.045	< 0.180		0.1	0.017	2.6	2,200	< 0.210	0.98	1.7	0.69	0.13	0.056		0.9	7.8
Benzo(g,h,i)perylene	2.05	<0.2	<0.22	<0.417						< 0.180	< 0.180	< 0.190	< 0.180	< 0.180	1.25						0.11	0.031	0.011	0.031	< 0.180		0.034	<0.22	0.77	410	< 0.210	1.3	0.89	0.31	0.085	0.027		8.0	10,000
Benzo(k)fluoranthene	1.17	<0.2	<0.22	<0.417						< 0.180	< 0.180	< 0.190	0.01	< 0.180	1.15						0.031	0.012	< 0.190	0.023	< 0.180		<0.18	<0.22	0.24	660	< 0.210	0.4	0.69	0.24	0.024	0.021		0.9	78
Chrysene Dibenzo(a,h)anthracene	4.09 0.910	0.0022 <0.2	<0.22	0.499 <0.209						0.009 < 0.180	0.016	< 0.190 < 0.190	0.022	< 0.180	4.29					-	0.069	0.025 < 0.190	0.012 < 0.190	0.054	< 0.180 < 0.180		0.12	0.014	2.3	1,900	< 0.210	0.78	1.7	0.71	0.14	0.057 < 0.190		0.4 0.4	780 0.8
Fluoranthene	7.25	<0.2	<0.22 <0.22	1.16						0.012	< 0.180 0.023	< 0.190	< 0.180 0.035	< 0.180 < 0.180	0.300 9.00				-		0.029 0.12	< 0.190 0.042	< 0.190 0.018	< 0.190 0.087	< 0.180		0.016 0.17	<0.22 0.029	0.28 5.1	170 4,700	< 0.210 < 0.210	0.69 0.9	0.32 3.4	0.084 1.3	0.026 0.11	< 0.190 0.1		20	10,000
Fluorene	<0.424	<0.2	<0.22	< 0.417						< 0.180	< 0.180	< 0.190	< 0.180	< 0.180	0.535						< 0.12	< 0.190	< 0.190	< 0.190	< 0.180		<0.17	< 0.22	0.46	4,700	< 0.210	< 2.9	0.22	0.046	< 0.110	< 0.190		28	10,000
Indeno(1,2,3-cd)Pyrene	1.81	<0.2	<0.22	<0.417						< 0.180	< 0.180	< 0.190	< 0.180	< 0.180	1.22						0.077	0.019	< 0.190	0.027	< 0.180		0.036	<0.22	0.73	420	< 0.210	0.91	0.87	0.3	0.071	0.026		0.9	7.8
Naphthalene	0.639	<0.2	< 0.22	< 0.417						< 0.180	< 0.180	< 0.190	< 0.180	< 0.180	< 0.392						0.0081	< 0.190	< 0.190	< 0.190	< 0.180		<0.18	< 0.22	0.40	360	< 0.210	< 2.9	0.18	0.035	0.021	< 0.190		54	10,000
Phenanthrene	5.81	< 0.2	< 0.22	0.733						0.0046	0.01	< 0.190	0.017	< 0.180	7.92						0.081	0.034	0.012	0.064	< 0.180		0.027	0.0073	4.2	4,300	< 0.210	0.61	2.5	0.82	0.12	0.055		40	10,000
Pyrene	5.41	<0.2	<0.22	0.932						0.014	0.025	< 0.190	0.04	< 0.180	9.66				-		0.15	0.051	0.025	0.11	< 0.180		0.13	0.021	3.7	3,000	< 0.210	0.88	3	1.3	0.11	0.1		13	10,000
NOTES: ppmv = parts per million by volume.								•			•	•								•											•					•			
mg/kg = milligrams per kilogram.																																							
= Not analyzed. I/C = Industrial/Commercial																																							
NS = No standard promulgated.																																							
ND = Not detected above laboratory	y reportina limit																																						
Bold concentrations exceed laborat																																							
Red concentrations exceed the app	olicable RIDEM I		rect Exposure	Criteria.																																			
Soil removed during remedial excav	vations.																																						

TABLE 1 SUMMARY OF SOIL ANALYTICAL

BAY SPRING REALTY CO. 90 BAY SPRING AVENUE BARRINGTON, RHODE ISLAND

		i	AOC-5: Cisterr	n				AOC-6: Drun	m Storage Area	/Benzol House	1		AO	C-7: Waste Di	isposal Area No.	. 2		AOC-8	Acid Storage	Tanks			AOC-9:	Solvent Storaç	ge Tanks			AOC-10: Co	oating Room		AOC-11: Ao	cetone Tank	AOC-12: Surficial Contamination		
Sample Identification	MW-2/S-3 5.5	TP-8 1-2	TP-8	S-301 6-7	S-302 5-6	TN	TP-1 2.5-3.5	S-303 5-6	S-304 2-3	S-305	S-306 2-3	S-307 2-3	TP-4 1.5-2	TP-5 4-4.5	S-8 5.0	MW-104 5-8	TP-7	TP-103	TP-103	TP-104 2-3	TP-104 4	TP-9	TP-101 5-5.5	TP-101 10	TP-102 4-5	TP-102 9.5	TP-105 4-5	TP-105 10	TP-106 4-5	TP-106 10	TP-107 5.5	TP-107 10	RCA-2 0.5-1.5	RIDEM Soil	
Depth Sampled (feet) Date Sampled	5.5 11/21/2012	4/3/2014	4/3/2014	5/28/2014	5/28/2014	4/2/2014	4/2/2014	5/30/2014	5/30/2014	2-3 5/30/2014	5/30/2014	5/30/2014	4/3/2014	4-4.5	11/21/2012	6/4/2014	2.5 4/3/2014	2-3 5/21/2014	5/21/2014	2-3 5/21/2014	5/21/2014	5-6.6 4/3/2014	5/21/2014	5/21/2014	5/21/2014	9.5 5/21/2014	4-5 5/21/2014	5/21/2014	4-5 5/21/2014	5/21/2014	5/21/2014	5/21/2014	2/13/2013	Residential	I/C
VOLATILE ORGANIC COMPOUND)																																		
1,1,1-Trichloroethane	< 0.0434			0.0026	0.031						-				<0.0027	<3.4				-		<0.0056									-			540	10,000
1,1-Dichloroethane	<0.0434			0.0027	0.017										<0.0027	<3.4						< 0.0056												920	10,000
1,1-Dichloroethene 1,2,4-Trimethylbenzene	<0.0434 0.0321			<0.0053	0.0019	<0.0054	-		-					-	<0.0027 <0.0027	<3.4			-	_	-	<0.0056	-						-	-	_			0.2 NS	9.5 NS
1,3,5-Trimethylbenzene	0.0165					< 0.0054									< 0.0027																			NS	NS
4-Methyl-2-Pentanone	< 0.434			< 0.027	< 0.029										<0.0266	<17						<0.028												1,200	10,000
Acetone	9.93			<0.027	< 0.029	<0.027									<0.0266	<17						0.0062												7,800	10,000
Chloroform	0.0174			<0.0053	<0.0059	<0.0054									<0.0027	<3.4						<0.0056												1.2	940
cis-1,2-Dichloroethene Ethylbenzene	<0.0434 0.325			0.002 <0.0053	0.013 0.0025	<0.0054									<0.0027 <0.0027	<3.4 5.3						<0.0056 <0.0056									-			630 71	10,000 10,000
Isopropylbenzene	0.0426			< 0.0053	< 0.0023	< 0.0054									<0.0027	5.5						< 0.0056												27	10,000
Methyl acetate				< 0.0053	< 0.0059											<3.4						< 0.0056												NS NS	NS
Methylene Chloride	<0.217			< 0.0053	< 0.0059										<0.0133	2.6						< 0.0056												45	760
Naphthalene	0.11					< 0.0054									<0.0027																			54	10,000
Styrene	0.127			< 0.0053	<0.0059	< 0.0054									<0.0027	<3.4						<0.0056												13	190
Toluene Trichloroethene	0.0452 <0.0434			<0.0053 0.026	0.0085 0.084	<0.0054									<0.0027 <0.0027	<3.4 <3.4						<0.0056 <0.0056												190 13	10,000 520
Xylene O	1.34		-	0.020	0.064	< 0.0054					-				<0.0027	< 3.4				-		<0.0036									-			110	10,000
Xylene P,M	2.11					< 0.0054									< 0.0053																			110	10,000
Xylenes (Total)	3.45			< 0.011	0.0082	< 0.0054									<0.008	52						< 0.011												110	10,000
All other VOCs	ND			ND	ND	ND									ND	ND						ND												NS	NS
TOTAL METALS (mg/kg)																												,							
Arsenic		20	0.6	0.76	0.84	2.4	1.6	4.5	1.6	14	4.5	7.2	3.5	1.8	<1.24		2	1 52	1.4	0.5	3.1	0.98	1.1	1	1.3	0.9	1.5	0.96	1.3	0.9	0.96	1.1	5.4	7	7
Arsenic Barium		360	6.6	4.4	4.9	37	8.4	37	9.5	14 7.5 0.058	10	8.6	16	5.9	5.8	-	2 22 -0.18	1 5.2	2.8	5.2	14	6.6	7.1	1 7.0	11	6.3	7.4	7.2	6.0	6.3	8.0	4.3	21.3	7 5,500	7 10,000 1,000
Arsenic		360 1.1								7.5 0.058		8.6 0.075	16 0.05	5. 9 <0.19		 	2 22 <0.18 1.9	< 0.21	2.8 < 0.22		14 < 0.19			1 7.0 0.04 1.4	11 < 0.20		7.4 < 0.20					4.3 < 0.20		7 5,500 39 1,400	7 10,000 1,000 10,000
Arsenic Barium Cadmium		360	6.6 0.051	4.4	4.9 0.05	37 0.40	8.4 0.035	37 0.043	9.5 0.14	0.058	10 0.032	8.6	16	5.9	5.8 <0.5	 	<0.18		2.8	5.2 < 0.20	14	6.6 < 0.20	7.1 < 0.19	0.04	11	6.3 < 0.19	7.4	7.2 0.039	6.0 0.036	6.3 0.03	8.0 < 0.21	4.3	21.3 <0.57	39	1,000
Arsenic Barium Cadmium Chromium (Total) Lead Mercury		360 1.1 21 350 0.2	6.6 0.051 26	4.4 0.049 16 1.2 0.02	4.9 0.05 7 0.99 <0.020	37 0.40 32 480 0.076	8.4 0.035 2.9 15 0.014	37 0.043 6.1 8.7 <0.020	9.5 0.14 2.4 1.8 <0.021	0.058 3 2.3 <0.020	10 0.032 1.3 0.77 <0.018	8.6 0.075 2.2 1.5 0.011	16 0.05 7.8 14 19	5.9 <0.19 3.4 1.8 0.071	5.8 <0.5 2.1 <5 0.052	 	<0.18 1.9 130 0.16	< 0.21 0.53 5.5 0.0099	2.8 < 0.22 0.31 3.0 0.20	5.2 < 0.20 < 0.49 12 < 0.020	14 < 0.19 1.3 83 0.0081	6.6 <0.20 1.9 1.3 <0.020	7.1 < 0.19 1.3 1.2 < 0.018	0.04 1.4 1.1 < 0.020	11 < 0.20 2.1 1.5 < 0.020	6.3 < 0.19 1.4 0.8 < 0.019	7.4 < 0.20 2.1 1.3 < 0.021	7.2 0.039 1.7 0.98 < 0.020	6.0 0.036 1.7 1.2 < 0.020	6.3 0.03 1.3 0.72 < 0.020	8.0 < 0.21 1.4 1.2 < 0.020	4.3 < 0.20 1.3 0.88 < 0.020	21.3 <0.57 7.7 31.0 0.067	39 1,400 150 23	1,000 10,000 500 610
Arsenic Barium Cadmium Chromium (Total) Lead		360 1.1 21 350 0.2 1.5	6.6 0.051 26 1.6 0.097 <4.1	4.4 0.049 16 1.2 0.02 <3.8	4.9 0.05 7 0.99 <0.020 <3.7	37 0.40 32 480 0.076 <4.0	8.4 0.035 2.9 15 0.014 <3.7	37 0.043 6.1 8.7 <0.020 <3.6	9.5 0.14 2.4 1.8 <0.021 <4.4	0.058 3 2.3 <0.020 <4.3	10 0.032 1.3 0.77 <0.018 <3.7	8.6 0.075 2.2 1.5 0.011 <4.1	16 0.05 7.8 14 19 <4.2	5.9 <0.19 3.4 1.8 0.071 <3.8	5.8 <0.5 2.1 <5 0.052 <5	-	<0.18 1.9 130 0.16 <3.7	< 0.21 0.53 5.5 0.0099 < 4.2	2.8 < 0.22 0.31 3.0 0.20 0.45	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9	14 < 0.19 1.3 83 0.0081 0.49	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9	0.04 1.4 1.1 < 0.020 0.4	11 < 0.20 2.1 1.5 < 0.020 0.48	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0	7.2 0.039 1.7 0.98 < 0.020 < 4.0	6.0 0.036 1.7 1.2 < 0.020 < 3.8	6.3 0.03 1.3 0.72 < 0.020 < 3.8	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3	4.3 < 0.20 1.3 0.88 < 0.020 < 4.0	21.3 <0.57 7.7 31.0 0.067 <5.7	39 1,400 150 23 390	1,000 10,000 500 610 10,000
Arsenic Barium Cadmium Chromium (Total) Lead Mercury Selenium Silver		360 1.1 21 350 0.2	6.6 0.051 26 1.6 0.097	4.4 0.049 16 1.2 0.02	4.9 0.05 7 0.99 <0.020	37 0.40 32 480 0.076	8.4 0.035 2.9 15 0.014	37 0.043 6.1 8.7 <0.020	9.5 0.14 2.4 1.8 <0.021	0.058 3 2.3 <0.020	10 0.032 1.3 0.77 <0.018	8.6 0.075 2.2 1.5 0.011	16 0.05 7.8 14 19	5.9 <0.19 3.4 1.8 0.071	5.8 <0.5 2.1 <5 0.052		<0.18 1.9 130 0.16	< 0.21 0.53 5.5 0.0099	2.8 < 0.22 0.31 3.0 0.20	5.2 < 0.20 < 0.49 12 < 0.020	14 < 0.19 1.3 83 0.0081	6.6 <0.20 1.9 1.3 <0.020	7.1 < 0.19 1.3 1.2 < 0.018	0.04 1.4 1.1 < 0.020	11 < 0.20 2.1 1.5 < 0.020	6.3 < 0.19 1.4 0.8 < 0.019	7.4 < 0.20 2.1 1.3 < 0.021	7.2 0.039 1.7 0.98 < 0.020	6.0 0.036 1.7 1.2 < 0.020	6.3 0.03 1.3 0.72 < 0.020	8.0 < 0.21 1.4 1.2 < 0.020	4.3 < 0.20 1.3 0.88 < 0.020	21.3 <0.57 7.7 31.0 0.067	39 1,400 150 23	1,000 10,000 500 610
Arsenic Barium Cadmium Chromium (Total) Lead Mercury Selenium Silver		360 1.1 21 350 0.2 1.5	6.6 0.051 26 1.6 0.097 <4.1	4.4 0.049 16 1.2 0.02 <3.8	4.9 0.05 7 0.99 <0.020 <3.7	37 0.40 32 480 0.076 <4.0 <0.60	8.4 0.035 2.9 15 0.014 <3.7	37 0.043 6.1 8.7 <0.020 <3.6	9.5 0.14 2.4 1.8 <0.021 <4.4	0.058 3 2.3 <0.020 <4.3	10 0.032 1.3 0.77 <0.018 <3.7	8.6 0.075 2.2 1.5 0.011 <4.1	16 0.05 7.8 14 19 <4.2 <0.63	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57	5.8 <0.5 2.1 <5 0.052 <5	 	<0.18 1.9 130 0.16 <3.7	< 0.21 0.53 5.5 0.0099 < 4.2	2.8 < 0.22 0.31 3.0 0.20 0.45	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9	14 < 0.19 1.3 83 0.0081 0.49	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9	0.04 1.4 1.1 < 0.020 0.4	11 < 0.20 2.1 1.5 < 0.020 0.48	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0	7.2 0.039 1.7 0.98 < 0.020 < 4.0	6.0 0.036 1.7 1.2 < 0.020 < 3.8	6.3 0.03 1.3 0.72 < 0.020 < 3.8	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3	4.3 < 0.20 1.3 0.88 < 0.020 < 4.0	21.3 <0.57 7.7 31.0 0.067 <5.7	39 1,400 150 23 390 200	1,000 10,000 500 610 10,000 10,000
Arsenic Barium Cadmium Chromium (Total) Lead Mercury Selenium Silver TOTAL PETROLEUM HYDROCAR C10-C-28 Aliphalics		360 1.1 21 350 0.2 1.5	6.6 0.051 26 1.6 0.097 <4.1	4.4 0.049 16 1.2 0.02 <3.8	4.9 0.05 7 0.99 <0.020 <3.7	37 0.40 32 480 0.076 <4.0	8.4 0.035 2.9 15 0.014 <3.7	37 0.043 6.1 8.7 <0.020 <3.6	9.5 0.14 2.4 1.8 <0.021 <4.4	0.058 3 2.3 <0.020 <4.3	10 0.032 1.3 0.77 <0.018 <3.7	8.6 0.075 2.2 1.5 0.011 <4.1	16 0.05 7.8 14 19 <4.2	5.9 <0.19 3.4 1.8 0.071 <3.8	5.8 <0.5 2.1 <5 0.052 <5		<0.18 1.9 130 0.16 <3.7	< 0.21 0.53 5.5 0.0099 < 4.2	2.8 < 0.22 0.31 3.0 0.20 0.45	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9	14 < 0.19 1.3 83 0.0081 0.49	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9	0.04 1.4 1.1 < 0.020 0.4	11 < 0.20 2.1 1.5 < 0.020 0.48	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0	7.2 0.039 1.7 0.98 < 0.020 < 4.0	6.0 0.036 1.7 1.2 < 0.020 < 3.8	6.3 0.03 1.3 0.72 < 0.020 < 3.8	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3	4.3 < 0.20 1.3 0.88 < 0.020 < 4.0	21.3 <0.57 7.7 31.0 0.067 <5.7	39 1,400 150 23 390	1,000 10,000 500 610 10,000
Arsenic Barium Cadmium Chromium (Total) Lead Mercury Selenium Silver		360 1.1 21 350 0.2 1.5	6.6 0.051 26 1.6 0.097 <4.1	4.4 0.049 16 1.2 0.02 <3.8	4.9 0.05 7 0.99 <0.020 <3.7	37 0.40 32 480 0.076 <4.0 <0.60	8.4 0.035 2.9 15 0.014 <3.7	37 0.043 6.1 8.7 <0.020 <3.6	9.5 0.14 2.4 1.8 <0.021 <4.4	0.058 3 2.3 <0.020 <4.3	10 0.032 1.3 0.77 <0.018 <3.7	8.6 0.075 2.2 1.5 0.011 <4.1	16 0.05 7.8 14 19 <4.2 <0.63	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57	5.8 <0.5 2.1 <5 0.052 <5	 	<0.18 1.9 130 0.16 <3.7	< 0.21 0.53 5.5 0.0099 < 4.2	2.8 < 0.22 0.31 3.0 0.20 0.45	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9	14 < 0.19 1.3 83 0.0081 0.49	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9	0.04 1.4 1.1 < 0.020 0.4	11 < 0.20 2.1 1.5 < 0.020 0.48	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0	7.2 0.039 1.7 0.98 < 0.020 < 4.0	6.0 0.036 1.7 1.2 < 0.020 < 3.8	6.3 0.03 1.3 0.72 < 0.020 < 3.8	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3	4.3 < 0.20 1.3 0.88 < 0.020 < 4.0	21.3 <0.57 7.7 31.0 0.067 <5.7	39 1,400 150 23 390 200	1,000 10,000 500 610 10,000 10,000
Arsenic Barium Chromium (Total) Lead Mercury Selenium Silver TOTAL PETROLEUM HYDROCAR C10-C-28 Aliphalics POLYNUCLEAR AROMATIC HYDR		360 1.1 21 350 0.2 1.5 <0.62	6.6 0.051 26 1.6 0.097 <4.1 <0.62	4.4 0.049 16 1.2 0.02 <3.8 0.44	4.9 0.05 7 0.99 <0.020 <3.7 <0.55	37 0.40 32 480 0.076 <4.0 <0.60	8.4 0.035 2.9 15 0.014 <3.7	37 0.043 6.1 8.7 <0.020 <3.6 <0.54	9.5 0.14 2.4 1.8 <0.021 <4.4 <0.66	0.058 3 2.3 <0.020 <4.3 0.83	10 0.032 1.3 0.77 <0.018 <3.7 2	8.6 0.075 2.2 1.5 0.011 <4.1 0.62	16 0.05 7.8 14 19 <4.2 <0.63 <0.019	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57 <0.020	5.8 <0.5 2.1 <5 0.052 <5 <0.5 	 	<0.18 1.9 130 0.16 <3.7	< 0.21 0.53 5.5 0.0099 < 4.2 < 0.62 < 0.19 < 0.19	2.8 < 0.22 0.31 3.0 0.20 0.45 0.22	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9 < 0.59 	14 < 0.19 1.3 83 0.0081 0.49 < 0.58 < 0.19 < 0.19	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9 < 0.58	0.04 1.4 1.1 < 0.020 0.4 < 0.61	11 < 0.20 2.1 1.5 < 0.020 0.48 < 0.60 	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9 < 0.58	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0 < 0.60	7.2 0.039 1.7 0.98 < 0.020 < 4.0 < 0.60	6.0 0.036 1.7 1.2 < 0.020 < 3.8 < 0.57	6.3 0.03 1.3 0.72 < 0.020 < 3.8 < 0.56	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3 < 0.64 	4.3 < 0.20 1.3 0.88 < 0.020 < 4.0 < 0.61	21.3 <0.57 7.7 31.0 0.067 <5.7 <0.57 	39 1,400 150 23 390 200 NS	1,000 10,000 500 610 10,000 10,000 NS
Arsenic Barium Chromium (Total) Lead Mercury Selenium Silver TOTAL PETROLEUM HYDROCAR C10-C-28 Aliphatics POLYNUCLEAR AROMATIC HYDF 2-Methylnaphthalene Acenaphthene Acenaphthylene		360 1.1 21 350 0.2 1.5 <0.62	6.6 0.051 26 1.6 0.097 <4.1 <0.62	4.4 0.049 16 1.2 0.02 <3.8 0.44	4.9 0.05 7 0.99 <0.020 <3.7 <0.55 <1.1 0.045 <1.1	37 0.40 32 480 0.076 <4.0 <0.60 38 0.0021 0.051 0.049	8.4 0.035 2.9 15 0.014 <3.7 <0.56	37 0.043 6.1 8.7 <0.020 <3.6 <0.54 	9.5 0.14 2.4 1.8 <0.021 <4.4 <0.66	0.058 3 2.3 <0.020 <4.3 0.83 <0.17 <0.17 <0.17	10 0.032 1.3 0.77 <0.018 <3.7 2 	8.6 0.075 2.2 1.5 0.011 <4.1 0.62	16 0.05 7.8 14 19 <4.2 <0.63 <0.019	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57 <0.020	5.8 <0.5 2.1 <5 0.052 <5 <0.5 	 	<0.18 1.9 130 0.16 <3.7	< 0.21 0.53 5.5 0.0099 < 4.2 < 0.62 < 0.19 < 0.19 < 0.19	2.8 < 0.22 0.31 3.0 0.20 0.45 0.22 	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9 < 0.59 	14 < 0.19 1.3 83 0.0081 0.49 < 0.58 < 0.19 < 0.19 < 0.19	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9 < 0.58	0.04 1.4 1.1 < 0.020 0.4 < 0.61 < 0.17 < 0.17 < 0.17	11 < 0.20 2.1 1.5 < 0.020 0.48 < 0.60 	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9 < 0.58 < 0.2 < 0.2 < 0.2	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0 < 0.60 < 0.18 < 0.18	7.2 0.039 1.7 0.98 < 0.020 < 4.0 < 0.60	6.0 0.036 1.7 1.2 < 0.020 < 3.8 < 0.57 	6.3 0.03 1.3 0.72 < 0.020 < 3.8 < 0.56	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3 < 0.64 < 0.17 < 0.17 < 0.17	4.3 < 0.20 1.3 0.88 < 0.020 < 4.0 < 0.61	21.3 <0.57 7.7 31.0 0.067 <5.7 <0.57 <0.399 <0.399 <0.399	39 1,400 150 23 390 200 NS	1,000 10,000 500 610 10,000 10,000 NS
Arsenic Barium Cadmium (Chromium (Total) Lead Mercury Selenium Silver TOTAL PETROLEUM HYDROCAR C10-C-28 Aliphalics POLYNUCLEAR AROMATIC HYDR 2-Methylnaphithalene Acenaphithene Anthracene		360 1.1 21 350 0.2 1.5 <0.62	6.6 0.051 26 1.6 0.097 <4.1 <0.62	4.4 0.049 16 1.2 0.02 <3.8 0.44 <0.2 <0.2 <0.2 <0.2	4.9 0.05 7 0.99 <0.020 <3.7 <0.55 	37 0.40 32 480 0.076 <4.0 <0.60 38 0.0021 0.051 0.049 0.16	8.4 0.035 2.9 15 0.014 <3.7 <0.56	37 0.043 6.1 8.7 <0.020 <3.6 <0.54 	9.5 0.14 2.4 1.8 <0.021 <4.4 <0.66	0.058 3 2.3 <0.020 <4.3 0.83 <0.17 <0.17 <0.17 <0.17	10 0.032 1.3 0.77 <0.018 <3.7 2 	8.6 0.075 2.2 1.5 0.011 <4.1 0.62 <0.18 <0.18 <0.18	16 0.05 7.8 14 19 <4.2 <0.63 0.019	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57 	5.8 <0.5 2.1 <5 0.052 <5 <0.5 <0.36 <0.36 <0.36	 	<0.18 1.9 130 0.16 <3.7	< 0.21 0.53 5.5 0.0099 < 4.2 < 0.62 < 0.19 < 0.19 < 0.19 < 0.19	2.8 <0.22 0.31 3.0 0.20 0.45 0.22 	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9 < 0.59 	14 < 0.19 1.3 83 0.0081 0.49 < 0.58 < 0.19 < 0.19 < 0.19 < 0.19	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9 < 0.58 0.0058 0.0042 < 0.2 < 0.2	0.04 1.4 1.1 < 0.020 0.4 < 0.61 < 0.17 < 0.17 < 0.17 < 0.17	11 < 0.20 2.1 1.5 < 0.020 0.48 < 0.60 	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9 < 0.58 	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0 < 0.60 < 0.18 < 0.18 < 0.18 < 0.18	7.2 0.039 1.7 0.98 < 0.020 < 4.0 < 0.60	6.0 0.036 1.7 1.2 < 0.020 < 3.8 < 0.57 0.18 < 0.18 < 0.18	6.3 0.03 1.3 0.72 < 0.020 < 3.8 < 0.56	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3 < 0.64 < 0.17 < 0.17 < 0.17 < 0.17	4.3 < 0.20 1.3 0.88 < 0.020 < 4.0 < 0.61 	21.3 <0.57 7.7 31.0 0.067 <5.7 <0.57 	39 1,400 150 23 390 200 NS 123 43 23 35	1,000 10,000 500 610 10,000 10,000 NS 10,000 10,000 10,000
Arsenic Barium Cadmium Chromium (Total) Lead Mercury Selenium Silver TOTAL PETROLEUM HYDROCAR C10-C28 Aliphatics POLYNUCLEAR AROMATIC HYDF 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene		360 1.1 21 350 0.2 1.5 <0.62	6.6 0.051 26 1.6 0.097 <4.1 <0.62 0.21 <0.22 0.25 0.53	4.4 0.049 16 1.2 0.02 <3.8 0.44 	4.9 0.05 7 0.99 <0.020 <3.7 <0.55 	37 0.40 32 480 0.076 <4.0 <0.60 38 0.0021 0.051 0.049 0.16 0.73	8.4 0.035 2.9 15 0.014 <3.7 <0.56	37 0.043 6.1 8.7 <0.020 <3.6 <0.54 	9.5 0.14 2.4 1.8 <0.021 <4.4 <0.66 	0.058 3 2.3 <0.020 <4.3 0.83 	10 0.032 1.3 0.77 <0.018 <3.7 2	0.075 2.2 1.5 0.011 <4.1 0.62 	16 0.05 7.8 14 19 <4.2 <0.63 <0.019 0.014 <0.19 0.022 0.11	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57 <0.020 0.0043 <0.21 <0.21 0.0071	5.8 <0.5 2.1 <5 0.052 <5 <0.5 	 	<0.18 1.9 130 0.16 <3.7	< 0.21 0.53 5.5 0.0099 < 4.2 < 0.62 	2.8 <0.22 0.31 3.0 0.20 0.45 0.22 	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9 < 0.59 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18	14 < 0.19 1.3 83 0.0081 0.49 < 0.58 	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9 < 0.58 	0.04 1.4 1.1 < 0.020 0.4 < 0.61 	11 < 0.20 2.1 1.5 < 0.020 0.48 < 0.60 	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9 < 0.58 	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0 < 0.60 	7.2 0.039 1.7 0.98 < 0.020 < 4.0 < 0.60 	6.0 0.036 1.7 1.2 < 0.020 < 3.8 < 0.57 	6.3 0.03 1.3 0.72 < 0.020 < 3.8 < 0.56 	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3 < 0.64 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17	4.3 < 0.20 1.3 0.88 < 0.020 < 4.0 < 0.61 	21.3 <0.57 7.7 31.0 0.067 <5.7 <0.57 	39 1,400 150 23 390 200 NS 123 43 23 35 0,9	1,000 10,000 500 610 10,000 10,000 NS 10,000 10,000 10,000 10,000 7.8
Arsenic Barium Cadmium (Chromium (Total) Lead Mercury Selenium Silver TOTAL PETROLEUM HYDROCAR C10-C-28 Aliphalics POLYNUCLEAR AROMATIC HYDR 2-Methylnaphithalene Acenaphithene Anthracene		360 1.1 21 350 0.2 1.5 <0.62	6.6 0.051 26 1.6 0.097 <4.1 <0.62	4.4 0.049 16 1.2 0.02 <3.8 0.44 	4.9 0.05 7 0.99 <0.020 <3.7 <0.55 	37 0.40 32 480 0.076 <4.0 <0.60 38 0.0021 0.051 0.049 0.16	8.4 0.035 2.9 15 0.014 <3.7 <0.56	37 0.043 6.1 8.7 <0.020 <3.6 <0.54 	9.5 0.14 2.4 1.8 <0.021 <4.4 <0.66	0.058 3 2.3 <0.020 <4.3 0.83 <0.17 <0.17 <0.17 <0.17	10 0.032 1.3 0.77 <0.018 <3.7 2 	8.6 0.075 2.2 1.5 0.011 <4.1 0.62 <0.18 <0.18 <0.18	16 0.05 7.8 14 19 <4.2 <0.63 0.019	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57 	5.8 <0.5 2.1 <5 0.052 <5 <0.5 <0.36 <0.36 <0.36	 	<0.18 1.9 130 0.16 <3.7	< 0.21 0.53 5.5 0.0099 < 4.2 < 0.62 < 0.19 < 0.19 < 0.19 < 0.19	2.8 <0.22 0.31 3.0 0.20 0.45 0.22 	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9 < 0.59 	14 < 0.19 1.3 83 0.0081 0.49 < 0.58 < 0.19 < 0.19 < 0.19 < 0.19	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9 < 0.58 	0.04 1.4 1.1 < 0.020 0.4 < 0.61 < 0.17 < 0.17 < 0.17 < 0.17	11 < 0.20 2.1 1.5 < 0.020 0.48 < 0.60 	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9 < 0.58 	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0 < 0.60 < 0.18 < 0.18 < 0.18 < 0.18	7.2 0.039 1.7 0.98 < 0.020 < 4.0 < 0.60	6.0 0.036 1.7 1.2 < 0.020 < 3.8 < 0.57 0.18 < 0.18 < 0.18	6.3 0.03 1.3 0.72 < 0.020 < 3.8 < 0.56 	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3 < 0.64 < 0.17 < 0.17 < 0.17 < 0.17	4.3 < 0.20 1.3 0.88 < 0.020 < 4.0 < 0.61 	21.3 <0.57 7.7 31.0 0.067 <5.7 <0.57 	39 1,400 150 23 390 200 NS 123 43 23 35	1,000 10,000 500 610 10,000 10,000 NS 10,000 10,000 10,000 10,000 7.8 0.8
Arsenic Barium Chromium (Total) Lead Mercury Selenium Silver TOTAL PETROLEUM HYDROCAR C10-C-28 Aliphatics POLYNUCLEAR AROMATIC HYDF 2-Methylnaphithalene Acenaphthee Acenaphthee Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene		360 1.1 21 350 0.2 1.5 <0.62	6.6 0.051 26 1.6 0.097 <4.1 <0.62 	4.4 0.049 16 1.2 0.02 <3.8 0.44 	4.9 0.05 7 0.99 <0.020 <3.7 <0.55 	37 0.40 32 480 0.076 <4.0 <0.60 38 0.0021 0.051 0.049 0.16 0.73	8.4 0.035 2.9 15 0.014 <3.7 <0.56	37 0.043 6.1 8.7 <0.020 <3.6 <0.54 	9.5 0.14 2.4 1.8 <0.021 <4.4 <0.66 	0.058 3 2.3 <0.020 <4.3 0.83 	10 0.032 1.3 0.77 <0.018 <3.7 2	8.6 0.075 2.2 1.5 0.011 <4.1 0.62 	16 0.05 7.8 14 19 <4.2 <0.63 <	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57 	5.8 <0.5 2.1 <5 0.052 <5 <0.5 	 	<0.18 1.9 130 0.16 <3.7	<0.21 0.53 5.5 0.0099 < 4.2 < 0.62 	2.8 < 0.22 0.31 3.0 0.20 0.45 0.22 	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9 < 0.59 	14 < 0.19 1.3 83 0.0081 0.49 < 0.58 	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9 < 0.58 	0.04 1.4 1.1 < 0.020 0.4 < 0.61 	11 < 0.20 2.1 1.5 < 0.020 0.48 < 0.60 	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9 < 0.58 	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0 < 0.60 	7.2 0.039 1.7 0.98 < 0.020 < 4.0 < 0.60 	6.0 0.036 1.7 1.2 < 0.020 < 3.8 < 0.57 	6.3 0.03 1.3 0.72 < 0.020 < 3.8 < 0.56 	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3 < 0.64 	4.3 < 0.20 1.3 0.88 < 0.020 < 4.0 < 0.61 	21.3 <0.57 7.7 31.0 0.067 <5.7 <0.57 	39 1,400 150 23 390 200 NS 123 43 23 35 0.9 0.4	1,000 10,000 500 610 10,000 10,000 NS 10,000 10,000 10,000 10,000 7.8
Arsenic Barium Chromium (Total) Lead Mercury Selenium Silver TOTAL PETROLEUM HYDROCAR C10-C-28 Aliphatics POLYNUCLEAR AROMATIC HYDF 2-Methylnaphitalene Acenaphthene Acenaphthene Acenaphthene Benzo(a)arithracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene		360 1.1 21 350 0.2 1.5 <0.62 		4.4 0.049 16 1.2 0.02 <3.8 0.44 	4.9 0.05 7 7 0.99 <0.020 <3.7 <0.55 	37 0.40 32 480 0.076 <1.0 0.060 38 0.0021 0.051 0.049 0.16 0.73 0.67 0.97 0.41 0.39	8.4 0.035 2.9 15 0.014 <3.7 <0.56	37 0.043 6.1 8.7 <0.020 <3.6 <0.54 	9.5 0.14 2.4 1.8 <0.021 <4.4 <0.66 	0.058 3 2.3 -0.020 -4.3 0.83 	10 0.032 1.3 0.77 <0.018 <3.7 2	8.6 0.075 2.2 1.5 0.011 <4.1 0.62 	16 0.05 7.8 14 19 <4.2 <0.63 <0.019 0.014 <0.19 0.022 0.11 0.11 0.14 0.043 0.014	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57 	5.8	 	<0.18 1.9 130 0.16 <3.7	 < 0.21 0.53 5.5 0.0099 < 4.2 < 0.62 	2.8 < 0.22 0.31 3.0 0.20 0.45 0.22 	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9 < 0.59 	14 < 0.19 1.3 83 0.0081 0.49 < 0.58 	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9 < 0.58 	0.04 1.4 1.1 < 0.020 0.4 < 0.61 	11	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9 < 0.58 	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0 < 0.60 	7.2 0.039 1.7 0.98 < 0.020 < 4.0 < 0.60 	6.0 0.036 1.7 1.2 < 0.020 < 3.8 < 0.57 	6.3 0.03 1.3 0.72 < 0.020 < 3.8 < 0.56 	8.0 < 0.21 1.2 < 0.020 < 4.3 < 0.64 	4.3 <0.20 1.3 0.88 <0.020 <4.0 <0.61 	21.3 <0.57 7.7 31.0 0.067 <5.7 <0.57 	39 1,400 150 23 390 200 NS 123 43 23 35 0.9 0.4 0.9 0.8 0.9	1,000 10,000 500 610 10,000 10,000 10,000 10,000 10,000 10,000 7.8 0.8 7.8 10,000 78
Arsenic Barium Cadmium Chromium (Total) Lead Mercury Selenium Silver TOTAL PETROLEUM HYDROCAR C10-C-28 Aliphatics POLYNUCLEAR AROMATIC HYDF 2-Methylnaphthalene Acenaphthlene Acenaphthlyene Anthracene Benzo(a)anthracene Benzo(a)pryrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene		360 1.1 21 350 0.2 1.5 <0.62 	6.6 0.051 26 1.6 0.097 <4.1 <0.62 		4.9 0.05 7 0.99 <0.020 <3.7 <0.55 	37 0.40 32 480 0.076 <4.0 <0.60 38 0.0021 0.051 0.049 0.16 0.73 0.67 0.97 0.41	8.4 0.035 2.9 15 0.014 <3.7 <0.56	37 0.043 6.1 8.7 <0.020 <3.6 <0.54 	9.5 0.14 2.4 1.8 <0.0221 <4.4 <0.66 	0.058 3 2.3 -0.020 <4.3 0.83 	10 0.032 1.3 0.77 <0.018 <3.7 2		16 0.05 7.8 14 19 <4.2 <0.63 <0.019 0.014 <0.19 0.022 0.11 0.11 0.14 0.043 0.014 0.16	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57 	5.8	 	<0.18 1.9 130 0.16 <3.7	< 0.21 0.53 5.5 0.0099 < 4.2 < 0.62 	2.8 <0.22 0.31 3.0 0.20 0.45 0.22 	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9 < 0.59 	14 < 0.19 1.3 83 0.0081 0.49 < 0.58 	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9 < 0.58 	0.04 1.4 1.1 < 0.020 0.4 < 0.61	11	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9 < 0.58 	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0 < 0.60 	7.2 0.039 1.7 0.98 < 0.020 < 4.0 < 0.60 	6.0 0.036 1.7 1.2 < 0.020 < 3.8 < 0.57 	6.3 0.03 1.3 0.72 < 0.020 < 3.8 < 0.56 	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3 < 0.64 	4.3 < 0.20 1.3 0.88 < 0.020 < 4.0 < 0.61 	21.3 <0.57 7.7 31.0 0.067 <5.7 <0.57 	39 1,400 150 23 390 200 NS 123 43 23 35 0,9 0,4 0,9 0,8 0,9 0,4	1,000 10,000 500 610 10,000 10,000 10,000 10,000 10,000 10,000 7.8 0.8 0.8 10,000 7.8 10,000 7.8
Arsenic Barium Chromium (Total) Lead Mercury Selenium Silver TOTAL PETROLEUM HYDROGAR C10-C-28 Aliphatics POLYNUCLEAR AROMATIC HYDE 2-Methylnaphithalene Acenaphithene Acenaphithene Benzo(a)anithracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a,h)anithracene		360 1.1 21 350 0.2 1.5 <0.62 520 <1,100 1,100 2,300 1,900 2,300 590 1,100 2,400 2,400 180	6.6 0.051 26 1.6 0.097 <4.1 -0.62 	4.4 0.049 16 1.2 0.02 <3.8 0.44 	4.9 0.05 7 0.99 <0.020 <3.7 <0.55 	37 0.40 32 480 0.076 <4.0 -0.60 38 0.0021 0.051 0.049 0.16 0.73 0.67 0.97 0.41 0.39 0.83 0.13	8.4 0.035 2.9 15 0.014 <3.7 <0.56	37 .0.043 6.1 8.7 .0.020 .3.6 .0.54 	9.5 0.14 2.4 1.8 <0.021 <0.66 	0.058 3 2.3 <0.020 <4.3 0.83 		8.6 0.075 2.2 1.5 0.011 <4.1 0.62 	16 0.05 7.8 14 19 <4.2 <0.63 <-0.019	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57 <0.020 0.0043 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <	5.8	 	<0.18 1.9 130 0.16 <3.7	< 0.21 0.53 5.5 0.0099 < 4.2 < 0.62 	2.8 < 0.22 0.31 3.0 0.20 0.45 0.22 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9 < 0.59 	14 < 0.19 1.3 83 0.0081 0.49 < 0.58	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9 < 0.58 	0.04 1.4 1.1 2.0020 0.4 2.61	11	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9 < 0.58 	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0 < 0.60 	7.2 0.039 1.7 0.98 < 0.020 < 4.0 < 0.60 	6.0 0.036 1.7 1.2 < 0.020 < 3.8 < 0.57 	6.3 0.03 1.3 0.72 < 0.020 < 3.8 < 0.56 	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3 < 0.64 	4.3 < 0.20 1.3 0.88 < 0.020 < 4.0 < 0.61 	21.3 <0.57 7.7 31.0 0.067 <5.7 <0.57 	39 1,400 150 23 390 200 NS 123 43 23 35 0.9 0.4 0.9 0.8 0.9 0.4 0.4 0.4	1,000 10,000 500 610 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 7.8 0.8 7.8 10,000 78 78 0.8
Arsenic Barium Chromium (Total) Lead Mercury Selenium Silver TOTAL PETROLEUM HYDROCAR C10-C-28 Aliphatics POLYNUCLEAR AROMATIC HYDF 2-Methylnaphitalene Acenaphthene Acenaphthene Acenaphthene Benzo(a)anithracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Chryssene Dibenzo(a, h)nerylene Benzo(b)fluoranthene Chryssene Dibenzo(a, h)nerylene Benzo(b)fluoranthene Chryssene Dibenzo(a, h)nerylene Benzo(b)fluoranthene Chryssene Dibenzo(a, h)nerylene Benzo(b)fluoranthene Chryssene Fluoranthene		360 1.1 21 350 0.2 1.5 <0.62 520 <1,100 1,100 2,300 1,900 2,300 1,100 2,400 180 5,400			4.9 0.05 7 0.99 <0.020 <3.7 <0.55 <1.1 0.045 <1.1 0.13 <1.1 0.2 0.25 <1.1 0.16 0.29 <1.1 0.59	37 0.40 32 480 0.076 <4.0 <0.60 38 0.021 0.051 0.049 0.16 0.73 0.67 0.97 0.41 0.39 0.83 0.13	8.4 0.035 2.9 15 0.014 <3.7 <0.56	37 0.043 6.1 8.7 <0.020 <3.6 <0.54 	9.5 0.14 2.4 1.8 <0.021 <4.4 <0.66 	0.058 3 2.3 <0.020 <4.3 0.83			16 0.05 7.8 14 19 44 2 < 0.63	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57 <0.020 0.0043 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	5.8	 	<0.18 1.9 130 0.16 <3.7	<0.21 0.53 5.5 0.0099 < 4.2 < 0.62 	2.8 < 0.22 0.31 3.0 0.20 0.45 0.22	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9 < 0.18 < 0.07 < 0.0	14 < 0.19 1.3 83 0.0081 0.49 < 0.58	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9 < 0.58 	0.04 1.4 1.1 < 0.020 0.4 < 0.61 	11	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9 < 0.58 	7.4 < 0.02 2.1 1.3 < 0.021 < 4.0 < 0.68 < 0.18 < 0.18	7.2 0.039 1.7 0.98 < 0.020 < 4.0 < 0.60 	6.0 0.036 1.7 1.2 < 0.020 < 3.8 < 0.57 	6.3 0.03 1.3 0.72 < 0.020 < 3.8 < 0.56	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3 < 0.64 	4.3 < 0.20 1.3 0.88 < 0.020 < 4.0 < 0.61 	21.3 <0.57 7.7 31.0 0.067 <5.7 <0.57 	39 1,400 150 23 390 200 NS 123 43 23 35 0.9 0.4 0.9 0.8 0.9 0.4 0.4 20	1,000 10,000 500 610 10,000 10,000 10,000 10,000 10,000 10,000 7.8 0.8 7.8 10,000 78 78 780 0.8
Arsenic Barium Chromium (Total) Lead Mercury Selenium Silver TOTAL PETROLEUM HYDROGAR C10-C-28 Aliphatics POLYNUCLEAR AROMATIC HYDE 2-Methylnaphithalene Acenaphithene Acenaphithene Benzo(a)anithracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a,h)anithracene		360 1.1 21 350 0.2 1.5 <0.62 520 <1,100 1,100 2,300 1,900 2,300 590 1,100 2,400 2,400 180	6.6 0.051 26 1.6 0.097 <4.1 -0.62 	4.4 0.049 16 1.2 0.02 <3.8 0.44 	4.9 0.05 7 0.99 <0.020 <3.7 <0.55 	37 0.40 32 480 0.076 <4.0 -0.60 38 0.0021 0.051 0.049 0.16 0.73 0.67 0.97 0.41 0.39 0.83 0.13	8.4 0.035 2.9 15 0.014 <3.7 <0.56	37 .0.043 6.1 8.7 .0.020 .3.6 .0.54 	9.5 0.14 2.4 1.8 <0.021 <0.66 	0.058 3 2.3 <0.020 <4.3 0.83 		8.6 0.075 2.2 1.5 0.011 <4.1 0.62 	16 0.05 7.8 14 19 <4.2 <0.63 <-0.019	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57 <0.020 0.0043 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <	5.8	 	<0.18 1.9 130 0.16 <3.7	< 0.21 0.53 5.5 0.0099 < 4.2 < 0.62 	2.8 < 0.22 0.31 3.0 0.20 0.45 0.22 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9 < 0.59 	14 < 0.19 1.3 83 0.0081 0.49 < 0.58	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9 < 0.58 	0.04 1.4 1.1 2.0020 0.4 2.61	11	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9 < 0.58 	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0 < 0.60 	7.2 0.039 1.7 0.98 < 0.020 < 4.0 < 0.60 	6.0 0.036 1.7 1.2 < 0.020 < 3.8 < 0.57 	6.3 0.03 1.3 0.72 < 0.020 < 3.8 < 0.56 	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3 < 0.64 	4.3 < 0.20 1.3 0.88 < 0.020 < 4.0 < 0.61 	21.3 <0.57 7.7 31.0 0.067 <5.7 <0.57 	39 1,400 150 23 390 200 NS 123 43 23 35 0.9 0.4 0.9 0.8 0.9 0.4 0.4 0.4	1,000 10,000 500 610 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 7.8 0.8 7.8 10,000 78 78 0.8
Arsenic Barium Chromium (Total) Lead Mercury Selenium Silver TOTAL PETROLEUM HYDROCAR C10-C-28 Aliphatics POLYNUCLEARE AROMATIC HYDF 2-Methylnaphthalene Acenaphthlyene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a, h)nerylene Benzo(b)fluoranthene Chrysene Dibenzo(a, h)nanthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene		360 1.1 21 350 0.2 1.5 <0.62 	6.6 0.051 26 1.6 0.097 <4.1 <0.62 	4.4 0.049 16 1.2 0.002 -3.8 0.44 	4.9 0.05 7 0.99 <0.020 <3.7 <0.55 	37 0.40 32 480 0.076 <4.0 <0.60 38 0.0021 0.051 0.049 0.16 0.73 0.67 0.97 0.41 0.39 0.83 0.13 1.4	8.4 0.035 2.9 15 0.014 <3.7 <0.56	37 .0.043 6.1 8.7 -0.020 -3.6 -0.54 	9.5 0.14 2.4 1.8 <0.021 <4.4 <0.66 	0.058 3 2.3 <0.020 <4.3 0.83	10 0.032 1.3 0.77 4.0.018 4.3.7 2	8.6 0.075 2.2 1.5 0.011 <4.1 0.62 	16 0.05 7.8 14 19 44.2 <0.63 <	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57 <0.020 0.0043 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0	5.8	 	<0.18 1.9 130 0.16 <3.7	< 0.21 0.53 5.5 0.0099 < 4.2 < 0.62 	2.8 < 0.22 0.31 3.0 0.20 0.45 0.22 	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9 < 0.59 	14 <0.19 1.3 83 0.0081 0.49 <0.58 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9 < 0.58 	0.04 1.4 1.1 1.0 0.020 0.4 < 0.61 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17	11	6.3 <0.19 1.4 0.8 <0.019 <3.9 <0.58	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0 < 0.60 	7.2 0.039 1.7 0.98 < 0.020 < 4.0 < 0.60 	6.0 0.036 1.7 1.2 < 0.020 < 3.8 < 0.57 	6.3 0.03 1.3 0.72 < 0.020 < 3.8 < 0.56	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3 < 0.64 	4.3 < 0.20 1.3 0.88 < 0.020 < 4.0 < 0.61 	21.3 <0.57 7.7 31.0 0.067 <5.7 <0.57 	39 1,400 150 23 390 200 NS 123 43 23 35 0,9 0,4 0,9 0,4 0,4 20 28	1,000 10,000 500 610 10,000 10,000 10,000 10,000 10,000 7.8 0.8 10,000 78 0.8 10,000 78 0.8 10,000
Arsenic Barium Cadmium Chromium (Total) Lead Mercury Selenium Silver TOTAL PETROLEUM HYDROCAR C10-C-28 Aliphalics POLYNUCLEAR AROMATIC HYDI 2-Methylnaphthalene Acenaphthlene Acenaphthlylene Anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Indeno(1,2,3-cd)Pyrene		360 1.1 21 350 0.2 1.5 <0.62 520 <1,100 1,100 2,300 1,100 2,300 590 1,100 2,400 180 5,400 510 550	6.6 0.051 26 1.6 0.097 <4.1 -0.62 	4.4 0.049 16 1.2 0.02 <3.8 0.44 	4.9 0.05 7 0.99 <0.020 <3.7 <0.55 	37 0.40 32 480 0.076 <4.0 -0.60 38 0.0021 0.051 0.049 0.16 0.73 0.67 0.97 0.41 0.39 0.13 1.4 0.055 0.36	8.4 0.035 2.9 15 0.014 <3.7 <0.56	37 .0.043 6.1 8.7 .0.020 .3.6 .0.54 	9.5 0.14 2.4 1.8 <0.021 <4.4 <0.66 			8.6 0.075 2.2 1.5 0.0011 <4.1 0.62 	16 0.05 7.8 14 19 <4.2 <0.63 <	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57 <0.020 0.003 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.	5.8	 	<0.18 1.9 130 0.16 <3.7	 < 0.21 0.53 5.5 0.0099 < 4.2 < 0.62 	2.8 < 0.22 0.31 3.0 0.20 0.45 0.22	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9 < 0.59 	14 < 0.19 1.3 83 0.0081 0.49 < 0.58 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19 < 0.19	6.6 <0.20 1.9 1.3 <0.020 <4.0	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9 < 0.58 	0.04 1.4 1.1 < 0.020 0.4 < 0.61 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17 < 0.17	11	6.3 < 0.19 1.4 0.8 < 0.019 < 3.9 < 0.58 	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0 < 0.60 	7.2 0.039 1.7 0.98 < 0.020 < 0.0 < 0.60 	6.0 0.036 1.7 1.2 < 0.020 < 3.8 < 0.57 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18 < 0.18	6.3 0.03 1.3 0.72 < 0.020 < 3.8 < 0.56 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3 < 0.64 	4.3 < 0.20 1.3 0.88 < 0.020 < 0.0 < 0.61 	21.3 <0.57 7.7 31.0 0.067 <5.7 <0.57 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399	39 1,400 150 23 390 200 NS 123 43 23 35 0.9 0.4 0.9 0.8 0.9 0.4 20 28 0.9	1,000 10,000 500 610 10,000 10,000 10,000 10,000 10,000 7.8 0.8 10,000 7.8 10,000
Arsenic Barium Chromium (Total) Lead Mercury Selenium Silver TOTAL PETROLEUM HYDROCAR C10-C-28 Aliphatics POLYNUCLEAR AROMATIC HYDF 2-Methylnaphitalene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(a)anitracene Benzo(a)nitracene Benzo(a)pyrene Benzo(b)fluoranthene Chrysene Dibenzo(a, h)perylene Benzo(b)fluoranthene Chrysene Dibenzo(a, h)nervlene Fluorene Fluorene Fluorene Fluorene Indeno(1, 2,3-cd)Pyrene Naphthalene		360 1.1 21 350 0.2 1.5 <0.62 520 <1,100 1,100 2,300 2,300 590 1,100 2,400 180 5,400 510 550 370			4.9 0.05 7 0.99 <0.020 <3.7 <0.55 <	37 0.40 32 480 0.076 <4.0 <0.60 38 0.0021 0.051 0.049 0.16 0.73 0.67 0.97 0.41 0.39 0.83 0.13 0.055 0.032	8.4 0.035 2.9 15 0.014 <3.7 <0.56	37 .0.043 6.1 8.7 -0.020 -3.6 -0.54 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18 -0.03 .0.02 -0.18 -0.03 .0.02 -0.18 .0.01 .0.02 -0.01 .0.02 .0.03 .0.02 .0.01 .0.02 .0.01 .0.02 .0.01 .0.02 .0.03 .0.02 .0.01 .0.02 .0.03 .0.02 .0.03 .0.02 .0.03 .0.02 .0.01 .0.02 .0.03 .0.02 .0.03 .0.02 .0.03 .0.02 .0.03 .0.02 .0.03 .0.02 .0.03 .0.02 .0.03 .0.02 .0.03 .0.02 .0.03 .0.02 .0.03 .0.02 .0.03 .0.02 .0.03 .0.02 .0.03	9.5 0.14 2.4 1.8 <0.021 <4.4 <0.66 	0.058 3 2.3 <0.020 <4.3 0.83	0.032		16 0.05 7.8 14 19 44.2 <0.63 <	5.9 <0.19 3.4 1.8 0.071 <3.8 <0.57 	5.8	 	<0.18 1.9 130 0.16 <3.7	 < 0.21 0.53 5.5 0.0099 < 4.2 < 0.62 	2.8 < 0.22 0.31 3.0 0.20 0.45 0.22 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4.1 < 4	5.2 < 0.20 < 0.49 12 < 0.020 < 3.9 < 0.59 	14 <0.19 1.3 83 0.0081 0.49 <0.58	6.6 <0.20 1.9 1.3 <0.020 <4.0 <0.60	7.1 < 0.19 1.3 1.2 < 0.018 < 3.9 < 0.58 	0.04 1.4 1.1 < 0.020 0.4 < 0.61 		6.3 <0.19 1.4 0.8 <0.019 <3.9 <0.58	7.4 < 0.20 2.1 1.3 < 0.021 < 4.0 < 0.60	7.2 0.039 1.7 0.98 <0.020 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.00 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.0	6.0 0.036 1.7 1.2 < 0.020 < 3.8 < 0.57	6.3 0.03 1.3 0.72 < 0.020 < 3.8 < 0.56	8.0 < 0.21 1.4 1.2 < 0.020 < 4.3 < 0.64 	4.3 <0.20 1.3 0.88 <0.020 <4.0 <4.0 <4.0 <0.61	21.3 <0.57 7.7 31.0 0.067 <5.7 <0.57 < <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399 <0.399	39 1,400 150 23 390 200 NS 123 43 23 35 0.9 0.4 0.9 0.8 0.9 0.4 20 28 0.9 54	1,000 10,000 500 610 10,000 10,000 10,000 10,000 10,000 10,000 10,000 7.8 0.8 7.8 10,000 10,000 7.8 10,000 7.8 10,000 7.8 10,000 7.8 10,000 7.8 10,000 7.8 10,000 7.8 10,000 7.8 10,000 7.8 10,000 7.8 10,000 7.8 10,000 7.8 10,000 7.8 10,000

NOTES:
ppmv = parts per million by volume.
mg/kg = milligrams per kilogram.
--- Not analyzed.
I/C = Industrial/Commercial
NS = No standard promulgaled.
ND = Not detected above laboratory
Bold concentrations exceed laborato
Red concentrations exceed the appli
Soil removed during remedial excava

P:\7000\7131A.00 Bay Spring realty Co., Barrington, RI\Data\7131a_Analytical Page 2 of 2 Resource Control Associates, Inc.

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

BAY SPRING REALTY CO. 90 BAY SPRING AVENUE BARRINGTON, RHODE ISLAND

	AOC-1: UST An	rea			te Disposal Area lo. 1					AOC-5: 0	istem Area					AOC-6: Drum Storage Area/Benzol House		Disposal Area o. 2		AOC-8: Acid \$	Storage Tanks		AOC-9: Solver	nt Storage Tanks	AOC-10: C	oating Room	
MW-4 11/26/2012 2/13/2013		W-101 10/9/2014	MW-102 6/6/2014	MW 6/6/2014	V-106 10/9/2014	11/26/2012	MW 2/13/2013	/-3 6/6/2014	10/9/2014	11/26/2012	MW-5 6/6/2014	10/9/2014	RW-1 5/30/2014	MW 6/6/2014	/-105 10/9/2014	MW-103 6/6/2014	MW- 6/6/2014	104 10/9/2014	11/26/2012		6/6/2014	10/9/2014			MV 11/26/2012	N-1 6/6/2014	RIDEM Groundwater Obje GA Objectives GB
<1 -	-	-		<1 <1		<1 1.2		<1 <1	<0.0010 0.0021	<1 <1	<1 <1	<0.0010 <0.0010	43,000	<1 2.9	<0.0010 0.0333		<1 2.7	_	<1 1.2	-	<1 <1	<0.0010 0.0021	<0.1 <0.1	<1 <1	<1 <1	-	NS 200
<0.5	-	-		<0.5		<0.5		<0.5	<0.0005	<0.5	<0.5	<0.0005	<1.0	<0.5	<0.0005		<0.5		<0.5	-	<0.5	<0.0005	<0.05	<0.5	<0.5	-	NS 5
	_	_	-				-			-	-		7.9	-		_		-	-	-				-	-	-	NS
<1 -	-	-		<1		3	-	<1	0.0018	<1	<1	<0.0010	25,000	14.3	0.0261		1.2		3	-	<1	0.0018	<0.1	<1	<1	-	NS 7
<2	_	-	-	<2		<2	-	<1 <2	<0.0010	<2	<2	<0.0010	2,900	<2	<0.0010		<2	-	<2		<2	<0.0010	<0.1	<1 <2	<2	-	NS
<1 -	-	-		<1		<1		<1	<0.0010	<1	<1	<0.0010		<1	<0.0010		<1		<1		<1	<0.0010	<0.1	<1	<1	-	NS
<1 -		-	-	<1		<1 <1	-	<1 <1		<1	<1 <1		<1.0				<1 <1	-	<1 <1		<1 <1			<1 <1	<1	-	NS 70
<1 -	-			<1		1		4.1	<0.0010	4.5	3.2	0.011		<1	<0.0010		62.7		1		4.1	<0.0010	<0.1	<1	<1		NS
		-	-		-		-											-								-	0.2 0.05
<1 -	-	-		<1		<1		<1	<0.0010	<1	<1	<0.0010	<1.0	<1	<0.0010		<1		<1		<1	<0.0010	<0.1	<1	<1	-	600
<1 -	-	-		<1		<1		<1	< 0.0010	<1	<1	<0.0010	110	<1	<0.0010		<1	-	<1		<1	<0.0010	<0.1	<1	<1	-	5 5
<1 -		-	-	<1		<1	-	<1	<0.0010	139	79.5	0.0084	~1.0	3.1	<0.0010		285	-	<1	-	<1	<0.0010	<0.1	<1	<1	-	5 NS
<1 -	-	-		<1		<1		<1	<0.0010	<1	<1	<0.0010	<1.0	<1	<0.0010		<1		<1		<1	<0.0010	<0.1	<1	<1	-	600
	_	-	-															-		-						-	NS 75
<500	-	-		<500		<500		<500	<0.500	<500	<500	<0.500		<500	< 0.500		<500	-	<500		<500	<0.500	<50	<500	<500	-	NS
	-		-															-									NS NS
<10		-	-	<10	-	<10	-	<10	<0.0100	<10	<10	<0.0100	820	<10	<0.0100		<10	-	<10	-	<10	<0.0100	<1	<10	<10	-	NS
<1 -	-	-	-	<1		<1		<1	<0.0010	<1	<1	<0.0010		<1	<0.0010		<1	-	<1	-	<1	<0.0010	<0.1	<1	<1	-	NS NC
<10		-	-	<10 <1		<10 <1	-	<10 <1	<0.0100	<10 <1	<10 <1	<0.0100 <0.0010		<10 <1	<0.0100 <0.0010	-	<10 <1	-	<10 <1		<10 <1	<0.0100	<1 <0.1	<10 <1	<10 <1	-	NS NS
<1	-	-		<1		<1		<1	<0.0010	9.4	8.9	0.0058		<1	<0.0010		8		<1		<1	<0.0010	<0.1	<1	<1	-	NS
<25 <10	-	-						<25 <10			<25 <10							-		-						-	NS NS
<1 -	-			<1		1.1		3.4	<0.0010	<1	<1	<0.0010	120	<1	<0.0010		<1	-	1.1		3.4	<0.0010	<0.1	<1	<1		5
	-	-																								-	NS NS
<0.6	_	-	-	<0.6		<0.6	-	<0.6	<0.0010	<0.6	<0.6	<0.0010	<1.0	<0.6	<0.0010		<0.6	-	<0.6		<0.6	<0.0010	<0.06	<0.6	<0.6	-	NS NS
<1 -	-	-		<1		<1		<1	<0.0010	<1	<1	<0.0010	<1.0	<1	<0.0010		<1	-	<1		<1	<0.0010	<0.1	<1	<1	-	NS
<1 -	_	-	-	<2 <1		<2 <1	-	<2 <1			<2 <1						<2 <1	-	<2 <1		<2			<2 <1	<2 <1	-	NS NS
<1 -	-	-		<1		<1		<1	<0.0010	<1	<1	<0.0010	1,400	<1	<0.0010		<1		<1		<1	<0.0010	<0.1	<1	<1	-	5
	-	-	-				-											-		-						-	100 5 NS
<1 -	_	-		<1		<1	-	<1	<0.0010	<1	<1	<0.0020	16	<1	<0.0010		<1	-	<1		<1	<0.0010	<0.1	<1	<1	-	NS
<2	-	-		<2		<2		<2	<0.0020	<2	<2	<0.0020	<1.0	<2	<0.0020		<2	-	<2		<2	<0.0020	<0.2	<2	<2	-	NS NS
<1 -	_	_	-	<1		 <1	-	<1	<0.0010	<1	 <1	<0.0010	<1.0 830	3.8	<0.0010	-	<1	-	<1	-	<1	<0.0010	<0.1	- <1	<1	_	NS 70 6
<0.4	-	-		<0.4		<0.4		< 0.4	< 0.0004	<0.4	<0.4	<0.0004	<1.0	<0.4	<0.0004		<0.4	-	< 0.4		<0.4	<0.0004	<0.04	<0.4	<0.4	-	NS NS
	-	-	-				-						<1.0					-		-						-	NS NS
<2	_	_		<2		<2	-	<2	<0.0010	<2	<2	<0.0010	<1.0	<2	<0.0010		<2	-	<2		<2	<0.0010	<0.2	<2	<2	-	NS NS
<1 -	-	-		<1		<1		<1	<0.0010	<1	<1	<0.0010		<1	<0.0010		<1	-	<1		<1	<0.0010	<0.1	<1	<1	-	NS NS
<1 -	_	_	-	<1	-		-	<1									<1	-								-	NS NS
<1 -	-	-		<1		<1		<1	<0.0010	<1	<1	<0.0010	7,800	<1	<0.0010		4.4		<1		<1	<0.0010	<0.1	<1	<1	-	700
	_	_	-															-									NS NS
<1 -	-			<1		<1		<1	<0.0010	<1	<1	<0.0010	40	<1	<0.0010		3.4		<1		<1	<0.0010	<0.1	<1	<1	-	NS
	-	-	-						 <0.0010	- 4		 <0.0010			 <0.0010							 <0.0010				-	NS 40
		-	-						~0.0010	-	-1	-0.0010	<1.0		-0.0010	-		-				-0.0010		-	-	-	NS
<2	-	-		<2		<2	-	<2	< 0.0020	<2	<2	<0.0020	80	<2	<0.0020		<2	-	<2		<2	<0.0020	<0.2	<2	<2	-	5
<1 -		-		<1		<1 <1	-	1.6 <1		<1	<1 <1		-	<1 <1		-	2.6 <1	-	<1 <1		1.6 <1			<1 <1	<1	-	100 NS
<1 -	-	-		<1		<1	-	<1	<0.0010	1.3	<1	<0.0010		<1	<0.0010		3.2		<1		<1	<0.0010	<0.1	<1	<1	-	NS
<1 - <1 -	-	-		<1		<1 <1	-	<1 <1	<0.0010 <0.0010	1.3	1 <1	<0.0010 <0.0010	 <1 N	<1 <1	<0.0010 <0.0010		1.8 <1	-	<1 <1		<1 <1	<0.0010 <0.0010	<0.1 <0.1	<1 <1	<1 <1	-	NS 100
4 -		-	-	<1		<1		<1	<0.0010	<1	<1	<0.0010	-1.0	<1	<0.0010	-	<1	-	<1	-	<1	<0.0010	<0.1	<1	<1	-	NS
<1 -	-	-	-	<1		<1		<1	<0.0010	<1	<1	<0.0010		<1	<0.0010		<1	-	<1	-	<1	<0.0010	<0.1	<1	<1	-	NS
<1 -	_	-		<1 <5		<1 <5	-	<1 <5	<0.0010	<1 <5	<1 <5	<0.0010 <0.0050	110	<1 <5	<0.0010 <0.0050	-	<1 <5	-	<1 <5		<1 <5	<0.0010	<0.1 <0.5	<1 <5	<1 <5	-	5 NS
<1 -	-	-		<1		1.1	-	<1	<0.0010	<1	<1	<0.0010	13,000	<1	<0.0010		<1	-	1.1	-	<1	<0.0010	<0.1	<1	<1		1,000
	-	-					-											-								-	100 NS
<1	-			<1		<1	-	<1	<0.0010	<1	<1	<0.0010	77,000	1.6	0.0026		<1	-	<1		<1	<0.0010	<0.1	<1	<1	-	5
<1 -	-	-		<1		<1		<1	<0.0010	<1	<1	<0.0010	<1.0	<1	<0.0010		<1	-	<1		<1	<0.0010	<0.1	<1	<1	-	NS NS
<5 -	_	-		<3.6 <5		<3.6 <5		<3.6 <5	<0.0050	<3.6 <5	<3.6 <5	<0.0050		<3.6 <5	<0.0050		<3.6 <5	-	<3.6 <5	-	<3.6 <5	<0.0050	<0.36 <0.5	<3.6 <5	<3.6 <5	-	NS NS
<1 -	-	-		<1		<1		<1	<0.0010	<1	<1	<0.0010	160	<1	<0.0010		<1	-	<1		<1	<0.0010	<0.1	<1	<1	-	2
<1	-	-					-					<0.0010 <0.0020						-		-			1 <0.2			-	10,000 10,000
⊲ -	-	-		<2		5.8	-	<2	<0.0020	<3	<2	<0.0020	39,000	<2	<0.0020		33		5.8		<2	<0.0020	<0.3	<2	<3	-	NS
ND	-	-		ND	**	ND	**	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	ND	ND	ND	ND	ND	NS
	11/26/2012	11/26/2012	11/28/2012	11/26/2012	11/28/2012	11/28/2012 2/13/2013 66/2014 10/9/2014 66/2014 66/2014 10/9/2014 66/2014 10/9/2014 66/2014 10/9/2014 66/2014 10/9/2014 66/2014 10/9/2014 66/2014 66/2014 10/9/2014 66/20				11082072 27132073 987014 987014 987014 10920714 10920712 27132073 987014 10920714 10920712 27132073 987014 10920714 10920712 27132073 987014 10920714 10920712 27132073 987014 10920714 1						1989 1989					Marie			Martin M	The color The	Part	No. No.

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

BAY SPRING REALTY CO. 90 BAY SPRING AVENUE BARRINGTON, RHODE ISLAND

			AOC-1: UST A	rea		AOC-4: Waste	Disposal Area No.					AOC-5:	Cistern Area					AOC-6: Drum Storage Area/Benzol		Disposal Area No.		AOC-8: Acid \$	Storage Tanks		AOC-9: Solver	nt Storage Tanks	AOC-10: Co	pating Room		
Sample Identification) N	/W-4	M	W-101	MW-102	MW	V-106		MW	1.3			MW-5		RW-1	MW-1	05	House MW-103	MA	V-104		MW	V-3		MV	N-2	MW	<i>l</i> .1	RIDEM Groundwate	er Objectives
Date Sampled			6/6/2014	10/9/2014	6/6/2014	6/6/2014	10/9/2014	11/26/2012	2/13/2013	6/6/2014	10/9/2014	11/26/2012	6/6/2014	10/9/2014	5/30/2014	6/6/2014	10/9/2014	6/6/2014	6/6/2014	10/9/2014	11/26/2012	2/13/2013	6/6/2014	10/9/2014	11/26/2012	6/6/2014	11/26/2012	6/6/2014	GA Objectives	GB UCLs
SEMI-VOLATILE ORGANIC COMPOUNDS (ug/L)																													<u> </u>	
2,4-Dimethylphenol	<59		-					<51				<51			61						<51								NS	NS
2-Methylphenol	<12	-						<10				<10			37						<10								NS	NS
Acetophenone	<12	-		-				<10				<10			85						<10								NS	NS
Benzaldehyde		-	-		-	-		 <10	-	-	-			-	21										-				NS	NS NS
Di-n-butylphthalate	<12 <12	-	-	-			-	<10	-	-	-	<10 <10	-	-	9.8 20	-					<10								NS NS	NS NS
Isophorone Nitrobenzene	<12	-						<10	-	-	-	<10	-	-	110		-				<10 <10		-				-	-	NS NS	NS
Phenol	<12	_	-					<10	-	-	-	<10	-	-	65						<10								NS	NS
2-Methylnaphthalene	< 0.21	_						<0.2				2.63			<100						<0.2								NS	NS
Acenaphthene	< 0.21	-						<0.2				0.29			<100						<0.2								NS	NS
Acenaphthylene	< 0.21							0.3	_	_	-	<0.2	_	-	<100						0.3		_	-					NS	NS
Benzo(a)anthracene	0.08	-						< 0.05				<0.05			<100						< 0.05								NS	NS
Benzo(a)pyrene	< 0.05	-						0.08		-	-	< 0.05	-	-	<100						0.08								0.2	NS
Benzo(b)fluoranthene	0.1	-						0.15	-	-	-	<0.05	-	-	<100		-	-	-		0.15						-		NS	NS
Benzo(k)fluoranthene	<0.05	-						0.05	-	-	-	<0.05	-	-	<100						0.05								NS	NS
Chrysene	0.1	-	-					0.09	-	-	-	<0.05	-	-	<100						0.09		-	-	-			-	NS	NS
Fluoranthene	<0.21		-					<0.2				<0.2			15						<0.2								NS	NS
Hexachlorobenzene	<0.21	-	-		-	-		<0.2	-	-	-	<0.2	-	-	<100						<0.2			-	-				1	NS
Indeno(1,2,3-cd)Pyrene Naphthalene	<0.05 <0.21	-	-	-	-	-	-	0.07 0.62	-	-	-	<0.05 1.27	-	-	<100 <100	-	-		-	-	0.07 0.62		-	-	-		-	-	NS 100	NS NS
Pentachlorophenol	<1.05							<1.01			-	<1		-	<200						<1.01								100	NS
Phenanthrene	<0.21							<0.2	_		_	<0.2		_	20						<0.2								NS	NS
Pyrene	<0.21							<0.2				<0.2			9.6						<0.2								NS	NS
All other SVOCs	ND							ND	-		-	ND	-		ND						ND		-	-					NS	NS
TOTAL PETROLEUM HYDROCARBONS (mg/L)																					<u> </u>				<u> </u>					
Diesel Range Organics [C10-C28]			-												8										-				NS	NS
TOTAL METALS (mg/L)																														
Arsenic	0.0146	0.0206	0.0807		0.0029	<0.001		0.0065	0.0027	0.0042		<0.0025	<0.001		0.018	<0.001		<0.001	<0.001		0.0065	0.0027	0.0042		I	<0.001		<0.001	0.01	NS
Barium	0.096	0.09	0.039		0.025	<0.025		0.096	0.121	0.061		0.035	<0.025		0.72	<0.025		0.034	<0.025		0.096	0.121	0.061	_		0.035		<0.025	2	NS
Cadmium	<0.0025	<0.0025	<0.0025		<0.0025	<0.0025		<0.0025	<0.0025	<0.0025		<0.0025	<0.0025		0.0076	<0.0025		<0.0025	<0.0025		<0.0025	<0.0025	<0.0025			<0.0025		<0.0025	0.005	NS
Chromium	0.01	0.021	<0.01		<0.01	<0.01		<0.01	< 0.01	< 0.01		<0.01	<0.01		0.16	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01			<0.01		<0.01	0.1	NS
Lead	0.012	0.03	0.0222		<0.01	<0.01		0.053	0.03	0.0198		<0.01	<0.01		1.7	<0.01		<0.01	<0.01		0.053	0.03	0.0198			<0.01		<0.01	0.015	NS
Mercury	<0.0005	0.00074	<0.0002	-	<0.0002	<0.0002		<0.0005	0.00055	<0.0002		<0.0005	<0.0002		0.0047	<0.0002		<0.0002	<0.0002		<0.0005	0.00055	<0.0002			<0.0002		<0.0002	0.002	NS
Selenium	<0.025	<0.025	<0.025		<0.025	<0.025		<0.025	<0.025	<0.025		<0.025	<0.025		<0.025	<0.025		<0.025	<0.025		<0.025	<0.025	<0.025			<0.025		<0.025	0.05	NS
Silver	<0.005	<0.005	<0.005		<0.005	<0.005		<0.005	<0.005	<0.005		<0.005	<0.005		0.0035	<0.005		<0.005	<0.005		<0.005	<0.005	<0.005		L -	<0.005		<0.005	NS	NS
DISSOLVED METALS (mg/L)		0.0400	0.0400	0.0040	0.0040	+0.004	*0.000F		40 000F	0.0000	0.0050		-0.004		ı	10.004		-0.004	+0.004	40 000F	1	10.0005	0.0000	0.0050	1	-0.004		-0.004	0.04	NO
Arsenic		0.0123 0.046	0.0402 <0.025	0.0342 0.026	0.0018 <0.025	<0.001 <0.025	<0.0025 0.036	-	<0.0025 0.093	0.0036 0.052	0.0052 0.028		<0.001 <0.025			<0.001 <0.025		<0.001 0.028	<0.001 <0.025	<0.0025 <0.025		<0.0025 0.093	0.0036 0.052	0.0052 0.028		<0.001 0.028		<0.001 <0.025	0.01	NS NS
Barium Cadmium		<0.0025	<0.025	< 0.0025	<0.025	<0.025	< 0.0025		<0.0025	<0.0025	<0.0025		<0.025	-	_	<0.025		<0.0025	<0.025	<0.025		< 0.0025	<0.0025	< 0.0025		<0.0025	-	<0.025	0.005	NS NS
Chromium		<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025		<0.0025	<0.0025	<0.0025		<0.0025	-		<0.0025		<0.0025	<0.0025	<0.0025		<0.0025	<0.0025	<0.0025		<0.0025		<0.0025	0.005	NS NS
Lead		<0.01	0.0177	<0.010	<0.01	<0.01	<0.010		<0.01	0.0117	<0.010		<0.01	_		<0.01	-	<0.01	<0.01	<0.010		<0.01	0.0117	<0.010		<0.01		<0.01	0.015	NS
Mercury		<0.0002	<0.0002	<0.0020	<0.0002	<0.0002	<0.00020		<0.0002	<0.0002	<0.00020		<0.0002			<0.0002		<0.0002	<0.0002	<0.00020		<0.0002	<0.0002	<0.00020		<0.0002		<0.0002	0.002	NS
Selenium		<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		<0.025	<0.025	<0.025		<0.025			<0.025		<0.025	<0.025	<0.025		<0.025	<0.025	<0.025		<0.025		<0.025	0.05	NS
Silver		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005		<0.005		-	<0.005		<0.005	<0.005	<0.005		<0.005	<0.005	<0.005		<0.005		<0.005	NS	NS
NOTES:					I										ı				I											

NOTES:

ug/L = micrograms per liter. mg/L = milligrams per liter. NS = No standard promulgated.

ND = Not detected above laboratory reporting limit.

-- = Not analyzed.

Bold concentrations exceed concentrations exceed laboratory reporting limits.

Red concentrations exceed the applicable RIDEM GA Groundwater Objectives.

Monitoring well destroyed during excavation activities.

WELL MONITORING FORM

Project: Bay Spring Realty Co., Barrington

Project No.: 7131A

Location: 90 Bay Spring Avenue

Date: 10/09/14
Operator: EFG

Method: Interface Probe

	Top of	Depth	Depth	Depth		LNAPL		Corrected Depth	Corrected Water
	Casing	to	to	to	LNAPL	Specific	Water	to	Table
Well	Elevation	LNAPL	Water	Bottom	Thickness	Gravity	Equivalent	Water	Elevation
ID	(feet)	(feet)	(feet)	(feet)	(feet)	(unitless)	(feet)	(feet)	(feet)
MW-1	101.78	ND	13.16	17.37	ND	NA	NA	NA	88.62
MW-2	101.97	ND	ND	12.59	ND	NA	NA	NA	NA
MW-3	95.66	ND	7.49	13.21	ND	NA	NA	NA	88.17
MW-5	98.61	ND	10.46	14.30	ND	NA	NA	NA	88.15
MW-101	96.29	ND	8.07	12.48	ND	NA	NA	NA	88.22
MW-102	97.05	ND	8.03	14.85	ND	NA	NA	NA	89.02
MW-103	100.98	ND	9.44	12.89	ND	NA	NA	NA	91.54
MW-104	96.20	ND	8.00	13.79	ND	NA	NA	NA	88.20
MW-105	97.18	ND	9.02	12.73	ND	NA	NA	NA	88.16
MW-106	97.50	ND	9.43	14.59	ND	NA	NA	NA	88.07
	NM = Not Me	easured; ND =	None Detect	ed at >0.01 fe	eet; NA = Not	Applicable; I	DRY = No Wat	er in Well	

NOTES:

WELL MONITORING FORM

Project: Bay Spring Realty Co., Barrington

Project No.: 7131A

Location: 90 Bay Spring Avenue

Date: 06/06/14
Operator: EFG/BCP
Method: Interface Probe

								Corrected	Corrected
	Top of	Depth	Depth	Depth		LNAPL		Depth	Water
	Casing	to	to	to	LNAPL	Specific	Water	to	Table
Well	Elevation	LNAPL	Water	Bottom	Thickness	Gravity	Equivalent	Water	Elevation
ID	(feet)	(feet)	(feet)	(feet)	(feet)	(unitless)	(feet)	(feet)	(feet)
B804/ 4	404.70	ND	44.00	47.07	ND	NIA	NIA	NIA	00.00
MW-1	101.78	ND	11.96	17.37	ND	NA	NA	NA	89.82
MW-2	101.97	ND	12.22	12.59	ND	NA	NA	NA	89.75
MW-3	95.66	ND	5.96	13.21	ND	NA	NA	NA	89.70
MW-5	98.61	ND	9.03	14.30	ND	NA	NA	NA	89.58
MW-101	96.29	ND	7.22	12.48	ND	NA	NA	NA	89.07
MW-102	97.05	ND	6.63	14.85	ND	NA	NA	NA	90.42
MW-103	100.98	ND	8.24	12.89	ND	NA	NA	NA	92.74
MW-104	96.20	ND	6.48	13.79	ND	NA	NA	NA	89.72
MW-105	97.18	ND	7.54	12.73	ND	NA	NA	NA	89.64
MW-106	97.50	ND	8.20	14.59	ND	NA	NA	NA	89.30
	NM = Not Me	easured; ND =	None Detect	ed at >0.01 fe	eet; NA = Not	Applicable; I	DRY = No Wat	er in Well	

NOTES:

APPENDIX A

RIDEM SIR Checklist (Completed)

APPENDIX "I"

Section 7 of the "Remediation Regulations" Site Investigation Report (SIR)Checklist

(The following information shall be completed and submitted with the SIR)

Contact Name: Mr. Jack Cutlip

Contact Address: 909 North Main Street, Providence, Rhode Island

Contact Telephone: 401-265-1835

See Sections 2.3

Site Name: Bay Spring Realty

Site Address: 90 Bay Spring Avenue, Barrington, Rhode Island

	OFFICE USE ONLY
	ESTIGATION REPORT (SIR) SITE:
PROJECT	
	MITTAL DATE:
CHECKLI	ST SUBMITTAL DATE:
submission sections an Failure to	IONS: The box to the left of each item listed below is for the administrative review of the SIR in and is for RIDEM USE ONLY . Under each item listed below, cross-reference the specific and pages in the SIR that provide detailed information that addresses each stated requirement. include cross-references shall delay review and approval. If an item is not applicable, simply it is not applicable and provide an explanation in the SIR.
☐ 7.03.A.	List specific objectives of the SIR related to characterization of the Release, impacts of the Release and remedy. See Section 1.1
7.03.B.	Include information reported in the Notification Of Release. A copy of the Release notification form should be included in the SIR. Include information relating to short-term response, if applicable.
	See Section 1.2 & 1.3
☐ 7.03.C.	Include documentation of any past incidents, releases, or investigations. See Section 1.4
7.03.D.	Include list of prior property Owners and Operators including past uses of the property, sequencing of property transfers and time periods of occupancy. Include supporting documentation.
	Historical Sanborn Maps
	Historical Aerial Photos See Section 2.2 and Figure 3 & 4
☐ 7.03.E.	Include previously existing environmental information which characterizes the Contaminated-Site and all information that led to the discovery of the Contaminated-Site.
7 500 7	See Section 2.2
☐ 7.03.F.	Include current uses and zoning of the Contaminated-Site, including brief statements of operations, processes employed, waste generated, Hazardous Materials handled, and any residential activities

on the site, if applicable. (This section should be linked to the specific objectives section demonstrating how the compounds of concern in the investigation are those that are used or may have been used on the site or are those that may have impacted the site from an off-site source.)

☐ 7.03.G.	Include a locus map showing the location of the site using US Geological Survey 7.5-min quadrangle map or a copy of a section of that USGS map. See Section 2.1 and Figure 1
□ 7.03.H.	Include a site plan, to scale, showing:
	See Section 2.1 and Figure 2 Buildings
	Activities
	Structures
	North Arrow
	Drinking Water Wells
	Monitoring Wells
	UIC Systems, septic tanks, USTs (former and current), piping and other underground structures
	Groundwater Flow Direction
	Outdoor Hazardous Materials storage and handling areas
	Extent of paved areas
	Location of environmental samples taken with analytical results, including soil borings, test pits, and groundwater monitoring wells, highlighting any exceedences with the corresponding sample depth and medium listed
	Waste management and disposal areas (Excavation Area)
	Lot Lines
	Property Lines
☐ 7.03.I.	Include a general characterization of the property surrounding the area including, but not limited to: See Section 3.0
	Location and distance to any surface water bodies within 500 ft of the site
	Location and distance to any Environmentally Sensitive Areas within 500 ft of the site
	Actual sources of potable water for all properties immediately abutting the site
	Location and distance to all public water supplies, which have been active within the previous 2 years and within one mile of the site

	Determination as to whether the Release impacts any off-site area utilized for residential or industrial/commercial property or both
	Determination of the underlying groundwater classification and, if the classification is GB, the distance to the nearest GA area
☐ 7.03.J.	Include classifications of surface and ground water at and surrounding the site that could be impacted by a Release.
☐ 7.03.K.	See Section 4.2 Include a description of the contamination from the Release, including: See Section 4.3
	Free liquids on the surface
	LNAPL and DNAPL
	Concentrations of Hazardous Substances which can be shown to present an actual or potential threat to human health and any concentrations in excess of any of the remedial objectives; (reference Section 12 for requirements related to arsenic in soil).
	Impact to Environmentally Sensitive Areas
	Contamination of man-made structures
	Odors or stained soil
	Stressed vegetation
	Presence of excavated or stockpiled material and an estimate of its total volume
	Environmental sampling locations, procedures and copies of the results of any analytical testing at the site
	List of Hazardous Substances at the site
	Indicate if the site has previously been or is currently under the jurisdiction or any program within the Department or Environmental Protection Agency
	Discuss if the contamination falls outside of the jurisdiction of the Remediation Regulations, including but not limited to USTs, UICs, and wetlands.
☐ 7.03.L.	Include the concentration gradients of Hazardous Substances throughout the site for each medium impacted by the Release.
7.02.14	See Section 4.4
⊥ 7.03.M.	Include the methodology and results of any investigation conducted to determine background concentrations of Hazardous Substances identified at the Contaminated-Site (see Section 12 for Special Requirements for Managing Arsenic in Soil). See Section 4.5

□ 7.03.N.	Include a listing and evaluation of the site specific hydrogeological properties which could influence the migration of Hazardous Substances throughout and away from the site, including but not limited to, where appropriate: See Section 4.6
	Depth to groundwater and elevation of groundwater above mean sea level
	Presence and effects of both the natural and man-made barriers to and conduits for contaminant migration
	Characterization of bedrock and depth of bedrock below ground surface, if available
	Groundwater contours, flow rates and gradients throughout the site, and location of groundwater monitoring wells depicted on a site figure drawn to scale. (a minimum of three (3) groundwater wells is required)
☐ 7.03.O.	Include a characterization of the topography, surface water and run-off flow patterns, including the flooding potential, of the site. See Section 4.7
☐ 7.03.P.	Include the potential for Hazardous Substances from the site to volatilize and any and all potential impacts of the volatilization to structures within the site. Indoor air and/or soil gas analysis is required if appropriate. See Section 4.8
□ 7.03.Q.	Include the potential for entrainment of Hazardous Substances from the site by wind or erosion actions.
□ 7.03.R.	See Section 4.8 Include detailed protocols for all fate and transport models used in the Site Investigation.
□ 7.03.S.	Include a complete list of all samples taken, the location of all samples, parameters tested for and analytical methods used during the Site Investigation. Be sure to include the sample locations and analytical results on a site figure as required in Rule 7.03.H. Please note that a representative number of soil samples taken should be analyzed for Priority Pollutant Metals, Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), Total Petroleum Hydrocarbons (TPH), and Polychlorinated Biphenyls (PCBs). All analytical results shall be summarized in a tabular format. Include justification for all sample locations, depths, and parameters analyzed.
☐ 7.03.T.	Include construction plans and development procedures for all monitoring wells. Well construction shall be consistent with the requirements of Appendix 1 of the <u>Groundwater Quality Rules</u> . <u>Include boring logs for monitoring wells and soil borings in an appendix of the SIR</u> .
□ 7.03.U.	Include procedures for the handling, storage and disposal of wastes derived from and during the investigation.
□ 7.03.V.	See Section 4.9 Include a quality assurance and quality control evaluation summary report for sample handling and analytical procedures, including, but not limited to, chain-of-custody procedures and sample preservation techniques.
□ 7.03.W.	See Section 5.0 Include any other site-specific factor, that the Director believes, is necessary to make an accurate

☐ 7.04 Include Remedial Alternatives. The Site Investigation Report shall contain a minimum of 2 remedial alternatives other than no action/natural attenuation alternative, unless this requirement is waived by the Department. It should be clear which of these alternatives is most preferable. All alternatives shall be supported by relevant data contained in the Site Investigation Report and consistent with the current and reasonably foreseeable land usage, and documentation of the following: See Section 7.0 Compliance with Section 8 (RISK MANGEMENT); Technical feasibility of the preferred remedial alternative; Compliance with Federal, State and local laws or other public concerns; and The ability of the Performing Party to perform the preferred remedial alternative ☐ 7.05 **Certification Requirements:** The Site Investigation Report and all associated progress reports shall include the following statements signed by an authorized representative of the party specified: See Section 10.0 A statement signed by an authorized representative of the Person who prepared the Site Investigation Report certifying the completeness and accuracy of the information contained in that report to the best of their knowledge; and A statement signed by the Performing Party responsible for the submittal of the Site Investigation Report certifying that the report is a complete and accurate representation of the site and the Release and contains all known facts surrounding the Release to the best of their knowledge 1.7.06 **Progress Reports:** If the Site Investigation is not complete, include a schedule for the submission of periodic progress reports on the status of the investigation and interim reports on any milestones achieved in the project ☐ 7.07 **Public Involvement and Notice:** Be prepared to implement public notice requirements per Section 7.07 and 7.09 of the Remediation Regulations when the Department deems the Site Investigation Report to be complete. Indicate if the site falls within an Environmental Justice (EJ) area and, if applicable, include all EJ public notice documentation issued, and the list of recipients.

decision as to the appropriate Remedial Action to be taken at the site.

APPENDIX B

Copy of Release Notification Form

Appendix C

OFFICE OF WASTE MANAGEMENT – SITE REMEDIATION SECTION HAZARDOUS MATERIAL RELEASE NOTIFICATION FORM

THIS FORM IS NOT TO BE USED TO REPORT AN IMMINENT HAZARD

1.	Notifier Information
	Name: Bay Spring Realty Company Address: 909 North Main Street, Providence, RI 02904
	Phone: (401) 277-0300
	Status:XOwnerOperatorSecured CreditorVoluntary
2.	Property Information
	Name of Site: Site Address: 90 Bay Spring Avenue, Barrington, Rhode Island
	Plat/Lot Numbers: Map 2 / Lot 154
	Approximate Site Acreage: 5.57
	<u>Latitude/Longitude:</u> 41° 44′ 50.64″ / 71° 20′ 47.04″
	Site Contact Person: Mr. Andrew Schuster
	Site Contact Phone: (401) 277-0300
	Site Land Usage Type: Residential x_ Industrial/Commercial
	Location of Release: See attached Site Plan.
	(attach site sketch as necessary)
3.	Release Information
	Date of Discovery: December 2012 Source: Former use of Site as artificial leather manufacturer Release Media: Soil and Groundwater
	Hazardous Materials and Concentrations: See attached Table.
	(attach certificates of analysis as necessary)
	Extent of Contamination: See attached Site Plan.
	Approximate acreage of Contaminated Site: Unknown (total Site acreage is 5.57)

	Site Land Usage:	X Industrial/Commercial	Residential
	Adjacent Land Usage:	Industrial/Commercial	x Residential
	Site Groundwater Class:	_X_GA/GAA	GB
	Adjacent Groundwater Class: <u>X</u> GA (if different than site groundwater classification	./GAA GE within 500 feet)	
	Nearest Surface Water or Wetland:		
		_x Less Than 500 Feet	Greater Than 500 Feet
		Potential for adverse impact	Yes/No
5,	Potentially Responsible Parties		
	Name: Mr. Andrew Schuster, Bay S Address: 909 North Main Street, I	Spring Realty Company Providence, RI 02904	
	Status: X Owner Operator	Other:	
	Name:		
	Address:		
	Status: Owner Operator	Other:	
6.	Measures Taken or Proposed to be Ta	iken in Response to Release	
7.	Other Significant Remarks About Rel	ease (Will a background determination	be made?)
	UST and Soil excavation, removal	and off-Site disposal	
	Signature: Title:	Date_S	1/4/3

4.

Resource Information

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS

DONEGAN & ASSOCIATES 90 BAY SPRING AVENUE BARRINGTON, RHODE ISLAND

Sample Identification	S-2	MW-2/S-3	MW-4/S-6	S-8	RCA-1	RCA-2	RCA-3	RIDEM Soi	I Criteria
Depth Sampled (feet)	8.3	5.5	5.0	5.0	0.5-2	0.5-1.5	0.5-2	Direct Expos	ure Criteria
Date Sampled	11/21/2012	11/21/2012	11/21/2012	11/21/2012	2/13/2013	2/13/2013	2/13/2013	Residential	I/C
PHOTOIONIZATION DETECTOR H	EADSPACE S	CREENING RE	SULTS (ppm)	r)					
Total Organic Vapors	2.2	57.1	0.4	79.5	-	-		NS	NS
VOLATILE ORGANIC COMPOUNDS	S (mg/kg)								
1,2,4-Trimethylbenzene	0.0080	0.0321	<0.0057	<0.0027	_			NS	NS
1,3,5-Trimethylbenzene	0.0107	0.0165	< 0.0057	< 0.0027				NS	NS
Acetone	0.0968	9.93	<0.0568	<0.0266				7,800	10,000
Chloroform	< 0.0041	0.0174	< 0.0057	<0.0027				1.2	940
Ethylbenzene	< 0.0041	0.325	< 0.0057	< 0.0027				71	10,000
Isopropylbenzene	< 0.0041	0.0426	< 0.0057	< 0.0027	_		-	27	10,000
Naphthalene	0.0079	0.11	< 0.0057	<0.0027				54	10,000
Styrene	<0.0041	0.127	< 0.0057	<0.0027				13	190
Toluene	<0.0041	0.0452	<0.0057	<0.0027				190	10,000
Xylene O	<0.0041	1.34	<0.0057	<0.0027				110	10,000
Xylene P,M	<0.0081	2.11	<0.0114	< 0.0053				110	10,000
Xylenes (Total)	<0.0122	3.45	<0.017	<0.008				110	10,000
All other VOCs	ND	ND	ND	ND				NS	NS
TOTAL METALS (mg/kg)									
Arsenic			18.9	<1.24	25.7	5.4	6.0	7	7
Barium	_		65.6	5.8	43.6	21.3	13.5	5,500	10,000
Cadmium			<0.57	<0.5	<0.5	<0.57	<0.56	39	1,000
Chromium (Total)	_		12.9	2.1	6.4	7.7	20.5	1,400	10,000
Lead	_		79.9	<5	38.3	31.0	31.3	150	500
Mercury	_		1.96	0.052	0.164	0.067	0.394	23	610
Selenium	_		<5.6	<5	<14.9	<5.7	<5.6	390	10,000
Silver	_		<0.57	<0.5	<0.5	<0.57	<0.56	200	10,000
POLYNUCLEAR AROMATIC HYDR	OCADDONS /	CEMI VOI ATI				0.07	0.00		,
2-Methylnaphthalene		SEIVII-VOLATI	<0.424	<0.36	<0.417	<0.399	<0.392	123	10,000
z-werrymaphmalene Acenaphthene			<0.424	<0.36	<0.417	<0.399	<0.392 0.862	43	10,000
Acenaphthylene	_		<0.424	<0.36	<0.417	<0.399	<0.392	43 23	10,000
Acenaphthylene Anthracene	_		<0.424 1.11	<0.36	<0.417	<0.399	<0.392 1.21	23 35	10,000
Benzo(a)anthracene			3.34	<0.36	0.417	<0.399	1.21 4.09	0.9	7.8
. ,	_	-		<0.36	0.47	<0.399 <0.2		0.9	0.8
Benzo(a)pyrene Benzo(b)fluoranthene	_		<u>2.27</u> 3.83	<0.181	0.391	<0.2	3.14 4.14	0.4	0.8 7.8
. ,	_		2.05	<0.36	< 0.417	<0.399	4.14 1.25	0.9	10,000
Benzo(g,h,i)perylene Benzo(k)fluoranthene	_	_	2.05 1.17	<0.36	<0.417	<0.399	1.25	0.8	78
* *	_	_	4.09	<0.36	0.417 0.499	<0.399	1.15 4.29	0.9	78 780
Chrysene	_			<0.181	<0.209		4.29 0.300	0.4	0.8
Dibenzo(a,h)Anthracene	-		<u>0.910</u> 7.25			<0.2		-	
Fluoranthene	-	-	7. 25 <0.424	< 0.36	1.16	<0.399	9.00	20	10,000
Fluorene	-	-	-	<0.36	< 0.417	<0.399	0.535	28	10,000
Indeno(1,2,3-cd)Pyrene	-		1.81	<0.36	<0.417	<0.399	1.22	0.9	7.8
Naphthalene	-		0.639	<0.36	<0.417	<0.399	<0.392	54	10,000
Phenanthrene	-		5.81	<0.36	0.733	<0.399	7.92	40	10,000
Pyrene	-	-	5.41	<0.36	0.932	<0.399	9.66	13	10,000

NOTES:

ppmv = parts per million by volume.

mg/kg = milligrams per kilogram.

-- = Not analyzed.

I/C = Industrial/Commercial

NS = No standard promulgated.

ND = Not detected above laboratory reporting limit.

Bold concentrations exceed laboratory reporting limits.

Red concentrations exceed the applicable RIDEM Residential Direct Exposure Criteria.

Red underlined concentrations exceed the applicable RIDEM I/C Direct Exposure Criteria.

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

DONEGAN & ASSOCIATES 90 BAY SPRING AVENUE BARRINGTON, RHODE ISLAND

Sample Identification	MW-1	MW-2	MW	<i>I</i> -3	MV	V-4	MW-5	RIDEM Groundy	ater Objectives
Date Sampled	11/26/2012	11/26/2012	11/26/2012	2/13/2013	11/26/2012	2/13/2013	11/26/2012	GA Objectives	GB UCLs
VOLATILE ORGANIC COMPOUNDS (ug/L)									
1,1,1-Trichloroethane	<1	<0.1	1.2		<1		<1	200	68,000
1,1-Dichloroethane	<1	<0.1	3		<1		<1	NS	NS
1,2,4-Trimethylbenzene	<1	<0.1	1		<1		4.5	NS	NS
1,3,5-Trimethylbenzene	<1	<0.1	<1		<1		139	NS	NS
4-Isopropyltoluene	<1	<0.1	<1		<1		9.4	NS	NS
Acetone	<10	10.4	102		<10		<10	NS	NS
Benzene	<1	<0.1	1.1		<1		<1	5	18,000
n-Propylbenzene	<1	<0.1	<1		<1		1.3	NS	NS
sec-Butylbenzene	<1	<0.1	<1		<1		1.3	NS	NS
Toluene	<1	<0.1	1.1		<1		<1	1,000	21,000
Xylene O	<1	1	2.2	-	<1		<1	10,000	NS
Xylene P,M	<2	<0.2	3.6		<2	-	<2	10,000	NS
Xylenes (Total)	<2 <3	<0.2	5.8	-	<2 <3		<2 <3	10,000 NS	NS NS
All other VOCs	<3 ND	<0.3 ND	5.8 ND	-	<3 ND		<3 ND	NS NS	NS NS
	ND	ND	ND		ND		ND	INS	IN3
SEMI-VOLATILE ORGANIC COMPOUNDS (ug/L)									
2-Methylnaphthalene			<0.2		< 0.21		2.63	NS	NS
Acenaphthene			<0.2		< 0.21		0.29	NS	NS
Acenaphthylene			0.3		< 0.21		<0.2	NS	NS
Benzo(a)anthracene			< 0.05		0.08		< 0.05	NS	NS
Benzo(a)pyrene			0.08		< 0.05		< 0.05	0.2	NS
Benzo(b)fluoranthene			0.15		0.1		< 0.05	NS	NS
Benzo(k)fluoranthene			0.05		< 0.05		< 0.05	NS	NS
Chrysene			0.09		0.1		< 0.05	NS	NS
Indeno(1,2,3-cd)Pyrene			0.07		< 0.05		< 0.05	NS	NS
Naphthalene			0.62		<0.21		1.27	100	NS
All other SVOCs			ND		ND		ND	NS	NS
TOTAL RCRA 8 METALS (mg/L)									
Arsenic			0.0065	0.0027	0.0146	0.0206	<0.0025	0.01	NS
Barium			0.096	0.121	0.096	0.0200	0.035	2	NS
Cadmium			<0.0025	<0.0025	<0.0025	< 0.0025	< 0.0025	0.005	NS
Chromium			<0.0023	<0.0023	0.0023	0.0023	<0.0023	0.003	NS
Lead			0.053	0.03	0.01	0.021	<0.01	0.015	NS
Mercury			< 0.0005	0.0055	< 0.005	0.0074	<0.005	0.002	NS
Selenium			<0.0005	< 0.025	<0.0005	< 0.025	<0.005	0.002	NS
Silver			<0.025	<0.025	<0.025	<0.025	<0.025	NS	NS
DISSOLVED RCRA 8 METALS (mg/L)		-	<0.000	<0.000	<0.000	<0.000	<0.000	INS	INO
Arsenic				<0.0025		0.0123		0.01	NS
Barium				0.0025	_	0.0123	-	2	NS
Barium Cadmium			-	<0.0025	-	< 0.0025	-	0.005	NS NS
			-						NS NS
Chromium				<0.01		<0.01		0.1	
Lead				<0.01		<0.01		0.015	NS
Mercury				<0.0002		<0.0002		0.002	NS
Selenium				<0.025		<0.025		0.05	NS
Silver				<0.005		<0.005		NS	NS
NOTES:									

NOTES:

ug/L = micrograms per liter.
mg/L = milligrams per liter.
NS = No standard promulgated.
ND = Not detected above laboratory reporting limit.

-- = Not analyzed.

Bold concentrations exceed concentrations exceed laboratory reporting limits.

Red concentrations exceed the applicable RIDEM GA Groundwater Objectives.

APPENDIX C

Supporting Documentation

ASTM PHASE I & II ENVIRONMENTAL SITE ASSESSMENT REPORT

90 Bay Spring Avenue Barrington, Rhode Island

Your Trusted Advisors

Prepared for:

Donegan & Associates, Ltd. 125 Juniper Drive East Greenwich, Rhode Island 02818

Prepared by:

Resource Control Associates, Inc. 474 Broadway Pawtucket, Rhode Island 02860

Environmental Consulting
Engineering
Construction Management

December 14, 2012

TABLE OF CONTENTS

1.0	11	NTRODUCTION	1
2.0	S	SUMMARY OF PREVIOUS ENVIRONMENTAL SITE ASSESSMENTS	1
3.0	S	SITE DESCRIPTION	Δ
	3.1	Location, Legal Description and Ownership	
	3.2	Site and Vicinity General Characteristics	
	3.3	Current Use of the Property	
	3.4	Description of Structures, Roads, Other improvements on the Site	
	3.5	Current Uses of Adjoining Properties	
4.0	U	ISER PROVIDED INFORMATION	6
	4.1	Title Records	6
	4.2	Environmental Liens or Activity and Use Limitations	6
	4.3	Specialized Knowledge	6
	4.4	Commonly Known or Reasonably Ascertainable Information	
	4.5	Valuation Reduction for Environmental Issues	
	4.6	Owner, Property Manager and Occupant Information	
	4.7	Reason for Performing Phase I	
•	4.8	Other	7
	_		_
5.0		RECORDS REVIEW	
	5.1	Standard Environmental Record Sources	
	5.2 5.3	Additional Environmental Records Sources	
	5.4	Physical Setting Source(s) Historical use Information on the Property and Adjoining Properties	
	J. 4	Thistorical use information on the Property and Adjoining Properties	10
6.0	S	SITE RECONNAISSANCE	12
	6.1	Methodology and Limiting Conditions	
	6.2	General Site Setting	13
	6.3	Exterior and Interior Observations	
7.0	11	NTERVIEWS	15
	7.1	Interview with Owner/Site Manager/Occupant	15
•	7.2	Interview with Past owner and Occupant	15
8.0	S	SUBSURFACE INVESTIGATION	15
	8.1	Rationale for Work Scope	
	8.2	Pre-Drilling Activities	
	8.3	Drilling and Monitoring Well Installation	
	8.4	Soil Sampling and Analysis	
	8.5	Groundwater Sampling and Analysis	
	8.6	Site Hydrogeology	18
^ ^	_	AATA CARC	4.0
9.0	ט	OATA GAPS	18
10 (INDINGS	10

CONCLUSIONS AND RECOMMENDATIONS	20
DEVIATIONS	21
REFERENCES	22
3.1 Interviews Conducted	22
3.2 Resources Reviewed	
ENVIRONMENTAL PROFESSIONAL STATEMENT AND SIGNATURE	22
LIMITATIONS	23
	REFERENCES

FIGURES:

Figure 1 Locus Map Figure 2 Site Plan

Figure 3 Historical Aerial Photographs
Figure 4 Historical Sanborn Maps
Figure 5 Historic USGS Topographic N

Figure 5 Historic USGS Topographic Maps Figure 6 Water Table Elevation Contour Plan

TABLES:

Table 1 Summary of Soil Analytical Results

Table 2 Summary of Groundwater Analytical Results

APPENDICES:

Appendix A Site Photographs

Appendix B EDR Radius Map Report Appendix C Supporting Documentation

Appendix D Drill Logs

Appendix E Well Monitoring Form Appendix F Laboratory Reports

Appendix G Qualifications

Appendix H Additional Limitations

1.0 INTRODUCTION

On October 22, 2012, Donegan & Associates, Ltd. engaged Resource Control Associates, Inc. (Resource Controls) to conduct a Phase I Environmental Site Assessment (ESA) of 90 Bay Spring Avenue, located in the Town of Barrington, Rhode Island (the Subject Property). The purpose of this assessment was to inspect and evaluate the Subject Property and surrounding properties for "Recognized Environmental Conditions."

"Recognized Environmental Conditions" shall be defined as the presence or likely presence of any hazardous substances or petroleum products on the property under conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substances or petroleum products into structures on the property or into the ground, groundwater or surface water of the property. The term includes hazardous substances or petroleum products even under conditions in compliance with laws. The term is not intended to include de minimis conditions that generally do not present a threat to human health or the environment and that generally would not be the subject of a notification and/or enforcement action if brought to the attention of appropriate governmental agencies.

On November 19, 2012, Resource Controls was contracted to complete an ASTM Phase II Environmental Site Assessment for the Subject Property. The purpose of this assessment was to determine whether potential environmental conditions of concern associated with the current or historic use of the Subject Property or surrounding area, which were identified during Phase I ESA activities, had impacted the subsurface environment.

This report was generated based upon a reasonable and knowledgeable review of evidence found in accordance with normally accepted industry standards, state and federal protocols, and within the scope and budget established by the client. Assessment activities were conducted in accordance with the American Society for Testing & Materials (ASTM) Practice E-1527-05, "Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process," published July November, 2005; the ASTM Practice E 1903-97, "Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process," published February 1998 (re-approved 2002); and our contracts dated October 11, 2012 and November 19, 2012.

Julie V. Freshman, Senior Environmental Scientist for Resource Controls, and Daniel S. Boynes, Environmental Scientist for Resource Controls, completed a Phase I ESA site inspection on October 26, 2012. The following Resource Controls employees authored this report: Daniel S. Boynes, Julie V Freshman and Mark J. House, Vice President and Principal Scientist.

2.0 SUMMARY OF PREVIOUS ENVIRONMENTAL SITE ASSESSMENTS

A *Phase II Oil and Hazardous Waste Assessment* for the Subject Property located at 90 Bay Spring Avenue, was completed by Geisser Engineering Corporation (Geisser Engineering) in February 1992. The property investigated during the February 1992 assessment, was comprised of both an eastern and western section, which are currently designated on the Town of Barrington Tax Assessor's Tax Map No. 2 as Lot 12 (the property adjoining the Subject Property to the east across the Annawamscutt Brook), and Lot 154 (the Subject Property), respectively. The following is a summary of information obtained from the 1992 Phase II report:

• The property has been utilized for manufacturing since its establishment in 1912 and consists of one lot, approximately 7.8 acres in size.

- Lot 12 contains a three-story brick building with a living area of 35,000 square feet and land area of 2.710 acres.
- The property was historically owned by the O'Bannon Corporation and produced textile and narrow fabrics in conjunction with another mill located at 85 Bay Spring Avenue.
- A bicycle pathway is located to the east of the property and was historically used as a railroad track bed for the Hartford Railroad Company.
- The following provides a summary of details pertaining to Lot 12:
 - The following materials were observed throughout the interior of the main building, which is located on the eastern portion of Lot 12 and owned by Pilling Manufacturing: approximately twenty (20) 55-gallon barrels of cutting oil and hydraulic fluid; several barrels of zinc die cast pieces and slag; metal-cutting and operating machines; rolls of wire and raw stock, and; some tanks containing plating liquids.
 - Two (2) floor drain trough systems were observed in the main building on Lot 12, which appeared to be part of both the degreasing and barrel plating operations formerly conducted by Pilling Manufacturing. The trough systems were part of a pre-treatment system by which rinse water from the plating operations were neutralized prior to discharge into the Barrington Public Sewer System. No non-compliance issues were noted.
 - A boiler room which contains an oil-fired-boiler fueled by No. 6 fuel oil that is contained in a 5,000-gallon aboveground storage tank (AST) is present in the main building on Lot 12. The AST is contained within a concrete structure. Several barrels of miscellaneous oils and lubricants were observed in the boiler room.
 - A 2,000-gallon underground storage tank (UST) containing No. 2 fuel oil is located along the western portion of the main building, adjacent to the boiler room.
 - Three (3) functioning outdoor pad-mounted electrical transformers are located on Lot 12 and three (3) non-functioning pad-mounted transformers are located in an enclosure attached to the exterior of the western portion of the main building.
 - Approximately 1,200-gallons of plating solutions, including sodium and zinc cyanide, were observed on the first floor of the Subject Property main building.
- Lot 154 (the Subject Property) was historically developed and contained manufacturing buildings, tank farms, storage buildings and sheds. At the time of the inspection, the following observations were noted: a slab of the former nitrated cotton storage building; concrete cradles which historically supported solvent and acid ASTs; a slab of the alcohol still and No. 12 storage building and an opening which may have been an underground acid storage pit; an empty 265-gallon AST located next to the No. 2 Stock House; three (3) electrical transformers owned by the Narragansett Electric Company, which are not expected to contain PCBs; and a ditch filled with discarded clay pipes and rusted iron debris, which was observed on the southern section of Lot 154.
- In August 1992, two (2) monitoring wells (MW-1 and MW-2) and three (3) soil borings (B-4 to B-6) were drilled to a maximum depth of approximately 20 feet and installed on Lot 12. One (1) monitoring well (MW-3) was installed on Lot 154 (the Subject Property) to a depth of approximately 20 feet and one (1) monitoring well (MW-4) was installed in the location of the former pickle house on Lot 154 (the Subject Property) due to acid storage tanks were historically located there.
- Two (2) subsurface soil samples were submitted for laboratory analysis for the following contaminants: toxic metals (TLCP); total petroleum hydrocarbons (TPH); polychlorinated biphenyls (PCBs), and; volatile organic compounds (VOCs). Soil sample No. 1 was a composite of soil collected from MW-1 through MW-3 and soil borings B-4 through B-6. Soil sample No. 2 was a composite of soil collected from MW-4 and soil from the two (2) former locations of the solvent and acid tanks. Laboratory analytical results did not indicate any exceedances of applicable RIDEM soil criteria.
- A composite groundwater sample was submitted for laboratory analysis for VOCs, TPH and PCBs.
 Laboratory analytical results reported a benzene concentration of 6 micrograms per liter (ug/L),

which exceeds the applicable RIDEM GA groundwater objective for benzene (5 ug/L). The benzene concentration was not considered an imminent health threat as the property is connected to the municipal water.

An Update - Environmental Report for the property located at 90 Bay Spring Avenue was completed by Geisser Engineering in January1995. The following is a summary of information obtained from the 1995 Update - Environmental Report:

- In January 1995, Geisser Engineering conducted a site investigation of the property to address any significant changes or site conditions which may have occurred since the completion of the 1992 Phase II report.
- The first floor of the main building located on Lot 12 was occupied by Hills Auto, an auto repair business. No fuel storage tanks were associated with the business.
- An AST containing No. 6 fuel oil was in good condition with no leaks or staining observed.
- A 1,000-gallon UST containing No. 2 fuel oil, which was historically used to supply fuel to Pilling Chain was still present although Pilling Chain was no longer in business at the facility.
- Based on the inspections of the property and abutting properties, an interview with a representative
 of the owners of the property, and a review of environmental records at the RIDEM, Geisser
 Engineering concluded that the property had not been downgraded or changed for the worst since the
 completion of the 1992 Phase II site assessment.

A letter regarding "Test pits on Bay Spring Street Property" and dated June 30, 2003 was submitted from Geisser Engineering to Mr. David Malkin with Real Estate Investment, The following is a summary of information obtained from 2003 letter report:

- In May 2003, four (4) test pits (TP-1 through TP-4) ranging in depth from 3-feet to 8-feet were excavated on Lot 154 (the Subject Property).
- A slurry and watery liquid was observed in TP-4, located to the south of the former acid pit area. The slurry appeared to originate from surrounding clay piping. No sample was collected from this location and the nature of the slurry was undetermined.
- Soil samples were collected from test pits as well as shovel-dug hand excavations and submitted for laboratory analysis for RCRA 8 metals and TPH.
- Laboratory analytical results reported arsenic concentrations that exceeded applicable RIDEM Residential Direct Exposure Criteria at all of the sample locations; one (1) exceedance of iron was reported in a sample collected adjacent to the former Pickle Building on the Subject Property.
- Geisser Engineering concluded the following:
 - The Subject Property can be developed with the understanding that underlying debris throughout portions of the property would either have to be removed, or that any proposed structures would have to be supported on pilings.
 - Due to the presence of arsenic detected in soil at or above 24 feet below the surface, certain developed areas will need to be overlain with asphalt or rendered inaccessible.
 - In addition, during the course of construction activities, laboratory analysis of additional soil samples would be needed to characterize any suspicious material.

Copies of the above-noted 1992, 1995 and 2003 ESA reports have been included within Appendix C (Supporting Documentation). No other previous environmental site assessments were provided to or discovered by Resource Controls during Phase I environmental site assessment activities.

3.0 SITE DESCRIPTION

Please refer to the maps located in the Figures section of this report. Subject Property photographs are included in Appendix A.

3.1 Location, Legal Description and Ownership

3.1.1 Site Location

The Subject Property, located at 90 Bay Spring Avenue in the Town of Barrington, Rhode Island, is depicted on the Assessor's Tax Map No. 2 as Lot 154. The Subject Property consists of a total land area of approximately 242,800 square feet (5.57 acres).

A Locus Map showing the location of the Subject Property is included as Figure 1, and a Site Plan showing the existing Subject Property and lot designation is included as Figure 2.

3.1.2 Legal Description

A copy of the legal property description for the Subject Property (Book 222 / Page 1152) is included within Appendix B (Supporting Documentation).

3.1.3 Current Site Owner(s)

According to chain of title information provided by the Town of Barrington Tax Assessor's Office, the current owner of the Subject Property is Bay Spring Reality Co.; Bay Spring Reality Co. acquired the Subject Property in February 1997.

3.2 Site and Vicinity General Characteristics

3.2.1 <u>Zoning</u>

According to a Zoning Map of the Town of Barrington dated 2011, the eastern portion of the Subject Property is zoned "LM" (limited manufacturing) with a small portion of the western part of the Subject Property zoned "R 10" (Residence 10).

3.2.2 <u>County</u>

The Subject Property is located within Bristol County, Rhode Island.

3.2.3 Latitude and Longitude

The Environmental Data Resources, Inc. (EDR) Report (Appendix C) defines the Subject Property's location as follows:

Latitude (North): 41.7474000 - 41° 44' 50.64" UTM Easting/X 304,898 Meters Latitude (West): 71.3464000 - 71° 20' 47.04" UTM Northing/Y 4,624,178 Meters

3.3 Current Use of the Property

3.3.1 Site Occupants

The Subject Property is currently vacant land.

3.4 Description of Structures, Roads, Other improvements on the Site

3.4.1 Structures, Roads and Other Improvements

The Subject Property does not contain remnants of selected former buildings. According to information obtained from a 1921 Sanborn map, the Subject Property was historically developed with several buildings and/or structures, including approximately five (5) storage buildings, a Benzol House, coating room, laboratory, five (5) solvent storage tanks, seven (7) acid storage tanks, concrete pits containing several spent acid tanks and a building labeled "Former Pickle Building".

The Subject Property is currently overgrown and vacant with some building foundations, concrete cribs, and pits observed.

3.4.2 Heating/Cooling System

There are no heating and cooling systems on the Subject Property. The heating source(s) for the former buildings located on the Subject Property is unknown.

3.4.3 Sewage Disposal

On November 9, 2012, Resource Controls reviewed records at the Town of Barrington Department of Public Works, regarding the original connection date of the Subject Property to the municipal sewer system. A representative at the Sewer Department provided the following documentation to Resource Controls personnel:

- A plan entitled "Tow of Barrington, Rhode Island Wastewater Facilities, Contract No. 3, Bay Spring-Drown Dove Area, Bay Spring Avenue" date dated February 1975 indicates that a sewer line runs along Bay Spring Avenue and serves the building formerly occupied by Piling Chain Co (located on Lot 12).
- A plan dated July 15, 1982 depicts the Piling Chain Company sewer complex (located on Lot 12), along the western side of the building and along the eastern side of Annawamscutt Brook.

3.4.4 Source of Potable Water

The Subject Property is not connected to a source of potable water.

3.4.5 <u>Electricity/Telephone Service</u>

The Subject Property is not served by telephone lines. One (1) telephone pole was observed in the eastern portion of the Subject Property. The telephone pole did not appear to be in active use.

3.5 Current Uses of Adjoining Properties

North: Residential properties and Bay Spring Avenue beyond which lies Bay Spring Service, residential properties and a bike path.

South: Vacant land beyond which lies Drown Cove and the Providence River.

East: An apartment complex beyond which lies a bike path, and vacant land and Drown

Cove beyond which lies residential properties.

West: Adams Avenue beyond which lies residential properties and vacant land which

contains a stream that appears to discharge into Drown Cove.

4.0 USER PROVIDED INFORMATION

The User (Donegan & Associates, Ltd.) was provided with a User Questionnaire. Mr. Michael Donegan a lawyer with Donegan & Associates, Ltd., asked that the User Questionnaire be filled out by Mr. Andrew Shuster, son of the one of the owners of the Subject Property. The following sections summarize the information provided by Mr. Andrew Shuster on October 26, 2012. A copy of the signed and completed User Questionnaire has been included within Appendix C (Supporting Documentation).

4.1 Title Records

Mr. Shuster indicated that land title records have not been reviewed for the Subject Property.

4.2 Environmental Liens or Activity and Use Limitations

Mr. Shuster is not aware of any environmental liens and/or activity and use limitations that have been filed or recorded against the site and/or in a registry.

4.3 Specialized Knowledge

Mr. Shuster does not have specialized knowledge or experience related to the property or nearby properties.

4.4 Commonly Known or Reasonably Ascertainable Information

Mr. Shuster provided the following information related to commonly known or reasonably ascertainable information about the Subject Property:

- Mr. Shuster is aware of the historical presence of underground or aboveground storage tanks, but
 does not know whether they have been removed or are currently still located on the Subject
 Property.
- Mr. Shuster is not aware of specific chemicals that are present or once were present at the Subject Property.
- Mr. Shuster is not aware of any spills or other chemical releases that have taken place at the Subject Property.
- Mr. Shuster is not aware of any environmental cleanups that have taken place at the Subject Property.

4.5 Valuation Reduction for Environmental Issues

Mr. Shuster believes that the purchase price of the Subject Property is lower than fair market value, due to potential "problems".

4.6 Owner, Property Manager and Occupant Information

Refer to Sections 3.0 and 7.0 for information regarding the owner and occupant of the Subject Property.

4.7 Reason for Performing Phase I

Mr. Shuster indicated that a third party is conducting the Phase I, but did not provide a reason.

4.8 Other

No other information was provided to Resource Controls by Mr. Shuster.

5.0 RECORDS REVIEW

5.1 Standard Environmental Record Sources

Resource Controls reviewed a Radius Map Report from Environmental Data Resources, Inc. (EDR) and dated October 24, 2012. The information from the Radius Map Report is summarized below:

Federal Database Lists	Radius (Miles)	Sites Within Search Radius
National Priority List (NPL) Sites	1.00	0
Delisted NPL Sites	0.50	0
Comprehensive Environmental Response Compensation Liability Information System (CERCLIS) Sites	0.50	0
CERCLIS No Further Remedial Action Planned (NFRAP) Sites	0.50	0
Resource Conservation and Recovery Act (RCRA) CORRATS Facilities	1.00	0
Resource Conservation and Recovery Act (RCRA) Treatment, Storage and Disposal (TSD) Facilities	0.50	0
RCRA Small and Large Quantity Hazardous Waste Generators (GEN)	Property and Adjoining Properties	0
Institutional Control/Engineering Control Registries	Property Only	0
ERNS	Property Only	0

There are no sites listed on the above-noted federal database lists within the specified search radii.

The property indentified in the Radius Map Report as "90 Bay Spring Avenue" is listed in the Facility Index System (FINDS) under the following listings: Viking Industries Inc., Rainbow Spring and Hills Tire & Auto. Hills Tire & Auto is also listed as a RCRA Non-Generator for the previous disposal of ignitable hazardous waste and waste oil; RCRA Non-Generators do not presently handle hazardous waste. There are no sites listed on the above-noted federal database lists within the specified search radii.

The property identified in the Radius Map Report as "Ban Realty Pilling Chain Company" located at 90 Bay Spring Avenue is listed as a RCRA Non-Generator (RCRA Non-Generators do not presently handle hazardous waste). No information was provided in the Radius Map Report regarding type of hazardous waste handled by "Ban Realty Pilling Chain Company."

The property listed as "Pilling Chain Company" in the Radius Map Report and located at 90 Bay Spring Avenue, is listed on the Manifest database list. According to the Radius Map Report, approximately 100 pounds of waste coded F008 (PLAT SLDG FM BTM PLAT BATH OPER CYANIDE) was transported off-site on February 8, 1995.

State and/or Tribal Database Lists	Radius (Miles)	Sites Within Search Radius
Hazardous Waste Sites	1.0	2
Spills	0.50	7
Releases	0.50	0
Landfill and/or Solid Waste Disposal Sites	0.50	0
Leaking Underground Storage Tank (LUST) Sites	0.50	1
Registered Storage Tank Sites	Property and Adjoining Properties	1
Institutional Control/Engineering Control Registries	Property Only	0
Voluntary Cleanup Sites	0.50	0
Brownfield Sites	0.50	0

The property listed as "Pilling Mfg., Inc." in the Radius Map Report and located at 90 Bay Spring Avenue, is listed as a registered UST site (Facility ID No. UST-98). Resource Controls reviewed RIDEM documentation pertaining to the UST site on November 7, 2012. A RIDEM Certificate of Closure dated April 14, 1997 indicates that one (1) 1,000-gallon No. 2 fuel oil UST (Tank 001) was removed from the property. According to further documentation, the UST was removed on January 8, 1997. After the removal of the UST, an oil residue was noted at the bottom of the tank after it was removed from the bottom of the excavation. MDR Engineering collected a soil sample from a depth of 1 to 2 feet below the UST and submitted the sample for laboratory analysis of TPH. Laboratory analytical results reported a TPH concentration of 670 mg/kg, which is above the RIDEM Residential Direct Exposure Criteria, but below the Industrial/Commercial Direct Exposure Criteria. The area of the former tank was backfilled and then overlain with asphalt.

The property listed as "90 Bay Spring Road" in the Radius Map Report, is identified on the Spills database list. According to information obtained from the EDR database report, 75 gallons of No. 6 oil were spilled at the property on December 19, 1988. No further information regarding this spill was reported in the Radius Map Report. The 1992 Phase II ESA conducted by Geisser Engineering reports that the spill was cleaned-up by the MacDonald and Watson Corporation with no apparent damage to human health or the environment.

A property, adjoining the Subject Property to the west across Adams Avenue and listed as 41 Adams Ave in the Radius Map Report, is listed on the Spills database list. Information obtained from the Radius Map Report indicates that an unknown quantity of heating oil was spilled on the property in January 1986. No further information regarding this spill was reported in the Radius Map Report.

A property located to the north of the Subject Property across Bay Spring Avenue, identified as "Bay Spring Service Garage Inc." at 115 Bay Spring Avenue, is included in the database report as a registered UST Site (Facility ID No. 2843). Resource Controls reviewed RIDEM documentation pertaining to the UST site on November 7, 2012. Two (2) 3,000-gallon USTs containing gasoline were installed on the property in 1973 and closed in April of 1989. According to a hand-written note on an Application for

Underground Storage Facilities dated 1988, the USTs have not been in use and have been completely empty since 1975. A handwritten letter dated August 18, 1988 indicates that gas pumps are located at the property, despite gasoline not having been sold at the property in 15 years. The letter indicates that a well is proposed to be installed at the property. A RIDEM Certificate of Closure dated April 4, 1989 indicates that two (2) 3,000-gallon gasoline USTs (Tank 001 and 002) were removed from the property. No information regarding the condition of the tanks at the time of removal and/or the sampling of the soil associated with the two (2) USTs was found in the RIDEM UST file.

Based on a review of the Radius Map Report and area topography, none the other above-noted sites appear to represent recognized environmental conditions to the Subject Property.

5.2 Additional Environmental Records Sources

5.2.1 <u>Department of Health/Environmental Division</u>

The Town of Barrington does not maintain a Health Department. Resource Controls contacted the Rhode Island Department of Health (RIDOH) on November 8, 2012 for information pertaining to the storage and/or use of oil and/or hazardous materials (OHM) on the Subject Property and private wells within the vicinity of the Subject Property. According to a representative at RIDOH, there is no information pertaining to the storage and/or use of OHM on the Subject Property, or private wells within the vicinity of the Subject Property; and the RIDOH does not have a searchable database that contains information on private wells within the State of Rhode Island.

5.2.2 Fire Department

On November 9, 2012, Resource Controls contacted the Town of Barrington Fire Department regarding the additional records relating to the storage and/or use of oil and/or hazardous materials (OHM) on the Subject Property. According to a representative of the Fire Department, the Barrington Fire Department has no records pertaining to the Subject Property.

5.2.3 Planning Department

No records of the storage and/or use of OHM on the Subject Property were available at the Town of Barrington Planning Department.

5.2.4 Building Permit/Inspection Department

No building permits for the Subject Property were available for review. No records of the storage and/or use of OHM on the Subject Property were available at the Building Department.

5.2.5 Local Electric Utility Companies (for records relating to PCBs)

No transformers or other potentially PCB-containing electrical equipment were noted at the Subject Property. As such, no electric utility company was contacted as part of this investigation.

5.3 Physical Setting Source(s)

5.3.1 USGS 7.5-Minute Topographic Map

The Subject Property is represented on the Bristol, Rhode Island United States Geological Survey (USGS) 7.5 x 15 minute topographic map, dated 1975. Information obtained from this map indicates that the Subject Property topography gently slopes to the south/southwest toward Drown Cove.

Groundwater within the vicinity of the Subject Property is inferred to flow to the south/southeast, towards Drown Cove and the Narragansett Bay. A copy of the USGS topographic map has been included as Figure 1 (Locus Map).

5.3.2 Surficial Geology

According to information obtained from the Rhode Island Geographic Information System (RIGIS) Glacial Geology datalayer, the Subject Property area is underlain by glacial fluvial deposits of stratified sand and gravel.

5.3.3 Soil

According to information obtained from the U.S. Department of Agriculture Web Soil Survey, referenced on November 5, 2012, soils beneath the Subject Property consist of the Hinckley gravelly sandy loam, rolling. Based on previous subsurface investigations conducted on the Subject Property by Geisser Engineering, soils beneath the Subject Property consist of medium grained, well sorted sand with some silt and clay present

5.4 Historical use Information on the Property and Adjoining Properties

5.4.1 Aerial Photographs

Resource Controls reviewed aerial photographs (dated 1939, 1951-1952, 1962, 1981, 1997, 2003 and 2008) available for download through RIGIS. The following table summarizes the information obtained from the aerial photographs:

Year	Summary of Aerial Photographs
1939	The Subject Property appears to be developed with approximately seven (7) buildings located in the northern portion of the Subject Property and a water tower located on the western portion of the Subject Property.
	Several Subject Property buildings appear to have been razed with four (4) building and a water tower still
1951-1962	present.
1981	The Subject Property appears to be vacant with the exception of one (1) water tower.
1997-2008	The Subject Property appears vacant and in its current configuration.

Copies of the above-noted aerial photographs have been included as Figure 3.

5.4.2 Fire Insurance Maps

Resource Controls received historic Sanborn fire insurance maps from EDR on October 26, 2012. The following table summarizes the information obtained from the Sanborn maps:

Year	Summary of Sanborn Maps
1921	The Subject Property is labeled as O'Bannon Corporation, manufacturers of artificial leather. The following buildings were identified on the Sanborn fire insurance map: A building, labeled as No. 11, with wash room, dryer house, nitrating department and dehydration department located in the center of the Subject Property; Storage building for nitrated cotton; a 1000-gallong water tower; five (5) solvent storage tanks and one (1) acetone located to the west of the building No. 11; seven (7) acid storage tanks with an adjacent tank scale room located to the southwest of building No. 11; a coating room; laboratory, two (2) spent acid tanks in concrete pad enclosures located immediately south building No. 11; a garage on the southeastern portion of the Subject Property, and; several storage buildings located throughout the Subject Property. The main building, located to the east of the Subject Property, appears to be the main building for the O'Bannon Corporation with at least two (2) coating rooms and a boiler room. A garage is located to the northwest of the Subject Property across Bay Spring Avenue with at least one (1) 500-gallon gasoline UST depicted. Residential properties are located to the west of the Subject Property.

1928	The Subject Property appears to be similarly developed, but with a different property occupant and site usage. The Subject Property is labeled as Collins & Aikman Corporation. All of the buildings on the Subject Property are depicted as vacant with the exception of the main building to the east of the Subject Property, which appears to be used for the storage of cotton yarn. The area to the west of the Subject Property appears to be improved by more residential properties. The garage listed in the 1921 Sanborn appears to be unchanged.
1950	The Subject Property appears changed from with the 1928 Sanborn with several buildings having been razed. Building No. 11, the garage, solvent storage tanks, acetone tanks, spent acid tanks, laboratory and some storage houses appear to have been razed. The main building to the east of the Subject Property is now labeled as "Building". The area to the west of the Subject Property appears to be further developed by residential housing. The garage located to the northwest of the Subject Property appears to be an auto repair facility, with no UST depicted.
1961	The Subject Property appears similar to the 1950 Sanborn with more storage buildings having been razed. The main building to the east of the Subject Property appears to have been converted into loft apartments.

Copies of the above-noted Sanborn Maps have been included as Figure 4.

5.4.3 Property Tax Files

Resource Controls researched chain of title information provided by the Town of Barrington Tax Assessor's Office. The following table summarizes the former owners of the Subject Property:

Owner	Date	Book/Page
Group IV	1986	164/957
Group IV	1986	164/959
Shuster, Ralph (Trust)	1986	164/955
Shuster, Ralph (Trust)	1986	164/956
Bay Spring Realty Company	1992	222/1151
Bay Spring Realty Company	1994	275/264
GHG Fowler, Inc.	1996	319/203
Barrington Cove Limited Partnership	1997	339/114

5.4.4 USGS Topographic Maps

Resource Controls reviewed historical USGS topographic maps dated 1892 and 1939 of the Subject Property and vicinity. No recognized environmental conditions were discovered during the review of this map. The topography of the Subject Property and surrounding area appears to be unchanged from the current topography, which appears to slope gently toward the south/southeast towards Drown Cove.

As previously noted, Resource Controls reviewed a USGS map, photorevised in1975, of the Subject Property and vicinity. No recognized environmental conditions were discovered during the review of this map. The topography of the Subject appears to be sloping towards the south/southeast into Drown Cove.

Copies of the 1892, 1939, and 1975 USGS topographic maps have been included as Figure 5A, Figure 5B and Figure 1, respectively.

5.4.5 Local Street Directories

Resource Controls received a City Directory Image Report from EDR on October 25, 2012. The following table summarizes the information obtained from the City Directories for 90 Bay Spring Avenue:

Year	90 Bay Spring Avenue	
1985	Cast Products Corp., Karew, Pilling Chain Co	
1990	1990 Cast Products Corp, Pilling Chain Co	
1995 Hills Tire & Auto, Rainbow System		
2000	Washington Rd INTs	
2008	Washington Rd INTs	

The EDR City Directory Image Report is included for reference in Appendix C (Supporting Documentation).

5.4.6 Building Department Records

Building Department records pertaining to the Subject Property were discussed in Section 5.2.4.

5.4.7 <u>Historic Use of Oil and/or Hazardous Materials (OHMs) on the Property</u>

Site assessment activities revealed that the following OHMs were historically utilized on the Subject Property:

- Solvents
- Acid
- Acetone

Information obtained from the Geisser 1992 Phase II report, indicates that the following OHMs were historically utilized on Lot 12 (the property adjoining the Subject Property to the east across the Annawamscutt Brook):

- Cutting oil
- Hydraulic fluid
- Plating solutions & lubricants
- Fuel oil
- Sodium & Zinc cyanides

5.4.8 Historical Water Supply Wells or Septic Systems on the Property

No evidence of historic water supply wells was discovered during the investigation of the Subject Property. A water tower was historically located on the Subject Property. The method of sewage disposal during the 1920s when the Subject Property was occupied by O'Bannon Corporation and Collins & Aikman Corporation is unknown.

5.4.9 Area History

The subject area has historically been utilized for industrial, commercial and residential development.

6.0 SITE RECONNAISSANCE

Julie V. Freshman, Senior Environmental Scientist for Resource Controls, and Daniel S. Boynes, Environmental Scientist for Resource Controls completed a Phase I ESA site reconnaissance of the Subject Property on October 26, 2012. Mr. Andrew Shuster, son of one of the Subject Property owners, was present during the site reconnaissance.

6.1 Methodology and Limiting Conditions

The periphery of the Subject Property was visually and/or physically observed, as well as the periphery of the Subject Property building. The Subject Property was viewed from all adjacent public thoroughfares. Accessible common areas, maintenance and repair areas, and a representative sample of occupant spaces were visually and/or physically observed within the interior of the Subject Property building. Due to heavy overgrown vegetation, Resource Controls was unable to inspect the entire Subject Property.

6.2 General Site Setting

6.2.1 Surface Water Characteristics

- <u>Site Topography:</u> Based on the site reconnaissance conducted by Resource Controls on October 26, 2012, the Subject Property exhibits relatively flat topography, sloping gently downward to the south and east.
- <u>Surface Water Bodies:</u> The Annawomscutt Brook runs along the eastern edge of the Subject Property and drains into Drown Cove, which is immediately south of the Subject Property.
- <u>Runoff, Stormwater Drainages/Discharges:</u> The entire Subject Property is unpaved. As such, stormwater is expected to infiltrate into the subsurface.

6.2.2 Groundwater Characteristics

- <u>Groundwater Classification:</u> RIDEM categorizes groundwater at the Subject Property as GA. GA areas are defined as "those groundwater areas which are known or presumed to be of drinking water quality but are not assigned GAA, which is presumed to be suitable for drinking without treatment."
- Wells, Spring or Seeps: Two (2) groundwater monitoring wells were installed on the Subject Property by Geisser Engineering during 1992 Phase II activities. Resource Controls was unable to locate the wells during the site reconnaissance; however, as previously noted, Resource Controls was unable to inspect the entire Subject Property due to heavy overgrown vegetation.
 - No springs or seeps were discovered by Resource Controls during the site reconnaissance or are known to exist at the Subject Property.
- <u>Approximate/Estimated Depth to Groundwater:</u> Based on gauging activities conducted by Geisser Engineering during 1992 Phase II activities, the depth to groundwater beneath the Subject Property ranges between 5.0 and 12.0 feet below grade.
- General Utilization of Groundwater Within 0.5 Miles of the Site: According to the EDR Radius Map Report and the RIGIS data distribution system's 2010 Community and Non-Community Well Head Protection Areas datalayers, there are no public water supply wells located within a half-mile radius of the Subject Property. As previously noted, a representative at the RIDOH indicated there is no searchable database that contains information on private wells within the State of Rhode Island. As previously noted, documentation with the RIDEM UST file for the property located at 115 Bay Spring Avenue indicated that a well was proposed to be installed at the 115 Bay Spring Avenue property. The purpose of the well was not disclosed.

• <u>Inferred Groundwater Flow Direction:</u> Based on site topography and site inspection activities, groundwater beneath the Subject Property is expected to flow to the south/southeast toward Drown Cove.

6.3 Exterior and Interior Observations

6.3.1 Physical Characteristics and Exterior Observations

As previously mentioned in Section 3.4, the Subject Property is currently overgrown and vacant with several concrete and brick building foundations, one (1) telephone pole and one (1) fire hydrant observed.

6.3.2 Interior Inspection

An interior inspection was not conducted as part of site assessment activities, since there are no buildings located on the Subject Property.

6.3.3 Use of Oil and/or Hazardous Materials

Resource Controls did not observe any evidence of the use of OHMs at the Subject Property during the site reconnaissance.

6.3.4 <u>Underground and Aboveground Storage Tanks (USTs and ASTs)</u>

According to historic Sanborn fire insurance maps from received from EDR, five (5) solvent storage tanks, one (1) acetone storage tank, seven (7) acid storage tanks and several spent acid storage tanks in concrete pits were historically located on the Subject Property.

Resource Controls identified one abandoned AST (approximately 275-gallon capacity), one abandoned UST (approximately 500-gallon capacity), and several concrete tank cribs in the areas of former solvent and acid storage tanks; please refer to Section 8.2 for further details. The former solvent and spent acid storage areas were severely overgrown and covered with natural organic matter, which limited the ability to fully inspect the areas.

6.3.5 Floor Drains/Sumps/Drywells/Lagoons/Pits/Ponds/Etc.

Resource Controls observed several disposal pits, building system structures, and a cistern structure on the Subject Property (please refer to Section 8.2 of this report for further details). No additional floor drains, sumps, drywells, lagoons, pits and/or ponds were observed during the site reconnaissance.

6.3.6 Polychlorinated Biphenyls (PCBs)

Resource Controls did not observe any evidence of PCB containing materials during site reconnaissance.

6.3.7 <u>Dumping of OHMs, Debris or Construction Materials</u>

Dumping of broken glass, empty 55-gallon containers and miscellaneous trash was observed throughout the Subject Property.

6.3.8 Stressed Vegetation or Staining

No areas of stressed vegetation or staining were observed during the site reconnaissance.

7.0 INTERVIEWS

7.1 Interview with Owner/Site Manager/Occupant

On October 26, 2012, Julie V. Freshman and Daniel S. Boynes of Resource Controls interviewed Mr. Andrew Shuster, son of the current owner of the Subject Property. Information provided by Mr. Shuster has been included in numerous sections throughout this report. Mr. Shuster was unaware of potential environmental hazards associated with the Subject Property.

7.2 Interview with Past owner and Occupant

Resource Controls did not interview past owners or occupants of the Subject Property.

8.0 SUBSURFACE INVESTIGATION

8.1 Rationale for Work Scope

The Phase I ESA identified the following recognized environmental conditions at the Subject Property:

- The Subject Property was historically utilized for industrial purposes including artificial leather manufacturing.
- Five (5) solvent storage tanks, seven (7) acid storage tanks, one (1) acetone storage tank and several spent acid storage tanks in concrete pits were historically located on the Subject Property. Documentation pertaining to the proper closure of these storage tanks was not discovered during site assessment activities.
- During test tit sampling on the Subject Property in 2003, a slurry and watery liquid was observed in test pit TP-4, located to the south of the former acid pit area. The slurry appeared to originate from surrounding clay piping. No sample was collected from this location and the nature of the slurry was undetermined.
- Two (2) groundwater monitoring wells were installed on the Subject Property during a subsurface investigation conducted in 1992. The groundwater sample that was submitted for laboratory analysis for VOCs, TPH and PCBs was a composite of samples from four (4) monitoring wells (two (2) on the Subject Property and two (2) on the property to the east of the Subject Property). Laboratory analytical results reported a benzene concentration of 6 ug/L, which exceeds the applicable RIDEM GA groundwater objective of 5 ug/L.
- The observation of several suspect structures and suspect disposal areas on the Subject Property.

To further investigate these concerns, Resource Controls developed a scope of work for subsurface investigation to characterize soil and groundwater conditions at the Subject Property.

8.2 Pre-Drilling Activities

Activities conducted prior to the subsurface investigation included a mark out of the proposed locations of each soil boring, contacting "DigSafe" and the Town of Barrington to mark out underground utilities in the vicinity of the Subject Property, a review of on-site utilities with Mr. Shuster, preparation of a site-specific Health and Safety Plan, and coordination of field activities with the property representative and subcontractors.

On November 20, 2012, Resource Controls utilized a global positioning (GPS) unit to assist in location potential soil boring and monitoring well locations. In addition to use of a GPS unit, McGovern Excavating conducted clearing and grubbing of the Subject Property under the oversight of Resource Controls. The clearing of the Subject Property was used to gain access to proposed sampling locations.

During the clearing and grubbing of the Subject Property, remnants of several former building foundations were located and recorded with the GPS unit. Several areas of concern were noted during the clearing of the vegetation, including the following:

- Several pits on the southern portion of the Subject Property which appeared to be manmade and contained debris, including discarded 55-gallon containers which appeared rusted. The contents of the containers are unknown.
- A partially exposed UST located in the eastern portion of the Subject Property. According to historic Sanborn maps, this UST appears to be in the approximate location of the spent acid tanks. The origin and contents of the UST are unknown.
- A pit constructed out of brick located in the eastern portion of the Subject Property. According to historic Sanborn maps, the pit appears to have been part of the Former Pickle Building (former main building). Two (2) shut-off valves and several inches of water were located at the bottom of the pit.
- An object, which appeared to be a cistern, located in the center of the Subject Property. According to historic Sanborn maps, the cistern appears to be located to the south (downgradient) of the solvent storage tanks. The cistern appeared to be several feet deep and filled with corroded containers of various sizes. Two (2) pipes were observed to be located on opposing ends of the cistern.
- A partially intact building located in the northeastern portion of the Subject Property. According to
 historic Sanborn maps, the building appears to be the former Stock House No. 2. An abandoned 275gallon AST was located along the exterior of the building. No staining was present in the vicinity of
 the AST. A corroded 55-gallon container marked "inhibited trichloroethylene" was observed
 adjacent to the abandoned 275-gallon AST. Collection of samples from this area was not feasible due
 to limited access.
- A small pit consisting of concrete construction located in the northeastern portion of the Subject Property, to the south of the partially intact former Stock House No. 2 building. Two (2) pipes were observed to be located on opposing ends of the pit.

Dumping of broken glass, empty containers and miscellaneous trash was observed throughout the Subject Property.

8.3 Drilling and Monitoring Well Installation

On November 21, 2012, Resource Controls conducted a subsurface investigation that included the installation of twelve (12) soil borings, five (5) of which were completed as groundwater monitoring wells, field screening of subsurface soil, and laboratory analysis of selected soil and groundwater samples. Soil boring and monitoring well locations were selected to address recognized environmental conditions identified during Phase I assessment activities and to maximize coverage of the Site. The locations of the soil borings and monitoring wells are depicted on the Site Plan (Figure 2).

New England Geotech of Rhode Island utilized GeoprobeTM "direct-push" methods to install the borings. The soil borings were advanced to depths ranging between 10 and 15 feet below grade. Drilling logs, which include lithologic descriptions, photoionization detector (PID) results and well construction details, are included as Appendix A. Lithologic descriptions were based on soil collected continuously from each boring using dedicated acetate soil sampling liners.

The five (5) monitoring wells were constructed of two-inch diameter, thread-coupled PVC materials. A 15-foot length of machine-cut, 0.01-inch slot well screen was installed at approximately five (5) feet below the observed water table elevation to obtain an adequate and representative water supply for future well sampling activities in monitoring wells MW-1, MW-2 and MW-5. A 12-foot length of machine-cut, 0.01-inch slot well screen was installed at approximately five (5) feet below the observed water table elevation to obtain an adequate and representative water supply for future well sampling activities in monitoring wells MW-3 and MW-4. The monitoring wells were completed with a standpipe to limit disturbance and surface water intrusion. Following installation, the monitoring wells were developed by removing up to five (5) well volumes of water from the well with a peristaltic pump.

8.4 Soil Sampling and Analysis

Each soil sample was observed and described by a Resource Controls scientist in accordance with a modified Burmister classification system and field screened for the presence of volatile organic vapors using a 10.6 eV PID calibrated with an isobutylene standard to read "as benzene". Soil descriptions and PID readings are documented on the drilling logs, which are included in Appendix A.

Based on field observations and proximity to locations of identified recognized environmental conditions, selected soil samples were submitted for laboratory analysis of volatile organic compounds (VOCs) by EPA Method 8260B, polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270 and RCRA 8 metals. The soil samples were collected in clean containers provided by the laboratory. All soil samples were labeled in the field and transported to the laboratory under standard chain-of-custody protocol.

Laboratory analytical results for the soil samples collected from S-6/MW-4 indicated concentrations of arsenic, benzo(a)pyrene and dibenzo(a,h)anthracene above the RIDEM Residential and Industrial/Commercial (I/C) Direct Exposure Criteria (DEC). Laboratory analytical results for the soil samples collected from S-6/MW-4 indicated concentrations of benzo(a)anthracene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene and ideno(1,2,3-cd)pyrene above the RIDEM Residential DEC but below the I/C DEC.

No other contaminants were detected at levels above the RIDEM Residential and/or I/C DEC. The soil analytical results are summarized in Table 1; a copy of the laboratory report is included in Appendix F.

8.5 Groundwater Sampling and Analysis

On November 26, 2012 groundwater samples were collected from monitoring wells MW-1 through MW-5. Resource Controls utilized a peristaltic pump and dedicated polyethylene tubing to collect the groundwater samples from each well. Prior to sampling, a minimum of three well volumes was purged from each of the monitoring wells.

Samples collected from monitoring wells MW-1 through MW-5 were submitted for laboratory analysis of VOCs by EPA Methods 8260B. In addition to VOCs, samples collected from monitoring wells MW-3 through MW-5 were submitted for laboratory analysis of semi-volatile organic compounds (SVOCs) and RCRA-8 metals. Samples were collected in clean containers provided by the laboratory. All groundwater samples were labeled in the field and transported to the laboratory under standard chain-of-custody protocol.

Laboratory analytical results for groundwater samples collected from MW-3 indicated a concentration of lead above the RIDEM GA Groundwater Objective. Laboratory analytical results for groundwater samples collected from MW-4 indicated a concentration of arsenic above the RIDEM GA Groundwater Objectives.

No other contaminants were detected at levels above the RIDEM GA Groundwater Objectives. The groundwater analytical results are summarized in Table 2; a copy of the laboratory report is included in Appendix F.

8.6 Site Hydrogeology

On November 26, 2012, Resource Controls gauged the depth to the water table at the Subject Property and surveyed the top of casing elevation (TOC) of each monitoring well. The monitoring well TOC elevations were surveyed to an arbitrary benchmark elevation of 100.00 feet. Based on well gauging data, depth to groundwater at the Subject Property ranges from approximately 6.30 feet below grade to 12.59 feet below grade, and the inferred groundwater flow direction is to the southeast. A well monitoring form documenting the gauging event is included as Appendix E. A Water Table Elevation Contour Plan is included as Figure 6.

9.0 DATA GAPS

The following is a summary of the data gaps encountered during the completion of this Phase I ESA:

Data Gap	Evaluation of significance to the overall findings of the investigation	Attempts that were made to access the missing information	Listing of any alternative sources that were used to help fill the data gap
Land title records for the Subject Property were not reviewed by the User.	This data gap is not significant to the overall findings of the investigation, as our overall findings, conclusions and recommendations would remain the same regardless of the review of land title records.	A review of land title records was beyond the agreed upon scope of this Phase I ESA, as outline in our contract dated October 11, 2012. Resource Controls ordered an environmental database report from EDR which included a search for environmental land use restrictions (ELURs) on the Subject Property. According to this report, no ELURs have been recorded on the Subject Property.	None

Current conditions of the Subject Property inhibit investigation of the subsurface in areas of interest.	This data gap is significant to the overall findings of the investigation due to the inability to collect samples from areas of interest, particularly the partially intact building and disposal areas located in the south and southeastern portions of the Subject Property.	Resource Controls attempted to access all areas of the Subject Property during the clearing and grubbing of the Subject Property. Due the presence of former building structures and disposal pits, not all areas were able to be accessed.	None
--	---	---	------

10.0 FINDINGS

Based on assessment activities conducted at the Subject Property, Resource Controls has identified the following environmentally significant findings:

- The Subject Property is currently vacant wooded land and has been unoccupied since the 1950s/1960s.
- The Subject Property was historically utilized for industrial purposes including artificial leather manufacturing.
- Five (5) solvent storage tanks, seven (7) acid storage tanks, one (1) acetone storage tank and several spent acid storage tanks in concrete pits were historically located on the Subject Property. Documentation pertaining to the proper closure of these storage tanks was not discovered during site assessment activities.
- In 1992, a subsurface investigation was conducted on the Subject Property and the property adjoining the Subject Property to the east. Laboratory analytical results for soil samples collected from the Subject Property did not indicate exceedances of the applicable RIDEM direct exposure criteria. Two (2) groundwater monitoring wells were installed on the Subject Property. The groundwater sample that was submitted for laboratory analysis for VOCs, TPH and PCBs was a composite of samples from four (4) monitoring wells (two (2) on the Subject Property and two (2) on the property to the east of the Subject Property). Laboratory analytical results reported a benzene concentration of 6 ug/L, which exceeds the applicable RIDEM GA groundwater objective of 5 ug/L.
- In 2003, test pit sampling was conducted on the Subject Property. A slurry and watery liquid was
 observed in test pit TP-4, located to the south of the former acid pit area. The slurry appeared to
 originate from surrounding clay piping. No sample was collected from this location and the nature of
 the slurry was undetermined.
- Based on well gauging data collected during the 1992 subsurface investigation, the depth to groundwater beneath the Subject Property is expected to range from five (5) to 12 feet below grade, and the inferred groundwater flow direction is to the southeast.

- On November 20, 2012, during the clearing and grubbing of the Subject Property, several areas of concern were noted during the clearing of the vegetation, including several pits on the southern portion of the Subject Property which appeared to be manmade and contained debris (including discarded 55-gallon containers); a partially exposed UST located in the eastern portion of the Subject Property; a brick constructed pit located in the eastern portion of the Subject Property containing two (2) shut-off valves and several inches of water; an object, which appeared to be a cistern several feet deep and filled with corroded containers of various sizes, located in the center of the Subject Property; an abandoned 275-gallon AST and a corroded 55-gallon container marked "inhibited trichloroethylene" located adjacent to the partially intact building located on the northeastern portion of the Subject Property; a pit of concrete construction located in the northeastern portion of the Subject Property to the south of the partially intact former Stock House No. 2 building, and; dumping of broken glass, empty 55-gallon containers and miscellaneous trash throughout the Subject Property.
- Laboratory analytical results for the soil samples collected from S-6/MW-4 indicated concentrations of arsenic, benzo(a)pyrene and dibenzo(a,h)anthracene above the RIDEM Residential and I/C DEC. Laboratory analytical results for the soil sample collected from S-6/MW-4 indicated concentrations of benzo(a)anthracene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene and ideno(1,2,3-cd)pyrene above the RIDEM Residential DEC but below the I/C DEC.
- Laboratory analytical results for groundwater samples collected from MW-3 indicated a concentration of lead above the RIDEM GA Groundwater Objectives.
- Laboratory analytical results for groundwater samples collected from MW-4 indicated a concentration of arsenic above the RIDEM GA Groundwater Objectives.

11.0 CONCLUSIONS AND RECOMMENDATIONS

Resource Controls has performed a Phase I Environmental Site Assessment in conformance with the scope and limitations of ASTM Practice E 1527-05 of 90 Bay Spring Avenue, in the Town of Barrington, Rhode Island (the Subject Property). Any exceptions to, or deletions from, this practice are described in Section 12.0 of this report. This assessment has revealed the following recognized environmental conditions (RECs) in connection with the Subject Property:

- The Subject Property was historically utilized for industrial purposes including artificial leather manufacturing.
- Five (5) solvent storage tanks, seven (7) acid storage tanks, one (1) acetone storage tank and several spent acid storage tanks in concrete pits were historically located on the Subject Property. Documentation pertaining to the proper closure of these storage tanks was not discovered during site assessment activities.
- During test tit sampling on the Subject Property in 2003, a slurry and watery liquid was observed in test pit TP-4, located to the south of the former acid pit area. The slurry appeared to originate from surrounding clay piping. No sample was collected from this location and the nature of the slurry was undetermined.

- Two (2) groundwater monitoring wells were installed on the Subject Property during a subsurface investigation conducted in 21992. The groundwater sample that was submitted for laboratory analysis for VOCs, TPH and PCBs was a composite of samples from four (4) monitoring wells (two (2) on the Subject Property and two (2) on the property to the east of the Subject Property). Laboratory analytical results reported a benzene concentration of 6 ug/L, which exceeds the applicable RIDEM GA groundwater objective of 5 ug/L.
- In November 2012 several areas of concern, including pits, tanks, cisterns and drums, were noted during the clearing of the vegetation on portions of the Subject Property.

To further investigate the above-noted RECs, Resource Controls performed a Phase II ESA in accordance with the American Society for Testing & Materials (ASTM) Practice E 1903-97, "Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process," published February 1998 (re-approved 2002); and our contracts dated October 11, 2012 and November 19, 2012. The subject of this investigation is the property located at 90 Bay Spring Avenue in Barrington, Rhode Island. Based on the results of investigations performed, Resource Controls offers the following conclusions:

- Laboratory analytical results for the soil samples collected from S-6/MW-4 indicated concentrations of arsenic, benzo(a)pyrene and dibenzo(a,h)anthracene above the RIDEM Residential and I/C DEC. Laboratory analytical results for the soil samples collected from S-6/MW-4 indicated concentrations of benzo(a)anthracene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene and ideno(1,2,3-cd)pyrene above the RIDEM Residential DEC but below the I/C DEC.
- Laboratory analytical results for groundwater samples collected from MW-3 indicated a concentration of lead above the RIDEM GA Groundwater Objectives.
- Laboratory analytical results for groundwater samples collected from MW-4 indicated a concentration of arsenic above the RIDEM GA Groundwater Objectives.

Based on the preceding, Resource Controls offers the following recommendations:

• In accordance with Section 5.00 of the RIDEM Remediation Regulations, the owner, Bay Spring Reality Co., upon obtaining knowledge of the release(s), should notify the RIDEM of the reportable concentrations in soil using a Hazardous Material Release Notification Form. A copy of this form has been included within Appendix D, Supporting Documentation. In accordance with Section 5.01 of Remediation Regulations, notification to the RIDEM must be made no later than 15 days from the discovery/knowledge of the release. It is anticipated that the RIDEM shall require a Site Investigation to further delineate the identified contamination and propose a remedial action to resolve the concerns identified.

Resource Controls is available to assist with the management of these recommendations.

12.0 DEVIATIONS

The Phase I ESA contains no deletions and/or deviations from or additions to ASTM Practice E 1527-05.

13.0 REFERENCES

13.1 Interviews Conducted

- Mr. Andrew Shuster, son of Subject Property owner (10/26/2012)
- Representative, Town of Barrington Tax Assessor's Office (10/26/2012)
- Representative, Town of Barrington Building Division (10/26/2012)
- Representative, Town of Barrington Planning Department (10/26/2012)
- Representative, Town of Barrington Clerk's Office (10/26/2012)
- Representative, Town of Barrington Fire Department (11/9/2012)
- Representative, Town of Barrington Public Works Dept. (11/9/2012)
- Representative, Rhode Island Department of Health (11/8/2012)

13.2 Resources Reviewed

- EDR Report (10/24/2012)
- EDR City Directory Abstract (10/25/2012)
- EDR Certified Sanborn Map Report (10/24/2012)
- Historical aerial photographs from RIGIS (11/6/2012)
- Rhode Island Department of Environmental Management records (11/7/2012)
- A Phase II Oil and Hazardous Waste Assessment completed by Geisser Engineering Corporation dated February, 1992 for 90 Bay Spring Avenue in Barrington, Rhode Island (11/6/2012)
- An Update Environmental Report completed by Geisser Engineering Corporation dated January, 1995 for 90 Bay Spring Avenue in Barrington, Rhode Island (11/6/2012)
- A letter regarding "Test pits on Bay Spring Street Property" and dated June 30, 2003 for 90 Bay Spring Avenue in Barrington, Rhode Island (11/6/2012)

14.0 ENVIRONMENTAL PROFESSIONAL STATEMENT AND SIGNATURE

I declare that to the best of my professional knowledge and belief, I meet the definition of Environmental Professional as defined in 312.10 of 40 CFR 312 and I have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the Subject Property. I have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Mark J. House

Vice President and Principal Scientist

15.0 LIMITATIONS

This report addresses the environmental characteristics of the Subject Property with regard to the release of or possible presence of oil and/or hazardous materials. It is not intended to guarantee that the Subject Property is or is not free from conditions, materials or substances that could adversely impact the environment or pose a threat to public health and safety. Rather, it is intended to be used as a summary of available information on existing conditions, the conclusions of which are based upon a reasonable review of information found in accordance with normally accepted industry standards and protocols, subject to and as limited by the scope and budget established with the client. Should further research on the Subject Property be warranted, Resource Controls must review any additional data obtained and the conclusions presented herein may be modified accordingly.

This report in total has been prepared on behalf of and for the exclusive use of Donegan & Associates, Ltd, solely for use in an environmental evaluation of the Subject Property. This report or any part thereof, may not be used, relied upon or reproduced by any party other than Donegan & Associates, Ltd, without first obtaining written permission from Resource Controls.

Conclusions stated herein are based on the available information summarized herein and refer only to be specific Subject Property investigated. No warranty is implied or given and the report is subject to the agreement for the work, including the Standard Terms and Conditions attached to said agreement, as well as Additional Limitations bound herein.

LOCUS MAP

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/01/2012	1

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	3A

Data Sources: Rhode Island Geographic Information System (RIGIS), Town of Barrington Tax Map No. 2 updated through December 31, 2011.

1951-52 AERIAL PHOTOGRAPH

JVF	7131	11/06/2012	3B
DRAWN BY	PROJECT	PRINT DATE	FIGURE

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	3C

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	3D

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	3E

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	3F

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	3G

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	4A

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	4B

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	4C

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/06/2012	4D

1892 USGS TOPOGRAPHIC MAP

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/01/2012	5A

Source: Rhode Island Geographic Information System (RIGIS) 1939 USGS Topographic Map - Bristol, Rhode Island-Massachusetts Quad

1939 USGS TOPOGRAPHIC MAP

DRAWN BY	PROJECT	PRINT DATE	FIGURE
JVF	7131	11/01/2012	5B

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS

DONEGAN & ASSOCIATES 90 BAY SPRING AVENUE BARRINGTON, RHODE ISLAND

Sample Identification	S-2	S-3/MW-2	S-6/MW-4	S-8	RIDEM So	il Criteria			
Depth Sampled (feet)	8.3	5.5	5.0	5.0	Direct Expos				
Date Sampled	11/21/2012	11/21/2012	11/21/2012	11/21/2012	Residential	I/C			
PHOTOIONIZATION DETECTOR HE		REENING RES	SULTS (ppmv)						
Total Organic Vapors	2.2	57.1	0.4	79.5	NS	NS			
VOLATILE ORGANIC COMPOUNDS	(mg/kg)								
1,2,4-Trimethylbenzene	0.0080	0.0321	<0.0057	<0.0027	NS	NS			
1,3,5-Trimethylbenzene	0.0107	0.0165	< 0.0057	< 0.0027	NS	NS			
Acetone	0.0968	9.93	<0.0568	< 0.0266	7,800	10,000			
Chloroform	<0.0041	0.0174	< 0.0057	< 0.0027	1.2	940			
Ethylbenzene	<0.0041	0.325	< 0.0057	<0.0027	71	10,000			
Isopropylbenzene	<0.0041	0.0426	< 0.0057	< 0.0027	27	10,000			
Naphthalene	0.0079	0.11	< 0.0057	<0.0027	54	10,000			
Styrene	<0.0041	0.127	<0.0057	<0.0027	13	190			
Toluene	<0.0041	0.0452	<0.0057	<0.0027	190	10,000			
Xylene O	< 0.0041	1.34	< 0.0057	< 0.0027	110	10,000			
Xylene P,M	<0.0081	2.11	<0.0114	<0.0053	110	10,000			
Xylenes (Total)	<0.0122	3.45	< 0.017	<0.008	110	10,000			
All other VOCs	ND	ND	ND	ND	NS	NS			
TOTAL METALS (mg/kg)									
Arsenic			<u>18.9</u>	<1.24	7	7			
Barium			65.6	5.8	5,500	10,000			
Cadmium			<0.57	<0.5	39	1,000			
Chromium (Total)	-		12.9	2.1	1400	10,000			
Lead	-		79.9	<5	150	500			
Mercury	-		1.96	0.052	23	610			
Selenium	-		<5.6	<5	390	10,000			
Silver	-	-	<0.57	<0.5	200	10,000			
POLYNUCLEAR AROMATIC HYDRO	CARBONS / S	EMI-VOLATILI	ORGANIC CO	OMPOUNDS (m	ng/kg)				
Anthracene			1.11	< 0.36	35	10,000			
Benzo(a)anthracene			3.34	< 0.36	0.9	7.8			
Benzo(a)pyrene			<u>2.27</u>	<0.181	0.4	0.8			
Benzo(b)fluoranthene			3.83	< 0.36	0.9	7.8			
Benzo(g,h,i)perylene			2.05	< 0.36	0.8	10,000			
Benzo(k)fluoranthene			1.17	< 0.36	0.9	78			
Chrysene			4.09	<0.181	0.4	780			
Dibenzo(a,h)Anthracene	-		<u>0.910</u>	<0.181	0.4	0.8			
Fluoranthene			7.25	< 0.36	20	10,000			
Indeno(1,2,3-cd)Pyrene			1.81	< 0.36	0.9	7.8			
Naphthalene	-		0.639	< 0.36	54	10,000			
Phenanthrene	-	-	5.81	< 0.36	40	10,000			
Pyrene			5.41	< 0.36	13	10,000			
All other SVOCs			ND	ND	NS	NS			
NOTES:			IOTES:						

ppmv = parts per million by volume.

mg/kg = milligrams per kilogram.

-- = Not analyzed.

I/C = Industrial/Commercial

NS = No standard promulgated.

ND = Not detected above laboratory reporting limit.

Bold concentrations exceed laboratory reporting limits.

Red concentrations exceed the applicable RIDEM Residential Direct Exposure Criteria.

Red underlined concentrations exceed the applicable RIDEM I/C Direct Exposure Criteria.

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

DONEGAN & ASSOCIATES 90 BAY SPRING AVENUE BARRINGTON, RHODE ISLAND

Samp	e Identification	MW-1	MW-2	MW-3	MW-4	MW-5	RIDEM Groundw	vater Objectives
	Date Sampled	11/26/2012	11/26/2012	11/26/2012	11/26/2012	11/26/2012	GA Objectives	GB UCLs
OLATILE ORGANIC COMPOUNDS (ug	L)							
1,1,1-Trichloroethane		<1	<0.1	1.2	<1	<1	200	68,000
1,1-Dichloroethane		<1	<0.1	3	<1	<1	NS	NS
1,2,4-Trimethylbenzene		<1	<0.1	1	<1	4.5	NS	NS
1,3,5-Trimethylbenzene		<1	<0.1	<1	<1	139	NS	NS
1-Isopropyltoluene		<1	<0.1	<1	<1	9.4	NS	NS
Acetone		<10	10.4	102	<10	<10	NS	NS
Benzene		<1	<0.1	1.1	<1	<1	5	18,000
n-Propylbenzene		<1	<0.1	<1	<1	1.3	NS	NS
sec-Butylbenzene		<1	<0.1	<1	<1	1.3	NS	NS
Toluene		<1	<0.1	1.1	<1	<1	1,000	21,000
Kylene O		<1	1	2.2	<1	<1	10,000	NS
Kylene P,M		<2	<0.2	3.6	<2	<2	10,000	NS
Kylenes (Total)		<3	<0.3	5.8	<3	<3	NS	NS
All other VOCs		ND	ND	ND	ND	ND	NS	NS
SEMI-VOLATILE ORGANIC COMPOUND	S (ug/L)							
-Methylnaphthalene				<0.2	< 0.21	2.63	NS	NS
Acenaphthene				<0.2	< 0.21	0.29	NS	NS
Acenaphthylene				0.3	< 0.21	<0.2	NS	NS
Benzo(a)anthracene				<0.05	0.08	<0.05	NS	NS
Benzo(a)pyrene				0.08	< 0.05	<0.05	0.2	NS
Benzo(b)fluoranthene				0.15	0.1	<0.05	NS	NS
Benzo(k)fluoranthene				0.05	<0.05	<0.05	NS	NS
Chrysene				0.09	0.1	<0.05	NS	NS
ndeno(1,2,3-cd)Pyrene				0.07	<0.05	<0.05	NS	NS
Naphthalene				0.62	<0.21	1.27	100	NS
All other SVOCs				ND	ND	ND	NS	NS
RCRA 8 METALS (mg/L)								
Arsenic		-		0.0065	0.0146	<0.0025	0.01	NS
Barium				0.096	0.096	0.035	2	NS
Cadmium				<0.0025	<0.0025	<0.0025	0.005	NS
Chromium				<0.01	0.01	<0.01	0.1	NS
Lead				0.053	0.012	<0.01	0.015	NS
Mercury				<0.0005	<0.0005	<0.0005	0.002	NS
Selenium		-		<0.025	<0.025	<0.025	0.05	NS
Silver				< 0.005	< 0.005	< 0.005	NS	NS

NOTES:

ug/L = micrograms per liter.

mg/L = milligrams per liter.

NS = No standard promulgated.

ND = Not detected above laboratory reporting limit.

-- = Not analyzed.

Bold concentrations exceed concentrations exceed laboratory reporting limits.

Red concentrations exceed the applicable RIDEM GA Groundwater Objectives.

APPENDIX A

Site Photographs

1) View of the metal cistern-like object located in the center of the Subject Property.

3) View of the brick-constructed pit located on the eastern portion of the Subject Property.

2) View of the former acid tank storage area with concrete holdings presently in place.

4) View of the partially exposed UST located on the eastern portion of the Subject Property.

5) View of the concrete-constructed pit located on the northeastern portion of the Subject Property.

7) View of a discarded 55-gallon container and miscellaneous dumping observed throughout the Subject Property.

6) View of an abandoned AST located on the northeastern portion of the Subject Property.

8) View of the several pits located along the southern portion of the Subject Property.

APPENDIX B

EDR Radius Map Report

Donegan, Bay Spring Ave, Barrington 90 Bay Spring Avenue Barrington, RI 02806

Inquiry Number: 3440007.2s

October 24, 2012

EDR Summary Radius Map Report

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary	ES1
Overview Map.	2
Detail Map.	3
Map Findings Summary.	4
Map Findings.	7
Orphan Summary.	42
Government Records Searched/Data Currency Tracking.	GR-1
GEOCHECK ADDENDUM	
Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting SSURGO Soil Map.	A-5
Physical Setting Source Map	A-12
Physical Setting Source Map Findings.	A-14
Physical Setting Source Records Searched	A-20

Thank you for your business.Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2012 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-05) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

90 BAY SPRING AVENUE BARRINGTON, RI 02806

COORDINATES

Latitude (North): 41.7474000 - 41° 44′ 50.64″ Longitude (West): 71.3464000 - 71° 20′ 47.04″

Universal Tranverse Mercator: Zone 19 UTM X (Meters): 304898.5 UTM Y (Meters): 4624178.5

Elevation: 14 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property: TP

Source: USGS 7.5 min quad index

Target Property: N

Source: USGS 7.5 min quad index

AERIAL PHOTOGRAPHY IN THIS REPORT

Photo Year: 2010 Source: USDA

MAPPED SITES SUMMARY

Target Property Address: 90 BAY SPRING AVENUE BARRINGTON, RI 02806

Click on Map ID to see full detail.

MAP ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	RELATIVE ELEVATION	DIST (ft.) DIRECTION
A1	VIKING INDUSTRIES IN	90 BAY SPRING AVE	FINDS	LLLV/(IIOIV	TP
A2	HILLS TIRE & AUTO	90 BAY SPRING AVE	RCRA-NonGen, FINDS		TP
A3	HILLS TIRE & AUTO	90 BAY SPRING AVENUE	RCRA-NonGen		TP
A4		90 BAY SPRING RD	SPILLS		TP
A5	RAINBOW SPRING	90 BAY SPRING AVE	FINDS		TP
A6	PILLING CHAIN COMPAN	90 BAY SPRING AVE	MANIFEST		TP
A7	PILLING MFG., INC.	90 BAY SPRING AVE	UST		TP
A8	BAN REALTY PILLING C	90 BAY SPRING AVENUE	RCRA-NonGen, FINDS		TP
9		41 ADAMS AVE	SPILLS	Higher	20, WSW
10	BAY SPRING SERVICE G	115 BAY SPRING AVE	UST	Higher	164, North
B11		75 SPRING STREET	SPILLS	Lower	429, WSW
B12		51 SPRING ST	SPILLS	Lower	465, WSW
13	MARTEK CORP	60 BAY SPRING AVE	RCRA-NonGen, FINDS, MANIFEST	Higher	512, ENE
14	H. BICKFORD LANG	27 ALFRED DROWNE RD	UST	Higher	558, SE
C15	CRIS REALTY COMPANY	166 BAY SPRING AVE	UST	Lower	566, NW
C16	RHODE ISLAND LACE WO		UST	Higher	681, WNW
C17	RI LACE WORKS (FORME	BAY SPRING & NARRAGA	SHWS, AUL	Lower	795, NW
D18	WEST BARRINGTON AUTO	9 BAY SPRING AVE	UST	Higher	1019, East
D19	R I LACE WORKS DIV	BAY SPRING AVE	RCRA-NonGen, FINDS, MANIFEST, MANIFEST	Higher	1088, East
E20	COVE HAVEN CORPORATI	101 NARRAGANSETT AVE	MANIFEST	Higher	1104, NNW
E21	COVE HAVEN MARINA	101 NARRAGANSETT AVE	MANIFEST	Higher	1104, NNW
E22	COVE HAVEN CORP	101 NARRAGANSETT AVE	RCRA-SQG, FINDS, UST, MANIFEST	Higher	1104, NNW
E23		101 NARRAGANSETT AVE	SPILLS	Higher	1104, NNW
24		15 ALLEN AVE	SPILLS	Higher	1151, NW
25	PHOTOGRAPHIC CHEM RE	2 LESLIE AVE	RCRA-NonGen, FINDS, MANIFEST	Lower	1212, WNW
F26	LAVIN'S MARINA	110 SHORE DRIVE	LUST	Higher	1297, West
F27	LIGHTHOUSE MARINA, L	110 SHORE DR	UST	Higher	1297, West
28		8 ALDEN ROAD	SPILLS	Higher	2187, SE

EXECUTIVE SUMMARY

TARGET PROPERTY SEARCH RESULTS

The target property was identified in the following records. For more information on this property see page 7 of the attached EDR Radius Map report:

Site	Database(s)	EPA ID
VIKING INDUSTRIES IN 90 BAY SPRING AVE BARRINGTON, RI 02806	FINDS	N/A
HILLS TIRE & AUTO 90 BAY SPRING AVE BARRINGTON, RI 02806	RCRA-NonGen FINDS	RI5000001248
HILLS TIRE & AUTO 90 BAY SPRING AVENUE BARRINGTON, RI 02806	RCRA-NonGen	RID987469798
90 BAY SPRING RD 90 BAY SPRING RD BARRINGTON, RI	SPILLS	N/A
RAINBOW SPRING 90 BAY SPRING AVE BARRINGTON, RI 02806	FINDS	N/A
PILLING CHAIN COMPAN 90 BAY SPRING AVE W BARRINGTON, RI 02806	MANIFEST	N/A
PILLING MFG., INC. 90 BAY SPRING AVE BARRINGTON, RI	UST	N/A
BAN REALTY PILLING C 90 BAY SPRING AVENUE BARRINGTON, RI 02806	RCRA-NonGen FINDS	RID001197326

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

EXECUTIVE SUMMARY

STANDARD ENVIRONMENTAL RECORDS

Federal RCRA generators list

RCRA-SQG: A review of the RCRA-SQG list, as provided by EDR, and dated 03/15/2012 has revealed that there is 1 RCRA-SQG site within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
COVE HAVEN CORP	101 NARRAGANSETT AVE	NNW 1/8 - 1/4 (0.209 mi.)	E22	11

State- and tribal - equivalent CERCLIS

SHWS: A review of the SHWS list, as provided by EDR, and dated 07/30/2012 has revealed that there is 1 SHWS site within approximately 1 mile of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
RI LACE WORKS (FORME Facility Status: Inactive	BAY SPRING & NARRAGA	NW 1/8 - 1/4 (0.151 mi.)	C17	10

State and tribal leaking storage tank lists

LUST: A review of the LUST list, as provided by EDR, and dated 08/02/2012 has revealed that there is 1 LUST site within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page	
LAVIN'S MARINA	110 SHORE DRIVE	W 1/8 - 1/4 (0.246 mi.)	F26	11	
Facility Status: Inactive; Investigation/Remed. Complete, No Further Action Required					

State and tribal registered storage tank lists

UST: A review of the UST list, as provided by EDR, and dated 08/02/2012 has revealed that there are 7 UST sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
BAY SPRING SERVICE G	115 BAY SPRING AVE	N 0 - 1/8 (0.031 mi.)	10	8
H. BICKFORD LANG	27 ALFRED DROWNE RD	SE 0 - 1/8 (0.106 mi.)	14	9
RHODE ISLAND LACE WO		WNW 1/8 - 1/4 (0.129 mi.)	C16	9
WEST BARRINGTON AUTO	9 BAY SPRING AVE	E 1/8 - 1/4 (0.193 mi.)	D18	10
COVE HAVEN CORP	101 NARRAGANSETT AVE	NNW 1/8 - 1/4 (0.209 mi.)	E22	11
LIGHTHOUSE MARINA, L	110 SHORE DR	W 1/8 - 1/4 (0.246 mi.)	F27	12
Lower Elevation	Address	Direction / Distance	Map ID	Page
CRIS REALTY COMPANY	166 BAY SPRING AVE	NW 0 - 1/8 (0.107 mi.)	C15	9

EXECUTIVE SUMMARY

State and tribal institutional control / engineering control registries

AUL: A review of the AUL list, as provided by EDR, and dated 08/08/2012 has revealed that there is 1 AUL site within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
RI LACE WORKS (FORME	BAY SPRING & NARRAGA	NW 1/8 - 1/4 (0.151 mi.)	C17	10

ADDITIONAL ENVIRONMENTAL RECORDS

Records of Emergency Release Reports

SPILLS: A review of the SPILLS list, as provided by EDR, and dated 11/15/2004 has revealed that there are 6 SPILLS sites within approximately 0.5 miles of the target property.

Address	Direction / Distance	Map ID	Page
41 ADAMS AVE	WSW 0 - 1/8 (0.004 mi.)	9	8
101 NARRAGANSETT AVE	NNW 1/8 - 1/4 (0.209 mi.)	E23	11
15 ALLEN AVE	NW 1/8 - 1/4 (0.218 mi.)	24	11
8 ALDEN ROAD	SE 1/4 - 1/2 (0.414 mi.)	28	12
Address	Direction / Distance	Map ID	Page
75 SPRING STREET 51 SPRING ST	WSW 0 - 1/8 (0.081 mi.) WSW 0 - 1/8 (0.088 mi.)	B11 B12	8 9
	41 ADAMS AVE 101 NARRAGANSETT AVE 15 ALLEN AVE 8 ALDEN ROAD Address	41 ADAMS AVE 101 NARRAGANSETT AVE 15 ALLEN AVE 8 ALDEN ROAD Address 75 SPRING STREET WSW 0 - 1/8 (0.004 mi.) NNW 1/8 - 1/4 (0.209 mi.) NW 1/8 - 1/4 (0.218 mi.) SE 1/4 - 1/2 (0.414 mi.) WSW 0 - 1/8 (0.081 mi.)	41 ADAMS AVE WSW 0 - 1/8 (0.004 mi.) 9 101 NARRAGANSETT AVE NNW 1/8 - 1/4 (0.209 mi.) E23 15 ALLEN AVE NW 1/8 - 1/4 (0.218 mi.) 24 8 ALDEN ROAD SE 1/4 - 1/2 (0.414 mi.) 28 Address Direction / Distance Map ID 75 SPRING STREET WSW 0 - 1/8 (0.081 mi.) B11

Other Ascertainable Records

MANIFEST: A review of the MANIFEST list, as provided by EDR, and dated 12/31/2011 has revealed that there are 4 MANIFEST sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
MARTEK CORP	60 BAY SPRING AVE	ENE 0 - 1/8 (0.097 mi.)	13	9
R I LACE WORKS DIV	BAY SPRING AVE	E 1/8 - 1/4 (0.206 mi.)	D19	10
COVE HAVEN CORP	101 NARRAGANSETT AVE	NNW 1/8 - 1/4 (0.209 mi.)	E22	11
Lower Elevation	Address	Direction / Distance	Map ID	Page
PHOTOGRAPHIC CHEM RE	2 LESLIE AVE	WNW 1/8 - 1/4 (0.230 mi.)	25	11

Count: 26 records. ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)
BARRINGTON	89101717	BARRINGTON HARBOR AT END OF MATHEW	BARRINGTON HARBOR AT END OF MA		ERNS
BARRINGTON	877270	BARRINGTON HARBOR, SOUTH SHORE BUO	BARRINGTON HARBOR, SOUTH SHORE		ERNS
BARRINGTON	92268823	BARRINGTON RIVER YACHT CLUB	BARRINGTON RIVER YACHT CLUB		ERNS
BARRINGTON	S109823703	NATIONAL GRID - BRADFORD RD. POLE	9 BRADFORD ST	02806	SHWS
BARRINGTON	S109790905	JPR RALTY BARRINGTON SHOPPING C	CONTY RD		MANIFEST
BARRINGTON	S109790285	BARRINGTON GETTY	227 COUNTRY RD		MANIFEST
BARRINGTON	S109791639	BARRINGTON POLICE	COUNTY RD		MANIFEST
BARRINGTON	S105082091	RI DOT - COUNTY RD	COUNTY RD		SHWS
BARRINGTON	S109823710	RICO HEADER TOOLS FACILITY	METACOM AVE	02806	SHWS
BARRINGTON	S109823688	BRISTOL NIKE CONTROL (PR-38C) NO F	METACOM AVE	02806	SHWS
BARRINGTON	S109823689	BRISTOL NIKE LAUNCH (PR-38L)	METACOM AVE	02806	SHWS
BARRINGTON	S109823690	BRISTOL NIKE LAUNCHER AREA	METACOM AVE	02806	SHWS
BARRINGTON	S109578285	BAYSIDE YMCA PARKING LOT	OFF OF WEST ST		SHWS
BARRINGTON	S110043401	BARRINGTON LANDFILL #1	PRINCESS HILL AVE		SWF/LF
BARRINGTON	S110043402	BARRINGTON LANDFILL #2	PRINCESS HILL AVE		SWF/LF
BARRINGTON	S110043347	BARRINGTON LANDFILL #2	PRINCESS HILL AVE		LCP
BARRINGTON	S110043346	BARRINGTON LANDFILL #1	PRINCESS HILL AVE		LCP
BARRINGTON	S108852221	BARRINGTON LANDFILL NO. 1	PRINCESS HILL AVE		SHWS
BARRINGTON	S109790298	BARRINGTON HIGHWAY DEPT	SEE RCRIS	02806	MANIFEST
BARRINGTON	S110043349	BARRINGTON LANDFILL #4	UPLAND WAY		LCP
BARRINGTON	S110043348	BARRINGTON LANDFILL #3	UPLAND WAY		LCP
BARRINGTON	S109015327	BARRINGTON LANDFILL NO. 3	UPLAND WAY		SHWS
BARRINGTON	S110043404	BARRINGTON LANDFILL #4	UPLAND WAY		SWF/LF
BARRINGTON	S110043403	BARRINGTON LANDFILL #3	UPLAND WAY		SWF/LF
BARRINGTON	S105176693	BARRINGTON COMPOST FACILITY	WAMPANOAG TRL		SWF/LF
RIVERSIDE	S109791192	WALLETT AVE X-TRA MART	973 WILLETT AVE	02915	MANIFEST

OVERVIEW MAP - 3440007.2s

LAT/LONG: 41 7474 / 71 3464

Julie Freshman

INQUIRY #: 3440007.2s DATE:

October 24, 2012 12:12 pm Copyright © 2012 EDR, Inc. © 2010 Tele Atlas Rel. 07/2009.

DETAIL MAP - 3440007.2s

Barrington RI 02806 INQUIRY #: 3440007.2s LAT/LONG: 41.7474 / 71.3464 DATE: October 24, 2012 12:14 pm

Copyright © 2012 EDR, Inc. © 2010 Tele Atlas Rel. 07/2009.

MAP FINDINGS SUMMARY

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
STANDARD ENVIRONMEN	TAL RECORDS							
Federal NPL site list								
NPL Proposed NPL NPL LIENS	1.000 1.000 TP		0 0 NR	0 0 NR	0 0 NR	0 0 NR	NR NR NR	0 0 0
Federal Delisted NPL sit	te list							
Delisted NPL	0.500		0	0	0	NR	NR	0
Federal CERCLIS list								
CERCLIS FEDERAL FACILITY	0.500 1.000		0 0	0 0	0 0	NR 0	NR NR	0 0
Federal CERCLIS NFRA	P site List							
CERC-NFRAP	0.500		0	0	0	NR	NR	0
Federal RCRA CORRAC	TS facilities lis	t						
CORRACTS	1.000		0	0	0	0	NR	0
Federal RCRA non-COR	RACTS TSD fac	cilities list						
RCRA-TSDF	0.500		0	0	0	NR	NR	0
Federal RCRA generator	rs list							
RCRA-LQG RCRA-SQG RCRA-CESQG	0.250 0.250 0.250		0 0 0	0 1 0	NR NR NR	NR NR NR	NR NR NR	0 1 0
Federal institutional cor engineering controls reg								
US ENG CONTROLS US INST CONTROL LUCIS	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0
Federal ERNS list								
ERNS	TP		NR	NR	NR	NR	NR	0
State- and tribal - equiva	alent CERCLIS							
SHWS	1.000		0	1	0	0	NR	1
State and tribal landfill a solid waste disposal site								
SWF/LF LCP	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal leaking	storage tank lis	sts						
LUST INDIAN LUST	0.500 0.500		0 0	1 0	0 0	NR NR	NR NR	1 0
State and tribal registere	ed storage tank	lists						
UST	0.250	1	3	4	NR	NR	NR	8

MAP FINDINGS SUMMARY

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
AST INDIAN UST FEMA UST	0.500 0.250 0.250		0 0 0	0 0 0	0 NR NR	NR NR NR	NR NR NR	0 0 0
State and tribal institution control / engineering con		s						
AUL	0.500		0	1	0	NR	NR	1
State and tribal voluntary	cleanup site	es						
INDIAN VCP	0.500		0	0	0	NR	NR	0
State and tribal Brownfie	lds sites							
BROWNFIELDS	0.500		0	0	0	NR	NR	0
ADDITIONAL ENVIRONMEN	TAL RECORDS	5						
		-						
Local Brownfield lists								
US BROWNFIELDS	0.500		0	0	0	NR	NR	0
Local Lists of Landfill / S Waste Disposal Sites	olid							
DEBRIS REGION 9 ODI	0.500 0.500		0	0	0	NR NR	NR NR	0
INDIAN ODI Local Lists of Hazardous	0.500 waste/		0	0	0	NR	NR	0
Contaminated Sites	TD		ND	ND	ND	ND	ND	0
US CDL CDL	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
US HIST CDL	TP		NR	NR	NR	NR	NR	0
Local Land Records								
LIENS 2	TP		NR	NR	NR	NR	NR	0
Records of Emergency R	elease Repo	rts						
HMIRS SPILLS	TP 0.500	1	NR 3	NR 2	NR 1	NR NR	NR NR	0 7
Other Ascertainable Reco	ords							
RCRA-NonGen DOT OPS DOD FUDS CONSENT ROD UMTRA MINES TRIS TSCA FTTS	TP TP 1.000 1.000 1.000 1.000 0.500 0.250 TP TP TP	3	NR NR 0 0 0 0 0 0 NR NR NR	NR NR 0 0 0 0 0 0 NR NR NR	NR NR 0 0 0 0 0 NR NR NR NR	NR NR 0 0 0 NR NR NR NR NR	NR NR NR NR NR NR NR NR NR NR	3 0 0 0 0 0 0 0

MAP FINDINGS SUMMARY

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
HIST FTTS	TP		NR	NR	NR	NR	NR	0
SSTS	TP		NR	NR	NR	NR	NR	0
ICIS	TP		NR	NR	NR	NR	NR	0
PADS	TP		NR	NR	NR	NR	NR	0
MLTS	TP		NR	NR	NR	NR	NR	0
RADINFO	TP		NR	NR	NR	NR	NR	0
FINDS	TP	4	NR	NR	NR	NR	NR	4
RAATS	TP		NR	NR	NR	NR	NR	0
MANIFEST	0.250	1	1	5	NR	NR	NR	7
DRYCLEANERS	0.250 TP		0 NR	0 NR	NR NR	NR NR	NR NR	0 0
NPDES AIRS	TP		NR NR	NR NR	NR NR	NR NR	NR NR	-
LEAD	TP		NR NR	NR NR	NR NR	NR NR	NR NR	0
INDIAN RESERV	1.000		0	0	0	0	NR	0 0
SCRD DRYCLEANERS	0.500		0	0	0	NR	NR	0
2020 COR ACTION	0.250		0	0	NR	NR	NR	0
PRP	TP		NR	NR	NR	NR	NR	0
FINANCIAL ASSURANCE	TP		NR	NR	NR	NR	NR	0
COAL ASH EPA	0.500		0	0	0	NR	NR	Õ
EPA WATCH LIST	TP		NR	NR	NR	NR	NR	Ö
US FIN ASSUR	TP		NR	NR	NR	NR	NR	0
PCB TRANSFORMER	TP		NR	NR	NR	NR	NR	0
COAL ASH DOE	TP		NR	NR	NR	NR	NR	0
EDR PROPRIETARY RECOR	<u>DS</u>							
EDR Proprietary Records								
Manufactured Gas Plants	1.000		0	0	0	0	NR	0

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

Map ID MAP FINDINGS

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

Α1 **VIKING INDUSTRIES INC FINDS** 1004592605 N/A

Target 90 BAY SPRING AVE **Property** BARRINGTON, RI 02806

Click here for full text details

Actual: 14 ft.

A2 HILLS TIRE & AUTO RCRA-NonGen 1000891089 **Target** 90 BAY SPRING AVE **FINDS** RI5000001248

BARRINGTON, RI 02806 **Property**

Click here for full text details

Actual: 14 ft.

1000292086 А3 **HILLS TIRE & AUTO** RCRA-NonGen 90 BAY SPRING AVENUE RID987469798

Target Property BARRINGTON, RI 02806

Click here for full text details

Actual: 14 ft.

SPILLS S104305507 Α4

90 BAY SPRING RD Target

Property **BARRINGTON, RI**

Click here for full text details Actual:

14 ft.

FINDS 1004592606 Α5 **RAINBOW SPRING** N/A

90 BAY SPRING AVE **Target** Property

BARRINGTON, RI 02806

Click here for full text details Actual:

14 ft.

MANIFEST 1009246921 Α6 **PILLING CHAIN COMPANY** N/A

90 BAY SPRING AVE **Target Property** W BARRINGTON, RI 02806

Click here for full text details

Actual: 14 ft.

N/A

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

Α7 PILLING MFG., INC. UST U001210932 **Target** 90 BAY SPRING AVE N/A

BARRINGTON, RI **Property**

Click here for full text details

Actual: 14 ft.

UST

Tank Status: Permanently Closed

8A **BAN REALTY PILLING CHAIN COMPANY** RCRA-NonGen 1000129539 **FINDS** RID001197326

90 BAY SPRING AVENUE **Target**

Property BARRINGTON, RI 02806

Click here for full text details

Actual: 14 ft.

SPILLS S104305489 9

wsw 41 ADAMS AVE < 1/8 **BARRINGTON, RI**

0.004 mi.

20 ft.

Click here for full text details Relative:

Higher

UST U001212894 10 BAY SPRING SERVICE GARAGE, INC.

North 115 BAY SPRING AVE < 1/8 BARRINGTON, RI

0.031 mi. 164 ft.

Click here for full text details

Relative: Higher

Tank Status: Permanently Closed Tank Status: Permanently Closed

B11 SPILLS S104305490

WSW 75 SPRING STREET < 1/8 BARRINGTON, RI

0.081 mi. 429 ft.

Click here for full text details

Relative: Lower

TC3440007.2s Page 8

N/A

N/A

N/A

Map ID MAP FINDINGS

Direction Distance

Distance Elevation Site EDR ID Number

Database(s) EPA ID Number

< 1/8 BARRINGTON, RI 0.088 mi.

465 ft.

Click here for full text details

Relative: Lower

 13
 MARTEK CORP
 RCRA-NonGen
 1000695681

 ENE
 60 BAY SPRING AVE
 FINDS
 RID987476769

 < 1/8</td>
 BARRINGTON, RI 02806
 MANIFEST

0.097 mi. 512 ft.

Click here for full text details

Relative: Higher

 14
 H. BICKFORD LANG
 UST
 U003208147

 SE
 27 ALFRED DROWNE RD
 N/A

< 1/8 BARRINGTON, RI

0.106 mi. 558 ft.

Click here for full text details

Relative: Higher

UST

Tank Status: Permanently Closed

C15 CRIS REALTY COMPANY UST U001210964
NW 166 BAY SPRING AVE N/A

NW 166 BAY SPRING AVE < 1/8 BARRINGTON, RI

0.107 mi. 566 ft.

Click here for full text details

Relative: Lower

UST

Tank Status: Permanently Closed

C16 RHODE ISLAND LACE WORKS DIVISION WNW

1/8-1/4 BARRINGTON, RI 0.129 mi.

681 ft.

Click here for full text details

Relative: Higher

UST

Tank Status: Permanently Closed UST

U003208211

N/A

Map ID MAP FINDINGS

Direction Distance

EDR ID Number Database(s) Elevation Site **EPA ID Number**

C17 RI LACE WORKS (FORMER)

NW **BAY SPRING & NARRAGANSETT AVE**

1/8-1/4 BARRINGTON, RI 0.151 mi.

795 ft.

Click here for full text details

Relative: Lower

SHWS

Facility Status: Inactive

D18 **WEST BARRINGTON AUTO SALES & SERVICE**

East 9 BAY SPRING AVE 1/8-1/4 BARRINGTON, RI

0.193 mi. 1019 ft.

Click here for full text details

Relative: Higher

UST

Tank Status: Permanently Closed Tank Status: Permanently Closed Tank Status: Permanently Closed

D19 **RILACE WORKS DIV BAY SPRING AVE East** 1/8-1/4 BARRINGTON, RI 02806

0.206 mi. 1088 ft.

Click here for full text details

Relative: Higher

E20 **COVE HAVEN CORPORATION** NNW **101 NARRAGANSETT AVE** BARRINGTON, RI 02806

1/8-1/4 0.209 mi.

1104 ft.

Click here for full text details

Relative: Higher

E21

NNW

COVE HAVEN MARINA 101 NARRAGANSETT AVE.

BARRINGTON, RI 1/8-1/4

0.209 mi. 1104 ft.

Click here for full text details

Relative: Higher

SHWS S103763731 AUL N/A

UST U001213508

N/A

RCRA-NonGen 1000271693 RID001190545

FINDS MANIFEST

MANIFEST

MANIFEST \$109789600

N/A

MANIFEST S109790038 N/A

Map ID MAP FINDINGS Direction

Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

E22 COVE HAVEN CORP RCRA-SQG 1000196939 NNW **101 NARRAGANSETT AVE FINDS** RID062322227

1/8-1/4 BARRINGTON, RI 02806 0.209 mi.

1104 ft.

Click here for full text details

Relative: Higher

UST

Tank Status: Permanently Closed

Tank Status: In Use

Tank Status: Permanently Closed

Tank Status: In Use

Tank Status: Permanently Closed Tank Status: Permanently Closed Tank Status: Permanently Closed

E23 SPILLS \$104305509 N/A

NNW **101 NARRAGANSETT AVE** 1/8-1/4 **BARRINGTON, RI**

0.209 mi. 1104 ft.

Click here for full text details

Relative: Higher

24 SPILLS S104310109

15 ALLEN AVE N/A **BARRINGTON, RI**

1/8-1/4 0.218 mi.

1151 ft.

NW

Click here for full text details

Relative: Higher

25 PHOTOGRAPHIC CHEM RECOVERY SERVICE 1000415464 RCRA-NonGen

WNW **2 LESLIE AVE** 1/8-1/4

BARRINGTON, RI 02806

0.230 mi. 1212 ft.

Click here for full text details

Relative: Lower

F26 LUST S104180053 LAVIN'S MARINA

West 110 SHORE DRIVE 1/8-1/4 BARRINGTON, RI

0.246 mi. 1297 ft.

Click here for full text details

Relative: Higher

LUST

Facility Status: Inactive; Investigation/Remed. Complete, No Further Action Required

N/A

UST

FINDS

MANIFEST

RID987467115

MANIFEST

Map ID MAP FINDINGS Direction

Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

LIGHTHOUSE MARINA, LLC U001211222 F27 N/A

West 110 SHORE DR 1/8-1/4 BARRINGTON, RI

0.246 mi. 1297 ft.

Click here for full text details

Relative: Higher

UST

Tank Status: Permanently Closed

Tank Status: In Use

Tank Status: Permanently Closed

28 SPILLS S104307687 N/A

SE **8 ALDEN ROAD** 1/4-1/2 **BARRINGTON, RI**

0.414 mi. 2187 ft.

Click here for full text details

Relative: Higher

GOVERNMENT RECORDS SEARCHED / DATA CURRENCY TRACKING

St	Acronym	Full Name	Government Agency	Gov Date	Arvl. Date	Active Date
RI	AIRS	Air Emissions Listing	Department of Environmental Management	12/31/2010	02/25/2011	03/08/2011
RI	AST	Aboveground Storage Tanks	Department of Environmental Management	03/01/2012	05/29/2012	06/08/2012
RI	AUL	ELUR Listing	Department of Environmental Management	08/08/2012	08/14/2012	09/13/2012
RI	BROWNFIELDS	Brownfields Site List	Department of Environmental Management	10/02/2003	10/07/2003	10/21/2003
RI	CDL	Clandestine Drug Lab Information Listing	Dept of Environmental Management	10/03/2006	12/04/2006	12/18/2006
RI	DRYCLEANERS	Drycleaner Facility Listing	Department of Environmental Management	12/31/2010	02/25/2011	03/08/2011
RI	FINANCIAL ASSURANCE	Financial Assurance Information	Department of Environmental Management	05/14/2010	05/14/2010	06/21/2010
RI	LCP	Landfill Closure Program Listing	Department of Environmental Management	07/30/2012		08/31/2012
RI	LEAD	Lead Inspections Database	Department of Health, Environmental Lead Prog	09/25/2012		10/22/2012
RI	LUST	Leaking Underground Storage Tank Facilities	Department of Environmental Management	08/02/2012	08/09/2012	08/31/2012
RI	NPDES	Permit and Facility Data	Department of Environmental Management	08/23/2012	08/29/2012	08/31/2012
RI	RI MANIFEST	Manifest information	Department of Environmental Management	12/31/2011	06/22/2012	
RI	SHWS	State Hazardous Waste Sites	Department of Environmental Management	07/30/2012	08/09/2012	08/31/2012
RI	SPILLS	Oil & Hazardous Material Response Log/Spill Report	Dept. of Environmental Management	11/15/2004	02/04/2005	03/24/2005
RI	SWF/LF	Solid Waste Management Facilities	Department of Environmental Management	07/30/2012	08/09/2012	09/13/2012
RI	UST	Underground Storage Tank Facility Master List	Department of Environmental Management	08/02/2012	08/09/2012	09/13/2012
US	2020 COR ACTION	2020 Corrective Action Program List	Environmental Protection Agency	11/11/2011	05/18/2012	05/25/2012
US	BRS	Biennial Reporting System	EPA/NTIS	12/31/2009	03/01/2011	05/02/2011
US	CERCLIS	Comprehensive Environmental Response, Compensation, and Liab	EPA	12/27/2011	02/27/2012	03/12/2012
US	CERCLIS-NFRAP	CERCLIS No Further Remedial Action Planned	EPA	12/28/2011	02/27/2012	03/12/2012
US	COAL ASH DOE	Sleam-Electric Plan Operation Data	Department of Energy	12/31/2005	08/07/2009	10/22/2009
US	COAL ASH EPA	Coal Combustion Residues Surface Impoundments List	Environmental Protection Agency	08/17/2010	01/03/2011	03/21/2011
US	CONSENT	Superfund (CERCLA) Consent Decrees	Department of Justice, Consent Decree Library	06/01/2012	07/24/2012	09/18/2012
US	CORRACTS	Corrective Action Report	EPA	08/19/2011	08/31/2011	01/10/2012
US	DEBRIS REGION 9	Torres Martinez Reservation Illegal Dump Site Locations	EPA, Region 9	01/12/2009	05/07/2009	09/21/2009
US	DELISTED NPL	National Priority List Deletions	EPA	06/07/2012	07/05/2012	09/18/2012
US	DOD	Department of Defense Sites	USGS	12/31/2005	11/10/2006	01/11/2007
US	DOT OPS	Incident and Accident Data	Department of Transporation, Office of Pipeli	07/31/2003	08/07/2012	09/18/2012
US	EPA WATCH LIST	EPA WATCH LIST	Environmental Protection Agency	07/31/2012	08/13/2012	09/18/2012
US	ERNS	Emergency Response Notification System	National Response Center, United States Coast	04/02/2012		06/14/2012
US	FEDERAL FACILITY	Federal Facility Site Information listing	Environmental Protection Agency	12/10/2010	01/11/2011	02/16/2011
US	FEDLAND	Federal and Indian Lands	U.S. Geological Survey	12/31/2005	02/06/2006	01/11/2007
US	FEMA UST	Underground Storage Tank Listing	FEMA	01/01/2010	02/06/2000	04/12/2010
US	FINDS	Facility Index System/Facility Registry System	EPA	10/23/2011	12/13/2011	03/01/2012
US	FTTS	FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fu	EPA/Office of Prevention, Pesticides and Toxi	04/09/2009	04/16/2009	05/11/2009
US	FTTS INSP	FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fu	EPA	04/09/2009	04/16/2009	05/11/2009
	FUDS	Formerly Used Defense Sites	U.S. Army Corps of Engineers	12/31/2009	08/12/2010	12/02/2010
US	HIST FTTS	FIFRA/TSCA Tracking System Administrative Case Listing	Environmental Protection Agency	10/19/2006	03/01/2007	04/10/2007
US	HIST FTTS INSP	FIFRA/TSCA Tracking System Inspection & Enforcement Case Lis	Environmental Protection Agency	10/19/2006	03/01/2007	04/10/2007
US	HMIRS	Hazardous Materials Information Reporting System	U.S. Department of Transportation	04/01/2012	03/01/2007	06/14/2012
US	ICIS	Integrated Compliance Information System	Environmental Protection Agency	07/20/2011	11/10/2011	01/10/2012
US	INDIAN LUST R1	Leaking Underground Storage Tanks on Indian Land	ğ ,	04/12/2011	05/09/2012	07/10/2012
US	INDIAN LUST R10	Leaking Underground Storage Tanks on Indian Land Leaking Underground Storage Tanks on Indian Land	EPA Region 1 EPA Region 10	08/01/2012	08/02/2012	10/16/2012
US	INDIAN LUST R4	Leaking Underground Storage Tanks on Indian Land Leaking Underground Storage Tanks on Indian Land		12/14/2011	12/15/2011	01/10/2012
US		Leaking Underground Storage Tanks on Indian Land Leaking Underground Storage Tanks on Indian Land	EPA Region 4			
US	INDIAN LUST R6 INDIAN LUST R7	Leaking Underground Storage Tanks on Indian Land Leaking Underground Storage Tanks on Indian Land	EPA Region 6 EPA Region 7	09/12/2011 08/17/2012	09/13/2011 08/28/2012	11/11/2011 10/16/2012
		Leaking Underground Storage Tanks on Indian Land Leaking Underground Storage Tanks on Indian Land			08/28/2012	
US	INDIAN LUST R8	Leaking Underground Storage Tanks on Indian Land	EPA Region 8	00/21/2012	00/20/2012	10/10/2012

GOVERNMENT RECORDS SEARCHED / DATA CURRENCY TRACKING

St	Acronym	Full Name	Government Agency	Gov Date	Arvl. Date	Active Date
US	INDIAN LUST R9	Leaking Underground Storage Tanks on Indian Land	Environmental Protection Agency	09/06/2012	09/07/2012	10/16/2012
US	INDIAN ODI	Report on the Status of Open Dumps on Indian Lands	Environmental Protection Agency	12/31/1998	12/03/2007	01/24/2008
US	INDIAN RESERV	Indian Reservations	USGS	12/31/2005	12/08/2006	01/11/2007
US	INDIAN UST R1	Underground Storage Tanks on Indian Land	EPA, Region 1	04/12/2012	05/02/2012	07/16/2012
US	INDIAN UST R10	Underground Storage Tanks on Indian Land	EPA Region 10	08/01/2012	08/02/2012	10/16/2012
US	INDIAN UST R4	Underground Storage Tanks on Indian Land	EPA Region 4	12/14/2011	12/15/2011	01/10/2012
US	INDIAN UST R5	Underground Storage Tanks on Indian Land	EPA Region 5	02/28/2012	02/29/2012	05/15/2012
US	INDIAN UST R6	Underground Storage Tanks on Indian Land	EPA Region 6	05/10/2011	05/11/2011	06/14/2011
US	INDIAN UST R7	Underground Storage Tanks on Indian Land	EPA Region 7	08/17/2012	08/28/2012	10/16/2012
US	INDIAN UST R8	Underground Storage Tanks on Indian Land	EPA Region 8	08/27/2012	08/28/2012	10/16/2012
US	INDIAN UST R9	Underground Storage Tanks on Indian Land	EPA Region 9	09/06/2012	09/07/2012	10/16/2012
US	INDIAN VCP R1	Voluntary Cleanup Priority Listing	EPA, Region 1	09/28/2012	10/02/2012	10/16/2012
US	INDIAN VCP R7	Voluntary Cleanup Priority Lisitng	EPA, Region 7	03/20/2008	04/22/2008	05/19/2008
US	LIENS 2	CERCLA Lien Information	Environmental Protection Agency	02/16/2012	03/26/2012	06/14/2012
US	LUCIS	Land Use Control Information System	Department of the Navy	12/09/2005	12/11/2006	01/11/2007
US	MINES	Mines Master Index File	Department of Labor, Mine Safety and Health A	08/18/2011	09/08/2011	09/29/2011
US	MLTS	Material Licensing Tracking System	Nuclear Regulatory Commission	06/21/2011	07/15/2011	09/13/2011
US	Manufactured Gas Plants	EDR Proprietary Manufactured Gas Plants	EDR, Inc.			
US	NPL	National Priority List	EPA	06/07/2012	07/05/2012	09/18/2012
US	NPL LIENS	Federal Superfund Liens	EPA	10/15/1991	02/02/1994	03/30/1994
US	ODI	Open Dump Inventory	Environmental Protection Agency	06/30/1985	08/09/2004	09/17/2004
US	PADS	PCB Activity Database System	EPA	11/01/2010	11/10/2010	02/16/2011
US	PCB TRANSFORMER	PCB Transformer Registration Database	Environmental Protection Agency	02/01/2011	10/19/2011	01/10/2012
US	PRP	Potentially Responsible Parties	EPA	06/07/2012	07/02/2012	10/16/2012
US	Proposed NPL	Proposed National Priority List Sites	EPA	06/07/2012	07/05/2012	09/18/2012
US	RAATS	RCRA Administrative Action Tracking System	EPA	04/17/1995	07/03/1995	08/07/1995
US	RADINFO	Radiation Information Database	Environmental Protection Agency	01/10/2012	01/12/2012	03/01/2012
US	RCRA-CESQG	RCRA - Conditionally Exempt Small Quantity Generators	Environmental Protection Agency	03/15/2012	04/04/2012	05/15/2012
US	RCRA-LQG	RCRA - Large Quantity Generators	Environmental Protection Agency	03/15/2012	04/04/2012	05/15/2012
US	RCRA-NonGen	RCRA - Non Generators	Environmental Protection Agency	03/15/2012	04/04/2012	05/15/2012
US	RCRA-SQG	RCRA - Small Quantity Generators	Environmental Protection Agency	03/15/2012	04/04/2012	05/15/2012
US	RCRA-TSDF	RCRA - Treatment, Storage and Disposal	Environmental Protection Agency	03/15/2012	04/04/2012	05/15/2012
US	ROD	Records Of Decision	EPA	02/27/2012	03/14/2012	06/14/2012
US	SCRD DRYCLEANERS	State Coalition for Remediation of Drycleaners Listing	Environmental Protection Agency	03/07/2011	03/09/2011	05/02/2011
US	SSTS	Section 7 Tracking Systems	EPA	12/31/2009	12/10/2010	02/25/2011
US	TRIS	Toxic Chemical Release Inventory System	EPA	12/31/2009	09/01/2011	01/10/2012
US	TSCA	Toxic Substances Control Act	EPA	12/31/2006	09/29/2010	12/02/2010
US	UMTRA	Uranium Mill Tailings Sites	Department of Energy	09/14/2010	10/07/2011	03/01/2012
US	US BROWNFIELDS	A Listing of Brownfields Sites	Environmental Protection Agency	06/25/2012	06/25/2012	09/18/2012
US	US CDL	Clandestine Drug Labs	Drug Enforcement Administration	03/16/2012	06/12/2012	07/16/2012
US	US ENG CONTROLS	Engineering Controls Sites List	Environmental Protection Agency	12/30/2011	12/30/2011	01/10/2012
US	US FIN ASSUR	Financial Assurance Information	Environmental Protection Agency	05/24/2012	06/05/2012	06/14/2012
US	US HIST CDL	National Clandestine Laboratory Register	Drug Enforcement Administration	09/01/2007	11/19/2008	03/30/2009
US	US INST CONTROL	Sites with Institutional Controls	Environmental Protection Agency	12/30/2011	12/30/2011	01/10/2012

GOVERNMENT RECORDS SEARCHED / DATA CURRENCY TRACKING

St	Acronym	Full Name	Government Agency	Gov Date	Arvl. Date	Active Date
CT	CT MANIFEST	Hazardous Waste Manifest Data	Department of Energy & Environmental Protecti	08/20/2012	08/20/2012	09/20/2012
NJ	NJ MANIFEST	Manifest Information	Department of Environmental Protection	12/31/2011	07/19/2012	08/28/2012
NY	NY MANIFEST	Facility and Manifest Data	Department of Environmental Conservation	08/01/2012	08/09/2012	10/03/2012
PA	PA MANIFEST	Manifest Information	Department of Environmental Protection	12/31/2011	07/23/2012	09/18/2012
VT	VT MANIFEST	Hazardous Waste Manifest Data	Department of Environmental Conservation	08/09/2012	08/15/2012	09/13/2012
WI	WI MANIFEST	Manifest Information	Department of Natural Resources	12/31/2011	07/19/2012	09/27/2012
US	Oil/Gas Pipelines	GeoData Digital Line Graphs from 1:100,000-Scale Maps	USGS			
US	Electric Power Lines	Electric Power Transmission Line Data	Rextag Strategies Corp.			
US	AHA Hospitals	Sensitive Receptor: AHA Hospitals	American Hospital Association, Inc.			
US	Medical Centers	Sensitive Receptor: Medical Centers	Centers for Medicare & Medicaid Services			
US	Nursing Homes	Sensitive Receptor: Nursing Homes	National Institutes of Health			
US	Public Schools	Sensitive Receptor: Public Schools	National Center for Education Statistics			
US	Private Schools	Sensitive Receptor: Private Schools	National Center for Education Statistics			
RI	Daycare Centers	Sensitive Receptor: Day Care Provider Listing	Department of Children, Youth & Families			
US	Flood Zones	100-year and 500-year flood zones	Emergency Management Agency (FEMA)			
US	NWI	National Wetlands Inventory	U.S. Fish and Wildlife Service			
RI	State Wetlands	Wetlands Classification Data	Dept. of Administration/Statewide Planning			
US	USGS 7.5' Topographic Map	Scanned Digital USGS 7.5' Topographic Map (DRG)	USGS			

STREET AND ADDRESS INFORMATION

© 2010 Tele Atlas North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

GEOCHECK®-PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

DONEGAN, BAY SPRING AVE, BARRINGTON 90 BAY SPRING AVENUE BARRINGTON, RI 02806

TARGET PROPERTY COORDINATES

Latitude (North): 41.7474 - 41° 44′ 50.64″ Longitude (West): 71.3464 - 71° 20′ 47.04″

Universal Tranverse Mercator: Zone 19 UTM X (Meters): 304898.5 UTM Y (Meters): 4624178.5

Elevation: 14 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map: 41071-F3 BRISTOL, RI MA

Most Recent Revision: 1975

North Map: 41071-G3 EAST PROVIDENCE, RI MA

Most Recent Revision: 1987

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

Assessment of the impact of contaminant migration generally has two principal investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).

TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General West

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

FEMA Flood Electronic Data

Target Property County BRISTOL, RI

YES - refer to the Overview Map and Detail Map

Flood Plain Panel at Target Property:

44001C - FEMA DFIRM Flood data

Additional Panels in search area:

44007C - FEMA DFIRM Flood data

NATIONAL WETLAND INVENTORY

NWI Electronic

NWI Quad at Target Property

Data Coverage

BRISTOL

YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

MAP ID Not Reported LOCATION FROM TP GENERAL DIRECTION GROUNDWATER FLOW

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era: Paleozoic Category: Stratifed Sequence

System: Pennsylvanian Series: Pennsylvanian

Code: PP (decoded above as Era, System & Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

SSURGO SOIL MAP - 3440007.2s

SITE NAME: Donegan, Bay Spring Ave, Barrington 40 Bay Spring Avenue Barrington RI 02806 LAT/LONG: 41.7474 / 71.3464

CLIENT: Resource Control Associates
CONTACT: Julie Freshman
INQUIRY#: 3440007.2s

DATE: October 24, 2012 12:14 pm

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. The following information is based on Soil Conservation Service SSURGO data.

Soil Map ID: 1

Soil Component Name: Hinckley

Soil Surface Texture:

Hydrologic Group: Class A - High infiltration rates. Soils are deep, well drained to

excessively drained sands and gravels.

Soil Drainage Class: Excessively drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Low

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Soil Layer Information										
	Bounda			Classi	fication	Saturated hydraulic					
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil		Soil Reaction (pH)				
1	0 inches	9 inches		Not reported	Not reported	Max: 705 Min: 141.14	Max: 6 Min: 3.6				
2	9 inches	16 inches		Not reported	Not reported	Max: 705 Min: 141.14	Max: 6 Min: 3.6				
3	16 inches	59 inches		Not reported	Not reported	Max: 705 Min: 141.14	Max: 6 Min: 3.6				

Soil Map ID: 2

Soil Component Name: Windsor

Soil Surface Texture:

Hydrologic Group: Class A - High infiltration rates. Soils are deep, well drained to

excessively drained sands and gravels.

Soil Drainage Class: Excessively drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Low

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Soil Layer Information										
	Boundary			Classification		Saturated hydraulic					
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil		Soil Reaction (pH)				
1	0 inches	1 inches		Not reported	Not reported	Max: 141.14 Min: 42.34	Max: 6.5 Min: 4.5				
2	1 inches	27 inches		Not reported	Not reported	Max: 141.14 Min: 42.34	Max: 6.5 Min: 4.5				
3	27 inches	64 inches		Not reported	Not reported	Max: 141.14 Min: 42.34	Max: 6.5 Min: 4.5				

Soil Map ID: 3

Soil Component Name: Urban land

Soil Surface Texture:

Hydrologic Group: Class A - High infiltration rates. Soils are deep, well drained to

excessively drained sands and gravels.

Soil Drainage Class: Hydric Status: Unknown

Corrosion Potential - Uncoated Steel: Not Reported

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Soil Layer Information						
	Boundary			Classification		Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil		Soil Reaction (pH)
1	0 inches	5 inches		Not reported	Not reported	Max: 0.01 Min: 0	Max: Min:

Soil Map ID: 4

Soil Component Name: Water

Soil Surface Texture:

Hydrologic Group: Class A - High infiltration rates. Soils are deep, well drained to

excessively drained sands and gravels.

Soil Drainage Class: Hydric Status: Unknown

Corrosion Potential - Uncoated Steel: Not Reported

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

No Layer Information available.

Soil Map ID: 5

Soil Component Name: Urban land

Soil Surface Texture:

Hydrologic Group: Class A - High infiltration rates. Soils are deep, well drained to

excessively drained sands and gravels.

Soil Drainage Class: Hydric Status: Unknown

Corrosion Potential - Uncoated Steel: Not Reported

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

No Layer Information available.

Soil Map ID: 6

Soil Component Name: Matunuck

Soil Surface Texture:

Hydrologic Group: Class D - Very slow infiltration rates. Soils are clayey, have a high

water table, or are shallow to an impervious layer.

Soil Drainage Class: Very poorly drained

Hydric Status: All hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Soil Layer Information							
	Boundary		Boundary		Classification		Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil		Soil Reaction (pH)	
1	0 inches	11 inches		Not reported	Not reported	Max: 705 Min: 141.14	Max: 7.8 Min: 5.1	
2	11 inches	18 inches		Not reported	Not reported	Max: 705 Min: 141.14	Max: 7.8 Min: 5.1	
3	18 inches	72 inches		Not reported	Not reported	Max: 705 Min: 141.14	Max: 7.8 Min: 5.1	

Soil Map ID: 7

Soil Component Name: Birchwood

Soil Surface Texture:

Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward

movement of water, or soils with moderately fine or fine textures.

Soil Drainage Class: Moderately well drained

Hydric Status: Partially hydric

Corrosion Potential - Uncoated Steel: Low

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 61 inches

Soil Layer Information							
	Bou	ndary		Classif	ication	Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil		Soil Reaction (pH)
1	0 inches	9 inches		Not reported	Not reported	Max: 1.41 Min: 0	Max: 6.5 Min: 4.5
2	9 inches	24 inches		Not reported	Not reported	Max: 1.41 Min: 0	Max: 6.5 Min: 4.5

Soil Layer Information							
	Boundary			Classification		Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
3	24 inches	59 inches		Not reported	Not reported	Max: 1.41 Min: 0	Max: 6.5 Min: 4.5

Soil Map ID: 8

Soil Component Name: Leicester

Soil Surface Texture:

Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward

movement of water, or soils with moderately fine or fine textures.

Soil Drainage Class: Poorly drained

Hydric Status: Partially hydric

Corrosion Potential - Uncoated Steel: Low

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 23 inches

Soil Layer Information										
	Boundary		Boundary		Boundary Clas		Classi	fication	Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil		Soil Reaction (pH)			
1	0 inches	7 inches		Not reported	Not reported	Max: 141.14 Min: 4.23	Max: 5.5 Min: 4.5			
2	7 inches	25 inches		Not reported	Not reported	Max: 141.14 Min: 4.23	Max: 5.5 Min: 4.5			
3	25 inches	64 inches		Not reported	Not reported	Max: 141.14 Min: 4.23	Max: 5.5 Min: 4.5			

Soil Map ID: 9

Soil Component Name: Canton

Soil Surface Texture:

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained

Hydric Status: Unknown

Corrosion Potential - Uncoated Steel: Low

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

Soil Layer Information							
	Bou	ndary		Classi	fication	Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	
1	0 inches	3 inches		Not reported	Not reported	Max: 141.14 Min: 42.34	Max: 6 Min: 3.6
2	3 inches	22 inches		Not reported	Not reported	Max: 141.14 Min: 42.34	Max: 6 Min: 3.6
3	22 inches	59 inches		Not reported	Not reported	Max: 141.14 Min: 42.34	Max: 6 Min: 3.6

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE SEARCH DISTANCE (miles)

Federal USGS 1.000

Federal FRDS PWS Nearest PWS within 1 mile

State Database 1.000

FEDERAL USGS WELL INFORMATION

LOCATION

MAP ID WELL ID FROM TP

1 USGS2071389 1/8 - 1/4 Mile NNW

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

LOCATION

MAP ID WELL ID FROM TP

No PWS System Found

Note: PWS System location is not always the same as well location.

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

STATE DATABASE WELL INFORMATION

MAP ID WELL ID LOCATION FROM TP

No Wells Found

PHYSICAL SETTING SOURCE MAP - 3440007.2s

SITE NAME: Donegan, Bay Spring Ave, Barrington ADDRESS: 90 Bay Spring Avenue Barrington RI 02806

LAT/LONG: 41 7474 / 71 3464 Resource Control Associates

CLIENT: Resource Contr CONTACT: Julie Freshman

INQUIRY #: 3440007.2s

DATE: October 24, 2012 12:14 pm

GEOCHECK®-PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation

Elevation Database EDR ID Number

1 NNW 1/8 - 1/4 Mile Higher

FED USGS USGS2071389

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS RADON

AREA RADON INFORMATION

State Database: RI Radon

Radon Test Results

Zipcode	Num Tests	# < 4 pCi/L	4 to 20	# > 20 pCi/L	Maximum
					
02806	1366	1224	136	6	108

Federal EPA Radon Zone for BRISTOL County: 3

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for Zip Code: 02806

Number of sites tested: 10

Area Average Activity % <4 pCi/L % 4-20 pCi/L % >20 pCi/L 0.200 pCi/L Living Area - 1st Floor 100% 0% 0% Living Area - 2nd Floor Not Reported Not Reported Not Reported Not Reported 1.400 pCi/L Basement 100% 0% 0%

PHYSICAL SETTING SOURCE RECORDS SEARCHED

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Scanned Digital USGS 7.5' Topographic Map (DRG)

Source: United States Geologic Survey

A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey topographic map. The map images are made by scanning published paper maps on high-resolution scanners. The raster image is georeferenced and fit to the Universal Transverse Mercator (UTM) projection.

HYDROLOGIC INFORMATION

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 2003 & 2011 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 and 2005 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetlands Classification Data Source: Dept. of Administration/Statewide Planning

Telephone: 401-222-6483

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Services

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Services (NRCS)

Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Services, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

Community and Non-Community Wells

Source: Department of Environmental Management

Telephone: 401-277-2234

Includes Community, Non-Transient Non-Community and Transient Non-Community.

EPA-Approved Sole Source Aquifers in Rhode Island

Source: EPA

Sole source aquifers are defined as an aquifer designated as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for the area and for which there are no reasonable alternative sources should the aquifer become contaminated.

OTHER STATE DATABASE INFORMATION

RADON

State Database: RI Radon Source: Department of Health Telephone: 401-222-2438 Radon Test Results

Area Radon Information Source: USGS

Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency (USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at

private sources such as universities and research institutions.

EPA Radon Zones

Source: EPA

Telephone: 703-356-4020

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor

radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities

Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater

Source: Department of Commerce, National Oceanic and Atmospheric Administration

PHYSICAL SETTING SOURCE RECORDS SEARCHED

STREET AND ADDRESS INFORMATION

© 2010 Tele Atlas North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

APPENDIX C

Supporting Documentation

Group IV,	a Rhode Island general partnershi	p, whose general part
are Grace Zuckerman	S. Goldberg. Leona Malkin, Mathew	D. Shuster and Adele
k wxwww. corporati	አላኒክ የሃ gran to <u>Bay Spring Realty Co</u> on, with a mailing address	ompany, a Rhode Island
p.O. E	ox 2762, Providence, RI 02907	with QUIT-CLAIM COVE

See attached Exhibit A.

The consideration for this conveyance is such that no stamps are required.

Munesa its hand this 24th	Group IV By Its Duly: Authorized
`	General Partner
State of Rhode Island, Etc.	Mathew D. Shingter, General Partner, PRINT OR TYPE: NAME OF GRANTOR,
	day of December 19 92 Shuster, General Partner of Group IV
o me known and known by me to be the gart	executing the foregoing Instrument, and ho
acknowledged said instrument, by	him executed, to be his free act and deed.
Bay Spring Realty Company	Lewis O Teletin
P.O. Box 2762 PRINT OF TYPE: NAME AND ADDRESS OF GRANTEE) Providence, RI 02907	Edward D. Feldstein Notary Public

HOOK 0222 PAGE 1151

EXHIBIT A

PARCEL I: That certain tract or parcel of land with all the buildlngs and improvements thereon situated on the northerly side of Bay Spring Avenue, in the Town of Barrington, State of Rhode Island, bounded and described as follows:

Beginning at the point of intersection of the northerly line of Bay Spring Avenue with the easterly line of the railroad location of the New York, New Haven and Hartford Railroad Company at the southwesterly corner of the premises herein described, and running thence northerly bounding westerly on said railroad location a distance of eight hundred and 13/100 (800.13) feet, more or less, to land now or lately of Metropolitan Park Commission; thence turning an interior angle of 50°15'30", more or less, and running costerly bounding northerly on said last named land and passing through a stone bound located thirty-two and 70/100 (32.70) feet easterly from the easterly line of said railroad location, a distance of two hundred forty-five and 86/100 (25.84) feet, more or less, to a stone bound; thence turning an interior angle of 50°41'00", more or less, and running easterly bounding northerly on said last named land a distance of one hundred eighty-nine and 99/00 (189.99) feet, more or less, to a stone bound; thence turning an interior angle of 179°00'30", more or less and running easterly bounding northerly still on said last named land a distance of one hundred saventy-three (173) feet, more or less, to land now or lately of the Town of Barrington; thence turning an interior angle of 91'38'00", more or less, and running southerly bounding easterly on said last named land in part and in part on land now or lately of Barrington Lumber Company in distance of six hundred sixteen and 79/100 (616.79) feet, more or less, to Bay Spring Avenue; thence turning an interior angle of beginning. Said tract contains by estimation 5.1 acres more or less.

PARCEL II: That certain tract or parcel of land with all the build-

PARCEL II: That certain tract or parcel of land with all the buildings and improvements thereon situated on the easterly side of Adams Avenue, in the Town of Barrington, State of Rhode Island, bounded and described as follows:

Beginning at a point in the easterly line of Adams Avenue at the southwesterly corner of land now or lately of the Town of Barrington (William Allin Estate Cometery, so-called), and running thence easterly bounding northerly on said Town of Barrington land a distance of one hundred forty-eight (148) feet, more or less, to the southeasterly corner thereof and land now or lately of Albert P. Langlois et al; thence continuing easterly bounding northerly on and angling with said Langlois land by three lines measuring respectively thirty-one and 27/100 (31.27) feet, fifty-five and 89/100 (55.89) feet and sixty-four and 84/100 (64.84) feet to land now or lately of Charles G. Lahey et al; thence continuing easterly bounding northerly on said Lahey land a distance of sixty-six and 56/100 (56.56) feet; thence turning an interior angle of 274 53 20 and running northerly bounding westerly on said Lahey land a distance of

Page l of l

HOOK 0222 PAGE 1152

Said premises are conveyed subject to any and all rights of upper riparian owners with reference to stream crossing said tracts.

Said Parcel I is conveyed subject to the restriction that no manufacturing of plain or embossed filled goods especially made for book covers or window shades shall be done or allowed on said parcel, as set forth in the certain instrument made by Interlaken Mills to International Rubber Company, dated January 16, 1917 and recorded in the office of the Town Clerk of the Town of Barrington in Book 25 at page 358.

Said premises are conveyed subject to a lease made by William H. Allin to George T. Baker, recorded in said office in Book 13 at page 538.

Said premises are conveyed subject to the provisions of an unrecorded agreement made by and between Drownville Water Co. and Annawamscott Mills, dated July 14, 1903.

Said premises are further conveyed subject to (1) any state of facts an accurate survey would disclose provided the same do not render the title unmarketable; (2) zoning ordinances or regulations provided the present use of the premises does not violate the same; (3) rights of others in and to any land lying in the bed of any streets or roads; and (4) rights of others public and private, in land below highest high tide.

BECEIVED FOR RECORD Barrington, R.I. DEC 2 9 1992 et a 3 9 policie M. Marring Whitera From Glerk.

Page 2 of 2

HOOK 0222 PAGE 1153

	RECORD	02 12 90	נסז	
BARRINGTON COVE PLAT	DESCRIPTION	90 BAY SPRING AVENUE	LOCATION	120,500
-	A CONTRACTOR OF THE PROPERTY O			

100		-	
the control of the co	BARRINGTON COVE LIMITED PARTNERSHIP		CHE FOLLED INC
1	1		

					3,168,500	2,898,000		270,500	03	2002
					2,142,700	{		102,300	03	1997
					2,142,600	2:040.400		102,200	03	1997
					918,400	816,200		102,200	03	1996
3,331,700	2,970,200	361,500	01	2005	319,000	186,500		132,500	07	1995
TOTAL VALUE	BUILDINGS & IMPROVEMENTS	LAND	∾~ _~ L	YEAR	TOTAL VALUE	BUILDINGS & IMPROVEMENTS	Account of the control of the contro	DNC1	S S P C	YEAR
						AND THE CONTRACTOR OF THE PROPERTY OF THE CONTRACTOR OF THE CONTRA		Were the control of t		
							Market de de la companya de la comp			

	Î	filed 6.28.96		116-	N.S. 339		2/19/97	0-00	02-1160-00	02
Colle Block	cus aux of	334,500 of be cur our of this lot to the Rock		203 204	525,000 319	525	7/9/96	-00	07-2724-00	67-
	COMMENTS	THE PERSON AND PROPERTY OF THE PERSON AND PE	**	RECORDED PAGE#	STAMPS BOOK	STA PURC	DATE RECONDED	20.	ACCOUNT NO	λ
				·				VORANIA LE NORME D'ESTONY MENTONISMONTANTE LE COMMUNICATION DE LA COMPONICATION DE LA	Antiger Accessory constitution	the five for the former and the first of the

RECORD RECORD		PLAT LOT BUILDINGS AND TOTAL VALUE NO. NO.	2 12 16 000 114 000 150 000		and the contraction of the contr	Sold Sold Sold Sold Sold Sold Sold Sold	1) Security of the contract of		the second secon	CO C			the second secon			
--	--	--	-----------------------------	--	--	---	--	--	--	--	--	--	--	--	--	--

Told 139100 Holo depresenting 7.86 Acres Barrington Enterferin Jue. Paril 50,000 for sittie plant Feb. 1-1960 797 72 90,000 8/16/60 Jan 24 1960 Alatement by J.F. King (collews ochman) 1000 28,000 3/35/54,000 (Sarah rada bilen + Winian 1960) [P.S. T Fea. Ty - 1961)

Zuckerman (2)	1151-	222	N.S.	12/29/92	02-2073-50
General Partners: Grace S. Goldberg, (2)Leona Malkin, Mathew Shuster & Adele	957- 958	164	N. S.	9/16/86	07-9160-00
(2)	954- 955	164	N.S.	9/16/86	
				\$	-02-0576-00
Bav Spring Realty Company	RECORDED #	RECORDED	STAMPS PURCHASED	DATE RECORDED	ACCOUNT NO.
DAW	House I			Hannington ()	2 150
<u>Ralph_Shuster_Trust</u>	dien-		Anna J. College	DESCRIPTION	*ECORD
REALTY—INC.	OWNER				02 or 12
	\$ **·	0000	348-081 -30500±	And the second s	The Same

	& IMPROVEMENTS		YEAK		per 2011/19 Oxdinance 135-26. 12/81/95	5, 12/31/95
1967 07 18,	18,900 102,300	121,200	1985 07	80	1/8 600	228 600
					Officer	
1868 07 18,900	700 15750					
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
1974 07 18,850	50 80,000	98.850				
1976 07 49,700	700 104,900	154,600				

•

ADAMS AVENUE
DESCRIPTION
BARRINGTON COVE PLAT 154 RECORD.

BAY SPRING REALTY CO.

7 F			Š		1		 	 1	
COSOS.	かられる。		KAN COOK DAL FLACH CITS IS GOODEN	Total al to the state of a state of forther					
RECORDED		KGE#			-	 			
RECC		SOOK K							
of the first construction and the first construc	PUSCHASE	CONTRACTOR				 			
Constitution of TE	NECORDED	VIII TOVIII INGALII INGALII INGALIA IN							 ,
ACCOUNT NO		CONTINUE PRINCIPAL STREET, STREET, SOMETHING TO SENTENCE STREET, STREE	02-2073-50						

Parametersons	Ç				description of the second				
YEAR	~≼ _{ભ્ય}	LAND	BUILDINGS & IMPROVEMENTS	TOTAL VALUE	YEAR	المنهدن	LAND	BUILDINGS & IMPROVEMENTS	TOTAL VALUE
1996 07	20	139,000	00	139,000			TOTAL STATEMENT SERVICES STATEMENT OF A STATEMENT OF SERVICES STATEMENT SERVIC		
2002 14	14	224,700	***************************************	224,700					
2005 14	14	337,500	j	337,500			A COMMUNICATION OF A COMMUNICATI		

PANT LOT CATION LOCATION RECORD DESCRIPTION

	545			
0.00	643		90.6	1
		18		
59		ા		l i
300	1/3	18		1
0.0				
	e de la constante de la consta	1		
	*	1		
1	Vices.	2		l i
		ř.		1
9	1			
· W	7	1		
	200	لنام	۽ اب	r (i
4		g.,	-	l.
	-	L		1/3
	7	i X	16	46
- 3		1		2
		1	٠	
	1	-	7"	100
	***	1		l 🤃
	とりませる。	1.75		
ť	. 1	out!	=	
		1	_	10
		1	,	
4		_		P.
100	17.0		_	
		ľ	-	
		1		
		400	۳.	
			70	1
- 1			2	
	kow.	_را		US.
		-	.1	189
	_	1		
	11	1	~	
		12 3	• 1	
	4444	1	=	. 5
		-27	- 1	
- 3		***	ι.	s6.
	*	-	5 l	13
C	n	1	ា	1
			_ !	453
i.	-	L	7	
	-4	7-	ារ	10
1	2	-	ا -	10
	•	H.	31	1.1
		- 0	1	
		-	1	
		_	•	
¥ .	_	K	+ 1	11
۶,		4) I	: ·
5	years.	: -	•	
	ニュミルグ・クトー・ニー		_	-
٠,	4		. :	
			1.3	
				: 1
				100

					できる かい かない かんしょう アイス・コープ ないのう		And Schling May and Shake		MADES CONTRACTOR
ACCOUNT NO	DATE	STAMPS	RÉCORDED				1	1400 (000) (000)	
	RECORDED	PURCHASED	AOO8	PAGE #		2 2 3 <i>3</i>	COMMEN		
16-6028-00									
07-3626-00	12/30/83	70,000	145	405					

YEAR	""⊁_رن	LAND	BUILDINGS & IMPROVEMENTS	TOTAL VALUE	YEAR	ج لا د	LAND	BUILDINGS & IMPROVEMENTS	TOTAL VALUE
T0 296T	đ	3,950	10,750	14,700	2005 01		334,700	192,600	527,300
1976 01	8	006*9	25,200	32,100					
1985 01	0.1	23,900	50,000	006,87					
1995 01	ō	47,800	104,200	152,000					
2002 01	0	121,700	128,900	250,600					

RECORD LOT NO.	PLAT NO.	LoT NG.	LAND	BUILDIRGS AND IMPROVEMENTS	TOTAL VALUE	
West Organization for the constant of the cons	And a second control of the second control o	Control of the Contro		OCO CONTROL OF THE CO		
A CONTRACTOR OF THE CONTRACTOR	A STATE OF THE STA		004	3		
		1.45		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		gigidiniggin melanggabadanggabadanggaban di melanggap pilitar panahatan situ menggalikanggalimban dan panahatan menggabadanggabadanggabadan situ panahatan situ menggabadanggabadanggabadanggabadan situ panahatan situ
			Company of the second			
			402			The second secon
				and the state of t		
			Ž.			2 420 market Mary Market
Commence of the commence of th		Life Control of the second of	9	711111111111111111111111111111111111111		the Control of the South of So
0.000						3 200 12 12 12 12 12 12 12 12 12 12 12 12 12
			1000		3	
V page 1117 promotes a committee of the September 1118 personal state of the Septembe	in the second se	· · · · · · · · · · · · · · · · · · ·		ŀ		
· · · · · · · · · · · · · · · · · · ·			9			
Sea of Security (As in the Astronomy Co.) I the september 11.			200	Language Comments of the Comme		en gestalen der
The Addition to beauty as some more	A gate consider constant	Appropriation in the control of the				

			- 1				{		{	7	-			-						
																2.	4 % 1 % 1	F.		
***************************************				8							- CHARLES STATES OF THE									
Lang Company of		100000	LACASITA DE CANADA	5, 50							AND AND AND ADDRESS OF									
ay per distribution of the second	e ventalist biomistorom			1 16							-									
	-	oling the collins of the state of		DG 1							***************************************								***************************************	
S	-			79/																
P				122																
an c	Aller Brown and Aller Brown			5 79							-									
এ				BK70 P464 9/22/64 Pd 16,500									***************************************							
€	bedrahi vili da dos in in		A CONTRACTOR OF THE PARTY OF TH	273																
兵	The state of the s			Ŕ					and the state of t					-						
PHILLIPS, Kenneth A. & Nancy (JT)	A CONTRACTOR OF THE PERSON OF		H	700	700															
Ä	Commence and the control of the cont		VALI	 -					<u> </u>	<u> </u>	-									
Sel			TOTAL VALUE	7	مان															
					***************************************	············														
E	,		BUILDINGS AND IMPROVEMENTS	15,0	150															
and the same of page			DINGS		· [\			<u> </u>		1			-			<u> </u>		-	<u> </u> 	
			BUIL		¥	r _e														
				0,00	Ô					 										
			LAND	R	550				J				ļ					ļ	<u> </u>	
		***	7	\										ederment or married						
200000		oad						<u> </u>		-			-			ļ	 	<u> </u>		
		19 Short Road	LOT NO.	93						***************************************										
ŀ		nor		2					-						 	 			 	
		9 8	PLAT NO.				***************************************													
and prompt of the control of		r-!	- ·				<u> </u>	 		_				<u> </u>				-	-	
7			RECORD LOT NO.																***************************************	
i Ž																-	1	-		
Short Road			YEAR	In land	200									Average property		***************************************				
ថ្ងី	-			1965	776	No.		Parket in contract to the Contract Cont						THE PROPERTY OF THE PARTY OF TH						-
	1	<u> </u>	<u>] </u>			<u> </u>		1				<u> </u>	<u> </u>	<u> </u>]: ,	<u> </u>	1	!		1_

A.) Francists. Other to the State USA Case F RC pipe with street a kaptive for a feet successful of junct

B) From 5 to. 8+45 to 5to 5+425

- 1.) For A.C. Nipe USE Class 4500
- 2) For KE pipt use Class 3300 and whereto arch from sta 2+45 to sta 4+15 and screens of gravel to cree foot above top of pipe from sta, 4+15 to sta 5+425
- C.) From 5to, 5t40 to 3to, 7+30 t
 - 1.) For A.C. pipe use Class 4000 with screened 2) For V.C. pipe use Class 3300 with screened gravel to one foot above top of pipe from sta. 6590 to sta 7+301

TOWN OF BARRINGTON, RHODE ISLAND WASTEWATER FACILITIES

CONTRACT NO. 3
BAY SPRING - DROWN COVE AREA

BAY SPRING AVENUE STA. 0+80 TO STA. 7+26±

CAMP DRESSER & McKEE Inc.
Consulting Engineers
Boston, Mass.

SHEET NO. 17 333-2342

306,100 TOTAL ASSESSED: Barrington CARD 1 of 1 Ë PID2 154 퉏 8

Datriot Properties Inc. SER DEFINED Year BldReason: LandReason: Phone 88 Owner License # Se ASR Map: Fact Dist: Reval Dist: Co-Owner Processed License # Time 14:20:47 Time 0/26/12 11:56:31 Insp Date User Acct GIS Ref GIS Ref 413 AST REV abro 34/21/11 Date Date PRINT Notes 4/18/2012 7/13/2012 7/13/2012 2/14/2011 2/14/2011 Date 5/24/201 Legal Description PAT ACCT Total Land: 5.57392 Entered Lot Size Land Unit Type: AC Assoc PCL Value 306,100 YEAR END 306,100 YEAR END 306,100 YEAR END 307,500 Notes Asses'd Value No 306,100 YEAR END Parcel ID 02-154 Tst Verif 307,500 306,100 306, 100 306, 100 /Parcel N/A Ves No Total Value Sale Price 306,100 306,100 306,100 307,500 337,500 Total Value 306,100 306,100 306,100 Land Value Total Value per SQ unit /Card: N/A 307,500 306,100 306,100 306,100 306,100 307,500 Land Value TAX DISTRICT Sale Code 5.574 5.574 Land Size 242,800. 242,800. 242,800. 242,800. 5.574 5.574 Land Size Date Yrd Items IN PROCESS APPRAISAL SUMMARY Yard Items ype Legal Ref Bldg Value PREVIOUS ASSESSMENT Source: Market Adj Cost **Building Value** SALES INFORMATION 조 조 조 조 집 ᄶె Grantor Tax Yr Use UNKNOWN Use Code 4 4 Total Parce otal Card 2012 2012 2010 2011 NARRATIVE DESCRIPTION This Parcel contains 242,800 SQ FT of land mainly classified Com. Int Own Occ: Direction/Street/City ADAMS AVENUE, Barrington Type: U-pi #: PREVIOUS OWNER
Owner 1: BAY SPRING REALTY CO-Amount Street 1: 909 NORTH MAIN STREET Street 1: 909 NORTH MAIN STREET OWNERSHIP Owner 1: BAY SPRING REALTY CO Cuty Crifry OTHER ASSESSMENTS
Code Descrip/No PROPERTY LOCATION Twn/City: PROVIDENCE wn/city: PROVIDENCE as Comm/Ind Vct Postal: 02904 Postal: 02904 St/Prov: RI St/Prov: RI Owner 2: Owner 3: Street 2: Owner 2:

THE THE PARTY OF T	1	THE PARTY OF THE P		
	BIIII DING PERMITS		ACTIVITY INFORMATION	
annula (min)	Date	Number Descrip Amount C/O Last Visit Fed Code F. Descrip Co	Вy	Name
PROPERTY FACTORS	and manufacture and a second an		4/1/2011 Field Review MP Mike	Mike Pratt
Item Code Descrip % Item Code Descrip		a contract of	11/10/2008 Reval Field AD	ANTHONY DAVE
Z LM Low-Modera 100 U 1 SEWER		The state of the s	10/3/2008 Field Review SF	EVE FERREI
0 t 6 WATER				
n BLECTRIC			Commission of the Commission o	
Census: Exmpt		a for the complete and the control of the control o		And the second s
Flood Haz:				
D B Barrington 100 Topo 2 ABOVE ST				
S	,		Sign.	
t Traffic				
LAND SECTION (First 7 lines only)		The state of the s		
Use Description LUC No of Units Depth / Unit Type Land Type LT Base Unit	Land Type	Unit Adj Neigh Neigh Inft % Inft 2 % Inft 3 %	113 % Appraised Alt % Spec J Fact Use Value	Notes

Value Class Land Code Fact Use Value	156,100	150,000					1-1-	1 otal: 300, 100
Land								
Class %	601	000					3	lotai: 306,109 spi credi
	156,109	150,000					,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	al: 306,10
Infl 3							ļ	0
Infi 1 % Infi 2 % Infi 3 %							ſ	
11 %								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
leign Neign Influ Mod								DescH
Adj Neigh neign Neign	2 081 H	1,000 H				 		Comm/Ind Vct Prime NB Desc H
Se Unit	!⊂							Comm/Ind Vct
Eactor Val	10000				-			Parcel LUC: 14
 Land Type 	Drimo Cito	RESID AC RESOULA						
/ If Unit Type	13 CO	RESID AC						Total SF/SM: 242800.00
f Units Depth	DEOUT DOUGE	23000		The state of the s				Total SF/
Use Description LUC No of Units Depth / Unit Type Land Type Earthy Value	ADOUGH CALL		7. 000					Total AC/HA: 5,57392
Use	2005	3 5	<u> </u>					Total AC

2712

57.75

Databana: Daminaton

USER QUESTIONNAIRE
Date: 1540/00 3197 2012
Contact Name: ANGIANI STANGARI
Company and Position: Kally Shurgers ine UP OF Real Esture
Telephone Number: 401- 521- 4477
In order to qualify for the Landowner Liability Protections (LLPs) offered by the Small Business Liability Relief and Brownfields Revitalization Act of 2001 (the "Brownfields Amendments"), the user must provide the following information (if available) to the environmental professional. Failure to provide this information could result in a determination that "all appropriate inquiry" is not complete.
(1) Have you reviewed recorded land title records for the site?
(2) Environmental cleanup liens that are filed or recorded against the site (40CFR 312.25)
Are you aware of any environmental cleanup liens against the property that are filed or recorded under federal, tribal, state or local law?
$\mathcal{N}_{\mathcal{O}}$
(3) Activity and land use limitations that are in place on the site or that have been filed or recorded in a registry (40CFR 312.26)
Are you aware of any AULs, such as engineering controls, land use restrictions or institutional controls that are in place at the site and/or
have been filed or recorded in a registry under federal, tribal, state or local law?
No
(4) Specialized knowledge or experience of the person seeking to qualify for the LLP (40CFR 312.28)
As the user of this ESA do you have any specialized knowledge or experience related to the property or nearby properties? For example, are you involved in the same line of business as the current or former occupants of the property or an adjoining property so that you would have specialized knowledge of the chemicals and processes used by this type of business?
NO
(5) Relationship of the purchase price to the fair market value of the property if it were not contaminated (40CFR 312.29)
Does the purchase price being paid for this property reasonably reflect the fair market value of the property? If you conclude that there is a difference, have you considered whether the lower purchase price is because contamination is known or believed to be present at the
broberths, but consider the parties have been a personal parties to property.
(6) Commonly known or reasonably ascertainable information about the property (40CFR 312.30)
Are you aware of commonly known or reasonably ascertainable information about the property that would help the environmental professional to identify conditions indicative of releases or threatened releases? For example, as user,
(a) Do you know the past uses of the property?
Fave Leather manufacturer
(b) Do you know of specific chemicals that are present or once were present at the property?
NO
(c) Do you know of spills or other chemical releases that have taken place at the property?
(d) Do you know of any environmental cleanups that have taken place at the property?
(a) Bo you know of any chrynomichian elemans and have taken place at the property.
(7) The degree of obviousness of the presence or likely presence of contamination at the property, and the ability to detect the contamination by appropriate investigation (40CFR 312.31)
As the user of this ESA, based on your knowledge and experience related to the property are there any obvious indicators that point to the presence or likely presence of contamination at the property?
(8) Reason for conducting this Phase I Environmental Site Assessment: 318 Part 15 Conducting the Study User's Signature Date 10 (3) (2)

Donegan, Bay Spring Ave, Barrington

90 Bay Spring Avenue Barrington, RI 02806

Inquiry Number: 3440007.4

October 25, 2012

The EDR-City Directory Image Report

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

City Directory Images

Thank you for your business.Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING. WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction orforecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2012 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Report is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's City Directory Report includes a search of available city directory data at 5 year intervals.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. A check mark indicates where information was identified in the source and provided in this report.

<u>Year</u>	Target Street	Cross Street	<u>Source</u>
2008	$\overline{\checkmark}$	$\overline{\checkmark}$	Cole Criss-Cross Directory
2000	$\overline{\checkmark}$	$\overline{\checkmark}$	Cole Criss-Cross Directory
1995		$\overline{\checkmark}$	Cole Criss-Cross Directory
1990	\square	$\overline{\mathbf{V}}$	Cole Criss-Cross Directory
1985	\square	$\overline{\checkmark}$	Cole Criss-Cross Directory

RECORD SOURCES

EDR is licensed to reproduce certain City Directory works by the copyright holders of those works. The purchaser of this EDR City Directory Report may include it in report(s) delivered to a customer. Reproduction of City Directories without permission of the publisher or licensed vendor may be a violation of copyright.

FINDINGS

Cole Criss-Cross Directory

TARGET PROPERTY STREET

90 Bay Spring Avenue Barrington, RI 02806

1985

<u>Year</u>	<u>CD Image</u>	<u>Source</u>
90-115 Bay	/ Spring Avenue	
2008	pg A1	Cole Criss-Cross Directory
2008	pg A2	Cole Criss-Cross Directory
2000	pg A3	Cole Criss-Cross Directory
1995	pg A4	Cole Criss-Cross Directory
1990	pg A5	Cole Criss-Cross Directory

pg A6

3440007-4 Page 2

FINDINGS

CROSS STREETS

<u>Year</u>	<u>CD Image</u>	<u>Source</u>
-------------	-----------------	---------------

7 and 57 Adams Avenue

2008	pg. A7	Cole Criss-Cross Directory
2000	pg. A8	Cole Criss-Cross Directory
1995	pg. A9	Cole Criss-Cross Directory
1990	pg. A10	Cole Criss-Cross Directory
1985	pg. A11	Cole Criss-Cross Directory

3440007-4 Page 3

2008

BAY	SPRING AVE	1	-11 - 1 - 1
CT 4	201.00	210	
	301.00 9 302.00 E 148	- 218 - 148	\$i \$i
. Curr	9.	- 218	0280
	GTON RD INTS *Razzys Inc	96	401.246.168
12	★ Marion United Methodist Chi ★ B Joseph Thomas Do .	urch 93	
16			
	★Jay Steenhuysen And Associ♣Rodolfo Sequeira		401.246.211 NP
20	Jane G Gower	92	•401.246.117
23	Ronald W Gower Anita C Dimatteo	87	NP
28	Joseph A Dimatteo Arman Gazeryan	87	NP
	Veronica A Gazeryan ★ David E Butera	05	401.246.051
40	Performance Products	06 Llc 77	401.245.957
, ,	Royal Co Inc J	+0	9401.246.060
	* Barrington Lumber & Sup * Classic Kitchens & Cou		is Inc
,	Home Glow Enterprises	01	401.237.350
90			
	Shirley B Adams Geraldine F Angell		401.246.003
202 202	Al I Archambault	97	401.246.007
	Nancy A Ash	02	401.246.127
107 124	Charlotte W Baker Andrea Baldomar	06	401.246.061
124	Denise W Baldomar	00	401.246.271
)FC	Patricia A Belanger	97	401.246.240 9
	Mary Armstron Bennett	02	401.246.004
	Bertha Bestwick	02	401.246.1067
122	Shirley M Boule	04	401.246.008
111	Catherine E Brown	02	401.246.0209
	Richard D Cole	02	401.246.0889
228	Elizabeth K Cousineau	02	401.246.092
204	Edwin E Davies Jr		401.246.0379
1170	Dorothy M Dennis	01	401.246.7845
205	Joy D Dennis	01	401.246.7845
108 108	Eileen A Fanella	98	401.246.0409
106	Richard E Fanella	97	401.246.0409
226 224	R A Grout	01	401.246.7854
224	June A Hedgpeth	94	401.246.0431
	S Horn	05	401.246.2499
1	Frank Horton	00	401.246.1241
126	Jonathan A Jacobs		401.246.1248
126	Mark Johnson	03	401.246.2492
203 214	F Karger	05	401.246.1844
223 225	Emeric H Klein	06	401.246.1216 401.246.1938
2220	Joan H Lansing	02	401.246.2641
118	Ida Lawrence	90	
110	Georgina M Lund	02	401,246,1847
215 201	Carmena D Maddock Dorothy T McDaniel		401.246.1532 401.246.0130
4	M Meyer	05	401.246.2709
231	Rosella Mollo		401.246.0757
218	Thelma A Oberg	95	401.246.1597
130	B Plaisted		401.246.1282
130	Raymon F Plunkett	04	401.246.0290
103 219	Gladys M Purcell Carol A Riegler		401.246.0530
		nformat	

90	-115 I	Bay Spring Avenue		20	80
				C	OL
-	221	Margo Rueb	94	401.246.3	338
	209	Marilyn M Saute	05	401.246.0	393
		Charles Saint Sthilaire	02	401.246.1	896
	***	Janet A Sthilaire		401.246.1	
A	219			401.246.2	
6	207	Angela R Verdi (05	401.246.0	769
1-1		Y BIKE PATH INTS			- 1
8	104	Jim S Botnick-Bates (NP	
8	105	Kimberly Ann Botnick-Bates . (01	NP	- 1
	105	Dawn M Anderson		NP ·	- 1
3	107	David W Cook		NP	
4	107	Carolyn Cook			
	DAME	David W Cook	32	401.289.0	135
-"		AVE INTS	20	104 040 0	
1	110	Bay Spring Service 8	88 4	401.246.2	700
2	119	Joseph E Defee Jr	11.	NP	
2	127		01 •	NP	.,,
	132	Michael Huff			
1	133	Nancy J Vincent		401.246.03	
3	133	Betty N Bridge Leighten		401.751.23	3/8
3	136	Betty Briden Leighton			
3	137	Karen E Lembo			
3	13/	Edward Carl Tufarolo 6			
6	145	Nancy A Tufarolo	00	101.246.10	101
6	145	Christopher B Stevens 8			
7	147	Theresa R Stevens 8	51 -4	101.246.22	202
1		Claria Alaysadas	NE .	101 040 04	150
		Gloria Alexander		101.246.01	
	3190	B Allen	00 4	101.246.08	
2	3/9	Virginia B Allen	00 4	101.246.08	
2	133	Richard Lowe Ballou	12 4	101.246.24	110
4	_			101.246.12	206
4			+	NP NP	
3		Ruth W Beech		101.246.10	
6	138	A Brzozowy		101.246.28	
3	241			101.246.28	
3				01.246.07	
				101.246.23	
9				101.246.08	91
9			00	NP NP	000
3		Charles I Colomon	13 4	01.246.29	90
3	341)4 4	01.246.00	102
3	328			01.246.28	
		Daniel B Converse 0 Teresa L Converse 0		01.246.19	
	336	Albert R Coop Jr		01.246.19	194
		many and the second sec	99	NP	101
	228		_	01.246.29	101
5)6	NP	50
5				01.246.01	
5	221			01.433.30	
	319	Frances W Drew 0	5 4	01.246.02	
	318	Francis Drew Drew 0		01.246.11	
		Edward F Dudzik 0	6 4	01.246.11	
				01.246.01	
		Joseph W Egan Jr 0		01.246.06	
	1	W Egan Jr	5 4	01.246.06 01.246.00	
		FIGURE CHURS	1.3 44	U1 /45 [[[7.7

-11	5 Bay Spring Avenเ	ıe	2000
v 1	* muestis Mach Corp 39	401-240-1351	
	64★ Kids Quarters 96	401-246-0100	
	65★ Brrngtn Supplies .	401-246-0550	
1	★ Village Kitchens . 99	401-246-2400	
	68★ Huestis Mach Corp -	401 -253 -7350	
	- LAKE AVE INTS	7	
11	- WASHINGTON RD INTS		
6	90 S Adams 98	401-246-0031	
3	Geraldine Angell . 99	401-246-0177	
5	Al Archambault 98	401-246-0074	
14	N A Ash 98	401-246-1271	
16	Patricia Belanger . 98	401-246-3341	
14	M A Bennett 98	401-246 ◊0046	
11	Bertha Bestwick . 98	401-246-7824	
10	S J Boudreau 98	401 -246 -3324	
	L Bouffard I	401 -246 ♦ 0338	- 1
6	Paul Bourdon 99	401-246-0608	
1	C Brant 99	401-246-0447	
00	C E Brown 99	401-246-1531	
17	Frank Byrnes 98	401-246-0771	
		401-246-7896	
- 1		401-246-1269	
)6	Richard D Cole 98	401-246-0889	
		401-246-0921	17 - 100
	M J Crawley 98	401-246-7852	
6	L Davies 99	401-246-0379	
	Alfred Dennis	401-246-7845	
	T Furtado 98	401-246-7851	- /1
89	L D Garnwell 98	401-246-7831	
		401-246-3323	
01	William H Greene . 98	401-246-0282	
63		401-246-7854	
62	V Hellmann 98	401-246-0525	
19 25	Catherine Holleran 98	401-246-0780	1.00
65	A Homung I	401-246-7804	146
46		401-246-1241	199
69	Raymond R Hyatt . 98	401-246-7821	
0.5	J Jacobs 98	401-246-1248	1.77
	E Johnson 98	401-246-0402	
	Martin Kottler I	401 -246 • 1894	- 9
		401 - 246 - 7897	1.00
		401 - 246 - 7847	
		401 - 246 - 0378	100
	C Martin	401 -246 -0629	100
		401 -246 - 7885	
	Mark Melechinsky . 98	401 -246 - 7826	- 13
	Saint A Messenger 98	401 -246 -0984	
	G R Neubauer 98	401 -246 - 0203	37
	Alfred Ogden Jr . 98	401 -246 = 1206	
	John F Pimentel . 98	401 -246 - 0821	
72	Alice Riley 98	401 -246 -7802	
34	Margo Rueb 98	401 -246 -3338	
5	L Rylands 98 Janet Stansbury #	401 -246 -2200 401 -246 \$7810	
-	★ Barrington CV Apt 97	401 -246 -2409	1 10
06	104 James Gardner 95	401 -246 - 1720	198
	104 James Gardier	401-246-1720	
	Susan Thomas =	401-246-0712	
6	115★ Bay Spring Service □	401 -246 - 2700	
	119 John P Wayland Sr II	401 -246 - 7815	
	127 S Phillips	401-246-2588	
24	- ADAMS AVE INTS	2.0 2000	
0.0	- WALSH AVE INTS		
32	131 John Tufarolo 68	401-246-0987	
E.	132 Robert Chartier73	401 -246 - 0484	
154	N Vincent	401-246-0322	
22	133 Betty L Briden 99	401-246-0145	100
185	136 Emil Christ 97	401 -246 - 2029	100
347	137 Edward C Tufarolo 79	401-246-1061	
582	145 C Stevens 94	401-246-2202	100
395	Chris Stevens 81	401 -246 - 1391	
.00	146★ A M Construction □	401 -246-0/54	No. of Street, or other Designation of the Street, or other Design
530	147★ Bay Spring Village 🎞	401 _246 - Z	
-00	★ Delta Mechi Const 🎞	404 7Ab - W	
222	162 Harriet Downey 99		

1995

280 F
200
200
- 062
- 062
00,
- 147
- 156
- 194
- 101
-032
- 11
17
123
10
- 134
- 185
- 106
100
171
175
167
not
190
190
- 05
- 050
- 146
- 146
- 146

90-115 Bay Spring Avenue	1990
31 RESIDENCE	
BAY SPRING AVE	
Begins 187 Washington Road R	uns
Westerly Ends At Water Front	
1- 299 CT 301	\$BF 6
9★ Hills Tire&Auto ¤	
12★ Barmon Inc 85	245-0622
15★ Dr B J Thomas	
A Roger Cruz 84	246-1590
16 Alfred J Lachance 86	246-1805
20 M P Thompson 88	246-0409
23 Jos A Dimatteo 88	246-0275
* Eveready Elect Inc 88	
28 Ellis F Carlson 82	246-1055
* Viking Industries 87	246-1855
3u★ STM	246 – 1544
31 NP	245 4000
32★ Rcy Designs 88	246-1829
34 * Mighty Dist Sys 86	246-1670 246-0600
40★ J Royal Co Inc 82	246-1657
50 U Appleton	246-1900
60★ Martek Corp 86 62★	240-1900
	246-0481
* Fine Line Hith Clb 88	
64★ Electric Beach 88 65★ Barrington Lumber	246-0550
68 NP	240-0550
68 NP 85 * Belmont Wire Specl 84	246_0502
* Group IV 87	246-0043
90★ Cast Products Corp 82	246-0100
* Pilling Chain Co	⊙ 246-0100 I
107 S Cook	246-0712
115★ Bay Spring Service	246-1077
- WALSH AV BEGINS	
119 John P Wayland Sr 77	246-1114
127 S Richardson 86	246-0882
132 Robert Chartier 73	246-0484
133 Edw C Tufarolo 79	246-1061
137 John Tufarolo Jr 68	246-0987
145 Chris Stevens 81	246-1391
162 LCdr J G Paroline	246 – 1562
- LAKE AV INTS	- 1
164 NP	
166★ Bridging The Gap ¤	246-1370
★ The Flying Dutchmn 88	245-0122
* Rainbow System 88	246-0500
170 Albertus H Trevail 82 176 Albert Cardoza	246 1737
	246 - 1033
	246-0598 246-1348
Robt Ring	246-1348
= NARRAGANSETT AV INTS	240-0322
195 John Bruibacher #	246-0583
200 John Vergelli	246-0084
201 Richard T Smith 68	246-1398
LOT THEHATO I SHITTH	240-1330 1

1985

	27 RESIDENCE 1	
BA	Y SPRING AVE	02806
	ns 187	
Was	nington Road	
Runs	Westerly Ends	
	later Front	
	1- 240 TZ 301	\$A
	020230	
91	Raymond K Sadlier	246 - 1460
15	Dr B J Thomas	246 - 1010
	A Roger Cruz	246 - 1590
16	NP	1111
201	Bar Power Mowers	246 - 0470
	Joanne E Lemay	246 - 0508
	Lomas Chip Lawn Sv	246 - 0476
28	Ellis F Carlson 82	246 - 1055
31	NP	
40	k J Royal Co Inc	246 - 0600
50	Appleton's Repair	246 - 1657
60	Appleton's Repair	246 - 0000
7	Caserta Auto	246 - 1670
7	Mighty Distributng	246 - 1670
627	Lynn Hosford Studo	246 - 0039
64	Barrington Plumb	246 - 1300
65	Barrington Lumber	246 - 0550
68	NP	
857	Belmont Wire Specl I	246 - 0502
7	East Bay Wire	246 - 1912
907	Cast Products Corp	246 - 0100
7	Karew	246 - 1500
7	Pilling Chain Co	246 - 0100
107	S Cook	
	Joan Cottle 83	
	L B Fredette82	246 - 1431
	Bay Spring Service	
119		246 - 1114
127		246 - 0624
132	Robert Chartier	246 - 0484
	Mary R Kirby	246 - 0972
	E Carl Tufarolo 79	
137		246 - 0987
	Chris Stevens 81	
162	A S Derrah 82	246 - 1172
164	Thomas J Aguiar 83	246 - 1090
	Magnetic Seal Corp	246 - 1000
170	Albertus H Trevail 82	246 - 1737
176	Albert Cardoza	246 - 1033
178	NP	040 0000
	Tufarolo's Unisex	246 - 0922
195	NP	040 000
200		246 - 0084
201	Richard T Smith 68	246 - 1398
203	Norman Kee 65	246 - 1774
207	Doug Kee	246 - 1384
212	Ronald N Bourque 80	246 - 0098
218	George Bestwick 73	246 - 1978
NO #1	R I Lace Wks Inc	246 - 1550
NO #1		722 - 9150
	28 RESIDENCE 22	BUSINESS
	ACH DD	00000
	ACH RD	02806
	ns At 57	
	hapacasset	
-	Ends Watson	
Aven		
	1- 99 TZ 304	\$A
	020240	

7 and 57 Adams Avenue 2008 37 25 25 24 75 NP Elizabeth C Seifert 69 • 401.247.1430 79 Catherine Farricker 02 • 401.289.0101 83 Lynne W Lehman 02 • 401.289.0101 87 * Dm Ross Builders 87 401.245.2732 31 25 RESIDENCE 1 BUSINESS **ADAMS AVE** 24 60 301.00 0 7-9805522 **BAY SPRING AVE INTS** William R Cost 70 • 401.246.0412 Gary D Roberts II 83 • 401.246.1151 Mary C Roberts 83 • 401.246.1151 READ AVE INTS 41 Barbara J Girard 71 • 401.246.0071 Lillian Y Girard 71 • 401.246.0071 Olivia M Stangelo...... 99 • 401.246.3390 57 13 Vincent J Stangelo Jr 99 • 401.246.3390 Norbert Schiffner 02 401.246.1380 9 RESIDENCE ADAMS POINT RD 9 304.00 5 - 178 CT 50 CT 302.00 E 50 -5 - 178 **02806** FERRY LN INTS **G Mills**

Cole Criss-Cross Directory

74 * 75 79 83	James T Seifert Jr 70	2000 401 -245 - 2732 401 -247 - 1168 401 -247 - 1430 1 BUSINESS	
● AD	AMS AVE	02806	
Begins Ends	At Base of Latham Average 1- 98 CT 301 IVERSAL ATLAS R MAP E 18-19 Robert L Cost71	\$AF 6 LOC 401-246-0412	
11 41 57	Gary D Roberts 84 Al Girard 72		,
59	5 RESIDENCE	401 240 1001	ľ
● AD Begin	AMS POINT RD s 63 Ferry Lane Runs	02806	ľ
Begin South	AMS POINT RD s 63 Ferry Lane Runs erly Ends Adams Point 1- 198 CT 304 37- 49 CT 301 51- 199 CT 304	\$A.F 6 \$A.F 6 \$A.F 6	
Begin South	AMS POINT RD s 63 Ferry Lane Runs erly Ends Adams Point 1- 198 CT 304 37- 49 CT 301 51- 199 CT 304 NIVERSAL ATLAS R MAP 8PQ 18-19	02806 \$A.F 6 \$A.F 6 \$A.F 6	
Begin South 0 0 0 0 UI	AMS POINT RD s 63 Ferry Lane Runs erly Ends Adams Point 1- 198 CT 304 37- 49 CT 301 51- 199 CT 304 NIVERSAL ATLAS R MAP 8PQ 18-19	02806 \$AF 6 \$AF 6 \$AF 6	
Begin South	AMS POINT RD s 63 Ferry Lane Runs erly Ends Adams Point 1- 198 CT 304 37- 49 CT 301 51- 199 CT 304 NIVERSAL ATLAS R MAP 8PQ 18-19	02806 \$AF 6 \$AF 6 \$AF 6 LOC IP 401-245-5067 401-245-1384	
Begin South 0 0 • UI • 7, 5 11 17 18	AMS POINT RD s 63 Ferry Lane Runs erly Ends Adams Point 1- 198 CT 304 37- 49 CT 301 51- 199 CT 304 NIVERSAL ATLAS R MAP 8PQ 18-19 Emile Couture	\$AF 6 \$AF 6 \$AF 6 \$AF 6 LOC IP 401-245-5067 401-245-1384 401-245-3555	
O O O O O O O O O O O O O O O O O O O	AMS POINT RD s 63 Ferry Lane Runs erly Ends Adams Point 1- 198 CT 304 37- 49 CT 301 51- 199 CT 304 NIVERSAL ATLAS R MAP 8PQ 18-19 Emile Couture	\$AF 6 \$AF 6 \$AF 6 \$AF 6 LOC IP 401-245-5067 401-245-1384 401-245-3555 401-245-9128	
Begin South 0 0 • UI • 7, 5 11 17 18	AMS POINT RD s 63 Ferry Lane Runs erly Ends Adams Point 1- 198 CT 304 37- 49 CT 301 51- 199 CT 304 NIVERSAL ATLAS R MAP 8PQ 18-19 Emile Couture	\$AF 6 \$AF 6 \$AF 6 \$AF 6 LOC IP 401-245-5067 401-245-1384 401-245-3555	

7 and 57 Adams Avenue

75 Irene Renaud	345 430 535
ADAMS AVE 1 BUSINES 028	
Begins 117 Bay Spring Avenue	06
Ends At Base of Latham Avenue	
1- 99 CT 301 \$AF	6
7 Robert L Cost	412
11 Gary D Roberts 84 • 246-1	151
- READ AV ENDS	
41 B Girard	071
57 Stephen J Mansi 89 • 246 – 12	206
59 Gretchen E Ketz 92 246-16 5 RESIDENCE	641
ADAMS POINT RD 0280	06
Begins 63 Ferry Lane Runs	-
Southerly Ends Adams Point	
1- 199 CT 304 \$AF	6
WEEDEN MAP LOC 9G 75	725
5 Geo H Montgomery 63 245-37 11 Emile Couture 75 245-50	167
BRIARFIELD RD BEGINS	007

Target Street

Cross Street

<u>Source</u>

Cole Criss-Cross Directory

7 and 57 Adams Avenue

1990

Hoss Builders	-
62 Mark R Burassa 88 247-1	
67 Robert D Siegel 88 247-1	
70 M Ferreira	
71 Paul H Dennis	6296
75 Irene Renaud 84 247-0	0345
79 James T Seifert Jr 70 247-1	1430
83 Armando Corvi 69 245-3	3415
87 J Sampson	
17 RÉSIDENCE 1 BUSINE	
ADAMS AVE 028	BOG Bo
Begins 117 Bay Spring Avenue	Ea
Ends At Base of Latham Avenue	
	F 6
1- 99 CT 301 \$B	the second secon
7 Robert L Cost	0412
7 Robert L Cost	0412 1773 - A
1- 99 CT 301 \$B 7 Robert L Cost	0412 1773 - A
1- 99 CT 301 \$B 7 Robert L Cost	0412 1773 1151 — A
1- 99 CT 301 \$B 7 Robert L Cost	0412 1773 1151 – A 0071
1- 99 CT 301 \$B 7 Robert L Cost	0412 1773 1151 - A - V
7 Robert L Cost	0412 1773 - A 1151 - V 1071 1206 PAGE MAY N
1- 99 CT 301 \$B 7 Robert L Cost	0412 1773 - A 1151 - V 1071 1206 PAGE MAY N

north C	1- 124 TZ 303	\$A
4	019910	247 0004
5	Daniel S Austin	
15	James J Owen 81	245 - 2380
20	Raymond Martin	245 - 9123
32	Donald L Chionchio 69	245 - 2556
62	NP	
67	Keith Correia I	247 - 0040
70	Manuel Ferreira	247 - 1042
71	Paul H Dennis 78	245 - 6296
75	Irene Renaud	247 - 0345
79	James T Seifert Jr 70 Armando Corvi 69	245 - 1145 245 - 3415
03	12 RESIDENCE	245 - 3415
Sprin	s 117 Bay	
At Ba	g Avenue Ends ase of Latham ue	
At Ba Aven	ase of Latham ue 1- 99 TZ 301	\$A
At Ba	1- 99 TZ 301 019920	
At Ba	1- 99 TZ 301 019920 Robert L Cost	246 - 0412
7 11 41	1- 99 TZ 301 019920	
7 11 41 57	1- 99 TZ 301 019920 Robert L Cost	246 - 0412 246 - 1151 246 - 0071 246 - 1835
7 11 41	1- 99 TZ 301 019920 Robert L Cost	246 - 0412 246 - 1151 246 - 0071
7 11 41 57	1- 99 TZ 301 019920 Robert L Cost	246 - 0412 246 - 1151 246 - 0071 246 - 1835
7 11 41 57	1- 99 TZ 301 019920 Robert L Cost	246 - 0412 246 - 1151 246 - 0071 246 - 1835
7 11 41 57	1- 99 TZ 301 019920 Robert L Cost	246 - 0412 246 - 1151 246 - 0071 246 - 1835
7 11 41 57 59	1- 99 TZ 301 019920 Robert L Cost	246 - 0412 246 - 1151 246 - 0071 246 - 1835 246 - 0715

Donegan, Bay Spring Ave, Barrington

90 Bay Spring Avenue Barrington, RI 02806

Inquiry Number: 3440007.3

October 26, 2012

Certified Sanborn® Map Report

Certified Sanborn® Map Report

10/26/12

Site Name: Client Name:

Donegan, Bay Spring Ave, 90 Bay Spring Avenue 474 Br Barrington, RI 02806 Pawtud

Resource Control Associates 474 Broadway Pawtucket, RI 02860

EDR Inquiry # 3440007.3 Contact: Julie Freshman

The complete Sanborn Library collection has been searched by EDR, and fire insurance maps covering the target property location provided by Resource Control Associates were identified for the years listed below. The certified Sanborn Library search results in this report can be authenticated by visiting www.edrnet.com/sanborn and entering the certification number. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by Sanborn Library LLC, the copyright holder for the collection.

Certified Sanborn Results:

Site Name: Donegan, Bay Spring Ave, Barrington

Address: 90 Bay Spring Avenue **City, State, Zip:** Barrington, RI 02806

Cross Street:

P.O. # 7131/Task 1

Project: 7131

Certification # 69BE-4F3A-89BA

Maps Provided:

1961

1950

1928

1921

Sanborn® Library search results Certification # 69BE-4F3A-89BA

The Sanborn Library includes more than 1.2 million Sanborn fire insurance maps, which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

Library of Congress

University Publications of America

▼ EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

Resource Control Associates (the client) is permitted to make up to THREE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2012 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Sanborn Sheet Thumbnails

This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

1961 Source Sheets

Volume 1, Sheet 13

Volume 1, Sheet 15

1950 Source Sheets

Volume 1, Sheet 13

Volume 1, Sheet 15

1928 Source Sheets

Volume 1, Sheet 15

Volume 1, Sheet 13

1921 Source Sheets

Volume 1, Sheet 9

Volume 1, Sheet 7

ification for Undergre nd Storage Tanks

OVAL EXPIRES 6-30-88 I.D. Numb Date Rece SFP 1988

GENERAL INFORMATION

Notification is required by Federal law for all underground tanks that have been used to store regulated substances since January 1, 1974, that are in the ground as of May 8, 1986, or that are brought into use after May 8, 1986. The information requested is required by Section 9002 of the Resource Conservation and Recovery Act. (RCRA), as amended.

The primary purpose of this notification program is to locate and evaluate underground tanks that store or have stored petroleum or hazardous substances. It is expected that the information you provide will be based on reasonably available records, or, in the absence of such records, your knowledge, belief, or recollection.

Who Must Notify? Section 9002 of RCRA, as amended, requires that, unless exempted, owners of underground tanks that store regulated substances must notify designated State or local agencies of the existence of their tanks. Owner means—

(a) in the case of an underground storage tank in use on November 8, 1984, or

brought into use after that date, any person who owns an underground storage tank used for the storage, use, or dispensing of regulated substances, and

(b) in the case of any underground storage tank in use before November 8, 1984. but no longer in use on that date, any person who owned such tank immediately before the discontinuation of its use.

What Tanks Are Included? Underground storage tank is defined as any one or combination of tanks that (1) is used to contain an accumulation of "regulated substances," and (2) whose volume (including connected underground piping) is 10% or more beneath the ground. Some examples are underground tanks storing: 1. gasoline. used oil, or diesel fuel, and 2, industrial solvents, pesticides, herbicides or fumigants.

What Tanks Are Excluded? Tanks removed from the ground are not subject to notification. Other tanks excluded from notification are:

 farm or residential tanks of 1,100 gallons or less capacity used for storing motor fuel for noncommercial purposes:

2. tanks used for storing heating oil for consumptive use on the premises where stored: 3. septic tanks;

4. pipeline facilities (including gathering lines) regulated under the Natural Gas Pipeline Safety Act of 1968, or the Hazardous Liquid Pipeline Safety Act of 1979, or which is an intrastate pipeline facility regulated under State laws:

5, surface impoundments, pits, ponds, or lagoons;

6. storm water or waste water collection systems: 7. flow-through process tanks;

8. liquid traps or associated gathering lines directly related to oil or gas production and gathering operations;
9. storage tanks situated in an underground area (such as a basement, cellar,

mineworking, drift, shaft, or tunnel) if the storage tank is situated upon or above the surface of the floor.

What Substances Are Covered? The notification requirements apply to underground storage tanks that contain regulated substances. This includes any substance defined as hazardous in section 101 (14) of the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA), with the exception of those substances regulated as hazardous waste under Subtitle C of RCRA. It also includes petroleum, e.g., crude oil or any fraction thereof which is liquid at standard conditions of temperature and pressure (60 degrees Fahrenheit and 14.7 pounds per square inch absolute).

Where To Notify? Completed notification forms should be sent to the address given at the top of this page.

When To Notify? 1. Owners of underground storage tanks in use or that have been taken out of operation after January 1, 1974, but still in the ground, must notify by May 8, 1986. 2. Owners who bring underground storage tanks into use after May 8. 1986, must notify within 30 days of bringing the tanks into use.

Penalties: Any owner who knowingly fails to notify or submits false information shall be subject to a civil penalty not to exceed \$10,000 for each tank for which notification is not given or for which false information is submitted.

INSTRUCTIONS

,	
Į	1
ľ	4
ł	
L	

Please type or print in ink all items except "signature" in Section V. This form must by completed for each location containing underground storage tanks. If more than 5 tanks are owned at this location, photocopy the reverse side, and staple continuation sheets to this form. Indicate number of continuation sheets attached							
I. OWNERSHIP OF TANK(S) Owner Name (Corporation, Individual, Public Agency, or Other Entity) Ray Spring Street Address If Ray Spring AVENUE County	II. LOCATION OF TANK(S) (If same as Section 1, mark box here (X)) Facility Name or Company Site Identifier, as applicable Street Address or State Road, as applicable						
Bristol City State ZIP Code Barrington Fil. Area Code Phone Number (401) 2410-1077	County City (nearest) State ZIP Code						
Type of Owner (Mark all that apply 2) Current State or Local Gov't Corporate Federal Gov't Ownership uncertain	Indicate number of tanks at this location Mark box here if tank(s) are located on land within an Indian reservation or on other Indian trust lands						
Name (If same as Section I, mark box here 2) President Duner III. CONTACT PERSON AT TANK LOCATION Area Code Phone Number (401) 246-1677							
V. CERTIFICATION (Read and s	IV. TYPE OF NOTIFICATION Mark box here only if this is an amended or subsequent notification for this location. V. CERTIFICATION (Read and sign after completing Section VI.)						
all certify under penalty of law that I have personally examined and	am familiar with the information submitted in this and all attached						

documents, and that based on my inquiry of those individuals immediately responsible for obtaining the information. I believe that the

submitted information is true, accurate, and complete.

Name and official title of owner or owner's authorized representative harbentier Reservent

Date Signed 9- 12-88

Owner Name (from Section I) BOW Sprint Service Goog	ocation (from Sec	tion II) Boys	Eug Air Bor	ি Page No	ofFees
V 1 /		IKS (Complete to	ach tank at this lo	calion.)	A AVE
Tank Identification No. (e.g., ABC-123), or Arbitrarily Assigned Sequential Number (e.g., 1,2,3)	Tank No.	Tank No.	Tank No.	Tank No.	Tank No.
1. Status of Tank (Mark all that apply (II)) Temporarily Out of Use Permanently Out of Use Brought into Use after 5/8/86					
2. Estimated Age (Years)	15	5		1 1111	
Estimated Total Capacity (Gallons) Material of Construction Stool	3000	3000			
(Mark one 🗹) Steel (Mark one 🗹) Concrete Fiberglass Reinforced Plastic Unknown Other, Please Specify	X I I I	XIIIII			
5. Internal Protection (Mark all that apply 21) Interior Lining (e.g., epoxy resins) None Unknown					
Other, Please Specify					
6. External Protection (Mark all that apply 21) Fiberglass Reinforced Plastic Coated None Unknown Other, Please Specify	M				
7. Piping Bare Steel (Mark all that apply 12) Galvanized Steel Fiberglass Reinforced Plastic Cathodically Protected Unknown Other, Please Specify					
8. Substance Currently or Last Stored in Greatest Quantity by Volume (Mark all that apply 20) Gasoline (including alcohol blends) Used Oil Other, Please Specify c. Hazardous Substance					
Please Indicate Name of Principal CERCLA Substance					
OR Chemical Abstract Service (CAS) No. Mark box 🗷 if tank stores a mixture of substances d. Unknown					
9. Additional Information (for tanks permanently taken out of service)		,			
 a. Estimated date last used (mo/yr) b. Estimated quantity of substance remaining (gal.) c. Mark box 2 if tank was filled with inert material (e.g., sand, concrete) 	/	/	/	/	

Facility Name

Roy Spring Service Garage Tuc.

Street Address

| SEP | 1988

Registration # 2843

I certify under penalty of law that all information previously submitted to the Director was prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to be the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

MAME.

TITLE: R-55

DATE:

8-72-88

Please return this form, which applies to underground storage tank information/registration, to:

Department of Environmental Management
Division of Groundwater & Freshwater Wetlands
291 Promenade Street
Providence, Rhode Island 02908
(401) 277-2234

DEPART THI OF ENVIRONMENTAL MANAGEMENT DIVISION (GROUNDWATER & FRESHWATER '

LANDS

291 PROMENADE STREET PROVIDENCE, RHODE ISLAND 02908

(401) 277-2234

PLEASE FILL OUT APPLICATION COMPLETELY For Underground Sto	NG C C C C C C C C C C C C C C C C C C C
FACILITY NAME BOW Spring SERVICE GORDE T ADDRESS 115 ROY Spring AVENIUE CITY/TOWN BORTHOTON ZIPOSS	DIMPOCH
(1) Year Operation Commenced / %	
(2) Is this aNEW orEXISTING FACILITY?	E
IF A NEW FACILITY, a set of detailed engine including operation and maintenance require (See Section 7,b,1).	ering plans and project specifications ments is required with this application
IF EXISTING FACILITY, a site plan of all eqapplication (See Section 7,b,2).	uipment locations is required with this Island
· · · · · · · · · · · · · · · · · · ·	ote (Sump) and, bmersible) Remote Other
IF REMOTE SYSTEM A) Line Leak Det	ection System Installed? Yes No U
B) Does the base have a shear	of the dispensing system valve? Yes No
(4) Are recovery wells installed around the fac	ility? Yes No N
(5) Are monitoring Wells installed around the f	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(6) Does a drinking water supply exist within l	,000 feet of the facility? Yes Yes No
IF YES SPECIFYPublic Well	Private Surface Source
Prívate Well	Public Surface Source
Public Supply	Unknown
Water Body (name)_	
(7) Have any leaks or spills occurred at this for the contract of the contract	
APPLICATION SUBMITTED BY Owner Operator	OWNER OR DESIGNATED OFFICIAL (Complete Only If Different From Applicant)
APPLICANT NAME Richard Charbentier	OWNER NAME
ADDRESS 115 BOY Spring AVENUE	ADDRESS
Barrington Rt. 02801.	
TELEPHONE NO. 346-1077	

	Stell	FOR PIPING	UL STANDARD USED FOR PIPING / Stall	~	CH11-1062#	NKS TO SULLING	TANDARD HEED FOR TANKS TO SOLVED	CTANIDA	Ξ [
								-	
		-		_					
	(P)			0					
	25		n tonk	SUXE 1	See MOSUXE				
20014	G95 (SXE 010018								` '
2000	STATE STATES	11 0.3 /	01 State	01 Str 2	3000	イ 7 3000	7//73	0	
~	\$6 IIV	9 99	-7 -			5	1110		
	XX XAW3) > Yes 49	O Stee	345	بر 23	0	24/17	-	
	1)	EDVT PVT UP	WALIKLA	(Gallons)	OF TANK	(YEAR/MONTH)	NO.	ם
	STORED MATERIAL	CORROSION	CONSTRUCTION	CONSTRUCTION	VOLUME	PRESENT STATUS	DATE OF	TANK	គេអ
CONTAIN-		TANK				A=Abandoned			S 5
				-		C=Closed			-
						E≔In Use			7
						·			-;

Has a precision test been performed at this facility? (Enclose results if available) IF YES A) Date of Most Recent Test Where ere tests performed? Type of Precision Test Prease indicate which tanks were tested by placing a check mark in the TESTED column for each tank tested. PRECISION TESTING _Kent Moore Petro Tite Hunter Leak Lokator Tanks Lines Both

COMPLETE THIS SECTION FOR CLOSED TANKS

UL STANDARD USED FOR TANKS TO SALLIDO, TO SALLY

Date Taken Out of Service $\frac{15/\sqrt{100}}{\text{Yr.}}$ Type of Tank Closure Permanent Temporary

Present Condition of Tank(s)

Filled_ No Leaks Removed/

Occurred

Removed Leaking

Yr.

Day

Date Filled or Removed

COMMENTS

I bought this Establishment in 1981, solely for the purpose of mechanical repair. I would like to save tonks These underground touts have been completely empty of all hazardous materials (gasoline) since 1975,

RHODE ISLAND DEPARTMENT OF ENVIRONMENTAL MANAGEMENT 291 PROMENADE STREET PROVIDENCE, RHODE ISLAND 02908 . (401) 277-2234

PERMANANT CLOSURE APPLICATION FOR UNDERGROUND STORAGE FACILITIES

INSTRUCTIONS

- 1. Section 15 of the Department of Environmental Management's Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials requires that this application be submitted to the above address at least ten (10) days prior to the closure of an underground storage tank, and that the Department be notified at least 72 hours in advance of the date and time of closure to permit inspection.
- 2. All applicable information must be provided to the Department in order for this application to be considered valid and for the Department to issue a certificate of closure. Action taken to close an underground storage tank without meeting the requirements of #1 (above) and the permanant closure procedures listed in the regulations, shall be considered in violation of the regulations and subject to fines and penalties referenced therein.
- 3. Any questions concerning this application or closure procedures should be directed to the Department at the address and phone number listed above.
- 4. To be in compliance with local requirements, the appropriate city or town offices (e.g. fire department) should be contacted.

	·
Α.	Date of application: 4-3-89
В.	Date of tank closure: <u>Some</u>
C.,	Approximate time of tank closure: 11:/A M
D.	Underground Storage Facility Registration Number: Bay Spring Services (if applicable) House
E.	Facility Name: Bay Spring Service Surage Street Address: 1/5 Rdy. Spring Rul, City/Town: Bay. RV
F.	Tank Owner's Name:

2 2 2	AGE	USED	VOLUME	CONSTRUCTION MATERIAL	STORED MATERIAL
2~			. , , , , , , , , , , , , , , , , , , ,	Steel	.l
7	16	17/6	3000 ea	Sleet	Sasature
	•				
<u> </u>	····				
					THE RESERVE THE PERSON NAMED IN COLUMN TO A STREET WHEN THE PERSON
					•
		,_	, , , , , , , , , , , , , , , , , , , ,		
	····				
		(select one sion test an		t material (Section	on 15 (f) (2)).
				T BE CONDUCTED AN	
_		SUBMITTED P	RIOR TO FILLING	THE COMPOCIED AND	Ja 18011 Smiles
2. V	Excaya	ate, clean,	and dispose (Sec	tion 15 (f) (1))	
	y metho				
a. Specif	-	od of tank c	leaning:		
			_		
			leaning:		
b. Will t	ank be	disposed of	✓ or reused	?	
b. Will t	ank be	disposed of	✓ or reused	?	
b. Will t	ank be	disposed of	✓ or reused	?	
b. Will t	ank be	disposed of ad of, you M	or reused	od of rendering ta	
b. Will to	ank be	disposed of ed of, you M be done ons	or reused UST specify method ite or off:	od of rendering ta	ank unfit for future u
b. Will to	ank be dispose this ce.will	disposed of ed of, you M be done ons: the tank be	or reused UST specify method ite or off:	od of rendering ta	ank unfit for future u
b. Will to i. If of Will When Name Addi	ank be dispose this ce.will cess	disposed of ed of, you M be done ons	or reused UST specify method ite or off:	od of rendering to	ank unfit for future u
b. Will to i. If o Will When Name	ank be dispose this ce.will	disposed of ed of, you M be done ons: the tank be	or reused UST specify method ite or off:	od of rendering ta	ank unfit for future u

ii.	If the tank is to be <u>reused</u> , specify:
	purpose of use
	name and address of intended user

CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNED BY: () hard	a Charactin	Press,
TITLE:	Ü	
ADDRESS:		
TELEPHONE:		

D. RIMENT OF ENVIRONMENTAL MANAGE. T DIVISION OF GROUNDWATER AND FRESHWATER WETLANDS 291 Promenade Street

Providence, Rhode Island 02908 (401) 277-2234

2843 FACILITY ID 15,673 No 79445

CERTIFICATE OF CLOSURE
FOR UNDERGROUND STORAGE FACILITIES

In compliance with Chapter 46-12 of the Rhode Island General Laws, as amended, and the Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials,

Bay Spring Serve / the

owner/operator of an underground storage facility located at

115 Bay gring Aug)

is issued this Certificate of Closure indicating that the storage tanks described below have been taken out of service permanently, in compliance with the Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials.

	TANK ID NUMBER	VOLUME	STORED MATERIAL		DATE LAST USED	TATUS OF TANK F=Filled R=Removed
23		7000	- Gasaluit			u-
001	2 tank	5 3000	gasoling	···	1 173	K
						11.01.00
	Signed this	3	414 day of			, 1989
	Reviewed by		Ty Sellen	71188	_	, 19 <u>0 1</u>
	Approved:	Carlotte Di	1 SMM			
			vision of Groundwater atter Wetlands	and	CLOSE1	
			t of Environmental Man	agement	CLOSE2	
	is a broughting				CLOSE2	

STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS

Department of Environmental Management DIVISION OF GROUNDWATER AND FRESHWATER WETLANDS 291 Promenade Street Providence, R.I. 02908 - 5767

03 February 1989

CERTIFIED MAIL

Richard called 2/8/89 Will be closing 2 abandoned UST'S-in the spring-April.

Closed 4.4.89

Richard Charpentier Bay Spring Service Garage, Inc. 115 Bay Spring Avenue Barrington, RI 02806

RE: Underground Tank Closure

Dear Mr. Charpentier:

We have received your application for underground storage facilities which states that there are abandoned underground storage tanks located on your property. Please be advised that all underground storage tanks that are permanently out-of-service and which at any time contained gasoline, fuel oil (No. 1 and 2), diesel oil, waste oil, JP Fuels, gasohol or any hazardous material must be closed in accordance with the Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials.

If you have not already applied for a certificate of closure you are currently in violation of the Regulations. You are hereby requested to contact Mary Toti at 277-2234 within 10 days of receipt of this letter to initiate closure procedures. Failure to notify this office will leave the Department no other alternative but to initiate enforcement action.

Sincerely,

Saverio Mancieri, Sanitary Engineer

Division of Groundwater and Freshwater Wetlands

ours Moneus

Department of Environmental Management

SM: laq

cc: Charles P. Messina, DEM Legal Counsel Mary Toti, Groundwater Section, DEM

STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS

Department of Environmental Management DIVISION OF GROUNDWATER AND FRESHWATER WETLANDS 291 Promenade Street Providence, R.I. 02908 - 5767

03 February 1989

CERTIFIED MAIL

Richard Charpentier Bay Spring Service Garage, Inc. 115 Bay Spring Avenue Barrington, RI 02806

RE: Underground Tank Closure

Dear Mr. Charpentier:

We have received your application for underground storage facilities which states that there are abandoned underground storage tanks located on your property. Please be advised that all underground storage tanks that are permanently out-of-service and which at any time contained gasoline, fuel oil (No. 1 and 2), diesel oil, waste oil, JP Fuels, gasohol or any hazardous material must be closed in accordance with the Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials.

If you have not already applied for a certificate of closure you are currently in violation of the Regulations. You are hereby requested to contact Mary Toti at 277-2234 within 10 days of receipt of this letter to initiate closure procedures. Failure to notify this office will leave the Department no other alternative but to initiate enforcement action.

Sincerely,

Saverio Mancieri, Sanitary Engineer

Division of Groundwater and Freshwater Wetlands

must Moneus

Department of Environmental Management

SM:lag

cc: Charles P. Messina, DEM Legal Counsel Mary Toti, Groundwater Section, DEM

14 19/8 S Peter:

Bay Spring Auto

115 Bay Spring

Berrington, CI Donald Pourus 617-848-6965 Donald Powers Called because there are gas pumps at the above address, but they have not sold gosphine in 15 years. He wanted to know if tanks were taken out or abandoned since he is putting in a well next to this site. I checked the files and we do not have a registration or a closure How do me find ant if tanks were semoned? i vinted 8/19/38 - Dick Charperties had registered be said - be doesn't have a copy ¿ we don't after. ecolled 8/19/8r - needs to register/left message rec'd. VIA188 - be said he had a temp. chosins.

DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OIL POLLUTION/UNDERGROUND STORAGE TANK PROGRAM 291 PROMENADE STREET

(401) 277-2234 TDD: (401) 277-6800

CERTIFICATE # 00098

CERTIFICATE OF REGISTRATION FOR UNDERGROUND STORAGE FACILITIES

In compliance with Chapter 46-12 of the Rhode Island General Laws, as amended and the Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials, the owner/operator of an underground storage facility located at:

PILLING MFG., INC. 90 BAY SPRING AVENUE BARRINGTON, RI 02806

is issued this Certificate of Registration to operate an underground storage facility based upon the factual representations contained in the Application for Registration (00098) and in accordance with the Regulations for Underground Storage Facilities used for Petroleum Products and Hazardous Materials.

This Certificate of Registration can not be transferred to any other person, facility or location without the express written approval of the Director of the Department of Environmental Management, or his designee and in accordance with appropriate regulations.

In accordance with state regulations, any changes in the status of the underground storage tanks which may affect the registration must be reported to the Department of Environmental Management.

This Certificate of Registration may be modified or revoked in accordance with appropriate regulations. This Certificate is valid from July 1, 1991 to June 30, 1992 or until 45 days following issuance of a fee invoice.

Date Signed: February 6, 1992

Reviewed by

Approved:

/James W. Fest

Associate Director for Regulation

Department of Environmental Management

DEPARTMENT OF ENVIRONMENTAL MANAGEMENT DIVISION OF GROUNDWATER AND FRESHWATER WETLANDS 291 PROMENADE STREET

(401) 277-2234 TDD: (401) 277-6800

CERTIFICATE # 00098

CERTIFICATE OF REGISTRATION FOR UNDERGROUND STORAGE FACILITIES

In compliance with Chapter 46-12 of the Rhode Island General Laws, as amended and the Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials, the owner/operator of an underground storage facility located at:

COLBY INDUSTRIES, INC. 90 BAY SPRING AVENUE BARRINGTON, RI 02806

is issued this Certificate of Registration to operate an underground storage facility based upon the factual representations contained in the Application for Registration (00098) and in accordance with the Regulations for Underground Storage Facilities used for Petroleum Products and Hazardous Materials.

This Certificate of Registration can not be transferred to any other person, facility or location without the express written approval of the Director of the Department of Environmental Management, or his designee and in accordance with appropriate regulations.

In accordance with state regulations, any changes in the status of the underground storage tanks which may affect the registration must be reported to the Department of Environmental Management.

This Certificate of Registration may be modified or revoked in accordance with appropriate regulations. This Certificate is valid from July 1, 1990 to June 30, 1991.

Date Signed: <u>July 24, 1990</u>

Reviewed by

Approved: _____ \(\sum_{\circ} \)
Stephen G. Morin, Chief

Division of Groundwater and Freshwater Wetlands

phen Q. Morins

Department of Environmental Management

DEPARTMENT OF ENVIRONMENTAL MANAGEMENT L VISION OF GROUNDWATER AND FRESHWATER WETLAND 291 PROMENADE STREET

(401) 277-2234 TDD: (401) 277-6800

CERTIFICATE # 00098

CERTIFICATE OF REGISTRATION FOR UNDERGROUND STORAGE FACILITIES

In compliance with Chapter 46-12 of the Rhode Island General Laws, as amended and the Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials, the owner/operator of an underground storage facility located at:

COLBY INDUSTRIES, INC. 90 BAY SPRING AVENUE BARRINGTON, RI 02806

is issued this Certificate of Registration to operate an underground storage facility based upon the factual representations contained in the Application for Registration (00098) and in accordance with the Regulations for Underground Storage Facilities used for Petroleum Products and Hazardous Materials.

This Certificate of Registration can not be transferred to any other person, facility or location without the express written approval of the Director of the Department of Environmental Management, or his designee and in accordance with appropriate regulations.

In accordance with state regulations, any changes in the status of the underground storage tanks which may affect the registration must be reported to the Department of Environmental Management.

This Certificate of Registration may be modified or revoked in accordance with appropriate regulations. This Certificate is valid from July 1, 1989 to June 30, 1990.

Reviewed by _______ Supher G. Moura

Stephen G. Morin, Chief
Division of Groundwater and Freshwater Wetlands
Department of Environmental Management

DEPARTMENT OF ENVIRONMENTAL MANAGEMENT DIVISION OF WATER RESOURCES 75 DAVIS STREET ROOM 209 PROVIDENCE, RHODE ISLAND 02908 (401) 277-2234

CERTIFICATE # 098

CERTIFICATE OF REGISTRATION For Underground Storage Facilities

In compliance with Chapter 46-12 of the Rhode Island General Laws, as amended and the Emergency Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials

the owner/operator of an underground storage facility located at:

Colby Industries Inc. Pilling Chain Company 90 Bay Spring Avenue Barrington, RI 02806

is issued this Certificate of Registration to operate an underground storage facility based upon the factual representations contained in the Application for Registration (Number 098) and in accordance with the Emergency Regulations for Underground Storage Facilities used for Petroleum Products and Hazardous Materials and any additional terms and conditions stated below:

None

This Certificate of Registration can not be transferred to any other person, facility or location without the express written approval of the Director of the Department of Environmental Management, or his designee and in accordance with appropriate regulations.

This Certificate of Registration may be modified or revoked in accordance with appropriate regulations.

	41.2 m	7 7	day of March	193	25
Signed	this	ΤŢ	day of <u>March</u>	, 19_8	<u>, c c</u>

Reviewed by

ry /.. Şardelli, P.E.

Approved:

Chief, Division of Water Resources

Rhode Island Department of Environmental Management

Providence, Rhode Island 02908

RECEIVED G.I. DEPARTMENT OF ENVIRONMENTA" MANAGEMENT

PUBARTMENT OF ENVIRONMENTAL MANACENT DIVISION CJ WATER RESOURCES 75 DAVIS STREET ROOM 209 PROVIDENCE, RHODE ISLAND 02908 (401) 277-2234

APPLICATION

FEG 2 / 1985

For Underground Storage Facilities 8302 77 315 Certificate of Registration -

unknown

FACILITY NAME: Col	by Industries Inc. d/a/a Pilli	•	2/25/85
	Bay Spring Avenue,		OWNER
	rrington, Rhode Island	<u>**</u>	OPERATOR
&	New or / yy/ Existing Facility		
	commenced August, 1960	•	
3a) If a <u>New</u> facil	ity, is a set of detailed eng		
b) If an Existing (See Section 6	facility, is a site_plan of a ,b,2) /_/ Yes /_x/ No	all equipment locations en	nclosed?
4) PRECISION TESTI	NG		
	on testing results available? ose these results if available		
(b) Date of mos	t recent precision testing	unknown	
(c) Specify whe	re testing has been performed	/ <u>/</u> Tanks / <u>/</u> Lines	unknown
	n testing was performed // I		After installation unknown
5) TANK INFORMATIO		g. 1	
No. Age	Material/ Volume Construction	Stored Material	Tank Corrosion Protection Device:
1 197510	1,000 ga] steel 9 /	#2 fuel oil \mathcal{O} 2	unknown 4000
·			
		t <	Table 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
6) Dispensing Pump		demote (Sump) // Other dee below)	unknown
a) Line Leak Det	cection System Installed //	Yes / / No unknown	
b) Does the base	e of the dispensing unit have	an emergency shut off val	ve? / <u>/</u> Yes / <u>/</u> No

7) U.L. Standard Used <u>unknown</u>
8) Are recovery wells installed? $/$ / Yes $/$ $\overline{X_X}$ / No
9) Are monitoring wells installed? / Yes /x/ No
.0) Does a drinking water supply exist within 1,000 feet of the facility location? $\sqrt{\frac{X}{N}}$ No
Specify Type: / / Public / / Private / / Underground Well / / Surface Source / / Water Body (name) .1) Have any leaks or spills occurred at this facility? / / Yes / x / No (Please attach report/description of incident)
L2) COMPLETE THIS SECTION IF THERE ARE ABANDONED OR EMPTY TANKS AT FACILITY
a) How many tanks are presently abandoned or empty?
b) Classify the type of tank closure / / Temporary / / Permanent (See Section 13)
c) Has precision testing been conducted on the empty tanks? /_/ Yes /_/ No (Please include these results if available) d) Results of precision test /_/ Positive (leaks) /_/ Negative (no leaks) e) Will empty or abandoned tanks be /_/ filled or /_/ removed?
13) Include any additional information/remarks:
See DEM "Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials"
Submitted by: Julius Ruy Gilbert Raymond, General Manager
Address: 90 Bay Spring Avenue, Barrington, R. I. 02806
Telephone Number: 246-0100

DEPARTMENT OF ENVIRONMENTAL MANAGEMENT UN. RGROUND STORAGE TANK SEC. N

291 Promenade Street Providence, Rhode Island 02908 (401) 277-2797

UST FACILIT	Y ID	#00098/18144
LUST FACILITY	ID_	

CLOSURE CERTIFICATE FOR UNDERGROUND STORAGE FACILITIES

In compliance with Chapter 46-12 of the Rhode Island General Laws, as amended, and the Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials,

Barrington Cove Apartments

owner/operator of an underground storage facility located at

90 Bay Spring Avenue Barrington, RI

is issued this Certificate of Closure indicating that the storage tanks described below have been taken out of service permanently, in compliance with the Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials.

TANK ID	VOLUME	STORED MATER	UAL	DATE LAST	USED	STATUS OF TAN F=Filled R=Removed	ſΚ
001	1000 gal.	#2 fuel oil				R	
		<u> </u>					
Signed this		14th	_ day of _	April		, 19 <u>_97</u>	
Approved:	Z.U	alker 8	>				
		rage Tank Section	,				
D.	epartment of E	nvironmental Manag	gement				

NOTE: This is not a document to approve or certify that tanks are/were safe or clean to transport.

OFFICE OF WASTE MANAGE...ENT UNDERGROUND STORAGE TANK PROGRAMS

Facility Name Address Address Address Address Address	
Facility I.D. OON 98 LUST I.D.	
Date of Closure $\frac{1/8/97}{}$	
ISSUE CLOSURE CERTIFICATE	
received closure assessment on (date) received site investigation report on (date) received core sample results on (date) received soil removal documentation on (date) received concrete slurry fill slips on (date) site monitoring complete on (date) remedial system shut down & monitoring complete on (date) other: specify	
☐ ACTIVE LUST SITE, Hold closure certificate until further	notice
SITE STATUS was not designated a lust site	
designated a LUST Site: (circle one) soil removal on inactive active	ly
Consultant to be copied on closure certificate:	
project manager (initials) DATE Supervisor (initials)	DATE

ENGINEERING

Mr. Michael Cote
Department of Environmental Management
Division of Waste Management
Underground Storage Tank Section
235 Promenade Street
Providence, R.I. 02908-5767

January 30, 1997

Re: Underground Storage Tank (UST) Closure Bay Spring Ave Barrington, R.I.

Dear Mr. Cote:

On January 8, 1997 a 2000 gallon oil UST was removed from the above referenced site. An oil residue was noticed at the bottom of the tank after it was removed from the excavation. This prompted a soil sample to be taken 1' - 2' below the tank grave. Attached for your review is the TPH analysis taken from that soil sample. The client is concerned on finalizing the closing this tank and would like to asphalt over the backfilled area. Your expeditious response to this letter would be appreciated. If you should any questions regarding this correspondence feel free to contact my office at 467-4040.

Sincerely,

Michael A. Del Rossi, Principal

attachments

cc: Frank Silva w/attachments

MDR ENGINEERING

681 Park Avenue CRANSTON, RI 02910

LETTER OF TRANSMITTAL

TO	☐ Shop drawings	tached Under separa	ate cover via	Samples	☐ Specifications
		☐ Change order			
COPIES	DATE NO.		*******************************	DESCRIPTION	
	1-30-97 1	GHer dited	1-30-57		
	,	LAB RESULT	7	•	
		D # 43 1/63			
THESE AR	E TRANSMITTED as ched			•	
	☐ For approval	☐ Approved	l as submitted	☐ Resubmit	copies for approval
· ·	For your use	☐ Approved	l as noted	☐ Submit	copies for distribution
	☐ As requested	☐ Returned	for corrections	☐ Return	corrected prints
	For review and con	nment 🗆			
	□ ,FOR BIDS DUE		19	PDINTS DETI IDNIE	ED AFTER LOAN TO US
	T / CK BIDS DOL T	Hicker is to		•	1 1
REMARKS	10/10 - 17	77 30, 5000570	- Juter wa	+,c- +0, -d	7
				1	
e	love e 15mg	Sorry And	× 150000	A. 142 C	alient is
		7 0		Ú.	
	iguetin +C	executed o	ue uh, cl	Jis now or	renel, be on the Had
P	Coope content	my effice	15 the	t in cire	4.56
				//w.~-/	
				1	,

If enclosures are not as noted, kindly notify us all once.

MITKEM CORPORATION

175 Mctro Center Boulevard ● Warwick, Rhode Island 02886-1755 (401) 732-3400 ● Fax (401) 732-3499

1232 East Broadway Road, Suite 210 ● Tempe, Arizona 85282 (602 303-9535 ● Fax (602) 921-2883

CHAIN-OF-CUSTODY RECORD

of Page__

A Section of	REPORTIO)RT.TC	535	120	H. C. Santa and C.				製造品が設備に			Om and Other	ζ	\$ 10 mg	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Г	
COMPANY 1 -				1				The second second second		がはないできるからも	(ない)つるを	210.7.1	, D1.4	13			
707	ひとし リス・コスリ	J			PHO	京 35	PHONEACT-4040	COMPANY		,		,		PH	PHONE	LAB REFERENCE#:	#E
	D. L. P				FAX	167	FAX 467-478C	NAME	7		7	1		FAX		<u> </u>	
ADDRESS GEL A	1 A							ADDRESS		5	 					TURNAROUND TIME:	IIME:
CITY/ST/ZIP (Trees)	2 17 17 17 17 17 17 17 17 17 17 17 17 17) :-						CITY/ST/ZIP									
ili 😲		CLIENT PROJECT #:	NT PR	ODEC	Τ#:		CLIENT P.O.#:						A LOS A	STED AN	REOTIFICATION ANATIVEES		
Berry															val 13Es	\	
SAMPLE IDENTIFICATION	DATE/TIME SAMPLED	COMPOSITE	GRAB	MATER	SOIL	ианто	LAB ID	# OF CONTAINERS	Sold Williams							COMMENTS	
か、一十十十十十十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	16177 11134				_					_		-		+			
	,									-		-					
	/											-		-			
177	,	-															
, pr	,											-					
77.00	,													-			
	/																
	/													-			
	/													-			
7 77 18 18 18 18 18 18 18 18 18 18 18 18 18	/									-				-			
7777																	
	,													-			T
TSF# RELINQU	RELINQUISHED BY		DATE/TIME	/TIME	\prod		ACCE	ACCEPTED BY			DATE/TIME	ME.	ADDITI	ONAL R	ADDITIONAL REMARKS:	COOLER TEMP	EMP.
st \		T 6.12/	- 1	1:3	,	<i>i</i> ·]	ζ.	25	. 1	3 10	B1 68 71/ 15.2	7- 1 19-4 (1)					
2nd								フ			/						
3rd	T of Marine Make		1	,)				_						
		WH	1 : <u>311</u>	ABOR	WHITE: LABORATORY COPY	y cof	٨,	YELLOW: REPORT COPY	REPORT (70PY		PINK:	CLIENT	PINK: CLIENT'S COPY			

Analysis Report: Total Petroleum Hydrocarbons

Client: MDR Engineering, Inc. Analysis: Method 8100M

Matrix: Soil

Concentration in: mg/kg, dry weight basis

<u>Lab ID</u>	<u>Client ID</u>	<u>Result</u>	Reporting <u>Lim</u> it	% Solid	p-Terphenyl Surrogate <u>Recovery %</u>	Analysis Date
D0030-01	beneath tank	670	23	73	88	1/10/97

QA/QC Method Blank F0109-B1	ND	17	,	90	1/10/97
Lab Control Sample (% Recovery)					

120

ND = Not detected

F0109-L1

The samples were quantitated using diesel as standard.

1/10/97

92

#98

DEPARTMENT OF ENVIRONMENTAL MANAGEMENT (DERGROUND STORAGE TANK SE ION

291 Promenade Street Providence, Rhode Island 02908 (401) 277-2797

Bldd nst id<u>colo85</u>

LUST ID____

CLOSURE INSPECTION SHEET FOR UNDERGROUND STORAGE FACILITIES

On the 2	that Ja	muay 19	97_	n, Michael (inspector)	1 Con		
				ound storage tanks		erated by	
Bar	ving by	Cere 4	sufuur	As		-	
and located a	at					La	
90 (addr	Psay Spi ess)	ing Ave.	Bavv	ryg de			
TANK ID	,	VOLUME		STORED MATI	ERIAL	TANK STATUS (F=Filled / R=Removed)	
001	_	600	_	Lelo.1		Z-Keinoved)	
	_		_				
	_	***************************************	_				
			- 1				
Signature: Title:		later (Ly i	ng Underground St	oroge Tank	r Section	
	Department	of Environmental	Managemen	ig Onderground St t	orage Tank	, occion	

A closure assessment must be submitted to the Division of Site Remediation, Leaking Underground Storage Tank Section within 30 working days.

NOTE:

This is not a document to approve or certify that tanks are safe or clean to transport.

Rhode Island Department of Environmental Management Underground Storage Tank Section UST CLOSURE INSPECTION CHECKLIST

UST Facility ID#: OOS ?	LUST#:	
Site/Street: Barry tow Cove	- Aparticula	
Site/Street: Barry to Cove Contractor: CYN Environ	marfal	<u> </u>
Consultant: MDR		
Contact:		
Condition of Tank/Piping: Havel	ly PITTON, NO VIOLES WOTED	
Condition of Soils: Stained		
Other Observations: Requested TF	PH bottom samply because	 9000~
Groundwater Present: YESNO 5	Sheen Present: YES NO	
Free Product Visible:YESNO M		
Site Sketch:		
RESULTS OF INSPECTION/ACTION F		
Minor Staining, Soils Removed	REQUIRED	
•		
 Soils Required Excavation, contained, disposed of in accordance with 	Additional Tanks Found/Fees Owed:	
state regulations	Closure Assessment Required	
Site Investigation Report Required w/ groundwater monitoring wells	Leak/release observed, notification to LUST Program	
_ Other	Issue Certificate of Closure No Further Action Recommended	
Inspector: Michael Cotes Signature: Misseul 1		
Signature: Molund of	Date: 1/8/27	_

ATE OF RHODE ISLAND DIVISION OF WASTE MANAGEMENT PERMANENT CLOSURE APPLICATION FOR UNDERGROUND STORAGE TANK(S)

ÐEM,	SE ONLY	
Approved	UD-7	
Date Scheduled	1/8/	16
Total \$ Received	AL.	35 ~ 1
Date Received:	151	14/01
Check Number:	136	361 "
Received by:	710	
からいたけんもちょう リアマルボン あんま かっと 一方 ましゅうも		

FEES

Registration: N	Number of Tank(s): UNE Number of Tank(s): ONF	X \$50.00	O Per Tank = O Per Tank =	50.00		
	nregistered tank(s) and tank(s) with			accompany this	application.	
II. FACILITY INF						
Date of Application:	11/18/96	_ , UST	Facility Identification	n#: <u>10098</u>		
Proposed Date of T and confirmation by		12/17 (This date is subject	to change pen	ding availabilit	ty
Facility Name:	BARRINGTON COVE APARTMENTS)				
Facility Address:	90 Bay Spring Avenue					
City:	Rarrington	State: RI	Zip: 02806	Phone; (40]) <u>-2</u> 46 <u>-</u> 2392	
Contact Person:	MIKE HARRINGTON	Title: JOB SU	PERINTENDENT	ISU	77	
III. TANK OWNEI	R INFORMATION			m . ; . ;	2 5	
Tank Owner Name:	BARRINGTON COVE LIMITED PA	RTNERSHIP		77		
Mailing Address:	313 Congress Street		11	28	36;	
City:	Boston	State: MA	zip92270	Phone: (617)345-9300	
Contact Person:	DAVID CANEPARI 🗽 🗽	TIGE:PRESIDE	NT W			

IV. PROPERTY OWNER INFORMATION

Property Owner Name:	BARRINGTON COVE LIMITED	PARTNERSHIP			
Mailing Address:	313 Congress Street				
City:	Boston	State: мд	Zip: 022	10	Phone: (617)345-9300
Contact Person:	DAVID CANEPARI	PRESID	ENT L		
				7	

V. FIRM/CONTRACTOR TO PERFORM TANK CLOSURE

Name of Contractor/F	_{irm:} CYN ENVIRONMENTAL SERVI	CES, I	NC.		
Mailing Address:	1771 Washington Highway				
City:	Stoughton	State:	MA	Zip: 02072	Phone: (401)467-5790
Contact Person:	GREGORY A.J. MACDOUGALL	Title:	GENERA	L MANAGER	

VI. FIRM/CONSULTANT TO PEPFORM CLOSURE ASSESSMENT

ts a Closure Assessment required for this facility? see s	ection 15 00)		YES NO NO	
If not, do you choose to obtain one?			☐ YES MO	
Please check one of the following: Professional Engineer Other (Equivalent Professional Certification) "Subject to DEM Approval"*		Certified Professional Geologist • A statement of qualifications must be submitted with this application.)		
Name of Consultant/Firm:				
Mailing Address:				
City:	State:	Zip:	Phone: ()	
Contact Person:	Title:			

VII. DESCRIPTION OF TANK(S) TO BE CLOSED

Tank No.	Age	Date Last Used	Volume	Construction Materials	Stored Material
001	30	1990	1 <u>000</u> gal.	STEEL	NO. 2 FUEL

If there are more tanks being closed please list on an attachment.

VIII. LOCATION OF TANK(S) (Sketch diagram)

IX. CLOSURE INFORMATION

Will tank(s) be excavated, cleaned and disposed of (Section 15.11)? Specify method of tank cleaning: PUMP AND FLUSH or,	12 YES	□ NO
If circumstances exist which inhibit excavation, you may request a UST Closure in Place. The approval. Are you requesting to close tank(s) in place? Owner must submit supporting documentation providing specific details on the necessity to closeram must be attached to this application. Please note: There are additional requirem integrity as detailed in the Closure in Place guidelines.	Q YES lose in place and a	NO detailed
Specify whether cleaning will take place: If OFF-SITE, indicate location of final tank(s) cleaning (Name & Address):	ON-SITE C	OFF-SITE
Will tank(s) be rendered unfit for use and disposed of? If YES, location for final tank(s) disposal: Oranto, Maso.	X YES	O NO
Will tank(s) be reused? Please note: Reuse of a tank in the ground requires compliance with Section 12.03 of	YES UST Regulations.	⊠ NO
If tank(s) is to be reused, specify: Proposed use: Name & Address of intended user:		
Describe the method to be used to empty the tank(s) prior to excavation: VACUUM TRUCK I	√ITH OPERATOR	
Describe the method to be used to remove the tank(s) from excavation: 580 CASE BACKI	HOE WITH OPERA	TOR
Describe the method(s) to be used to properly and safely vent the tank(s) and properly make COPAS VENTURE HORN FAN WITH COMPRESSOR ATTACHMENTS	openings in the ta	nk(s):
Please note: Appropriate venting must be carried out both before the cutting of any tarnsport of any tank which has not been completely cleaned per Rule 15.11(c) of the table	ank and before of UST Regulations.	f-site
Describe the instruments used to verify that the tank(s) have been properly vented: MSA 4962 LeL - 0 METER		
Describe how any residues remaining in the tank(s) will be managed: PUMPED ON TO VACI	UUM TRUCK TRANS	SPORTED
Have these tank(s) ever held non-petroleum, hazardous materials? If yes, please list materials:	☐ YES	☑ NO
Have any of the tank(s) ever contained a product other than that listed in Section VII above? If yes, please list tank # and material stored:	☐ YES	NO E
After the closure(s) have been completed on the aforementioned tank(s), will there be any unremaining in existence at this facility?	derground storage YES	tank(s) X NO
Will any new UST(s) be installed on the site? If YES, please note: Prior written approval by DEM is required.	☐ YES	₩ но

INVASTE HALLER INFORMAT. Juif applicable)

⊼ ,`v	ASTE HAULER INFORMATION OF	phicable			
Firm: Wast	s transporting tank sludge and waste or tank(e Management, RCRA Section as Hazardou	s) which require funds Waste Transporter	ther cleaning must be s.	e permitted by (DEM. Division of
Spec TR	ify method for disposing of tank sludges or w ANSPORTED TO CYN ENVIRONMENTAL	vastes generated by	the cleaning process	: MATERIAL	WILL BE
Addr	e of Waste Hauler: <u>CYN_OIL_CORPORATIO</u> ess: <u>1770_Washington_High</u> City Waste Hauler Permit #: <u>RI_345</u>	ON : Stoughton	State:	MA	Zip: <u>0</u> 2072
XI. N	OTIFICATION OF LOCAL FIRE DEP	ARTMENT			
The are p	authorized signature of the local fire department of the exact closure date after you orized Local Fire Department Representative inal Signature is Required)	ent below indicates k(s) at the above loo have confirmed th	cation. You must also is date with DEM.	cials have been so notify the lo	ocal fire
Nam This	e of Local Fire Department signature however, does not serve as notice ye you of your obligations to other applicable been overlooked is also subject to correction	city/town officials.	es not guarantee city. Any violation, deficiel	ncy or requirem	and does not
	CERTIFICATION BY TANK OWNER (
acco subn resid respo accu poss	tify under penalty of law that this document a rdance with a system designed to assure tha nitted. I further certify that records pertaining ues, etc. Based on my inquiry of the person ensible for gathering the information, the informate, and complete. I am aware that there are ability of fine and imprisonment for knowing v	t qualified personne to the closure will to or persons who ma mation submitted is esignificant penalticitions.	I properly gather and be kept on file by me nage the system, or to the best of my kies for submitting fals	evaluate the in indicating final those persons of nowledge and b	oformation destination of directly pelief, true,
Nam	e of Owner: (please print) DAVID CANEPARI		Title: PRESIDENT		
	ess: 313 Congress Street	City: Boston		State: MA	Zip: 02261-1288
Sign	ature: (Original Signature is R) should be contacted for questions regarding			//- 22- ST Closure?	96
l i	GORY A.J. MACDOUGALL	GENERAL MANAG		401-467-57	790
	Name	Title			Telephone

USTCLOSE MST revised 7/95 CMH

Name

PHASE II OIL AND HAZARDOUS WASTE ASSESSMENT

FOR

LAND AND BUILDINGS AT

IN

BARRINGTON, RHODE ISLAND

FOR

GROUP IV
NOVEMBER 20, 1992

GEISSER ENGINEERING CORPORATION

CONSULTING ENGINEERS

P. O. BOX 4480

RIVERSIDE, RHODE ISLAND

PROJECT NO. K-653

INTRODUCTION

The purpose of this Phase II Oil and Hazardous Waste Assessment is to evaluate the presence of oil and hazardous waste at the assessment site located at 90 Bay Spring Avenue in Barrington, Rhode Island. For purposes of this report the assessment site will be referred to as the "Site".

This assessment will be based on information contained in the existing land evidence records of the Town of Barrington, observations made during one or more site inspections, the review of available street directories, file reviews of Underground Storage Tank and Air and Hazardous Waste related records of the Rhode Island Department of Environmental Management (RIDEM), a review of Sanborn Insurance (Atlas) Maps, the review of subsurface boring logs and the laboratory analysis of subsurface soil and groundwater samples for the presence of contaminants.

SITE LOCATION AND DESCRIPTION

The Site is situated in the West Barrington section of Barrington which is approximately 2 1/4 miles northwest of the Town Hall in an area of mixed residential homes and retail businesses such as restaurants, retail stores, shops and professional offices. All but the extreme westerly portion of the Site along

Adams Street is zoned M (Manufacturing). A 100' deep strip of land in the site along Adams Street is zoned R (Residential). Refer to Appendix "A" for a locus and site plan.

The Site consists of an approximately 7.8 acre parcel of land (Plat 2, Lot 12) which is generally rectangular in shape and flat land on which is situated a three-story, wood-framed brick facade industrial building which was constructed in 1912. The third floor covers approximately 25% of the second floor. The footprint of this building contains approximately 35,000 square feet. The Site also contains an abandoned single-story concrete block building (20' x 30') which was formerly Stock House No. 2 by previous tenants. The northerly portion of the Site is bisected by a pond into which flow waters from the Annawamscott Brook. Waters from this pond exist via a small spillway at the southerly end of the pond into Allin's Cove which flows into Narragansett Bay.

The westerly portion of the Site is presently vegetated over but at one time was totally developed and contained manufacturing buildings, tank farms, storage buildings and sheds. Refer to Appendix "B" for a 1921 Site plan of this site.

The Site is situated along the southerly line of Bay Spring Avenue and is bounded to the west by Adams Street (a residential street with single-family homes), to the south primarily by Allin's Cove and to the east by a bicycle and walking pathway which was

formerly a railroad track bed of the New York, New Haven and Hartford Railroad Company. The northwest corner of the Site is bounded in part by the Allin Cemetery and in part by a single family residential dwelling.

SITE HISTORY

The Site is presently owned by Group IV which acquired the site in 1986. A partial list of previous owners and dates of acquisition are as follows:

Group IV
Ban Realty
Wm. & Dolores Grace
Charles & Leah Lahey
Frank & Rita Pietruszka
Collins & Aikman Corp.

International Rubber Co. Interlaken Mills Annawamscott Mills September 1986 August 1971 August 1962 August 1960 December 1948 December 1945

May 1910 January 1904 March 1897

A conversation by this writer with Mr. Nicholas Gizzarelli, the Town of Barrington's Historian, indicated that this Site was originally developed to produce textiles and narrow fabrics. A review of Sanborn Insurance (Atlas) Maps indicate that in 1921 this site was utilized by the O'Bannon Corporation (International Rubber Cloth Division). A copy of a plan of this Site as it appeared in 1921 can be found in Appendix "B" of this report. This Site was

used in conjunction with another mill site directly across Bay Spring Avenue from this Site at 85 Bay Spring Avenue.

Discussions with representatives of the Group IV Corporation indicated that for the last 40 years the following companies have occupied all or part of this Site. This list is not intended to be a complete list of tenants.

American Tourister Corp (makers of luggage) utilized the Site for storage purposes.

<u>Collins and Aikman</u> (Textile and Weaving) most probably occupied the Site for a long time as their name (though faded) appears on the aboveground water tower situated across the street from this Site at 85 Bay Spring Avenue.

Cast Products, die cast company.

Colby Industries, Inc., miniature zinc die casting, metal stamping and zipper components.

Holly Industries, Inc.

<u>Pilling Chain Co., Inc.</u>, (later to become Pilling Mfg.) products included zipper components, custom metal stampings and miniature zinc die castings and plating of same.

Six D's Corporation

Presently the building has four (4) tenants, two of which are located on the third floor. One third floor tenant being "The Forgotten Garden", a two-person furniture restoration and antique warehouse which occupies approximately 5,000 square feet. The second tenant being the L. Giorgio (cabinetmaker) woodworking shop,

which occupies approximately 2000 square feet area and is staffed by only the owner Mr. Giorgio.

The last tenant who occupied the first floor, Pilling Manufacturing, had at the time of this writing filed for Chapter bankruptcy and was not occupying the building, even though a large amount of their equipment and some stock was still in place.

The second floor of the building was mostly empty except for two (2) small areas which were leased to in the case of the third tenant old bicycles and bicycle parts (approximately 2,400 square feet), and in the case of the fourth tenant approximately 2,000 square feet used for the storage of plastic foam material, most of which is stored in boxes. In both these cases, the areas are solely used for storage. The remainder of this second floor has been vacant for at least five (5) years.

SITE INSPECTIONS

Site inspections were conducted by this writer on August 15 and 31, September 24 and 30, October 2 and November 13, 1992.

The inspection of the interior of the first floor of the main building revealed the presence of what appeared to be most of the equipment, raw stock, scrap and supplies of Pilling Manufacturing, which recently occupied most of the entire first floor of this building (35,000 square feet) and which has since filed for Chapter 7 Bankruptcy.

A total inventory of all equipment and supplies observed in this leased Pilling space would be well outside the scope of this report. However, the following was observed:

HW

- Approximately 20 55-gallon barrels of cutting oil and hydraulic fluid.
- Many barrels of zinc die cast pieces and slag.
- Metal-cutting and operating machines.
- Rolls of wire and raw stock.
- A plating room approximately 80' x 80' capable of plating zinc castings by the barrel-plating method. Some tanks contained plating liquids.

The September 24, 1992 inspection revealed two floor drain (trough) systems which appeared to be a part of both the degreasing and barrel plating operations formerly conducted by Pilling. Both drains contained liquids. It could not be determined if these drain systems were closed systems or if they had outlet drains to allow the liquids to flow to the public sewer system or elsewhere. A subsequent inspection on November 13, 1992 detailed later in this report will address these floor drain systems.

Spanning the entire length of the first floor (Pilling location) is an overhead 8" steamline covered with insulation which

Asbestos

in the opinion of this writer contains asbestos fibers. In some areas this insulation was broken, thus possibly allowing asbestos fibers to becoming airborne.

A boiler room, which supplies steam for heating to this entire main building is also situated on the first floor. This room contains an oil-fired boiler fueled by No. 6 fuel oil which is stored in an aboveground 5000-gallon tank (also in this room) which is contained within a concrete structure, approximately 16 feet wide and 35 feet long. Also observed in this boiler room and in an adjoining room were several barrels of miscellaneous oils and lubricants as well as containers which once contained sodium and zinc cyanides most probably used in the Pilling plating operations.

HW

The second floor of this building at the time of the inspections was vacant and had been so for at least the last five (5) years with the exception of the previously mentioned storage areas for the bicycles and plastic foam material. Protruding through the second story floor from the first floor below at generally even spaced intervals on the floor were observed steam riser pipes from the main feed steamline on the ceiling below. These riser pipes, as well as steam condensate return lines, were also covered with insulation which in the opinion of this writer contains asbestos fibers. A portion of these riser pipes were boxed-in by wooden frames constructed around them but the upper

portions of these riser pipes were not boxed-in. Some insulation was broken.

The third floor of this building only spans approximately 25% of the second floor roof. Situated on this floor are the previously mentioned L. Giorgio woodwork ship and the previously mentioned "The Forgotten Garden" furniture restoration and antique shop. Also situated on this third floor is an area approximately 15 feet by 40 feet of floor space which is covered with small cardboard boxes of zipper components which were left by a previous tenant.

Located along the westerly side of this building adjoining the boiler room is a 2,000-gallon underground No. 2 fuel oil storage tank which was used to supply heat to the plating tanks.

Located along and adjacent to the westerly side of the exterior of the building is a small fenced enclosure approximately 4' x 6' which contains three (3) vintage pad-mounted monfunctioning electrical transformers which in all probability contain polychlorinated biphenyls (PCB). No evidence of concernable leakage from these units was observed.

At the time of these inspections a general exterior cleanup of brush, tree stumps, miscellaneous concrete and wood was in progress throughout the area surrounding this building. Mounds of this rubble existed at several locations in the easterly sector of this Site. However, no evidence of oil or hazardous waste was observed in these rubble piles.

As was mentioned earlier, the westerly portion of this was at one-time developed but now is heavily vegetated. As was mentioned earlier, the westerly portion of this Site inspection of this portion of this Site indicated the presence of a slab of the former nitrated cotton storage building, concrete cradles which once supported aboveground solvent and acid storage tanks. Also found was the slab of the alcohol Still No. 12 storage building and an opening to what might be an underground acid storage pit. The previously mentioned former Stock House No. 2 was found to contain only several pieces of firehose. Approximately 5 inches of water covered the entire floor. Next to this building was an empty 265-gallon aboveground oil tank. No spills were observed at this tank. Also situated next to this building is a chained enclosure which contains three (3) electrical transformers pwned by the Narragansett Electric Company (NEC). NEC has upgraded all transformers in recent years such that these three (3) million parts per 50 than transformers contain less polychlorinated biphenyls (PCB) in the cooling fluid, and as such are not considered PCB transformers. For the location of these features on the westerly portion of the Site please refer to the site plan in Appendix "B". Also note the soil investigatory locations of borings, monitoring wells and locations from which the soil samples were obtained at 1.0 foot depths in the vicinity of the acid and solvent storage tanks.

Observed at the southerly portion of the westerly section of this Site was an area approximately 15' x 25' x 4' deep which was filled with rusting iron debris and discarded clay pipe. No evidence of oil or hazardous waste was observed within this debris.

On November 13, 1992, this writer reinspected that portion of the main building formerly leased by Pilling Manufacturing. Since the earlier inspection on September 24, 1992, a general cleanup and organization of materials (both raw and finished) had been organized and conducted by Mr. Gilbert Raymond, a former executive This writer observed a general of Pilling Manufacturing. collection of plating liquid materials (i.e. salts and solutions) and organization of same on several pallets. Mr. Raymond indicated that the former mentioned wastewater collection (trough) systems were actually part of wastewater pre-treatment system by which wastewater and rinse waters from the plating operations were neutralized prior to entering the Barrington Public Sewer System. An interview by this writer on November 20, 1992 with Ms. Vickie Hart of the East Providence Sewer Department which treats Barrington sewage indicated that Pilling Manufacturing indeed was pretreating their plating waste and rinsewaters and appeared to be in compliance with regulations, and had not acted in a manner which would place Pilling in "a non-compliance" status.

Mr. Raymond indicated that he had managed to sell some of the plating solutions formerly used by Pilling, but at the time of this reinspection, there appeared to be approximately 1,200-gallons of copper, brass and other solutions yet to be disposed. These solutions were in plating tanks with capacities of from 125 to 175-gallons.

RESEARCH OF HAZARDOUS WASTE RECORDS

Hazardous Waste Records of the Rhode Island Department of Environmental Management (RIDEM) were reviewed by Geisser Engineering Corporation personnel on September 3, 1992 for information or reports of incidents involving oil or hazardous wastes or materials relative to the Site.

The specific records researched were the Comprehensive Environmental Response, Compensation and Liability Act (Cercla) File, the United States Environmental Protection Agency (EPA) Identification List, the Resource Conservation and Recovery Act (RCRA) Generator Files, and the Incident Response File for the Town of Barrington.

The Cercla File is an automated inventory developed by the Federal Environmental Protection Agency (EPA) of potential waste sites in Rhode Island at which there is some reason to believe a

release, illegal disposal or illegal storage of hazardous waste has occurred, any of which may cause the Site to be included on the Superfund Cleanup List. A review of this file indicated that there are no Cercla sites within a one-mile radius of the assessment Site.

The EPA Identification List is an inventory of companies which generate materials or wastes considered hazardous. Each company is issued a unique identification number which is included on all manifested shipments of waste from the site. These numbers offer a system of tracking hazardous waste shipments. A review of this file indicated that the following locations in the area presently have or had such numbers:

Caserta Auto Electric Limited 60 Bay Spring Avenue

Caserta Auto
60 Bay Sprin
RID980523914
(Approximation (Approximately 150' east of the Site and on the opposite side of Bay Spring Avenue. This company is no longer at this

> RI Lace Works Division 175 Bay Spring Avenue RID001190545 (Approximately 1/3 mile west of the Site)

Both of these generators are or were considered small generators and it is our opinion that conditions at these sites have not affected the assessment Site.

The Resource Conservation and Recovery Act (RCRA) Generator Files contain individual files of those companies which in the course of their business generate or dispose of hazardous waste No files were found for those companies which were materials. known to have or presently occupy the Site.

The RIDEM Incident Response File for the Town of Barrington was reviewed and no reports relative to oil or hazardous waste existed for the Site, as well as other sites in the general area of the Site.

> A request was also made to the Underground Storage Tanks (UST) Section of the Division of Groundwater and Freshwater Wetlands (RIDEM) for information relative to the existence and registration of underground storage tanks which may exist at or adjacent to the assessment Site. These records were reviewed on September 10, 1992 and indicate that the previously mentioned 2,000-gallon No. 2 fuel oil tank at the Site is registered with the RIDEM. These records indicate that the tank was installed in 1975.

These records also indicate that two (2) other locations in the general area of the Site also have UST which are registered. Those Sites are:

Cris Realty Company 166 Bay Spring Avenue (1) 275-gallon No. 2 oil West Barrington Auto Sales & Service 9 Bay Spring Avenue

- (1) $\overline{1000}$ -gallon
- (1) 275-gallon

It is our opinion that due to the distance of these tanks from the Site, effects from conditions and events concerning these tanks should not effect this Site.

The UST Section also maintains a log of all fuel spills reported to the RIDEM. A review of this log for the period January 1, 1980 to August 1992 indicated that on December 19, 1988 at this Site approximately 75 gallons of No. 6 fuel oil leaked onto the boiler room floor through a break in line from the indoor tank to the boiler. The spill was cleaned-up by the McDonald and Watson Corporation with no apparent damage to human health or the environment. No reports of other incidents were found.

SUBSURFACE SOIL BORINGS AND GROUNDWATER MONITORING WELL INSTALLATIONS AND REVIEW OF BORING LOGS

In order to obtain subsurface soil and groundwater samples from this Site for the laboratory analysis for possible contaminants, two (2) monitoring wells (MW-1 and MW-2) and three (3) soil borings (B-4 to B-6) were drilled to a maximum depth of 20 feet and installed on that portion of the Site to the east of

the pond. Another monitoring well MW-3 was installed to the west of the pond to a depth of 20.0 feet. This work was accomplished between August 15 and 27, 1992. This writer subsequently became aware that the westerly portion of the Site (now totally overgrown) was at one time a portion of the manufacturing complex. It was decided to install a fourth monitoring well MW-4 in the former location of the pickle house. Due to the fact that acid storage tanks were situated in and around this pickle house, a soil sample at a depth of 1.0 foot was collected at two locations (A-1 and A-2) at the former locations of these acid or solvent storage areas. Refer to the 1921 site plan in Appendix "B" for the locations at which these samples were collected, monitoring wells and boring locations and former location of buildings and structures at this site.

Two (2) subsurface soil samples and one (1) groundwater sample was submitted for the laboratory analysis of the following contaminants:

SUBSURFACE SOILS

Toxic Metals (TCLP)
Total Petroleum Hydrocarbons (TPH)
Polychlorinated Biphenyls (PCB)
Volatile Organic Compounds (VOC)

GROUNDWATER

Soluble Metals
Total Petroleum Hydrocarbons (TPH)
Polychlorinated Biphenyls (PCB)
Volatile Organic Compounds (VOC)

0/

Soil sample No. 1 was comprised of soil from MW-1, 2 and 3 and borings B-4, 5 and 6. Soil sample No. 2 was comprised of subsurface soil from monitoring well MW-4 and soil from the two former locations of the solvent and acid tanks (A-1 and A-2). The groundwater sample was comprised of groundwater from each of the four monitoring wells (MW-1, 2, 3 and 4).

A review of the boring and monitoring well installation logs drilled at this site indicate that the Site has undergone some filling to depths from 3.7 feet at boring MW-4 to a maximum of 6.0 feet at boring B-5. No evidence of oil, metal barrels or other buried waste was observed or encountered during drilling operations. Refer to Appendix "C" for a copy of the drilling logs.

LABORATORY ANALYSIS OF SOILS

The laboratory analysis of the subsoil samples indicate that the levels of contaminants identified were below those levels established by either the United States Environmental Protection Agency (USEPA) or the State of Rhode Island which would render a classification of "hazardous" to either the subsoil or groundwater. Please note that most soil samples will naturally contain small (background) levels of contaminants and one should not be concerned by these background levels. Please refer to Appendix "D" for a comparison of the laboratory report findings and United State

Environmental Protection Agency (USEPA) and Rhode Island acceptable contaminant levels.

GROUNDWATER

The groundwater laboratory analysis report likewise indicates levels of all contaminants to be within those limits which would define the groundwater as non-hazardous with one exception - that being benzene. The maximum level of benzene that can be present in water that is safe to drink is 5 micrograms per liter (ug/l). A composite sample of the groundwater at the subject site indicated a presence of 6 ug/l. Since the groundwater at this site is not used for drinking purposes (public water used), this condition does not pose an imminent health threat or a threat to the environment. Refer to Appendix "D" for comparison of those elements identified in the water and contaminate levels established by either the State of Rhode Island or the United States Environmental Protection Agency.

FINDINGS AND OPINIONS

An Oil and Hazardous Waste Site Assessment was conducted at the manufacturing site situated at 90 Bay Spring Avenue in Barrington, Rhode Island. The Site has been utilized for manufacturing since it's development in 1912, and encompasses approximately 7.8 acres of land. At this writing, only the easterly portion of the site is used and contains a three-story brick building with a footprint of 35,000 square feet. The westerly portion of the Site was once developed but presently is vegetated over as mostly all of the previous buildings and associated equipment has long since been removed. It is estimated that this portion of the site had it's structures removed approximately 30 to 40 years ago.

Site inspections by Geisser Engineering Corporation indicated the following:

- The main building contains an 8" main steamline along the first floor ceiling and riser pipes which extend from this line and rise up to the second floor to provide heat to the second floor. Both the main and riser pipes are insulated with material which in the opinion of this writer contains asbestos fibers. Portions of these riser pipes are concealed behind wood-boxed in enclosures but the upper reaches of these pipes are open. The insulation on both the main line and riser pipes appears to be in fair condition but contains portions which are not properly wrapped and as such the asbestos fibers can become airborne. It is recommended that these pipes be entirely wrapped or that the asbestos insulation be removed.

The site contains three (3) functioning outdoor pad-mounted electrical transformers which are owned by the Narragansett Electric Company and are located in an enclosure on the easterly sector of the Site, and three non-functioning pad-mounted electrical transformers in an enclosure attached to the exterior west wall of the main building. It is the opinion of this writer that only the three non-functioning transformers are considered polychlorinated biphenyl (PBC) transformers which contain in excess of 50 parts per million of PCB.

- The Site contains both a 5,000-gallon aboveground No. 6 fuel oil tank and a 1,000-gallon underground No. 2 fuel oil tank. The 1,000-gallon tank is registered with the Rhode Island Department Environmental Management (RIDEM). The 5,000 gallon aboveground tank need not be registered. It is the opinion of this writer that the 1,000-gallon oil tank be tested to determine if it has any leaks.
- A former tenant on the first floor, Pilling Manufacturing, has at this writing filed for Chapter 7 Bankruptcy and has left much of it's equipment, raw materials, finished stock, scrap and plating equipment in place. To undertake a complete inventory of this material was outside the scope of this report. In evidence were plating tanks with plating solutions as well as plating salts such as sodium and zinc cyanide. It is the opinion of this writer that hazardous plating solutions and associated plating salts exist

on this first floor which would require special disposal. Recent organizational efforts of these items by Mr. Gilbert Raymond, an official of Pilling Manufacturing have resulted in the palletizing of these products and the disposal of some of the plating solutions. Presently approximately 1,200-gallons of plating solutions still need to be disposed.

- The area occupied by Pilling Manufacturing also contains two floor drain (trough) systems which contain water. One of these is in the plating room and the other is at the metal burnishing (tubbing) station. These systems are connected to a plating rinse and wastewater system that treats all production water prior to discharging the water to the Barrington Public Sewer System. A conversation by this writer with Ms. Vickie Hart of the East Providence Sewer Department which treats Barrington sewage indicated that Pilling Manufacturing was in basic compliance with regulations and had not acted in a manner which would place Pilling in "a non-compliance" status.
- The easterly portion of the Site is at this writing undergoing a general surface cleanup and as such several locations near the main building are piled with debris, brush, concrete, wood debris and rusting barrels. No evidence of oil or hazardous waste was observed at these piles.

- A 4' deep crater approximately 15' x 25' was observed filled with rusty iron debris and discarded clay pipe on the westerly sector of the site. No evidence of oil or hazardous waste was observed at this location (Appendix "B").
- The fill pipe of what may be an underground spent acid tank was observed near monitoring well MW-4. It is the opinion of this writer that this area should be excavated to determine if a tank exists.
- A review of three (3) soil borings and the installation logs of four (4) groundwater monitoring wells (Appendix "C") indicate that no visible evidence of oil or hazardous waste was observed during the drilling operations in the form of odors or materials encountered by the drilling equipment.
- A review of RIDEM Underground Storage Tank and Air and Hazardous Waste related records indicated the 1,000-gallon underground storage tank was properly registered with RIDEM and that an oil spill of approximately 75-gallons occurred at the aboveground tank in 1988. This spill was contained and subsequently cleaned up by the McDonald and Watson Corporation with apparently no damage to human health or the environment.
- The laboratory analysis of subsurface soil and groundwater indicated that elements and compounds found were within tolerable

limits, and as such neither the soil or groundwater samples were considered to be hazardous with on exception. Benzene was identified in the composite groundwater sample as being present at 6 micrograms per liter (almost equal to parts per billion). The maximum benzene which can exist in water that is drinkable is 5 micrograms per liter. This slightly raised benzene level does not constitute an imminent health threat as the Site is served by a public water drinking system.

This report describes the conditions observed by Geisser Engineering Corporation at the study Site. The text presents the observations made during Site reconnaissance and information gathered during site history research, regulatory agency file review and interviews where possible. This report has been prepared in accordance with the Limitations defined by Geisser Engineering Corporation.

LIMITATIONS

This report addresses the physical characteristics of the Site with reference to the release or presence of oil or hazardous materials. This report is not intended to guarantee that this Site is or is not free from conditions, materials or substances which could adversely impact the environment or pose a threat to the public's safety. Rather, this report is to be used as a summary of existing conditions which are based upon reasonable and

knowledgeable review of evidence found in accordance with accepted engineering practices and within the budgetary constraint imposed in the contract between Geisser Engineering Corporation and the client. Should further research on the Site be conducted, the additional data should be reviewed by Geisser Engineering Corporation and the conclusions presented herein may be modified.

This report has been prepared on behalf of and is for the exclusive use of the client solely for use in an environmental evaluation of the Site. As a mutual protection to our client, the public and ourselves, authorization for publication of statements, conclusions or extracts from or regarding this report is reserved pending our written approval. However, Geisser Engineering Corporation acknowledges and agrees that the report may be conveyed to the Seller, Lender or Insurance Company associated with proximate financial transactions concerning the Site by our client.

Geisser Engineering Corporation accepts no responsibility for client performance of recommendations as may be offered in this assessment.

No attempt was made to investigate all regulatory compliances with federal, state and local laws and regulations in connection with the usage of the assessment Site.

Conclusions stated herein refer only to the specific Site investigated. Total liability is limited to the invoiced amount only and shall not include any consequential damages.

We trust that this report will satisfy your current requirements. If you have any questions regarding this report, please do not hesitate to contact us.

Respectfully submitted,

GEISSER ENGINEERING CORPORATION

Angelo Ferrari, P.E.

Senior Project Engineer

AF/rac

APPENDIX "A"

	LOCUS	MAP	
90 B	AY SPRING AVE.	SCALE	DRAWN BY
BARE	PINGTON, PI	HTS.	REVISED
DATE	APPROVED BY		DRAWING NUMBER
			K-653

APPENDIX "B"

APPENDIX "C"

CASING: WTFALL SAMPLER: WT140FALL30				CLIENT: PROJECT:	Gro	EAST UP IV Bay Spr	SHEET 1 OF 1 LOCATION Barrington HOLE NO. YW-1 UNE & STA. OFFSET				
D#IR	LER:_		Cook, J Naismit		SAMPLE CASING		1 3/8	DATE, FI	$\frac{08/15/92}{08/15/92}$	GROUND ELEVATION	
DEPTH BELOW SURFACE	BL	SING OWS ER OOT	SAMPLE NO DEPTHS	TYPE OF SAMPLE	PENETRATIC BLOWS PE 6 INCHES	R 5	OENSITY OR CONSIST	PROFILE CHANGE DEPTH	PEMARKS IN POCK-COLOR FYPE	ENTIFICATION OF SOILS, REMARKS ICLUDE COLOF GRADATION TYPE OF SOIL ETC E CONDITION MARDNESS, DEBLUNG TIME SEAMS ETC	
-0	A C G E R		0-2.0 5-7.0		12-15-11		Med. Dense	9.0	F-C LT BR SAY	ND AND F-C GRAVEL, and cobbles	
-10			10-12.0	D-3	61-54-39	-60	Med. Dense Very	11.4		3R SAND, tr of silt	4
			15-17.0	D-4	34-39-42	-32	Very Dense	_	little silt	ND AND F-C GRAVEL,	
-20									with 10.0' of	5' of 2" M.W. pipe screen and flush or. Bentonite seal	
30									3 bags of san	•	
— 4 0	GRO	UND S	URFACE TO	15 n.	used_ Auge	ers	CASING: THEN		led Well Penergion Resistance	HOLE NO. MW-1	
UP TP: US	= Und = Test	C = C isturbed Pa A isturbed	of Sample ored W = Wa I Piston i = Auger I Shelby	ished	Proportion trace little some and	0 to 11 to 21 to 36 to	20% 5.9 35% 10-29	Cohesionless Den Very Med	Loose 0.2 Yery 5 Loose 3.4 Soft	Forth Boring 17.0 soft	<u>-</u> -

6 1	513.4	HAMMER	_FALL	A			lling Co. R.I. 02915	SHEET 1 OF 1 LOCATION BARRINGTO HOLE NO. MW-2		
	MPLE	e: wr. 140								
Inspect Deiti Heta	LER:	R. Cook, C D. Cook	Jr.	SAMPLER I. D. CASING I. D.	1 3/8"	ALLSTAT DATE, ST DATE, FIR	ART 08/27/92 GF	COUND ELEVATION		
DEPTH BELOW SURFACE	BUC FC	SING SAMPLE NO DEPTHS ELLY "T	TYPE OF SAMPLE	PENETRATION BLOWS PER 6 INCHES	DENSITY OR CONSIST MOISTURE Med.	PROFILE CHANGE DEPTH ELEY	F-C LT BR-BLACK			
	H G E R	5-7.0	D-2	1-0-0-1	Dense Very	5.4	GRAVEL, tr of si	.10-1111		
10	S				Loose .	7.2	Dk br inorganic			
20							Refusal on Auger Installed 7.2' o with 5.0' of scr mount protector. at 1.0' to 2.0' 1 1/2 bags of sa	f 2" M.W. pipe een and flush Bentonite seal		
0							1 1/2 Dags OI Sa	u v		
0			7.2 FL							

Type of Sample

D = Dry C = Cored W = Washed

UP = Undisturbed Fiston

IP = Test Pin A = Auger

US = Undisturbed Shelby

Y = Vane Test

 Cohesive Consistency
0.7 Very Soft
3-4 Soft
5-8 M/Stiff
9-15 Stiff
16-30 V-Stiff
31 + Hard

Earth Baring 7.2'

Rock Caring D-2

Samples

c	HAMMER CASING: WTFALL					Gro	Ilstate EAST PF	SHEET 1 OF 1 LOCATION Barringto HOLE NO. MW-3 LINE & STA.			
S.	MPL	ER: WT	140	ALL 30	PRO	JECT: 90	Bay Spri	ng Aven	ue	OFFSET	
	TOR:		Cook, J Cook	r.		SAMPLER I. D. CASING I. D.	1 3/8"	DATE, FIN	ART. 08/27/92	GROUND ELEVATION	
DEPTH BELOW SURFACE		ASING LOWS PER FOOT	SAMPLE NO DEPTHS	TYPE OF SAMPLE	8	NETRATION LOWS PER S INCHES	DENSITY OR CONSIST	PROFILE CHANGE DEPTH ELEV	ZEMARKS INC	NTIFICATION OF SOILS, REMARKS tude color gradation type of soil fic condition mappiness, drilling time seams etc	
-0			0-2.0	D-1	3-4-	5-5		1.0	Topsoil		
	7 U U E						Med. Dense	1.7	Subsoil F-C LT BR SAN tr of silt	D, TR OF F GRAVEL,	1
	H		5-7.0	D-2	5-6-	6-7		6.0			
	3						Med. Dense		F-M LT BR SAN	D, tr of silt	
-10			10-12.0	D-3	7-8-	8-10					
								14.0			
			15-17.0	D-4	6-9-	8-9	Very Stiff		Lt br silt		
— 20								20.0			
•											
									End of Boring	- 20.0'	
									T	01 a # 011 M W = ====	
30									with 10.0' of	O' of 2" M.W. pipe screen and flush or. Bentonite seal	
									at 6.0' to 7.0		
	H								3 bags of sand	7	
											F
 40											
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	GR	OUND	URFACE TO	20.0 п.	USED	Augers	CASING: THEN	Instal	led Well Penetration Resistance	HOLE NO. MW-3	
וט זף 'U'	= Ur = les 5 = Ur	C = (sdisturbe	of Sample Cored W = Wo d Piston A = Auger d Shelby	othed	troce little some and	Proportions Used 0 to 11 to 21 to 36 to	10% 0-4 20% 5-9 35% 10-29	very Med	o Wt. talling 30" on 2" O.D. Som	of Earth Boring 20.01	

HAMMER				A	llstate EAST PF	SHEET 1 OF 1 LOCATION Barringt	on			
			40 FALL 30	CI	LIENT: Gro	up IV Bay Spri	ng Aven	ue	HOLE NO	
	LER:	R. Cook D. Cook			SAMPLER I. D CASING I. D	1 3/8"	ALLSTAT DATE, ST DATE, FIR	00/00/00	GROUND ELEVATION	
DEPTH BELOW SURFACE	810	Nuc N	THS OF	1	PEMETRATION BLOWS PER 6 INCHES	OENSITY OR CONSIST	PROFILE CHANGE DEPTH	REMARKS IN	NTIFICATION OF SOILS, REMARKS CLUDE COLOR GRADATION TYPE OF SOIL ETC CONDITION HARDNESS DRILLING TIME SEAMS ETC	
-0	A U	0-2.		5-1	2-18-6	Med. Dense	3.7		D AND F-C GRAVEL, ome brick, mortar,	
	G E R	5-7.	0 D-2	3-5	-8-12	Med. Dense	6.7	F-M LT BR SAN of silt	D, SOME C SAND, tr	
-10	3					Very Dense			AND, LITTLE F-M e silt and rock	
		10-1	2.0 D-3	20-	31-43-51		12.0			
								End of Boring	- 12.0'	
20								with 6.0' of	' of 2" M.W. pipe screen and flush or. Bentonite seal O'	
								1 1/2 bags of	sand	
—30									٠	
								.,		
_40	Gŧo	UND SURFACE		FT. USED	magerb	CASING: THEN	140 ()	led Well Penetration Penatrance or Williams 30" on 2" O.D. San	HOLE NO. MW-4	y
UP IP US	= Unda = Test I	sturbed Piston Pil A = Auge sturbed Shelby	W = Woshed	trac istili sam and	e 11 to	10% 0-4 20% 5-9 35% 10-29	very Med	ity Cohesive Consists	of Earth Boring 2.0'	

		HAMMER wt		CUENT: PROJECT:_	Grou	llstate EAST P D IV Bay Spri	LOCATION B HOLE NO LINE & STA	or1 arrington B-1		
INSPECT DRILL HELP	R.	Cook, J Cook	r.	1	LER I. D 4G I. D	1 3/8"	ALLSTAT DATE, ST DATE, FII	00/00/00	GROUND ELEVATION_ GROUND WATER DEPT	
DEPTH BELOW SURFACE	CASING BLOWS PER FOOT	SAMPLE NO DEPTHS ELEV FT	TYPE OF SAMPLE	PENETRATI BLOWS P 6 INCHE	PER	DENSITY OR CONSIST	PROFILE CHANGE DEPTH ELEY	BEMARKS IN	NTIFICATION OF SOILS, IS CLUDE COLOR GRADATION TYPE OF CONDITION HARDNESS, DRILLING	SOIL ETC
-0		0-2.0	D-1	2-3-3-3			1.0	Topsoil		
		2-4.0	D-2	2-4-4-5		Loose		F-M LT-DK BR GRAVEL, tr of brick-fill F-C DK BR SAN tr of silt, b	silt, asphalt D, TR OF F GR	AVEL,
}							4.0	fill	LICK, TOOU, IN	iteriai
10 20								End of Boring	- 4.0'	
-30										
_40	GROUND	SURFACE TO	4.0 F	T. USED N/A	, c.	ASING: THEN	 Sample	Spoon	HOLE NO	B-4
UP : 1P = US :	Туре	e of Sample Cored W = W ed Piston A = Auger			0 to 1 11 to 2 21 to 3 36 to 5	10% 0.4 7 10% 5.9 15% 10-29	140 f Cahesianless Dens Very Med	Penetration Resistance b Wt falling 30" on 2" O D Sar ity Cohesive Consist Loose 0.2 Very S Loose 3-4 Saft	npler ency oft Earth Bori	Summary 4.0'

	HAMMER CASING: WTFALL					Allstate Drilling Co. EAST PROVIDENCE, R.I. 02915 CLIENT: Group IV							SHEET 1 OF 1 LOCATION BARRING HOLE NO. B-5			
	SAMPLE	R W	т. 140	FALL _30	C!	LIENT: ROJECT:_				ing Aver	nue				OFFSET	
	INSPECTOR: DRILLER: HELPER:	<u> </u>	Cook, Cook	Jr.		SAMPL			3/3	DATE. S	TE NO TART INISH:	W-653 08/27/ 08/27/		GROUN	D ELEVATION	
BEL	ິດ 8∪	SING OWS PER OOT	SAMPLE NO DEPTHS	TYPE OF SAMPLE	ł	PENETRATIONS PE	₽.		NSITY OR NSIST	PROFILE CHANGE DEPTH	_		EMARKS INCL	-	ON OF SOILS, REMARKS GRADATION TYPE OF SOIL ETC TARONESS, DRILLING TIME SEAMS ETC	
			0-2.0 2-4.0 4-6.0	D-1 D-2 D-3	5-4	-6-5 -6-6 -6-6		М	ed. ense	6.0	lit ruk F-0	C LT BF ttle si oble-fi	R SANI .lt, h .ll R-ORAN	O AND orick,	F-C GRAVEL, coal,	
-10											End	of Bo	ring	- 6.0		
20																
—30												.,		÷		
40																
		Type of C = C furbed	of Sample ored W = W Pisson		trace little some and	N/A Proportion		70% 35%	_	140 lb hesionless Densi Very Med	Penetration Wt talling	Resistance g 30" on 7" C Cohesive 0 2 3-4 5-8 9-15 16-30	D.D. Sample Consistency Very Soft Soft M/ShH ShH V-Shiff Hard		Rock Coring D-3	<u> </u>

~	HAMMER CASING: WTFALL						llstate EAST P		SHEET_1_OF1 LOCATION_Barrington HOLE NOB-6			
			140		CLIENT:_ PROJECT:	Grou 90 E	p IV Bay Spri	ng Aven	ue	1	UNE & STA	
II	NSPECTOR: . DRILLER: _ HELPER: _		Cook, J	r.		SAMPLER I. D. 1 3/8" CASING I. D			TE NO. W-653 TART 08/27/92 INISH: 08/27/92		D ELEVATION	
DEPT BELO SURFA	TH C IW B	ASING IOWS PER FOOT	SAMPLE NO DEPTHS	TYPE OF SAMPLE	PENETRA BLOWS 5 INCH	PER	DENSITY OR CONSIST	PROFILE CHANGE DEPTH ELEV	REMARKS INC	TODE COLOR	ON OF SOILS, REMARKS GRADATION TYPE OF SOIL ETC HARDNESS, DEILLING TIME SEAMS ETC	
-0			0-2.0	D-1	3-1-1-0		Very Loose		F-C LT BR SAN GRAVEL, little			
			2-4.0		1-1-1-1			4.0				
			4-5.0 6-8.0		12-16-3		Loose Med. Dense	7.0	F-C LT BR-ORAL	NGE SA	ND, tr of	
			0-8.0	D 3	12-10-5	2-33	Very Dense	8.0	F-M LT BR SANI	D AND	F-M GRAVEL,	
-10)		- 3. 4 -			· · · · · · · · · · · · · · · · · · ·	
									End of Boring	- 8.0	1	
							į					
– 20												
										-		
30												
									**			
								i				
40	GR	SUND SU	JRFACE TO{	3.0 pt.	used N/A	CAS	HNG: THEN	Sample	Spoon Penetration Resistance		HOLE NO. B-6	
	D = Dry UP = Und IP = Test US = Und Y = Vane	C = Co	= Auger	shed	Proportion frace little same and	0 to 109 11 to 209 21 to 359 36 to 509	% 0.4 % 5.9 % 10.29	140 lb hesionless Densi Very Med	Wt falling 30" on 2" Q.D. Soma	cy	Earth Boring 8 : 0 1 Rock Coring D-4 Samples	- - -

APPENDIX "D"

Geisser Engineering Attn: Mr. Angelo Ferrari

227 Wampanoag Trail Riverside, RI 02915 DATE RECEIVED: 10/05/92 DATE REPORTED: 10/26/92

P.O. #:

INVOICE #:

E5835

SAMPLE DESCRIPTION: Two (2) soil samples and one (1) groundwater

sample from Base Spring, Barrington (K-653)

Subject samples have been analyzed by our laboratory with the attached results.

Reference:

Test Methods for Evaluating Solid Waste, Physical/ Chemical Methods, U.S. EPA, SW-846, December 1987, second edition.

Guidelines Establishing Testing Procedures For The Analysis of Pollutants, 40CFR, Part 136, July 1986.

TCLP Procedure, Federal Register, Vol. 55, No. 126, Friday, June 29, 1990.

If you have any questions regarding this work or if we may be of further assistance, please contact us.

Approved By:

Michael S. Rose

Laboratory Manager

Anthony E> Perrotti

President

gei:cmc

	•			
Geisser Engine DATE RECEIVED: DATE REPORTED:	10/05/92	INVOI P.O.	CE #: E5835 #:	
PARAMETER	ACCEPTABLE STANDARD ¹	GROUNDWATER (MW #1,2,3,&4)	SAMPLE # 1 SOIL	SAMPLE # 2 SOIL-ACID TANK LOCATION MW-4, A-1, A-2
Total Petroleum Hydrocarbons	n 100 mg/kg ²	<2.40 mg/l	47.1 mg/kg*	94.1 mg/kg*
Metals (Soluble	≥):			
Arsenic	•	< 0.005 mg/l		**** === ===
Barium		<0.20		
Cadmium	.01 mg/1	<0.01 "	along white major spalps	
Chromium	.05 mg/l	<0.03 "		
Lead		<0.04 "		
Mercury		<0.0005 "		
Selenium		<0.005 "		
Silver	. 05	<0.02 "		
Toxicity Charac				
Leaching Proced Metals:	ures:			
Arsenic	5.0 mg/1		<0.00E ==/3	-0.005 (3
Barium	100.0 mg/1		<0.005 mg/l 0.35 "	<0.005 mg/l
Cadmium	1.0 mg/1		<0.01 "	70.20
Chromium	5.0 mg/1		<0.03 "	<0.01 " <0.03 "
Lead	5.0 mg/1		0.04 "	0.12 "
Mercury	.2 mg/1		<0.0005 "	<0.0005 "
Selenium	1.0 mg/l		<0.005 "	<0.005 "
Silver	5.0 mg/1		<0.02 "	<0.005
İ				

^{* ¢}alculated on dry weight basis.

RI ANALYTICAL LABORATORIES, INC.

Page 2

¹ Acceptable Standard values added to this report by Geisser Engineering Corp.

² Rhode Island general guideline level. All other Standard values are USEPA values.

Geisser Engineeri DATE RECEIVED: 10 DATE REPORTED: 10	0/05/92	INVOICE #: P.O. #:	E5835	ACCEPTABLE USEPA STANDARD l
PARAMETER	GROUNDWATER (MW#1,2,3&4)	SAMPLE#1	SAMPLE #2 soil-acid tank location MW-4, A-1, A-2	SOIL
Polychlorinated B (Method #608/808 Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	0):	<0.1 mg/kg* <0.1 " <0.1 " <0.1 " <0.1 " <0.1 " <0.1 "		25 mg/kg ² 25 mg/kg 25 mg/kg 25 mg/kg 25 mg/kg 25 mg/kg 25 mg/kg
Volatile Organic (Method 601/602 an 8010/8020): 1,2-dichloroethane 1,1,1-trichloroeth benzene toluene Detection Limit:	and $\mu q/1$	ND ND ND	ND ND ND 1 mg/kg	GROUNDWATER 5 ug/1 200 ug/1 5 ug/1 2000 ug/1

^{* ¢}alculated on dry weight basis.

Note: A list of volatile organic compounds tested is attached.

RI ANALYTICAL LABORATORIES, INC.

Page 3

Acceptable Standard values added to this report by Geisser Engineering Corporation.

Clean-up level for low contact outdoor area soil.

Geisser Engineering

INVOICE #: E5835 DATE RECEIVED: 10/05/92 P.O. #

DATE REPORTED: 10/26/92

Volatile Organic Compounds Method #601/602 & 8010/8020

chloromethane bromomethane vinyl chloride dichlorodifluoromethane chloroethane methylene chloride trichlorofluoromethane 1,1-dichloroethylene 1,1-dichloroethane trans-1,2-dichloroethylene chloroform 1,2-dichloroethane 1,1,1-trichloroethane carbon tetrachloride bromodichloromethane 1,2-dichloropropane cis-1,3-dichloropropylene trichloroethylene trans-1,3-dichloropropylene 1,1,2-trichloroethane dibromochloromethane bromoform tetrachloroethylene 1,1,2,2-tetrachloroethane chlorobenzene 2-chloroethyl vinyl ether dichlorobenzenes benzene toluene ethylbenzene xylenes

R.I. ANALYTICAL LABORATORIES, INC.

6/03

R849

Geisser Engineering Corporatio

Consulting Engineers

227 Wampanoag Trail Riverside, R.I. 02915 (401) 438-7711 Fax # (401) 438-0281

June 30, 2003

GA Grown wester

Mr. David Malkin Real Estate Investment 150 Chestnut Street Providence, RI 02903

RE: Test pits on Bay Spring Street Property

Dear David:

Were sorry for not submitting this report at an earlier date but our office situation of late has been full such that we are also working evenings at home to reduce our backlog.

On May 30, 2003 we excavated four (4) test pits to depths of from 3' to 8' and retrieved five (5) soil samples from depths of 18" to 7', not only from the test pits but also from shovel-dug hand excavations, in order to analyze the soil for the "RCRA 8" metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver), and Total Petroleum Hydrocarbons (oil-based petroleum) substances. The soil samples were analyzed and compared to the RIDEM Direct Exposure Criteria standards. Refer to the enclosed map for the locations of the test pits and the laboratory certificate of analysis. The laboratory analysis results are listed in the enclosed Table I.

Soil samples S-1 and S-2, both at a depth of 18", were taken from hand-shoveled holes and were composited and the single sample was analyzed for the presence of "RCRA 8" metals. Sample S-1 was a sandy loam in an area used as a tank farm for the storage of solvents. Sample S-2 was also a sandy loam from an area also used as a tank farm for the storage of acid. Only the concrete tank cradles remain as there is no evidence of any remaining tanks which in our opinion have long since been removed.

Test pit TP-1 consisted of 2' of topsoil and 4' of gray sand with a trace of vitrified clay, wood, and brick. Soil sample S-3 at a depth of 4' was taken and also analyzed for the presence of "RCRA 8" metals.

Test pit TP-2 was excavated along the westerly side of the formerly existing pickle building and consisted of 8' of sandy fill comprised of assorted metal, wood and brick. A small portion of the concrete floor of this building was uncovered. Soil sample S-4 from a depth of 7'

from this location was analyzed for the presence of both "RCRA 8" metals and Total Petroleum Hydrocarbons.

Test pit TP-3 consisted of 1' of top soil and loam and 4' of sand with rock and ledge fragments. The excavation stopped at 5' due to the ledge. No soil samples was taken at this location.

Test Pit TP-4 was excavated to the south of the acid pit area and a slurry and watery liquid was observed approximately 3' below the surface. It appeared this liquid was being fed from surrounding clay pipes. No sample was taken from this location.

Soil sample S-5 was taken from a hand-shoveled hole 18" deep near the northerly portion of the site in an area formerly housing a small building (no longer existing) for the storage of nitrated cotton. Only the concrete slab for this storage building remains.

As the test pits indicate, the likelihood of finding buried miscellaneous metal, wood and assorted building debris and piping throughout much of the site is high. Test pit TP-4 uncovered a solution of a undetermined nature, most probably a waste slurry.

arokan C

The laboratory analysis indicates that only arsenic was observed in a concentration higher than the allowable limit. Arsenic is very prevalent in Rhode Island at higher limits than the allowable and as such more analysis of the sites soil should be conducted to determine if the arsenic is naturally occurring or is a waste product.

It is our opinion that the site can be developed with the understanding that underlying debris throughout portions of the site must either be removed or any proposed structures must be supported on piles. The development of this site will depend on finding and taking into account these fill areas.

Due to the presence of arsenic at or above 24" below the surface, certain developed areas will need to be overlain with asphalt or rendered inaccessible. In addition, it would seem likely that during the course of construction activities, laboratory analysis of additional soil samples would be needed to characterize any suspicious material.

Cu sent

Sincerely,

Angelő Ferrari, Pjt. Engineer

TABLE I

LABORATORY ANALYSIS REPORT

(mg/kg)
(Exceeded Concentrations are **Bold**)

	PARAMETER	RESIDENTIAL RIDEM DIRECT EXPOSURE LIMIT	S-1 @18" & S-@ 18"2	S-3 @ 4"	S-4 @ 7'	S-5 @18"
	<u>METALS</u>					
	ARSENIC	(1.7) 7.0	2.3	1.9	17	NT
	BARIUM	5500//	39	95	510	NT
	CADMIUM	39	<0.27	<0.34	2.5	NT
$\{$	CHROMIUM	Hex 390 Tri=14	2.7	2.1	47	NT
	LEAD	150/2	59	67	950	NT
	MERCURY	23, 🐈 , .	0.58	0.41	0.27	NT
	SELENIUM	390	<11	<14	<12	NT
	SILVER	200	<1.1	<1.4	1.2	NT
	TOTAL PETROLEUM HYDRO- CARBONS	550	NT	NT	530 <i>Close</i>	<25

NT .. NOT TESTED

Geisser Engineering Inc. Attn: Mr. Angelo Ferrari 227 Wampanoag Trail Riverside, RI 02915 Date Received: Date Reported:

05/30/2003 06/06/2003

P.O. #:

Work Order #:

0305-07224

DESCRIPTION R-849 BAY SPRING AVE (FOUR SOIL SAMPLES)

Subject sample(s) has/have been analyzed by our Warwick, R.I. laboratory with the attached results.

Reference: All parameters were analyzed by U.S. EPA approved methodologies and all NELAC requirements were met. The specific methodologies are listed in the methods column of the Certificate Of Analysis.

Data qualifiers (if present) are explained in full at the end of a given sample's analytical results.

Certification #: RI-033, MA-RI015, CT-PH-0508, ME-RI015 NH-253700 A & B, USDA S-41844, NY-11726

If you have any questions regarding this work, or if we may be of further assistance, please contact us.

Approved by

Paul Perrotti

Data Reporting Manage

enc: Chain of Custody

R.I. Analytical Laboratories, Inc.

CERTIFICATE OF ANALYSIS

Geisser Engineering Inc.
Date Received: 05/30/2003

Work Order #:

0305-07224

Approved by:

Sample #: 001

SAMPLE

S-1/S-2 @ 18" COMPOSITE 05/30/03

				\vee		
	SAMPLE	DET.			DATE	
PARAMETER	RESULTS	LIMIT	UNITS	METHOD	ANALYZED	ANALYST
TOTAL METALS						
ARSENIC 7	2.3	0.54	mg/kg dry	SW-846 6010	06/04/2003	JNB
BARIUM 5500	39	0.27	mg/kg dry	SW-846 6010	06/04/2003	JNB
CADMIUM 39	< 0.27	0.27	mg/kg dry	SW-846 6010	06/04/2003	JNB
CHROMIUM 390	2.7	1.6	mg/kg dry	SW-846 6010	06/04/2003	JNB
LEAD ISO	59	2.2	mg/kg dry	SW-846 6010	06/04/2003	JNB
MERCURY 23	0.58	0.25	mg/kg dry	SW-846 7471A	06/03/2003	SM
SELENIUM 390	<11	11	mg/kg dry	SW-846 6010	06/04/2003	JNB
SILVER 200	<1.1	1.1	mg/kg dry	SW-846 6010	06/04/2003	JNB

R.I. Analytical Laboratories, Inc.

CERTIFICATE OF ANALYSIS

Geisser Engineering Inc.
Date Received: 05/30/2003

Work Order #:

0305-07224

Approved by:

3 of 5

Sample #: 002

SAMPLE

S-3 @ 4' (TP-1) GRAB 05/30/03 @0930

PARAMETER	SAMPLE RESULTS	DET. LIMIT	UNITS	METHOD	DATE ANALYZED	ANALYST
TOTAL METALS						
ARSENIC 7	1.9	0.68	mg/kg dry	SW-846 6010	06/04/2003	JNB
BARIUM 5500	95	0.34	mg/kg dry	SW-846 6010	06/04/2003	JNB
CADMIUM 39	< 0.34	0.34	mg/kg dry	SW-846 6010	06/04/2003	JNB
CHROMIUM 390	2.1	2.0	mg/kg dry	SW-846 6010	06/04/2003	JNB -
LEAD (50	67	2.7	mg/kg dry	SW-846 6010	06/04/2003	JNB
MERCURY 23	0.41	0.25	mg/kg dry	SW-846 7471A	06/03/2003	SM
SELENIUM 390	<14	14	mg/kg dry	SW-846 6010	06/04/2003	JNB
SILVER 200	<1.4	1.4	mg/kg dry	SW-846 6010	06/04/2003	JNB

R.I. Analytical Laboratories, Inc.

CERTIFICATE OF ANALYSIS

Geisser Engineering Inc. Date Received: 05/3

05/30/2003

Work Order #:

0305-07224

Approved by:

R.I. Analy

Sample #: 004

SAMPLE

S-5 @18" GRAB 05/30/03 @1100

PARAMETER

TPH IR

1000

SAMPLE

RESULTS

<25

DET.

LIMIT UNITS

METHOD

DATE

ANALYZED ANALYST

CCP

25

mg/kg dry

EPA 418.1

06/04/2003

Laboratories, Inc. R.I. Analytical

Phone: (401) 737-8500 41 Illinois Avenue Warwick, RI 02888

Fax:

(401) 738-1970

Fax:

131 Coolidge Street Bldg 2 Phone: (978) 568-0041 Fax: (978) 568-0078 Hudson, MA 01749

P-Plastic G=Glass

ļ	-	
İ		•
1	>	۲
1		٠
1	7	,
ı	Ţ	٦
١	Deco.	2
I		
ı	\rightarrow	=
ı	7	•
I		-
ŀ		٦
-	>	-
١	-	-
ı	U	כי
ł	F	╮
ĺ	_	•
1	C	د
ı	_	•
1		
1		٦
ĺ	•	1
ļ	LA OFFITT TO ME	_
į	1	4
ĺ	-	٦
ı	~	C
ĺ	-	7
I	7	4
I	7)
ı	•	•
l		

B=Bulk/Solid S=Soil SI=Sludge DW=Drinking Water A=Air O=Other (describe B=Bulk Matrix Codes: GW=Groundwater WW=Wastewater SH=NaOH SB=NAHSO4 NP=Non preserved S=Sulfuric H=HCL Preservative Codes: I=Cooled 4°C N=Nitric M=Methanol Container Type Codes:
Plastic V=Vial St=Sterile O=Other (describe) AG=Amber Glass

Date	Time		C-Crob	Containenc	Dennistra	Manne	
Collected	Collected	Sample ID	C=Comp.	# + (code)	(code)	(code)	A walnete December
5/20	740	5-1 18"				(1001)	חומולואו עכלותכאר
,	3	5-2 @ 18" Comme	U	26	da	S	PCRD B motes *
	930	5-3 @ 4' (TP-1)	S	5/	d'A	S	RLIDA & metals *
	1015	5-4 @71 (79-2)	9	16	dy	8	RC124 & metul TPH (IR)
3	1100	5-5016"	B	9	47	8	TOW (IZE) *
				·····			
		Client Information					Daylord Laft.

Project Information	Project Name / Location: R-849 Bay Sormer A	P.O. Number:	Report To: Phone: Fax:	Sampled by: C. Fernan.	Reference Proposal:
	i ele Covap	oug Luil	KI 02915	Fax: 434-028/	12 K 4 R 1
	Company Name Geisser Engler	227 Wampdhoug Lail	City/State/Zip. Zrenside	Frione: 438-7711	ANUELO FEIZEAR

Kelinguished by:	Date	Time	Received by:	Date	Time
Angelo Tenan	5/12/62	4,50	W. KerMa	5-8703	100
					3

Project Comments:

WHE PIDEM DIRECT EXPOSURE CRITERIA *

Turn Around Time: Normal

Surcharges may apply 5 business days

(business days) Rush

RIAL USE ONLY:

Pick-Up Onty Pick-Up Only ☐ RIAL Sampled

Shipped on Ice 7224

UPDATE - ENVIRONMENTAL REPORT

FOR

LAND AND BUILDING AT

90 BAY SPRING AVENUE

IN

BARRINGTON, RHODE ISLAND

FOR
GATEHOUSE GROUP
JANUARY 12, 1995

GEISSER ENGINEERING CORPORATION

CONSULTING ENGINEERS

227 WAMPANOAG TRAIL

RIVERSIDE, RHODE ISLAND

PROJECT NO. M-318

INTRODUCTION

The purpose of this update report is to address any significant environmental changes or site conditions which may have occurred at the subject site (90 Bay Spring Avenue in Barrington, Rhode Island) since the completion of Geisser Engineering Corporation's report for the site titled "Phase II Oil and Hazardous Waste Assessment for Land and Building at 90 Bay Spring Avenue in Barrington, Rhode Island for Group IV, November 20, 1992".

This update report is limited to possible changes subsequent to November 20, 1992 and will report on findings based on: (1) One or more inspections of the site and surrounding properties; (2) review of Barrington Tax Assessor's Records; (3) review of the Rhode Island Department of Environmental Management's (RIDEM) files and (4) an interview with David Malcolm a spokesman for Bay Spring Realty Company which owns the property. A review of the November 20, 1992 report should be made in conjunction with the review of this update report.

REVIEW OF TAX ASSESSOR'S RECORDS

On December 27, 1995, this writer reviewed Barrington's tax assessor's records for changes of ownership to the property. The records indicated that the site is presently owned by the Bay Spring Realty Company which acquired the site from Bay Spring Realty in 1992 after the publication of the Phase II report.

SITE INSPECTION

On January 2 and 9, 1996, this writer conducted inspections of the site and abutting properties. On January 2, this writer was accompanied by the aforementioned Mr. Malcolm. The building consists of three stories. The second and third floors contain less area than the floor beneath them. In total the building contains approximately 78,000 square feet. The building does not have a basement. The first floor is approximately four (4) feet lower than the ground surface at the exterior of the building and is referred to as the first floor. The tenants renting space in the building at the time of the inspections were as follows.

First Floor

- Barnon, Inc. This is a one-person mail order company that is involved in a
 business which supplies skin care and associated lotion products and occupies
 approximately 2,000 square feet.
- 2. Hills Auto This is an auto repair business which occupies approximately 3,000 square feet. There are no fuel storage tanks associated with this business.
- 3. The remainder of the first floor was empty. This empty area was the area which was formerly utilized by Pilling Chain (See original Phase II Site Assessment Report). All machinery, plating tanks and miscellaneous debris has been removed. The area has been totally cleaned and no debris, equipment or trash was observed.

Lead

The overhead 8" steamline that spans the entire length of the first floor and in all probabilities is insulated with asbestos is still in existence.

Second Floor

- 1. Rainbow Seating This company occupies approximately 20,000 square feet, has less than 5 employees and makes wooden frames for upholstery such as chairs, sofas and settees in addition to covering and stuffing upholstery cushions. This is a very small operation. A minimal of paint (approximately 6 gallons) was observed.
- 2. Viking This company installs insulation in the form of pipe coverings and flat batts. The pipe insulation is cut, shaped and otherwise fabricated on premises for installation at job sites. This is a one person operation which is almost entirely hand performed. Viking rents approximately 5,000 square feet of space.

As with the 8" steam line on the first floor, the steam piping on this floor reported in the Phase II report is still in existence.

Third Floor

This floor was the former location of two tenants, one being "The Forgotten Garden" and the other "L. Giorgio - Cabinetmaker". The Forgotten Garden was a two employee furniture restoration and antique warehouse. L. Giorgio was a

cabinetmaker who operated a small custom cabinet woodmaking shop. These tenants are no longer at the site. Their former locations are strewn with litter such as scrap wood, cardboard, papers, plastic and glass bottles and six gallons of paint. No oil or hazardous waste was observed in this area.

An inspection of the boiler room on the first floor indicated that all conditions appeared normal. No equipment including the boiler was in operation. All appeared normal at the aboveground enclosed No. 6 fuel oil storage tank.

The 2,000 gallon underground No. 2 fuel oil tank which previously supplied fuel to heat the now-removed plating tanks used by Pilling Chain is still in existence.

1,000

A walk-around of the exterior portion of the site and abutting properties indicated no visible change from conditions noted in 1992 with one exception. A previously existing two-story wood-framed industrial building located at 85 Bay Spring Avenue (across Bay Spring Avenue) from the site was totally destroyed by fire in the Summer of 1995. This site is now empty.

No surficial evidence was found during the inspection of the interior of the building or external walk-around to indicate any uncontrolled release of fuel or hazardous waste at the site.

INTERVIEW WITH DAVID MALCOLM

On December 20, 1995 this writer conducted a telephone interview with Mr. David Malcolm an agent for the owner. Mr. Malcolm indicated that no major happenings have occurred at the site with the exception of removal of all equipment used by "Pilling Chain" (former tenant) and the change in tenant base. At this writing approximately 48,000 square feet of the building is vacant.

REVIEW OF RIDEM RECORDS

On December 12, 1995, this writer reviewed RIDEM's Cercla (Comprehensive Environmental Response, Compensation and Liability Act) Files for listed sites. The Cercla File is an automated inventory developed by the Federal Environmental Protection Agency (EPA) of potential waste sites in Rhode Island at which there is some reason to believe a release, illegal disposal activity or illegal storage of hazardous waste has occurred, any of which may cause the site to be included on the Superfund Cleanup List. A review of this file indicated that there are no Cercla sites within a one-mile radius of the assessment site.

A review of underground storage tank (UST) records of RIDEM maintained by the UST Section indicates that there are no known UST which have been registered since November 1922. The UST Section also maintains a log of all fuel spills which are reported

to RIDEM. A review of these records by this writer indicate that since November 1922, no spills were reported to RIDEM which have negatively impacted the subsurface soil or groundwater at the subject site.

OPINIONS AND CONCLUSIONS

Based on inspections of the site and abutting properties, an interview with an agent of the owners, and a review of environmental files of the Rhode Island Department of Environmental Management (RIDEM), it is our opinion that environmental conditions at the subject site have not been downgraded or changed for the worst since the preparation of a Phase II Oil and Hazardous Waste Assessment was prepared for the site on November 20, 1992. Geisser Engineering Corporation concludes that further inspection of the site for the purpose of oil or hazardous waste is not warranted at this time.

This report describes the conditions observed by Geisser Engineering Corporation at the study site. The text presents the observations made during site reconnaissance and information gathered during site history research, regulatory agency file review and interviews. This report has been prepared in accordance with the Limitations defined by Geisser Engineering Corporation.

LIMITATIONS

This report addresses the physical characteristics of the Site with reference to the release or presence of oil or hazardous materials. This report is not intended to guarantee that this Site is or is not free from conditions, material or substances which could adversely impact the environment or pose a threat to the public's safety. Rather, this report is to be used as a summary of existing conditions which are based upon reasonable and knowledgeable review of evidence found in accordance with accepted engineering practices and within the budgetary constraint imposed in the contract between Geisser Engineering Corporation and the client. Should further research on the Site be conducted, the additional data should be reviewed by Geisser Engineering Corporation and the conclusion presented herein may be modified.

This report has been prepared on behalf of and is for the exclusive use of the client solely for use in an environmental evaluation of the Site. As a mutual protection to our client, the public and ourselves, authorization for publication of statements, conclusions or extracts from or regarding this report is reserved pending our written approval. However, Geisser Engineering Corporation acknowledges and agrees that the report may be conveyed to the Seller, Lender or Insurance Company associated with proximate financial transactions concerning the Site by our client.

Geisser Engineering Corporation accepts no responsibility for client performances of recommendations as may be offered in this assessment.

No attempt was made to investigate all regulatory compliances with federal, state and local laws and regulations in connection with the usage of the assessment Site.

Conclusions stated herein refer only to the specific Site investigated. Total liability is limited to the invoiced amount only and shall not include any consequential damages.

We trust that this report will satisfy your current requirements. If you should have any questions or we can be of further assistance to you, please do not hesitate to contact us.

Very truly yours,

GEISSER ENGINEERING CORPORATION

Angelo Ferrari, P.E. Senior Project Engineer

AF/rac

APPENDIX D

Drill Logs

Resource Controls

DRILLING LOG

LOCATION ID.: S-1/MW-1 TOTAL DEPTH (FT.): 17.37

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: Donegan, Barrington PROJECT NO .:

DRILLING CO.: **New England GeoTech** Haze

7131 LOCATION:

DRILLER: RIG TYPE:

90 Bay Spring Avenue LOGGED BY: Daniel Boynes 11/21/2012 DATE STARTED: DATE FINISHED: 11/21/2012

METHOD OF DRILLING: Geoprobe SAMPLING METHOD:

PID Well Description of Graphic **Soil Description** Const. Log (ppmV) **Well Materials**

Apparent water level during drilling

Laboratory analytical sample

NOTES:

DRILLING LOG

LOCATION ID.: TOTAL DEPTH (FT.): 10

PROJECT INFORMATION

DRILLING INFORMATION

Haze

New England GeoTech

PROJECT:

Donegan, Barrington

DRILLING CO.: DRILLER:

PROJECT NO .: LOCATION:

7131 90 Bay Spring Avenue

RIG TYPE: METHOD OF DRILLING: Geoprobe

LOGGED BY: DATE STARTED:

Daniel Boynes 11/21/2012 11/21/2012

SAMPLING METHOD:

DATE FINISHED: PID Well **Description of** Graphic **Soil Description** Const. Log (ppmV) **Well Materials** 0.0 - 2.6 Brown medium to coarse grained SAND, moderately well sorted, some gravel present 2.6 - 5.0 Brown medium to coarse grained SAND, moderately well sorted, some gravel present, fining downwards 0.0 5.0 - 8.3 Brown medium to coarse grained SAND, moderately well sorted, some gravel present, some oxidation present 8.3 - 8.9 Gray fine to medium grained SAND, well sorted 0.1 8.9 - 10.0 Dark gray/Black fine to medium grained SAND, well sorted 10 -2.2 10.0 - 12.0 Dark gray/Black fine to medium grained SAND, well sorted 12.0 - 13.0 Gray fine to medium grained SAND, well sorted 13.0 - 13.2 Brown medium to very coarse grained SAND 13.2 - 15.0 Gray/Brown tightly packed CLAY

Apparent water level during drilling

Laboratory analytical sample

NOTES: Sample at 8.3 feet for VOCs by EPA Method 8260

DRILLING LOG

LOCATION ID.: S-3/MW-2 TOTAL DEPTH (FT.): 17.35

PROJECT INFORMATION DRILL

PROJECT: Donegan, Barrington 7131

LOCATION: 90 Bay Spring Avenue

LOGGED BY: Daniel Boynes
DATE STARTED: 11/21/2012
DATE FINISHED: 11/21/2012

DRILLING INFORMATION

DRILLING CO.: New England GeoTech

DRILLER: New England G

RIG TYPE:

METHOD OF DRILLING: Geoprobe

SAMPLING METHOD:

▼ Apparent water level during drilling

Laboratory analytical sample

Resource Controls Proven Environmental & Engineering Solutions

DRILLING LOG

LOCATION ID.: S-4/MW-3 TOTAL DEPTH (FT.): 13.21

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: Donegan, Barrington

DRILLING CO.: New England GeoTech

PROJECT NO.: 7131 LOCATION: 90 Ba DRILLER: Haze RIG TYPE:

LOCATION: 90 Bay Spring Avenue
LOGGED BY: Daniel Boynes
DATE STARTED: 11/21/2012
DATE FINISHED: 11/21/2012

METHOD OF DRILLING: Geoprobe SAMPLING METHOD:

Graphic Log Soil Description PID Well Const. Description of Well Materials

Apparent water level during drilling

Laboratory analytical sample

NOTES:

Resource Controls

DRILLING LOG

LOCATION ID.: S-5 TOTAL DEPTH (FT.): 11.5

PROJECT INFORMATION

Donegan, Barrington 7131

PROJECT: PROJECT NO.:

90 Bay Spring Avenue Daniel Boynes 11/21/2012 11/21/2012 LOCATION: LOGGED BY:

DATE STARTED:

DRILLING INFORMATION

DRILLING CO.: New England GeoTech

DRILLER: Haze

RIG TYPE:

METHOD OF DRILLING: Geoprobe

SAMPLING METHOD:

(ft.) Rec.	Graphic Log	Soil Description	PID (ppmV)	Well Const.	Description of Well Materials
0 ¬	. /1. /1.				
	\(\daggreg \) \(\da	0.0 - 0.8 Dark brown organic rich topsoil, son roots present	ie		
40%		0.8 - 3.3 Dark brown medium to coarse grain SAND, some gravel present	ed		
-		2.2. E.O.Light brown modium grained CAND			
-		3.3 - 5.0 Light brown medium grained SAND, some gravel present	0.0		
5-					
-		5.0 - 6.3 Dark brown medium to coarse grain SAND, some roots and gravel present, poorly sorted	ed '		
		6.3 - 6.7 Broken concrete			
%09		6.7 - 10.0 Brown CLAY, very tightly packed			
-			0.4		
.0 – 0. 100%		10.0 - 10.8 Dark brown medium to coarse grained SAND, poorly sorted			
10		10.8 - 11.3 Gray coarse grained SAND, poor sorted	у		
1		11.3 - 11.5 Gray CLAY, tightly packed			

LOCATION ID.: S-6/MW-4 TOTAL DEPTH (FT.): 12,21

PROJECT INFORMATION

ECT INFORMATION

Donegan, Barrington

PROJECT: Done 7131

LOCATION: 90 Bay Spring Avenue Daniel Boynes

LOGGED BY: Daniel Boynes
DATE STARTED: 11/21/2012
DATE FINISHED: 11/21/2012

DRILLING INFORMATION

DRILLING CO.: New England GeoTech

DRILLER: Haze

RIG TYPE:

METHOD OF DRILLING: Geoprobe

SAMPLING METHOD:

LOCATION ID.: S-7
TOTAL DEPTH (FT.): 8

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: Donegan, Barrington

DRILLING CO.: New England GeoTech
DRILLER: Haze

PROJECT NO.: LOCATION:

7131 90 Bay Spring Avenue Daniel Boynes 11/21/2012

RIG TYPE: METHOD OF DRILLING: Geoprobe

LOGGED BY: Daniel Boy 11/21/2012 DATE FINISHED: 11/21/2012

SAMPLING METHOD:

c.	Graphic	Soil Description	PID	Well	Description of
) Ре ВВ	Log	Soil Description	(ppmV)	Const.	Well Materials

Apparent water level during drilling

Laboratory analytical sample

NOTES: Refusal at 8 feet

LOCATION ID.: S-8
TOTAL DEPTH (FT.): 10

PROJECT INFORMATION

Donegan, Barrington

PROJECT:]
PROJECT NO.: '
LOCATION:

7131 90 Bay Spring Avenue

LOGGED BY: Daniel Boynes
DATE STARTED: 11/21/2012
DATE FINISHED: 11/21/2012

DRILLING INFORMATION

DRILLING CO.: New England GeoTech

DRILLER: Haze

RIG TYPE:

METHOD OF DRILLING: Geoprobe

SAMPLING METHOD:

(ft.) Rec.	Graphic Log	Soil Description	PID (ppmV)	Well Const.	Description of Well Materials
) ¬				· ·	
_	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	0.0 - 1.3 Dark brown organic rich mat	ter (roots)		
%09		1.3 - 2.6 Brown medium to coarse SA LOAM, some gravel present	NDY		
-		2.6 - 5.0 Light brown SAND, well sort homogeneous	ed,		
-		5.0 - 7.1 Light brown SAND, well sort	ed, 0.5		
%02		7.1 - 8.6 Light gray SAND, well sorted homogeneous	79.5		
-		8.6 - 10.0 Dark gray SAND, well sorte homogeneous	ed,		

Resource Controls

DRILLING LOG

LOCATION ID.: S-9 TOTAL DEPTH (FT.): 10

PROJECT INFORMATION

DRILLING INFORMATION

Geoprobe

PROJECT: Donegan, Barrington 7131

DRILLING CO.: DRILLER: Haze

PROJECT NO.: LOCATION: 90 Bay Spring Avenue

LOGGED BY:

New England GeoTech

RIG TYPE:

METHOD OF DRILLING:

SAMPLING METHOD:

Daniel Boynes 11/21/2012 DATE STARTED: DATE FINISHED: 11/21/2012 PID Well Description of Graphic **Soil Description** Const. Log (ppmV) **Well Materials** 0.0 - 1.3 Dark brown SANDY LOAM, some gravel present, rich is organic matter (roots) 1.3 - 2.0 Brown fine to medium grained SANDY SILT, some gravel, poorly sorted 2.0 - 5.0 Dark brown coarse grained SAND, some gravel present 0.7 5.0 - 6.3 Brown CLAY with layers of darker colored clay present 6.3 - 9.3 Brown medium grained SAND, well sorted, homogeneous 0.3 9.3 - 10.0 Dark grar/black SAND with some gravel present, saturated

NOTES:

Apparent water level during drilling

LOCATION ID.: S-10/MW-5 TOTAL DEPTH (FT.): 14.30

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: PROJECT NO.: Donegan, Barrington

7131

LOCATION: 90 Bay Spring Avenue LOGGED BY:

Daniel Boynes 11/21/2012 DATE STARTED: DATE FINISHED: 11/21/2012

DRILLING CO.: **New England GeoTech**

DRILLER: Haze

RIG TYPE:

METHOD OF DRILLING: Geoprobe

SAMPLING METHOD:

▼ Apparent water level during drilling

Resource Controls

DRILLING LOG

LOCATION ID.: S-11 TOTAL DEPTH (FT.): 10

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT: PROJECT NO.:

Donegan, Barrington

DRILLING CO.: **New England GeoTech** DRILLER: Haze

LOCATION:

7131 90 Bay Spring Avenue

RIG TYPE:

METHOD OF DRILLING: Geoprobe

LOGGED BY: DATE STARTED: DATE FINISHED:

Daniel Boynes 11/21/2012 SAMPLING METHOD: 11/21/2012

PID Well **Description of** Graphic **Soil Description** Const. Log (ppmV) **Well Materials** 0.0 - 1.3 Dark brown organic rich matter 1.3 - 5.0 Brown medium to coarse SANDY LOAM, fining downwards 5.0 - 6.2 Dark brown medium to coarse grained SAND 6.2 - 7.7 Gray medium to coarse grained SAND 7.7 - 8.5 Gray medium to coarse grained SAND 8.5 - 9.4 Brown medium to coarse grained SAND, well sorted 9.4 - 10.0 Brown/Gray CLAY 10

Apparent water level during drilling

NOTES:

LOCATION ID.: S-12 TOTAL DEPTH (FT.): **10**

PROJECT INFORMATION

Donegan, Barrington 7131

PROJECT: PROJECT NO.:

LOCATION: 90 Bay Spring Avenue
LOGGED BY: Daniel Boynes
DATE STATED: 11/21/2012

DRILLING INFORMATION

DRILLING CO.: DRILLER: New England GeoTech

Haze

RIG TYPE: METHOD OF DRILLING: Geoprobe

SAMPLING METHOD:

1.3 - 2.5 SAND	B Dark brown organ B Brown medium to D Dark brown SAN Doresent, poorly sor	o coarse g	rained	0.1		
2.5 - 5.0) Dark brown SAN	DY LOAM		0.1		
2.5 - 5.0 gravey) Dark brown SAN present, poorly sor	DY LOAM	, some			
5.0 - 10 gravey	.0 Dark brown SAI present, poorly sor	NDY LOAI	M, some			
	gravey	gravey present, poorly so	gravey present, poorly sorted		gravey present, poorly sorted	gravey present, poorly sorted

NOTES:

APPENDIX E

Well Monitoring Forms

WELL MONITORING FORM

Project: Donegan, Barrington

Project No.: 7131

Location: 90 Bay Spring Avenue

Date: 11/26/12
Operator: DSB/EFG
Method: Interface Probe

								Corrected	Corrected
	Top of	Depth	Depth	Depth		LNAPL		Depth	Water
	Casing	to	to	to	LNAPL	Specific	Water	to	Table
Well	Elevation	LNAPL	Water	Bottom	Thickness	Gravity	Equivalent	Water	Elevation
ID	(feet)	(feet)	(feet)	(feet)	(feet)	(unitless)	(feet)	(feet)	(feet)
MW-1	101.78	ND	12.36	17.37	ND	NA	NA	NA	89.42
MW-2	101.97	ND	12.59	12.59	ND	NA	NA	NA	89.38
MW-3	95.66	ND	6.30	13.21	ND	NA	NA	NA	89.36
MW-4	95.58	ND	7.36	12.21	ND	NA	NA	NA	88.22
MW-5	98.61	ND	9.36	14.30	ND	NA	NA	NA	89.25

NM = Not Measured; ND = None Detected at >0.01 feet; NA = Not Applicable; DRY = No Water in Well

NOTES:

7131_WMF1112612 Page 1 of 1

APPENDIX F

Laboratory Reports

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Daniel Boynes Resource Controls 474 Broadway Pawtucket, RI 02860-1377

RE: Barrington (7131)

ESS Laboratory Work Order Number: 1211445

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard
Laboratory Director

REVIEWED

By ESS Laboratory at 12:07 pm, Dec 05, 2012

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibratins, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211445

SAMPLE RECEIPT

The following samples were received on November 27, 2012 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	SampleName	Matrix	Analysis
1211445-01	S-2 8.3ft	Soil	8260B Low
1211445-02	S-3 5.5ft	Soil	8260B
1211445-03	S-6 5.0ft	Soil	6010B, 7060A, 7471A, 8260B Low, 8270C
1211445-04	S-8 5.0ft	Soil	6010B, 7060A, 7471A, 8260B Low, 8270C
1211445-06	Trip Blank	Solid	8260B Low

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211445

PROJECT NARRATIVE

5035/8260B Volatile Organic Compounds / Low Level

1211445-01 <u>Surrogate recovery(ies) outside of criteria. Reextraction/Reanalysis confirms results (SC).</u>

4-Bromofluorobenzene (264% @ 70-130%)

CK22901-BS1 Blank Spike recovery is above upper control limit (B+).

2-Butanone (183% @ 70-130%), 2-Hexanone (185% @ 70-130%), Acetone (277% @ 70-130%),

trans-1,3-Dichloropropene (133% @ 70-130%)

CK22901-BSD1 Blank Spike recovery is above upper control limit (B+).

2-Butanone (153% @ 70-130%), 2-Hexanone (146% @ 70-130%), Acetone (208% @ 70-130%)

5035/8260B Volatile Organic Compounds / Methanol

1211445-02 **Present in Method Blank (B).**

Chloroform

CL20420-BS1 Blank Spike recovery is above upper control limit (B+).

Tertiary-amyl methyl ether (133% @ 70-130%)

CL20420-BSD1 Blank Spike recovery is above upper control limit (B+).

1,1-Dichloroethene (132% @ 70-130%), Tertiary-amyl methyl ether (140% @ 70-130%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211445

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5035 - Solid Purge and Trap

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-2 8.3ft Date Sampled: 11/21/12 09:57

Percent Solids: 80 Initial Volume: 7.7 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-01

Sample Matrix: Soil Units: mg/kg dry Analyst: VAC

5035/8260B Volatile Organic Compounds / Low Level

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL)	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 11/29/12 18:50	Sequence CVK0298	Batch CK22901
1,1,1-Trichloroethane	ND (0.0041)	8260B Low 8260B Low		1	11/29/12 18:50	CVK0298 CVK0298	CK22901 CK22901
1,1,2,2-Tetrachloroethane	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298 CVK0298	CK22901
	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298 CVK0298	CK22901 CK22901
1,1,2-Trichloroethane	ND (0.0041)						
1,1-Dichloroethane	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,1-Dichloroethene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,1-Dichloropropene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,2,3-Trichlorobenzene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,2,3-Trichloropropane	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,2,4-Trichlorobenzene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,2,4-Trimethylbenzene	0.0080 (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,2-Dibromo-3-Chloropropane	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,2-Dibromoethane	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,2-Dichlorobenzene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,2-Dichloroethane	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,2-Dichloropropane	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,3,5-Trimethylbenzene	0.0107 (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,3-Dichlorobenzene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,3-Dichloropropane	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,4-Dichlorobenzene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1,4-Dioxane	ND (0.0812)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
1-Chlorohexane	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
2,2-Dichloropropane	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
2-Butanone	ND (0.0406)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
2-Chlorotoluene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
2-Hexanone	ND (0.0406)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
4-Chlorotoluene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
4-Isopropyltoluene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
4-Methyl-2-Pentanone	ND (0.0406)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Acetone	0.0968 (0.0406)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Benzene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
	· ·						

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-2 8.3ft Date Sampled: 11/21/12 09:57

Percent Solids: 80 Initial Volume: 7.7 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-01

Sample Matrix: Soil Units: mg/kg dry Analyst: VAC

5035/8260B Volatile Organic Compounds / Low Level

Analyte Bromobenzene	<u>Results (MRL)</u> ND (0.0041)	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 11/29/12 18:50	Sequence CVK0298	Batch CK22901
Bromochloromethane	· · · · ·	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Bromodichloromethane	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
	ND (0.0041)						
Bromoform	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Bromomethane	ND (0.0081)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Carbon Disulfide	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Carbon Tetrachloride	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Chlorobenzene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Chloroethane	ND (0.0081)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Chloroform	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Chloromethane	ND (0.0081)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
cis-1,2-Dichloroethene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
cis-1,3-Dichloropropene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Dibromochloromethane	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Dibromomethane	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Dichlorodifluoromethane	ND (0.0081)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Diethyl Ether	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Di-isopropyl ether	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Ethyl tertiary-butyl ether	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Ethylbenzene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Hexachlorobutadiene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Isopropylbenzene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Methyl tert-Butyl Ether	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Methylene Chloride	ND (0.0203)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Naphthalene	0.0079 (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
n-Butylbenzene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
n-Propylbenzene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
sec-Butylbenzene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Styrene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
tert-Butylbenzene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Tertiary-amyl methyl ether	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
J J	(0.00.1)						

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-2 8.3ft Date Sampled: 11/21/12 09:57

Percent Solids: 80 Initial Volume: 7.7 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-01

Sample Matrix: Soil Units: mg/kg dry Analyst: VAC

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u>	Results (MRL)	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrachloroethene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Tetrahydrofuran	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Toluene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
trans-1,2-Dichloroethene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
trans-1,3-Dichloropropene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Trichloroethene	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Trichlorofluoromethane	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Vinyl Acetate	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Vinyl Chloride	ND (0.0081)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Xylene O	ND (0.0041)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Xylene P,M	ND (0.0081)	8260B Low		1	11/29/12 18:50	CVK0298	CK22901
Xylenes (Total)	ND (0.0122)	8260B Low		1	11/29/12 18:50		[CALC]

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	97 %		70-130
Surrogate: 4-Bromofluorobenzene	264 %	SC	70-130
Surrogate: Dibromofluoromethane	97 %		70-130
Surrogate: Toluene-d8	96 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-3 5.5ft Date Sampled: 11/21/12 10:25

Percent Solids: 96 Initial Volume: 18.9 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-02

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0868)	MDL 0.0076	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 12/04/12 15:16	Sequence CVL0029	Batch CL20420
1,1,1-Trichloroethane	ND (0.0434)	0.0076	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,1,2,2-Tetrachloroethane	ND (0.0434)	0.0118	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,1,2-Trichloroethane	ND (0.0434)	0.0109	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,1-Dichloroethane	ND (0.0434)	0.0069	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,1-Dichloroethene	ND (0.0434)	0.0107	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,1-Dichloropropene	ND (0.0434)	0.0067	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,2,3-Trichlorobenzene	ND (0.0434)	0.0145	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,2,3-Trichloropropane	ND (0.0434)	0.0108	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,2,4-Trichlorobenzene	ND (0.0434)	0.0096	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,2,4-Trimethylbenzene	J 0.0321 (0.0434)	0.0083	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,2-Dibromo-3-Chloropropane	ND (0.261)	0.0868	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,2-Dibromoethane	ND (0.0434)	0.0110	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,2-Dichlorobenzene	ND (0.0434)	0.0062	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,2-Dichloroethane	ND (0.0434)	0.0116	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,2-Dichloropropane	ND (0.0434)	0.0114	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,3,5-Trimethylbenzene	J 0.0165 (0.0434)	0.0076	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,3-Dichlorobenzene	ND (0.0434)	0.0055	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,3-Dichloropropane	ND (0.0434)	0.0097	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,4-Dichlorobenzene	ND (0.0434)	0.0115	8260B		1	12/04/12 15:16	CVL0029	CL20420
1,4-Dioxane - Screen	ND (4.34)	1.45	8260B		1	12/04/12 15:16	CVL0029	CL20420
1-Chlorohexane	ND (0.0434)	0.0082	8260B		1	12/04/12 15:16	CVL0029	CL20420
2,2-Dichloropropane	ND (0.0868)	0.0148	8260B		1	12/04/12 15:16	CVL0029	CL20420
2-Butanone	ND (1.09)	0.251	8260B		1	12/04/12 15:16	CVL0029	CL20420
2-Chlorotoluene	ND (0.0434)	0.0122	8260B		1	12/04/12 15:16	CVL0029	CL20420
2-Hexanone	ND (0.434)	0.0748	8260B		1	12/04/12 15:16	CVL0029	CL20420
4-Chlorotoluene	ND (0.0434)	0.0056	8260B		1	12/04/12 15:16	CVL0029	CL20420
4-Isopropyltoluene	ND (0.0434)	0.0077	8260B		1	12/04/12 15:16	CVL0029	CL20420
4-Methyl-2-Pentanone	ND (0.434)	0.0523	8260B		1	12/04/12 15:16	CVL0029	CL20420
Acetone	9.93 (1.09)	0.321	8260B		1	12/04/12 15:16	CVL0029	CL20420
Benzene	ND (0.0434)	0.0070	8260B		1	12/04/12 15:16	CVL0029	CL20420

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-3 5.5ft Date Sampled: 11/21/12 10:25

Percent Solids: 96 Initial Volume: 18.9 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-02

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte Bromobenzene	Results (MRL) ND (0.0434)	MDL 0.0119	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 12/04/12 15:16	Sequence CVL0029	Batch CL20420
Bromochloromethane	ND (0.0434)	0.0119	8260B		1	12/04/12 15:16	CVL0029	CL20420 CL20420
Bromodichloromethane	ND (0.0434)	0.0060	8260B		1	12/04/12 15:16	CVL0029	CL20420 CL20420
Bromoform	ND (0.0434)	0.0125	8260B		1	12/04/12 15:16	CVL0029	CL20420
Bromomethane	ND (0.0868)	0.0123	8260B		1	12/04/12 15:16	CVL0029	CL20420 CL20420
Carbon Disulfide	,	0.0250	8260B		1	12/04/12 15:16	CVL0029	CL20420 CL20420
Carbon Tetrachloride	ND (0.0434)	0.0004	8260B		1	12/04/12 15:16	CVL0029 CVL0029	CL20420 CL20420
Chlorobenzene	ND (0.0434)	0.0076	8260B		1	12/04/12 15:16	CVL0029 CVL0029	CL20420 CL20420
	ND (0.0434)	0.0009	8260B		1			CL20420 CL20420
Chloroethane	ND (0.0868)					12/04/12 15:16	CVL0029	
Chloroform	B, J 0.0174 (0.0434)	0.0089	8260B		1	12/04/12 15:16	CVL0029	CL20420
Chloromethane	ND (0.0868)	0.0110	8260B		1	12/04/12 15:16	CVL0029	CL20420
cis-1,2-Dichloroethene	ND (0.0434)	0.0108	8260B		1	12/04/12 15:16	CVL0029	CL20420
cis-1,3-Dichloropropene	ND (0.0434)	0.0098	8260B		1	12/04/12 15:16	CVL0029	CL20420
Dibromochloromethane	ND (0.0434)	0.0109	8260B		1	12/04/12 15:16	CVL0029	CL20420
Dibromomethane	ND (0.0434)	0.0137	8260B		1	12/04/12 15:16	CVL0029	CL20420
Dichlorodifluoromethane	ND (0.0434)	0.0076	8260B		1	12/04/12 15:16	CVL0029	CL20420
Diethyl Ether	ND (0.0434)	0.0110	8260B		1	12/04/12 15:16	CVL0029	CL20420
Di-isopropyl ether	ND (0.0434)	0.0082	8260B		1	12/04/12 15:16	CVL0029	CL20420
Ethyl tertiary-butyl ether	ND (0.0434)	0.0109	8260B		1	12/04/12 15:16	CVL0029	CL20420
Ethylbenzene	0.325 (0.0434)	0.0056	8260B		1	12/04/12 15:16	CVL0029	CL20420
Hexachlorobutadiene	ND (0.0434)	0.0145	8260B		1	12/04/12 15:16	CVL0029	CL20420
Isopropylbenzene	J 0.0426 (0.0434)	0.0076	8260B		1	12/04/12 15:16	CVL0029	CL20420
Methyl tert-Butyl Ether	ND (0.0434)	0.0069	8260B		1	12/04/12 15:16	CVL0029	CL20420
Methylene Chloride	ND (0.217)	0.0114	8260B		1	12/04/12 15:16	CVL0029	CL20420
Naphthalene	0.110 (0.0434)	0.0114	8260B		1	12/04/12 15:16	CVL0029	CL20420
n-Butylbenzene	ND (0.0434)	0.0107	8260B		1	12/04/12 15:16	CVL0029	CL20420
n-Propylbenzene	ND (0.0434)	0.0106	8260B		1	12/04/12 15:16	CVL0029	CL20420
sec-Butylbenzene	ND (0.0434)	0.0058	8260B		1	12/04/12 15:16	CVL0029	CL20420
Styrene	0.127 (0.0434)	0.0057	8260B		1	12/04/12 15:16	CVL0029	CL20420
tert-Butylbenzene	ND (0.0434)	0.0102	8260B		1	12/04/12 15:16	CVL0029	CL20420
Tertiary-amyl methyl ether	ND (0.0434)	0.0063	8260B		1	12/04/12 15:16	CVL0029	CL20420

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-3 5.5ft Date Sampled: 11/21/12 10:25

Percent Solids: 96 Initial Volume: 18.9 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-02

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrachloroethene	ND (0.0434)	0.0145	8260B		1	12/04/12 15:16	CVL0029	CL20420
Tetrahydrofuran	ND (0.434)	0.112	8260B		1	12/04/12 15:16	CVL0029	CL20420
Toluene	0.0452 (0.0434)	0.0110	8260B		1	12/04/12 15:16	CVL0029	CL20420
trans-1,2-Dichloroethene	ND (0.0434)	0.0142	8260B		1	12/04/12 15:16	CVL0029	CL20420
trans-1,3-Dichloropropene	ND (0.0434)	0.0134	8260B		1	12/04/12 15:16	CVL0029	CL20420
Trichloroethene	ND (0.0434)	0.0089	8260B		1	12/04/12 15:16	CVL0029	CL20420
Trichlorofluoromethane	ND (0.0434)	0.0115	8260B		1	12/04/12 15:16	CVL0029	CL20420
Vinyl Acetate	ND (0.217)	0.0089	8260B		1	12/04/12 15:16	CVL0029	CL20420
Vinyl Chloride	ND (0.0434)	0.0143	8260B		1	12/04/12 15:16	CVL0029	CL20420
Xylene O	1.34 (0.0434)	0.0083	8260B		1	12/04/12 15:16	CVL0029	CL20420
Xylene P,M	2.11 (0.0868)	0.0168	8260B		1	12/04/12 15:16	CVL0029	CL20420
Xylenes (Total)	3.45 (0.130)		8260B		1	12/04/12 15:16		[CALC]

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	<i>85 %</i>		70-130
Surrogate: 4-Bromofluorobenzene	90 %		70-130
Surrogate: Dibromofluoromethane	90 %		70-130
Surrogate: Toluene-d8	95 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-6 5.0ft Date Sampled: 11/21/12 12:15

Percent Solids: 83

Extraction Method: 3050B

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-03

Sample Matrix: Soil Units: mg/kg dry

Total Metals Solid

Analyte	Results (MRL)	Method I	Limit <u>DF</u>	Analyst	Analyzed	<u>I/V</u>	<u>F/V</u>	Batch
Arsenic	18.9 (6.97)	7060A	25	SVD	12/03/12 17:15	2.14	100	CK22828
Barium	65.6 (2.8)	6010B	1	SVD	11/29/12 22:06	2.14	100	CK22828
Cadmium	ND (0.57)	6010B	1	SVD	11/29/12 22:06	2.14	100	CK22828
Chromium	12.9 (1.1)	6010B	1	SVD	11/29/12 22:06	2.14	100	CK22828
Lead	79.9 (5.6)	6010B	1	SVD	11/29/12 22:06	2.14	100	CK22828
Mercury	1.96 (0.367)	7471A	10	KJK	11/30/12 12:25	0.65	40	CK22737
Selenium	ND (5.6)	6010B	1	SVD	11/29/12 22:06	2.14	100	CK22828
Silver	ND (0.57)	6010B	1	SVD	11/29/12 22:06	2.14	100	CK22828

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-6 5.0ft Date Sampled: 11/21/12 12:15

Percent Solids: 83 Initial Volume: 5.3 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-03

Sample Matrix: Soil Units: mg/kg dry Analyst: VAC

5035/8260B Volatile Organic Compounds / Low Level

Analyte 1,1,1,2-Tetrachloroethane	<u>Results (MRL)</u> ND (0.0057)	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/29/12 17:53	Sequence CVK0298	Batch CK22901
1,1,1-Trichloroethane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,1,2,2-Tetrachloroethane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,1,2-Trichloroethane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,1-Dichloroethane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,1-Dichloroethene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,1-Dichloropropene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,2,3-Trichlorobenzene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,2,3-Trichloropropane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,2,4-Trichlorobenzene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,2,4-Trimethylbenzene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,2-Dibromo-3-Chloropropane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,2-Dibromoethane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,2-Dichlorobenzene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,2-Dichloroethane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,2-Dichloropropane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,3,5-Trimethylbenzene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,3-Dichlorobenzene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,3-Dichloropropane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,4-Dichlorobenzene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1,4-Dioxane	ND (0.114)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
1-Chlorohexane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
2,2-Dichloropropane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
2-Butanone	ND (0.0568)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
2-Chlorotoluene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
2-Hexanone	ND (0.0568)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
4-Chlorotoluene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
4-Isopropyltoluene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
4-Methyl-2-Pentanone	ND (0.0568)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Acetone	ND (0.0568)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Benzene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-6 5.0ft Date Sampled: 11/21/12 12:15

Percent Solids: 83 Initial Volume: 5.3 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-03

Sample Matrix: Soil Units: mg/kg dry Analyst: VAC

5035/8260B Volatile Organic Compounds / Low Level

Analyte Bromobenzene	<u>Results (MRL)</u> ND (0.0057)	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/29/12 17:53	Sequence CVK0298	Batch CK22901
Bromochloromethane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Bromodichloromethane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Bromoform	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Bromomethane	ND (0.0114)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Carbon Disulfide	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Carbon Tetrachloride	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Chlorobenzene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Chloroethane	ND (0.0114)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Chloroform	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Chloromethane	ND (0.0114)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
cis-1,2-Dichloroethene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
cis-1,3-Dichloropropene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Dibromochloromethane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Dibromomethane	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Dichlorodifluoromethane	ND (0.0114)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Diethyl Ether	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Di-isopropyl ether	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Ethyl tertiary-butyl ether	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Ethylbenzene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Hexachlorobutadiene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Isopropylbenzene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Methyl tert-Butyl Ether	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Methylene Chloride	ND (0.0284)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Naphthalene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
n-Butylbenzene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
n-Propylbenzene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
sec-Butylbenzene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Styrene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
tert-Butylbenzene	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901
Tertiary-amyl methyl ether	ND (0.0057)	8260B Low		1	11/29/12 17:53	CVK0298	CK22901

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-6 5.0ft Date Sampled: 11/21/12 12:15

Percent Solids: 83 Initial Volume: 5.3 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-03

Sample Matrix: Soil Units: mg/kg dry Analyst: VAC

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u>	Results (MRL)	Method	Limit DF	Analyzed	Sequence	Batch
Tetrachloroethene	ND (0.0057)	8260B Low	1	11/29/12 17:53	CVK0298	CK22901
Tetrahydrofuran	ND (0.0057)	8260B Low	1	11/29/12 17:53	CVK0298	CK22901
Toluene	ND (0.0057)	8260B Low	1	11/29/12 17:53	CVK0298	CK22901
trans-1,2-Dichloroethene	ND (0.0057)	8260B Low	1	11/29/12 17:53	CVK0298	CK22901
trans-1,3-Dichloropropene	ND (0.0057)	8260B Low	1	11/29/12 17:53	CVK0298	CK22901
Trichloroethene	ND (0.0057)	8260B Low	1	11/29/12 17:53	CVK0298	CK22901
Trichlorofluoromethane	ND (0.0057)	8260B Low	1	11/29/12 17:53	CVK0298	CK22901
Vinyl Acetate	ND (0.0057)	8260B Low	1	11/29/12 17:53	CVK0298	CK22901
Vinyl Chloride	ND (0.0114)	8260B Low	1	11/29/12 17:53	CVK0298	CK22901
Xylene O	ND (0.0057)	8260B Low	1	11/29/12 17:53	CVK0298	CK22901
Xylene P,M	ND (0.0114)	8260B Low	1	11/29/12 17:53	CVK0298	CK22901
Xylenes (Total)	ND (0.0170)	8260B Low	1	11/29/12 17:53		[CALC]

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	116 %		70-130
Surrogate: 4-Bromofluorobenzene	92 %		70-130
Surrogate: Dibromofluoromethane	108 %		70-130
Surrogate: Toluene-d8	97 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-6 5.0ft Date Sampled: 11/21/12 12:15

Percent Solids: 83 Initial Volume: 14.2 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-03

Sample Matrix: Soil Units: mg/kg dry Analyst: IBM

Prepared: 11/28/12 18:00

8270C Polynuclear Aromatic Hydrocarbons

<u>Analyte</u>	Results (MRL)	Method	<u>Limit</u> <u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.424)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Acenaphthene	ND (0.424)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Acenaphthylene	ND (0.424)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Anthracene	1.11 (0.424)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Benzo(a)anthracene	3.34 (0.424)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Benzo(a)pyrene	2.27 (0.213)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Benzo(b)fluoranthene	3.83 (0.424)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Benzo(g,h,i)perylene	2.05 (0.424)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Benzo(k)fluoranthene	1.17 (0.424)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Chrysene	4.09 (0.213)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Dibenzo(a,h)Anthracene	0.910 (0.213)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Fluoranthene	7.25 (0.424)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Fluorene	ND (0.424)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Indeno(1,2,3-cd)Pyrene	1.81 (0.424)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Naphthalene	0.639 (0.424)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Phenanthrene	5.81 (0.424)	8270C	1	11/29/12 20:01	CVK0303	CK22830
Pyrene	5.41 (0.424)	8270C	1	11/29/12 20:01	CVK0303	CK22830

Oualifier

I imite

	MCCOVCIY	Quanner	Littics
Surrogate: 1,2-Dichlorobenzene-d4	68 %		30-130
Surrogate: 2-Fluorobiphenyl	<i>75 %</i>		30-130
Surrogate: Nitrobenzene-d5	74 %		30-130
Surrogate: p-Terphenyl-d14	88 %		30-130

%Pecovery

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-8 5.0ft Date Sampled: 11/21/12 13:00

Percent Solids: 93

Extraction Method: 3050B

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-04

Sample Matrix: Soil Units: mg/kg dry

Total Metals Solid

<u>Analyte</u>	Results (MRL)	Method	<u>Limit</u>	DF	Analyst	Analyzed	I/V	F/V	Batch
Arsenic	ND (1.24)	7060A		5	SVD	12/03/12 17:21	2.15	100	CK22828
Barium	5.8 (2.5)	6010B		1	SVD	11/29/12 22:10	2.15	100	CK22828
Cadmium	ND (0.50)	6010B		1	SVD	11/29/12 22:10	2.15	100	CK22828
Chromium	2.1 (1.0)	6010B		1	SVD	11/29/12 22:10	2.15	100	CK22828
Lead	ND (5.0)	6010B		1	SVD	11/29/12 22:10	2.15	100	CK22828
Mercury	0.052 (0.035)	7471A		1	KJK	11/30/12 12:27	0.61	40	CK22737
Selenium	ND (5.0)	6010B		1	SVD	11/29/12 22:10	2.15	100	CK22828
Silver	ND (0.50)	6010B		1	SVD	11/29/12 22:10	2.15	100	CK22828

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-8 5.0ft Date Sampled: 11/21/12 13:00

Percent Solids: 93 Initial Volume: 10.1 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-04

Sample Matrix: Soil Units: mg/kg dry Analyst: VAC

5035/8260B Volatile Organic Compounds / Low Level

Analyte	Results (MRL)	Method	<u>Limit</u> <u>D</u>		Analyzed	Sequence	Batch
1,1,1,2-Tetrachloroethane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,1,1-Trichloroethane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,1,2,2-Tetrachloroethane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,1,2-Trichloroethane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,1-Dichloroethane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,1-Dichloroethene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,1-Dichloropropene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,2,3-Trichlorobenzene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,2,3-Trichloropropane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,2,4-Trichlorobenzene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,2,4-Trimethylbenzene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,2-Dibromo-3-Chloropropane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,2-Dibromoethane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,2-Dichlorobenzene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,2-Dichloroethane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,2-Dichloropropane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,3,5-Trimethylbenzene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,3-Dichlorobenzene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,3-Dichloropropane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,4-Dichlorobenzene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1,4-Dioxane	ND (0.0532)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
1-Chlorohexane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
2,2-Dichloropropane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
2-Butanone	ND (0.0266)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
2-Chlorotoluene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
2-Hexanone	ND (0.0266)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
4-Chlorotoluene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
4-Isopropyltoluene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
4-Methyl-2-Pentanone	ND (0.0266)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Acetone	ND (0.0266)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Benzene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-8 5.0ft Date Sampled: 11/21/12 13:00

Percent Solids: 93 Initial Volume: 10.1 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-04

Sample Matrix: Soil Units: mg/kg dry Analyst: VAC

5035/8260B Volatile Organic Compounds / Low Level

Analyte Bromobenzene	<u>Results (MRL)</u> ND (0.0027)	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 11/29/12 15:02	Sequence CVK0298	Batch CK22901
Bromochloromethane	` '	8260B Low		1	11/29/12 15:02	CVK0298 CVK0298	CK22901
Bromodichloromethane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
	ND (0.0027)						
Bromoform	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Bromomethane	ND (0.0053)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Carbon Disulfide	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Carbon Tetrachloride	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Chlorobenzene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Chloroethane	ND (0.0053)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Chloroform	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Chloromethane	ND (0.0053)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
cis-1,2-Dichloroethene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
cis-1,3-Dichloropropene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Dibromochloromethane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Dibromomethane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Dichlorodifluoromethane	ND (0.0053)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Diethyl Ether	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Di-isopropyl ether	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Ethyl tertiary-butyl ether	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Ethylbenzene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Hexachlorobutadiene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Isopropylbenzene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Methyl tert-Butyl Ether	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Methylene Chloride	ND (0.0133)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Naphthalene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
n-Butylbenzene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
n-Propylbenzene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
sec-Butylbenzene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Styrene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
tert-Butylbenzene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Tertiary-amyl methyl ether	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
	11D (0.0027)	02002 2011		-	11,25,12 15.02	0.110270	51122731

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-8 5.0ft Date Sampled: 11/21/12 13:00

Percent Solids: 93 Initial Volume: 10.1 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-04

Sample Matrix: Soil Units: mg/kg dry Analyst: VAC

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u>	Results (MRL)	Method	Limit I	<u>)F</u>	Analyzed	Sequence	Batch
Tetrachloroethene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Tetrahydrofuran	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Toluene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
trans-1,2-Dichloroethene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
trans-1,3-Dichloropropene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Trichloroethene	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Trichlorofluoromethane	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Vinyl Acetate	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Vinyl Chloride	ND (0.0053)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Xylene O	ND (0.0027)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Xylene P,M	ND (0.0053)	8260B Low		1	11/29/12 15:02	CVK0298	CK22901
Xylenes (Total)	ND (0.0080)	8260B Low		1	11/29/12 15:02		[CALC]

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	116 %		70-130
Surrogate: 4-Bromofluorobenzene	94 %		70-130
Surrogate: Dibromofluoromethane	105 %		70-130
Surrogate: Toluene-d8	98 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: S-8 5.0ft Date Sampled: 11/21/12 13:00

Percent Solids: 93 Initial Volume: 14.9 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-04

Sample Matrix: Soil Units: mg/kg dry Analyst: IBM

Prepared: 11/28/12 18:00

8270C Polynuclear Aromatic Hydrocarbons

Analyte 2-Methylnaphthalene	Results (MRL) ND (0.360)	Method 8270C	<u>Limit</u>	<u>DF</u>	Analyzed 11/29/12 13:56	Sequence CVK0303	Batch CK22830
Acenaphthene	ND (0.360)	8270C		1	11/29/12 13:56	CVK0303	CK22830
Acenaphthylene	ND (0.360)	8270C		1	11/29/12 13:56	CVK0303	CK22830
Anthracene	ND (0.360)	8270C		1	11/29/12 13:56	CVK0303	CK22830
Benzo(a)anthracene	ND (0.360)	8270C		1	11/29/12 13:56	CVK0303	CK22830
Benzo(a)pyrene	ND (0.181)	8270C		1	11/29/12 13:56	CVK0303	CK22830
Benzo(b)fluoranthene	ND (0.360)	8270C		1	11/29/12 13:56	CVK0303	CK22830
Benzo(g,h,i)perylene	ND (0.360)	8270C		1	11/29/12 13:56	CVK0303	CK22830
Benzo(k)fluoranthene	ND (0.360)	8270C		1	11/29/12 13:56	CVK0303	CK22830
Chrysene	ND (0.181)	8270C		1	11/29/12 13:56	CVK0303	CK22830
Dibenzo(a,h)Anthracene	ND (0.181)	8270C		1	11/29/12 13:56	CVK0303	CK22830
Fluoranthene	ND (0.360)	8270C		1	11/29/12 13:56	CVK0303	CK22830
Fluorene	ND (0.360)	8270C		1	11/29/12 13:56	CVK0303	CK22830
Indeno(1,2,3-cd)Pyrene	ND (0.360)	8270C		1	11/29/12 13:56	CVK0303	CK22830
Naphthalene	ND (0.360)	8270C		1	11/29/12 13:56	CVK0303	CK22830
Phenanthrene	ND (0.360)	8270C		1	11/29/12 13:56	CVK0303	CK22830
Pyrene	ND (0.360)	8270C		1	11/29/12 13:56	CVK0303	CK22830
	%R	ecovery Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		69 %	30-130				
Surrogate: 2-Fluorobiphenyl		82 %	30-130				
Surrogate: Nitrobenzene-d5		77 %	30-130				

Surrogate: p-Terphenyl-d14 30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: Trip Blank Date Sampled: 11/21/12 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-06

Sample Matrix: Solid

Units: mg/kg Analyst: VAC

5035/8260B Volatile Organic Compounds / Low Level

Analyte 1,1,1,2-Tetrachloroethane	<u>Results (MRL)</u> ND (0.0050)	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/29/12 14:34	Sequence CVK0298	Batch CK22901
1,1,1-Trichloroethane	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,1,2,2-Tetrachloroethane	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,1,2-Trichloroethane	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,1-Dichloroethane		8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,1-Dichloroethene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,1-Dichloropropene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298 CVK0298	CK22901
1,2,3-Trichlorobenzene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298 CVK0298	CK22901
	ND (0.0050)						
1,2,3-Trichloropropane	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,2,4-Trichlorobenzene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,2,4-Trimethylbenzene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,2-Dibromoethane	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,2-Dichlorobenzene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,2-Dichloroethane	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,2-Dichloropropane	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,3,5-Trimethylbenzene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,3-Dichlorobenzene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,3-Dichloropropane	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,4-Dichlorobenzene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1,4-Dioxane	ND (0.100)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
1-Chlorohexane	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
2,2-Dichloropropane	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
2-Butanone	ND (0.0500)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
2-Chlorotoluene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
2-Hexanone	ND (0.0500)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
4-Chlorotoluene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
4-Isopropyltoluene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
4-Methyl-2-Pentanone	ND (0.0500)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Acetone	ND (0.0500)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Benzene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
· · · ·	1.2 (0.0000)			-			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: Trip Blank Date Sampled: 11/21/12 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-06

Sample Matrix: Solid

Units: mg/kg Analyst: VAC

5035/8260B Volatile Organic Compounds / Low Level

Analyte Bromobenzene	<u>Results (MRL)</u> ND (0.0050)	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 11/29/12 14:34	Sequence CVK0298	Batch CK22901
Bromochloromethane	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Bromodichloromethane	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Bromoform	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Bromomethane	ND (0.0100)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Carbon Disulfide	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Carbon Tetrachloride	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Chlorobenzene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Chloroethane	ND (0.0100)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Chloroform	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Chloromethane	ND (0.0100)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
cis-1,2-Dichloroethene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
cis-1,3-Dichloropropene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Dibromochloromethane	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Dibromomethane	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Dichlorodifluoromethane	ND (0.0100)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Diethyl Ether	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Di-isopropyl ether	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Ethyl tertiary-butyl ether	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Ethylbenzene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Hexachlorobutadiene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Isopropylbenzene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Methyl tert-Butyl Ether	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Methylene Chloride	ND (0.0250)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Naphthalene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
n-Butylbenzene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
n-Propylbenzene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
sec-Butylbenzene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Styrene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
tert-Butylbenzene	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Tertiary-amyl methyl ether	ND (0.0050)	8260B Low		1	11/29/12 14:34	CVK0298	CK22901

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

• Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: Trip Blank Date Sampled: 11/21/12 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 10

Surrogate: Toluene-d8

Extraction Method: 5035

ESS Laboratory Work Order: 1211445 ESS Laboratory Sample ID: 1211445-06

Sample Matrix: Solid

Units: mg/kg Analyst: VAC

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u>	Results (MRL)		Method	<u>Limit</u>	DF	<u>Analyzed</u>	Sequence	Batch
Tetrachloroethene	ND (0.0050)		8260B Low	·	1	11/29/12 14:34	CVK0298	CK22901
Tetrahydrofuran	ND (0.0050)		8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Toluene	ND (0.0050)		8260B Low		1	11/29/12 14:34	CVK0298	CK22901
trans-1,2-Dichloroethene	ND (0.0050)		8260B Low		1	11/29/12 14:34	CVK0298	CK22901
trans-1,3-Dichloropropene	ND (0.0050)		8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Trichloroethene	ND (0.0050)		8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Trichlorofluoromethane	ND (0.0050)		8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Vinyl Acetate	ND (0.0050)		8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Vinyl Chloride	ND (0.0100)		8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Xylene O	ND (0.0050)		8260B Low		1	11/29/12 14:34	CVK0298	CK22901
Xylene P,M	ND (0.0100)		8260B Low		1	11/29/12 14:34	CVK0298	CK22901
	96	Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		109 %		70-130				
Surrogate: 4-Bromofluorobenzene		95 %		70-130				
Surrogate: Dibromofluoromethane		103 %		70-130				

97 %

70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211445

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Metals	Solid						
Batch CK22737 - 7471A										
Blank										
Mercury	ND	0.033	mg/kg wet							
LCS										
Mercury	22.2	3.19	mg/kg wet	25.10		88	80-120			
.CS Dup										
Mercury	23.2	2.91	mg/kg wet	25.10		93	80-120	5	20	
Batch CK22828 - 3050B										
Blank										
Arsenic	ND	0.25	mg/kg wet							
Barium	ND	2.5	mg/kg wet							
Cadmium	ND	0.50	mg/kg wet							
Chromium	ND	1.0	mg/kg wet							
_ead	ND	5.0	mg/kg wet							
Selenium	ND	5.0	mg/kg wet							
Silver	ND	0.50	mg/kg wet							
.cs										
Arsenic	164	47.6	mg/kg wet	168.0		97	80-120			
Barium	184	9.6	mg/kg wet	213.0		87	80-120			
Cadmium	85.1	1.93	mg/kg wet	103.0		83	80-120			
Chromium	103	3.8	mg/kg wet	119.0		87	80-120			
_ead	66.4	19.2	mg/kg wet	76.90		86	80-120			
Selenium	109	19.2	mg/kg wet	126.0		87	80-120			
Silver	37.7	1.93	mg/kg wet	42.30		89	80-120			
LCS Dup										
Arsenic	161	45.0	mg/kg wet	168.0		96	80-120	1	20	
Barium	191	9.1	mg/kg wet	213.0		90	80-120	4	20	
Cadmium	87.2	1.83	mg/kg wet	103.0		85	80-120	2	20	
Chromium	106	3.6	mg/kg wet	119.0		89	80-120	2	20	
Lead	67.9	18.2	mg/kg wet	76.90		88	80-120	2	20	
Selenium	111	18.2	mg/kg wet	126.0		88	80-120	1	20	
Silver	38.5	1.83	mg/kg wet	42.30		91	80-120	2	20	
	5035/8	3260B Volati	le Organic C	ompound	ls / Low L	evel				
Batch CK22901 - 5035										
Blank										
1,1,1,2-Tetrachloroethane	ND	0.0050	mg/kg wet							
1,1,1-Trichloroethane	ND	0.0050	mg/kg wet							
1,1,2,2-Tetrachloroethane	ND	0.0050	mg/kg wet							
1,1,2-Trichloroethane	ND	0.0050	mg/kg wet							
1,1-Dichloroethane	ND	0.0050	mg/kg wet							
1,1-Dichloroethene	ND	0.0050	mg/kg wet							
4.4.00.11		0.0050								

ND

ND

0.0050

0.0050

1,1-Dichloropropene

1,2,3-Trichlorobenzene

mg/kg wet

mg/kg wet

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211445

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/82	260B Volatile	e Organic	Compounds	/ Low	Level
---------	---------------	-----------	-----------	-------	-------

Batch CK22901 - 5035			
,2,3-Trichloropropane	ND	0.0050	mg/kg wet
,2,4-Trichlorobenzene	ND	0.0050	mg/kg wet
,2,4-Trimethylbenzene	ND	0.0050	mg/kg wet
,2-Dibromo-3-Chloropropane	ND	0.0050	mg/kg wet
,2-Dibromoethane	ND	0.0050	mg/kg wet
,2-Dichlorobenzene	ND	0.0050	mg/kg wet
,2-Dichloroethane	ND	0.0050	mg/kg wet
,2-Dichloropropane	ND	0.0050	mg/kg wet
,3,5-Trimethylbenzene	ND	0.0050	mg/kg wet
,3-Dichlorobenzene	ND	0.0050	mg/kg wet
,3-Dichloropropane	ND	0.0050	mg/kg wet
,4-Dichlorobenzene	ND	0.0050	mg/kg wet
.4-Dioxane	ND	0.100	mg/kg wet
Chlorohexane	ND	0.0050	mg/kg wet
.2-Dichloropropane	ND	0.0050	mg/kg wet
-Butanone	ND	0.0500	mg/kg wet
-Chlorotoluene	ND	0.0050	mg/kg wet
-Hexanone	ND	0.0500	mg/kg wet
-Chlorotoluene	ND	0.0050	mg/kg wet
Isopropyltoluene	ND	0.0050	mg/kg wet
Methyl-2-Pentanone	ND	0.0500	mg/kg wet
cetone	ND	0.0500	mg/kg wet
enzene	ND	0.0050	mg/kg wet
romobenzene	ND	0.0050	mg/kg wet
romochloromethane	ND	0.0050	mg/kg wet
romodichloromethane	ND	0.0050	mg/kg wet
romoform	ND	0.0050	mg/kg wet
romomethane	ND	0.0100	mg/kg wet
arbon Disulfide	ND	0.0050	mg/kg wet
arbon Tetrachloride	ND	0.0050	mg/kg wet
hlorobenzene	ND	0.0050	mg/kg wet
hloroethane	ND	0.0100	mg/kg wet
hloroform	ND	0.0050	mg/kg wet
hloromethane	ND	0.0100	mg/kg wet
s-1,2-Dichloroethene	ND	0.0050	mg/kg wet
is-1,3-Dichloropropene	ND	0.0050	mg/kg wet
ibromochloromethane	ND	0.0050	mg/kg wet
ibromomethane	ND	0.0050	mg/kg wet
ichlorodifluoromethane	ND	0.0100	mg/kg wet
iethyl Ether	ND	0.0050	mg/kg wet
i-isopropyl ether	ND	0.0050	mg/kg wet
thyl tertiary-butyl ether	ND	0.0050	mg/kg wet
thylbenzene	ND	0.0050	mg/kg wet
lexachlorobutadiene	ND	0.0050	mg/kg wet
sopropylbenzene	ND	0.0050	mg/kg wet

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

Batch CK22901 - 5035

ESS Laboratory Work Order: 1211445

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

	5035	/8260B	Volatile	Organic	Compounds	/ Low	Leve
--	------	--------	----------	---------	-----------	-------	------

Datcii CR22301 - 3033							
Methyl tert-Butyl Ether	ND	0.0050	mg/kg wet				
Methylene Chloride	ND	0.0250	mg/kg wet				
Naphthalene	ND	0.0050	mg/kg wet				
n-Butylbenzene	ND	0.0050	mg/kg wet				
n-Propylbenzene	ND	0.0050	mg/kg wet				
sec-Butylbenzene	ND	0.0050	mg/kg wet				
Styrene	ND	0.0050	mg/kg wet				
tert-Butylbenzene	ND	0.0050	mg/kg wet				
Tertiary-amyl methyl ether	ND	0.0050	mg/kg wet				
Tetrachloroethene	ND	0.0050	mg/kg wet				
Tetrahydrofuran	ND	0.0050	mg/kg wet				
Toluene	ND	0.0050	mg/kg wet				
trans-1,2-Dichloroethene	ND	0.0050	mg/kg wet				
trans-1,3-Dichloropropene	ND	0.0050	mg/kg wet				
Trichloroethene	ND	0.0050	mg/kg wet				
Trichlorofluoromethane	ND	0.0050	mg/kg wet				
Vinyl Acetate	ND	0.0050	mg/kg wet				
Vinyl Chloride	ND	0.0100	mg/kg wet				
Xylene O	ND	0.0050	mg/kg wet				
Xylene P,M	ND	0.0100	mg/kg wet				
	0.0554	0.0100	mg/kg wet	0.05000	111	<i>70-130</i>	
Surrogate: 1,2-Dichloroethane-d4	0.0479		mg/kg wet	0.05000	96	70-130	
Surrogate: 4-Bromofluorobenzene	0.0510		mg/kg wet	0.05000	102	70-130	
Surrogate: Dibromofluoromethane	0.0489		mg/kg wet	0.05000	98	70-130	
Surrogate: Toluene-d8			9, 1.9 1.00			, 0 150	
LCS	0.0570	0.0050		0.05000		70.420	
1,1,1,2-Tetrachloroethane	0.0578	0.0050	mg/kg wet	0.05000	116	70-130	
1,1,1-Trichloroethane	0.0618	0.0050	mg/kg wet	0.05000	124	70-130	
1,1,2,2-Tetrachloroethane	0.0544	0.0050	mg/kg wet	0.05000	109	70-130	
1,1,2-Trichloroethane	0.0533	0.0050	mg/kg wet	0.05000	107	70-130	
1,1-Dichloroethane	0.0546	0.0050	mg/kg wet	0.05000	109	70-130	
1,1-Dichloroethene	0.0564	0.0050	mg/kg wet	0.05000	113	70-130	
1,1-Dichloropropene	0.0620	0.0050	mg/kg wet	0.05000	124	70-130	
1,2,3-Trichlorobenzene	0.0500	0.0050	mg/kg wet	0.05000	100	70-130	
1,2,3-Trichloropropane	0.0577	0.0050	mg/kg wet	0.05000	115	70-130	
1,2,4-Trichlorobenzene	0.0512	0.0050	mg/kg wet	0.05000	102	70-130	
1,2,4-Trimethylbenzene	0.0574	0.0050	mg/kg wet	0.05000	115	70-130	
1,2-Dibromo-3-Chloropropane	0.0632	0.0050	mg/kg wet	0.05000	126	70-130	
1,2-Dibromoethane	0.0549	0.0050	mg/kg wet	0.05000	110	70-130	
1,2-Dichlorobenzene	0.0525	0.0050	mg/kg wet	0.05000	105	70-130	
1,2-Dichloroethane	0.0603	0.0050	mg/kg wet	0.05000	121	70-130	
1,2-Dichloropropane	0.0542	0.0050	mg/kg wet	0.05000	108	70-130	
1,3,5-Trimethylbenzene	0.0582	0.0050	mg/kg wet	0.05000	116	70-130	
1,3-Dichlorobenzene	0.0522	0.0050	mg/kg wet	0.05000	104	70-130	
1,3-Dichloropropane	0.0553	0.0050	mg/kg wet	0.05000	111	70-130	
1,4-Dichlorobenzene	0.0500	0.0050	mg/kg wet	0.05000	100	70-130	
	0.0500	0.0050	9,9		100	70 130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211445

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Organic Compounds	/ Low	Level
---------------------------------------	-------	-------

Batch CK22901 - 5035							
1,4-Dioxane	1.16	0.100	mg/kg wet	1.000	116	70-130	
1-Chlorohexane	0.0554	0.0050	mg/kg wet	0.05000	111	70-130	
2,2-Dichloropropane	0.0640	0.0050	mg/kg wet	0.05000	128	70-130	
2-Butanone	0.457	0.0500	mg/kg wet	0.2500	183	70-130	B+
2-Chlorotoluene	0.0577	0.0050	mg/kg wet	0.05000	115	70-130	
2-Hexanone	0.463	0.0500	mg/kg wet	0.2500	185	70-130	B+
4-Chlorotoluene	0.0573	0.0050	mg/kg wet	0.05000	115	70-130	
4-Isopropyltoluene	0.0515	0.0050	mg/kg wet	0.05000	103	70-130	
4-Methyl-2-Pentanone	0.319	0.0500	mg/kg wet	0.2500	128	70-130	
Acetone	0.693	0.0500	mg/kg wet	0.2500	277	70-130	B+
Benzene	0.0546	0.0050	mg/kg wet	0.05000	109	70-130	
Bromobenzene	0.0517	0.0050	mg/kg wet	0.05000	103	70-130	
Bromochloromethane	0.0521	0.0050	mg/kg wet	0.05000	104	70-130	
Bromodichloromethane	0.0650	0.0050	mg/kg wet	0.05000	130	70-130	
Bromoform	0.0646	0.0050	mg/kg wet	0.05000	129	70-130	
Bromomethane	0.0549	0.0100	mg/kg wet	0.05000	110	70-130	
Carbon Disulfide	0.0630	0.0050	mg/kg wet	0.05000	126	70-130	
Carbon Tetrachloride	0.0632	0.0050	mg/kg wet	0.05000	126	70-130	
Chlorobenzene	0.0527	0.0050	mg/kg wet	0.05000	105	70-130	
Chloroethane	0.0467	0.0100	mg/kg wet	0.05000	93	70-130	
Chloroform	0.0570	0.0050	mg/kg wet	0.05000	114	70-130	
Chloromethane	0.0399	0.0100	mg/kg wet	0.05000	80	70-130	
cis-1,2-Dichloroethene	0.0565	0.0050	mg/kg wet	0.05000	113	70-130	
cis-1,3-Dichloropropene	0.0620	0.0050	mg/kg wet	0.05000	124	70-130	
Dibromochloromethane	0.0639	0.0050	mg/kg wet	0.05000	128	70-130	
Dibromomethane	0.0548	0.0050	mg/kg wet	0.05000	110	70-130	
Dichlorodifluoromethane	0.0546	0.0100	mg/kg wet	0.05000	109	70-130	
Diethyl Ether	0.0581	0.0050	mg/kg wet	0.05000	116	70-130	
Di-isopropyl ether	0.0581	0.0050	mg/kg wet	0.05000	116	70-130	
Ethyl tertiary-butyl ether	0.0601	0.0050	mg/kg wet	0.05000	120	70-130	
Ethylbenzene	0.0573	0.0050	mg/kg wet	0.05000	115	70-130	
Hexachlorobutadiene	0.0536	0.0050	mg/kg wet	0.05000	107	70-130	
Isopropylbenzene	0.0589	0.0050	mg/kg wet	0.05000	118	70-130	
Methyl tert-Butyl Ether	0.0613	0.0050	mg/kg wet	0.05000	123	70-130	
Methylene Chloride	0.0533	0.0250	mg/kg wet	0.05000	107	70-130	
Naphthalene	0.0525	0.0050	mg/kg wet	0.05000	105	70-130	
n-Butylbenzene	0.0573	0.0050	mg/kg wet	0.05000	115	70-130	
n-Propylbenzene	0.0591	0.0050	mg/kg wet	0.05000	118	70-130	
sec-Butylbenzene	0.0590	0.0050	mg/kg wet	0.05000	118	70-130	
Styrene	0.0554	0.0050	mg/kg wet	0.05000	111	70-130	
tert-Butylbenzene	0.0572	0.0050	mg/kg wet	0.05000	114	70-130	
Tertiary-amyl methyl ether	0.0614	0.0050	mg/kg wet	0.05000	123	70-130	
Tetrachloroethene	0.0463	0.0050	mg/kg wet	0.05000	93	70-130	
Tetrahydrofuran	0.0523	0.0050	mg/kg wet	0.05000	105	70-130	
Toluene	0.0560	0.0050	mg/kg wet	0.05000	112	70-130	
	0.0000		5, 19 11-1	-		-	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211445

Quality Control Data

Analyte Result MRL Units Level Result %REC Limits RPD Limit Qualifier					Spike	Source		%REC		RPD	
	Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Organic Compour	ids / Lov	v Level
-------------------------------------	-----------	---------

Batch CK22901 - 5035									
trans-1,2-Dichloroethene	0.0542	0.0050	mg/kg wet	0.05000	108	70-130			
trans-1,3-Dichloropropene	0.0663	0.0050	mg/kg wet	0.05000	133	70-130			B+
Trichloroethene	0.0551	0.0050	mg/kg wet	0.05000	110	70-130			
Trichlorofluoromethane	0.0574	0.0050	mg/kg wet	0.05000	115	70-130			
'inyl Acetate	0.0570	0.0050	mg/kg wet	0.05000	114	70-130			
/inyl Chloride	0.0488	0.0100	mg/kg wet	0.05000	98	70-130			
(ylene O	0.0555	0.0050	mg/kg wet	0.05000	111	70-130			
(ylene P,M	0.110	0.0100	mg/kg wet	0.1000	110	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.0554		mg/kg wet	0.05000	111	70-130			
Surrogate: 4-Bromofluorobenzene	0.0515		mg/kg wet	0.05000	103	70-130			
Surrogate: Dibromofluoromethane	0.0532		mg/kg wet	0.05000	106	70-130			
Surrogate: Toluene-d8	0.0508		mg/kg wet	0.05000	102	70-130			
LCS Dup									
,1,1,2-Tetrachloroethane	0.0565	0.0050	mg/kg wet	0.05000	113	70-130	2	25	
,1,1-Trichloroethane	0.0598	0.0050	mg/kg wet	0.05000	120	70-130	3	25	
,1,2,2-Tetrachloroethane	0.0512	0.0050	mg/kg wet	0.05000	102	70-130	6	25	
,1,2-Trichloroethane	0.0507	0.0050	mg/kg wet	0.05000	101	70-130	5	25	
,1-Dichloroethane	0.0532	0.0050	mg/kg wet	0.05000	106	70-130	3	25	
,1-Dichloroethene	0.0552	0.0050	mg/kg wet	0.05000	110	70-130	2	25	
,1-Dichloropropene	0.0602	0.0050	mg/kg wet	0.05000	120	70-130	3	25	
,2,3-Trichlorobenzene	0.0495	0.0050	mg/kg wet	0.05000	99	70-130	1	25	
,2,3-Trichloropropane	0.0549	0.0050	mg/kg wet	0.05000	110	70-130	5	25	
,2,4-Trichlorobenzene	0.0507	0.0050	mg/kg wet	0.05000	101	70-130	0.9	25	
,2,4-Trimethylbenzene	0.0568	0.0050	mg/kg wet	0.05000	114	70-130	0.9	25	
,2-Dibromo-3-Chloropropane	0.0589	0.0050	mg/kg wet	0.05000	118	70-130	7	25	
,2-Dibromoethane	0.0521	0.0050	mg/kg wet	0.05000	104	70-130	5	25	
,2-Dichlorobenzene	0.0515	0.0050	mg/kg wet	0.05000	103	70-130	2	25	
,2-Dichloroethane	0.0575	0.0050	mg/kg wet	0.05000	115	70-130	5	25	
,2-Dichloropropane	0.0516	0.0050	mg/kg wet	0.05000	103	70-130	5	25	
,3,5-Trimethylbenzene	0.0580	0.0050	mg/kg wet	0.05000	116	70-130	0.4	25	
,3-Dichlorobenzene	0.0513	0.0050	mg/kg wet	0.05000	103	70-130	2	25	
,3-Dichloropropane	0.0534	0.0050	mg/kg wet	0.05000	107	70-130	3	25	
,4-Dichlorobenzene	0.0489	0.0050	mg/kg wet	0.05000	98	70-130	2	25	
,4-Dioxane	1.06	0.100	mg/kg wet	1.000	106	70-130	9	20	
-Chlorohexane	0.0539	0.0050	mg/kg wet	0.05000	108	70-130	3	25	
,2-Dichloropropane	0.0615	0.0050	mg/kg wet	0.05000	123	70-130	4	25	
-Butanone	0.383	0.0500	mg/kg wet	0.2500	153	70-130	18	25	B+
-Chlorotoluene	0.0571	0.0050	mg/kg wet	0.05000	114	70-130	0.9	25	Б1
-Chiorocoldene -Hexanone	0.366	0.0500	mg/kg wet	0.2500	146	70-130	23	25	B+
-Chlorotoluene	0.0568	0.0050	mg/kg wet	0.05000	114	70-130	0.8	25	DΤ
-Chlorocoluene -Isopropyltoluene	0.0510	0.0050		0.05000	102	70-130	0.8		
-isopropyitoiuene -Methyl-2-Pentanone	0.0510	0.0500	mg/kg wet	0.05000	102	70-130 70-130		25 25	
,			mg/kg wet				11		В.
cetone	0.520	0.0500	mg/kg wet	0.2500	208	70-130	29	25	B+
denzene	0.0527	0.0050	mg/kg wet	0.05000	105	70-130	4	25	
Bromobenzene	0.0504	0.0050	mg/kg wet	0.05000	101	70-130	3	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211445

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Organic Compounds / Low Level

Second Common Color Common Color C	ch CK22901 - 5035									
No. No.		0.0510	0.0050	ma/ka wet	0.05000	102	70-130	2	25	
Commontment 0.0620									25	
remomethanne 0.0539 0.0100 mg/kg wet 0.05000 108 70-130 2 carbon beaufide 0.0614 0.0050 mg/kg wet 0.05000 123 70-130 3 carbon beaufide 0.0616 0.0650 mg/kg wet 0.05000 123 70-130 3 carbon beaufide 0.0616 0.0050 mg/kg wet 0.05000 121 70-130 4 carbon beaufide 0.0560 0.0050 mg/kg wet 0.05000 101 70-130 4 carbon beaufide 0.0550 0.0050 mg/kg wet 0.05000 101 70-130 4 carbon beaufide 0.0550 0.0050 mg/kg wet 0.05000 100 70-130 4 carbon beaufide 0.0550 0.0050 mg/kg wet 0.05000 100 70-130 4 carbon beaufide 0.0550 0.0050 mg/kg wet 0.05000 108 70-130 3 carbon beaufide 0.0560 0.0050 mg/kg wet 0.05000 108 70-130 3 carbon beaufide 0.0560 0.0050 mg/kg wet 0.05000 108 70-130 3 carbon beaufide 0.0560 0.0050 mg/kg wet 0.05000 108 70-130 4 carbon beaufide 0.0560									25	
streon Desuffide 0.0614 0.0650 0.06									25	
serbon Tetrachloride 0.0616 0.0050 mg/kg wet 0.05000 101 70-130 4 historobername 0.0590 0.00500 mg/kg wet 0.05000 101 70-130 4 historoform 0.0550 0.0050 mg/kg wet 0.05000 110 70-130 4 historoform 0.0550 0.0050 mg/kg wet 0.05000 78 70-130 3 51-2 Dichloroperhame 0.0588 0.0100 mg/kg wet 0.05000 110 70-130 3 51-2 Dichloroperhame 0.0580 0.0500 mg/kg wet 0.05000 120 70-130 3 10-10-10-10-10-10 70-130 3 10-10-10-10-10-10 70-130 3 10-10-10-10-10-10 70-130 3 10-10-10-10-10-10 70-130 3 10-10-10-10-10-10 70-130 3 10-10-10-10-10-10 70-130 3 10-10-10-10-10-10 70-130 3 10-10-10-10-10-10-10 70-130 3 10-10-10-10-10-10-10 70-130 3 10-10-10-10-10-10-10 70-130 3 10-10-10-10-10-10-10-10 70-130 3 10-10-10-10-10-10-10-10-10 70-130 3 10-10-10-10-10-10-10-10-10-10-10-10-10-1									25	
hibrobenzene									25	
Introdethane 0.0447 0.0100 mg/kg wet 0.05000 89 70-130 4									25	
Display Control Cont									25	
									25	
-1,2-Dichloroethene									25	
-1,3-Dichloropropene									25	
Promochloromethane 0.0616 0.0050 mg/kg wet 0.05000 123 70-130 4 promomethane 0.0527 0.0050 mg/kg wet 0.05000 105 70-130 4 promomethane 0.0535 0.0100 mg/kg wet 0.05000 107 70-130 2 per thirdordifluromethane 0.0535 0.0100 mg/kg wet 0.05000 110 70-130 2 per thirdordifluromethane 0.0555 0.0050 mg/kg wet 0.05000 110 70-130 5 per thirdordifluromethane 0.0555 0.0050 mg/kg wet 0.05000 111 70-130 5 per thirdordifluromethane 0.0555 0.0050 mg/kg wet 0.05000 111 70-130 5 per thirdordifluromethane 0.0555 0.0050 mg/kg wet 0.05000 111 70-130 5 per thirdordifluromethane 0.0562 0.0050 mg/kg wet 0.05000 112 70-130 2 per thirdordifluromethane 0.0552 0.0050 mg/kg wet 0.05000 118 70-130 0.4 per propylenzene 0.0585 0.0050 mg/kg wet 0.05000 117 70-130 0.6 per propylenzene 0.0585 0.0050 mg/kg wet 0.05000 117 70-130 5 per thirdordifluromethane 0.0512 0.0250 mg/kg wet 0.05000 117 70-130 5 per thirdordifluromethane 0.0512 0.0250 mg/kg wet 0.05000 117 70-130 5 per thirdordifluromethane 0.0567 0.0050 mg/kg wet 0.05000 101 70-130 1 per thirdordifluromethane 0.0567 0.0050 mg/kg wet 0.05000 101 70-130 1 per propylenzene 0.0586 0.0050 mg/kg wet 0.05000 101 70-130 0.6 per propylenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 per propylenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 per propylenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 per propylenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 per propylenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 per propylenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 per propylenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 per propylenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 per propylenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 per propylenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 per propylenzene 0.0587 0.0050 mg/kg wet 0.05000 116 70-130 0.6 per propylenzene 0.0587 0.0050 mg/kg wet 0.05000 116 70-130 0.6 per propylenzene 0.0587 0.0050 mg/kg wet 0.05000 116 70-130 0.6 per propylenzene 0.0583 0.0050 mg/kg wet 0.05000 117 70-130 0									25	
Annomethane 0.0527 0.0050 mg/kg wet 0.05000 105 70-130 4 chlorodifluoromethane 0.0535 0.0100 mg/kg wet 0.05000 107 70-130 2 chlorodifluoromethane 0.0535 0.0100 mg/kg wet 0.05000 110 70-130 2 chlorodifluoromethane 0.0555 0.0050 mg/kg wet 0.05000 111 70-130 5 chlorodifluoromethane 0.0555 0.0050 mg/kg wet 0.05000 111 70-130 5 chlorodifluoromethane 0.0555 0.0050 mg/kg wet 0.05000 111 70-130 5 chlorodifluoromethane 0.0562 0.0050 mg/kg wet 0.05000 115 70-130 5 chlorodifluoromethane 0.0539 0.0050 mg/kg wet 0.05000 112 70-130 2 chlorodifluoromethane 0.0539 0.0050 mg/kg wet 0.05000 117 70-130 0.6 chlorodifluoromethane 0.0588 0.0050 mg/kg wet 0.05000 117 70-130 0.6 chlorodifluoromethane 0.0512 0.0250 mg/kg wet 0.05000 117 70-130 5 chlorodifluoromethane 0.0512 0.0250 mg/kg wet 0.05000 117 70-130 5 chlorodifluoromethane 0.0557 0.0050 mg/kg wet 0.05000 117 70-130 1 3 chlorodifluoromethane 0.0567 0.0050 mg/kg wet 0.05000 110 70-130 1 3 chlorodifluoromethane 0.0567 0.0050 mg/kg wet 0.05000 117 70-130 1 3 chlorodifluoromethane 0.0566 0.0050 mg/kg wet 0.05000 117 70-130 0.9 chlorodifluoromethane 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.9 chlorodifluoromethane 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 chlorodifluoromethane 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 chlorodifluoromethane 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 chlorodifluoromethane 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 chlorodifluoromethane 0.0587 0.0050 mg/kg wet 0.05000 117 70-130 0.6 chlorodifluoromethane 0.0581 0.0050 mg/kg wet 0.05000 117 70-130 1 chlorodifluoromethane 0.0537 0.0050 mg/kg wet 0.05000 116 70-130 1 chlorodifluoromethane 0.0537 0.0050 mg/kg wet 0.05000 116 70-130 1 chlorodifluoromethane 0.0530 0.0050 mg/kg wet 0.05000 110 70-130 1 chlorodifluoromethane 0.0530 0.0050 mg/kg wet 0.05000 110 70-130 1 chlorodifluoromethane 0.0560 0.0050 mg/kg wet 0.05000 110 70-130 1 chlorodifluoromethane 0.0560 0.0050 mg/kg wet 0.05000 110 70-130 1 chlorodifluoromethane 0.0547 0.0050 mg/kg wet 0.05000 110 70-130 1 chlorodifluoromethane									25	
chlorodifluoromethane 0.0535									25	
tethyl Ether									25	
isspropylether 0.0555 0.0050 mg/kg wet 0.05000 111 70-130 5 hyl tertiary-butyl ether 0.0574 0.0050 mg/kg wet 0.05000 115 70-130 5 hyl tertiary-butyl ether 0.0562 0.0050 mg/kg wet 0.05000 115 70-130 2 hyl tertiary-butyl ether 0.0585 0.0050 mg/kg wet 0.05000 110 70-130 2 hyl tertiary-butyl ether 0.0585 0.0050 mg/kg wet 0.05000 110 70-130 0.4 hypropylbenzene 0.0585 0.0050 mg/kg wet 0.05000 117 70-130 0.6 hyl tert-Butyl Ether 0.0584 0.0050 mg/kg wet 0.05000 117 70-130 5 hyl tert-Butyl Ether 0.0584 0.0050 mg/kg wet 0.05000 117 70-130 5 hyl tert-Butyl Ether 0.0584 0.0050 mg/kg wet 0.05000 110 70-130 3 hyl tert-Butyl Ether 0.0586 0.0050 mg/kg wet 0.05000 110 70-130 3 hyl tert-Butyl Ether 0.0567 0.0050 mg/kg wet 0.05000 111 70-130 3 hyl tert-Butyl Ether 0.0567 0.0050 mg/kg wet 0.05000 111 70-130 3 hyl tert-Butyl Ether 0.0567 0.0050 mg/kg wet 0.05000 111 70-130 3 hyl tert-Butyl Ether 0.0566 0.0050 mg/kg wet 0.05000 111 70-130 3 hyl tert-Butyl Ether 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 1 hyl tert-Butyl Ether 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 hyl tert-Butyl Ether 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 hyl tert-Butyl Ether 0.0581 0.0050 mg/kg wet 0.05000 117 70-130 3 hyl tert-Butyl Ether 0.0581 0.0050 mg/kg wet 0.05000 117 70-130 3 hyl tert-Butyl Ether 0.0581 0.0050 mg/kg wet 0.05000 117 70-130 3 hyl tert-Butyl Ether 0.0581 0.0050 mg/kg wet 0.05000 117 70-130 3 hyl tert-Butyl Ether 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 4 hyl tert-Butyl Ether 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 3 hyl tert-Butyl Ether 0.0581 0.0050 mg/kg wet 0.05000 117 70-130 3 hyl tert-Butyl Ether 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 3 hyl tert-Butyl Ether 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 3 hyl tert-Butyl Ether 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 3 hyl tert-Butyl Ether 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 3 hyl tert-Butyl Ether 0.0560 0.0050 mg/kg wet 0.05000 117 70-130 3 hyl tert-Butyl Ether 0.0560 0.0050 mg/kg wet 0.05000 117 70-130 3 hyl tert-Butyl Ether 0.0560 0.0050 mg/kg wet 0.05000									25	
wyl tertiany-butyl ether	•								25	
Pylbenzene 0.0562 0.0050 mg/kg wet 0.05000 112 70-130 2 exachlorobutadiene 0.0539 0.0050 mg/kg wet 0.05000 108 70-130 0.4 exachlorobutadiene 0.0539 0.0050 mg/kg wet 0.05000 117 70-130 0.6 exachlorobutadiene 0.0585 0.0050 mg/kg wet 0.05000 117 70-130 0.6 exthyl tert-Butyl Ether 0.0584 0.0050 mg/kg wet 0.05000 117 70-130 5 exthylene Chloride 0.0512 0.0250 mg/kg wet 0.05000 102 70-130 4 phthalene 0.0567 0.0050 mg/kg wet 0.05000 101 70-130 3 8 extrylbenzene 0.0567 0.0050 mg/kg wet 0.05000 101 70-130 1 Propylbenzene 0.0567 0.0050 mg/kg wet 0.05000 111 70-130 1 Propylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 extrylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 extrylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 extrylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 extrylbenzene 0.0569 0.0050 mg/kg wet 0.05000 117 70-130 0.6 extrylbenzene 0.0589 0.0050 mg/kg wet 0.05000 117 70-130 0.6 extrylbenzene 0.0589 0.0050 mg/kg wet 0.05000 116 70-130 0.6 extrylbenzene 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 0.6 extrylbenzene 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 0.6 extrylbenzene 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 0.6 extrylbenzene 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 0.6 extrylbenzene 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 0.6 extrylbenzene 0.0587 0.0050 mg/kg wet 0.05000 116 70-130 1 1 trabydrofuran 0.0478 0.0050 mg/kg wet 0.05000 116 70-130 1 1 trabydrofuran 0.0478 0.0050 mg/kg wet 0.05000 107 70-130 3 extrabylbenzene 0.0533 0.0050 mg/kg wet 0.05000 107 70-130 3 extrabylbenzene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 extrabylbenzene 0.0560 0.0050 mg/kg wet 0.05000 107 70-130 3 extrabylbenzene 0.0560 0.0050 mg/kg wet 0.05000 107 70-130 3 extrabylbenzene 0.0560 0.0050 mg/kg wet 0.05000 107 70-130 3 extrabylbenzene 0.0560 0.0050 mg/kg wet 0.05000 107 70-130 3 extrabylbenzene 0.0560 0.0050 mg/kg wet 0.05000 109 70-130 3 extrabylbenzene 0.0561 0.0050 mg/kg wet 0.05000 109 70-130 3 extrabylbenzene 0.0561 0.0050 mg/kg wet 0.05000 109 70-130 3 extrabylbenzene 0.0561									25	
Asschlorobutadiene 0.0539 0.0050 mg/kg wet 0.05000 108 70-130 0.4 propylbenzene 0.0585 0.0050 mg/kg wet 0.05000 117 70-130 0.6 propylbenzene 0.0585 0.0050 mg/kg wet 0.05000 117 70-130 0.6 propylbenzene 0.0584 0.0050 mg/kg wet 0.05000 117 70-130 5 propylbenzene 0.0557 0.0050 mg/kg wet 0.05000 102 70-130 4 propylbenzene 0.0557 0.0050 mg/kg wet 0.05000 101 70-130 3 propylbenzene 0.0567 0.0050 mg/kg wet 0.05000 111 70-130 1 propylbenzene 0.0588 0.0050 mg/kg wet 0.05000 111 70-130 1 propylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 propylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 propylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 propylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 propylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 propylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 propylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 propylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 propylbenzene 0.0586 0.0050 mg/kg wet 0.05000 116 70-130 0.6 propylbenzene 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 0.6 propylbenzene 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 0.6 propylbenzene 0.0487 0.0050 mg/kg wet 0.05000 116 70-130 0.6 propylbenzene 0.0488 0.0050 mg/kg wet 0.05000 116 70-130 0.6 propylbenzene 0.0488 0.0050 mg/kg wet 0.05000 116 70-130 1 propylbenzene 0.0537 0.0050 mg/kg wet 0.05000 107 70-130 1 propylbenzene 0.0537 0.0050 mg/kg wet 0.05000 107 70-130 1 propylbenzene 0.0538 0.0050 mg/kg wet 0.05000 107 70-130 3 propylbenzene 0.0560 0.0551 0.0550 mg/kg wet 0.05000 107 70-130 3 propylbenzene 0.0560 0.0560 mg/kg wet 0.05000 107 70-130 3 propylbenzene 0.0560 0.0551 mg/kg wet 0.05000 107 70-130 3 propylbenzene 0.0560 0.0551 mg/kg wet 0.05000 107 70-130 3 propylbenzene 0.0560 0.0551 mg/kg wet 0.05000 107 70-130 3 propylbenzene 0.0560 0.0551 mg/kg wet 0.05000 107 70-130 3 propylbenzene 0.0560 0.0551 mg/kg wet 0.05000 108 70-130 3 propylbenzene 0.0560 0.0551 mg/kg wet 0.05000 108 70-130 3 propylbenzene 0.0560 0.0551 mg/kg wet 0.05000 108 70-13	•								25	
propylbenzene 0.0585 0.0050 mg/kg wet 0.05000 117 70-130 0.6 ethyl tert-Butyl Ether 0.0584 0.0050 mg/kg wet 0.05000 117 70-130 5 ethylene Chloride 0.0512 0.0250 mg/kg wet 0.05000 110 70-130 3 abutylbenzene 0.0507 0.0050 mg/kg wet 0.05000 101 70-130 3 abutylbenzene 0.0567 0.0050 mg/kg wet 0.05000 111 70-130 3 abutylbenzene 0.0585 0.0050 mg/kg wet 0.05000 111 70-130 0.6 mg/kg wet 0.05000 111 70-130 0.9 mg/kg wet 0.05000 111 70-130 0.9 mg/kg wet 0.05000 111 70-130 0.9 mg/kg wet 0.05000 111 70-130 0.9 mg/kg wet 0.05000 111 70-130 0.9 mg/kg wet 0.05000 111 70-130 0.9 mg/kg wet 0.05000 111 70-130 0.6 mg/kg wet 0.05000 111 70-130 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									25	
thyl tert-Butyl Ether 0.0584 0.0050 mg/kg wet 0.05000 117 70-130 5 thylene Chloride 0.0512 0.0250 mg/kg wet 0.05000 102 70-130 4 phthalene 0.0507 0.0050 mg/kg wet 0.05000 101 70-130 3 abutylbenzene 0.0567 0.0050 mg/kg wet 0.05000 113 70-130 1 Propylbenzene 0.0585 0.0050 mg/kg wet 0.05000 117 70-130 0.9 Ebutylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.9 Ebutylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 mg/kg wet 0.05000 117 70-130 0.6 mg/kg wet 0.05000 117 70-130 0.6 mg/kg wet 0.05000 117 70-130 0.6 mg/kg wet 0.05000 117 70-130 0.6 mg/kg wet 0.05000 117 70-130 0.6 mg/kg wet 0.05000 117 70-130 0.6 mg/kg wet 0.05000 114 70-130 0.6 mg/kg wet 0.05000 114 70-130 0.6 mg/kg wet 0.05000 114 70-130 0.6 mg/kg wet 0.05000 114 70-130 0.6 mg/kg wet 0.05000 116 70-130 0.6 mg/kg wet 0.05000 116 70-130 0.6 mg/kg wet 0.05000 116 70-130 0.6 mg/kg wet 0.05000 116 70-130 0.6 mg/kg wet 0.05000 116 70-130 0.6 mg/kg wet 0.05000 116 70-130 0.6 mg/kg wet 0.05000 116 70-130 0.6 mg/kg wet 0.05000 116 70-130 0.6 mg/kg wet 0.05000 116 70-130 0.6 mg/kg wet 0.05000 116 70-130 0.6 mg/kg wet 0.05000 116 70-130 0.6 mg/kg wet 0.05000 116 70-130 0.6 mg/kg wet 0.05000 107 70-130 0.6 mg/kg wet 0.05000 107 70-130 0.6 mg/kg wet 0.05000 107 70-130 0.6 mg/kg wet 0.05000 107 70-130 0.6 mg/kg wet 0.05000 107 70-130 0.6 mg/kg wet 0.05000 107 70-130 0.6 mg/kg wet 0.05000 107 70-130 0.6 mg/kg wet 0.05000 107 70-130 0.6 mg/kg wet 0.05000 107 70-130 0.6 mg/kg wet 0.05000 107 70-130 0.6 mg/kg wet 0.05000 107 70-130 0.6 mg/kg wet 0.05000 107 70-130 0.6 mg/kg wet 0.05000 107 70-130 0.6 mg/kg wet 0.05000 107 70-130 0.6 mg/kg wet 0.05000 107 70-130 0.6 mg/kg wet 0.05000 109 70-130 0.6 mg/kg wet 0.05000 109 70-130 0.6 mg/kg wet 0.05000 109 70-130 0.6 mg/kg wet 0.05000 109 70-130 0.6 mg/kg wet 0.05000 109 70-130 0.6 mg/kg wet 0.05000 109 70-130 0.6 mg/kg wet 0.05000 109 70-130 0.6 mg/kg wet 0.05000 108 70-130 0.6 mg/kg wet 0.05000 108 70-130 0.6 mg/kg wet 0.05000 108 70-130 0.6 mg/kg wet 0.05000 108 70-130 0.6 mg/kg wet 0.05000 108 70-130 0.6 mg/									25	
thylene Chloride 0.0512 0.0250 mg/kg wet 0.05000 102 70-130 4 phthalene 0.0507 0.0050 mg/kg wet 0.05000 101 70-130 3 sutylbenzene 0.0567 0.0050 mg/kg wet 0.05000 117 70-130 1 propylbenzene 0.0585 0.0050 mg/kg wet 0.05000 117 70-130 0.9 p-Butylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.9 p-Butylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 prene 0.0536 0.0050 mg/kg wet 0.05000 117 70-130 0.6 prene 0.0536 0.0050 mg/kg wet 0.05000 117 70-130 0.6 prene 0.0581 0.0050 mg/kg wet 0.05000 114 70-130 0.6 prene 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 6 prene 0.0587 0.0050 mg/kg wet 0.05000 116 70-130 1 prene 0.0587 0.0050 mg/kg wet 0.05000 116 70-130 1 prene 0.0587 0.0050 mg/kg wet 0.05000 117 70-130 1 prene 0.0587 0.0050 mg/kg wet 0.05000 116 70-130 1 prene 0.0587 0.0050 mg/kg wet 0.05000 107 70-130 1 prene 0.0587 0.0050 mg/kg wet 0.05000 107 70-130 1 prene 0.0587 0.0050 mg/kg wet 0.05000 107 70-130 109 109 70-130 109 109 109 109 109 109 109									25	
phthalene 0.0507 0.0050 mg/kg wet 0.05000 101 70-130 3 phylybenzene 0.0567 0.0050 mg/kg wet 0.05000 113 70-130 1 phylybenzene 0.0567 0.0050 mg/kg wet 0.05000 117 70-130 0.9 phylybenzene 0.0585 0.0050 mg/kg wet 0.05000 117 70-130 0.9 phylybenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 phylybenzene 0.0536 0.0050 mg/kg wet 0.05000 117 70-130 0.6 phylybenzene 0.0569 0.0050 mg/kg wet 0.05000 117 70-130 0.6 phylybenzene 0.0569 0.0050 mg/kg wet 0.05000 114 70-130 0.6 phylybenzene 0.0581 0.0050 mg/kg wet 0.05000 114 70-130 0.6 phylybenzene 0.0551 0.0050 mg/kg wet 0.05000 116 70-130 1 phylybenzene 0.0457 0.0050 mg/kg wet 0.05000 116 70-130 1 phylybenzene 0.0478 0.0050 mg/kg wet 0.05000 96 70-130 9 phylybenzene 0.0537 0.0050 mg/kg wet 0.05000 107 70-130 4 phylybenzene 0.0530 0.0050 mg/kg wet 0.05000 107 70-130 4 phylybenzene 0.0530 0.0050 mg/kg wet 0.05000 107 70-130 1 phylybenzene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 phylybenzene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 phylybenzene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 phylybenzene 0.0541 0.0550 mg/kg wet 0.05000 107 70-130 3 phylybenzene 0.0560 0.0050 mg/kg wet 0.05000 107 70-130 3 phylybenzene 0.0560 0.0050 mg/kg wet 0.05000 107 70-130 3 phylybenzene 0.0560 0.0050 mg/kg wet 0.05000 107 70-130 3 phylybenzene 0.0560 0.0550 mg/kg wet 0.05000 107 70-130 3 phylybenzene 0.0560 0.0550 mg/kg wet 0.05000 107 70-130 3 phylybenzene 0.0560 0.0550 mg/kg wet 0.05000 109 70-130 5 phylybenzene 0.0541 0.0541 mg/kg wet 0.05000 108 70-130 3 phylybenzene 0.0541 0.0541 mg/kg wet 0.05000 108 70-130 3 phylybenzene 0.0541 0.0541 mg/kg wet 0.05000 108 70-130 3 phylybenzene 0.0541 0.0541 mg/kg wet 0.05000 108 70-130 3 phylybenzene 0.0541 0.0541 mg/kg wet 0.05000 108 70-130 3 phylybenzene 0.0541 0.0541 mg/kg wet 0.05000 108 70-130 3 phylybenzene 0.0541 0.0541 0.0541 0.0541 0.05000 108 70-130 108 70-130 108 70-130 108 70-130 108 70-130 108 70-130 108 70-130 108 70-130 108 70-130 108 70-130 108 70-130 108 70-130 108 70-130 108 70-130 108 70-130 108 70-130 108 70-130 10	•								25	
Autylbenzene 0.0567 0.0050 mg/kg wet 0.05000 113 70-130 1 Propylbenzene 0.0585 0.0050 mg/kg wet 0.05000 117 70-130 0.9 Propylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 Propylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 Propylbenzene 0.0536 0.0050 mg/kg wet 0.05000 117 70-130 0.6 Propylbenzene 0.0569 0.0050 mg/kg wet 0.05000 114 70-130 0.6 Propylbenzene 0.0569 0.0050 mg/kg wet 0.05000 114 70-130 0.6 Propylbenzene 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 6 Propylbenzene 0.0457 0.0050 mg/kg wet 0.05000 116 70-130 1 Propylbenzene 0.0478 0.0050 mg/kg wet 0.05000 91 70-130 1 Propylbenzene 0.0537 0.0050 mg/kg wet 0.05000 96 70-130 9 Propylbenzene 0.0537 0.0050 mg/kg wet 0.05000 107 70-130 4 Propylbenzene 0.0530 0.0050 mg/kg wet 0.05000 107 70-130 4 Propylbenzene 0.0530 0.0050 mg/kg wet 0.05000 106 70-130 2 Propylbenzene 0.0645 0.0050 mg/kg wet 0.05000 107 70-130 3 Propylbenzene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 Propylbenzene 0.0560 0.0550 mg/kg wet 0.05000 107 70-130 3 Propylbenzene 0.0560 0.0500 mg/kg wet 0.05000 107 70-130 3 Propylbenzene 0.0560 0.0500 mg/kg wet 0.05000 107 70-130 3 Propylbenzene 0.0560 0.0500 mg/kg wet 0.05000 107 70-130 3 Propylbenzene 0.0560 0.0500 mg/kg wet 0.05000 109 70-130 5 Propylbenzene 0.0560 0.0539 0.0050 mg/kg wet 0.05000 109 70-130 5 Propylbenzene 0.0560 0.0539 0.0050 mg/kg wet 0.05000 108 70-130 3 Propylbenzene 0.0560 0.0539 0.0050 mg/kg wet 0.05000 108 70-130 3 Propylbenzene 0.0561 0.0561 mg/kg wet 0.05000 108 70-130 3 Propylbenzene 0.0561 0.0561 mg/kg wet 0.05000 108 70-130 3 Propylbenzene 0.0561 0.0561 mg/kg wet 0.05000 108 70-130 3 Propylbenzene 0.0561 0.0561 mg/kg wet 0.05000 108 70-130 3 Propylbenzene 0.0561 0.0561 mg/kg wet 0.05000 108 70-130 3 Propylbenzene 0.0561 0.0561 mg/kg wet 0.05000 108 70-130 3 Propylbenzene 0.0561 0.0561 mg/kg wet 0.05000 108 70-130 3 Propylbenzene 0.0561 0.0561 mg/kg wet 0.05000 108 70-130 3 Propylbenzene 0.0561 0.0561 mg/kg wet 0.05000 108 70-130 3 Propylbenzene 0.0561 0.0561 mg/kg wet 0.05000 108 70-130 3 Propylbenz									25	
Propylbenzene 0.0585 0.0050 mg/kg wet 0.05000 117 70-130 0.9 e-Butylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 mg/kg wet 0.05000 117 70-130 0.6 mg/kg wet 0.05000 117 70-130 0.6 mg/kg wet 0.05000 117 70-130 0.6 mg/kg wet 0.05000 114 70-130 0.6 mg/kg wet 0.05000 114 70-130 0.6 mg/kg wet 0.05000 114 70-130 0.6 mg/kg wet 0.05000 114 70-130 0.6 mg/kg wet 0.05000 116 70-130 6 mg/kg wet 0.05000 116 70-130 1 mg/kg wet 0.05000 116 70-130 1 mg/kg wet 0.05000 116 70-130 1 mg/kg wet 0.05000 117 70-130 1 mg/kg wet 0.05000 107 70-130 2 mg/kg wet 0.05000 106 70-130 2 mg/kg wet 0.05000 107 70-130 3 chloroethene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 chloroethene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 chloroethene 0.0543 0.0550 mg/kg wet 0.05000 107 70-130 3 chlorofluoromethane 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 3 chlorofluoromethane 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 3 chlorofluoromethane 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 3 chlorofluoromethane 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 3 chlorofluoromethane 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 3 chlorofluoromethane 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 3 chlorofluoromethane 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 3 chlorofluoromethane 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 3 chlorofluoromethane 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 3 chlorofluoromethane 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 3 chlorofluoromethane 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 3 chlorofluoromethane 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 3 chlorofluoromethane 0.0543 0.0050 mg/kg wet 0.05000 108 70-130 3 chlorofluoromethane 0.0541 mg/kg wet 0.05000 109 70-130 3 chlorofluoromethane 0.0541 mg/kg wet 0.05000 100 100 100									25	
2-butylbenzene 0.0586 0.0050 mg/kg wet 0.05000 117 70-130 0.6 mg/kg wet 0.05000 107 70-130 3 the Butylbenzene 0.0536 0.0050 mg/kg wet 0.05000 114 70-130 0.6 mg/kg wet 0.05000 114 70-130 0.6 mg/kg wet 0.05000 114 70-130 0.6 mg/kg wet 0.05000 116 70-130 6 trachloroethene 0.0457 0.0050 mg/kg wet 0.05000 91 70-130 1 trahydrofuran 0.0478 0.0550 mg/kg wet 0.05000 96 70-130 9 luene 0.0537 0.0050 mg/kg wet 0.05000 107 70-130 4 ms-1,2-Dichloroethene 0.0530 0.0550 mg/kg wet 0.05000 106 70-130 2 ms-1,3-Dichloropropene 0.0645 0.0050 mg/kg wet 0.05000 106 70-130 3 chlorofuromethane 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 chlorofuromethane 0.0550 0.0550 mg/kg wet 0.05000 107 70-130 3 chlorofuromethane 0.0560 0.0550 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 112 70-130 3 chlorofuromethane 0.0543 0.0050 mg/kg wet 0.05000 112 70-130 5 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 3 chlorofuromethane 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 3 chlorofuromethane 0.0539 0.0050 mg/kg wet 0.05000 108 70-130 3 chlorofuromethane 0.0539 0.0050 mg/kg wet 0.05000 108 70-130 3 chlorofuromethane 0.0539 0.0050 mg/kg wet 0.05000 108 70-130 3 chlorofuromethane 0.0539 0.0050 mg/kg wet 0.05000 108 70-130 3 chlorofuromethane 0.0541 0.0050 mg/kg wet 0.05000 108 70-130 3 chlorofuromethane 0.0541 0.00541 mg/kg wet 0.05000 108 70-130 3 chlorofuromethane-04 0.0541 mg/kg wet 0.05000 108 70-130 3 chlorofuromethane-04 0.0541 mg/kg wet 0.05000 107 70-130 3 chlorofuromethane-04 0.0541 mg/kg wet 0.05000 108 70-130 3 chlorofuromethane-04 0.0541 mg/kg wet 0.05000 108 70-130 3 chlorofuromethane-04 0.0541 mg/kg wet 0.05000 108 70-130 3 chlorofuromethane-04 0.0541 mg/kg wet 0.05000 108 70-130 3 chlorofuromethane-04 0.0541 mg/kg wet 0.05000 108 70-130 3 chlorofuromethane-04 0.0541 mg/kg wet 0.05000 108 70-130 3 chlorofuromethane-04 0.0541 mg/kg wet 0.05000 108 70-130 3 chlorofuromethane-04 0.0541 mg/kg wet 0.05000 108 70-130 108 70-130 108 70-130 108 70-130 108 70-130 108 70-	•								25	
Trene 0.0536 0.0050 mg/kg wet 0.05000 107 70-130 3 1-Butylbenzene 0.0569 0.0050 mg/kg wet 0.05000 114 70-130 0.6 1-triary-amyl methyl ether 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 6 1-trachloroethene 0.0457 0.0050 mg/kg wet 0.05000 91 70-130 1 1-trahydrofuran 0.0478 0.0050 mg/kg wet 0.05000 96 70-130 9 1-trahydrofuran 0.0537 0.0050 mg/kg wet 0.05000 96 70-130 9 1-trahydrofuran 0.0537 0.0050 mg/kg wet 0.05000 107 70-130 4 1-trahydrofuran 0.0537 0.0050 mg/kg wet 0.05000 107 70-130 3 1-trahydrofuran 0.0530 0.0050 mg/kg wet 0.05000 107 70-130 3 1-trahydrofuran 0.0530 0.0050 mg/kg wet 0.05000 107 70-130 3 1-trahydrofuran 0.0530 0.0050 mg/kg wet 0.05000 107 70-130 2 1-trahydrofuran 0.0530 0.0050 mg/kg wet 0.05000 112 70-130 3 1-trahydrofuran 0.0535 0.0050 mg/kg wet 0.05000 112 70-130 3 1-trahydrofuran 0.0543 0.0050 mg/kg wet 0.05000 112 70-130 2 1-trahydrofuran 0.0543 0.0050 mg/kg wet 0.05000 107 70-130 3 1-trahydrofuran 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 5 1-trahydrofuran 0.0549 0.0500 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3 1-trahydrofuran 0.0541 mg/kg wet 0.05000 108 70-130 3	• •								25	
t-Butylbenzene 0.0569 0.0050 mg/kg wet 0.05000 114 70-130 0.6 rtiary-amyl methyl ether 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 6 trachloroethene 0.0457 0.0050 mg/kg wet 0.05000 91 70-130 1 trahydrofuran 0.0478 0.0050 mg/kg wet 0.05000 96 70-130 9 luene 0.0537 0.0050 mg/kg wet 0.05000 107 70-130 4 ms-1,2-Dichloroethene 0.0530 0.0050 mg/kg wet 0.05000 106 70-130 2 ms-1,3-Dichloropropene 0.0645 0.0050 mg/kg wet 0.05000 129 70-130 3 chloroethene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 chloroethene 0.0555 0.0050 mg/kg wet 0.05000 107 70-130 3 chlorofluoromethane 0.0560 0.0050 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 3 lene P,M 0.107 0.0100 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 109 70-130 3 mg/kg wet 0.05000 109 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 109 70-130 3 mg/kg wet 0.	·								25	
triary-amyl methyl ether 0.0581 0.0050 mg/kg wet 0.05000 116 70-130 6 trachloroethene 0.0457 0.0050 mg/kg wet 0.05000 91 70-130 1 trahydrofuran 0.0478 0.0050 mg/kg wet 0.05000 96 70-130 9 tuene 0.0537 0.0050 mg/kg wet 0.05000 107 70-130 4 ms-1,2-Dichloroethene 0.0530 0.0050 mg/kg wet 0.05000 106 70-130 2 ms-1,3-Dichloropropene 0.0645 0.0050 mg/kg wet 0.05000 129 70-130 3 chloroethene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 chloroethene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 chlorofluoromethane 0.0560 0.0050 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 3 chlorofluoromethane 0.0476 0.0100 mg/kg wet 0.05000 108 70-130 3 mg/kg wg/kg wg/									25	
trachloroethene 0.0457 0.0050 mg/kg wet 0.05000 91 70-130 1 trahydrofuran 0.0478 0.0050 mg/kg wet 0.05000 96 70-130 9 luene 0.0537 0.0050 mg/kg wet 0.05000 107 70-130 4 ms-1,2-Dichloroethene 0.0530 0.0050 mg/kg wet 0.05000 106 70-130 2 ms-1,3-Dichloropropene 0.0645 0.0050 mg/kg wet 0.05000 129 70-130 3 chloroethene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 chlorofluoromethane 0.0553 0.0050 mg/kg wet 0.05000 107 70-130 3 chlorofluoromethane 0.0560 0.0050 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 3 lene P,M 0.0539 0.0050 mg/kg wet 0.05000 108 70-130 3 mg/kg wg/kg wg/kg wg/kg wg/kg wg/kg wg/kg 0	•								25	
trahydrofuran 0.0478 0.0050 mg/kg wet 0.05000 96 70-130 9 luene 0.0537 0.0050 mg/kg wet 0.05000 107 70-130 4 ms-1,2-Dichloroethene 0.0530 0.0050 mg/kg wet 0.05000 106 70-130 2 ms-1,3-Dichloropropene 0.0645 0.0050 mg/kg wet 0.05000 129 70-130 3 chloroethene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 chlorofluoromethane 0.0560 0.0050 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 108 70-130 3 lene P,M 0.0539 0.0050 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 109 70-130 109 70-130 109									25	
Aluene 0.0537 0.0050 mg/kg wet 0.05000 107 70-130 4 ms-1,2-Dichloroethene 0.0530 0.0050 mg/kg wet 0.05000 106 70-130 2 ms-1,3-Dichloropropene 0.0645 0.0050 mg/kg wet 0.05000 129 70-130 3 ms-1,3-Dichloropropene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 ms-1,3-Dichloropropene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 ms-1,3-Dichlorofluoromethane 0.0555 0.0050 mg/kg wet 0.05000 107 70-130 2 ms/kg wet 0.05000 112 70-130 2 ms/kg wet 0.05000 109 70-130 5 ms/kg wet 0.05000 109 70-130 5 ms/kg wet 0.05000 109 70-130 2 ms/kg wet 0.05000 109 70-130 2 ms/kg wet 0.05000 108 70-130 3 ms/kg wet 0.05000 108 70-130 3 ms/kg wet 0.05000 108 70-130 3 ms/kg wet 0.05000 108 70-130 3 ms/kg wet 0.05000 108 70-130 3 ms/kg wet 0.05000 108 70-130 3 ms/kg wet 0.05000 108 70-130 3 ms/kg wet 0.05000 108 70-130 3 ms/kg wet 0.05000 108 70-130 3 ms/kg wet 0.05000 108 70-130 3 ms/kg wet 0.05000 108 70-130 3 ms/kg ws/kg w									25	
Ins-1,2-Dichloroethene 0.0530 0.0050 mg/kg wet 0.05000 106 70-130 2 ms-1,3-Dichloropropene 0.0645 0.0050 mg/kg wet 0.05000 129 70-130 3 ms-1,3-Dichloropropene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 2 mg/kg wet 0.05000 109 70-130 2 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.0	·								25	
chloropropene 0.0645 0.0050 mg/kg wet 0.05000 129 70-130 3 ichloroethene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 ichlorofluoromethane 0.0560 0.0050 mg/kg wet 0.05000 112 70-130 2 nyl Acetate 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 5 nyl Chloride 0.0476 0.0100 mg/kg wet 0.05000 95 70-130 2 elene O 0.0539 0.0050 mg/kg wet 0.05000 108 70-130 3 elene P,M 0.107 0.0100 mg/kg wet 0.1000 107 70-130 3 avrogate: 1,2-Dichloroethane-d4 0.0541 mg/kg wet 0.05000 108 70-130 3									25	
ichloroethene 0.0535 0.0050 mg/kg wet 0.05000 107 70-130 3 ichlorofluoromethane 0.0560 0.0050 mg/kg wet 0.05000 112 70-130 2 innyl Acetate 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 5 innyl Chloride 0.0476 0.0100 mg/kg wet 0.05000 95 70-130 2 innyl Chloride 0.0539 0.0050 mg/kg wet 0.05000 108 70-130 3 innyl Chloride 0.0539 0.0050 mg/kg wet 0.05000 108 70-130 3 innyl Chloride 0.0539 0.0100 mg/kg wet 0.05000 108 70-130 3 innyl Chloride 0.0541 mg/kg wet 0.05000 107 70-130 3 innyl Chloroethane-d4 0.0541 mg/kg wet 0.05000 108 70-130 3 innyl Chloroethane-d4									25	
ichlorofluoromethane 0.0560 0.0050 mg/kg wet 0.05000 112 70-130 2 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 95 70-130 2 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130									25	
109 Acetate 0.0543 0.0050 mg/kg wet 0.05000 109 70-130 5 mg/kg wet 0.05000 95 70-130 2 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.05000 108 70-130 3 mg/kg wet 0.1000 mg/kg wet 0.1000 107 70-130 3 mg/kg wet 0.1000 107 70-130 3 mg/kg wet 0.1000 107 70-130 3 mg/kg wet 0.1000 107 70-130 3 mg/kg wet 0.05000 108 70									25	
nyl Chloride 0.0476 0.0100 mg/kg wet 0.05000 95 70-130 2 elne O 0.0539 0.0050 mg/kg wet 0.05000 108 70-130 3 elne P,M 0.107 0.0100 mg/kg wet 0.1000 107 70-130 3 urrogate: 1,2-Dichloroethane-d4 0.0541 mg/kg wet 0.05000 108 70-130									25	
lene O 0.0539 0.0050 mg/kg wet 0.05000 108 70-130 3 lene P,M 0.107 0.0100 mg/kg wet 0.1000 107 70-130 3 rrogate: 1,2-Dichloroethane-d4 0.0541 mg/kg wet 0.05000 108 70-130									25	
lene P,M 0.107 0.0100 mg/kg wet 0.1000 107 70-130 3 virrogate: 1,2-Dichloroethane-d4 0.0541 mg/kg wet 0.05000 108 70-130									25	
progate: 1,2-Dichloroethane-d4 0.0541 mg/kg wet 0.05000 108 70-130									25	
Trogate. 1/2 Bioliotectaine d f								-	-	
mogater i promonauroparzene	- ·									
progate: Dibromofluoromethane 0.0518 mg/kg wet 0.05000 104 70-130										
<i>Irrogate: Toluene-d8</i> 0.0511 mg/kg wet 0.05000 102 70-130										

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211445

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Organic Compou	nds	/ Methanol
------------------------------------	-----	------------

1,1,1,2-Tetrachioroethane	Batch CL20420 - 5035					
1,1,1-Trichloroethane	Blank				=	<u> </u>
1,1-1-Trichioroethane	1,1,1,2-Tetrachloroethane	ND	0.100	mg/kg wet		
1,1,2,2-Tetrachloroethane	1,1,1-Trichloroethane	ND	0.0500			
1,1-2-Trichioroethane	1,1,2,2-Tetrachloroethane	ND	0.0500			
1,1-Dichloroethane		ND	0.0500			
1,1-Dichloroethene						
1,1-Dichloropropene						
1,2,3-Trichlorobenzene						
1,2,3-Trichloropropane						
1,2,4-Trinlorobenzene						
1,2,4-Trimethylbenzene ND 0.0500 mg/kg wet 1,2-Dibromo-3-Chloropropane ND 0.300 mg/kg wet 1,2-Dibromoethane ND 0.0500 mg/kg wet 1,2-Dichlorobenzene ND 0.0500 mg/kg wet 1,2-Dichloropropane ND 0.0500 mg/kg wet 1,3-Dichloropropane ND 0.0500 mg/kg wet 1,4-Dicknere-Screen ND 0.0500 mg/kg wet 1,2-Dichloropropane ND 0.0500 mg/kg wet 2,2-Dichloropropane ND 0.100 mg/kg wet 2-Didoropropane ND 0.100 mg/kg wet						
1,2-Dibromo-3-Chloropropane						
1,2-Dibromoethane	•					
1,2-Dichlorobenzene						
1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-S-Trimethylbenzene 1,3-S-Trimethylbenzene 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 1,4-Dickloropropane 1	1,2-Dibromoethane					
1,2-Dichloropropane ND 0.0500 mg/kg wet 1,3,5-Trimethylbenzene ND 0.0500 mg/kg wet 1,3-Dichlorobenzene ND 0.0500 mg/kg wet 1,3-Dichloropopane ND 0.0500 mg/kg wet 1,4-Dichlorobenzene ND 0.0500 mg/kg wet 1,4-Dichloropopane ND 5.00 mg/kg wet 1,4-Dichloropopane ND 0.0500 mg/kg wet 2,2-Dichloropopane ND 0.0500 mg/kg wet 2,2-Dichloropopane ND 0.0500 mg/kg wet 2,2-Dichloropopane ND 0.0500 mg/kg wet 2-Dichloropopane ND 0.0500 mg/kg wet 2-Hotalopopane	1,2-Dichlorobenzene			mg/kg wet		
ND	1,2-Dichloroethane	ND	0.0500	mg/kg wet		
1,3-Dichlorobenzene ND 0.0500 mg/kg wet 1,3-Dichloropropane ND 0.0500 mg/kg wet 1,4-Dichlorobenzene ND 0.0500 mg/kg wet 1,4-Dioxane - Screen ND 0.0500 mg/kg wet 1,2-Dichloropropane ND 0.100 mg/kg wet 2,2-Dichloropropane ND 0.100 mg/kg wet 2-Eutanone ND 0.0500 mg/kg wet 2-Chlorotoluene ND 0.0500 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet 3-Hexanone ND 0.0500 mg/kg wet 4-Hethyl-2-Pentanone ND 0.0500 mg/kg wet 3-Earsene ND 0.0500 <th< td=""><td>1,2-Dichloropropane</td><td>ND</td><td>0.0500</td><td>mg/kg wet</td><td></td><td></td></th<>	1,2-Dichloropropane	ND	0.0500	mg/kg wet		
1,4-Dichloropropane ND 0.0500 mg/kg wet 1,4-Dichlorobenzene ND 0.0500 mg/kg wet 1,4-Dichlorobenzene ND 0.0500 mg/kg wet 1,4-Dioxane - Screen ND 0.0500 mg/kg wet 1,4-Dioxane - Screen ND 0.0500 mg/kg wet 1,4-Dioxane 1,4-Dioxane 1,4-Dioxane	1,3,5-Trimethylbenzene	ND	0.0500	mg/kg wet		
1,4-Dichlorobenzene ND 0.0500 mg/kg wet 1,4-Dioxane - Screen ND 5.00 mg/kg wet 1-Chlorohexane ND 0.0500 mg/kg wet 2,2-Dichloropropane ND 0.100 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Chlorotoluene ND 0.0500 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet 4-Chlorotoluene ND 0.0500 mg/kg wet 4-Tsopropyltoluene ND 0.0500 mg/kg wet 4-Hethyl-2-Pentanone ND 0.500 mg/kg wet 4-Methyl-2-Pentanone ND 0.500 mg/kg wet 4-Rectone 0.600 1.25 mg/kg wet 3-Brazene ND 0.0500 mg/	1,3-Dichlorobenzene	ND	0.0500	mg/kg wet		
1,4-Dioxane - Screen	1,3-Dichloropropane	ND	0.0500	mg/kg wet		
1,4-Dioxane - Screen	1,4-Dichlorobenzene	ND	0.0500	mg/kg wet		
Chlorohexane ND 0.0500 mg/kg wet 0.2-Dichloropropane ND 0.100 mg/kg wet 0.2-Dichloropropane ND 0.100 mg/kg wet 0.2-Dichloropropane ND 0.0500 mg/kg wet 0.0500 mg/kg w	1,4-Dioxane - Screen	ND	5.00			
ND	1-Chlorohexane					
ND						
ND 0.0500 mg/kg wet						
ND 0.500 mg/kg wet						
ND 0.0500 mg/kg wet						
#-Isopropyltoluene						
######################################						
Acetone 0.600 1.25 mg/kg wet mg/kg mg/kg wet mg/kg wet mg/kg mg/kg wet mg/kg wet mg/kg mg/						
Benzene ND 0.0500 mg/kg wet Bromobenzene ND 0.0500 mg/kg wet Bromochloromethane ND 0.0500 mg/kg wet Bromodichloromethane ND 0.0500 mg/kg wet Bromomethane ND 0.100 mg/kg wet Bromomethane ND 0.0500 mg/kg wet Carbon Disulfide ND 0.0500 mg/kg wet Carbon Tetrachloride ND 0.0500 mg/kg wet Chlorobenzene ND 0.0500 mg/kg wet Chloroform 0.0160 0.0500 mg/kg wet Chloromethane ND 0.100 mg/kg wet Chloromethane ND 0.100 mg/kg wet						
Bromobenzene ND 0.0500 mg/kg wet Bromochloromethane ND 0.0500 mg/kg wet Bromodichloromethane ND 0.0500 mg/kg wet Bromoform ND 0.0500 mg/kg wet Bromomethane ND 0.100 mg/kg wet Carbon Disulfide ND 0.0500 mg/kg wet Carbon Tetrachloride ND 0.0500 mg/kg wet Chlorobenzene ND 0.0500 mg/kg wet Chloroethane ND 0.100 mg/kg wet Chloroform 0.0160 0.0500 mg/kg wet Chloromethane ND 0.100 mg/kg wet	Acetone					
Bromochloromethane ND 0.0500 mg/kg wet Bromodichloromethane ND 0.0500 mg/kg wet Bromoform ND 0.0500 mg/kg wet Bromomethane ND 0.100 mg/kg wet Carbon Disulfide ND 0.0500 mg/kg wet Carbon Tetrachloride ND 0.0500 mg/kg wet Chlorobenzene ND 0.0500 mg/kg wet Chlorothane ND 0.100 mg/kg wet Chloroform 0.0160 0.0500 mg/kg wet Chloromethane ND 0.100 mg/kg wet Chlorotethane ND 0.100 mg/kg wet	Benzene			mg/kg wet		
Bromodichloromethane ND 0.0500 mg/kg wet Bromoform ND 0.0500 mg/kg wet Bromomethane ND 0.100 mg/kg wet Carbon Disulfide ND 0.0500 mg/kg wet Carbon Tetrachloride ND 0.0500 mg/kg wet Chlorobenzene ND 0.0500 mg/kg wet Chlorothane ND 0.100 mg/kg wet Chloroform 0.0160 0.0500 mg/kg wet Chloromethane ND 0.100 mg/kg wet Chloroforbethene ND 0.0500 mg/kg wet	Bromobenzene	ND	0.0500	mg/kg wet		
Bromoform ND 0.0500 mg/kg wet Bromomethane ND 0.100 mg/kg wet Carbon Disulfide ND 0.0500 mg/kg wet Carbon Tetrachloride ND 0.0500 mg/kg wet Chlorobenzene ND 0.0500 mg/kg wet Chloroform 0.0160 0.0500 mg/kg wet Chloromethane ND 0.100 mg/kg wet Chloromethane ND 0.100 mg/kg wet Chloromethane ND 0.0500 mg/kg wet	Bromochloromethane	ND	0.0500	mg/kg wet		
ND 0.100 mg/kg wet	Bromodichloromethane	ND	0.0500	mg/kg wet		
Carbon Disulfide ND 0.0500 mg/kg wet Carbon Tetrachloride ND 0.0500 mg/kg wet Chlorobenzene ND 0.0500 mg/kg wet Chloroethane ND 0.100 mg/kg wet Chloroform 0.0160 0.0500 mg/kg wet Chloromethane ND 0.100 mg/kg wet Chloromethane ND 0.0500 mg/kg wet Chloromethane ND 0.0500 mg/kg wet	Bromoform	ND	0.0500	mg/kg wet		
Carbon Tetrachloride ND 0.0500 mg/kg wet Chlorobenzene ND 0.0500 mg/kg wet Chloroethane ND 0.100 mg/kg wet Chloroform 0.0160 0.0500 mg/kg wet Chloromethane ND 0.100 mg/kg wet chloromethane ND 0.0500 mg/kg wet	Bromomethane	ND	0.100	mg/kg wet		
Chlorobenzene ND 0.0500 mg/kg wet Chloroethane ND 0.100 mg/kg wet Chloroform 0.0160 0.0500 mg/kg wet Chloromethane ND 0.100 mg/kg wet cis-1,2-Dichloroethene ND 0.0500 mg/kg wet	Carbon Disulfide	ND	0.0500	mg/kg wet		
Chlorobenzene ND 0.0500 mg/kg wet Chloroethane ND 0.100 mg/kg wet Chloroform 0.0160 0.0500 mg/kg wet Chloromethane ND 0.100 mg/kg wet cis-1,2-Dichloroethene ND 0.0500 mg/kg wet	Carbon Tetrachloride	ND	0.0500	mg/kg wet		
Chloroethane ND 0.100 mg/kg wet Chloroform 0.0160 0.0500 mg/kg wet Chloromethane ND 0.100 mg/kg wet cis-1,2-Dichloroethene ND 0.0500 mg/kg wet	Chlorobenzene					
Chloroform 0.0160 0.0500 mg/kg wet Chloromethane ND 0.100 mg/kg wet cis-1,2-Dichloroethene ND 0.0500 mg/kg wet						
Chloromethane ND 0.100 mg/kg wet cis-1,2-Dichloroethene ND 0.0500 mg/kg wet						
cis-1,2-Dichloroethene ND 0.0500 mg/kg wet						
us-1,3-שנחווסיסpropene אט 0.0500 mg/kg wet						
	cis-1,3-Dicnioropropene	ND	0.0500	mg/кg wet		

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211445

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Organic Compounds / Methanol

Batch CL20420 - 5035							
Dibromochloromethane	ND	0.0500	mg/kg wet				
Dibromomethane	ND	0.0500	mg/kg wet				
Dichlorodifluoromethane	ND	0.0500	mg/kg wet				
Diethyl Ether	ND	0.0500	mg/kg wet				
Di-isopropyl ether	ND	0.0500	mg/kg wet				
Ethyl tertiary-butyl ether	ND	0.0500	mg/kg wet				
Ethylbenzene	ND	0.0500	mg/kg wet				
Hexachlorobutadiene	ND	0.0500	mg/kg wet				
Isopropylbenzene	ND	0.0500	mg/kg wet				
Methyl tert-Butyl Ether	ND	0.0500	mg/kg wet				
Methylene Chloride	ND	0.250	mg/kg wet				
Naphthalene	ND	0.0500	mg/kg wet				
n-Butylbenzene	ND	0.0500	mg/kg wet				
n-Propylbenzene	ND	0.0500	mg/kg wet				
sec-Butylbenzene	ND	0.0500	mg/kg wet				
Styrene	ND	0.0500	mg/kg wet				
tert-Butylbenzene	ND	0.0500	mg/kg wet				
Tertiary-amyl methyl ether	ND	0.0500	mg/kg wet				
Tetrachloroethene	ND	0.0500	mg/kg wet				
Tetrahydrofuran	ND	0.500	mg/kg wet				
Toluene	ND	0.0500	mg/kg wet				
trans-1,2-Dichloroethene	ND	0.0500	mg/kg wet				
trans-1,3-Dichloropropene	ND	0.0500	mg/kg wet				
Trichloroethene	ND	0.0500	mg/kg wet				
Vinyl Acetate	ND	0.250	mg/kg wet				
Vinyl Chloride	ND	0.0500	mg/kg wet				
Xylene O	ND	0.0500	mg/kg wet				
Xylene P,M	ND	0.100	mg/kg wet				
Surrogate: 1,2-Dichloroethane-d4	2.33		mg/kg wet	2.500	93	70-130	
Surrogate: 4-Bromofluorobenzene	2.39		mg/kg wet	2.500	96	70-130	
Surrogate: Dibromofluoromethane	2.38		mg/kg wet	2.500	95	70-130	
Surrogate: Toluene-d8	2.63		mg/kg wet	2.500	105	70-130	
LCS							
1,1,1,2-Tetrachloroethane	2.05	0.100	mg/kg wet	2.500	82	70-130	
1,1,1-Trichloroethane	2.24	0.0500	mg/kg wet	2.500	90	70-130	
1,1,2,2-Tetrachloroethane	2.60	0.0500	mg/kg wet	2.500	104	70-130	
1,1,2-Trichloroethane	2.77	0.0500	mg/kg wet	2.500	111	70-130	
1,1-Dichloroethane	2.62	0.0500	mg/kg wet	2.500	105	70-130	
1,1-Dichloroethene	3.10	0.0500	mg/kg wet	2.500	124	70-130	
1,1-Dichloropropene	3.01	0.0500	mg/kg wet	2.500	121	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

2.83

2.52

2.89

2.76

0.0500

0.0500

0.0500

0.0500

0.300

1,2,3-Trichlorobenzene

1,2,3-Trichloropropane

1,2,4-Trichlorobenzene

1,2,4-Trimethylbenzene

1,2-Dibromo-3-Chloropropane

Tel: 401-461-7181

mg/kg wet

mg/kg wet

mg/kg wet

mg/kg wet

mg/kg wet

2.500

2.500

2.500

2.500

Fax: 401-461-4486

113

101

116

110

70-130

70-130

70-130

70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211445

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B	Volatile	Organic	Compound:	s /	Met	thano	I
------------	----------	---------	-----------	-----	-----	-------	---

atch CL20420 - 5035							
2-Dibromoethane	2.66	0.0500	mg/kg wet	2.500	106	70-130	
2-Dichlorobenzene	2.66	0.0500	mg/kg wet	2.500	106	70-130	
2-Dichloroethane	2.26	0.0500	mg/kg wet	2.500	91	70-130	
2-Dichloropropane	2.68	0.0500	mg/kg wet	2.500	107	70-130	
3,5-Trimethylbenzene	2.82	0.0500	mg/kg wet	2.500	113	70-130	
-Dichlorobenzene	2.60	0.0500	mg/kg wet	2.500	104	70-130	
-Dichloropropane	2.48	0.0500	mg/kg wet	2.500	99	70-130	
-Dichlorobenzene	2.44	0.0500	mg/kg wet	2.500	98	70-130	
-Dioxane - Screen	59.0	5.00	mg/kg wet	50.00	118	44-241	
hlorohexane	2.53	0.0500	mg/kg wet	2.500	101	70-130	
Dichloropropane	2.57	0.100	mg/kg wet	2.500	103	70-130	
utanone	13.6	1.25	mg/kg wet	12.50	109	70-130	
hlorotoluene	2.69	0.0500	mg/kg wet	2.500	108	70-130	
exanone	12.5	0.500	mg/kg wet	12.50	100	70-130	
nlorotoluene	2.66	0.0500	mg/kg wet	2.500	106	70-130	
opropyltoluene	2.42	0.0500	mg/kg wet	2.500	97	70-130	
ethyl-2-Pentanone	13.8	0.500	mg/kg wet	12.50	110	70-130	
cone	12.3	1.25	mg/kg wet	12.50	99	70-130	
zene	2.76	0.0500	mg/kg wet	2.500	110	70-130	
nobenzene	2.68	0.0500	mg/kg wet	2.500	107	70-130	
nochloromethane	2.80	0.0500	mg/kg wet	2.500	112	70-130	
odichloromethane	2.26	0.0500	mg/kg wet	2.500	91	70-130	
noform	2.19	0.0500	mg/kg wet	2.500	88	70-130	
omethane	2.86	0.100	mg/kg wet	2.500	114	70-130	
on Disulfide	2.57	0.0500	mg/kg wet	2.500	103	70-130	
on Tetrachloride	2.08	0.0500	mg/kg wet	2.500	83	70-130	
robenzene	2.48	0.0500	mg/kg wet	2.500	99	70-130	
roethane	2.98	0.100	mg/kg wet	2.500	119	70-130	
roform	2.28	0.0500	mg/kg wet	2.500	91	70-130	
romethane	2.47	0.100	mg/kg wet	2.500	99	70-130	
1,2-Dichloroethene	2.92	0.0500	mg/kg wet	2.500	117	70-130	
1,3-Dichloropropene	2.62	0.0500	mg/kg wet	2.500	105	70-130	
omochloromethane	1.93	0.0500	mg/kg wet	2.500	77	70-130	
omomethane	2.62	0.0500	mg/kg wet	2.500	105	70-130	
nlorodifluoromethane	2.53	0.0500	mg/kg wet	2.500	101	70-130	
hyl Ether	2.85	0.0500	mg/kg wet	2.500	114	70-130	
sopropyl ether	2.86	0.0500	mg/kg wet	2.500	115	70-130	
l tertiary-butyl ether	2.93	0.0500	mg/kg wet	2.500	117	70-130	
rlbenzene	2.52	0.0500	mg/kg wet	2.500	101	70-130	
achlorobutadiene	2.63	0.0500	mg/kg wet	2.500	105	70-130	
propylbenzene	2.81	0.0500	mg/kg wet	2.500	112	70-130	
thyl tert-Butyl Ether	2.95	0.0500	mg/kg wet	2.500	118	70-130	
chylene Chloride	2.60	0.250	mg/kg wet	2.500	104	70-130	
ohthalene	2.82	0.0500	mg/kg wet	2.500	113	70-130	
utylbenzene	2.70	0.0500	mg/kg wet	2.500	108	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Result

MRL

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

Qualifier

RPD

Limit

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

Analyte

1,2,4-Trichlorobenzene

1,2,4-Trimethylbenzene

1.2-Dibromoethane

1,2-Dichlorobenzene

1,2-Dichloroethane

1.2-Dichloropropane

1,3-Dichlorobenzene

1,3-Dichloropropane

1,4-Dichlorobenzene

1,4-Dioxane - Screen

2,2-Dichloropropane

1-Chlorohexane

2-Chlorotoluene

2-Butanone

1,3,5-Trimethylbenzene

1,2-Dibromo-3-Chloropropane

ESS Laboratory Work Order: 1211445

%REC

%REC

Limits

RPD

Quality Control Data

Units

Spike

Level

Source

Result

.,									-
	5035/	/8260B Volat	ile Organic C	ompounds / N	4ethanol				
Batch CL20420 - 5035									
n-Propylbenzene	2.73	0.0500	mg/kg wet	2.500	109	70-130			
sec-Butylbenzene	2.78	0.0500	mg/kg wet	2.500	111	70-130			
Styrene	2.42	0.0500	mg/kg wet	2.500	97	70-130			
tert-Butylbenzene	2.80	0.0500	mg/kg wet	2.500	112	70-130			
Fertiary-amyl methyl ether	3.33	0.0500	mg/kg wet	2.500	133	70-130			B+
Tetrachloroethene	2.18	0.0500	mg/kg wet	2.500	87	70-130			
Tetrahydrofuran	2.81	0.500	mg/kg wet	2.500	112	70-130			
Foluene	2.88	0.0500	mg/kg wet	2.500	115	70-130			
trans-1,2-Dichloroethene	2.96	0.0500	mg/kg wet	2.500	118	70-130			
trans-1,3-Dichloropropene	2.13	0.0500	mg/kg wet	2.500	85	70-130			
Frichloroethene	2.56	0.0500	mg/kg wet	2.500	102	70-130			
/inyl Acetate	2.96	0.250	mg/kg wet	2.500	119	70-130			
/inyl Chloride	2.78	0.0500	mg/kg wet	2.500	111	70-130			
(ylene O	2.67	0.0500	mg/kg wet	2.500	107	70-130			
Kylene P,M	5.31	0.100	mg/kg wet	5.000	106	70-130			
Surrogate: 1,2-Dichloroethane-d4	2.20		mg/kg wet	2.500	88	70-130			
Surrogate: 4-Bromofluorobenzene	2.43		mg/kg wet	2.500	97	70-130			
Surrogate: Dibromofluoromethane	2.73		mg/kg wet	2.500	109	70-130			
Surrogate: Toluene-d8	2.54		mg/kg wet	2.500	102	70-130			
LCS Dup									
1,1,1,2-Tetrachloroethane	2.18	0.100	mg/kg wet	2.500	87	70-130	6	25	
1,1,1-Trichloroethane	2.42	0.0500	mg/kg wet	2.500	97	70-130	8	25	
1,1,2,2-Tetrachloroethane	2.72	0.0500	mg/kg wet	2.500	109	70-130	5	25	
,1,2-Trichloroethane	2.91	0.0500	mg/kg wet	2.500	117	70-130	5	25	
,1-Dichloroethane	2.78	0.0500	mg/kg wet	2.500	111	70-130	6	25	
.,1-Dichloroethene	3.29	0.0500	mg/kg wet	2.500	132	70-130	6	25	B+
.,1-Dichloropropene	3.24	0.0500	mg/kg wet	2.500	129	70-130	7	25	
1,2,3-Trichlorobenzene	2.98	0.0500	mg/kg wet	2.500	119	70-130	5	25	
1,2,3-Trichloropropane	2.58	0.0500	mg/kg wet	2.500	103	70-130	2	25	

185 Frances Avenue, Cranston, RI 02910-2211

3.08

2.82

2.20

2.81

2.75

2.38

2.83

2.86

2.73

2.61

2.47

60.9

2.66

2.71

14.1

0.0500

0.0500

0.300

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

5.00

0.0500

0.100

1.25

0.0500

Tel: 401-461-7181

Fax: 401-461-4486

123

113

88

112

110

95

113

114

109

105

99

122

106

108

113

http://www.ESSLaboratory.com

6

2

5

6

3

5

5

1

5

5

1

3

5

4

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

44-241

70-130

70-130

70-130

25

25

25

25

25

25

25

25

25

25

25

200 25

25

25

2.500

2.500

2.500

2.500

2.500

2.500

2.500

2.500

2.500

2.500

2.500

50.00

2.500

2.500

12.50

mg/kg wet

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211445

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

	5035/	8260B Volat	ile Organic C	ompounds / N	Methanol				
Batch CL20420 - 5035									
2-Hexanone	13.3	0.500	mg/kg wet	12.50	106	70-130	6	25	
4-Chlorotoluene	2.74	0.0500	mg/kg wet	2.500	109	70-130	3	25	
4-Isopropyltoluene	2.47	0.0500	mg/kg wet	2.500	99	70-130	2	25	
4-Methyl-2-Pentanone	14.4	0.500	mg/kg wet	12.50	115	70-130	5	25	
Acetone	12.7	1.25	mg/kg wet	12.50	102	70-130	3	25	
Benzene	2.93	0.0500	mg/kg wet	2.500	117	70-130	6	25	
Bromobenzene	2.73	0.0500	mg/kg wet	2.500	109	70-130	2	25	
Bromochloromethane	2.97	0.0500	mg/kg wet	2.500	119	70-130	6	25	
Bromodichloromethane	2.42	0.0500	mg/kg wet	2.500	97	70-130	7	25	
Bromoform	2.37	0.0500	mg/kg wet	2.500	95	70-130	8	25	
Bromomethane	3.07	0.100	mg/kg wet	2.500	123	70-130	7	25	
Carbon Disulfide	2.79	0.0500	mg/kg wet	2.500	112	70-130	8	25	
Carbon Tetrachloride	2.18	0.0500	mg/kg wet	2.500	87	70-130	5	25	
Chlorobenzene	2.64	0.0500	mg/kg wet	2.500	105	70-130	6	25	
Chloroethane	3.17	0.100	mg/kg wet	2.500	127	70-130	6	25	
Chloroform	2.43	0.0500	mg/kg wet	2.500	97	70-130	6	25	
Chloromethane	2.64	0.100	mg/kg wet	2.500	106	70-130	7	25	
cis-1,2-Dichloroethene	3.10	0.0500	mg/kg wet	2.500	124	70-130	6	25	
cis-1,3-Dichloropropene	2.79	0.0500	mg/kg wet	2.500	112	70-130	6	25	
Dibromochloromethane	2.08	0.0500	mg/kg wet	2.500	83	70-130	7	25	
Dibromomethane	2.79	0.0500	mg/kg wet	2.500	112	70-130	6	25	
Dichlorodifluoromethane	2.68	0.0500	mg/kg wet	2.500	107	70-130	6	25	
Diethyl Ether	2.99	0.0500	mg/kg wet	2.500	120	70-130	5	25	
Di-isopropyl ether	3.03	0.0500	mg/kg wet	2.500	121	70-130	6	25	
Ethyl tertiary-butyl ether	3.11	0.0500	mg/kg wet	2.500	124	70-130	6	25	
Ethylbenzene	2.71	0.0500	mg/kg wet	2.500	108	70-130	7	25	
Hexachlorobutadiene	2.74	0.0500	mg/kg wet	2.500	110	70-130	4	25	
Isopropylbenzene	2.85	0.0500	mg/kg wet	2.500	114	70-130	1	25	
Methyl tert-Butyl Ether	3.12	0.0500	mg/kg wet	2.500	125	70-130	5	25	
Methylene Chloride	2.79	0.250	mg/kg wet	2.500	112	70-130	7	25	
Naphthalene	2.94	0.0500	mg/kg wet	2.500	118	70-130	4	25	
n-Butylbenzene	2.76	0.0500	mg/kg wet	2.500	111	70-130	2	25	
n-Propylbenzene	2.77	0.0500	mg/kg wet	2.500	111	70-130	2	25	
sec-Butylbenzene	2.83	0.0500	mg/kg wet	2.500	113	70-130	2	25	
Styrene	2.58	0.0500	mg/kg wet	2.500	103	70-130	6	25	
tert-Butylbenzene	2.86	0.0500	mg/kg wet	2.500	114	70-130	2	25	
Tertiary-amyl methyl ether	3.49	0.0500	mg/kg wet	2.500	140	70-130	5	25	B+
Tetrachloroethene	2.29	0.0500	mg/kg wet	2.500	91	70-130	5	25	
Tetrahydrofuran	2.92	0.500	mg/kg wet	2.500	117	70-130	4	25	
Toluene	3.04	0.0500	mg/kg wet	2.500	122	70-130	6	25	
trans-1,2-Dichloroethene	3.21	0.0500	mg/kg wet	2.500	128	70-130	8	25	
trans-1,3-Dichloropropene	2.22	0.0500	mg/kg wet	2.500	89	70-130	4	25	
Trichloroethene	2.72	0.0500	mg/kg wet	2.500	109	70-130	6	25	
Vinyl Acetate	3.21	0.250	mg/kg wet	2.500	128	70-130	8	25	
Vinyl Chloride	2.95	0.0500	mg/kg wet	2.500	118	70-130	6	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211445

Quality Control Data

A1-4-	D II	MO	11. 2	Spike	Source	0/ 550	%REC	DDD	RPD	0. "5
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	5035/	8260B Volat	ile Organic C	ompound	ds / Metha	anol				
Batch CL20420 - 5035										
Xylene O	2.84	0.0500	mg/kg wet	2.500		114	70-130	6	25	
Xylene P,M	5.66	0.100	mg/kg wet	5.000		113	70-130	7	25	
Surrogate: 1,2-Dichloroethane-d4	2.30		mg/kg wet	2.500		92	70-130			
Surrogate: 4-Bromofluorobenzene	2.58		mg/kg wet	2.500		103	70-130			
Surrogate: Dibromofluoromethane	2.91		mg/kg wet	2.500		117	70-130			
Surrogate: Toluene-d8	2.67		mg/kg wet	2.500		107	70-130			
	8	270C Polynu	ıclear Aroma	tic Hydro	carbons					
Batch CK22830 - 3546										
Blank										
Benzo(a)pyrene	ND	0.167	mg/kg wet							
Chrysene	ND	0.167	mg/kg wet							
Surrogate: 1,2-Dichlorobenzene-d4	2.30		mg/kg wet	3.333		69	30-130			
Surrogate: 2-Fluorobiphenyl	2.47		mg/kg wet	3.333		74	30-130			
Surrogate: Nitrobenzene-d5	2.47		mg/kg wet	3.333		74	30-130			
Surrogate: p-Terphenyl-d14	3.37		mg/kg wet	3.333		101	30-130			
LCS										
Benzo(a)pyrene	2.87	0.167	mg/kg wet	3.333		86	40-140			
Chrysene	3.10	0.167	mg/kg wet	3.333		93	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	2.71		mg/kg wet	3.333		81	30-130			
Surrogate: 2-Fluorobiphenyl	2.91		mg/kg wet	3.333		87	30-130			
Surrogate: Nitrobenzene-d5	2.94		mg/kg wet	3.333		88	30-130			
Surrogate: p-Terphenyl-d14	3.32		mg/kg wet	3.333		100	30-130			
LCS Dup										
Benzo(a)pyrene	3.15	0.167	mg/kg wet	3.333		95	40-140	9	30	
Chrysene	3.38	0.167	mg/kg wet	3.333		101	40-140	9	30	
Surrogate: 1,2-Dichlorobenzene-d4	2.73		mg/kg wet	3.333		82	30-130			
Surrogate: 2-Fluorobiphenyl	3.09		mg/kg wet	3.333		93	30-130			
Surrogate: Nitrobenzene-d5	3.04		mg/kg wet	3.333		91	30-130			
Surrogate: p-Terphenyl-d14	3.47		mg/kg wet	3.333		104	30-130			

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211445

Notes and Definitions

U	Analyte included in the analysis, but not detected
SC	Surrogate recovery(ies) outside of criteria. Reextraction/Reanalysis confirms results (SC).
J	Reported between MDL and MRL; Estimated value.

D Diluted.

B+ Blank Spike recovery is above upper control limit (B+).

B Present in Method Blank (B).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

Relative Percent Difference **RPD** Method Detection Limit **MDL** MRL Method Reporting Limit LOD Limit of Detection Limit of Quantitation LOQ **Detection Limit** DL I/V Initial Volume F/V Final Volume

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

Range result excludes concentrations of target analytes eluting in that range.
Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1211445

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP)

A2LA Accredited: Testing Cert# 2864.01

http://www.a2la.org/scopepdf/2864-01.pdf

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/labs/waterlabs-instate.php

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water: RI0002 http://www.maine.gov/dep/blwq/topic/vessel/lab_list.pdf

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/labcert/labcert.aspx

New Hampshire (NELAP accredited) Potable and Non PotableWater, Solid and Hazardous Waste: 2424 http://www4.egov.nh.gov/des/nhelap/namesearch.asp

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

United States Department of Agriculture Soil Permit: S-54210

Maryland Potable Water: 301 http://www.mde.state.md.us/assets/document/WSP_labs-2009apr20.pdf

CHEMISTRY

A2LA Accredited: Testing Cert # 2864.01
Lead in Paint, Phthalates, Lead in Children's Metals Products (Including Jewelry)
http://www.A2LA.org/dirsearchnew/newsearch.cfm

CPSC ID# 1141 Lead Paint, Lead in Children's Metals Jewelry http://www.cpsc.gov/cgi-bin/labapplist.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Yes

Yes

N/A

No

Yes

No

YesINo

Sample and Cooler Receipt Checklist

Client: Resource Controls

Client Project ID:

Shipped/Delivered Via: ESS Courier

ESS Project ID: <u>12110445</u> Date Project Due: 12/4/12 Days For Project: 5 Day

Items to be checked upon receipt:

1.	. Air Bill Ma	anifest Present?	
	Air No.:		

2. Were Custody Seals Present?

3. Were Custody Seals Intact?

4. Is Radiation count < 100 CPM?</p>

5. Is a cooler present?

Cooler Temp: 2.2 Iced With: Icepacks

6. Was COC included with samples?

7. Was COC signed and dated by client?

8. Does the COC match the sample

9. Is COC complete and correct?

10. Are the samples properly preserved? * No

11. Proper sample containers used?

12. Any air bubbles in the VOA vials?

13. Holding times exceeded?

14. Sufficient sample volumes? 15. Any Subcontracting needed?

16. Are ESS labels on correct containers? Yes No

17. Were samples received intact?

ESS Sample IDs: _____

Sub Lab: _____ Analysis:

18. Was there need to call project manager to discuss status? If yes, please explain.

Low	levels	aere	trozen	11/2	1/12	Ω	1330.
						_	

No

N/A

Yes

Yes

Yes

Yes

Yes

Yes

By whom? ____ Who was called?:_____

Sample Number	Properly Preserved	Container Type	# of Containers	Preservative	
1	Yes	40 ml - VOA	<u> </u>	MeOH	
1	Yes	40 ml - VOA	2	other	
1	Yes	8 oz Soil Jar	1	NP	
2	Yes	40 ml - VOA	1	MeOH	
2	Yes	40 ml - VOA	2	other	
2	Yes	8 oz Soil Jar	1	NP	
3	Yes	40 ml - VOA	1	MeOH	
3	Yes	40 ml - VOA	2	other	
3	Yes	8 oz Soil Jar	1	NP	
4	Yes	40 ml - VOA	1	MeOH	
4	Yes	40 ml - VOA	2	other	
4	Yes	8 oz Soil Jar	1	NP	
5	Yes	8 oz Soil Jar	1	NP	
6	Yes	40 ml - VOA	1	MeOH	
6	Yes	40 ml - VOA	1	other	
Completed By:	- ,- -	Date/Time:	11/27/12		
Reviewed By:	<u> </u>	Date/Time:	11/27/12		

Turn Time Standard Other Other Reporting Limits If faster than 5 days, prior approval by laboratory is required # Reporting Limits State where samples were collected from: MA (RI) CT NH NJ NY ME Other Electronic Deliverable Yes No Navy Othe following: Format: Excel Access PDF Other Other	Project # Project Name (20 Chat. or less) Write Required Analysis	TOP!	Sip PO# Containers of Containers	Number	5 S-2 (8.3')	x S S (5.57) v (/ / / / / S S S S S X	5 8-8	0	1 cip Black RF 11/27		V-VOA Matrix: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filters	Internal Use Only Preservation Code 1- NP, 2- HC1, 3- H, SO., 4- HNO., 5- NaOH, 6- McOH, 7- Asorbic Acid, 8- ZnAct, 9-	[] Technicians Comments:	Received by: (Signature) Received by: (Signature) Becgived by: (Signature) Appliting Relinquished by: (Signature) Becgived by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature)	25
ratory <i>ingineering, Inc.</i> Cranston, RI 02910 Fax (401) 461-448		Controls Banks	State	 	4.57	12:15					G-Glass S-Sterile V-VOA	oN	No NA:	Date/Time	$(2/\sqrt{M_{et}})$ $(2/\sqrt{M_{et}})$ $(2/\sqrt{M_{et}})$ $(2/\sqrt{M_{et}})$ $(3/\sqrt{M_{et}})$ $(3/\sqrt{M_{et}}$
ESS Laboratory Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston, RI 02910-2211 Tel. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com	Co. Name	Contact Person	790	40/ 128-128/20 ESS LAB Date Sample #	12/11	12/11 2	+	5 11/21	9		Container Type: P-Poly C		Seals Intact Yes	Reliperisched by: (Signature) Rohnquished by: (Signature)	*By circling MA-MCP, clien in accordance with MADE!

Page 39 of 39

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Daniel Boynes Resource Controls 474 Broadway Pawtucket, RI 02860-1377

RE: Barrington (7131)

ESS Laboratory Work Order Number: 1211448

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 5:25 pm, Dec 04, 2012

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibratins, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211448

SAMPLE RECEIPT

The following samples were received on November 27, 2012 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	SampleName	Matrix	Analysis
1211448-01	MW-1	Ground Water	8260B
1211448-02	MW-2	Ground Water	8260B
1211448-03	MW-3	Ground Water	6010B, 7060A, 7470A, 8260B, 8270C, 8270C SIM
1211448-04	MW-4	Ground Water	6010B, 7060A, 7470A, 8260B, 8270C, 8270C SIM
1211448-05	MW-5	Ground Water	6010B, 7060A, 7470A, 8260B, 8270C, 8270C SIM
1211448-06	Trip Blank	Aqueous	8260B

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211448

PROJECT NARRATIVE

8260B Volatile Organic Compounds

CK22716-BS1 Blank Spike recovery is above upper control limit (B+).

Acetone (135% @ 70-130%), Hexachloroethane (134% @ 70-130%)

CK22716-BSD1 Blank Spike recovery is above upper control limit (B+).

Hexachloroethane (147% @ 70-130%), Vinyl Chloride (137% @ 70-130%)

CVK0267-CCV1 Continuing Calibration recovery is above upper control limit (C+).

Chloroethane (180% @ 70-130%)

8270C Semi-Volatile Organic Compounds

CVK0322-CCV1 Calibration required quadratic regression (Q).

2,4-Dinitrophenol (126% @ 70-130%), Hexachlorocyclopentadiene (76% @ 70-130%)

8270C(SIM) Semi-Volatile Organic Compounds

1211448-03 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (126% @ 15-110%)

1211448-04 <u>Surrogate recovery(ies) above upper control limit (S+).</u>

2,4,6-Tribromophenol (135% @ 15-110%)

1211448-05 <u>Surrogate recovery(ies) above upper control limit (S+).</u>

2,4,6-Tribromophenol (138% @ 15-110%)

CK22913-BLK1 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (138% @ 15-110%)

CK22913-BS1 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (160% @ 15-110%)

CK22913-BSD1 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (158% @ 15-110%)

CVK0313-CCV1 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (168% @ 70-130%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211448

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5035 - Solid Purge and Trap

Page 4 of 51

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-1 Date Sampled: 11/26/12 10:05

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-01

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	Method 8260B	Limit DI		Sequence CVK0267	Batch CK22716
1,1,1-Trichloroethane	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,1,2-Trichloroethane	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,1-Dichloroethane	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,1-Dichloroethene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,1-Dichloropropene	ND (0.0020)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,2,3-Trichlorobenzene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,2,3-Trichloropropane	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,2,4-Trichlorobenzene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,2,4-Trimethylbenzene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,2-Dibromoethane	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,2-Dichlorobenzene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,2-Dichloroethane	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,2-Dichloropropane	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,3,5-Trimethylbenzene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,3-Dichlorobenzene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,3-Dichloropropane	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,4-Dichlorobenzene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1,4-Dioxane - Screen	ND (0.500)	8260B	1	11/27/12 16:21	CVK0267	CK22716
1-Chlorohexane	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
2,2-Dichloropropane	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
2-Butanone	ND (0.0100)	8260B	1	11/27/12 16:21	CVK0267	CK22716
2-Chlorotoluene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
2-Hexanone	ND (0.0100)	8260B	1	11/27/12 16:21	CVK0267	CK22716
4-Chlorotoluene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
4-Isopropyltoluene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
4-Methyl-2-Pentanone	ND (0.0250)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Acetone	ND (0.0100)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Benzene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-1 Date Sampled: 11/26/12 10:05

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-01

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromobenzene	Results (MRL) ND (0.0020)	Method 8260B	Limit DF	Analyzed 11/27/12 16:21	Sequence CVK0267	Batch CK22716
Bromochloromethane	ND (0.0020) ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Bromodichloromethane	ND (0.0006)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Bromoform	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Bromomethane	ND (0.0020)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Carbon Disulfide	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Carbon Tetrachloride	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Chlorobenzene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Chloroethane	ND (0.0020)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Chloroform	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Chloromethane	ND (0.0020)	8260B	1	11/27/12 16:21	CVK0267	CK22716
cis-1,2-Dichloroethene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
cis-1,3-Dichloropropene	ND (0.0004)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Dibromochloromethane	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Dibromomethane	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Dichlorodifluoromethane	ND (0.0020)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Diethyl Ether	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Di-isopropyl ether	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Ethyl tertiary-butyl ether	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Ethylbenzene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Hexachlorobutadiene	ND (0.0006)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Hexachloroethane	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Isopropylbenzene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Methyl tert-Butyl Ether	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Methylene Chloride	ND (0.0020)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Naphthalene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
n-Butylbenzene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
n-Propylbenzene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
sec-Butylbenzene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
Styrene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716
tert-Butylbenzene	ND (0.0010)	8260B	1	11/27/12 16:21	CVK0267	CK22716

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-1 Date Sampled: 11/26/12 10:05

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-01

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)		Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	11/27/12 16:21	CVK0267	CK22716
Tetrachloroethene	ND (0.0010)		8260B		1	11/27/12 16:21	CVK0267	CK22716
Tetrahydrofuran	ND (0.0050)		8260B		1	11/27/12 16:21	CVK0267	CK22716
Toluene	ND (0.0010)		8260B		1	11/27/12 16:21	CVK0267	CK22716
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/27/12 16:21	CVK0267	CK22716
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/27/12 16:21	CVK0267	CK22716
Trichloroethene	ND (0.0010)		8260B		1	11/27/12 16:21	CVK0267	CK22716
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/27/12 16:21	CVK0267	CK22716
Vinyl Acetate	ND (0.0050)		8260B		1	11/27/12 16:21	CVK0267	CK22716
Vinyl Chloride	ND (0.0010)		8260B		1	11/27/12 16:21	CVK0267	CK22716
Xylene O	ND (0.0010)		8260B		1	11/27/12 16:21	CVK0267	CK22716
Xylene P,M	ND (0.0020)		8260B		1	11/27/12 16:21	CVK0267	CK22716
Xylenes (Total)	ND (0.0030)		8260B		1	11/27/12 16:21		[CALC]
Trihalomethanes (Total)	ND (0.0036)		8260B			11/27/12 16:21		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		103 %		70-130				
Surrogate: 4-Bromofluorobenzene		102 %		70-130				
Surrogate: Dibromofluoromethane		110 %		70-130				
Surrogate: Toluene-d8		108 %		70-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-2 Date Sampled: 11/26/12 10:40

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-02

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	Method 8260B	Limit DF	<u>Analyzed</u> 11/27/12 16:49	Sequence CVK0267	Batch CK22716
1,1,1-Trichloroethane	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,1,2-Trichloroethane	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,1-Dichloroethane	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,1-Dichloroethene	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,1-Dichloropropene	ND (0.0020)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,2,3-Trichlorobenzene	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,2,3-Trichloropropane	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,2,4-Trichlorobenzene	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,2,4-Trimethylbenzene	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,2-Dibromoethane	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,2-Dichlorobenzene	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,2-Dichloroethane	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,2-Dichloropropane	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,3,5-Trimethylbenzene	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,3-Dichlorobenzene	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,3-Dichloropropane	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,4-Dichlorobenzene	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1,4-Dioxane - Screen	ND (0.500)	8260B	1	11/27/12 16:49	CVK0267	CK22716
1-Chlorohexane	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
2,2-Dichloropropane	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
2-Butanone	ND (0.0100)	8260B	1	11/27/12 16:49	CVK0267	CK22716
2-Chlorotoluene	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
2-Hexanone	ND (0.0100)	8260B	1	11/27/12 16:49	CVK0267	CK22716
4-Chlorotoluene	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
4-Isopropyltoluene	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716
4-Methyl-2-Pentanone	ND (0.0250)	8260B	1	11/27/12 16:49	CVK0267	CK22716
Acetone	0.0104 (0.0100)	8260B	1	11/27/12 16:49	CVK0267	CK22716
Benzene	ND (0.0010)	8260B	1	11/27/12 16:49	CVK0267	CK22716

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-2 Date Sampled: 11/26/12 10:40

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-02

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromobenzene	<u>Results (MRL)</u> ND (0.0020)	Method 8260B	<u>Limit</u> <u>D</u>	<u>F</u>	Analyzed 11/27/12 16:49	Sequence CVK0267	Batch CK22716
Bromochloromethane	ND (0.0020) ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Bromodichloromethane	ND (0.0010) ND (0.0006)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Bromoform	ND (0.0000) ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Bromomethane		8260B		1	11/27/12 16:49	CVK0267	CK22716
Carbon Disulfide	ND (0.0020)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Carbon Tetrachloride	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267 CVK0267	CK22716 CK22716
Chlorobenzene	ND (0.0010)	8260B 8260B		1 1	11/27/12 16:49		
	ND (0.0010)					CVK0267	CK22716
Chloroethane	ND (0.0020)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Chloroform	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Chloromethane	ND (0.0020)	8260B		1	11/27/12 16:49	CVK0267	CK22716
cis-1,2-Dichloroethene	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
cis-1,3-Dichloropropene	ND (0.0004)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Dibromochloromethane	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Dibromomethane	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Dichlorodifluoromethane	ND (0.0020)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Diethyl Ether	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Di-isopropyl ether	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Ethyl tertiary-butyl ether	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Ethylbenzene	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Hexachlorobutadiene	ND (0.0006)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Hexachloroethane	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Isopropylbenzene	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Methyl tert-Butyl Ether	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Methylene Chloride	ND (0.0020)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Naphthalene	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
n-Butylbenzene	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
n-Propylbenzene	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
sec-Butylbenzene	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
Styrene	ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
tert-Butylbenzene	ND (0.0010) ND (0.0010)	8260B		1	11/27/12 16:49	CVK0267	CK22716
terr Buty to enzeme	14D (0.0010)	02000		•	11/2//12 10.79	C + 1X020/	CIX22/10

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-2 Date Sampled: 11/26/12 10:40

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-02

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)		Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	11/27/12 16:49	CVK0267	CK22716
Tetrachloroethene	ND (0.0010)		8260B		1	11/27/12 16:49	CVK0267	CK22716
Tetrahydrofuran	ND (0.0050)		8260B		1	11/27/12 16:49	CVK0267	CK22716
Toluene	ND (0.0010)		8260B		1	11/27/12 16:49	CVK0267	CK22716
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/27/12 16:49	CVK0267	CK22716
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/27/12 16:49	CVK0267	CK22716
Trichloroethene	ND (0.0010)		8260B		1	11/27/12 16:49	CVK0267	CK22716
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/27/12 16:49	CVK0267	CK22716
Vinyl Acetate	ND (0.0050)		8260B		1	11/27/12 16:49	CVK0267	CK22716
Vinyl Chloride	ND (0.0010)		8260B		1	11/27/12 16:49	CVK0267	CK22716
Xylene O	0.0010 (0.0010)		8260B		1	11/27/12 16:49	CVK0267	CK22716
Xylene P,M	ND (0.0020)		8260B		1	11/27/12 16:49	CVK0267	CK22716
Xylenes (Total)	ND (0.0030)		8260B		1	11/27/12 16:49		[CALC]
Trihalomethanes (Total)	ND (0.0036)		8260B			11/27/12 16:49		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		109 %		70-130				
Surrogate: 4-Bromofluorobenzene		104 %		70-130				
Surrogate: Dibromofluoromethane		111 %		70-130				
Surrogate: Toluene-d8		106 %		70-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-3 Date Sampled: 11/26/12 10:50

Percent Solids: N/A

Percent Sonus. N/A

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-03

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Total Metals Aqueous

<u>Analyte</u>	Results (MRL)	Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>I/V</u>	<u>F/V</u>	Batch
Arsenic	0.0065 (0.0025)	7060A		1	JP	11/29/12 15:44	50	25	CK22733
Barium	0.096 (0.025)	6010B		1	SVD	11/28/12 14:13	50	25	CK22733
Cadmium	ND (0.0025)	6010B		1	SVD	11/28/12 14:13	50	25	CK22733
Chromium	ND (0.010)	6010B		1	SVD	11/28/12 14:13	50	25	CK22733
Lead	0.053 (0.010)	6010B		1	SVD	11/28/12 14:13	50	25	CK22733
Mercury	ND (0.00050)	7470A		1	KJK	12/01/12 16:12	20	40	CK23009
Selenium	ND (0.025)	6010B		1	SVD	11/28/12 14:13	50	25	CK22733
Silver	ND (0.005)	6010B		1	SVD	11/28/12 14:13	50	25	CK22733

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-3 Date Sampled: 11/26/12 10:50

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-03

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/27/12 17:16	Sequence CVK0267	Batch CK22716
1,1,1-Trichloroethane	0.0012 (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,1,2-Trichloroethane	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,1-Dichloroethane	0.0030 (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,1-Dichloroethene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,1-Dichloropropene	ND (0.0020)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,2,3-Trichlorobenzene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,2,3-Trichloropropane	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,2,4-Trichlorobenzene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,2,4-Trimethylbenzene	0.0010 (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,2-Dibromoethane	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,2-Dichlorobenzene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,2-Dichloroethane	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,2-Dichloropropane	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,3,5-Trimethylbenzene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,3-Dichlorobenzene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,3-Dichloropropane	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,4-Dichlorobenzene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1,4-Dioxane - Screen	ND (0.500)	8260B		1	11/27/12 17:16	CVK0267	CK22716
1-Chlorohexane	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
2,2-Dichloropropane	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
2-Butanone	ND (0.0100)	8260B		1	11/27/12 17:16	CVK0267	CK22716
2-Chlorotoluene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
2-Hexanone	ND (0.0100)	8260B		1	11/27/12 17:16	CVK0267	CK22716
4-Chlorotoluene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
4-Isopropyltoluene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
4-Methyl-2-Pentanone	ND (0.0250)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Acetone	0.102 (0.0100)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Benzene	0.0011 (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

Page 12 of 51

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-3 Date Sampled: 11/26/12 10:50

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-03

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Bromobenzene	ND (0.0020)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Bromochloromethane	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Bromodichloromethane	ND (0.0006)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Bromoform	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Bromomethane	ND (0.0020)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Carbon Disulfide	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Carbon Tetrachloride	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Chlorobenzene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Chloroethane	ND (0.0020)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Chloroform	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Chloromethane	ND (0.0020)	8260B		1	11/27/12 17:16	CVK0267	CK22716
cis-1,2-Dichloroethene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
cis-1,3-Dichloropropene	ND (0.0004)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Dibromochloromethane	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Dibromomethane	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Dichlorodifluoromethane	ND (0.0020)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Diethyl Ether	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Di-isopropyl ether	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Ethyl tertiary-butyl ether	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Ethylbenzene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Hexachlorobutadiene	ND (0.0006)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Hexachloroethane	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Isopropylbenzene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Methyl tert-Butyl Ether	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Methylene Chloride	ND (0.0020)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Naphthalene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
n-Butylbenzene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
n-Propylbenzene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
sec-Butylbenzene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
Styrene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
tert-Butylbenzene	ND (0.0010)	8260B		1	11/27/12 17:16	CVK0267	CK22716
•	,						

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-3 Date Sampled: 11/26/12 10:50

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-03

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)		Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	11/27/12 17:16	CVK0267	CK22716
Tetrachloroethene	ND (0.0010)		8260B		1	11/27/12 17:16	CVK0267	CK22716
Tetrahydrofuran	ND (0.0050)		8260B		1	11/27/12 17:16	CVK0267	CK22716
Toluene	0.0011 (0.0010)		8260B		1	11/27/12 17:16	CVK0267	CK22716
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/27/12 17:16	CVK0267	CK22716
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/27/12 17:16	CVK0267	CK22716
Trichloroethene	ND (0.0010)		8260B		1	11/27/12 17:16	CVK0267	CK22716
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/27/12 17:16	CVK0267	CK22716
Vinyl Acetate	ND (0.0050)		8260B		1	11/27/12 17:16	CVK0267	CK22716
Vinyl Chloride	ND (0.0010)		8260B		1	11/27/12 17:16	CVK0267	CK22716
Xylene O	0.0022 (0.0010)		8260B		1	11/27/12 17:16	CVK0267	CK22716
Xylene P,M	0.0036 (0.0020)		8260B		1	11/27/12 17:16	CVK0267	CK22716
Xylenes (Total)	0.0058 (0.0030)		8260B		1	11/27/12 17:16		[CALC]
Trihalomethanes (Total)	ND (0.0036)		8260B			11/27/12 17:16		[CALC]
	9	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		104 %		70-130				
Surrogate: 4-Bromofluorobenzene		108 %		70-130				
Surrogate: Dibromofluoromethane		108 %		70-130				
Surrogate: Toluene-d8		107 %		70-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-3 Date Sampled: 11/26/12 10:50

Percent Solids: N/A Initial Volume: 990 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-03

Sample Matrix: Ground Water

Units: mg/L Analyst: ML

Prepared: 11/29/12 18:00

8270C Semi-Volatile Organic Compounds

Analyte	Results (MRL)	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1-Biphenyl	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
1,2,4-Trichlorobenzene	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
1,2-Dichlorobenzene	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
1,3-Dichlorobenzene	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
1,4-Dichlorobenzene	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
2,3,4,6-Tetrachlorophenol	ND (0.051)	8270C		1	11/30/12 21:54	CVK0322	CK22923
2,4,5-Trichlorophenol	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
2,4,6-Trichlorophenol	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
2,4-Dichlorophenol	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
2,4-Dimethylphenol	ND (0.051)	8270C		1	11/30/12 21:54	CVK0322	CK22923
2,4-Dinitrophenol	ND (0.051)	8270C		1	11/30/12 21:54	CVK0322	CK22923
2,4-Dinitrotoluene	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
2,6-Dinitrotoluene	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
2-Chloronaphthalene	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
2-Chlorophenol	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
2-Methylphenol	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
2-Nitroaniline	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
2-Nitrophenol	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
3,3'-Dichlorobenzidine	ND (0.020)	8270C		1	11/30/12 21:54	CVK0322	CK22923
3+4-Methylphenol	ND (0.020)	8270C		1	11/30/12 21:54	CVK0322	CK22923
3-Nitroaniline	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
4,6-Dinitro-2-Methylphenol	ND (0.051)	8270C		1	11/30/12 21:54	CVK0322	CK22923
4-Bromophenyl-phenylether	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
4-Chloro-3-Methylphenol	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
4-Chloroaniline	ND (0.020)	8270C		1	11/30/12 21:54	CVK0322	CK22923
4-Chloro-phenyl-phenyl ether	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
4-Nitroaniline	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
4-Nitrophenol	ND (0.051)	8270C		1	11/30/12 21:54	CVK0322	CK22923
Acetophenone	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
Aniline	ND (0.010)	8270C		1	11/30/12 21:54	CVK0322	CK22923
Azobenzene	ND (0.020)	8270C		1	11/30/12 21:54	CVK0322	CK22923
	112 (0.020)	32,32		•	11,50,12 21.51	C . 110522	21111713

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-3 Date Sampled: 11/26/12 10:50

Percent Solids: N/A Initial Volume: 990 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-03

Sample Matrix: Ground Water

Units: mg/L Analyst: ML

Prepared: 11/29/12 18:00

8270C Semi-Volatile Organic Compounds

Analyte Benzoic Acid	Results (MRI ND (0.101)	<u>.)</u>	Method 8270C	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/30/12 21:54	Sequence CVK0322	Batch CK22923
Benzyl Alcohol	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
bis(2-Chloroethoxy)methane	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
bis(2-Chloroethyl)ether	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
bis(2-chloroisopropyl)Ether	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
bis(2-Ethylhexyl)phthalate	ND (0.006)		8270C		1	11/30/12 21:54	CVK0322	CK22923
Butylbenzylphthalate	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
Carbazole	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
Dibenzofuran	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
Diethylphthalate	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
Dimethylphthalate	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
Di-n-butylphthalate	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
Di-n-octylphthalate	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
Hexachlorobutadiene	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
Hexachlorocyclopentadiene	ND (0.025)		8270C		1	11/30/12 21:54	CVK0322	CK22923
Hexachloroethane	ND (0.005)		8270C		1	11/30/12 21:54	CVK0322	CK22923
Isophorone	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
Nitrobenzene	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
N-Nitrosodimethylamine	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
N-Nitroso-Di-n-Propylamine	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
N-nitrosodiphenylamine	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
Phenol	ND (0.010)		8270C		1	11/30/12 21:54	CVK0322	CK22923
Pyridine	ND (0.101)		8270C		1	11/30/12 21:54	CVK0322	CK22923
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		76 %		30-130				
Surrogate: 2,4,6-Tribromophenol		93 %		15-110				

Surrogate: 1,2-Dichlorobenzene-d4	76 %	30-130
Surrogate: 2,4,6-Tribromophenol	93 %	15-110
Surrogate: 2-Chlorophenol-d4	77 %	15-110
Surrogate: 2-Fluorobiphenyl	86 %	30-130
Surrogate: 2-Fluorophenol	64 %	15-110
Surrogate: Nitrobenzene-d5	91 %	30-130
Surrogate: Phenol-d6	85 %	15-110
Surrogate: p-Terphenyl-d14	73 %	30-130

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-2 Dependability ♦

Tel: 401-461-7181 lity ◆ Quality Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-3 Date Sampled: 11/26/12 10:50

Percent Solids: N/A Initial Volume: 990 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-03

Sample Matrix: Ground Water

Units: mg/L Analyst: IBM

Prepared: 11/29/12 15:00

8270C(SIM) Semi-Volatile Organic Compounds

Analyte 2-Methylnaphthalene	Results (MRL) ND (0.00020)		Method 8270C SIM	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/30/12 21:39	Sequence CVK0313	Batch CK22913
Acenaphthene	ND (0.00020)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Acenaphthylene	0.00030 (0.00020)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Anthracene	ND (0.00020)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Benzo(a)anthracene	ND (0.00005)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Benzo(a)pyrene	0.00008 (0.00005)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Benzo(b)fluoranthene	0.00015 (0.00005)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Benzo(g,h,i)perylene	ND (0.00020)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Benzo(k)fluoranthene	0.00005 (0.00005)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Chrysene	0.00009 (0.00005)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Dibenzo(a,h)Anthracene	ND (0.00005)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Fluoranthene	ND (0.00020)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Fluorene	ND (0.00020)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Hexachlorobenzene	ND (0.00020)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Indeno(1,2,3-cd)Pyrene	0.00007 (0.00005)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Naphthalene	0.00062 (0.00020)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Pentachlorophenol	ND (0.00101)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Phenanthrene	ND (0.00020)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
Pyrene	ND (0.00020)		8270C SIM		1	11/30/12 21:39	CVK0313	CK22913
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		47 %		30-130				
Surrogate: 2,4,6-Tribromophenol		126 %	<i>S+</i>	15-110				
Surrogate: 2-Fluorobiphenyl		89 %		30-130				

	70Recovery	Qualifiei	LIIIILS
Surrogate: 1,2-Dichlorobenzene-d4	47 %		30-130
Surrogate: 2,4,6-Tribromophenol	126 %	S+	15-110
Surrogate: 2-Fluorobiphenyl	89 %		30-130
Surrogate: Nitrobenzene-d5	74 %		30-130
Surrogate: p-Terphenyl-d14	81 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-4 Date Sampled: 11/26/12 12:05

Percent Solids: N/A

refectit bollus.

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-04

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Total Metals Aqueous

<u>Analyte</u>	Results (MRL)	Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>I/V</u>	F/V	Batch
Arsenic	0.0146 (0.0025)	7060A		1	JP	11/29/12 15:55	50	25	CK22733
Barium	0.096 (0.025)	6010B		1	SVD	11/28/12 14:18	50	25	CK22733
Cadmium	ND (0.0025)	6010B		1	SVD	11/28/12 14:18	50	25	CK22733
Chromium	0.010 (0.010)	6010B		1	SVD	11/28/12 14:18	50	25	CK22733
Lead	0.012 (0.010)	6010B		1	SVD	11/28/12 14:18	50	25	CK22733
Mercury	ND (0.00050)	7470A		1	KJK	12/01/12 14:02	20	40	CK23009
Selenium	ND (0.025)	6010B		1	SVD	11/28/12 14:18	50	25	CK22733
Silver	ND (0.005)	6010B		1	SVD	11/28/12 14:18	50	25	CK22733

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-4 Date Sampled: 11/26/12 12:05

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-04

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1,2-Tetrachloroethane	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,1,1-Trichloroethane	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,1,2-Trichloroethane	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,1-Dichloroethane	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,1-Dichloroethene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,1-Dichloropropene	ND (0.0020)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,2,3-Trichlorobenzene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,2,3-Trichloropropane	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,2,4-Trichlorobenzene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,2,4-Trimethylbenzene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,2-Dibromoethane	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,2-Dichlorobenzene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,2-Dichloroethane	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,2-Dichloropropane	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,3,5-Trimethylbenzene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,3-Dichlorobenzene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,3-Dichloropropane	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,4-Dichlorobenzene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1,4-Dioxane - Screen	ND (0.500)	8260B		1	11/27/12 17:43	CVK0267	CK22716
1-Chlorohexane	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
2,2-Dichloropropane	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
2-Butanone	ND (0.0100)	8260B		1	11/27/12 17:43	CVK0267	CK22716
2-Chlorotoluene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
2-Hexanone	ND (0.0100)	8260B		1	11/27/12 17:43	CVK0267	CK22716
4-Chlorotoluene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
4-Isopropyltoluene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
4-Methyl-2-Pentanone	ND (0.0250)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Acetone	ND (0.0100)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Benzene	ND (0.0100) ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Delizene	ND (0.0010)	02000		1	11/2//12 17.43	C V IX0207	CIX22/10

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-4 Date Sampled: 11/26/12 12:05

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-04

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Bromobenzene	ND (0.0020)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Bromochloromethane	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Bromodichloromethane	ND (0.0006)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Bromoform	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Bromomethane	ND (0.0020)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Carbon Disulfide	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Carbon Tetrachloride	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Chlorobenzene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Chloroethane	ND (0.0020)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Chloroform	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Chloromethane	ND (0.0020)	8260B		1	11/27/12 17:43	CVK0267	CK22716
cis-1,2-Dichloroethene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
cis-1,3-Dichloropropene	ND (0.0004)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Dibromochloromethane	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Dibromomethane	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Dichlorodifluoromethane	ND (0.0020)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Diethyl Ether	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Di-isopropyl ether	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Ethyl tertiary-butyl ether	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Ethylbenzene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Hexachlorobutadiene	ND (0.0006)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Hexachloroethane	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Isopropylbenzene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Methyl tert-Butyl Ether	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Methylene Chloride	ND (0.0020)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Naphthalene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
n-Butylbenzene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
n-Propylbenzene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
sec-Butylbenzene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
Styrene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
tert-Butylbenzene	ND (0.0010)	8260B		1	11/27/12 17:43	CVK0267	CK22716
•	` /						

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-4 Date Sampled: 11/26/12 12:05

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-04

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)		Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	11/27/12 17:43	CVK0267	CK22716
Tetrachloroethene	ND (0.0010)		8260B		1	11/27/12 17:43	CVK0267	CK22716
Tetrahydrofuran	ND (0.0050)		8260B		1	11/27/12 17:43	CVK0267	CK22716
Toluene	ND (0.0010)		8260B		1	11/27/12 17:43	CVK0267	CK22716
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/27/12 17:43	CVK0267	CK22716
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/27/12 17:43	CVK0267	CK22716
Trichloroethene	ND (0.0010)		8260B		1	11/27/12 17:43	CVK0267	CK22716
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/27/12 17:43	CVK0267	CK22716
Vinyl Acetate	ND (0.0050)		8260B		1	11/27/12 17:43	CVK0267	CK22716
Vinyl Chloride	ND (0.0010)		8260B		1	11/27/12 17:43	CVK0267	CK22716
Xylene O	ND (0.0010)		8260B		1	11/27/12 17:43	CVK0267	CK22716
Xylene P,M	ND (0.0020)		8260B		1	11/27/12 17:43	CVK0267	CK22716
Xylenes (Total)	ND (0.0030)		8260B		1	11/27/12 17:43		[CALC]
Trihalomethanes (Total)	ND (0.0036)		8260B			11/27/12 17:43		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		104 %		70-130				
Surrogate: 4-Bromofluorobenzene		109 %		70-130				
Surrogate: Dibromofluoromethane		108 %		70-130				
Surrogate: Toluene-d8		108 %		70-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-4 Date Sampled: 11/26/12 12:05

Percent Solids: N/A Initial Volume: 850 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-04

Sample Matrix: Ground Water

Units: mg/L Analyst: ML

Prepared: 11/29/12 18:00

8270C Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.012)	Method 8270C	<u>Limit</u>	<u>DF</u>	Analyzed 11/30/12 19:09	Sequence CVK0322	Batch CK22923
1,2,4-Trichlorobenzene	ND (0.012)	8270C		1	11/30/12 19:09	CVK0322	CK22923
1,2-Dichlorobenzene	ND (0.012) ND (0.012)	8270C		1	11/30/12 19:09	CVK0322	CK22923
1,3-Dichlorobenzene	ND (0.012) ND (0.012)	8270C		1	11/30/12 19:09	CVK0322	CK22923
1,4-Dichlorobenzene	,	8270C		1	11/30/12 19:09	CVK0322	CK22923
2,3,4,6-Tetrachlorophenol	ND (0.012) ND (0.059)	8270C		1	11/30/12 19:09	CVK0322	CK22923
2,4,5-Trichlorophenol	ND (0.039) ND (0.012)	8270C		1	11/30/12 19:09	CVK0322	CK22923
2,4,6-Trichlorophenol	ND (0.012) ND (0.012)	8270C		1	11/30/12 19:09	CVK0322	CK22923
2,4-Dichlorophenol	ND (0.012) ND (0.012)	8270C		1	11/30/12 19:09	CVK0322	CK22923
2,4-Dimethylphenol	ND (0.012) ND (0.059)	8270C		1	11/30/12 19:09	CVK0322	CK22923
2,4-Dinitrophenol	,	8270C		1	11/30/12 19:09	CVK0322	CK22923
2,4-Dinitrophenor	ND (0.059) ND (0.012)	8270C 8270C		1	11/30/12 19:09	CVK0322 CVK0322	CK22923
2,6-Dinitrotoluene	,	8270C 8270C		1	11/30/12 19:09	CVK0322 CVK0322	CK22923
2-Chloronaphthalene	ND (0.012)	8270C 8270C		1	11/30/12 19:09	CVK0322 CVK0322	CK22923
2-Chlorophenol	ND (0.012)	8270C 8270C		1	11/30/12 19:09	CVK0322 CVK0322	CK22923
-	ND (0.012)	8270C 8270C		1	11/30/12 19:09	CVK0322 CVK0322	CK22923
2-Methylphenol 2-Nitroaniline	ND (0.012)	8270C 8270C		1	11/30/12 19:09	CVK0322 CVK0322	CK22923
2-Nitrophenol	ND (0.012)	8270C 8270C		1	11/30/12 19:09	CVK0322 CVK0322	CK22923
3,3'-Dichlorobenzidine	ND (0.012)	8270C 8270C		1	11/30/12 19:09	CVK0322 CVK0322	CK22923
· ·	ND (0.024)			1			
3+4-Methylphenol	ND (0.024)	8270C			11/30/12 19:09	CVK0322	CK22923
3-Nitroaniline	ND (0.012)	8270C		1	11/30/12 19:09	CVK0322	CK22923
4,6-Dinitro-2-Methylphenol	ND (0.059)	8270C		1	11/30/12 19:09	CVK0322	CK22923
4-Bromophenyl-phenylether	ND (0.012)	8270C		1	11/30/12 19:09	CVK0322	CK22923
4-Chloro-3-Methylphenol	ND (0.012)	8270C		1	11/30/12 19:09	CVK0322	CK22923
4-Chloroaniline	ND (0.024)	8270C		1	11/30/12 19:09	CVK0322	CK22923
4-Chloro-phenyl-phenyl ether	ND (0.012)	8270C		1	11/30/12 19:09	CVK0322	CK22923
4-Nitroaniline	ND (0.012)	8270C		1	11/30/12 19:09	CVK0322	CK22923
4-Nitrophenol	ND (0.059)	8270C		1	11/30/12 19:09	CVK0322	CK22923
Acetophenone	ND (0.012)	8270C		1	11/30/12 19:09	CVK0322	CK22923
Aniline	ND (0.012)	8270C		1	11/30/12 19:09	CVK0322	CK22923
Azobenzene	ND (0.024)	8270C		1	11/30/12 19:09	CVK0322	CK22923

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-4 Date Sampled: 11/26/12 12:05

Percent Solids: N/A Initial Volume: 850 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-04

Sample Matrix: Ground Water

Units: mg/L Analyst: ML

Prepared: 11/29/12 18:00

8270C Semi-Volatile Organic Compounds

Analyte	Results (MRL)		Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Benzoic Acid	ND (0.118)		8270C		1	11/30/12 19:09	CVK0322	CK22923
Benzyl Alcohol	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
bis(2-Chloroethoxy)methane	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
bis(2-Chloroethyl)ether	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
bis(2-chloroisopropyl)Ether	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
bis(2-Ethylhexyl)phthalate	ND (0.007)		8270C		1	11/30/12 19:09	CVK0322	CK22923
Butylbenzylphthalate	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
Carbazole	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
Dibenzofuran	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
Diethylphthalate	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
Dimethylphthalate	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
Di-n-butylphthalate	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
Di-n-octylphthalate	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
Hexachlorobutadiene	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
Hexachlorocyclopentadiene	ND (0.029)		8270C		1	11/30/12 19:09	CVK0322	CK22923
Hexachloroethane	ND (0.006)		8270C		1	11/30/12 19:09	CVK0322	CK22923
Isophorone	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
Nitrobenzene	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
N-Nitrosodimethylamine	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
N-Nitroso-Di-n-Propylamine	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
N-nitrosodiphenylamine	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
Phenol	ND (0.012)		8270C		1	11/30/12 19:09	CVK0322	CK22923
Pyridine	ND (0.118)		8270C		1	11/30/12 19:09	CVK0322	CK22923
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		72 %		30-130				
Surrogate: 2,4,6-Tribromophenol		86 %		15-110				
Surrogate: 2-Chlorophenol-d4		68 %		15-110				
Surrogate: 2-Fluorobiphenyl		77 %		30-130				

185 Frances Avenue, Cranston, RI 02910-2211

Surrogate: 2-Fluorophenol

Surrogate: Nitrobenzene-d5

Surrogate: p-Terphenyl-d14

Surrogate: Phenol-d6

Tel: 401-461-7181

55 %

83 %

75 %

Dependability

7181 Quality Fax: 401-461-4486 ◆ Service

15-110

30-130

15-110

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-4 Date Sampled: 11/26/12 12:05

Percent Solids: N/A Initial Volume: 950 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-04

Sample Matrix: Ground Water

Units: mg/L Analyst: IBM

Prepared: 11/29/12 15:00

8270C(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.00021)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Acenaphthene	ND (0.00021)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Acenaphthylene	ND (0.00021)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Anthracene	ND (0.00021)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Benzo(a)anthracene	0.00008 (0.00005)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Benzo(a)pyrene	ND (0.00005)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Benzo(b)fluoranthene	0.00010 (0.00005)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Benzo(g,h,i)perylene	ND (0.00021)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Benzo(k)fluoranthene	ND (0.00005)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Chrysene	0.00010 (0.00005)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Dibenzo(a,h)Anthracene	ND (0.00005)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Fluoranthene	ND (0.00021)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Fluorene	ND (0.00021)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Hexachlorobenzene	ND (0.00021)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Indeno(1,2,3-cd)Pyrene	ND (0.00005)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Naphthalene	ND (0.00021)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Pentachlorophenol	ND (0.00105)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Phenanthrene	ND (0.00021)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
Pyrene	ND (0.00021)	8270C SIM		1	11/30/12 20:09	CVK0313	CK22913
	%Rec	overy Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4	46	8 %	30-130				
Surrogate: 2,4,6-Tribromophenol	13	25 % S+	15-110				
Surrogate: 2-Fluorobiphenyl	7	2 0%	20-120				

Surrogate: 2-Fluorobiphenyl 73 % 30-130 Surrogate: Nitrobenzene-d5 30-130 Surrogate: p-Terphenyl-d14 30-130 87 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-5 Date Sampled: 11/26/12 11:40

Percent Solids: N/A

Extraction Method: 3005A

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-05

Sample Matrix: Ground Water

Units: mg/L

Total Metals Aqueous

<u>Analyte</u>	Results (MRL)	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	I/V	F/V	Batch
Arsenic	ND (0.0025)	7060A		1	JP	11/29/12 16:01	50	25	CK22733
Barium	0.035 (0.025)	6010B		1	SVD	11/28/12 14:24	50	25	CK22733
Cadmium	ND (0.0025)	6010B		1	SVD	11/28/12 14:24	50	25	CK22733
Chromium	ND (0.010)	6010B		1	SVD	11/28/12 14:24	50	25	CK22733
Lead	ND (0.010)	6010B		1	SVD	11/28/12 14:24	50	25	CK22733
Mercury	ND (0.00050)	7470A		1	KJK	12/01/12 14:04	20	40	CK23009
Selenium	ND (0.025)	6010B		1	SVD	11/28/12 14:24	50	25	CK22733
Silver	ND (0.005)	6010B		1	SVD	11/28/12 14:24	50	25	CK22733

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-5 Date Sampled: 11/26/12 11:40

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-05

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1,2-Tetrachloroethane	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,1,1-Trichloroethane	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,1,2-Trichloroethane	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,1-Dichloroethane	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,1-Dichloroethene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,1-Dichloropropene	ND (0.0020)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,2,3-Trichlorobenzene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,2,3-Trichloropropane	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,2,4-Trichlorobenzene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,2,4-Trimethylbenzene	0.0045 (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,2-Dibromoethane	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,2-Dichlorobenzene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,2-Dichloroethane	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,2-Dichloropropane	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,3,5-Trimethylbenzene	0.139 (0.0100)	8260B		10	11/28/12 18:25	CVK0267	CK22716
1,3-Dichlorobenzene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,3-Dichloropropane	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,4-Dichlorobenzene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1,4-Dioxane - Screen	ND (0.500)	8260B		1	11/27/12 18:10	CVK0267	CK22716
1-Chlorohexane	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
2,2-Dichloropropane	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
2-Butanone	ND (0.0100)	8260B		1	11/27/12 18:10	CVK0267	CK22716
2-Chlorotoluene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
2-Hexanone	ND (0.0100)	8260B		1	11/27/12 18:10	CVK0267	CK22716
4-Chlorotoluene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
4-Isopropyltoluene	0.0094 (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
4-Methyl-2-Pentanone	ND (0.0250)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Acetone	ND (0.0100)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Benzene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
	(/						

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-5 Date Sampled: 11/26/12 11:40

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-05

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromobenzene	Results (MRL) ND (0.0020)	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/27/12 18:10	Sequence CVK0267	Batch CK22716
Bromochloromethane	ND (0.0020)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Bromodichloromethane		8260B		1	11/27/12 18:10	CVK0267	CK22716
Bromoform	ND (0.0006) ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Bromomethane	,	8260B		1	11/27/12 18:10	CVK0267	CK22716
	ND (0.0020)						
Carbon Disulfide	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Carbon Tetrachloride	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Chlorobenzene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Chloroethane	ND (0.0020)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Chloroform	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Chloromethane	ND (0.0020)	8260B		1	11/27/12 18:10	CVK0267	CK22716
cis-1,2-Dichloroethene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
cis-1,3-Dichloropropene	ND (0.0004)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Dibromochloromethane	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Dibromomethane	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Dichlorodifluoromethane	ND (0.0020)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Diethyl Ether	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Di-isopropyl ether	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Ethyl tertiary-butyl ether	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Ethylbenzene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Hexachlorobutadiene	ND (0.0006)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Hexachloroethane	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Isopropylbenzene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Methyl tert-Butyl Ether	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Methylene Chloride	ND (0.0020)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Naphthalene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
n-Butylbenzene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
n-Propylbenzene	0.0013 (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
sec-Butylbenzene	0.0013 (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
Styrene Styrene	ND (0.0010)	8260B		1	11/27/12 18:10	CVK0267	CK22716
tert-Butylbenzene	,	8260B		1	11/27/12 18:10	CVK0267	CK22716
tert-butylbenzene	ND (0.0010)	820UD		1	11/2//12 18:10	C V KU20/	CK22/10

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-5 Date Sampled: 11/26/12 11:40

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-05

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)		Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	11/27/12 18:10	CVK0267	CK22716
Tetrachloroethene	ND (0.0010)		8260B		1	11/27/12 18:10	CVK0267	CK22716
Tetrahydrofuran	ND (0.0050)		8260B		1	11/27/12 18:10	CVK0267	CK22716
Toluene	ND (0.0010)		8260B		1	11/27/12 18:10	CVK0267	CK22716
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/27/12 18:10	CVK0267	CK22716
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/27/12 18:10	CVK0267	CK22716
Trichloroethene	ND (0.0010)		8260B		1	11/27/12 18:10	CVK0267	CK22716
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/27/12 18:10	CVK0267	CK22716
Vinyl Acetate	ND (0.0050)		8260B		1	11/27/12 18:10	CVK0267	CK22716
Vinyl Chloride	ND (0.0010)		8260B		1	11/27/12 18:10	CVK0267	CK22716
Xylene O	ND (0.0010)		8260B		1	11/27/12 18:10	CVK0267	CK22716
Xylene P,M	ND (0.0020)		8260B		1	11/27/12 18:10	CVK0267	CK22716
Xylenes (Total)	ND (0.0030)		8260B		1	11/27/12 18:10		[CALC]
Trihalomethanes (Total)	ND (0.0036)		8260B			11/27/12 18:10		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		107 %		70-130				
Surrogate: 4-Bromofluorobenzene		118 %		70-130				
Surrogate: Dibromofluoromethane		111 %		70-130				
Surrogate: Toluene-d8		106 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-5 Date Sampled: 11/26/12 11:40

Percent Solids: N/A Initial Volume: 990 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-05

Sample Matrix: Ground Water

Units: mg/L Analyst: ML

Prepared: 11/29/12 18:00

8270C Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	Method	<u>Limit</u> 1	<u>DF</u>	Analyzed	Sequence	Batch
1,1-Biphenyl	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
1,2,4-Trichlorobenzene	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
1,2-Dichlorobenzene	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
1,3-Dichlorobenzene	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
1,4-Dichlorobenzene	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
2,3,4,6-Tetrachlorophenol	ND (0.051)	8270C		1	11/30/12 19:42	CVK0322	CK22923
2,4,5-Trichlorophenol	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
2,4,6-Trichlorophenol	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
2,4-Dichlorophenol	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
2,4-Dimethylphenol	ND (0.051)	8270C		1	11/30/12 19:42	CVK0322	CK22923
2,4-Dinitrophenol	ND (0.051)	8270C		1	11/30/12 19:42	CVK0322	CK22923
2,4-Dinitrotoluene	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
2,6-Dinitrotoluene	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
2-Chloronaphthalene	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
2-Chlorophenol	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
2-Methylphenol	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
2-Nitroaniline	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
2-Nitrophenol	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
3,3'-Dichlorobenzidine	ND (0.020)	8270C		1	11/30/12 19:42	CVK0322	CK22923
3+4-Methylphenol	ND (0.020)	8270C		1	11/30/12 19:42	CVK0322	CK22923
3-Nitroaniline	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
4,6-Dinitro-2-Methylphenol	ND (0.051)	8270C		1	11/30/12 19:42	CVK0322	CK22923
4-Bromophenyl-phenylether	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
4-Chloro-3-Methylphenol	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
4-Chloroaniline	ND (0.020)	8270C		1	11/30/12 19:42	CVK0322	CK22923
4-Chloro-phenyl-phenyl ether	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
4-Nitroaniline	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
4-Nitrophenol	ND (0.051)	8270C		1	11/30/12 19:42	CVK0322	CK22923
Acetophenone	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
Aniline	ND (0.010)	8270C		1	11/30/12 19:42	CVK0322	CK22923
Azobenzene	ND (0.020)	8270C		1	11/30/12 19:42	CVK0322	CK22923
	()						

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-5 Date Sampled: 11/26/12 11:40

Percent Solids: N/A Initial Volume: 990 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-05

Sample Matrix: Ground Water

Units: mg/L Analyst: ML

Prepared: 11/29/12 18:00

8270C Semi-Volatile Organic Compounds

Analyte Benzoic Acid	Results (MRL) ND (0.101)		Method 8270C	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/30/12 19:42	Sequence CVK0322	Batch CK22923
Benzyl Alcohol	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
bis(2-Chloroethoxy)methane	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
bis(2-Chloroethyl)ether	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
bis(2-chloroisopropyl)Ether	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
bis(2-Ethylhexyl)phthalate	ND (0.006)		8270C		1	11/30/12 19:42	CVK0322	CK22923
Butylbenzylphthalate	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
Carbazole	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
Dibenzofuran	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
Diethylphthalate	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
Dimethylphthalate	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
Di-n-butylphthalate	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
Di-n-octylphthalate	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
Hexachlorobutadiene	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
Hexachlorocyclopentadiene	ND (0.025)		8270C		1	11/30/12 19:42	CVK0322	CK22923
Hexachloroethane	ND (0.005)		8270C		1	11/30/12 19:42	CVK0322	CK22923
Isophorone	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
Nitrobenzene	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
N-Nitrosodimethylamine	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
N-Nitroso-Di-n-Propylamine	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
N-nitrosodiphenylamine	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
Phenol	ND (0.010)		8270C		1	11/30/12 19:42	CVK0322	CK22923
Pyridine	ND (0.101)		8270C		1	11/30/12 19:42	CVK0322	CK22923
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		68 %		30-130				
Surrogate: 2,4,6-Tribromophenol		90 %		<i>15-110</i>				

Surrogate: 1,2-Dichlorobenzene-d4	68 %	30-130
Surrogate: 2,4,6-Tribromophenol	90 %	15-110
Surrogate: 2-Chlorophenol-d4	71 %	15-110
Surrogate: 2-Fluorobiphenyl	<i>78</i> %	30-130
Surrogate: 2-Fluorophenol	62 %	15-110
Surrogate: Nitrobenzene-d5	79 %	30-130
Surrogate: Phenol-d6	77 %	15-110
Surrogate: p-Terphenyl-d14	101 %	30-130

185 Frances Avenue, Cranston, RI 02910-2211

Dependability

Tel: 401-461-7181 lity ◆ Quality Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-5 Date Sampled: 11/26/12 11:40

Percent Solids: N/A Initial Volume: 1000 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-05

Sample Matrix: Ground Water

Units: mg/L Analyst: IBM

Prepared: 11/29/12 15:00

8270C(SIM) Semi-Volatile Organic Compounds

Analyte 2-Methylnaphthalene	Results (MRL) 0.00263 (0.00020)	<u>l</u>	Method 8270C SIM	<u>Limit</u>	<u>DF</u>	Analyzed 11/30/12 20:54	Sequence CVK0313	Batch CK22913
Acenaphthene	0.00029 (0.00020)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Acenaphthylene	ND (0.00020)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Anthracene	ND (0.00020)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Benzo(a)anthracene	ND (0.00005)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Benzo(a)pyrene	ND (0.00005)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Benzo(b)fluoranthene	ND (0.00005)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Benzo(g,h,i)perylene	ND (0.00020)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Benzo(k)fluoranthene	ND (0.00005)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Chrysene	ND (0.00005)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Dibenzo(a,h)Anthracene	ND (0.00005)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Fluoranthene	ND (0.00020)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Fluorene	ND (0.00020)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Hexachlorobenzene	ND (0.00020)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Indeno(1,2,3-cd)Pyrene	ND (0.00005)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Naphthalene	0.00127 (0.00020)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Pentachlorophenol	ND (0.00100)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Phenanthrene	ND (0.00020)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
Pyrene	ND (0.00020)		8270C SIM		1	11/30/12 20:54	CVK0313	CK22913
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		74 %		30-130				
Surrogate: 2,4,6-Tribromophenol		138 %	S+	15-110				

	%Recovery	Qualifier	LITTILS
Surrogate: 1,2-Dichlorobenzene-d4	74 %		30-130
Surrogate: 2,4,6-Tribromophenol	138 %	<i>S+</i>	15-110
Surrogate: 2-Fluorobiphenyl	<i>75 %</i>		30-130
Surrogate: Nitrobenzene-d5	79 %		30-130
Surrogate: p-Terphenyl-d14	86 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: Trip Blank Date Sampled: 11/26/12 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-06

Sample Matrix: Aqueous

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	Method 8260B	Limit DF	Analyzed 11/28/12 16:16	Sequence CVK0289	Batch CK22807
1,1,1-Trichloroethane	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,1,2-Trichloroethane	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,1-Dichloroethane	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,1-Dichloroethene	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,1-Dichloropropene	ND (0.0020)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,2,3-Trichlorobenzene	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,2,3-Trichloropropane	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,2,4-Trichlorobenzene	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,2,4-Trimethylbenzene	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,2-Dibromoethane	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,2-Dichlorobenzene	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,2-Dichloroethane	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,2-Dichloropropane	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,3,5-Trimethylbenzene	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,3-Dichlorobenzene	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,3-Dichloropropane	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,4-Dichlorobenzene	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1,4-Dioxane - Screen	ND (0.500)	8260B	1	11/28/12 16:16	CVK0289	CK22807
1-Chlorohexane	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
2,2-Dichloropropane	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
2-Butanone	ND (0.0100)	8260B	1	11/28/12 16:16	CVK0289	CK22807
2-Chlorotoluene	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
2-Hexanone	ND (0.0100)	8260B	1	11/28/12 16:16	CVK0289	CK22807
4-Chlorotoluene	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
4-Isopropyltoluene	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807
4-Methyl-2-Pentanone	ND (0.0250)	8260B	1	11/28/12 16:16	CVK0289	CK22807
Acetone	ND (0.0100)	8260B	1	11/28/12 16:16	CVK0289	CK22807
Benzene	ND (0.0010)	8260B	1	11/28/12 16:16	CVK0289	CK22807

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

01-461-/181 ◆ Quality Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: Trip Blank Date Sampled: 11/26/12 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-06

Sample Matrix: Aqueous

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Bromobenzene	ND (0.0020)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Bromochloromethane	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Bromodichloromethane	ND (0.0006)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Bromoform	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Bromomethane	ND (0.0020)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Carbon Disulfide	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Carbon Tetrachloride	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Chlorobenzene	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Chloroethane	ND (0.0020)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Chloroform	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Chloromethane	ND (0.0020)	8260B		1	11/28/12 16:16	CVK0289	CK22807
cis-1,2-Dichloroethene	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
cis-1,3-Dichloropropene	ND (0.0004)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Dibromochloromethane	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Dibromomethane	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Dichlorodifluoromethane	ND (0.0020)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Diethyl Ether	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Di-isopropyl ether	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Ethyl tertiary-butyl ether	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Ethylbenzene	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Hexachlorobutadiene	ND (0.0006)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Hexachloroethane	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Isopropylbenzene	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Methyl tert-Butyl Ether	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Methylene Chloride	ND (0.0020)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Naphthalene	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
n-Butylbenzene	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
n-Propylbenzene	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
sec-Butylbenzene	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Styrene	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
tert-Butylbenzene	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
•	(/						

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: Trip Blank Date Sampled: 11/26/12 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1211448 ESS Laboratory Sample ID: 1211448-06

Sample Matrix: Aqueous

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tertiary-amyl methyl ether	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Tetrachloroethene	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Tetrahydrofuran	ND (0.0050)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Toluene	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
trans-1,2-Dichloroethene	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
trans-1,3-Dichloropropene	ND (0.0004)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Trichloroethene	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Trichlorofluoromethane	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Vinyl Acetate	ND (0.0050)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Vinyl Chloride	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Xylene O	ND (0.0010)	8260B		1	11/28/12 16:16	CVK0289	CK22807
Xylene P,M	ND (0.0020)	8260B		1	11/28/12 16:16	CVK0289	CK22807

Oualifier

Limits

	,	•
Surrogate: 1,2-Dichloroethane-d4	89 %	70-130
Surrogate: 4-Bromofluorobenzene	95 %	70-130
Surrogate: Dibromofluoromethane	88 %	70-130
Surrogate: Toluene-d8	97 %	70-130

%Recovery

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211448

Quality Control Data

		- Quant	.,							
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
<u> </u>			al Metals A							
Batch CK22733 - 3005A										
Blank										
Arsenic	ND	0.0025	mg/L							
Barium	ND	0.025	mg/L							
Cadmium	ND	0.0025	mg/L							
Chromium	ND	0.010	mg/L							
Lead	ND	0.010	mg/L							
Selenium	ND	0.025	mg/L							
Silver	ND	0.005	mg/L							
LCS										
Barium	0.256	0.025	mg/L	0.2500		102	80-120			
Cadmium	0.132	0.025	mg/L	0.1250		102	80-120			
Chromium	0.255	0.010	mg/L	0.2500		102	80-120			
Lead	0.258	0.010	mg/L	0.2500		103	80-120			
Selenium	0.515	0.025	mg/L	0.5000		103	80-120			
Silver	0.131	0.025	mg/L	0.1250		105	80-120			
	0.131	0.003	mg/L	0.1250		103	00 120			
LCS	0.0101	0.0035	ma m //	0.01000		101	00.120			
Arsenic	0.0101	0.0025	mg/L	0.01000		101	80-120			
LCS Dup										
Barium	0.258	0.025	mg/L	0.2500		103	80-120	0.9	20	
Cadmium	0.133	0.0025	mg/L	0.1250		106	80-120	0.7	20	
Chromium	0.257	0.010	mg/L	0.2500		103	80-120	0.8	20	
Lead	0.259	0.010	mg/L	0.2500		104	80-120	0.2	20	
Selenium	0.513	0.025	mg/L	0.5000		103	80-120	0.3	20	
Silver	0.132	0.005	mg/L	0.1250		106	80-120	0.9	20	
LCS Dup										
Arsenic	0.0099	0.0025	mg/L	0.01000		99	80-120	2	20	
Batch CK23009 - 245.1/7470A										
Blank										
Mercury	ND	0.00050	mg/L							
LCS										
Mercury	0.00561	0.00050	mg/L	0.006000		94	80-120			
LCS Dup										
Mercury	0.00591	0.00050	mg/L	0.006000		98	80-120	5	20	
,					ında					
		8260B Vol	atile Organ	iic Compot	irius					
Batch CK22716 - 5030B										
Blank										
1,1,1,2-Tetrachloroethane	ND	0.0010	mg/L							
1,1,1-Trichloroethane	ND	0.0010	mg/L							
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L							
1,1,2-Trichloroethane	ND	0.0010	mg/L							
1,1-Dichloroethane	ND	0.0010	mg/L							
1,1-Dichloroethene	ND	0.0010	mg/L							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211448

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compounds

Batch CK22716 - 5030B			
1,1-Dichloropropene	ND	0.0020	mg/L
1,2,3-Trichlorobenzene	ND	0.0010	mg/L
1,2,3-Trichloropropane	ND	0.0010	mg/L
1,2,4-Trichlorobenzene	ND	0.0010	mg/L
1,2,4-Trimethylbenzene	ND	0.0010	mg/L
1,2-Dibromo-3-Chloropropane	ND	0.0050	mg/L
1,2-Dibromoethane	ND	0.0010	mg/L
1,2-Dichlorobenzene	ND	0.0010	mg/L
1,2-Dichloroethane	ND	0.0010	mg/L
1,2-Dichloropropane	ND	0.0010	mg/L
1,3,5-Trimethylbenzene	ND	0.0010	mg/L
1,3-Dichlorobenzene	ND	0.0010	mg/L
1,3-Dichloropropane	ND	0.0010	mg/L
1,4-Dichlorobenzene	ND	0.0010	mg/L
1,4-Dioxane - Screen	ND	0.500	mg/L
1-Chlorohexane	ND	0.0010	mg/L
2,2-Dichloropropane	ND	0.0010	mg/L
2-Butanone	ND	0.0100	mg/L
2-Chlorotoluene	ND	0.0010	mg/L
2-Hexanone	ND	0.0100	mg/L
4-Chlorotoluene	ND	0.0010	mg/L
4-Isopropyltoluene	ND	0.0010	mg/L
4-Methyl-2-Pentanone	ND	0.0250	mg/L
Acetone	ND	0.0100	mg/L
Benzene	ND	0.0010	mg/L
Bromobenzene	ND	0.0020	mg/L
Bromochloromethane	ND	0.0010	mg/L
Bromodichloromethane	ND	0.0006	mg/L
Bromoform	ND	0.0010	mg/L
Bromomethane	ND	0.0020	mg/L
Carbon Disulfide	ND	0.0010	mg/L
Carbon Tetrachloride	ND	0.0010	mg/L
Chlorobenzene	ND	0.0010	mg/L
Chloroethane	ND	0.0020	mg/L
Chloroform	ND	0.0010	mg/L
Chloromethane	ND	0.0020	mg/L
cis-1,2-Dichloroethene	ND	0.0010	mg/L
cis-1,3-Dichloropropene	ND	0.0004	mg/L
Dibromochloromethane	ND	0.0010	mg/L
Dibromomethane	ND	0.0010	mg/L
Dichlorodifluoromethane	ND	0.0020	mg/L
Diethyl Ether	ND	0.0010	mg/L
Di-isopropyl ether	ND	0.0010	mg/L
Ethyl tertiary-butyl ether	ND	0.0010	mg/L
Ethylbenzene	ND	0.0010	mg/L

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

• Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

Batch CK22716 - 5030B

ESS Laboratory Work Order: 1211448

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Batch CK22/16 - 5030B							
Hexachlorobutadiene	ND	0.0006	mg/L				
Hexachloroethane	ND	0.0010	mg/L				
Isopropylbenzene	ND	0.0010	mg/L				
Methyl tert-Butyl Ether	ND	0.0010	mg/L				
Methylene Chloride	ND	0.0020	mg/L				
Naphthalene	ND	0.0010	mg/L				
n-Butylbenzene	ND	0.0010	mg/L				
n-Propylbenzene	ND	0.0010	mg/L				
sec-Butylbenzene	ND	0.0010	mg/L				
Styrene	ND	0.0010	mg/L				
tert-Butylbenzene	ND	0.0010	mg/L				
Tertiary-amyl methyl ether	ND	0.0010	mg/L				
Tetrachloroethene	ND	0.0010	mg/L				
Tetrahydrofuran	ND	0.0050	mg/L				
Toluene	ND	0.0010	mg/L				
trans-1,2-Dichloroethene	ND	0.0010	mg/L				
trans-1,3-Dichloropropene	ND	0.0004	mg/L				
Trichloroethene	ND	0.0010	mg/L				
Trichlorofluoromethane	ND	0.0010	mg/L				
Vinyl Acetate	ND	0.0050	mg/L				
Vinyl Chloride	ND	0.0010	mg/L				
Kylene O	ND	0.0010	mg/L				
Kylene P,M	ND	0.0020	mg/L				
Surrogate: 1,2-Dichloroethane-d4	0.0259		mg/L	0.02500	103	70-130	
Surrogate: 4-Bromofluorobenzene	0.0260		mg/L	0.02500	104	70-130	
Surrogate: Dibromofluoromethane	0.0263		mg/L	0.02500	105	70-130	
Surrogate: Toluene-d8	0.0268		mg/L	0.02500	107	70-130	
LCS							
I,1,1,2-Tetrachloroethane	10.3		ug/L	10.00	103	70-130	
1,1,1-Trichloroethane	10.5		ug/L	10.00	105	70-130	
1,1,2,2-Tetrachloroethane	11.4		ug/L	10.00	114	70-130	
1,1,2-Trichloroethane	10.3		ug/L	10.00	103	70-130	
1,1-Dichloroethane	11.0		ug/L	10.00	110	70-130	
I,1-Dichloroethene	11.0		ug/L	10.00	110	70-130	
1,1-Dichloropropene	11.4		ug/L	10.00	114	70-130	
L,2,3-Trichlorobenzene	10.2		ug/L	10.00	102	70-130	
L,2,3-Trichloropropane	11.0		ug/L	10.00	110	70-130	
1,2,4-Trichlorobenzene	9.91		ug/L	10.00	99	70-130	
L,2,4-Trimethylbenzene	10.3		ug/L	10.00	103	70-130	
1,2-Dibromo-3-Chloropropane	11.4		ug/L	10.00	114	70-130	
	10.8		ug/L	10.00	108	70-130	
1.2-Dibromoethane			49/ L	10.00	100	70 130	
			ua/I	10.00	104	70-130	
1,2-Dichlorobenzene	10.4		ug/L	10.00	104	70-130 70-130	
1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane			ug/L ug/L ug/L	10.00 10.00 10.00	104 107 112	70-130 70-130 70-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211448

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

	8260B Volatile Organic Compounds											
Batch CK22716 - 5030B												
1,3-Dichlorobenzene	10.2	ug/L	10.00	102	70-130							
1,3-Dichloropropane	11.9	ug/L	10.00	119	70-130							
1,4-Dichlorobenzene	10.7	ug/L	10.00	107	70-130							
1,4-Dioxane - Screen	218	ug/L	200.0	109	0-332							
1-Chlorohexane	9.41	ug/L	10.00	94	70-130							
2,2-Dichloropropane	10.8	ug/L	10.00	108	70-130							
2-Butanone	57.4	ug/L	50.00	115	70-130							
2-Chlorotoluene	11.4	ug/L	10.00	114	70-130							
2-Hexanone	57.2	ug/L	50.00	114	70-130							
4-Chlorotoluene	10.7	ug/L	10.00	107	70-130							
4-Isopropyltoluene	8.75	ug/L	10.00	88	70-130							
4-Methyl-2-Pentanone	53.4	ug/L	50.00	107	70-130							
Acetone	67.3	ug/L	50.00	135	70-130	B+						
Benzene	11.1	ug/L	10.00	111	70-130							
Bromobenzene	9.96	ug/L	10.00	100	70-130							
Bromochloromethane	9.56	ug/L	10.00	96	70-130							
Bromodichloromethane	11.0	ug/L	10.00	110	70-130							
Bromoform	11.0	ug/L	10.00	110	70-130							
Bromomethane	12.0	ug/L	10.00	120	70-130							
Carbon Disulfide	11.8	ug/L	10.00	118	70-130							
Carbon Tetrachloride	10.9	ug/L	10.00	109	70-130							
Chlorobenzene	10.7	ug/L	10.00	107	70-130							
Chloroethane	10.8	ug/L	10.00	108	70-130							
Chloroform	10.2	ug/L	10.00	102	70-130							
Chloromethane	10.4	ug/L	10.00	104	70-130							
cis-1,2-Dichloroethene	11.1	ug/L	10.00	111	70-130							
cis-1,3-Dichloropropene	11.4	ug/L	10.00	114	70-130							
Dibromochloromethane	9.83	ug/L	10.00	98	70-130							
Dibromomethane	10.0	ug/L	10.00	100	70-130							
Dichlorodifluoromethane	10.4	ug/L	10.00	104	70-130							
Diethyl Ether	10.1	ug/L	10.00	101	70-130							
Di-isopropyl ether	11.8	ug/L	10.00	118	70-130							
Ethyl tertiary-butyl ether	10.4	ug/L	10.00	104	70-130							
Ethylbenzene	10.7	ug/L	10.00	107	70-130							
Hexachlorobutadiene	11.2	ug/L	10.00	112	70-130							
Hexachloroethane	13.4	ug/L	10.00	134	70-130	B+						
Isopropylbenzene	10.2	ug/L	10.00	102	70-130							
Methyl tert-Butyl Ether	10.6	ug/L	10.00	106	70-130							
Methylene Chloride	11.6	ug/L	10.00	116	70-130							
Naphthalene	9.64	ug/L	10.00	96	70-130							
n-Butylbenzene	10.4	ug/L	10.00	104	70-130							
n-Propylbenzene	10.6	ug/L	10.00	106	70-130							
sec-Butylbenzene	10.8	ug/L	10.00	108	70-130							
Styrene	9.95	ug/L	10.00	100	70-130							

9.77

tert-Butylbenzene

ug/L

70-130

10.00

Quality

Result

MRL

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

Qualifier

RPD

Limit

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

Analyte

1,2-Dibromoethane

1,2-Dichlorobenzene

1,2-Dichloroethane

1.2-Dichloropropane

1,3-Dichlorobenzene

1.3-Dichloropropane

1,4-Dichlorobenzene

1,4-Dioxane - Screen

2,2-Dichloropropane

1-Chlorohexane

2-Chlorotoluene

4-Chlorotoluene

4-Isopropyltoluene

2-Butanone

2-Hexanone

1,3,5-Trimethylbenzene

ESS Laboratory Work Order: 1211448

%REC

%REC

Limits

RPD

Quality Control Data

Units

Spike

Level

Source

Result

	826	0B Volatile Organ	ic Compounds					
Batch CK22716 - 5030B								
Tertiary-amyl methyl ether	9.91	ug/L	10.00	99	70-130			
Tetrachloroethene	9.95	ug/L	10.00	100	70-130			
Fetrahydrofuran	10.5	ug/L	10.00	105	70-130			
oluene	11.2	ug/L	10.00	112	70-130			
rans-1,2-Dichloroethene	11.2	ug/L	10.00	112	70-130			
rans-1,3-Dichloropropene	10.2	ug/L	10.00	102	70-130			
Frichloroethene	9.82	ug/L	10.00	98	70-130			
richlorofluoromethane	11.4	ug/L	10.00	114	70-130			
/inyl Acetate	11.2	ug/L	10.00	112	70-130			
/inyl Chloride	12.9	ug/L	10.00	129	70-130			
(ylene O	10.4	ug/L	10.00	104	70-130			
(ylene P,M	21.5	ug/L	20.00	107	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.0277	mg/L	0.02500	111	70-130			
Surrogate: 4-Bromofluorobenzene	0.0261	mg/L	0.02500	104	70-130			
Surrogate: Dibromofluoromethane	0.0293	mg/L	0.02500	117	70-130			
Surrogate: Toluene-d8	0.0270	mg/L	0.02500	108	70-130			
.CS Dup								
,1,1,2-Tetrachloroethane	9.99	ug/L	10.00	100	70-130	3	25	
1,1,1-Trichloroethane	10.9	ug/L	10.00	109	70-130	4	25	
1,1,2,2-Tetrachloroethane	11.3	ug/L	10.00	113	70-130	0.8	25	
.,1,2-Trichloroethane	10.4	ug/L	10.00	104	70-130	1	25	
,1-Dichloroethane	11.2	ug/L	10.00	112	70-130	1	25	
,1-Dichloroethene	10.9	ug/L	10.00	109	70-130	1	25	
,1-Dichloropropene	11.8	ug/L	10.00	118	70-130	4	25	
.,2,3-Trichlorobenzene	9.65	ug/L	10.00	96	70-130	6	25	
1,2,3-Trichloropropane	10.8	ug/L	10.00	108	70-130	2	25	
.,2,4-Trichlorobenzene	9.86	ug/L	10.00	99	70-130	0.5	25	
1,2,4-Trimethylbenzene	10.2	ug/L	10.00	102	70-130	0.5	25	
,2-Dibromo-3-Chloropropane	10.9	ug/L	10.00	109	70-130	4	25	

185 Frances Avenue, Cranston, RI 02910-2211

10.7

10.8

10.7

11.3

10.4

10.6

11.9

10.1

189

10.5

10.9

56.5

11.2

56.1

10.8

Tel: 401-461-7181

ug/L

Fax: 401-461-4486

107

108

107

113

104

106

119

101

95

105

109

113

112

112

108

http://www.ESSLaboratory.com

0.7

3

0.3

0.9

0.2

4

0.08

6

14

11

1

2

2

1

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

0-332

70-130

70-130

70-130

70-130

70-130

70-130

70-130

25

25

25

25

25

25

25

25

200

25

25

25 25

25

25

10.00

10.00

10.00

10.00

10.00

10.00

10.00

10.00

200.0

10.00

10.00

50.00

10.00

50.00

10.00

10.00

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211448

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compounds									
Batch CK22716 - 5030B									
4-Methyl-2-Pentanone	54.0	ug/L	50.00	108	70-130	1	25		
Acetone	59.7	ug/L	50.00	119	70-130	12	25		
Benzene	11.4	ug/L	10.00	114	70-130	2	25		
Bromobenzene	10.2	ug/L	10.00	102	70-130	2	25		
Bromochloromethane	9.91	ug/L	10.00	99	70-130	4	25		
Bromodichloromethane	11.4	ug/L	10.00	114	70-130	3	25		
Bromoform	10.7	ug/L	10.00	107	70-130	3	25		
Bromomethane	12.5	ug/L	10.00	125	70-130	4	25		
Carbon Disulfide	12.5	ug/L	10.00	125	70-130	6	25		
Carbon Tetrachloride	11.2	ug/L	10.00	112	70-130	3	25		
Chlorobenzene	10.9	ug/L	10.00	109	70-130	2	25		
Chloroethane	10.4	ug/L	10.00	104	70-130	4	25		
Chloroform	10.4	ug/L	10.00	104	70-130	2	25		
Chloromethane	11.4	ug/L	10.00	114	70-130	9	25		
cis-1,2-Dichloroethene	11.3	ug/L	10.00	113	70-130	2	25		
cis-1,3-Dichloropropene	11.8	ug/L	10.00	118	70-130	4	25		
Dibromochloromethane	9.78	ug/L	10.00	98	70-130	0.5	25		
Dibromomethane	11.7	ug/L	10.00	117	70-130	15	25		
Dichlorodifluoromethane	11.0	ug/L	10.00	110	70-130	6	25		
Diethyl Ether	10.4	ug/L	10.00	104	70-130	3	25		
Di-isopropyl ether	12.2	ug/L	10.00	122	70-130	3	25		
Ethyl tertiary-butyl ether	11.0	ug/L	10.00	110	70-130	6	25		
Ethylbenzene	10.7	ug/L	10.00	107	70-130	0.4	25		
Hexachlorobutadiene	10.9	ug/L	10.00	109	70-130	3	25		
Hexachloroethane	14.7	ug/L	10.00	147	70-130	9	25	B+	
Isopropylbenzene	10.2	ug/L	10.00	102	70-130	0	25		
Methyl tert-Butyl Ether	10.9	ug/L	10.00	109	70-130	2	25		
Methylene Chloride	11.6	ug/L	10.00	116	70-130	0.09	25		
Naphthalene	9.28	ug/L	10.00	93	70-130	4	25		
n-Butylbenzene	10.3	ug/L	10.00	103	70-130	0.4	25		
n-Propylbenzene	11.0	ug/L	10.00	110	70-130	4	25		
sec-Butylbenzene	10.4	ug/L	10.00	104	70-130	3	25		
Styrene	9.85	ug/L	10.00	98	70-130	1	25		
tert-Butylbenzene	9.94	ug/L	10.00	99	70-130	2	25		
Tertiary-amyl methyl ether	10.4	ug/L	10.00	104	70-130	5	25		
Tetrachloroethene	10.1	ug/L	10.00	101	70-130	1	25		
Tetrahydrofuran	11.5	ug/L	10.00	115	70-130	9	25		
Toluene	11.3	ug/L	10.00	113	70-130	0.5	25		
trans-1,2-Dichloroethene	11.3	ug/L	10.00	113	70-130	0.9	25		
trans-1,3-Dichloropropene	10.3	ug/L	10.00	103	70-130	0.6	25		
Trichloroethene	10.1	ug/L	10.00	101	70-130	3	25		
Trichlorofluoromethane	12.9	ug/L	10.00	129	70-130	13	25		
Vinyl Acetate	11.6	ug/L	10.00	116	70-130	3	25		
Vinyl Chloride	13.7	ug/L	10.00	137	70-130	6	25	B+	

185 Frances Avenue, Cranston, RI 02910-2211

10.7

Xylene O

Tel: 401-461-7181

ug/L

Fax: 401-461-4486

Service

107

http://www.ESSLaboratory.com

70-130

3

10.00

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211448

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compounds

Batch CK22716 - 5030B								
Xylene P,M	21.8	ug/L	20.00	109	70-130	1	25	
Surrogate: 1,2-Dichloroethane-d4	0.0298	mg/L	0.02500	119	70-130			
Surrogate: 4-Bromofluorobenzene	0.0269	mg/L	0.02500	108	70-130			
Surrogate: Dibromofluoromethane	0.0307	mg/L	0.02500	123	70-130			
Surrogate: Toluene-d8	0.0272	mg/L	0.02500	109	70-130			

8270C Semi-Volatile Organic Compounds

Batch CK22923 - 3520C			
Blank			
1,1-Biphenyl	ND	0.010	mg/L
1,2,4-Trichlorobenzene	ND	0.010	mg/L
1,2-Dichlorobenzene	ND	0.010	mg/L
1,3-Dichlorobenzene	ND	0.010	mg/L
1,4-Dichlorobenzene	ND	0.010	mg/L
2,3,4,6-Tetrachlorophenol	ND	0.050	mg/L
2,4,5-Trichlorophenol	ND	0.010	mg/L
2,4,6-Trichlorophenol	ND	0.010	mg/L
2,4-Dichlorophenol	ND	0.010	mg/L
2,4-Dimethylphenol	ND	0.050	mg/L
2,4-Dinitrophenol	ND	0.050	mg/L
2,4-Dinitrotoluene	ND	0.010	mg/L
2,6-Dinitrotoluene	ND	0.010	mg/L
2-Chloronaphthalene	ND	0.010	mg/L
2-Chlorophenol	ND	0.010	mg/L
2-Methylphenol	ND	0.010	mg/L
2-Nitroaniline	ND	0.010	mg/L
2-Nitrophenol	ND	0.010	mg/L
3,3´-Dichlorobenzidine	ND	0.020	mg/L
3+4-Methylphenol	ND	0.020	mg/L
3-Nitroaniline	ND	0.010	mg/L
4,6-Dinitro-2-Methylphenol	ND	0.050	mg/L
4-Bromophenyl-phenylether	ND	0.010	mg/L
4-Chloro-3-Methylphenol	ND	0.010	mg/L
4-Chloroaniline	ND	0.020	mg/L
4-Chloro-phenyl-phenyl ether	ND	0.010	mg/L
4-Nitroaniline	ND	0.010	mg/L
4-Nitrophenol	ND	0.050	mg/L
Acetophenone	ND	0.010	mg/L
Aniline	ND	0.010	mg/L
Azobenzene	ND	0.020	mg/L
Benzoic Acid	ND	0.100	mg/L
Benzyl Alcohol	ND	0.010	mg/L
bis(2-Chloroethoxy)methane	ND	0.010	mg/L
bis(2-Chloroethyl)ether	ND	0.010	mg/L
bis(2-chloroisopropyl)Ether	ND	0.010	mg/L
			J

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ◆ Quality

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211448

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

|--|

Batch CK22923 - 3520C							
is(2-Ethylhexyl)phthalate	ND	0.006	mg/L				
ylbenzylphthalate	ND	0.010	mg/L				
rbazole	ND	0.010	mg/L				
penzofuran	ND	0.010	mg/L				
ethylphthalate	ND	0.010	mg/L				
nethylphthalate	ND	0.010	mg/L				
n-butylphthalate	ND	0.010	mg/L				
n-octylphthalate	ND	0.010	mg/L				
xachlorobutadiene	ND	0.010	mg/L				
kachlorocyclopentadiene	ND	0.025	mg/L				
kachloroethane	ND	0.005	mg/L				
phorone	ND	0.010	mg/L				
bbenzene	ND	0.010	mg/L				
itrosodimethylamine	ND	0.010	mg/L				
itroso-Di-n-Propylamine	ND	0.010	mg/L				
itrosodiphenylamine	ND	0.010	mg/L				
nol	ND	0.010	mg/L				
dine	ND	0.100	mg/L				
rogate: 1,2-Dichlorobenzene-d4	0.0792		mg/L	0.1000	<i>79</i>	30-130	
rogate: 2,4,6-Tribromophenol	0.131		mg/L	0.1500	87	15-110	
rogate: 2-Chlorophenol-d4	0.119		mg/L	0.1500	<i>79</i>	15-110	
rogate: 2-Fluorobiphenyl	0.0869		mg/L	0.1000	87	30-130	
ogate: 2-Fluorophenol	0.101		mg/L	0.1500	67	15-110	
ngate: Nitrobenzene-d5	0.0907		mg/L	0.1000	91	30-130	
ogate: Phenol-d6	0.129		mg/L	0.1500	86	15-110	
rogate: p-Terphenyl-d14	0.100		mg/L	0.1000	100	30-130	
phenyl	0.093	0.010	mg/L	0.1000	93	40-140	
4-Trichlorobenzene	0.085	0.010	mg/L	0.1000	85	40-140	
Dichlorobenzene	0.085	0.010	mg/L	0.1000	85	40-140	
Dichlorobenzene	0.081	0.010	mg/L	0.1000	81	40-140	
Dichlorobenzene	0.083	0.010	mg/L	0.1000	83	40-140	
4,6-Tetrachlorophenol	0.095	0.050	mg/L	0.1000	95	40-140	
5-Trichlorophenol	0.100	0.010	mg/L	0.1000	100	30-130	
,6-Trichlorophenol	0.093	0.010	mg/L	0.1000	93	30-130	
-Dichlorophenol	0.091	0.010	mg/L	0.1000	91	30-130	
-Dimethylphenol	0.098	0.050	mg/L	0.1000	98	30-130	
4-Dinitrophenol	0.096	0.050	mg/L	0.1000	96	30-130	
-Dinitrotoluene	0.107	0.010	mg/L	0.1000	107	40-140	
5-Dinitrotoluene	0.104	0.010	mg/L	0.1000	104	40-140	
Chloronaphthalene	0.086	0.010	mg/L	0.1000	86	40-140	
Chlorophenol	0.080	0.010	mg/L	0.1000	80	30-130	
lethylphenol	0.089	0.010	mg/L	0.1000	89	30-130	
Nitroaniline	0.088	0.010	mg/L	0.1000	88	40-140	
litrophenol	0.092	0.010	mg/L	0.1000	92	30-130	
no option	0.032	0.010	mg/L	0.1000	32	50 150	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211448

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270C Semi-Volatile	Organic	Compound	S
---------------------	---------	----------	---

Batch CK22923 - 3520C						
3,3´-Dichlorobenzidine	0.089	0.020	mg/L	0.1000	89	40-140
3+4-Methylphenol	0.182	0.020	mg/L	0.2000	91	30-130
3-Nitroaniline	0.092	0.010	mg/L	0.1000	92	40-140
4,6-Dinitro-2-Methylphenol	0.102	0.050	mg/L	0.1000	102	30-130
4-Bromophenyl-phenylether	0.090	0.010	mg/L	0.1000	90	40-140
4-Chloro-3-Methylphenol	0.099	0.010	mg/L	0.1000	99	30-130
4-Chloroaniline	0.085	0.020	mg/L	0.1000	85	40-140
4-Chloro-phenyl-phenyl ether	0.096	0.010	mg/L	0.1000	96	40-140
4-Nitroaniline	0.100	0.010	mg/L	0.1000	100	40-140
4-Nitrophenol	0.113	0.050	mg/L	0.1000	113	30-130
Acetophenone	0.093	0.010	mg/L	0.1000	93	40-140
Aniline	0.076	0.010	mg/L	0.1000	76	40-140
Azobenzene	0.097	0.020	mg/L	0.1000	97	40-140
Benzoic Acid	0.046	0.100	mg/L	0.1000	46	40-140
Benzyl Alcohol	0.096	0.010	mg/L	0.1000	96	40-140
bis(2-Chloroethoxy)methane	0.097	0.010	mg/L	0.1000	97	40-140
bis(2-Chloroethyl)ether	0.101	0.010	mg/L	0.1000	101	40-140
bis(2-chloroisopropyl)Ether	0.086	0.010	mg/L	0.1000	86	40-140
bis(2-Ethylhexyl)phthalate	0.106	0.006	mg/L	0.1000	106	40-140
Butylbenzylphthalate	0.103	0.010	mg/L	0.1000	103	40-140
Carbazole	0.097	0.010	mg/L	0.1000	97	40-140
Dibenzofuran	0.099	0.010	mg/L	0.1000	99	40-140
Diethylphthalate	0.102	0.010	mg/L	0.1000	102	40-140
Dimethylphthalate	0.096	0.010	mg/L	0.1000	96	40-140
Di-n-butylphthalate	0.103	0.010	mg/L	0.1000	103	40-140
Di-n-octylphthalate	0.115	0.010	mg/L	0.1000	115	40-140
Hexachlorobutadiene	0.086	0.010	mg/L	0.1000	86	40-140
Hexachlorocyclopentadiene	0.072	0.025	mg/L	0.1000	72	40-140
Hexachloroethane	0.087	0.005	mg/L	0.1000	87	40-140
Isophorone	0.099	0.010	mg/L	0.1000	99	40-140
Nitrobenzene	0.097	0.010	mg/L	0.1000	97	40-140
N-Nitrosodimethylamine	0.094	0.010	mg/L	0.1000	94	40-140
N-Nitroso-Di-n-Propylamine	0.095	0.010	mg/L	0.1000	95	40-140
N-nitrosodiphenylamine	0.091	0.010	mg/L	0.1000	91	40-140
Phenol	0.079	0.010	mg/L	0.1000	79	30-130
Pyridine	0.068	0.100	mg/L	0.1000	68	40-140
Surrogate: 1,2-Dichlorobenzene-d4	0.0827		mg/L	0.1000	83	30-130
Surrogate: 2,4,6-Tribromophenol	0.137		mg/L	0.1500	92	15-110
Surrogate: 2-Chlorophenol-d4	0.117		mg/L	0.1500	<i>78</i>	15-110
Surrogate: 2-Fluorobiphenyl	0.0902		mg/L	0.1000	90	30-130
Surrogate: 2-Fluorophenol	0.0910		mg/L	0.1500	61	15-110
Surrogate: Nitrobenzene-d5	0.0927		mg/L	0.1000	93	30-130
Surrogate: Phenol-d6	0.126		mg/L	0.1500	84	15-110
Surrogate: p-Terphenyl-d14	0.101		mg/L	0.1000	101	30-130
LCS Dup						

LCS Dup

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211448

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270C	Semi-Vola	atile Or	ganic (Compounds
			J	

Batch CK22923 - 3520C									
,1-Biphenyl	0.093	0.010	mg/L	0.1000	93	40-140	0.8	20	
.,2,4-Trichlorobenzene	0.084	0.010	mg/L	0.1000	84	40-140	1	20	
,2-Dichlorobenzene	0.085	0.010	mg/L	0.1000	85	40-140	0.1	20	
,3-Dichlorobenzene	0.080	0.010	mg/L	0.1000	80	40-140	0.9	20	
,4-Dichlorobenzene	0.081	0.010	mg/L	0.1000	81	40-140	2	20	
,3,4,6-Tetrachlorophenol	0.096	0.050	mg/L	0.1000	96	40-140	0.6	20	
,4,5-Trichlorophenol	0.101	0.010	mg/L	0.1000	101	30-130	1	20	
,4,6-Trichlorophenol	0.094	0.010	mg/L	0.1000	94	30-130	0.7	20	
.4-Dichlorophenol	0.094	0.010	mg/L	0.1000	94	30-130	3	20	
,4-Dimethylphenol	0.099	0.050	mg/L	0.1000	99	30-130	1	20	
,4-Dinitrophenol	0.091	0.050	mg/L	0.1000	91	30-130	6	20	
.4-Dinitrotoluene	0.108	0.010	mg/L	0.1000	108	40-140	0.3	20	
.6-Dinitrotoluene	0.104	0.010	mg/L	0.1000	104	40-140	0.5	20	
-Chloronaphthalene	0.086	0.010	mg/L	0.1000	86	40-140	0.7	20	
-Chlorophenol	0.087	0.010	mg/L	0.1000	87	30-130	8	20	
-Methylphenol	0.093	0.010	mg/L	0.1000	93	30-130	4	20	
Nitroaniline	0.088	0.010	mg/L	0.1000	88	40-140	0.5	20	
Nitrophenol	0.094	0.010	mg/L	0.1000	94	30-130	3	20	
3´-Dichlorobenzidine	0.090	0.020	mg/L	0.1000	90	40-140	1	20	
+4-Methylphenol	0.189	0.020	mg/L	0.2000	94	30-130	4	20	
Nitroaniline	0.093	0.010	mg/L	0.1000	93	40-140	0.7	20	
6-Dinitro-2-Methylphenol	0.104	0.050	mg/L	0.1000	104	30-130	2	20	
Bromophenyl-phenylether	0.092	0.010	mg/L	0.1000	92	40-140	1	20	
Chloro-3-Methylphenol	0.102	0.010	mg/L	0.1000	102	30-130	3	20	
Chloroaniline	0.085	0.020	mg/L	0.1000	85	40-140	0.5	20	
Chloro-phenyl-phenyl ether	0.094	0.010	mg/L	0.1000	94	40-140	1	20	
Nitroaniline	0.101	0.010	mg/L	0.1000	101	40-140	1	20	
Nitrophenol	0.113	0.050	mg/L	0.1000	113	30-130	0.06	20	
cetophenone	0.093	0.010	mg/L	0.1000	93	40-140	0.01	20	
niline	0.073	0.010	mg/L	0.1000	73	40-140	4	20	
zobenzene	0.098	0.020	mg/L	0.1000	98	40-140	0.3	20	
enzoic Acid	0.041	0.100	mg/L	0.1000	41	40-140	12	20	
enzyl Alcohol	0.096	0.010	mg/L	0.1000	96	40-140	0.8	20	
s(2-Chloroethoxy)methane	0.097	0.010	mg/L	0.1000	97	40-140	0.3	20	
s(2-Chloroethyl)ether	0.101	0.010	mg/L	0.1000	101	40-140	0.5	20	
s(2-chloroisopropyl)Ether	0.084	0.010		0.1000	84	40-140	2	20	
s(2-Ethylhexyl)phthalate		0.016	mg/L	0.1000	107	40-140	1	20	
	0.107 0.104	0.000	mg/L mg/L	0.1000	107	40-140	1	20	
utylbenzylphthalate arbazole	0.104	0.010		0.1000	98	40-140	0.5	20	
benzofuran	0.098	0.010	mg/L mg/L	0.1000	98	40-140	0.5	20	
				0.1000		40-140	0.07	20	
iethylphthalate	0.102	0.010	mg/L		102				
imethylphthalate	0.097	0.010	mg/L	0.1000	97	40-140	0.5	20	
-n-butylphthalate	0.102	0.010	mg/L	0.1000	102	40-140	0.2	20	
i-n-octylphthalate	0.115	0.010	mg/L	0.1000	115	40-140	0.4	20	
exachlorobutadiene	0.086	0.010	mg/L	0.1000	86	40-140	0.1	20	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability

◆ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211448

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270C Semi-Volatile Organic Compounds

Batch CK22923 - 3520C								
Hexachlorocyclopentadiene	0.070	0.025	mg/L	0.1000	70	40-140	4	20
Hexachloroethane	0.087	0.005	mg/L	0.1000	87	40-140	0.7	20
Isophorone	0.099	0.010	mg/L	0.1000	99	40-140	0.4	20
Nitrobenzene	0.097	0.010	mg/L	0.1000	97	40-140	0.2	20
N-Nitrosodimethylamine	0.098	0.010	mg/L	0.1000	98	40-140	4	20
N-Nitroso-Di-n-Propylamine	0.095	0.010	mg/L	0.1000	95	40-140	0.3	20
N-nitrosodiphenylamine	0.092	0.010	mg/L	0.1000	92	40-140	0.7	20
Phenol	0.085	0.010	mg/L	0.1000	85	30-130	8	20
Pyridine	0.065	0.100	mg/L	0.1000	65	40-140	5	20
Surrogate: 1,2-Dichlorobenzene-d4	0.0811		mg/L	0.1000	81	30-130		
Surrogate: 2,4,6-Tribromophenol	0.139		mg/L	0.1500	92	<i>15-110</i>		
Surrogate: 2-Chlorophenol-d4	0.127		mg/L	0.1500	<i>85</i>	<i>15-110</i>		
Surrogate: 2-Fluorobiphenyl	0.0892		mg/L	0.1000	89	30-130		
Surrogate: 2-Fluorophenol	0.114		mg/L	0.1500	<i>76</i>	<i>15-110</i>		
Surrogate: Nitrobenzene-d5	0.0928		mg/L	0.1000	93	30-130		
Surrogate: Phenol-d6	0.135		mg/L	0.1500	90	<i>15-110</i>		
Surrogate: p-Terphenyl-d14	0.103		mg/L	0.1000	103	30-130		

8270C(SIM) Semi-Volatile Organic Compounds

Blank 2-Methylnaphthalene Acenaphthene	ND ND	0.00020	mg/L				
		0.00020	ma/l				
Acenaphthene	ND		mg/L				
•		0.00020	mg/L				
Acenaphthylene	ND	0.00020	mg/L				
Anthracene	ND	0.00020	mg/L				
Benzo(a)anthracene	ND	0.00005	mg/L				
Benzo(a)pyrene	ND	0.00005	mg/L				
Benzo(b)fluoranthene	ND	0.00005	mg/L				
Benzo(g,h,i)perylene	ND	0.00020	mg/L				
Benzo(k)fluoranthene	ND	0.00005	mg/L				
Chrysene	ND	0.00005	mg/L				
Dibenzo(a,h)Anthracene	ND	0.00005	mg/L				
Fluoranthene	ND	0.00020	mg/L				
Fluorene	ND	0.00020	mg/L				
Hexachlorobenzene	ND	0.00020	mg/L				
indeno(1,2,3-cd)Pyrene	ND	0.00005	mg/L				
Naphthalene	ND	0.00020	mg/L				
Pentachlorophenol	ND	0.00100	mg/L				
Phenanthrene	ND	0.00020	mg/L				
Pyrene	ND	0.00020	mg/L				
Surrogate: 1,2-Dichlorobenzene-d4	0.000280		mg/L	0.0006250	45	30-130	
Surrogate: 2,4,6-Tribromophenol	0.00130		mg/L	0.0009375	138	<i>15-110</i>	S+
Surrogate: 2-Fluorobiphenyl	0.000442		mg/L	0.0006250	71	30-130	
Surrogate: Nitrobenzene-d5	0.000455		mg/L	0.0006250	<i>73</i>	30-130	
Surrogate: p-Terphenyl-d14	0.000505		mg/L	0.0006250	81	30-130	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

Batch CK22913 - 3510C

ESS Laboratory Work Order: 1211448

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270C(SIM) Semi-Volatile Organic Compounds

Batch CK22913 - 3510C									
LCS									
2-Methylnaphthalene	0.00036	0.00020	mg/L	0.0005000	71	40-140			
Acenaphthene	0.00043	0.00020	mg/L	0.0005000	86	40-140			
Acenaphthylene	0.00036	0.00020	mg/L	0.0005000	72	40-140			
Anthracene	0.00042	0.00020	mg/L	0.0005000	84	40-140			
Benzo(a)anthracene	0.00047	0.00005	mg/L	0.0005000	94	40-140			
Benzo(a)pyrene	0.00044	0.00005	mg/L	0.0005000	89	40-140			
Benzo(b)fluoranthene	0.00048	0.00005	mg/L	0.0005000	97	40-140			
Benzo(g,h,i)perylene	0.00052	0.00020	mg/L	0.0005000	104	40-140			
Benzo(k)fluoranthene	0.00048	0.00005	mg/L	0.0005000	96	40-140			
Chrysene	0.00048	0.00005	mg/L	0.0005000	96	40-140			
Dibenzo(a,h)Anthracene	0.00051	0.00005	mg/L	0.0005000	102	40-140			
luoranthene	0.00044	0.00020	mg/L	0.0005000	87	40-140			
luorene	0.00045	0.00020	mg/L	0.0005000	90	40-140			
lexachlorobenzene	0.00046	0.00020	mg/L	0.0005000	92	40-140			
ndeno(1,2,3-cd)Pyrene	0.00053	0.00005	mg/L	0.0005000	106	40-140			
aphthalene	0.00039	0.00020	mg/L	0.0005000	78	40-140			
entachlorophenol	0.00194	0.00100	mg/L	0.002500	78	30-130			
rhenanthrene	0.00046	0.00020	mg/L	0.0005000	91	40-140			
yrene	0.00048	0.00020	mg/L	0.0005000	95	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	0.000302		mg/L	0.0006250	48	30-130			
Surrogate: 2,4,6-Tribromophenol	0.00150		mg/L	0.0009375	160	15-110			5-
urrogate: 2-Fluorobiphenyl	0.000502		mg/L	0.0006250	80	30-130			
urrogate: Nitrobenzene-d5	0.000522		mg/L	0.0006250	84	30-130			
Surrogate: p-Terphenyl-d14	0.000608		mg/L	0.0006250	97	30-130			
CS Dup									
-Methylnaphthalene	0.00043	0.00020	mg/L	0.0005000	86	40-140	18	20	
cenaphthene	0.00050	0.00020	mg/L	0.0005000	100	40-140	14	20	
cenaphthylene	0.00041	0.00020	mg/L	0.0005000	82	40-140	13	20	
nthracene	0.00047	0.00020	mg/L	0.0005000	94	40-140	12	20	
enzo(a)anthracene	0.00051	0.00005	mg/L	0.0005000	102	40-140	8	20	
Benzo(a)pyrene	0.00049	0.00005	mg/L	0.0005000	97	40-140	9	20	
enzo(b)fluoranthene	0.00054	0.00005	mg/L	0.0005000	107	40-140	10	20	
enzo(g,h,i)perylene	0.00057	0.00020	mg/L	0.0005000	114	40-140	8	20	
enzo(k)fluoranthene	0.00051	0.00025	mg/L	0.0005000	102	40-140	6	20	
hrysene	0.00055	0.00005	mg/L	0.0005000	110	40-140	14	20	
bibenzo(a,h)Anthracene	0.00057	0.00005	mg/L	0.0005000	114	40-140	12	20	
luoranthene	0.00047	0.00020	mg/L	0.0005000	94	40-140	8	20	
luorene	0.00050	0.00020	mg/L	0.0005000	100	40-140	11	20	
lexachlorobenzene	0.00053	0.00020	mg/L	0.0005000	106	40-140	14	20	
ndeno(1,2,3-cd)Pyrene	0.00058	0.00020	mg/L	0.0005000	117	40-140	10	20	
aphthalene	0.00046	0.00003	mg/L	0.0005000	92	40-140	16	20	
entachlorophenol	0.00195	0.00020	mg/L	0.0005000	78	30-130	0.4	20	
Phenanthrene	0.00195	0.00100		0.0005000	104	40-140	13	20	
Pyrene	0.00051	0.00020	mg/L	0.0005000	104	40-140	8	20	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211448

Quality Control Data

Analyte	Result	MRL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	8270	OC(SIM) Semi-Volatile	Organic Co	mpound	S				
Batch CK22913 - 3510C									
Surrogate: 1,2-Dichlorobenzene-d4	0.000362	mg/L	0.0006250		58	30-130			
Surrogate: 2,4,6-Tribromophenol	0.00148	mg/L	0.0009375		158	<i>15-110</i>			<i>S+</i>
Surrogate: 2-Fluorobiphenyl	0.000558	mg/L	0.0006250		89	30-130			
Surrogate: Nitrobenzene-d5	0.000650	mg/L	0.0006250		104	30-130			
Surrogate: p-Terphenyl-d14	0.000650	mg/L	0.0006250		104	30-130			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1211448

Notes and Definitions

U	Analyte included in the analysis, but not detected
S+	Surrogate recovery(ies) above upper control limit (S+).
Q	Calibration required quadratic regression (Q).
D	Diluted.
C+	Continuing Calibration recovery is above upper control limit (C+).
B+	Blank Spike recovery is above upper control limit (B+).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1211448

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP)

A2LA Accredited: Testing Cert# 2864.01

http://www.a2la.org/scopepdf/2864-01.pdf

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/labs/waterlabs-instate.php

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water: RI0002 http://www.maine.gov/dep/blwq/topic/vessel/lab_list.pdf

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/labcert/labcert.aspx

New Hampshire (NELAP accredited) Potable and Non PotableWater, Solid and Hazardous Waste: 2424 http://www4.egov.nh.gov/des/nhelap/namesearch.asp

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

United States Department of Agriculture Soil Permit: S-54210

Maryland Potable Water: 301 http://www.mde.state.md.us/assets/document/WSP_labs-2009apr20.pdf

CHEMISTRY

A2LA Accredited: Testing Cert # 2864.01
Lead in Paint, Phthalates, Lead in Children's Metals Products (Including Jewelry)
http://www.A2LA.org/dirsearchnew/newsearch.cfm

CPSC ID# 1141
Lead Paint, Lead in Children's Metals Jewelry http://www.cpsc.gov/cgi-bin/labapplist.aspx

Sample and Cooler Receipt Checklist

Client: Resource Controls
Client Project ID: _____

Shipped/Delivered Via: ESS Courier

ESS Project ID: 12110448
Date Project Due: 12/4/12
Days For Project: 5 Day

Items to be checked upon receipt:

1. Air Bill Manifest Present?	* No	10. Are the samples properly preserved:	Yes
Air No.:		11. Proper sample containers used?	Yes
2. Were Custody Seals Present?	No	12. Any air bubbles in the VOA vials?	No
3. Were Custody Seals Intact?	N/A	13. Holding times exceeded?	No
4. Is Radiation count < 100 CPM?	Yes	14. Sufficient sample volumes?	Yes
5. Is a cooler present?	Yes	15. Any Subcontracting needed?	No
Cooler Temp: 2.7		16. Are ESS labels on correct containers?	YesiN
Iced With: Icepacks		17. Were samples received intact?	(Yes)N
6. Was COC included with samples?	Yes	ESS Sample IDs:	
7. Was COC signed and dated by client?	Yes	Sub Lab:	
8. Does the COC match the sample	Yes	Analysis:	
9. Is COC complete and correct?	Yes	TAT:	
18. Was there need to call project manag	er to discu	uss status? If yes, please explain.	

Who was called?:		. By wh			
Sample Number	Properly Preserved	Container Type	# of Containers	Preservative	
1	Yes	40 ml - VOA	3	HCL	
2	Yes	40 ml - VOA	3	HCL	
3	Yes	1 L Glass	2	NP	
3	Yes	250 ml Plastic	1	HNO3	
3	Yes	40 ml - VOA	3	HCL	
4	Yes	1 L Glass	2	NP	
4	Yes	250 ml Plastic	1	ниоз	
4	Yes	40 ml - VOA	3	HCL	
5	Yes	1 L Glass	2	NP	
5	Yes	250 ml Plastic	1	HNO3	
5	Yes	40 ml - VOA	3	HCL	
6	Yes	40 ml - VOA	. 1	HCL	
Completed By:	<u> </u>	ate/Time:	27/12		

10/26/04 A

APPENDIX G

Qualifications

MARK J. HOUSE VICE PRESIDENT AND PRINCIPAL SCIENTIST

EDUCATION

MBA Management, University of Rhode Island, 1998

B.S. Water Resources, State University of New York at Oneonta, 1989

REGISTRATION/ CERTIFICATION

- OSHA 29 CFR 1910 40-Hour Safety Training
- 8-Hour OSHA annual refresher training in health and safety
- AHERA Asbestos Inspector,
 Title II TSCA 15 U.S.C. 2646
- DOE Radiation Worker,
 Nuclear Regulatory Commission
- Several Industry Specific Short Courses

CAREER HIGHLIGHTS

- Over 20 years of professional environmental experience
- Responsible for a staff of over 20 engineers and scientists
- Managed several federally funded Brownfield assessment and redevelopment projects
- Direct project experience with nuclear and radiological wastes
- Task Manager and Field Team Leader on several high-profile Superfund cleanup projects
- Extensive field drilling experience with all types of rigs and methods
- Member of local Economic Development Committee and Conservation Commission
- Pawtucket Foundation Executive Board Member

SUMMARY OF QUALIFICATIONS

Mr. House has over 20 years of technical and managerial experience in environmental site assessment and remediation throughout New England and the East Coast. His experience includes overseeing environmental cleanup and site closure activities in accordance with RCRA, CERCLA, and various state regulations. Mr. House has also assisted clients with managing risks associated with Brownfield redevelopment including the identification, evaluation and procurement of funding vehicles, completing comprehensive assessment and remediation efforts, and structuring beneficial insurance products and institutional controls.

As Operations Manager, Mr. House is responsible for maximizing corporate efficiency and profitability while maintaining client satisfaction through consistent, responsive, cost effective, high quality work. Mr. House also functions as a Principal Scientist on key projects with the responsibility of identifying solutions to meet client needs and regulatory compliance, proposing and negotiating budgets, implementing response actions in a timely manner, as well as allocating and aligning resources.

SELECTED PROFESSIONAL EXPERIENCE

Brownfield Revitalization Project South Kingstown, RI

Managed environmental assessment and remediation activities associated with redevelopment of a historic gasoline station and petroleum distribution facility in Historic South Kingstown, RI. The downtown inter-model enhancement development project consisted of the creation of a parking area, a riverfront greenway, and a comfort station to compliment an abutting bike path. The project was funded through a RIDOT public enhancement grant. The project work included implementation of several subsurface investigations, stakeholder coordination, creative remedial design, asbestos abatement, demolition, remediation activities, wetland and civil site restoration, as well as implementation of an environmental land use restriction (ELUR), and structuring of a Brownfield Settlement Agreement and Covenant Not to Sue.

MARK J. HOUSE VICE PRESIDENT AND PRINCIPAL SCIENTIST

RIDEM Landfill Assessment & Closure East Providence, RI

Managed the investigation, landfill closure design, and wetlands permitting activities associated with the resolution of the Greenwood Disposal Area, a former gypsum waste disposal landfill located in East Providence, RI. Activities were conducted in accordance with the RIDEM Landfill Closure Program, which integrates requirements of both the RIDEM Remediation and Solid Waste Regulations. The project also included significant coordination the RIDEM Office of Compliance and Wetland Program regarding impact to a down gradient stream, activities included wetland delineation and permitting, as well as erosion control and wetland restoration design.

RIDEM Site Investigation and Remedial Design, Former Chemical Company Lincoln, RI

Managed comprehensive environmental assessment and remediation efforts associated with the restoration of a historic chemical manufacturing facility. Numerous stages of subsurface investigation identified extensive No. 6 fuel oil and chlorinated solvent contamination on the property and in an abutting mill river. Following remedial design, source removal activities were conducted in coordination with several parties including regulatory agencies, tenants, responsible parties and potential purchasers. Coordinated significant permitting and monitoring activities in accordance with the RIDEM Freshwater Wetlands Program. Also assisted legal council in the implementation of an Environmental Land Use Restriction (ELUR), as well as the structuring of a Brownfield Settlement Agreement and Covenant Not to Sue.

Brownfield Assessment Mansfield, MA

Managed the assessment of a former creosote manufacturing plant situated on 45 acres in Mansfield, MA. Activities were conducted in accordance with the MCP and in coordination with improvements to the abutting commuter rail station. This complex Brownfield redevelopment project included the preparation of an EPA Quality Assurance Project Plan (QAPP), multi-media assessment, risk characterization, remediation of soil and groundwater contamination, as well as resolution of environmental impacts to adjoining wetlands and the Rumford River. Project funding was provided to the Town of Mansfield by the EPA as a result of the pro bono writing of an EPA grant by Resource Controls.

CERCLIS Site Investigation Tiverton, RI

Managed the investigation of an alleged manufactured gas plant (MGP) fly ash disposal site in a residential / wetland setting in Tiverton, RI. The project included a multi-media sampling effort and a comprehensive forensic analytical evaluation. Management of this CERCLIS Site is conducted under a Superfund Memorandum of Agreement (SMOA) between EPA and RIDEM.

JULIE V. FRESHMAN SENIOR ENVIRONMENTAL SCIENTIST / GIS MANAGER

EDUCATION

M.A. Energy and Environmental Analysis, Boston University, 2002

B.S. Environmental Science, University of Delaware, 1999

SPECIAL TRAINING

• OSHA 29 CFR 1910 40-Hour Safety and GIS Training

CAREER HIGHLIGHTS

- Over 10 years of professional environmental experience
- Substantial experience with creation of graphics using ArcGIS and AutoCAD software.
- Strong data management skills for environmental site assessments activities.
- Has conducted environmental site assessments of various commercial and industrial properties, including advancement of soil borings, installation of groundwater monitoring wells, soil and groundwater sampling, surveying and reporting.
- Strong working knowledge of ASTM site assessment requirements.
- Website Development & Maintenance

MEMBERSHIPS

- New England Geographic Information and Technology Association (NEGITA) - Current Board Member
- URISA The Association for GIS Professionals

SUMMARY OF QUALIFICATIONS

Ms. Freshman's experience includes all aspects of environmental assessment and GIS mapping, as well as data management and presentation. She has conducted numerous GIS mapping projects for wide range of information, Phase I and II site assessments, and assisted with subsurface investigations, file reviews and data management. Ms. Freshman has also written a wide variety of project reports, and created diverse graphics for reports using ArcGIS and AutoCAD software.

SELECTED PROFESSIONAL EXPERIENCE

Phase I Environmental Site Assessments and Transaction Screen Assessments, Multiple Locations

Conducted numerous ASTM Phase 1 Environmental Site Assessments and Transaction Screen Assessments of various commercial and industrial properties throughout Rhode Island and Massachusetts. Responsibilities included site inspection, state and local file reviews, property owner contacts and interviews, environmental database analysis, and report preparation.

Wetland Permitting-National Telecommunications Utility Co., Multiple Municipalities

Assisted with obtaining the required wetlands permits for the completion of underground utility upgrade work in a number of towns in eastern Massachusetts. Responsibilities included developing GIS plans depicting the work areas, mapped resource areas, and buffer zones to jurisdictional resources; conducting field inspections; preparing permit application; and attending conservation commission hearings.

Data Management and Presentation Multiple Locations

Managed data and created tables and graphics for presentation purposes for multiple sites throughout Rhode Island and Massachusetts. Ms. Freshman was responsible for obtaining data electronically from the lab and transferring said data directly to Resource Controls' in-house data management and graphic presentation system. Data was evaluated, consolidated in summary tables for presentation and plotted on distribution maps and diagrams. Software used includes Earthsoft's EQuIS Environmental Data Management Software, ESRI's ArcGIS, Golden Software's Surfer, Autodesk's AutoCAD.

JULIE V. FRESHMAN SENIOR ENVIRONMENTAL SCIENTIST / GIS MANAGER

Environmental Permitting for Proposed Telecommunications Facility Cranston, RI

Conducted a National Environmental Policy Act (NEPA) Evaluation at the Site. The purpose of the assessment was to evaluate the Site for potential environmental and/or historical concerns. Responsibilities included researching relevant Federal and State records, reviewing required historical records, coordinating an archaeological survey and preparing a final report.

Former Chemical Company Lincoln, RI

During remediation of release issues, significant post remediation confirmatory soil and groundwater samples were analyzed. Ms. Freshman was responsible for obtaining this data electronically from the lab and transferring said data directly to Resource Controls' in-house data management and graphic presentation system. Data was then evaluated, consolidated in summary tables for presentation and plotted on distribution maps and diagrams.

Active Manufacturing Facility Pawtucket, RI

Conducted ASTM Phase I Environmental Site Assessment of historic mill property located adjacent to the Blackstone River, and assisted with a subsurface investigation aimed at determining the extent of soil and/or groundwater contamination. Investigation included state and local file reviews, property contacts and interviews, environmental database analysis, advancement of soil borings, installation of groundwater monitoring wells, collection of soil and groundwater samples for laboratory analysis, surveying to determine relative water table elevations, and report preparation.

Brownfields Redevelopment Project Taunton, MA

Obtained the required wetlands permits for the demolition of site buildings, environmental site assessment activities and remedial activities at a Brownfields site in Taunton, Massachusetts. Responsibilities included communications with conservation commission agent, completing required state and local permit application forms, developing plans depicting the work areas and resource areas, and attending conservation commission hearings.

Disposal Site Assessment and Remediation Project Raynham, MA

Obtained the required wetlands permits for the demolition of site buildings, environmental site assessment activities and remedial activities at a hazardous waste drum disposal site in Raynham, Massachusetts. Responsibilities included communications with conservation commission agent, completing required state and local permit application forms, developing plans depicting the work areas and resource areas, and attending conservation commission hearings.

DANIEL S. BOYNES

ENVIRONMENTAL SCIENTIST

Education

B.S. Geosciences
University of Rhode
Island,
Kingston, RI, 2011

Special Training

40-Hour OSHA

Career Highlights

- ASTM Phase I and Transaction Screen Assessment experience at residential and commercial properties in Rhode Island.
- Professional experience with subsurface investigations, including soil borings, groundwater monitoring wells, soil, groundwater, sediment and surface water sampling, and report preparation.
- Working knowledge of ASTM site assessment requirements.
- Understanding of the
 Massachusetts Contingency
 Plan (MCP) and Rhode Island
 Remediation Regulations
 reporting requirements,
 particularly as applied to
 potential oil or hazardous
 materials releases identified
 during ASTM investigations.

SUMMARY OF QUALIFICATIONS

Mr. Boynes' experience includes all aspects of environmental assessment, numerous Transaction Screen Assessments and Phase I site assessments, and subsurface investigations, including soil, air, sediment, soil gas, surface water and groundwater sample collection, file reviews and data management.

SELECTED PROFESSIONAL EXPERIENCE

Transaction Screen Assessments, Multiple Locations

Conducted numerous ASTM Transaction Screen Site Assessments of various commercial and industrial properties throughout Rhode Island and Massachusetts. Responsibilities included site inspection, property owner contacts and interviews, environmental database analysis, and report preparation.

Polychlorinated Biphenyls Building Inspections, Public Buildings Boston, MA

Mr. Boynes performed building inspections of buildings constructed during the time period in which PCBs were heavily used. He documented and photographed any potential PCB-containing building material. Responsibilities included site inspection, file reviews, database analysis, and preparation of the report and associated graphics.

Former Chemical Company, Lincoln, RI

Mr. Boynes was responsible for obtaining this data electronically from the lab and transferring said data directly to Resource Controls' in-house data management and graphic presentation system. Data was then evaluated and consolidated in summary tables for presentation.

PCB Removal Operations, Department of Conservation and Recreation, Fitchburg, MA

Mr. Boynes performed contractor oversight of removal of PCBs-containing caulking, as well as compliance with EPA approved plans and regulations. He conducts air quality monitoring in the work area and documents removal activities in field notes and photographs.

Site Characterization and Remediation, Former Metals Company, Taunton, MA

Mr. Boynes performed environmental assessments, site characterizations, report preparation, soil and water quality data collection and analysis, figure preparation, and oversight of subsurface investigations, drilling activities and monitoring well installations.

APPENDIX H

Additional Limitations

ADDITIONAL LIMITATIONS

- The observations described in this Report were made under the conditions stated herein. The conclusions
 presented in the Report are based solely upon the services described therein and not on scientific tasks or
 procedures beyond the scope of described services or the time and budgetary constraints imposed by Client.
 The work described in the Report was carried out in accordance with our Proposal and Associated Statement
 of Standard Terms and Conditions.
- 2. In preparing the Report, Resource Controls has relied on certain information provided by state and local officials and other parties referenced therein and on information contained in the files of state and/or local agencies available to Resource Controls at the time of the site evaluation. Although there may have been some degree of overlap in the information provided by the various sources, Resource Controls did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this site assessment.
- 3. Observations and explorations were made of the site as indicated within the Report. Where access to portions of the site were unavailable or limited, Resource Controls renders no opinion as to the presence of hazardous materials, asbestos, lead paint or oil, or to the presence of indirect evidence relating to the same, in that portion of the site or structure. In addition, Resource Controls renders no opinion as to the presence of hazardous materials, lead paint, oil or asbestos or to the presence of indirect evidence relating to hazardous materials, oil, lead paint or asbestos, where direct observation of the interior walls, floor, or ceiling of a structure on a site was obstructed by objects or coverings on or over these structures.
- 4. The purpose of this Report was to assess the physical and chemical characteristics of the subject site with respect to the presence in the environment of hazardous materials, lead paint, asbestos or oil. No specific attempt was made to check the regulatory compliance of present or past owners or operators of the site with federal, state or local laws and regulations, environmental or otherwise.
- 5. Except as noted within the text of this Report, no quantitative laboratory testing was performed as part of this evaluation. Where such analyses have been conducted by an outside laboratory, Resource Controls has relied upon the data provided and has not conducted an independent third party evaluation of the reliability of this data.
- 6. Chemical analyses performed for specific parameters during the course of studies have been used, in part, as a basis for determining the areas of environmental concern. Additional chemical constituents not searched for may be present at the site. Defined areas of environmental concern do not cover the potential additional constituents.
- 7. Governmental agencies' interpretations, requirements and enforcement policies may impact the type and scope of any site remediation required for a site. In addition, statutes, rules and regulations may be legislatively changed and inter-agency and intra-agency policies may be changed from present practice. If such changes occur, it may be necessary to re-evaluate their impact on the scope of any site remediation required.
- 8. Any water level readings made in the test pits, borings and/or wells and were made under the conditions stated on the logs. This data may have been reviewed and interpretations have been made in the text of this Report. However, it must be noted that fluctuations in the level of groundwater may occur due to variations in rainfall, temperature and other factors different from those prevailing at the time measurements were made.
- 9. Any and all cost estimates or opinions presented are based on Resource Controls opinion of most probable costs and are based on information available at the time of the estimate. Such estimates may vary from actual contract values based on many market and engineering variables beyond the control of Resource Controls. No warranty or guarantee is offered on the accuracy or validity of the estimates provided.

APPENDIX D

Copy of Letter of Responsibility

LETTER OF RESPONSIBILITY CASE No. 2013-024

May 24, 2013

CERTIFIED MAIL

Bay Spring Realty Company c/o Andrew Schuster 909 North Main Street Providence, RI 02904

RE:

Bay Spring Realty Company 90 Bay Spring Avenue Barrington, Rhode Island Plat Map 2 / Lot 154

Dear Mr. Schuster:

On November 9, 2011, the Rhode Island Department of Environmental Management (the Department) enacted the amended <u>Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases</u> (the <u>Remediation Regulations</u>). The purpose of these regulations is to create an integrated program requiring reporting, investigation and remediation of contaminated sites in order to eliminate and/or control threats to human health and the environment in an efficient manner. A Letter of Responsibility (LOR) is a preliminary document used by the Department to codify and define the relationship between the Department and a Performing Party.

Please be advised of the following facts:

- 1. The above referenced property is located at 90 Bay Spring Avenue in Barrington, Rhode Island (the Site). The Site is further identified by the Town of Barrington Tax Assessor's Office as Plat Map 2 / Lot 154.
- 2. The Department is in receipt of the following document[s]:
 - a. <u>Hazardous Material Release Notification Form</u>, received by the Department on May 17, 2013, prepared by Resource Control Associates, Inc.
- 3. The above referenced document identifies concentrations of arsenic and polycyclic aromatic hydrocarbons in Site soils that exceed the Department's Method 1 Direct Exposure Criteria, as referenced in the <u>Remediation Regulations</u>. The above referenced document also identifies concentrations of arsenic and lead in the Site groundwater that exceeds the Department's GA Groundwater Objectives.

- 4. Based on the presence and nature of these Hazardous Substances the Department concurs that a Release of Hazardous Materials has occurred as defined by Rules 3.33, 3.34, and 3.63 of the Remediation Regulations.
- 5. Bay Spring Realty Company is identified as the current owner of the Site by the Town of Barrington's Tax Assessor's office and as such is a Responsible Party as defined by Rule 3.70 of the Remediation Regulations.

As a result of the information known and the conditions observed at the site, the Department requests that Bay Spring Realty Company comply with the following:

1. If necessary, prior to the implementation of any additional site investigation field activities and in accordance with Rule 7.07(A)(i) of the Remediation Regulations, Bay Spring Realty Company must notify all abutting property owners, tenants, easement holders, and the municipality that an investigation is about to occur. The notice should briefly indicate the purpose of the investigation, the work to be performed, and the approximate scheduled dates of activities. Please submit a draft notification to the Department via E-mail for review and approval prior to distribution. A boilerplate notification to be distributed can be found online at: http://www.dem.ri.gov/programs/benviron/waste/topicrem.htm#process.

The Department will require a copy of the public notice letter and a list of all recipients. Failure to comply with the aforementioned items may result in enforcement actions as specified in Rhode Island General Laws 23-19.1-17 and 23-19.1-18.

- 2. Conduct further investigation of the Site soil and groundwater, if warranted, in accordance with Section 7.00 of the Remediation Regulations.
- 3. Upon completion of the additional site investigation submit a Site Investigation Report (SIR) in accordance with Section 7.00 of the <u>Remediation Regulations</u> within ninety (90) days from that date of this letter. Given that some limited environmental investigation has already been performed at the Site, you may incorporate portions of the information already gathered and work already performed to address the items covered in Section 7.00. The SIR should include at least two remedial alternatives other than no action/natural attenuation and include future plans for the re-use or redevelopment (if applicable) of the property.
- 4. Submit an SIR checklist in accordance with Rule 7.08 of the <u>Remediation Regulations</u>. The SIR checklist was created as a supplemental tool to expedite the review and approval process by cross-referencing the specific sections and pages within the SIR that provide the detailed information that addresses each stated requirement within Section 7.00 of the <u>Remediation Regulations</u>.
- 5. Upon approval by the Department of the SIR, be prepared to bring the Site into compliance with the Remediation Regulations.

proper investigation and remediation of hazardous substances at this site. Also be advised that any remedial alternative that proposes to leave contaminated media on-site at levels which exceed the Department's Residential Direct Exposure Criteria, applicable Leachability Criteria, or applicable Groundwater Criteria will, at a minimum, necessitate the recording of an institutional control in the form of an Environmental Land Usage Restriction (ELUR) on the deed for the site, and will likely require implementation of additional engineered controls to restrict human exposure.

Please notify this office within seven days of the receipt of this letter of your plans to address these items. All correspondences should be sent to the attention of:

Timothy M. Fleury
RIDEM / Office of Waste Management
235 Promenade Street
Providence, RI 02908

If you have any questions regarding this letter or would like the opportunity to meet with Department personnel, please contact me by telephone at (401) 222-2797, ext. 7147, or by E-mail at tim.fleury@dem.ri.gov.

Sincerely,

Timothy M. Fleury

Senior Engineer

Office of Waste Management

cc:

Kelly Owens, Office of Waste Management Jeffrey Crawford, Office of Waste Management Julie Freshman, Resource Control Associates, Inc.

APPENDIX E

Laboratory Reports

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Daniel Boynes Resource Controls 474 Broadway Pawtucket, RI 02860-1377

RE: Barrington (7131)

ESS Laboratory Work Order Number: 1302205

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 5:05 pm, Feb 21, 2013

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibratins, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1302205

SAMPLE RECEIPT

The following samples were received on February 13, 2013 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	SampleName	Matrix	Analysis
1302205-01	MW-3	Ground Water	6010B, 7060A, 7470A
1302205-02	MW-4	Ground Water	6010B, 7060A, 7470A

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1302205

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1302205

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5035 - Solid Purge and Trap

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-3 Date Sampled: 02/13/13 10:26

Percent Solids: N/A

Extraction Method: 3005A

ESS Laboratory Work Order: 1302205 ESS Laboratory Sample ID: 1302205-01

Sample Matrix: Ground Water

Units: mg/L

Dissolved Metals Aqueous

Analyte Arsenic	Results (MRL) ND (0.0025)	Method 7060A	<u>Limit</u>	<u>DF</u>	Analyst AA	Analyzed 02/16/13 21:10	<u>I/V</u> 50	<u>F/V</u> 25	Batch CB31601
Barium	0.093 (0.025)	6010B		1	SVD	02/16/13 22:54	50	25	CB31601
Cadmium	ND (0.0025)	6010B		1	SVD	02/16/13 22:54	50	25	CB31601
Chromium	ND (0.010)	6010B		1	SVD	02/16/13 22:54	50	25	CB31601
Lead	ND (0.010)	6010B		1	SVD	02/16/13 22:54	50	25	CB31601
Mercury	ND (0.00020)	7470A		1	NAR	02/19/13 13:02	20	40	CB31602
Selenium	ND (0.025)	6010B		1	SVD	02/16/13 22:54	50	25	CB31601
Silver	ND (0.005)	6010B		1	SVD	02/16/13 22:54	50	25	CB31601

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-3 Date Sampled: 02/13/13 10:26

Percent Solids: N/A

ESS Laboratory Work Order: 1302205 ESS Laboratory Sample ID: 1302205-01

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Total Metals Aqueous

Analyte Arsenic	Results (MRL) 0.0027 (0.0025)	Method 7060A	<u>Limit</u>	<u>DF</u>	Analyst AA	Analyzed 02/16/13 20:12	<u>I/V</u> 50	F/V 25	Batch CB31326
Barium	0.121 (0.025)	6010B		1	SVD	02/14/13 22:54	50	25	CB31326
Cadmium	ND (0.0025)	6010B		1	SVD	02/14/13 22:54	50	25	CB31326
Chromium	ND (0.010)	6010B		1	SVD	02/14/13 22:54	50	25	CB31326
Lead	0.030 (0.010)	6010B		1	SVD	02/14/13 22:54	50	25	CB31326
Mercury	0.00055 (0.00020)	7470A		1	NAR	02/19/13 9:53	20	40	CB31602
Selenium	ND (0.025)	6010B		1	SVD	02/14/13 22:54	50	25	CB31326
Silver	ND (0.005)	6010B		1	SVD	02/14/13 22:54	50	25	CB31326

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-4 Date Sampled: 02/13/13 11:53

Percent Solids: N/A

Extraction Method: 3005A

ESS Laboratory Work Order: 1302205 ESS Laboratory Sample ID: 1302205-02

Sample Matrix: Ground Water

Units: mg/L

Dissolved Metals Aqueous

Analyte Arsenic	Results (MRL) 0.0123 (0.0025)	Method 7060A	<u>Limit</u>	<u>DF</u>	Analyst AA	Analyzed 02/16/13 21:16	<u>I/V</u> 50	<u>F/V</u> 25	Batch CB31601
Barium	0.046 (0.025)	6010B		1	SVD	02/16/13 22:58	50	25	CB31601
Cadmium	ND (0.0025)	6010B		1	SVD	02/16/13 22:58	50	25	CB31601
Chromium	ND (0.010)	6010B		1	SVD	02/16/13 22:58	50	25	CB31601
Lead	ND (0.010)	6010B		1	SVD	02/16/13 22:58	50	25	CB31601
Mercury	ND (0.00020)	7470A		1	NAR	02/19/13 9:56	20	40	CB31602
Selenium	ND (0.025)	6010B		1	SVD	02/16/13 22:58	50	25	CB31601
Silver	ND (0.005)	6010B		1	SVD	02/16/13 22:58	50	25	CB31601

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-4 Date Sampled: 02/13/13 11:53

Percent Solids: N/A

Extraction Method: 3005A

ESS Laboratory Work Order: 1302205 ESS Laboratory Sample ID: 1302205-02

Sample Matrix: Ground Water

Units: mg/L

Total Metals Aqueous

Analyte Arsenic	<u>Results (MRL)</u> 0.0206 (0.0025)	Method 7060A	Limit	<u>DF</u>	Analyst AA	Analyzed 02/16/13 20:29	<u>I/V</u> 50	<u>F/V</u> 25	Batch CB31326
Barium	0.090 (0.025)	6010B		1	SVD	02/14/13 22:58	50	25	CB31326
Cadmium	ND (0.0025)	6010B		1	SVD	02/14/13 22:58	50	25	CB31326
Chromium	0.021 (0.010)	6010B		1	SVD	02/14/13 22:58	50	25	CB31326
Lead	0.030 (0.010)	6010B		1	SVD	02/14/13 22:58	50	25	CB31326
Mercury	0.00074 (0.00020)	7470A		1	NAR	02/19/13 9:58	20	40	CB31602
Selenium	ND (0.025)	6010B		1	SVD	02/14/13 22:58	50	25	CB31326
Silver	ND (0.005)	6010B		1	SVD	02/14/13 22:58	50	25	CB31326

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1302205

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		Dissol	ved Metals	s Aqueous						
Batch CB31601 - 3005A										
Blank										
Arsenic	ND	0.0025	mg/L							
Barium	ND	0.025	mg/L							
Cadmium	ND	0.0025	mg/L							
Chromium	ND	0.010	mg/L							
Lead	ND	0.010	mg/L							
Selenium	ND	0.025	mg/L							
Silver	ND	0.005	mg/L							
Blank										
Arsenic	ND	0.0050	mg/L							
LCS										
Barium	0.255	0.025	mg/L	0.2500		102	80-120			
Cadmium	0.124	0.0025	mg/L	0.1250		99	80-120			
Chromium	0.259	0.010	mg/L	0.2500		104	80-120			
Lead	0.258	0.010	mg/L	0.2500		103	80-120			
Selenium	0.500	0.025	mg/L	0.5000		100	80-120			
Silver	0.133	0.005	mg/L	0.1250		107	80-120			
LCS										
Arsenic	0.0109	0.0025	mg/L	0.01000		109	80-120			
LCS Dup										
Barium	0.252	0.025	mg/L	0.2500		101	80-120	1	20	
Cadmium	0.121	0.0025	mg/L	0.1250		96	80-120	3	20	
Chromium	0.255	0.010	mg/L	0.2500		102	80-120	2	20	
Lead	0.254	0.010	mg/L	0.2500		101	80-120	2	20	
Selenium	0.491	0.025	mg/L	0.5000		98	80-120	2	20	
Silver	0.129	0.005	mg/L	0.1250		104	80-120	3	20	
LCS Dup										
Arsenic	0.0107	0.0025	mg/L	0.01000		107	80-120	2	20	
Batch CB31602 - 245.1/7470A										
Blank										
Mercury	ND	0.00020	mg/L							
LCS										
Mercury	0.00576	0.00020	mg/L	0.006000		96	80-120			
LCS Dup										
Mercury	0.00571	0.00020	mg/L	0.006000		95	80-120	0.9	20	
			al Metals A							
Batch CB31326 - 3005A										
Blank										
Arsenic	ND	0.0025	mg/L							
Barium	ND	0.025	mg/L							
Cadmium	ND	0.0025	mg/L							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1302205

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			al Metals A	AGUEOUS						-
		100	ai Metais A	iqueous						
Batch CB31326 - 3005A										
Chromium	ND	0.010	mg/L							
Lead	ND	0.010	mg/L							
Selenium	ND	0.025	mg/L							
Silver	ND	0.005	mg/L							
Blank										
Arsenic	ND	0.0050	mg/L							
LCS										
Barium	0.253	0.025	mg/L	0.2500		101	80-120			
Cadmium	0.123	0.0025	mg/L	0.1250		99	80-120			
Chromium	0.254	0.010	mg/L	0.2500		101	80-120			
Lead	0.251	0.010	mg/L	0.2500		100	80-120			
Selenium	0.469	0.025	mg/L	0.5000		94	80-120			
Silver	0.129	0.005	mg/L	0.1250		104	80-120			
LCS										
Arsenic	0.0098	0.0025	mg/L	0.01000		98	80-120			
LCS Dup										
Barium	0.249	0.025	mg/L	0.2500		100	80-120	2	20	
Cadmium	0.123	0.0025	mg/L	0.1250		98	80-120	0.4	20	
Chromium	0.253	0.010	mg/L	0.2500		101	80-120	0.4	20	
Lead	0.249	0.010	mg/L	0.2500		100	80-120	0.6	20	
Selenium	0.468	0.025	mg/L	0.5000		94	80-120	0.3	20	
Silver	0.129	0.005	mg/L	0.1250		103	80-120	0.4	20	
LCS Dup										
Arsenic	0.0095	0.0025	mg/L	0.01000		95	80-120	3	20	
Batch CB31602 - 245.1/7470A										
Blank										
Mercury	ND	0.00020	mg/L							
LCS										
Mercury	0.00576	0.00020	mg/L	0.006000		96	80-120			
LCS Dup										
Mercury	0.00571	0.00020	mg/L	0.006000		95	80-120	0.9	20	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Analyte included in the analysis, but not detected

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

U

ESS Laboratory Work Order: 1302205

Notes and Definitions

ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MDI	Mothed Deposition Limit

MRL Method Reporting Limit Limit of Detection LOD Limit of Quantitation LOQ **Detection Limit** DL Initial Volume I/V F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. Range result excludes the concentration of the C9-C10 aromatic range. 3

Results reported as a mathematical average. Avg

NR No Recovery

[CALC] Calculated Analyte

Subcontracted analysis; see attached report **SUB**

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1302205

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP) A2LA Accredited: Testing Cert# 2864.01 http://www.a2la.org/scopepdf/2864-01.pdf

> Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/labs/waterlabs-instate.php

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI0002 http://www.maine.gov/dep/blwq/topic/vessel/lab list.pdf

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/labcert/labcert.aspx

New Hampshire (NELAP accredited) Potable and Non PotableWater, Solid and Hazardous Waste: 2424 http://www4.egov.nh.gov/des/nhelap/namesearch.asp

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

United States Department of Agriculture Soil Permit: S-54210

Maryland Potable Water: 301 http://www.mde.state.md.us/assets/document/WSP labs-2009apr20.pdf

CHEMISTRY

A2LA Accredited: Testing Cert # 2864.01 Lead in Paint, Phthalates, Lead in Children's Metals Products (Including Jewelry) http://www.A2LA.org/dirsearchnew/newsearch.cfm

> CPSC ID# 1141 Lead Paint, Lead in Children's Metals Jewelry http://www.cpsc.gov/cgi-bin/labapplist.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

Sample and Cooler Receipt Checklist

Client: Resource Controls
Client Project ID: _____
Shipped/Delivered Via: ESS Courier

ESS Project ID: 13020205
Date Project Due: 2/20/13
Days For Project: 5 Day

Items to be checked upon receipt:

tems to be checked upon receipt:				
1. Air Bill Manifest Present?	* No	10. Are the samples properl	• •	Yes
Air No.:		11. Proper sample container	rs used?	Yes
2. Were Custody Seals Present?	No	12. Any air bubbles in the V	OA vials?	N/A
3. Were Custody Seals Intact?	N/A	13. Holding times exceeded	?	No
4. Is Radiation count < 100 CPM?	Yes	14. Sufficient sample volum	es?	Yes
5. Is a cooler present?	Yes	15. Any Subcontracting nee	ded?	No
Cooler Temp: 2.4		16. Are ESS labels on correct	ct containers?	Yes No
Iced With: Icepacks		17. Were samples received	intact?	Yes No
6. Was COC included with samples?	Yes	ESS Sample IDs:		_
7. Was COC signed and dated by client?	Yes	Sub Lab:		
8. Does the COC match the sample	Yes	Analysis:		
9. Is COC complete and correct?	Yes	TAT:		
18. Was there need to call project manage	er to discus	s status? If yes, please expl	ain.	
Who was called?:		By whom?		
Sample Number Properly Preserv	ed Contai	ner Type # of Containers	Preservative	
1 Yes 1 Yes		Plastic 1 Plastic 1	HNO3 NP	
2 (Yes		Plastic 1	HNO3	
2 - N Yes		Plastic / 5 / 1	NP	
Completed By:	Date/Time	a: "\\\\\\\\\		
Reviewed By:	Date/Time	7/5/5		
,	,			

CHAIN OF CUSTODY ESS Laboratory

185 Frances Avenue, Cranston, RI 02910-2211 Tel. (401) 461-7181 Fax (401) 461-4486 Division of Thielsch Engineering, Inc. www.esslaboratory.com

RSSLAB PROJECTID ž PDF X Other Format: Excel X Access_ AIDEM CONDUM Electronic Deliverable Reporting Limits If faster than 5 days, prior approval by laboratory is required # Other Other State where samples were collected from:
MA (RI) CT NH NJ NY ME Is this project for any of the following:
MA-MCP Navy USACE

Container Type: P-Poly G-Glass S-Sterile V-VOA | Matrix: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filters Preservation Code 1- NP, 2- HC1, 3- H2SO4, 4- HNO3, 5- NaOH, 6- McOH, 7- Asorbic Acid, 8- ZnAct, 9-Write Required Analysis ट्यक्षा<u>क्ष</u> (क्ष्मा) (क्षमान 0 3V1 BB Ф Ċ Type of Containers ტ 7-6 2 Number of Containers N 7, 7 _{bres} DERGAN, BALPINGTON donnos@resorce contras. 7131341318 Project Name (20 Char. or less) 6.5'-1.5' (0.5'-2' DANKE ,2-,50 Sample Identification (20 Char. or less) BROADWAY PO# **Email Address** Sampled by: Comments: 3 RCB - 2 09820 ACM -MW-4 MW-3 クナウ ACIA 1514 Project # Internal Use Only [] Technicians_ [] Pickup Ø S S Ħ SKAB × СОМР × No NA: State 92:01 13:45 Collection 1:53 13,15 12,30 Time Controls Oaso - F2F Yes 2/18/13 Cooler Temp: 29°C Pau tocket hosona 131 WEC Cooler Present Contact Person Telephone # Seals Intact ESS LAB Sample # Co. Name

*By circling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A

Please fax all changes to Chain of Custody in writing.

10/26/04 A

1 (White) Lab Copy 2 (Yellow) Client Receipt

Date/Time

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

38113 14136

Date/Time

Receired by: (Signature)

Date/Time

Relinguished by: (Signature)

13

Date/Time

(eceived by: (Signature)

Date/Time

Relinquished by: (Signature)

Date/Time

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Daniel Boynes Resource Controls 474 Broadway Pawtucket, RI 02860-1377

RE: Barrington (7131)

ESS Laboratory Work Order Number: 1302206

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 5:09 pm, Feb 21, 2013

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibratins, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1302206

SAMPLE RECEIPT

The following samples were received on February 13, 2013 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	SampleName	Matrix	Analysis
1302206-01	RCA-1 0.5ft-2ft	Soil	6010B, 7471A, 8270C
1302206-02	RCA-2 0.5ft-1.5ft	Soil	6010B, 7471A, 8270C
1302206-03	RCA-3 0.5ft-2ft	Soil	6010B, 7471A, 8270C

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1302206

PROJECT NARRATIVE

8270C Polynuclear Aromatic Hydrocarbons

CWB0138-CCV1 Pentachlorophenol tailing factor > 2.

Total Metals Solid

Elevated Method Reporting Limits due to sample matrix (EL). 1302206-01

Selenium

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1302206

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5035 - Solid Purge and Trap

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: RCA-1 0.5ft-2ft Date Sampled: 02/13/13 12:30

Percent Solids: 82

Extraction Method: 3050B

ESS Laboratory Work Order: 1302206 ESS Laboratory Sample ID: 1302206-01

Sample Matrix: Soil Units: mg/kg dry

Total Metals Solid

Analyte Arsenic	Results (MRL) 25.7 (2.5)	Method 6010B	<u>Limit</u>	<u>DF</u>	Analyst NAR	<u>Analyzed</u> 02/16/13 13:23	<u>I/V</u> 2.45	$\frac{\mathbf{F/V}}{100}$	Batch CB31519
Barium	43.6 (2.5)	6010B		1	NAR	02/16/13 13:23	2.45	100	CB31519
Cadmium	ND (0.50)	6010B		1	NAR	02/16/13 13:23	2.45	100	CB31519
Chromium	6.4 (1.0)	6010B		1	NAR	02/16/13 13:23	2.45	100	CB31519
Lead	38.3 (5.0)	6010B		1	NAR	02/16/13 13:23	2.45	100	CB31519
Mercury	0.164 (0.040)	7471A		1	JP	02/16/13 15:17	0.61	40	CB31524
Selenium	EL ND (14.9)	6010B		3	SVD	02/19/13 22:35	2.45	100	CB31519
Silver	ND (0.50)	6010B		1	NAR	02/16/13 13:23	2.45	100	CB31519

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: RCA-1 0.5ft-2ft Date Sampled: 02/13/13 12:30

Percent Solids: 82 Initial Volume: 14.6 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1302206 ESS Laboratory Sample ID: 1302206-01

Sample Matrix: Soil Units: mg/kg dry Analyst: SEP

Prepared: 2/13/13 16:40

8270C Polynuclear Aromatic Hydrocarbons

Analyte	Results (MRL)	<u> </u>	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.417)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Acenaphthene	ND (0.417)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Acenaphthylene	ND (0.417)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Anthracene	ND (0.417)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Benzo(a)anthracene	0.470 (0.417)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Benzo(a)pyrene	0.391 (0.209)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Benzo(b)fluoranthene	0.545 (0.417)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Benzo(g,h,i)perylene	ND (0.417)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Benzo(k)fluoranthene	ND (0.417)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Chrysene	0.499 (0.209)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Dibenzo(a,h)Anthracene	ND (0.209)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Fluoranthene	1.16 (0.417)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Fluorene	ND (0.417)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Indeno(1,2,3-cd)Pyrene	ND (0.417)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Naphthalene	ND (0.417)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Phenanthrene	0.733 (0.417)		8270C		1	02/13/13 22:15	CWB0138	CB31330
Pyrene	0.932 (0.417)		8270C		1	02/13/13 22:15	CWB0138	CB31330
		%Recovery	Qualifier	Limits				

	MECOVETY	Quaimei	LITTICS
Surrogate: 1,2-Dichlorobenzene-d4	60 %		30-130
Surrogate: 2-Fluorobiphenyl	63 %		30-130
Surrogate: Nitrobenzene-d5	67 %		30-130
Surrogate: p-Terphenyl-d14	<i>85 %</i>		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: RCA-2 0.5ft-1.5ft Date Sampled: 02/13/13 13:15

Percent Solids: 84

Extraction Method: 3050B

ESS Laboratory Work Order: 1302206 ESS Laboratory Sample ID: 1302206-02

Sample Matrix: Soil Units: mg/kg dry

Total Metals Solid

Analyte Arsenic	Results (MRL) 5.4 (2.8)	Method 6010B	<u>Limit</u>	<u>DF</u>	Analyst NAR	<u>Analyzed</u> 02/16/13 13:29	<u>I/V</u> 2.09	<u>F/V</u>	Batch CB31519
Barium	21.3 (2.8)	6010B		1	NAR	02/16/13 13:29	2.09	100	CB31519
Cadmium	ND (0.57)	6010B		1	NAR	02/16/13 13:29	2.09	100	CB31519
Chromium	7.7 (1.1)	6010B		1	NAR	02/16/13 13:29	2.09	100	CB31519
Lead	31.0 (5.7)	6010B		1	NAR	02/16/13 13:29	2.09	100	CB31519
Mercury	0.067 (0.037)	7471A		1	JP	02/16/13 15:19	0.63	40	CB31524
Selenium	ND (5.7)	6010B		1	NAR	02/16/13 13:29	2.09	100	CB31519
Silver	ND (0.57)	6010B		1	NAR	02/16/13 13:29	2.09	100	CB31519

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: RCA-2 0.5ft-1.5ft Date Sampled: 02/13/13 13:15

Percent Solids: 84 Initial Volume: 14.9 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1302206 ESS Laboratory Sample ID: 1302206-02

Sample Matrix: Soil Units: mg/kg dry Analyst: SEP

Prepared: 2/13/13 16:40

8270C Polynuclear Aromatic Hydrocarbons

Analyte 2-Methylnaphthalene	<u>Results (MRL)</u> ND (0.399)		<u>Method</u> 8270C	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 02/13/13 22:46	Sequence CWB0138	Batch CB31330
Acenaphthene	ND (0.399)		8270C		1	02/13/13 22:46	CWB0138	CB31330
Acenaphthylene	ND (0.399)		8270C		1	02/13/13 22:46	CWB0138	CB31330
Anthracene	ND (0.399)		8270C		1	02/13/13 22:46	CWB0138	CB31330
Benzo(a)anthracene	ND (0.399)		8270C		1	02/13/13 22:46	CWB0138	CB31330
Benzo(a)pyrene	ND (0.200)		8270C		1	02/13/13 22:46	CWB0138	CB31330
Benzo(b)fluoranthene	ND (0.399)		8270C		1	02/13/13 22:46	CWB0138	CB31330
Benzo(g,h,i)perylene	ND (0.399)		8270C		1	02/13/13 22:46	CWB0138	CB31330
Benzo(k)fluoranthene	ND (0.399)		8270C		1	02/13/13 22:46	CWB0138	CB31330
Chrysene	ND (0.200)		8270C		1	02/13/13 22:46	CWB0138	CB31330
Dibenzo(a,h)Anthracene	ND (0.200)		8270C		1	02/13/13 22:46	CWB0138	CB31330
Fluoranthene	ND (0.399)		8270C		1	02/13/13 22:46	CWB0138	CB31330
Fluorene	ND (0.399)		8270C		1	02/13/13 22:46	CWB0138	CB31330
Indeno(1,2,3-cd)Pyrene	ND (0.399)		8270C		1	02/13/13 22:46	CWB0138	CB31330
Naphthalene	ND (0.399)		8270C		1	02/13/13 22:46	CWB0138	CB31330
Phenanthrene	ND (0.399)		8270C		1	02/13/13 22:46	CWB0138	CB31330
Pyrene	ND (0.399)		8270C		1	02/13/13 22:46	CWB0138	CB31330
	%F	Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		84 %		30-130				
Surrogate: 2-Fluorobiphenyl		81 %		30-130				
Surrogate: Nitrobenzene-d5		93 %		30-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: RCA-3 0.5ft-2ft Date Sampled: 02/13/13 13:45

Percent Solids: 86

Extraction Method: 3050B

ESS Laboratory Work Order: 1302206 ESS Laboratory Sample ID: 1302206-03

Sample Matrix: Soil Units: mg/kg dry

Total Metals Solid

Analyte Arsenic	Results (MRL) 6.0 (2.8)	Method 6010B	<u>Limit</u>	<u>DF</u>	Analyst NAR	Analyzed 02/16/13 13:33	<u>I/V</u> 2.09	F/V 100	Batch CB31519
Barium	13.5 (2.8)	6010B		1	NAR	02/16/13 13:33	2.09	100	CB31519
Cadmium	ND (0.56)	6010B		1	NAR	02/16/13 13:33	2.09	100	CB31519
Chromium	20.5 (1.1)	6010B		1	NAR	02/16/13 13:33	2.09	100	CB31519
Lead	31.3 (5.6)	6010B		1	NAR	02/16/13 13:33	2.09	100	CB31519
Mercury	0.394 (0.036)	7471A		1	JP	02/16/13 15:22	0.64	40	CB31524
Selenium	ND (5.6)	6010B		1	NAR	02/16/13 13:33	2.09	100	CB31519
Silver	ND (0.56)	6010B		1	NAR	02/16/13 13:33	2.09	100	CB31519

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: RCA-3 0.5ft-2ft Date Sampled: 02/13/13 13:45

Percent Solids: 86 Initial Volume: 14.8 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1302206 ESS Laboratory Sample ID: 1302206-03

Sample Matrix: Soil Units: mg/kg dry Analyst: SEP

Prepared: 2/13/13 16:40

8270C Polynuclear Aromatic Hydrocarbons

Analyte	Results (MRL)	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.392)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Acenaphthene	0.862 (0.392)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Acenaphthylene	ND (0.392)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Anthracene	1.21 (0.392)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Benzo(a)anthracene	4.09 (0.392)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Benzo(a)pyrene	3.14 (0.197)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Benzo(b)fluoranthene	4.14 (0.392)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Benzo(g,h,i)perylene	1.25 (0.392)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Benzo(k)fluoranthene	1.15 (0.392)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Chrysene	4.29 (0.197)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Dibenzo(a,h)Anthracene	0.300 (0.197)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Fluoranthene	9.00 (0.392)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Fluorene	0.535 (0.392)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Indeno(1,2,3-cd)Pyrene	1.22 (0.392)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Naphthalene	ND (0.392)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Phenanthrene	7.92 (0.392)	8270C		1	02/13/13 23:18	CWB0138	CB31330
Pyrene	9.66 (0.392)	8270C		1	02/13/13 23:18	CWB0138	CB31330
	%	6Recovery Qualifier	Limits				

	JUNCLOVELY	Qualifici	Limits
Surrogate: 1,2-Dichlorobenzene-d4	67 %		30-130
Surrogate: 2-Fluorobiphenyl	67 %		30-130
Surrogate: Nitrobenzene-d5	<i>75 %</i>		30-130
Surrogate: p-Terphenyl-d14	<i>78 %</i>		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1302206

Quality Control Data										
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		-	Total Metals	Solid						
Batch CB31519 - 3050B										
Blank										
Arsenic	ND	2.5	mg/kg wet							
Barium	ND	2.5	mg/kg wet							
Cadmium	ND	0.50	mg/kg wet							
Chromium	ND	1.0	mg/kg wet							
Lead	ND	5.0	mg/kg wet							
Selenium	ND	5.0	mg/kg wet							
Silver	ND	0.50	mg/kg wet							
LCS										
Arsenic	83.2	9.2	mg/kg wet	94.50		88	80-120			
Barium	149	9.2	mg/kg wet	166.0		90	80-120			
Cadmium	50.1	1.86	mg/kg wet	59.90		84	80-120			
Chromium	62.5	3.7	mg/kg wet	69.30		90	80-120			
Lead	81.7	18.5	mg/kg wet	91.70		89	80-120			
Selenium	131	18.5	mg/kg wet	159.0		83	80-120			
Silver	31.2	1.86	mg/kg wet	33.90		92	80-120			
LCS Dup										
Arsenic	83.0	9.2	mg/kg wet	94.50		88	80-120	0.2	20	
Barium	148	9.2	mg/kg wet	166.0		89	80-120	0.3	20	
Cadmium	49.6	1.86	mg/kg wet	59.90		83	80-120	0.9	20	
Chromium	62.1	3.7	mg/kg wet	69.30		90	80-120	0.7	20	
Lead	81.1	18.5	mg/kg wet	91.70		88	80-120	0.7	20	
Selenium	133	18.5	mg/kg wet	159.0		84	80-120	2	20	
Silver	30.4	1.86	mg/kg wet	33.90		90	80-120	2	20	
Batch CB31524 - 7471A			9,9							
Blank										
Mercury	ND	0.033	mg/kg wet							
			6 16							
LCS Mercury	3.90	0.649	mg/kg wet	4.050		96	80-120			
Mercury	3.90	U.U 1 9	mg/kg wet	-1.U3U		90	00-120			
LCS Dup								-		
Mercury	4.00	0.660	mg/kg wet	4.050		99	80-120	2	20	
	8	3270C Polyni	uclear Aroma	tic Hydro	ocarbons					
Batch CB31330 - 3546										
Blank										
2-Methylnaphthalene	ND	0.333	mg/kg wet							
Acenaphthene	ND	0.333	mg/kg wet							
Acenaphthylene	ND	0.333	mg/kg wet							
Anthracene	ND	0.333	mg/kg wet							
Benzo(a)anthracene	ND	0.333	mg/kg wet							
Benzo(a)pyrene	ND	0.167	mg/kg wet							
D (1)(1)		0.222	3. 3							

ND

ND

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

mg/kg wet

mg/kg wet

0.333

0.333

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1302206

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270C Polynuclear Aromatic Hydrocarbons

Batch CB31330 - 3546 0.333 Benzo(k)fluoranthene ND mg/kg wet Chrysene ND 0.167 mg/kg wet Dibenzo(a,h)Anthracene ND 0.167 mg/kg wet Fluoranthene ND 0.333 mg/kg wet Fluorene ND 0.333 mg/kg wet Indeno(1,2,3-cd)Pyrene ND 0.333 mg/kg wet 0.333 mg/kg wet Naphthalene ND Phenanthrene ND 0.333 Pyrene ND 0.333 mg/kg wet 2.83 mg/kg wet .3..333 85 30-130 Surrogate: 1,2-Dichlorobenzene-d4 2.64 mg/kg wet 3.333 79 30-130 Surrogate: 2-Fluorobiphenyl 3.07 mg/kg wet 3.333 92 30-130 Surrogate: Nitrobenzene-d5 2.81 mg/kg wet 3.333 84 30-130 Surrogate: p-Terphenyl-d14 LCS 2-Methylnaphthalene 2.68 0.333 mg/kg wet 3.333 80 40-140 Acenaphthene 2.70 0.333 mg/kg wet 3.333 81 40-140 Acenaphthylene 2.73 0.333 mg/kg wet 3.333 82 40-140 Anthracene 2.54 0.333 mg/kg wet 3.333 76 40-140 Benzo(a)anthracene 2.64 0.333 mg/kg wet 3.333 79 40-140 Benzo(a)pyrene 2.44 0.167 mg/kg wet 3.333 73 40-140 Benzo(b)fluoranthene 2.81 0.333 3,333 84 40-140 mg/kg wet Benzo(g,h,i)perylene 2.15 0.333 mg/kg wet 3.333 65 40-140 Benzo(k)fluoranthene 2.95 0.333 mg/kg wet 3.333 89 40-140 0.167 Chrysene 2.65 3.333 79 40-140 mg/kg wet Dibenzo(a,h)Anthracene 2.24 0.167 mg/kg wet 3.333 67 40-140 0.333 Fluoranthene 2.65 mg/kg wet 3.333 79 40-140 0.333 2.54 3.333 76 40-140 Fluorene mg/kg wet Indeno(1,2,3-cd)Pyrene 2.21 0.333 mg/kg wet 3.333 66 40-140 79 Naphthalene 2.64 0.333 mg/kg wet 3.333 40-140 0.333 78 Phenanthrene 2.61 mg/kg wet 3.333 40-140 0.333 Pyrene 3.52 mg/kg wet 3.333 106 40-140 2.71 3.333 81 30-130 mg/kg wet Surrogate: 1,2-Dichlorobenzene-d4 2.66 3.333 80 30-130 ma/ka wet Surrogate: 2-Fluorobiphenyl 2.64 3.333 79 30-130 mg/kg wet Surrogate: Nitrobenzene-d5 3.47 mg/kg wet 3.333 104 30-130 Surrogate: p-Terphenyl-d14 LCS Dup 2-Methylnaphthalene 3.05 0.333 mg/kg wet 3.333 92 40-140 13 30 Acenaphthene 0.333 mg/kg wet 3.333 85 4 30 2.82 40-140 Acenaphthylene 2.83 0.333 mg/kg wet 3.333 85 40-140 4 30 9 30 Anthracene 2.79 0.333 mg/kg wet 3.333 40-140 2 2.71 0.333 3.333 81 30 Benzo(a)anthracene mg/kg wet 40-140 Benzo(a)pyrene 2.60 0.167 mg/kg wet 3.333 78 40-140 6 30 Benzo(b)fluoranthene 0.333 3.333 87 3 30 2.90 mg/kg wet 40-140

185 Frances Avenue, Cranston, RI 02910-2211

Benzo(q,h,i)perylene

Benzo(k)fluoranthene

2.52

2.74

mg/kg wet
Tel: 401-461-7181

mg/kg wet

Fax: 401-461-4486

http://www.ESSLaboratory.com

16

30

30

0.333

0.333

3.333

3.333

76

82

40-140

40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

Surrogate: p-Terphenyl-d14

ESS Laboratory Work Order: 1302206

30-130

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	8.	270C Polynı	ıclear Aroma	tic Hydro	carbons					
Batch CB31330 - 3546										
Chrysene	2.61	0.167	mg/kg wet	3.333		78	40-140	1	30	
Dibenzo(a,h)Anthracene	2.47	0.167	mg/kg wet	3.333		74	40-140	10	30	
Fluoranthene	3.12	0.333	mg/kg wet	3.333		94	40-140	16	30	
Fluorene	3.00	0.333	mg/kg wet	3.333		90	40-140	17	30	
Indeno(1,2,3-cd)Pyrene	2.63	0.333	mg/kg wet	3.333		79	40-140	17	30	
Naphthalene	2.89	0.333	mg/kg wet	3.333		87	40-140	9	30	
Phenanthrene	2.86	0.333	mg/kg wet	3.333		86	40-140	9	30	
Pyrene	2.85	0.333	mg/kg wet	3.333		86	40-140	21	30	
Surrogate: 1,2-Dichlorobenzene-d4	2.83		mg/kg wet	3.333		85	30-130			
Surrogate: 2-Fluorobiphenyl	2.80		mg/kg wet	3.333		84	30-130			
Surrogate: Nitrobenzene-d5	3.24		mg/kg wet	3.333		97	30-130			

mg/kg wet

3.333

185 Frances Avenue, Cranston, RI 02910-2211

3.06

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1302206

Notes and Definitions

U Analyte included in the analysis, but not detected
--

PT Pentachlorophenol tailing factor > 2.

EL Elevated Method Reporting Limits due to sample matrix (EL).

D Diluted.

F/V

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume

Final Volume

§ Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.

Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1302206

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP)

A2LA Accredited: Testing Cert# 2864.01

http://www.a2la.org/scopepdf/2864-01.pdf

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/labs/waterlabs-instate.php

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI0002 http://www.maine.gov/dep/blwq/topic/vessel/lab_list.pdf

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/labcert/labcert.aspx

New Hampshire (NELAP accredited) Potable and Non PotableWater, Solid and Hazardous Waste: 2424 http://www4.egov.nh.gov/des/nhelap/namesearch.asp

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

United States Department of Agriculture Soil Permit: S-54210

Maryland Potable Water: 301 http://www.mde.state.md.us/assets/document/WSP_labs-2009apr20.pdf

CHEMISTRY

A2LA Accredited: Testing Cert # 2864.01
Lead in Paint, Phthalates, Lead in Children's Metals Products (Including Jewelry)
http://www.A2LA.org/dirsearchnew/newsearch.cfm

CPSC ID# 1141
Lead Paint, Lead in Children's Metals Jewelry http://www.cpsc.gov/cgi-bin/labapplist.aspx

Sample and Cooler Receipt Checklist

Client:	Resource Controls
Client Pa	oject ID:

Shipped/Delivered Via: ESS Courier

ESS Project ID: $\frac{13020206}{2/20/13}$ Days For Project: 5 Day

Items to be checked upon receipt:

1 2 3	Yes Yes Yes Yes	8 oz Soil Jar 8 oz Soil Jar 8 oz Soil Jar te/Time:	1	NP NP NP	<u> </u>
Sample Number P	roperly Preserved		# of Containers	Preservative	
Who was called?:		By wh	om?		
18. Was there need to call p	oroject manager to	uiscuss status?	ıı yes, piease exp	iain.	
9. Is COC complete and cor	<u></u>		76		
8. Does the COC match the			:		
7. Was COC signed and dat	· <u></u>				
6. Was COC included with s	· · —		nple IDs:		
Iced With: Icepacks		17. Wer	e samples received	intact?	Yes No
Cooler Temp: 2.4		16. Are	ESS labels on corre	ct containers?	Yes No
5. Is a cooler present?	Y	es 15. Any	Subcontracting nee	eded?	No
4. Is Radiation count < 100	CPM? Y	es 14. Suff	cient sample volun	nes?	Yes
3. Were Custody Seals Inta	ct? N	13. Hold	ing times exceeded	i ?	No
2. Were Custody Seals Pres	ent?		air bubbles in the		N/A
Air No.:			er sample containe		Yes
 Air Bill Manifest Present? 	'	No 10. Are	the samples proper	ly preserved:	Yes

ESS Laboratory

Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston, RI 02910-2211 Tel. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com

(302206) Yes X No PDF X Other Format: Excel X Access_ Electronic Deliverable Reporting Limits CHAIN OF CUSTODY If faster than 5 days, prior approval by laboratory is required # Other Is this project for any of the following:
MA-MCP Navy USACE State where samples were collected from:
MA (RI) CT NH NJ NY

Container Type: P-Poly G-Glass S-Sterile V-VOA | Matrix: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filters Date/Time Date/Time Preservation Code 1- NP, 2- HC1, 3- H, SO4, 4- HNO3, 5- NaOH, 6- MeOH, 7- Asorbic Acid, 8- ZnAct, 9-Write Required Analysis Received by: (Signature) Received by: (Signature) Date/Time Date/Time ひんかいく じんしん t Type of Containers () **d** (1) **(**)-Relinquished by: (Signature) Relinquished by: (Signature) Number of Containers 8,40,65 -----------CAND WEST CONTRACTOR C DANZGAW, BACKINGTON 7151341318] 6,51-1,51 Project Name (20 Char. or less) (0.5'-2' Sample Identification (20 Char. or less) (os, ~5_′) BROADWAY 2612 818/21 Date/Time Date/Time **Email Address** Sampled by: Comments: , W 09820 FALL) - H MAN - 3 ACIA PCID PCID RCB Received by: (Signature) Received by: (Signature) 121 Project # Internal Use Only [] Technicians Address [] Pickup V) V) MATRIX **R** 響 舊 CKYB × × COMB 13 17 81 Fax # Date/Time No NA: State 13.45 02:01 Collection 53.11 12:30 10:15 Time χ̈́ | PANES O 959 - F2F Yes 2113113 Yes Relinquished by: (Signature) Relinguished by: (Signature) Cooler Temp: $2.4^{\circ}C$ ने अंधि horase Contact Person Cooler Present Telephone # Seals Intact Sample # Co. Name ESS LAB

(F)E

*By circling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A

Please fax all changes to Chain of Custody in writing.

1 (White) Lab Copy 2 (Yellow) Client Receipt

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-57320-2

Client Project/Site: 7131A Rhode Island

For:

Resource Control Associates, Inc. 474 Broadway
Pawtucket, Rhode Island 02860

Attn: Ms. Danielle Eastman-Getsinger

Authorized for release by: 4/16/2014 4:29:31 PM

Steve Hartmann, Service Center Manager (413)572-4000

steve.hartmann@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	12
QC Association Summary	21
Lab Chronicle	24
Certification Summary	25
Method Summary	26
Sample Summary	27
Chain of Custody	28
Receipt Checklists	31

Definitions/Glossary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-2

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

LCS or LCSD exceeds the control limits

GC/MS Semi VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier **Qualifier Description**

ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.

General Chemistry

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration MDA Minimum detectable activity **Estimated Detection Limit EDL** MDC Minimum detectable concentration

MDL Method Detection Limit Minimum Level (Dioxin) ML

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

Quality Control QC **RER** Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Case Narrative

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-2

Job ID: 480-57320-2

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-57320-2

Comments

No additional comments.

Receipt

The samples were received on 4/5/2014 2:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.8° C.

GC/MS VOA (8260)

Method(s) 8260C: The LCS recovery was above TestAmerica's internal laboratory QC limits for 2-Butanone. This analyte is not a reported spiking compound; therefore the recovery is being noted for advisory purposes only. All other quality control indicators, including the continuing calibration verification, were within method prescribed limits for this analyte.

No other analytical or quality issues were noted.

GC/MS Semi VOA (8270)

Method(s) 8270D: The matrix spike(MS) recoveries for analytical batch 480-175108 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 8270D: The matrix spike duplicate (MSD) precision for preparation batch 480-174663 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS)precision was within acceptance limits.

No other analytical or quality issues were noted.

GC Semi VOA (8015)

No analytical or quality issues were noted.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

9

3

4

6

8

10

4.0

13

14

Detection Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Lab Sample ID: 480-57320-2

TestAmerica Job ID: 480-57320-2

Client Sample ID: TN Composite

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Free Liquid	passed				mL/100g	1	_	9095B	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Methylnaphthalene	21	J	190	2.3	ug/Kg	1	₽	8270D	Total/NA
Acenaphthene	51	J	190	2.2	ug/Kg	1	₽	8270D	Total/NA
Acenaphthylene	49	J	190	1.5	ug/Kg	1	₽	8270D	Total/NA
Anthracene	160	J	190	4.8	ug/Kg	1	₩.	8270D	Total/NA
Benzaldehyde	33	J	190	21	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]anthracene	730		190	3.2	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]pyrene	670		190	4.5	ug/Kg	1	₩.	8270D	Total/NA
Benzo[b]fluoranthene	970		190	3.6	ug/Kg	1	₽	8270D	Total/NA
Benzo[g,h,i]perylene	410		190	2.2	ug/Kg	1	₽	8270D	Total/NA
Benzo[k]fluoranthene	390		190	2.1	ug/Kg	1	₩.	8270D	Total/NA
Carbazole	83	J	190	2.2	ug/Kg	1	₽	8270D	Total/NA
Chrysene	830		190	1.9	ug/Kg	1	₽	8270D	Total/NA
Dibenz(a,h)anthracene	130	J	190	2.2	ug/Kg	1	₽	8270D	Total/NA
Dibenzofuran	32	J	190	1.9	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	1400		190	2.7	ug/Kg	1	₽	8270D	Total/NA
Fluorene	55	J	190	4.3	ug/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	360		190	5.2	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	32	J	190	3.1	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	740		190	3.9	ug/Kg	1	₩.	8270D	Total/NA
Pyrene	1200		190	1.2	ug/Kg	1	₽	8270D	Total/NA
Diesel Range Organics [C10-C28]	38		19	5.5	mg/Kg	1	₽	8015D	Total/NA
Arsenic	2.4		2.0	0.40	mg/Kg	1		6010C	Total/NA
Barium	37	٨	0.50	0.11	mg/Kg	1		6010C	Total/NA
Cadmium	0.40		0.20	0.030	mg/Kg	1		6010C	Total/NA
Chromium	32		0.50	0.20	mg/Kg	1		6010C	Total/NA
Lead	480		1.0	0.24	mg/Kg	1		6010C	Total/NA
Hg	0.076		0.020	0.0081	mg/Kg	1		7471B	Total/NA
Sulfide, Reactive	4.0	J	10	0.57	mg/Kg	1		9034	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Flashpoint	>176.0		50.0	50.0	Degrees F	1	_	1010	Total/NA

0.100

0.100 SU

This Detection Summary does not include radiochemical test results.

4.93

рΗ

4/16/2014

Total/NA

9045C

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-2

Client Sample ID: TN Composite

Date Collected: 04/02/14 11:55 Date Received: 04/05/14 02:00 Lab Sample ID: 480-57320-2

Matrix: Solid
Percent Solids: 88.7

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil
1,1,1-Trichloroethane	ND ND	5.4	0.39	ug/Kg		04/07/14 01:35	04/08/14 20:00	
1,1,2,2-Tetrachloroethane	ND	5.4	0.88	ug/Kg	₽	04/07/14 01:35	04/08/14 20:00	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.4	1.2	ug/Kg	₽	04/07/14 01:35	04/08/14 20:00	
1,1,2-Trichloroethane	ND	5.4	0.70	ug/Kg	₽	04/07/14 01:35	04/08/14 20:00	
1,1-Dichloroethane	ND	5.4	0.66	ug/Kg	₽	04/07/14 01:35	04/08/14 20:00	
1,1-Dichloroethene	ND	5.4	0.66	ug/Kg	₽	04/07/14 01:35	04/08/14 20:00	
1,2,4-Trichlorobenzene	ND	5.4	0.33	ug/Kg	\$	04/07/14 01:35	04/08/14 20:00	
,2-Dibromo-3-Chloropropane	ND	5.4	2.7	ug/Kg	☼	04/07/14 01:35	04/08/14 20:00	
,2-Dibromoethane	ND	5.4	0.69	ug/Kg	☼	04/07/14 01:35	04/08/14 20:00	
,2-Dichlorobenzene	ND	5.4	0.42	ug/Kg		04/07/14 01:35	04/08/14 20:00	
,2-Dichloroethane	ND	5.4	0.27	ug/Kg	₽	04/07/14 01:35	04/08/14 20:00	
,2-Dichloropropane	ND	5.4	2.7	ug/Kg	₽	04/07/14 01:35	04/08/14 20:00	
,3-Dichlorobenzene	ND	5.4	0.28	ug/Kg	ф.	04/07/14 01:35	04/08/14 20:00	
,4-Dichlorobenzene	ND	5.4	0.76	ug/Kg	₩	04/07/14 01:35	04/08/14 20:00	
P-Butanone (MEK)	ND *	27	2.0	ug/Kg	₩	04/07/14 01:35	04/08/14 20:00	
-Hexanone	ND	27	2.7	ug/Kg	 ф	04/07/14 01:35	04/08/14 20:00	
-Methyl-2-pentanone (MIBK)	ND	27		ug/Kg	₽	04/07/14 01:35	04/08/14 20:00	
acetone	ND	27		ug/Kg	₩	04/07/14 01:35	04/08/14 20:00	
enzene	ND	5.4		ug/Kg		04/07/14 01:35	04/08/14 20:00	
romodichloromethane	ND	5.4		ug/Kg	₩	04/07/14 01:35	04/08/14 20:00	
romoform	ND	5.4		ug/Kg	₩	04/07/14 01:35	04/08/14 20:00	
romomethane	ND	5.4	0.49	ug/Kg		04/07/14 01:35	04/08/14 20:00	
arbon disulfide	ND	5.4		ug/Kg ug/Kg	₩	04/07/14 01:35	04/08/14 20:00	
arbon disulide	ND	5.4		ug/Kg ug/Kg		04/07/14 01:35	04/08/14 20:00	
hlorobenzene	ND	5.4	0.32	ug/Kg ug/Kg		04/07/14 01:35	04/08/14 20:00	
hloroethane	ND ND	5.4		ug/Kg	~ ⇔	04/07/14 01:35	04/08/14 20:00	
Chloroform	ND	5.4	0.33	ug/Kg		04/07/14 01:35	04/08/14 20:00	
Chloromethane	ND	5.4		ug/Kg	‡	04/07/14 01:35	04/08/14 20:00	
is-1,2-Dichloroethene	ND	5.4	0.69	ug/Kg	‡	04/07/14 01:35	04/08/14 20:00	
is-1,3-Dichloropropene	ND	5.4	0.78	ug/Kg	<u></u> .	04/07/14 01:35	04/08/14 20:00	
cyclohexane	ND	5.4	0.76	ug/Kg	₩.	04/07/14 01:35	04/08/14 20:00	
Dibromochloromethane	ND	5.4	0.69	ug/Kg	₩	04/07/14 01:35	04/08/14 20:00	
ichlorodifluoromethane	ND	5.4		ug/Kg		04/07/14 01:35	04/08/14 20:00	
thylbenzene	ND	5.4		ug/Kg	.	04/07/14 01:35	04/08/14 20:00	
sopropylbenzene	ND	5.4		ug/Kg	₩.	04/07/14 01:35	04/08/14 20:00	
lethyl acetate	ND	5.4	1.0	ug/Kg		04/07/14 01:35	04/08/14 20:00	
lethyl tert-butyl ether	ND	5.4	0.53	ug/Kg	₩	04/07/14 01:35	04/08/14 20:00	
lethylcyclohexane	ND	5.4	0.82	ug/Kg	₽	04/07/14 01:35	04/08/14 20:00	
lethylene Chloride	ND	5.4	2.5	ug/Kg	₩	04/07/14 01:35	04/08/14 20:00	
tyrene	ND	5.4	0.27	ug/Kg	₩	04/07/14 01:35	04/08/14 20:00	
etrachloroethene	ND *	5.4	0.72	ug/Kg	₽	04/07/14 01:35	04/08/14 20:00	
oluene	ND	5.4	0.41	ug/Kg	₽	04/07/14 01:35	04/08/14 20:00	
ans-1,2-Dichloroethene	ND	5.4	0.56	ug/Kg	₽	04/07/14 01:35	04/08/14 20:00	
rans-1,3-Dichloropropene	ND	5.4	2.4	ug/Kg	☼	04/07/14 01:35	04/08/14 20:00	
richloroethene	ND	5.4	1.2	ug/Kg	₩	04/07/14 01:35	04/08/14 20:00	
richlorofluoromethane	ND	5.4	0.51	ug/Kg		04/07/14 01:35	04/08/14 20:00	
inyl chloride	ND	5.4		ug/Kg	₽	04/07/14 01:35	04/08/14 20:00	
(ylenes, Total	ND	11		ug/Kg	₽	04/07/14 01:35	04/08/14 20:00	

TestAmerica Buffalo

4

6

8

10

12

1 /

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Client Sample ID: TN Composite

Date Collected: 04/02/14 11:55

Date Received: 04/05/14 02:00

TestAmerica Job ID: 480-57320-2

Lab Sample ID: 480-57320-2

Matrix: Solid

Percent Solids: 88.7

Surrogate	%Recovery (Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108	64 - 126	04/07/14 01:35	04/08/14 20:00	1
4-Bromofluorobenzene (Surr)	101	72 - 126	04/07/14 01:35	04/08/14 20:00	1
Toluene-d8 (Surr)	102	71 - 125	04/07/14 01:35	04/08/14 20:00	1

Toluene-as (Surr) - -	102	71 - 125				04/07/14 01:35	04/08/14 20:00	7
Method: 8270D - Semivolatile	•	•			_			D.: -
Analyte	Result Qualifie		MDL		— D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND	190		0 0		04/09/14 09:17	04/11/14 11:30	1
2,4,6-Trichlorophenol	ND	190		ug/Kg	*	04/09/14 09:17	04/11/14 11:30	1
2,4-Dichlorophenol	ND	190				04/09/14 09:17	04/11/14 11:30	
2,4-Dimethylphenol	ND	190		ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	1
2,4-Dinitrophenol	ND	370	65	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	1
2,4-Dinitrotoluene	ND	190		ug/Kg		04/09/14 09:17	04/11/14 11:30	1
2,6-Dinitrotoluene	ND	190		ug/Kg	*	04/09/14 09:17	04/11/14 11:30	1
2-Chloronaphthalene	ND	190	13	ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	1
2-Chlorophenol	ND	190	9.5	ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	1
2-Methylnaphthalene	21 J	190	2.3	ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	1
2-Methylphenol	ND	190	5.8	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	1
2-Nitroaniline	ND	370	60	ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	1
2-Nitrophenol	ND	190	8.6	ug/Kg	*	04/09/14 09:17	04/11/14 11:30	1
3,3'-Dichlorobenzidine	ND	190	160	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	1
3-Nitroaniline	ND	370	43	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	1
4,6-Dinitro-2-methylphenol	ND	370	65	ug/Kg		04/09/14 09:17	04/11/14 11:30	1
4-Bromophenyl phenyl ether	ND	190	60	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	1
4-Chloro-3-methylphenol	ND	190	7.7	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	1
4-Chloroaniline	ND	190	55	ug/Kg		04/09/14 09:17	04/11/14 11:30	1
4-Chlorophenyl phenyl ether	ND	190	4.0	ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	1
4-Methylphenol	ND	370	10	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	1
4-Nitroaniline	ND	370	21	ug/Kg		04/09/14 09:17	04/11/14 11:30	1
4-Nitrophenol	ND	370	45	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	1
Acenaphthene	51 J	190		ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	1
Acenaphthylene	49 J	190		ug/Kg		04/09/14 09:17	04/11/14 11:30	
Acetophenone	ND	190		ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	1
Anthracene	160 J	190	4.8	ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	1
Atrazine	ND	190				04/09/14 09:17	04/11/14 11:30	
	33 J	190	21	ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	1
Benzaldehyde	730	190			₩	04/09/14 09:17	04/11/14 11:30	1
Benzo[a]anthracene	670	190		ug/Kg		04/09/14 09:17	04/11/14 11:30	
Benzo[a]pyrene						04/09/14 09:17		1
Benzo[b]fluoranthene	970	190	3.6	ug/Kg			04/11/14 11:30	
Benzo[g,h,i]perylene	410	190	2.2	ug/Kg		04/09/14 09:17	04/11/14 11:30	
Benzo[k]fluoranthene	390	190	2.1	ug/Kg	\$	04/09/14 09:17	04/11/14 11:30	1
Biphenyl	ND	190		ug/Kg		04/09/14 09:17	04/11/14 11:30	1
bis (2-chloroisopropyl) ether	ND	190		ug/Kg		04/09/14 09:17	04/11/14 11:30	
Bis(2-chloroethoxy)methane	ND	190		ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	1
Bis(2-chloroethyl)ether	ND	190		ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	1
Bis(2-ethylhexyl) phthalate	ND	190		ug/Kg	<u></u>	04/09/14 09:17	04/11/14 11:30	
Butyl benzyl phthalate	ND	190		ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	1
Caprolactam	ND	190		ug/Kg	#	04/09/14 09:17	04/11/14 11:30	1
Carbazole	83 J	190		ug/Kg		04/09/14 09:17	04/11/14 11:30	1
Chrysene	830	190	1.9	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	1
Dibenz(a,h)anthracene	130 J	190	2.2	ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	1

TestAmerica Buffalo

Page 7 of 31

4/16/2014

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Client Sample ID: TN Composite

Date Collected: 04/02/14 11:55

Date Received: 04/05/14 02:00

Surrogate

Tetrachloro-m-xylene

TestAmerica Job ID: 480-57320-2

Lab Sample ID: 480-57320-2

. Matrix: Solid Percent Solids: 88.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenzofuran	32	J	190	1.9	ug/Kg	#	04/09/14 09:17	04/11/14 11:30	
Diethyl phthalate	ND		190	5.7	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	
Dimethyl phthalate	ND		190	4.9	ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	
Di-n-butyl phthalate	ND		190	65	ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	
Di-n-octyl phthalate	ND		190	4.4	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	•
Fluoranthene	1400		190	2.7	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	
Fluorene	55	J	190	4.3	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	
Hexachlorobenzene	ND		190	9.3	ug/Kg		04/09/14 09:17	04/11/14 11:30	
Hexachlorobutadiene	ND		190	9.6	ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	
Hexachlorocyclopentadiene	ND		190	57	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	
Hexachloroethane	ND		190	14	ug/Kg	₩.	04/09/14 09:17	04/11/14 11:30	
Indeno[1,2,3-cd]pyrene	360		190	5.2	ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	
Isophorone	ND		190	9.4	ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	
Naphthalene	32		190	3.1	ug/Kg		04/09/14 09:17	04/11/14 11:30	
Nitrobenzene	ND		190	8.3	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	
N-Nitrosodi-n-propylamine	ND		190	15	ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	
N-Nitrosodiphenylamine	ND		190		ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/09/14 09:17	04/11/14 11:30	
Pentachlorophenol	ND		370	64	ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	
Phenanthrene	740		190	3.9	ug/Kg	₩	04/09/14 09:17	04/11/14 11:30	
Phenol	ND		190		ug/Kg		04/09/14 09:17	04/11/14 11:30	
Pyrene	1200		190		ug/Kg	₽	04/09/14 09:17	04/11/14 11:30	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	99		39 - 146				04/09/14 09:17	04/11/14 11:30	1
2-Fluorobiphenyl	96		37 - 120				04/09/14 09:17	04/11/14 11:30	
2-Fluorophenol (Surr)	90		18 - 120				04/09/14 09:17	04/11/14 11:30	
Nitrobenzene-d5 (Surr)	88		34 - 132				04/09/14 09:17	04/11/14 11:30	
Phenol-d5 (Surr)	89		11 - 120				04/09/14 09:17	04/11/14 11:30	
p-Terphenyl-d14 (Surr)	96		65 ₋ 153				04/09/14 09:17	04/11/14 11:30	
Method: 8015D - Diesel Range Or	ragnice (DPO)	(GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics [C10-C28]	38		19	5.5	mg/Kg	<u></u>	04/09/14 09:42	04/09/14 21:24	
O	0/ 5	0!!!	1::4-				D	A t	D# 5-
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl -	84		48 - 125				04/09/14 09:42	04/09/14 21:24	•
Method: 8082A - Polychlorinated	Biphenyls (PC	CBs) by Gas	Chromatogra	ony					
Method: 8082A - Polychlorinated Analyte		CBs) by Gas Qualifier	Chromatogra _l RL	ony MDL	Unit	D	Prepared	Analyzed	Dil Fa
	Result			MDL	Unit mg/Kg	D <u>□</u>	•	Analyzed 04/11/14 21:58	
Analyte			RL	MDL 0.050			Prepared 04/10/14 15:16 04/10/14 15:16		
Analyte PCB-1016	Result			0.050 0.050	mg/Kg	-	04/10/14 15:16	04/11/14 21:58	
Analyte PCB-1016 PCB-1221	Result ND ND ND		RL 0.26 0.26 0.26	0.050 0.050 0.050	mg/Kg mg/Kg mg/Kg	*	04/10/14 15:16 04/10/14 15:16 04/10/14 15:16	04/11/14 21:58 04/11/14 21:58 04/11/14 21:58	
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242	Result ND ND ND ND		RL 0.26 0.26 0.26 0.26	0.050 0.050 0.050 0.050	mg/Kg mg/Kg mg/Kg mg/Kg	* *	04/10/14 15:16 04/10/14 15:16 04/10/14 15:16 04/10/14 15:16	04/11/14 21:58 04/11/14 21:58 04/11/14 21:58 04/11/14 21:58	
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248	Result ND ND ND ND ND		RL 0.26 0.26 0.26 0.26 0.26	MDL 0.050 0.050 0.050 0.050 0.050	mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	04/10/14 15:16 04/10/14 15:16 04/10/14 15:16 04/10/14 15:16 04/10/14 15:16	04/11/14 21:58 04/11/14 21:58 04/11/14 21:58 04/11/14 21:58 04/11/14 21:58	
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254	Result ND ND ND ND ND ND		RL 0.26 0.26 0.26 0.26 0.26 0.26	MDL 0.050 0.050 0.050 0.050 0.050 0.12	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$	04/10/14 15:16 04/10/14 15:16 04/10/14 15:16 04/10/14 15:16 04/10/14 15:16 04/10/14 15:16	04/11/14 21:58 04/11/14 21:58 04/11/14 21:58 04/11/14 21:58 04/11/14 21:58 04/11/14 21:58	
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248	Result ND ND ND ND ND		RL 0.26 0.26 0.26 0.26 0.26	MDL 0.050 0.050 0.050 0.050 0.050 0.12	mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	04/10/14 15:16 04/10/14 15:16 04/10/14 15:16 04/10/14 15:16 04/10/14 15:16	04/11/14 21:58 04/11/14 21:58 04/11/14 21:58 04/11/14 21:58 04/11/14 21:58	Dil Fac

TestAmerica Buffalo

Dil Fac

Analyzed

04/11/14 21:58

Prepared

04/10/14 15:16

Limits

46 - 175

%Recovery Qualifier

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Date Received: 04/05/14 02:00

Selenium

Silver

TestAmerica Job ID: 480-57320-2

Client Sample ID: TN Composite Lab Sample ID: 480-57320-2 Date Collected: 04/02/14 11:55

Matrix: Solid Percent Solids: 88.7

Analyzed

04/15/14 12:02

04/15/14 12:02

Dil Fac

6

Prepared

04/08/14 13:25

04/08/14 13:25

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

%Recovery Qualifier

ND

ND

DCB Decachlorobiphenyl	109		47 - 176				04/10/14 15:16	04/11/14 21:58	1
Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.4		2.0	0.40	mg/Kg		04/08/14 13:25	04/15/14 12:02	1
Barium	37	^	0.50	0.11	mg/Kg		04/08/14 13:25	04/15/14 12:02	1
Cadmium	0.40		0.20	0.030	mg/Kg		04/08/14 13:25	04/15/14 12:02	1
Chromium	32		0.50	0.20	mg/Kg		04/08/14 13:25	04/15/14 12:02	1
Lead	480		1.0	0.24	mg/Kg		04/08/14 13:25	04/15/14 12:02	1

Limits

Method: 7471B - Mercury in Solid	or Semisolid	Waste (Mar	nual Cold Va	por Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	0.076		0.020	0.0081	mg/Kg		04/09/14 12:00	04/09/14 15:28	1

4.0

0.60

0.40 mg/Kg

0.20 mg/Kg

General Chemistry									
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Free Liquid	passed				mL/100g			04/08/14 18:35	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Reactive	ND		10	0.0030	mg/Kg		04/10/14 00:30	04/10/14 10:26	1
Sulfide, Reactive	4.0	J	10	0.57	mg/Kg		04/10/14 07:33	04/10/14 08:20	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Flashpoint	>176.0		50.0	50.0	Degrees F			04/11/14 15:15	1
рН	4.93		0.100	0.100	SU			04/09/14 17:15	1

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

				Percent Surr
		12DCE	BFB	TOL
Lab Sample ID	Client Sample ID	(64-126)	(72-126)	(71-125)
480-57320-2	TN Composite	108	101	102
LCS 480-174450/5	Lab Control Sample	107	101	100
MB 480-174450/7	Method Blank	99	98	99
Surrogate Legend				

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)									
		ТВР	FBP	2FP	NBZ	PHL	TPH				
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(11-120)	(65-153)				
480-57320-2	TN Composite	99	96	90	88	89	96				
480-57320-2 MS	TN Composite	107	96	88	89	92	92				
480-57320-2 MSD	TN Composite	104	98	86	89	89	92				
LCS 480-174663/2-A	Lab Control Sample	103	97	84	92	85	102				
MB 480-174663/1-A	Method Blank	87	97	86	86	90	105				

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = p-Terphenyl-d14 (Surr)

Method: 8015D - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Re
		ОТРН	
Lab Sample ID	Client Sample ID	(48-125)	
480-57320-2	TN Composite	84	
LCS 480-174686/2-A	Lab Control Sample	91	
LCSD 480-174686/3-A	Lab Control Sample Dup	92	
MB 480-174686/1-A	Method Blank	86	
Surrogate Legend			
OTPH = o-Terphenyl			

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(46-175)	(47-176)	
480-57320-2	TN Composite	98	109	

TestAmerica Buffalo

Page 10 of 31

Surrogate Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

DCB = DCB Decachlorobiphenyl

TestAmerica Job ID: 480-57320-2

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits							
		TCX2	DCB2							
Lab Sample ID	Client Sample ID	(46-175)	(47-176)							
LCS 480-175027/2-A	Lab Control Sample	114	130							
MB 480-175027/1-A	Method Blank	104	115							
Surrogate Legend										

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Method: 8260C - Volatile Organic Compounds by GC/MS

мв мв

ND

ND

ND

Lab Sample ID: MB 480-174450/7

Matrix: Solid

Chlorobenzene

Xylenes, Total

Analysis Batch: 174450

Client Sample ID: Method Blank Prep Type: Total/NA

04/08/14 12:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.36	ug/Kg			04/08/14 12:32	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.81	ug/Kg			04/08/14 12:32	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	1.1	ug/Kg			04/08/14 12:32	1
1,1,2-Trichloroethane	ND		5.0	0.65	ug/Kg			04/08/14 12:32	1
1 1-Dichloroethane	ND		5.0	0.61	ua/Ka			04/08/14 12:32	1

ug/Kg 1,1-Dichloroethene ND 5.0 0.61 ug/Kg 04/08/14 12:32 5.0 1,2,4-Trichlorobenzene ND 0.30 ug/Kg 04/08/14 12:32 1,2-Dibromo-3-Chloropropane ND 5.0 2.5 ug/Kg 04/08/14 12:32 ND 1,2-Dibromoethane 5.0 0.64 ug/Kg 04/08/14 12:32 ND 5.0 1,2-Dichlorobenzene 0.39 ug/Kg 04/08/14 12:32

1.2-Dichloroethane ND 5.0 0.25 ug/Kg 04/08/14 12:32 1,2-Dichloropropane ND 5.0 ug/Kg 04/08/14 12:32 1,3-Dichlorobenzene ND 5.0 0.26 04/08/14 12:32 ug/Kg 1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg 04/08/14 12:32 04/08/14 12:32 2-Butanone (MEK) ND 25 1.8 ug/Kg 2-Hexanone ND 25 2.5 ug/Kg 04/08/14 12:32 4-Methyl-2-pentanone (MIBK) ND 25 04/08/14 12:32

1.6 ug/Kg

0.66 ug/Kg

0.84 ug/Kg

Acetone 25 4.2 ug/Kg 04/08/14 12:32 Benzene ND 5.0 0.25 ug/Kg 04/08/14 12:32 ND Bromodichloromethane 5.0 0.67 ug/Kg 04/08/14 12:32 Bromoform ND 5.0 2.5 ug/Kg 04/08/14 12:32 ND Bromomethane 5.0 0.45 ug/Kg 04/08/14 12:32 Carbon disulfide ND 5.0 2.5 ug/Kg 04/08/14 12:32 Carbon tetrachloride ND 5.0 0.48 ug/Kg 04/08/14 12:32

Chloroethane ND 5.0 1.1 ug/Kg 04/08/14 12:32 Chloroform ND 5.0 0.31 ug/Kg 04/08/14 12:32 Chloromethane ND 5.0 ug/Kg 0.30 04/08/14 12:32 cis-1,2-Dichloroethene ND 5.0 0.64 ug/Kg 04/08/14 12:32 cis-1,3-Dichloropropene ND 5.0 0.72 ug/Kg 04/08/14 12:32 ND Cyclohexane 5.0 0.70 ug/Kg 04/08/14 12:32 Dibromochloromethane ND 5.0 0.64 ug/Kg 04/08/14 12:32

5.0

Dichlorodifluoromethane ND 5.0 0.41 ug/Kg 04/08/14 12:32 Ethylbenzene ND 5.0 0.35 ug/Kg 04/08/14 12:32 ND Isopropylbenzene 5.0 0.75 ug/Kg 04/08/14 12:32 ND 5.0 04/08/14 12:32 Methyl acetate 0.93 ug/Kg 0.49 04/08/14 12:32 Methyl tert-butyl ether ND 5.0 ug/Kg Methylcyclohexane ND 04/08/14 12:32 5.0 0.76 ug/Kg

Methylene Chloride ND 04/08/14 12:32 5.0 2.3 ug/Kg Styrene ND 5.0 0.25 ug/Kg 04/08/14 12:32 Tetrachloroethene ND 5.0 0.67 ug/Kg 04/08/14 12:32 Toluene ND 5.0 0.38 ug/Kg 04/08/14 12:32 trans-1,2-Dichloroethene ND 5.0 0.52 ug/Kg 04/08/14 12:32

ND trans-1,3-Dichloropropene 5.0 2.2 ug/Kg 04/08/14 12:32 Trichloroethene ND 5.0 1.1 ug/Kg 04/08/14 12:32 Trichlorofluoromethane ND 5.0 0.47 ug/Kg 04/08/14 12:32 Vinyl chloride ND 5.0 0.61 ug/Kg 04/08/14 12:32

TestAmerica Buffalo

04/08/14 12:32

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Lab Sample ID: MB 480-174450/7

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Solid

Analysis Batch: 174450

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		64 - 126		04/08/14 12:32	1
4-Bromofluorobenzene (Surr)	98		72 - 126		04/08/14 12:32	1
Toluene-d8 (Surr)	99		71 - 125		04/08/14 12:32	1

Lab Sample ID: LCS 480-174450/5

Matrix: Solid

Analysis Batch: 174450

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	50.0	51.1		ug/Kg		102	73 - 126	
1,1-Dichloroethene	50.0	50.7		ug/Kg		101	59 ₋ 125	
1,2-Dichlorobenzene	50.0	50.2		ug/Kg		100	75 ₋ 120	
1,2-Dichloroethane	50.0	47.5		ug/Kg		95	77 - 122	
Benzene	50.0	49.8		ug/Kg		100	79 _ 127	
Chlorobenzene	50.0	50.8		ug/Kg		102	76 ₋ 124	
cis-1,2-Dichloroethene	50.0	49.9		ug/Kg		100	81 - 117	
Ethylbenzene	50.0	51.4		ug/Kg		103	80 _ 120	
Methyl tert-butyl ether	50.0	47.5		ug/Kg		95	63 - 125	
Tetrachloroethene	50.0	60.9		ug/Kg		122	74 - 122	
Toluene	50.0	50.9		ug/Kg		102	74 - 128	
trans-1,2-Dichloroethene	50.0	50.0		ug/Kg		100	78 ₋ 126	
Trichloroethene	50.0	51.1		ug/Kg		102	77 ₋ 129	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107		64 - 126
4-Bromofluorobenzene (Surr)	101		72 - 126
Toluene-d8 (Surr)	100		71 - 125

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-174663/1-A

Matrix: Solid

Analysis Batch: 175108

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 174663**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		170	36	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2,4,6-Trichlorophenol	ND		170	11	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2,4-Dichlorophenol	ND		170	8.7	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2,4-Dimethylphenol	ND		170	45	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2,4-Dinitrophenol	ND		330	58	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2,4-Dinitrotoluene	ND		170	26	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2,6-Dinitrotoluene	ND		170	41	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2-Chloronaphthalene	ND		170	11	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2-Chlorophenol	ND		170	8.5	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2-Methylnaphthalene	ND		170	2.0	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2-Methylphenol	ND		170	5.1	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2-Nitroaniline	ND		330	53	ug/Kg		04/09/14 09:17	04/11/14 10:41	1

TestAmerica Buffalo

4/16/2014

Page 13 of 31

QC Sample Results

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-2

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-174663/1-A

Matrix: Solid

Analysis Batch: 175108

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 174663

	MB MB				_			5
Analyte	Result Qualifie		MDL		D	Prepared	Analyzed	Dil Fac
2-Nitrophenol	ND	170	7.6	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
3,3'-Dichlorobenzidine	ND ND	170	150	ug/Kg		04/09/14 09:17	04/11/14 10:41 04/11/14 10:41	1
3-Nitroaniline		330	38	ug/Kg		04/09/14 09:17		
4,6-Dinitro-2-methylphenol	ND ND	330 170	58	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
4-Bromophenyl phenyl ether			53	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
4-Chloro-3-methylphenol	ND	170	6.9	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
4-Chlorophopyl phopyl other	ND ND	170 170	49	ug/Kg		04/09/14 09:17 04/09/14 09:17	04/11/14 10:41	1
4-Chlorophenyl phenyl ether			3.6	ug/Kg			04/11/14 10:41	1
4-Methylphenol	ND	330		ug/Kg		04/09/14 09:17	04/11/14 10:41	
4-Nitroaniline	ND	330		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
4-Nitrophenol	ND	330	40	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Acenaphthene	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Acenaphthylene	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Acetophenone	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Anthracene	ND	170	4.3	ug/Kg		04/09/14 09:17	04/11/14 10:41	
Atrazine	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzaldehyde	ND	170	18	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzo[a]anthracene	ND	170	2.9	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzo[a]pyrene	ND	170	4.0	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzo[b]fluoranthene	ND	170	3.2	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzo[g,h,i]perylene	ND	170	2.0	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzo[k]fluoranthene	ND	170	1.8	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Biphenyl	ND	170	10	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
bis (2-chloroisopropyl) ether	ND	170	17	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Bis(2-chloroethoxy)methane	ND	170	9.1	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Bis(2-chloroethyl)ether	ND	170	14	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Bis(2-ethylhexyl) phthalate	ND	170	54	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Butyl benzyl phthalate	ND	170	45	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Caprolactam	ND	170	72	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Carbazole	ND	170	1.9	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Chrysene	ND	170	1.7	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Dibenz(a,h)anthracene	ND	170	2.0	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Dibenzofuran	ND	170	1.7	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Diethyl phthalate	ND	170	5.0	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Dimethyl phthalate	ND	170	4.4	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Di-n-butyl phthalate	ND	170	58	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Di-n-octyl phthalate	ND	170	3.9	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Fluoranthene	ND	170	2.4	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Fluorene	ND	170	3.8	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Hexachlorobenzene	ND	170	8.3	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Hexachlorobutadiene	ND	170	8.5	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Hexachlorocyclopentadiene	ND	170	50	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Hexachloroethane	ND	170	13	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Indeno[1,2,3-cd]pyrene	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Isophorone	ND	170	8.3	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Naphthalene	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Nitrobenzene	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
N-Nitrosodi-n-propylamine	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1

TestAmerica Buffalo

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-174663/1-A

Matrix: Solid

Analysis Batch: 175108

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 174663

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Nitrosodiphenylamine	ND		170	9.1	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Pentachlorophenol	ND		330	57	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Phenanthrene	ND		170	3.5	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Phenol	ND		170	18	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Pyrene	ND		170	1.1	ug/Kg		04/09/14 09:17	04/11/14 10:41	1

MB MB

Surrogate	%Recovery Quali	ifier Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	87	39 _ 146	04/09/14 09:17	04/11/14 10:41	1
2-Fluorobiphenyl	97	37 - 120	04/09/14 09:17	04/11/14 10:41	1
2-Fluorophenol (Surr)	86	18 - 120	04/09/14 09:17	04/11/14 10:41	1
Nitrobenzene-d5 (Surr)	86	34 - 132	04/09/14 09:17	04/11/14 10:41	1
Phenol-d5 (Surr)	90	11 - 120	04/09/14 09:17	04/11/14 10:41	1
p-Terphenyl-d14 (Surr)	105	65 - 153	04/09/14 09:17	04/11/14 10:41	1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 174663

Lab Sample ID: LCS 480-174663/2-A

Lab Sample ID: 480-57320-2 MS

Matrix: Solid

Matrix: Solid

Pyrene

Analysis Batch: 175108

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-Dinitrotoluene	3240	3320		ug/Kg		102	55 - 125	
2-Chlorophenol	3240	2670		ug/Kg		82	38 - 120	
4-Chloro-3-methylphenol	3240	3230		ug/Kg		99	49 - 125	
4-Nitrophenol	6490	7170		ug/Kg		110	43 - 137	
Acenaphthene	3240	3140		ug/Kg		97	53 - 120	
Atrazine	3240	3220		ug/Kg		99	60 - 164	
Bis(2-ethylhexyl) phthalate	3240	3300		ug/Kg		102	61 - 133	
Fluorene	3240	3180		ug/Kg		98	63 - 126	
Hexachloroethane	3240	2570		ug/Kg		79	41 - 120	
N-Nitrosodi-n-propylamine	3240	2790		ug/Kg		86	46 - 120	
Pentachlorophenol	6490	6570		ug/Kg		101	33 - 136	
Phenol	3240	2680		ug/Kg		83	36 - 120	

3170

ug/Kg

3240

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	103		39 - 146
2-Fluorobiphenyl	97		37 - 120
2-Fluorophenol (Surr)	84		18 - 120
Nitrobenzene-d5 (Surr)	92		34 - 132
Phenol-d5 (Surr)	85		11 - 120
p-Terphenyl-d14 (Surr)	102		65 - 153

Client Sample ID: TN Composite

51 - 133

Prep Type: Total/NA

Prep Batch: 174663

Analysis Batch: 175108									Prep	Batch: 1
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-Dinitrotoluene	ND		3720	3710		ug/Kg	-	100	55 - 125	
2-Chlorophenol	ND		3720	3310		ug/Kg	☼	89	38 - 120	

TestAmerica Buffalo

Page 15 of 31

Client Sample ID: TN Composite

Prep Type: Total/NA

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-57320-2 MS **Client Sample ID: TN Composite Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 175108 Prep Batch: 174663**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4-Chloro-3-methylphenol	ND		3720	3590		ug/Kg	*	97	49 - 125	
4-Nitrophenol	ND		7440	7650		ug/Kg	\$	103	43 - 137	
Acenaphthene	51	J	3720	3590		ug/Kg	₩	95	53 - 120	
Atrazine	ND		3720	3340		ug/Kg	₽	90	60 - 164	
Bis(2-ethylhexyl) phthalate	ND		3720	3490		ug/Kg	₩.	94	61 - 133	
Fluorene	55	J	3720	3600		ug/Kg	₽	95	63 - 126	
Hexachloroethane	ND		3720	2990		ug/Kg	₽	80	41 - 120	
N-Nitrosodi-n-propylamine	ND		3720	3350		ug/Kg	₩	90	46 - 120	
Pentachlorophenol	ND		7440	7430		ug/Kg	₽	100	33 - 136	
Phenol	ND		3720	3240		ug/Kg	₩	87	36 - 120	
Pyrene	1200		3720	4490		ug/Kg	\$	89	51 - 133	

MS MS %Recovery Qualifier Surrogate Limits 2,4,6-Tribromophenol (Surr) 107 39 - 146 2-Fluorobiphenyl 96 37 - 120 2-Fluorophenol (Surr) 88 18 - 120 Nitrobenzene-d5 (Surr) 89 34 - 132 Phenol-d5 (Surr) 11 - 120 92 p-Terphenyl-d14 (Surr) 92 65 - 153

Lab Sample ID: 480-57320-2 MSD

Matrix: Solid

Analysis Batch: 175108

Analysis Batch: 175108									Prep	Batch: 1	74663
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-Dinitrotoluene	ND		3700	3890		ug/Kg	☼	105	55 - 125	5	20
2-Chlorophenol	ND		3700	3130		ug/Kg	☼	85	38 - 120	6	25
4-Chloro-3-methylphenol	ND		3700	3840		ug/Kg	₽	104	49 - 125	7	27
4-Nitrophenol	ND		7390	8070		ug/Kg	\$	109	43 - 137	5	25
Acenaphthene	51	J	3700	3700		ug/Kg	₽	99	53 - 120	3	35
Atrazine	ND		3700	3600		ug/Kg	₽	97	60 - 164	7	20
Bis(2-ethylhexyl) phthalate	ND		3700	3550		ug/Kg	₽	96	61 - 133	2	15
Fluorene	55	J	3700	3740		ug/Kg	₽	100	63 - 126	4	15
Hexachloroethane	ND		3700	2990		ug/Kg	☼	81	41 - 120	0	46
N-Nitrosodi-n-propylamine	ND		3700	3230		ug/Kg	\$	87	46 - 120	4	31
Pentachlorophenol	ND		7390	7510		ug/Kg	₽	102	33 - 136	1	35
Phenol	ND		3700	3050		ug/Kg	₽	83	36 - 120	6	35
Pyrene	1200		3700	4500		ug/Kg	\$	90	51 - 133	0	35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	104		39 - 146
2-Fluorobiphenyl	98		37 - 120
2-Fluorophenol (Surr)	86		18 - 120
Nitrobenzene-d5 (Surr)	89		34 - 132
Phenol-d5 (Surr)	89		11 - 120
p-Terphenyl-d14 (Surr)	92		65 - 153

TestAmerica Buffalo

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 480-174686/1-A

Matrix: Solid

Analysis Batch: 174716

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 174686

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Far
Diesel Range Organics [C10-C28] ND 16 4.9 mg/Kg 04/09/14 09:42 04/09/14 19:09

 MB MB

 Surrogate
 %Recovery of the period

Lab Sample ID: LCS 480-174686/2-A

Matrix: Solid

Analysis Batch: 174716

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 174686

Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits

Diesel Range Organics 49.9 43.4 mg/Kg 87 63 - 127
[C10-C28]

 Surrogate
 %Recovery or Terphenyl
 Qualifier or Temphenyl
 Limits or Temphenyl

Lab Sample ID: LCSD 480-174686/3-A

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Prep Type: Total/NA

 Analysis Batch: 174716
 Spike
 LCSD
 LCSD
 LCSD
 MRec.
 RPD

 Analyte
 Added
 Result
 Qualifier
 Unit
 D
 %Rec
 Limits
 RPD
 Limits

Diesel Range Organics 49.2 42.8 mg/Kg 87 63 - 127 1 35 [C10-C28]

 LCSD LCSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 o-Terphenyl
 92
 48 - 125

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-175027/1-A

Client Sample ID: Method Blank

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 175178

MB MB

Prep Batch: 175027

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	0.21	0.040	mg/Kg		04/10/14 15:16	04/11/14 19:01	1
PCB-1221	ND	0.21	0.040	mg/Kg		04/10/14 15:16	04/11/14 19:01	1
PCB-1232	ND	0.21	0.040	mg/Kg		04/10/14 15:16	04/11/14 19:01	1
PCB-1242	ND	0.21	0.040	mg/Kg		04/10/14 15:16	04/11/14 19:01	1
PCB-1248	ND	0.21	0.040	mg/Kg		04/10/14 15:16	04/11/14 19:01	1
PCB-1254	ND	0.21	0.096	mg/Kg		04/10/14 15:16	04/11/14 19:01	1
PCB-1260	ND	0.21	0.096	mg/Kg		04/10/14 15:16	04/11/14 19:01	1
PCB-1262	ND	0.21	0.096	mg/Kg		04/10/14 15:16	04/11/14 19:01	1
PCB-1268	ND	0.21	0.096	mg/Kg		04/10/14 15:16	04/11/14 19:01	1

1 OB 1200	ND		0.21	0.000 mg/rtg	04/10/14 10:10	04/11/14 10:01	
	MB	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	104		46 - 175		04/10/14 15:16	04/11/14 19:01	1
DCB Decachlorobiphenyl	115		47 - 176		04/10/14 15:16	04/11/14 19:01	1

TestAmerica Buffalo

Page 17 of 31

4/16/2014

3

4

5

7

8

11

13

14

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 480-175027/2-A

Matrix: Solid

Analysis Batch: 175178

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 175027

	Бріке	LCS LCS				%Rec.	
Analyte	Added	Result Qualif	ier Unit	D	%Rec	Limits	
PCB-1016	2.27	2.93	mg/Kg	_	129	51 - 185	
PCB-1260	2.27	3.20	mg/Kg		141	61 - 184	

LCS LCS %Recovery Qualifier Surrogate Limits Tetrachloro-m-xylene 114 46 - 175 DCB Decachlorobiphenyl 130 47 - 176

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-174368/1-A

Matrix: Solid

Analysis Batch: 176107

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 174368

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		2.2	0.43	mg/Kg		04/08/14 13:25	04/15/14 11:29	1
Barium	ND	٨	0.54	0.12	mg/Kg		04/08/14 13:25	04/15/14 11:29	1
Cadmium	ND		0.22	0.032	mg/Kg		04/08/14 13:25	04/15/14 11:29	1
Chromium	ND		0.54	0.22	mg/Kg		04/08/14 13:25	04/15/14 11:29	1
Lead	ND		1.1	0.26	mg/Kg		04/08/14 13:25	04/15/14 11:29	1
Selenium	ND		4.3	0.43	mg/Kg		04/08/14 13:25	04/15/14 11:29	1
Silver	ND		0.65	0.22	mg/Kg		04/08/14 13:25	04/15/14 11:29	1
Silvei	ND		0.00	0.22	mg/itg		04/00/14 13.23	04/10/14 11.23	'

Lab Sample ID: LCSSRM 480-174368/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 176107							Prep Bat	ch: 174368
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	88.5	83.1		mg/Kg		93.8	69.0 - 131.	
							2	
Barium	210	184	٨	mg/Kg		87.4	73.3 - 126.	
							7	
Cadmium	143	129		mg/Kg		90.2	72.7 - 127.	
							3	
Chromium	86.9	76.6		mg/Kg		88.1	69.1 - 131.	
							3	
Lead	98.0	95.4		mg/Kg		97.3	70.8 - 128.	
							7	
Selenium	127	120		mg/Kg		94.7	66.6 - 133.	
							9	
Silver	66.3	61.9		mg/Kg		93.4	67.1 - 132.	
							0	

TestAmerica Buffalo

Page 18 of 31

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Lab Sample ID: MB 480-174619/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 174789 **Prep Batch: 174619**

мв мв

Result Qualifier RL MDL Unit D Prepared Dil Fac Analyte Analyzed 0.018 0.0074 mg/Kg 04/09/14 12:00 Hg ND 04/09/14 15:17

Lab Sample ID: LCSSRM 480-174619/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 174789 Prep Batch: 174619

Spike LCSSRM LCSSRM Analyte Added Result Qualifier Unit %Rec Limits Hg 3.77 3.44 mg/Kg 91.2 50.9 - 149.

1

Method: 1010 - Ignitability, Pensky-Martens Closed-Cup Method

Lab Sample ID: LCS 480-175100/1 Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 175100

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte D %Rec Unit 81.0 Flashpoint 81.00 Degrees F 100 97.5 - 102. 5

Method: 9012 - Cyanide, Reactive

Lab Sample ID: MB 480-174856/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 174966 Prep Batch: 174856

мв мв Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Cyanide, Reactive ND 10 0.0030 mg/Kg 04/10/14 00:30 04/10/14 10:26

Lab Sample ID: LCS 480-174856/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 174966

Prep Batch: 174856 LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Cyanide, Reactive 1000 203 20 10 - 100 mg/Kg

Method: 9034 - Sulfide, Reactive

Lab Sample ID: MB 480-174864/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 174962 Prep Batch: 174864

мв мв

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Sulfide, Reactive ND 10 0.57 mg/Kg 04/10/14 07:33 04/10/14 08:20

TestAmerica Buffalo

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Method: 9034 - Sulfide, Reactive (Continued)

Lab Sample ID: LCS 480-174864/2-A

Matrix: Solid

Sulfide, Reactive

Analyte

Analysis Batch: 174962

Spike Added

1000

LCS LCS

822

Result Qualifier Unit

mg/Kg

%Rec 82

Limits

Prep Type: Total/NA

Prep Batch: 174864

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

NC

10 - 100

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Method: 9045C - pH

Lab Sample ID: LCS 480-174815/1

Matrix: Solid

Analysis Batch: 174815

Analyte рH

Spike Added 7.00

LCS LCS Result Qualifier 7.020

Unit SU

D %Rec 100

%Rec. Limits 99 - 101

Lab Sample ID: 480-57320-2 DU

Matrix: Solid

рН

Analysis Batch: 174815

Analyte

DU DU Sample Sample Result Qualifier 4.93

Result Qualifier 4.970

Unit SU

0.8

Client Sample ID: TN Composite

Client Sample ID: TN Composite

RPD

Limit

RPD

Limit

Method: 9095B - Paint Filter

Lab Sample ID: 480-57320-2 DU

Matrix: Solid

Analysis Batch: 174566

Sample Sample Analyte Result Qualifier Free Liquid passed

DU DU

Result Qualifier passed

Unit mL/100g

RPD

QC Association Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-2

GC/MS VOA

Prep Batch: 174119

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	5035A	

Analysis Batch: 174450

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	8260C	174119
LCS 480-174450/5	Lab Control Sample	Total/NA	Solid	8260C	
MB 480-174450/7	Method Blank	Total/NA	Solid	8260C	

GC/MS Semi VOA

Prep Batch: 174663

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	3550C	
480-57320-2 MS	TN Composite	Total/NA	Solid	3550C	
480-57320-2 MSD	TN Composite	Total/NA	Solid	3550C	
LCS 480-174663/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-174663/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 175108

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	8270D	174663
480-57320-2 MS	TN Composite	Total/NA	Solid	8270D	174663
480-57320-2 MSD	TN Composite	Total/NA	Solid	8270D	174663
LCS 480-174663/2-A	Lab Control Sample	Total/NA	Solid	8270D	174663
MB 480-174663/1-A	Method Blank	Total/NA	Solid	8270D	174663

GC Semi VOA

Prep Batch: 174686

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	3550C	
LCS 480-174686/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 480-174686/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
MB 480-174686/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 174716

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	8015D	174686
LCS 480-174686/2-A	Lab Control Sample	Total/NA	Solid	8015D	174686
LCSD 480-174686/3-A	Lab Control Sample Dup	Total/NA	Solid	8015D	174686
MB 480-174686/1-A	Method Blank	Total/NA	Solid	8015D	174686

Prep Batch: 175027

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	3550C	
LCS 480-175027/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-175027/1-A	Method Blank	Total/NA	Solid	3550C	

TestAmerica Buffalo

Page 21 of 31

QC Association Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-2

GC Semi VOA (Continued)

Analy	sis	Batch	ո։ 10	75178
--------------	-----	--------------	-------	-------

Lab San	nple ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-573	320-2	TN Composite	Total/NA	Solid	8082A	175027
LCS 480	0-175027/2-A	Lab Control Sample	Total/NA	Solid	8082A	175027
MB 480-	-175027/1-A	Method Blank	Total/NA	Solid	8082A	175027

Metals

Prep Batch: 174368

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	3050B	
LCSSRM 480-174368/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-174368/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 174619

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	7471B	
LCSSRM 480-174619/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-174619/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 174789

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	7471B	174619
LCSSRM 480-174619/2-A	Lab Control Sample	Total/NA	Solid	7471B	174619
MB 480-174619/1-A	Method Blank	Total/NA	Solid	7471B	174619

Analysis Batch: 176107

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	6010C	174368
LCSSRM 480-174368/2-A	Lab Control Sample	Total/NA	Solid	6010C	174368
MB 480-174368/1-A	Method Blank	Total/NA	Solid	6010C	174368

General Chemistry

Analysis Batch: 174093

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	Moisture	

Analysis Batch: 174566

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	9095B	
480-57320-2 DU	TN Composite	Total/NA	Solid	9095B	

Analysis Batch: 174815

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	9045C	
480-57320-2 DU	TN Composite	Total/NA	Solid	9045C	
LCS 480-174815/1	Lab Control Sample	Total/NA	Solid	9045C	

Prep Batch: 174856

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	7.3.3	

TestAmerica Buffalo

4/16/2014

Page 22 of 31

3

4

6

7

9

11

4.0

14

1 E

QC Association Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-2

General Chemistry (Continued)

Prep Batch: 174856 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-174856/2-A	Lab Control Sample	Total/NA	Solid	7.3.3	
MB 480-174856/1-A	Method Blank	Total/NA	Solid	7.3.3	

Prep Batch: 174864

Lab San	iple ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-573	20-2	TN Composite	Total/NA	Solid	7.3.4	
LCS 480	-174864/2-A	Lab Control Sample	Total/NA	Solid	7.3.4	
MB 480-	174864/1-A	Method Blank	Total/NA	Solid	7.3.4	

Analysis Batch: 174962

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	9034	174864
LCS 480-174864/2-A	Lab Control Sample	Total/NA	Solid	9034	174864
MB 480-174864/1-A	Method Blank	Total/NA	Solid	9034	174864

Analysis Batch: 174966

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	9012	174856
LCS 480-174856/2-A	Lab Control Sample	Total/NA	Solid	9012	174856
MB 480-174856/1-A	Method Blank	Total/NA	Solid	9012	174856

Analysis Batch: 175100

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-2	TN Composite	Total/NA	Solid	1010	
LCS 480-175100/1	Lab Control Sample	Total/NA	Solid	1010	

9

А

6

0

9

11

13

14

Lab Chronicle

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Client Sample ID: TN Composite

Date Collected: 04/02/14 11:55

Date Received: 04/05/14 02:00

TestAmerica Job ID: 480-57320-2

Lab Sample ID: 480-57320-2

Matrix: Solid

Percent Solids: 88.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			174119	04/07/14 01:35	CDC	TAL BUF
Total/NA	Analysis	8260C		1	174450	04/08/14 20:00	CDC	TAL BUF
Total/NA	Prep	3550C			174663	04/09/14 09:17	CAM	TAL BUF
Total/NA	Analysis	8270D		1	175108	04/11/14 11:30	HTL	TAL BUF
Total/NA	Prep	3550C			174686	04/09/14 09:42	CAM	TAL BUF
Total/NA	Analysis	8015D		1	174716	04/09/14 21:24	DLE	TAL BUF
Total/NA	Prep	3550C			175027	04/10/14 15:16	JRL	TAL BUF
Total/NA	Analysis	8082A		1	175178	04/11/14 21:58	JMM	TAL BUF
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 12:02	AMH	TAL BUF
Total/NA	Prep	7471B			174619	04/09/14 12:00	LRK	TAL BUF
Total/NA	Analysis	7471B		1	174789	04/09/14 15:28	LRK	TAL BUF
Total/NA	Analysis	1010		1	175100	04/11/14 15:15	JMB	TAL BUF
Total/NA	Prep	7.3.3			174856	04/10/14 00:30	LAW	TAL BUF
Total/NA	Analysis	9012		1	174966	04/10/14 10:26	LAW	TAL BUF
Total/NA	Prep	7.3.4			174864	04/10/14 07:33	LAW	TAL BUF
Total/NA	Analysis	9034		1	174962	04/10/14 08:20	LAW	TAL BUF
Total/NA	Analysis	9045C		1	174815	04/09/14 17:15	EGS	TAL BUF
Total/NA	Analysis	9095B		1	174566	04/08/14 18:35	KJ1	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF
_								

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

4

6

8

4.0

11

14

14

Certification Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-2

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Rhode Island	State Program	1	LAO00328	12-30-14

Δ

5

6

8

4.6

11

12

14

Method Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-2

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
3015D	Diesel Range Organics (DRO) (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
'471B	Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)	SW846	TAL BUF
010	Ignitability, Pensky-Martens Closed-Cup Method	SW846	TAL BUF
012	Cyanide, Reactive	SW846	TAL BUF
034	Sulfide, Reactive	SW846	TAL BUF
045C	pH	SW846	TAL BUF
095B	Paint Filter	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-57320-2	TN Composite	Solid	04/02/14 11:55	04/05/14 02:00

9

4

Q

9

10

12

1ა

1200

4.5.14 Date

カトかっか

(A fee may be assessed if samples are retained Months longer than 1 month)

☐ Disposal By Lab ☐ Archive For

☐ Unknown ☐ Return To Client

☐ Poison B

Skin Irritant

| Flammable

Non-Hazard

Possible Hazard Identification

Sample Disposa

1402

10 M

OC Requiraments (Specify)

2. Received Br

Time (SSS)

A Co CR

3. Relinquished By Comments

1. Rece

Sylve II Time

Other.

☐ 21 Days

☐ 14 Days

☐ 7 Days

☐ 48 Hours

24 Hours

1. Relinquished By

2. Relinda

Tum Around Time Required

3. Received By

Special Instructions/ Conditions of Receipt

1020/56

Single Meleck Aronic only Har-

Containers & Preservatives

Matrix

×

×

NOANZ HOBN

HOBN

IDH

EONH

DOSZH nuble

1105

pes

114

Time

Date

Sample I.D. No. and Description (Containers for each sample may be combined on one line)

10-1 (25-35)

Th composite

Page 28 of 31

029

エルブ

××

7

(205)

×

+081

1881

रक्श

×

×

 $\overline{\star}$ 4

28 BOST

1823

0021

5-107

3-108 801-5 015

201-2 5-100

5-104

Page

more space is needed)

Analysis (Attach list if

THE LEADER IN ENVIRONMENTAL TESTING

18/2014

Darrello Getshaper

PESCONO CONTRO ASSECTORE

TAL-4124 (1007) Client

THE Brooken

ater? Yes□ No□

480-57320 Chain of Custody

Custody Record

Chain of

e on Receipt

Telephone Number (Area Code)/Fax Number (UOI) 73% - (CCO)

Lab Contact

Site Contact

Zip Code OPSCO

That Island

Project Name and Location (State)

Particket

Contract/Purchase Order/Quote No.

Carrier/Waybill Number

[estAmerica

#

7

DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Copy

d		
P		
ζ,		
5		
	Ì	
	λά	
	90	
	Fiel	
	×	
	Νď	
	je,	
	duie	
	S	
	1 11/1	
	nit	
	ays	
	S	
	Ä	
	Ž	
	Ö	
	ort	
	Rec	
	ith	
	ent w	
	Clie	
	10	
	WHITE - Returned to	
	3tur	
	- PR	
	1E	
	V.	

Containers for each sample I.D. No. and Description Sample I.D. No. and Description Containers for each sample may be combined on one line $4/3/14/1403$ 1403 1403 1403 1403 1403 1403 1403 1403 1403 1403 1600	Sendun sendun	aliensents (Sp. Park) Wanter (S	Same AXXXX Aremic outly AXXXXXX		This if red Chain of Custoby Number 261764 This if redded Special Instructions/ Conditions of Receipt 25 (A fee may be assessed if samples are retained longer than 1 month) Date 4.44 (A & A & A & A & A & A & A & A & A & A
m all	(SCC)	3. Received By	A	77	4-5-14 0200 Date Time
<i>-</i>		Несегуед Ву	ı		Date IIIII

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Drinking Water? Yes□ No□

Temperature on Receipt

Chain of Custody Record

TAL-4124 (1007)				
Client	Project Manager		Date (1)	Chain of Custody Number
Regione Control Association	Danuelle	いとといいるとん	7/8/5	CO / TOZ
Address	Telephone Number (Area Code)/Fax Number	Code)/Fax Number	Lab Number	(d
TONOGO THI	Set (10h)	- (olpo)		Page of
City Trock of The Code		Lab Contact	Analysis (Attach list if more space is needed)	
	Carrier/Waybill Number		mayor Mul	
TISIA BONILATON, RI			n (Special Instructions/
ContractPurchase Order/Quote No.	Matrix	Containers & Preservatives	21110	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Time Air Air Air	HOBN NGOH IOH HOS3 HSOV	101 101 101 101 101 101 101 101 101 101	
(158) +- 4	1855		X	
	1380		XXX	
F	1335		XX	
12-9	X - Cer.		X	
	St.		X	
2				
Possible Hazard Identification	Sample Disposal	' jent Disnosal Rv I ah	(A fee Months for	(A fee may be assessed if samples are retained former than 1 month)
E Reaujed	-	, QC Requirements (St		6.000
24 Hours	lays 🗌 Other			
1. Relinquished By	Date M/ M Time	15 Received By		CY 476 KACT
2. Relinquished By Co.	Grant Time	C Recovering &	r 1 TH	Date Time
3. Relinquished By	Date Time	3. Received By		Date
Comments				1. F. #)

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Resource Control Associates, Inc.

Job Number: 480-57320-2

Login Number: 57320 List Source: TestAmerica Buffalo

List Number: 1

Creator: Wienke, Robert K

uestion	Answer	Comment
adioactivity either was not measured or, if measured, is at or below ackground	True	
he cooler's custody seal, if present, is intact.	True	
he cooler or samples do not appear to have been compromised or mpered with.	True	
amples were received on ice.	True	
ooler Temperature is acceptable.	True	
ooler Temperature is recorded.	True	
OC is present.	True	
OC is filled out in ink and legible.	True	
OC is filled out with all pertinent information.	True	
the Field Sampler's name present on COC?	True	
here are no discrepancies between the sample IDs on the containers and e COC.	True	
amples are received within Holding Time.	True	
ample containers have legible labels.	True	
ontainers are not broken or leaking.	True	
ample collection date/times are provided.	False	No dates listed for samples 25-29. Taken from bottles
ppropriate sample containers are used.	True	
ample bottles are completely filled.	True	
ample Preservation Verified	N/A	
here is sufficient vol. for all requested analyses, incl. any requested IS/MSDs	True	
OA sample vials do not have headspace or bubble is <6mm (1/4") in ameter.	True	
necessary, staff have been informed of any short hold time or quick TAT eeds	True	
ultiphasic samples are not present.	True	
amples do not require splitting or compositing.	True	
ampling Company provided.	True	
amples received within 48 hours of sampling.	True	
amples requiring field filtration have been filtered in the field.	N/A	
hlorine Residual checked.	N/A	

2

ی

4

7

a

12

IR

46

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-57320-1

Client Project/Site: 7131A Rhode Island

For:

Resource Control Associates, Inc. 474 Broadway
Pawtucket, Rhode Island 02860

Attn: Ms. Danielle Eastman-Getsinger

Authorized for release by: 4/16/2014 4:25:01 PM

Steve Hartmann, Service Center Manager (413)572-4000

steve.hartmann@testamericainc.com

..... Links

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	12
Surrogate Summary	25
QC Sample Results	26
QC Association Summary	32
Lab Chronicle	37
Certification Summary	44
Method Summary	45
Sample Summary	46
Chain of Custody	47
Receint Checklists	50

3

4

8

9

11

13

14

Definitions/Glossary

Client: Resource Control Associates, Inc.

TestAmerica Job ID: 480-57320-1

Project/Site: 7131A Rhode Island

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD exceeds the control limits

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Х Surrogate is outside control limits

GC Semi VOA

Qualifier **Qualifier Description**

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier **Qualifier Description**

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.

Glossary

Abbreviation	These commonly	y used abbreviations ma	y or may not be	present in this report.

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dilution Factor Dil Fac

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DL, RA, RE, IN

DLC Decision level concentration MDA Minimum detectable activity EDL Estimated Detection Limit MDC Minimum detectable concentration

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

Not detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

QC **Quality Control RER** Relative error ratio

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TFF **TEQ** Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-1

Job ID: 480-57320-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-57320-1

Comments

No additional comments.

Receipt

The samples were received on 4/5/2014 2:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.8° C.

GC/MS VOA (8260)

Method(s) 8260C: The LCS recovery was above TestAmerica's internal laboratory QC limits for 2-Butanone. This analyte is not a reported spiking compound; therefore the recovery is being noted for advisory purposes only. All other quality control indicators, including the continuing calibration verification, were within method prescribed limits for this analyte.

No other analytical or quality issues were noted.

GC/MS Semi VOA (8270)

Method(s) 8270D: The following samples were diluted due to the nature of the sample matrix: TP-3 (2-2.5') (480-57320-18), TP-8 (1-2') (480-57320-26), TP-3 (5-5.5') (480-57320-17). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC Semi VOA (8015)

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals (6010, 7471)

Method(s) 6010C: The low level continuing calibration verifications (CCVL 480-176107/16 and CCVL 480-176107/25, 480-176107/34) for analytical batch 480-176107 contained total barium above the quality control limit. All reported samples associated with these CCVLs were either ND for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCVLs; therefore, re-analysis of samples (480-57320-1 MS),(480-57320-1 MSD), S-101 (480-57320-3), S-102 (480-57320-4), (LCSSRM 480-174368/2-), (MB 480-174368/1-A), TP-1 (2.5-3.5) (480-57320-1) was not required.

Method(s) 6010C: The following sample was diluted for total arsenic due to the nature of the sample matrix: S-105 (480-57320-7). Elevated reporting limits (RLs) are provided.

Method(s) 6010C: The following sample was diluted to bring the concentration of target analyte total chromium within the linear range: TP-3 (5-5.5') (480-57320-17). Elevated reporting limits (RLs) are provided.

Method(s) 6010C: The following sample was diluted due to the presence of chromium which interferes with total arsenic: TP-3 (5-5.5') (480-57320-17). Elevated reporting limits (RLs) are provided.

Method(s) 6010C: The following sample was diluted due to the presence of copper which interferes with total lead: TP-3 (5-5.5') (480-57320-17). Elevated reporting limits (RLs) are provided.

Method(s) 7471A, 7471B: The following samples were diluted to bring the concentration of the target analyte, total mercury, within the calibration range: TP-3 (5-5.5') (480-57320-17), TP-4 (1.5-2') (480-57320-19). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

Organic Prep

Method(s) 3550C: Due to the matrix, the following samples could not be concentrated to the final method required volume: TP-3 (2-2.5') (480-57320-18), TP-8 (1-2') (480-57320-26). The reporting limits (RLs) are elevated proportionately.

7

9

11

14

Case Narrative

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-1

Job ID: 480-57320-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

Method(s) 3550C: The following samples:S-102 (480-57320-4), TP-2 (4.8') (480-57320-16), TP-3 (5-5.5') (480-57320-17), TP-8 (6') (480-57320-27) were decanted prior to preparation.

No other analytical or quality issues were noted.

- 0

4

5

6

8

9

11

16

14

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Client Sample ID: TP-1 (2.5-3.5)

Lab Sample ID: 480-57320-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	1.6	J	1.9	0.37	mg/Kg	1	_	6010C	Total/NA
Barium	8.4	^	0.47	0.10	mg/Kg	1		6010C	Total/NA
Cadmium	0.035	J	0.19	0.028	mg/Kg	1		6010C	Total/NA
Chromium	2.9		0.47	0.19	mg/Kg	1		6010C	Total/NA
Lead	15		0.94	0.22	mg/Kg	1		6010C	Total/NA
Hg	0.014	J	0.019	0.0078	mg/Kg	1		7471B	Total/NA

Client Sample ID: S-101

Lab Sample ID: 480-57320-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	6.4	J	200	3.5	ug/Kg	1	₽	8270D	Total/NA
Chrysene	2.2	J	200	2.0	ug/Kg	1	₽	8270D	Total/NA
Diesel Range Organics [C10-C28]	7.4	J	19	5.8	mg/Kg	1	₩	8015D	Total/NA
Arsenic	2.3		2.1	0.42	mg/Kg	1		6010C	Total/NA
Barium	13	^	0.52	0.11	mg/Kg	1		6010C	Total/NA
Cadmium	0.033	J	0.21	0.031	mg/Kg	1		6010C	Total/NA
Chromium	1.6		0.52	0.21	mg/Kg	1		6010C	Total/NA
Lead	11		1.0	0.25	mg/Kg	1		6010C	Total/NA
Hg	0.026		0.019	0.0075	mg/Kg	1		7471B	Total/NA

Client Sample ID: S-102

Lab Sample ID: 480-57320-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics [C10-C28]	22	22	6.6	mg/Kg	1	₩	8015D	Total/NA
Arsenic	5.9	2.1	0.42	mg/Kg	1		6010C	Total/NA
Barium	12 ^	0.53	0.12	mg/Kg	1		6010C	Total/NA
Chromium	1.0	0.53	0.21	mg/Kg	1		6010C	Total/NA
Lead	34	1.1	0.25	mg/Kg	1		6010C	Total/NA
Hg	0.12	0.018	0.0074	mg/Kg	1		7471B	Total/NA

Client Sample ID: S-103

Lab Sample ID: 480-57320-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Metho	
Arsenic	2.2	2.1	0.41 mg/Kg	1 6010C	Total/NA

Client Sample ID: S-104

Lab Sample ID: 480-57320-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fa	c D	Method	Prep Type
Arsenic	1.7	J	2.0	0.40	mg/Kg		1	6010C	Total/NA

Client Sample ID: S-105

Lab Sample ID: 480-57320-7

No Detections.

Client Sample ID: S-106

Lab Sample ID: 480-57320-8

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Arsenic	2.2	2.0	0.39 mg/Kg	1	6010C	Total/NA

Client Sample ID: S-107

Lab Sample ID: 480-57320-9

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 6 of 50

А

5

7

9

11

12

14

1

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Client Sample ID: S-107 (Contin	ued)					La	ab (Sample II): 480-57320-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	3.5		2.0	0.40	mg/Kg	1	_	6010C	Total/NA
Client Sample ID: S-108						Lab	S	ample ID:	480-57320-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	6.5		1.9	0.38	mg/Kg	1	_	6010C	Total/NA
Client Sample ID: S-109						Lab	S	ample ID:	480-57320-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	7.3		2.1	0.41	mg/Kg	1	_	6010C	Total/NA
Client Sample ID: S-110						Lab	s S	ample ID:	480-57320-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	4.3		2.0	0.40	mg/Kg	1	_	6010C	Total/NA
Client Sample ID: S-111						Lab	S	ample ID:	480-57320-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	4.9		2.1	0.43	mg/Kg	1	_	6010C	Total/NA
Client Sample ID: S-112						Lab	s S	ample ID:	480-57320-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	5.5		2.0	0.40	mg/Kg	1	_	6010C	Total/NA
Client Sample ID: TP-2 (2-2.5')						Lab	s S	ample ID:	480-57320-1
Γ	- "	0 110				5".	_		

Client Sample ID: 1P-2 (2-2.5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	7.8	J	180	4.6	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	92	J	180	3.1	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	65	J	180	4.3	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	100	J	180	3.5	ug/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	34	J	180	2.1	ug/Kg	1	₩	8270D	Total/NA
Chrysene	120	J	180	1.8	ug/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	16	J	180	2.1	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	170	J	180	2.6	ug/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	36	J	180	4.9	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	27	J	180	3.8	ug/Kg	1	₽	8270D	Total/NA
Pyrene	130	J	180	1.2	ug/Kg	1	₩	8270D	Total/NA
Arsenic	0.45	J	2.0	0.40	mg/Kg	1		6010C	Total/NA
Barium	6.6		0.49	0.11	mg/Kg	1		6010C	Total/NA
Cadmium	0.27		0.20	0.030	mg/Kg	1		6010C	Total/NA
Chromium	350		0.49	0.20	mg/Kg	1		6010C	Total/NA
Lead	4.8		0.99	0.24	mg/Kg	1		6010C	Total/NA
Hg	0.11		0.018	0.0074	mg/Kg	1		7471B	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: TP-2 (4.8')

TestAmerica Buffalo

Lab Sample ID: 480-57320-16

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Client Sample ID: TP-2 (4.8') (Continued)

Lab Sample ID: 480-57320-16

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	16	J	220	3.8	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	9.7	J	220	5.3	ug/Kg	1	₽	8270D	Total/NA
Benzo[b]fluoranthene	17	J	220	4.2	ug/Kg	1	₽	8270D	Total/NA
Chrysene	14	J	220	2.2	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	29	J	220	3.2	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	7.3	J	220	4.6	ug/Kg	1	₽	8270D	Total/NA
Pyrene	21	J	220	1.4	ug/Kg	1	\$	8270D	Total/NA
Arsenic	0.82	J	1.8	0.37	mg/Kg	1		6010C	Total/NA
Barium	3.9		0.46	0.10	mg/Kg	1		6010C	Total/NA
Cadmium	0.24		0.18	0.028	mg/Kg	1		6010C	Total/NA
Chromium	3.2		0.46	0.18	mg/Kg	1		6010C	Total/NA
Lead	1.1		0.92	0.22	mg/Kg	1		6010C	Total/NA

Client Sample ID: TP-3 (5-5.5')

Lab Sample ID: 480-57320-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	550	J	3300	39	ug/Kg	5	₩	8270D	Total/NA
Anthracene	1200	J	3300	85	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]anthracene	2400	J	3300	57	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]pyrene	1900	J	3300	80	ug/Kg	5	₽	8270D	Total/NA
Benzo[b]fluoranthene	2600	J	3300	64	ug/Kg	5	₽	8270D	Total/NA
Benzo[g,h,i]perylene	770	J	3300	40	ug/Kg	5	₩	8270D	Total/NA
Benzo[k]fluoranthene	240	J	3300	36	ug/Kg	5	₩	8270D	Total/NA
Chrysene	2300	J	3300	33	ug/Kg	5	₽	8270D	Total/NA
Dibenz(a,h)anthracene	280	J	3300	39	ug/Kg	5	₩	8270D	Total/NA
Fluoranthene	5100		3300	48	ug/Kg	5	₩	8270D	Total/NA
Fluorene	460	J	3300	76	ug/Kg	5	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	730	J	3300	92	ug/Kg	5	₩	8270D	Total/NA
Naphthalene	400	J	3300	55	ug/Kg	5	₽	8270D	Total/NA
Phenanthrene	4200		3300	69	ug/Kg	5	₽	8270D	Total/NA
Pyrene	3700		3300	21	ug/Kg	5	₩	8270D	Total/NA
Arsenic	32		19	3.9	mg/Kg	10		6010C	Total/NA
Barium	54		0.48	0.11	mg/Kg	1		6010C	Total/NA
Cadmium	2.5		0.19	0.029	mg/Kg	1		6010C	Total/NA
Chromium	9800		4.8	1.9	mg/Kg	10		6010C	Total/NA
Lead	54		9.7	2.3	mg/Kg	10		6010C	Total/NA
Selenium	1.5	J	3.9	0.39	mg/Kg	1		6010C	Total/NA
Silver	0.64		0.58	0.19	mg/Kg	1		6010C	Total/NA
Hg	3.1		0.093	0.038	mg/Kg	5		7471B	Total/NA

Client Sample ID: TP-3 (2-2.5')

Lab Sample ID: 480-57320-18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	440000	J	870000	10000	ug/Kg	500	₩	8270D	Total/NA
Anthracene	1100000		870000	22000	ug/Kg	500	₽	8270D	Total/NA
Benzo[a]anthracene	1800000		870000	15000	ug/Kg	500	₽	8270D	Total/NA
Benzo[a]pyrene	1600000		870000	21000	ug/Kg	500	₩	8270D	Total/NA
Benzo[b]fluoranthene	2200000		870000	17000	ug/Kg	500	₩	8270D	Total/NA
Benzo[g,h,i]perylene	410000	J	870000	10000	ug/Kg	500	₽	8270D	Total/NA
Benzo[k]fluoranthene	660000	J	870000	9500	ug/Kg	500	₩.	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Client Sample ID: TP-3 (2-2.5') (Continued)

Lab Sample ID: 480-57320-18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chrysene	1900000		870000	8600	ug/Kg	500	₩	8270D	Total/NA
Dibenz(a,h)anthracene	170000	J	870000	10000	ug/Kg	500	₽	8270D	Total/NA
Fluoranthene	4700000		870000	13000	ug/Kg	500	₽	8270D	Total/NA
Fluorene	420000	J	870000	20000	ug/Kg	500	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	420000	J	870000	24000	ug/Kg	500	₽	8270D	Total/NA
Naphthalene	360000	J	870000	14000	ug/Kg	500	₽	8270D	Total/NA
Phenanthrene	4300000		870000	18000	ug/Kg	500	₽	8270D	Total/NA
Pyrene	3000000		870000	5600	ug/Kg	500	₽	8270D	Total/NA
Arsenic	18		2.1	0.42	mg/Kg	1		6010C	Total/NA
Barium	710		0.53	0.12	mg/Kg	1		6010C	Total/NA
Cadmium	0.98		0.21	0.032	mg/Kg	1		6010C	Total/NA
Chromium	12		0.53	0.21	mg/Kg	1		6010C	Total/NA
Lead	210		1.1	0.25	mg/Kg	1		6010C	Total/NA
Selenium	2.5	J	4.2	0.42	mg/Kg	1		6010C	Total/NA
Silver	0.40	J	0.63	0.21	mg/Kg	1		6010C	Total/NA
Hg	0.19		0.020	0.0081	mg/Kg	1		7471B	Total/NA

Client Sample ID: TP-4 (1.5-2')

Lab Sample ID: 480-57320-19

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	14	J	190	2.3	ug/Kg	1	₩	8270D	Total/NA
Anthracene	22	J	190	4.9	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	110	J	190	3.3	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]pyrene	110	J	190	4.6	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	140	J	190	3.7	ug/Kg	1	₽	8270D	Total/NA
Benzo[g,h,i]perylene	43	J	190	2.3	ug/Kg	1	₽	8270D	Total/NA
Benzo[k]fluoranthene	14	J	190	2.1	ug/Kg	1	₩	8270D	Total/NA
Chrysene	160	J	190	1.9	ug/Kg	1	₽	8270D	Total/NA
Dibenz(a,h)anthracene	17	J	190	2.3	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	230		190	2.8	ug/Kg	1	₩	8270D	Total/NA
Fluorene	9.6	J	190	4.4	ug/Kg	1	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	35	J	190	5.3	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	30	J	190	3.2	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	150	J	190	4.0	ug/Kg	1	₩	8270D	Total/NA
Pyrene	200		190	1.2	ug/Kg	1	₩	8270D	Total/NA
Arsenic	3.5		2.1	0.42	mg/Kg	1		6010C	Total/NA
Barium	16		0.53	0.12	mg/Kg	1		6010C	Total/NA
Cadmium	0.050	J	0.21	0.032	mg/Kg	1		6010C	Total/NA
Chromium	7.8		0.53	0.21	mg/Kg	1		6010C	Total/NA
Lead	14		1.1	0.25	mg/Kg	1		6010C	Total/NA
Hg	19		1.9	0.79	mg/Kg	100		7471B	Total/NA

Client Sample ID: TP-5 (4-4.5')

Lab Sample ID: 480-57320-22

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	4.3	J	210	2.5	ug/Kg	1	#	8270D	Total/NA
Benzo[a]anthracene	7.1	J	210	3.6	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	10	J	210	3.0	ug/Kg	1	₽	8270D	Total/NA
Naphthalene	21	J	210	3.5	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	9.0	J	210	4.4	ug/Kg	1	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Page 9 of 50

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Lab Sample ID: 480-57320-22

Lab Sample ID: 480-57320-25

Client Sample ID: TP-5 (4-4.5') (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Pyrene	4.9	J	210	1.4	ug/Kg	1	₩	8270D	Total/NA
Arsenic	1.8	J	1.9	0.38	mg/Kg	1		6010C	Total/NA
Barium	5.9		0.48	0.11	mg/Kg	1		6010C	Total/NA
Chromium	3.4		0.48	0.19	mg/Kg	1		6010C	Total/NA
Lead	1.8		0.96	0.23	mg/Kg	1		6010C	Total/NA
Hg	0.071		0.019	0.0076	mg/Kg	1		7471B	Total/NA

Client Sample ID: TP-7 (2.5')

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	2.0		1.8	0.37	mg/Kg		_	6010C	Total/NA
Barium	22		0.46	0.10	mg/Kg	1		6010C	Total/NA
Chromium	1.9		0.46	0.18	mg/Kg	1		6010C	Total/NA
Lead	130		0.92	0.22	mg/Kg	1		6010C	Total/NA
Hg	0.16		0.020	0.0083	mg/Kg	1		7471B	Total/NA

Client Sample ID: TP-8 (1-2')

Client Sample ID: TP-8 (1	-2')					Lal	b S	Sample ID	: 480-57320-26
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	520000	J	1100000	12000	ug/Kg	500	₩	8270D	Total/NA
Anthracene	1100000		1100000	27000	ug/Kg	500	₩	8270D	Total/NA
Benzo[a]anthracene	2300000		1100000	18000	ug/Kg	500	₩	8270D	Total/NA
Benzo[a]pyrene	1900000		1100000	25000	ug/Kg	500	₩	8270D	Total/NA
Benzo[b]fluoranthene	2300000		1100000	20000	ug/Kg	500	₽	8270D	Total/NA
Benzo[g,h,i]perylene	590000	J	1100000	13000	ug/Kg	500	₩	8270D	Total/NA
Benzo[k]fluoranthene	1100000		1100000	12000	ug/Kg	500	₽	8270D	Total/NA
Chrysene	2400000		1100000	11000	ug/Kg	500	₩	8270D	Total/NA
Dibenz(a,h)anthracene	180000	J	1100000	12000	ug/Kg	500	₩	8270D	Total/NA
Fluoranthene	5400000		1100000	15000	ug/Kg	500	₩	8270D	Total/NA
Fluorene	510000	J	1100000	24000	ug/Kg	500	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	550000	J	1100000	29000	ug/Kg	500	₩	8270D	Total/NA
Naphthalene	370000	J	1100000	18000	ug/Kg	500	₩	8270D	Total/NA
Phenanthrene	5100000		1100000	22000	ug/Kg	500	₩	8270D	Total/NA
Pyrene	3900000		1100000	6800	ug/Kg	500	₽	8270D	Total/NA
Arsenic	20		2.1	0.41	mg/Kg	1		6010C	Total/NA
Barium	360		0.52	0.11	mg/Kg	1		6010C	Total/NA
Cadmium	1.1		0.21	0.031	mg/Kg	1		6010C	Total/NA
Chromium	21		0.52	0.21	mg/Kg	1		6010C	Total/NA
Lead	350		1.0	0.25	mg/Kg	1		6010C	Total/NA
Selenium	1.5	J	4.1	0.41	mg/Kg	1		6010C	Total/NA
Hg	0.20		0.019	0.0079	mg/Kg	1		7471B	Total/NA

Client Sample ID: TP-8 (6')

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	210	J	220	2.6	ug/Kg	1	₩	8270D	Total/NA
Anthracene	250		220	5.6	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	530		220	3.8	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]pyrene	440		220	5.3	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	570		220	4.2	ug/Kg	1	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 480-57320-27

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Client Sample ID: TP-8 (6') (Continued)

Lab Sample ID: 480-57320-27

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[g,h,i]perylene	170	J	220	2.6	ug/Kg		₩	8270D	Total/NA
Benzo[k]fluoranthene	250		220	2.4	ug/Kg	1	₩	8270D	Total/NA
Chrysene	530		220	2.2	ug/Kg	1	₽	8270D	Total/NA
Dibenz(a,h)anthracene	45	J	220	2.6	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	1100		220	3.2	ug/Kg	1	₩	8270D	Total/NA
Fluorene	140	J	220	5.0	ug/Kg	1	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	160	J	220	6.0	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	460		220	3.6	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	1100		220	4.6	ug/Kg	1	₩	8270D	Total/NA
Pyrene	860		220	1.4	ug/Kg	1	₩	8270D	Total/NA
Arsenic	0.60	J	2.1	0.41	mg/Kg	1		6010C	Total/NA
Barium	6.6		0.51	0.11	mg/Kg	1		6010C	Total/NA
Cadmium	0.051	J	0.21	0.031	mg/Kg	1		6010C	Total/NA
Chromium	26		0.51	0.21	mg/Kg	1		6010C	Total/NA
Lead	1.6		1.0	0.25	mg/Kg	1		6010C	Total/NA
Hg	0.097		0.019	0.0075	mg/Kg	1		7471B	Total/NA

Client Sample ID: TP-9 (5.5-6')

Lab Sample ID: 480-57320-28

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	6.2	J	28	4.7	ug/Kg	1	₩	8260C	Total/NA
Arsenic	0.98	J	2.0	0.40	mg/Kg	1		6010C	Total/NA
Barium	6.6		0.50	0.11	mg/Kg	1		6010C	Total/NA
Chromium	1.9		0.50	0.20	mg/Kg	1		6010C	Total/NA
Lead	1.3		0.99	0.24	mg/Kg	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

4/16/2014

Page 11 of 50

Client Sample Results

Client: Resource Control Associates, Inc.

Client Sample ID: TP-1 (2.5-3.5)

Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-1

Lab Sample ID: 480-57320-1

Matrix: Solid

Date Collected: 04/02/14 11:50 Date Received: 04/05/14 02:00

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.6	J	1.9	0.37	mg/Kg		04/08/14 13:25	04/15/14 11:35	1
Barium	8.4	^	0.47	0.10	mg/Kg		04/08/14 13:25	04/15/14 11:35	1
Cadmium	0.035	J	0.19	0.028	mg/Kg		04/08/14 13:25	04/15/14 11:35	1
Chromium	2.9		0.47	0.19	mg/Kg		04/08/14 13:25	04/15/14 11:35	1
Lead	15		0.94	0.22	mg/Kg		04/08/14 13:25	04/15/14 11:35	1
Selenium	ND		3.7	0.37	mg/Kg		04/08/14 13:25	04/15/14 11:35	1
Silver	ND		0.56	0.19	mg/Kg		04/08/14 13:25	04/15/14 11:35	1

Method: 7471B - Mercury in Solid	or Semisolid	Waste (Mar	ual Cold Va	por Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	0.014	J	0.019	0.0078	mg/Kg		04/09/14 12:00	04/09/14 15:20	1

Client Sample ID: S-101 Lab Sample ID: 480-57320-3

Date Collected: 04/02/14 12:05

Date Received: 04/05/14 02:00

Matrix: Solid
Percent Solids: 83.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		200	2.4	ug/Kg	₽	04/09/14 09:17	04/09/14 19:54	
Acenaphthylene	ND		200	1.6	ug/Kg	₽	04/09/14 09:17	04/09/14 19:54	•
Anthracene	ND		200	5.2	ug/Kg	₽	04/09/14 09:17	04/09/14 19:54	1
Benzo[a]anthracene	6.4	J	200	3.5	ug/Kg	₽	04/09/14 09:17	04/09/14 19:54	1
Benzo[a]pyrene	ND		200	4.9	ug/Kg	₽	04/09/14 09:17	04/09/14 19:54	1
Benzo[b]fluoranthene	ND		200	3.9	ug/Kg	₩	04/09/14 09:17	04/09/14 19:54	1
Benzo[g,h,i]perylene	ND		200	2.4	ug/Kg	₩.	04/09/14 09:17	04/09/14 19:54	1
Benzo[k]fluoranthene	ND		200	2.2	ug/Kg	₩	04/09/14 09:17	04/09/14 19:54	1
Chrysene	2.2	J	200	2.0	ug/Kg	₩	04/09/14 09:17	04/09/14 19:54	1
Dibenz(a,h)anthracene	ND		200	2.4	ug/Kg		04/09/14 09:17	04/09/14 19:54	1
Fluoranthene	ND		200	2.9	ug/Kg	₽	04/09/14 09:17	04/09/14 19:54	1
Fluorene	ND		200	4.6	ug/Kg	₽	04/09/14 09:17	04/09/14 19:54	1
Indeno[1,2,3-cd]pyrene	ND		200	5.6	ug/Kg	\$	04/09/14 09:17	04/09/14 19:54	• • • • • • • •
Naphthalene	ND		200	3.4	ug/Kg	₽	04/09/14 09:17	04/09/14 19:54	
Phenanthrene	ND		200	4.2	ug/Kg	₽	04/09/14 09:17	04/09/14 19:54	1
Pyrene	ND		200		ug/Kg	*	04/09/14 09:17	04/09/14 19:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	97		37 - 120				04/09/14 09:17	04/09/14 19:54	1
Nitrobenzene-d5 (Surr)	78		34 - 132				04/09/14 09:17	04/09/14 19:54	1
p-Terphenyl-d14 (Surr)	103		65 - 153				04/09/14 09:17	04/09/14 19:54	1
Method: 8015D - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	7.4	J	19	5.8	mg/Kg	₩	04/09/14 09:42	04/09/14 21:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	85		48 - 125				04/09/14 09:42	04/09/14 21:58	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.3		2.1	0.42	mg/Kg		04/08/14 13:25	04/15/14 12:05	
Barium	13	^	0.52		mg/Kg		04/08/14 13:25	04/15/14 12:05	1

TestAmerica Buffalo

2

А

5

7

0

10

12

13

4/16/2014

Client Sample Results

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-1

Client Sample ID: S-101 Lab Sample ID: 480-57320-3

Date Collected: 04/02/14 12:05 Matrix: Solid

Date Received: 04/05/14 02:00

Cadmium

Chromium

Method: 6010C - Metals (ICP) (Continued)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.033 J	0.21	0.031	mg/Kg		04/08/14 13:25	04/15/14 12:05	1
Chromium	1.6	0.52	0.21	mg/Kg		04/08/14 13:25	04/15/14 12:05	1
Lead	11	1.0	0.25	mg/Kg		04/08/14 13:25	04/15/14 12:05	1
Selenium	ND	4.2	0.42	mg/Kg		04/08/14 13:25	04/15/14 12:05	1
Silver	ND	0.62	0.21	mg/Kg		04/08/14 13:25	04/15/14 12:05	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
L	Hg	0.026		0.019	0.0075	mg/Kg		04/09/14 12:00	04/09/14 15:33	1

Client Sample ID: S-102 Lab Sample ID: 480-57320-4

Date Collected: 04/02/14 12:07

Date Received: 04/05/14 02:00

Matrix: Solid
Percent Solids: 74.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		220	2.6	ug/Kg	₩	04/09/14 09:17	04/09/14 20:19	1
Acenaphthylene	ND		220	1.8	ug/Kg	₽	04/09/14 09:17	04/09/14 20:19	1
Anthracene	ND		220	5.7	ug/Kg	₽	04/09/14 09:17	04/09/14 20:19	1
Benzo[a]anthracene	ND		220	3.9	ug/Kg	₽	04/09/14 09:17	04/09/14 20:19	1
Benzo[a]pyrene	ND		220	5.4	ug/Kg	₽	04/09/14 09:17	04/09/14 20:19	1
Benzo[b]fluoranthene	ND		220	4.3	ug/Kg	₽	04/09/14 09:17	04/09/14 20:19	1
Benzo[g,h,i]perylene	ND		220	2.7	ug/Kg	₽	04/09/14 09:17	04/09/14 20:19	1
Benzo[k]fluoranthene	ND		220	2.5	ug/Kg	₽	04/09/14 09:17	04/09/14 20:19	1
Chrysene	ND		220	2.2	ug/Kg	₽	04/09/14 09:17	04/09/14 20:19	1
Dibenz(a,h)anthracene	ND		220	2.6	ug/Kg	₽	04/09/14 09:17	04/09/14 20:19	1
Fluoranthene	ND		220	3.2	ug/Kg	₽	04/09/14 09:17	04/09/14 20:19	1
Fluorene	ND		220	5.1	ug/Kg	₽	04/09/14 09:17	04/09/14 20:19	1
Indeno[1,2,3-cd]pyrene	ND		220	6.2	ug/Kg	₽	04/09/14 09:17	04/09/14 20:19	1
Naphthalene	ND		220	3.7	ug/Kg	₽	04/09/14 09:17	04/09/14 20:19	1
Phenanthrene	ND		220	4.7	ug/Kg	₽	04/09/14 09:17	04/09/14 20:19	1
Pyrene	ND		220	1.4	ug/Kg	\$	04/09/14 09:17	04/09/14 20:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	96		37 - 120				04/09/14 09:17	04/09/14 20:19	1
Nitrobenzene-d5 (Surr)	78		34 - 132				04/09/14 09:17	04/09/14 20:19	1
p-Terphenyl-d14 (Surr)	98		65 - 153				04/09/14 09:17	04/09/14 20:19	1
Method: 8015D - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	22		22	6.6	mg/Kg	₩	04/09/14 09:42	04/09/14 22:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	88		48 - 125				04/09/14 09:42	04/09/14 22:32	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.9		2.1	0.42	mg/Kg		04/08/14 13:25	04/15/14 12:08	1
Barium	12	^	0.53	0.12	mg/Kg		04/08/14 13:25	04/15/14 12:08	1

TestAmerica Buffalo

04/15/14 12:08

04/15/14 12:08

04/08/14 13:25

04/08/14 13:25

0.21

0.53

0.032 mg/Kg

0.21 mg/Kg

ND

1.0

2

4

C

9

10

13

14

19

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Client Sample ID: S-102 Lab Sample ID: 480-57320-4 Date Collected: 04/02/14 12:07

Matrix: Solid

Date Received: 04/05/14 02:00

Method: 6010C - Metals (ICP) (Conti	inued)							
Analyte	Result Qu	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	34	1.1	0.25	mg/Kg		04/08/14 13:25	04/15/14 12:08	1
Selenium	ND	4.2	0.42	mg/Kg		04/08/14 13:25	04/15/14 12:08	1
Silver	ND	0.64	0.21	mg/Kg		04/08/14 13:25	04/15/14 12:08	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	0.12		0.018	0.0074	mg/Kg		04/09/14 12:00	04/09/14 15:35	1

Client Sample ID: S-103 Lab Sample ID: 480-57320-5 Date Collected: 04/02/14 12:21 **Matrix: Solid**

Date Received: 04/05/14 02:00

Method: 6010C - Metals (ICP)										
Analyte	Result	Qualifier	RL	MDL	Unit	ı	D	Prepared	Analyzed	Dil Fac
Arsenic	2.2		2.1	0.41	mg/Kg			04/08/14 13:25	04/15/14 12:10	1

Client Sample ID: S-104 Lab Sample ID: 480-57320-6 Matrix: Solid Date Collected: 04/02/14 12:22

Date Received: 04/05/14 02:00

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.7	J	2.0	0.40	mg/Kg		04/08/14 13:25	04/15/14 12:13	1

Client Sample ID: S-105 Lab Sample ID: 480-57320-7 Date Collected: 04/02/14 12:23 **Matrix: Solid**

Date Received: 04/05/14 02:00

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		11	2.1	mg/Kg		04/08/14 13:25	04/16/14 13:13	5

Client Sample ID: S-106 Lab Sample ID: 480-57320-8

Date Collected: 04/02/14 12:24 Date Received: 04/05/14 02:00

Method: 6010C - Metals (ICP)							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.2	2.0	0.39 mg/Kg		04/08/14 13:25	04/15/14 12:33	1

Client Sample ID: S-107 Lab Sample ID: 480-57320-9 Date Collected: 04/02/14 12:25 Matrix: Solid

Date Received: 04/05/14 02:00

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.5		2.0	0.40	mg/Kg		04/08/14 13:25	04/15/14 12:35	1

Matrix: Solid

Client Sample Results

		Ollelle	Janipie I	Counts	•				
Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island							TestAmeri	ca Job ID: 480-	57320-1
Client Sample ID: S-108							Lab Samp	le ID: 480-57	320-10
Date Collected: 04/02/14 14:00									ix: Solid
Date Received: 04/05/14 02:00									
Method: 6010C - Metals (ICP)									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.5		1.9	0.38	mg/Kg		04/08/14 13:25	04/15/14 12:38	1
Client Sample ID: S-109							Lab Samp	le ID: 480-57	320-11
Date Collected: 04/02/14 14:01								Matr	ix: Solid
Date Received: 04/05/14 02:00									
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	7.3		2.1	0.41	mg/Kg	 _	04/08/14 13:25	04/15/14 12:41	1
Client Sample ID: S-110							Lab Samp	le ID: 480-57	320-12
Date Collected: 04/02/14 14:02									ix: Solid
Date Received: 04/05/14 02:00									
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.3		2.0	0.40	mg/Kg		04/08/14 13:25	04/15/14 12:44	1
Client Sample ID: S-111							Lab Samp	le ID: 480-57	320-13
Date Collected: 04/02/14 14:03							-	Matr	ix: Solid
Date Received: 04/05/14 02:00									
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.9		2.1	0.43	mg/Kg		04/08/14 13:25	04/15/14 12:46	1
Client Sample ID: S-112							Lab Samp	le ID: 480-57	320-14
Date Collected: 04/02/14 14:04									ix: Solid
Date Received: 04/05/14 02:00									
Method: 6010C - Metals (ICP)									
Analyto	Posult	Qualifier	DI	MDI	Unit	п	Dronarod	Analyzod	Dil Fac

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.5		2.0	0.40	mg/Kg		04/08/14 13:25	04/15/14 12:49	1

Client Sample ID: TP-2 (2-2.5')

Date Collected: 04/03/14 09:15

Date Received: 04/05/14 02:00

Lab Sample ID: 480-57320-15

Matrix: Solid

Percent Solids: 93.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		180	2.1	ug/Kg	\$	04/09/14 09:17	04/09/14 20:43	1
Acenaphthylene	ND		180	1.5	ug/Kg	₽	04/09/14 09:17	04/09/14 20:43	1
Anthracene	7.8	J	180	4.6	ug/Kg	₽	04/09/14 09:17	04/09/14 20:43	1
Benzo[a]anthracene	92	J	180	3.1	ug/Kg	\$	04/09/14 09:17	04/09/14 20:43	1
Benzo[a]pyrene	65	J	180	4.3	ug/Kg	₽	04/09/14 09:17	04/09/14 20:43	1
Benzo[b]fluoranthene	100	J	180	3.5	ug/Kg	₽	04/09/14 09:17	04/09/14 20:43	1
Benzo[g,h,i]perylene	34	J	180	2.1	ug/Kg	₽	04/09/14 09:17	04/09/14 20:43	1
Benzo[k]fluoranthene	ND		180	2.0	ug/Kg	₽	04/09/14 09:17	04/09/14 20:43	1
Chrysene	120	J	180	1.8	ug/Kg	₽	04/09/14 09:17	04/09/14 20:43	1
Dibenz(a,h)anthracene	16	J	180	2.1	ug/Kg	₽	04/09/14 09:17	04/09/14 20:43	1
Fluoranthene	170	J	180	2.6	ug/Kg	₩	04/09/14 09:17	04/09/14 20:43	1

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Lab Sample ID: 480-57320-15

Matrix: Solid

Percent Solids: 93.0

Date Collected: 04/03/14 09:15 Date Received: 04/05/14 02:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	ND		180	4.1	ug/Kg	₩	04/09/14 09:17	04/09/14 20:43	1
Indeno[1,2,3-cd]pyrene	36	J	180	4.9	ug/Kg	₽	04/09/14 09:17	04/09/14 20:43	1
Naphthalene	ND		180	3.0	ug/Kg	₽	04/09/14 09:17	04/09/14 20:43	1
Phenanthrene	27	J	180	3.8	ug/Kg	₽	04/09/14 09:17	04/09/14 20:43	1
Pyrene	130	J	180	1.2	ug/Kg	*	04/09/14 09:17	04/09/14 20:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	93		37 - 120				04/09/14 09:17	04/09/14 20:43	1
Nitrobenzene-d5 (Surr)	74		34 - 132				04/09/14 09:17	04/09/14 20:43	1
p-Terphenyl-d14 (Surr)	100		65 - 153				04/09/14 09:17	04/09/14 20:43	1

Method: 6010C - Metals (ICP)								
Analyte	Result Qualifi	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.45 J	2.0	0.40	mg/Kg		04/08/14 13:25	04/15/14 13:06	1
Barium	6.6	0.49	0.11	mg/Kg		04/08/14 13:25	04/15/14 13:06	1
Cadmium	0.27	0.20	0.030	mg/Kg		04/08/14 13:25	04/15/14 13:06	1
Chromium	350	0.49	0.20	mg/Kg		04/08/14 13:25	04/15/14 13:06	1
Lead	4.8	0.99	0.24	mg/Kg		04/08/14 13:25	04/15/14 13:06	1
Selenium	ND	4.0	0.40	mg/Kg		04/08/14 13:25	04/15/14 13:06	1
Silver	ND	0.59	0.20	mg/Kg		04/08/14 13:25	04/15/14 13:06	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	0.11		0.018	0.0074	mg/Kg		04/09/14 12:00	04/09/14 15:37	1

Client Sample ID: TP-2 (4.8') Lab Sample ID: 480-57320-16

Date Collected: 04/03/14 09:20 Date Received: 04/05/14 02:00

Matrix: Solid Percent Solids: 75.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		220	2.6	ug/Kg	₩	04/09/14 09:17	04/09/14 21:08	1
Acenaphthylene	ND		220	1.8	ug/Kg	₽	04/09/14 09:17	04/09/14 21:08	1
Anthracene	ND		220	5.6	ug/Kg	₽	04/09/14 09:17	04/09/14 21:08	1
Benzo[a]anthracene	16	J	220	3.8	ug/Kg	*	04/09/14 09:17	04/09/14 21:08	1
Benzo[a]pyrene	9.7	J	220	5.3	ug/Kg	₽	04/09/14 09:17	04/09/14 21:08	1
Benzo[b]fluoranthene	17	J	220	4.2	ug/Kg	₩	04/09/14 09:17	04/09/14 21:08	1
Benzo[g,h,i]perylene	ND		220	2.6	ug/Kg	₽	04/09/14 09:17	04/09/14 21:08	1
Benzo[k]fluoranthene	ND		220	2.4	ug/Kg	₽	04/09/14 09:17	04/09/14 21:08	1
Chrysene	14	J	220	2.2	ug/Kg	₽	04/09/14 09:17	04/09/14 21:08	1
Dibenz(a,h)anthracene	ND		220	2.6	ug/Kg	₽	04/09/14 09:17	04/09/14 21:08	1
Fluoranthene	29	J	220	3.2	ug/Kg	₽	04/09/14 09:17	04/09/14 21:08	1
Fluorene	ND		220	5.0	ug/Kg	₽	04/09/14 09:17	04/09/14 21:08	1
Indeno[1,2,3-cd]pyrene	ND		220	6.0	ug/Kg	₽	04/09/14 09:17	04/09/14 21:08	1
Naphthalene	ND		220	3.6	ug/Kg	₽	04/09/14 09:17	04/09/14 21:08	1
Phenanthrene	7.3	J	220	4.6	ug/Kg	₩	04/09/14 09:17	04/09/14 21:08	1
Pyrene	21	J	220	1.4	ug/Kg	₽	04/09/14 09:17	04/09/14 21:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	95		37 - 120				04/09/14 09:17	04/09/14 21:08	1
Nitrobenzene-d5 (Surr)	78		34 - 132				04/09/14 09:17	04/09/14 21:08	1

Client Sample Results

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-1

Client Sample ID: TP-2 (4.8')

Lab Sample ID: 480-57320-16

Date Collected: 04/03/14 09:20 Matrix: Solid Date Received: 04/05/14 02:00 Percent Solids: 75.6

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

%Recovery Qualifier Prepared Analyzed Dil Fac p-Terphenyl-d14 (Surr) 101 65 - 153 04/09/14 09:17 04/09/14 21:08

Method: 6010C - Metals (ICP)									
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.82		1.8	0.37	mg/Kg		04/08/14 13:25	04/15/14 13:09	1
Barium	3.9		0.46	0.10	mg/Kg		04/08/14 13:25	04/15/14 13:09	1
Cadmium	0.24		0.18	0.028	mg/Kg		04/08/14 13:25	04/15/14 13:09	1
Chromium	3.2		0.46	0.18	mg/Kg		04/08/14 13:25	04/15/14 13:09	1
Lead	1.1		0.92	0.22	mg/Kg		04/08/14 13:25	04/15/14 13:09	1
Selenium	ND		3.7	0.37	mg/Kg		04/08/14 13:25	04/15/14 13:09	1
Silver	ND		0.55	0.18	mg/Kg		04/08/14 13:25	04/15/14 13:09	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Hg ND 0.019 0.0077 mg/Kg 04/09/14 12:00 04/09/14 15:39

Client Sample ID: TP-3 (5-5.5') Lab Sample ID: 480-57320-17

Date Collected: 04/03/14 10:00 **Matrix: Solid** Date Received: 04/05/14 02:00 Percent Solids: 25.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	550	J	3300	39	ug/Kg	₩	04/09/14 09:17	04/09/14 21:33	5
Acenaphthylene	ND		3300	27	ug/Kg	₽	04/09/14 09:17	04/09/14 21:33	5
Anthracene	1200	J	3300	85	ug/Kg	₽	04/09/14 09:17	04/09/14 21:33	5
Benzo[a]anthracene	2400	J	3300	57	ug/Kg	\$	04/09/14 09:17	04/09/14 21:33	5
Benzo[a]pyrene	1900	J	3300	80	ug/Kg	₽	04/09/14 09:17	04/09/14 21:33	5
Benzo[b]fluoranthene	2600	J	3300	64	ug/Kg	₽	04/09/14 09:17	04/09/14 21:33	5
Benzo[g,h,i]perylene	770	J	3300	40	ug/Kg	\$	04/09/14 09:17	04/09/14 21:33	5
Benzo[k]fluoranthene	240	J	3300	36	ug/Kg	₽	04/09/14 09:17	04/09/14 21:33	5
Chrysene	2300	J	3300	33	ug/Kg	₽	04/09/14 09:17	04/09/14 21:33	5
Dibenz(a,h)anthracene	280	J	3300	39	ug/Kg	₽	04/09/14 09:17	04/09/14 21:33	5
Fluoranthene	5100		3300	48	ug/Kg	₽	04/09/14 09:17	04/09/14 21:33	5
Fluorene	460	J	3300	76	ug/Kg	₽	04/09/14 09:17	04/09/14 21:33	5
Indeno[1,2,3-cd]pyrene	730	J	3300	92	ug/Kg	₽	04/09/14 09:17	04/09/14 21:33	5
Naphthalene	400	J	3300	55	ug/Kg	₽	04/09/14 09:17	04/09/14 21:33	5
Phenanthrene	4200		3300	69	ug/Kg	₽	04/09/14 09:17	04/09/14 21:33	5
Pyrene	3700		3300	21	ug/Kg	₽	04/09/14 09:17	04/09/14 21:33	5
Surrogato	% Pacayary	O	Limite				Bronarod	Analyzod	Dil Ess

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	92		37 - 120	04/09/14 09:17	04/09/14 21:33	5
Nitrobenzene-d5 (Surr)	76		34 - 132	04/09/14 09:17	04/09/14 21:33	5
p-Terphenyl-d14 (Surr)	92		65 - 153	04/09/14 09:17	04/09/14 21:33	5

Method: 6010C - Metals (ICP)

Welliou. 0010C - Welais (ICF)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	32		19	3.9	mg/Kg		04/08/14 13:25	04/16/14 13:18	10
Barium	54		0.48	0.11	mg/Kg		04/08/14 13:25	04/15/14 13:11	1
Cadmium	2.5		0.19	0.029	mg/Kg		04/08/14 13:25	04/15/14 13:11	1
Chromium	9800		4.8	1.9	mg/Kg		04/08/14 13:25	04/16/14 13:18	10

TestAmerica Buffalo

Page 17 of 50

Client Sample Results

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-1

Lab Sample ID: 480-57320-17

Matrix: Solid

Client Sample ID: TP-3 (5-5.5') Date Collected: 04/03/14 10:00

Date Received: 04/05/14 02:00

Method: 6010C - Metals (ICP) (Continued)									
	Analyte	Result Qualifier	RL N	DL Unit	D	Prepared	Analyzed	Dil Fac	
	Lead	54	9.7	2.3 mg/Kg		04/08/14 13:25	04/16/14 13:18	10	
	Selenium	1.5 J	3.9	.39 mg/Kg		04/08/14 13:25	04/15/14 13:11	1	
	Silver	0.64	0.58	.19 mg/Kg		04/08/14 13:25	04/15/14 13:11	1	

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	3.1		0.093	0.038	mg/Kg		04/09/14 12:00	04/09/14 16:17	5

Lab Sample ID: 480-57320-18 Client Sample ID: TP-3 (2-2.5')

Date Collected: 04/03/14 10:05 Matrix: Solid Date Received: 04/05/14 02:00 Percent Solids: 87.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	440000	J	870000	10000	ug/Kg	₩	04/09/14 09:17	04/10/14 03:18	500
Acenaphthylene	ND		870000	7100	ug/Kg	₽	04/09/14 09:17	04/10/14 03:18	500
Anthracene	1100000		870000	22000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:18	500
Benzo[a]anthracene	1800000		870000	15000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:18	500
Benzo[a]pyrene	1600000		870000	21000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:18	500
Benzo[b]fluoranthene	2200000		870000	17000	ug/Kg	₩	04/09/14 09:17	04/10/14 03:18	500
Benzo[g,h,i]perylene	410000	J	870000	10000	ug/Kg	\$	04/09/14 09:17	04/10/14 03:18	500
Benzo[k]fluoranthene	660000	J	870000	9500	ug/Kg	₩	04/09/14 09:17	04/10/14 03:18	500
Chrysene	1900000		870000	8600	ug/Kg	₩	04/09/14 09:17	04/10/14 03:18	500
Dibenz(a,h)anthracene	170000	J	870000	10000	ug/Kg	\$	04/09/14 09:17	04/10/14 03:18	500
Fluoranthene	4700000		870000	13000	ug/Kg	₩	04/09/14 09:17	04/10/14 03:18	500
Fluorene	420000	J	870000	20000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:18	500
Indeno[1,2,3-cd]pyrene	420000	J	870000	24000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:18	500
Naphthalene	360000	J	870000	14000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:18	500
Phenanthrene	4300000		870000	18000	ug/Kg	₩	04/09/14 09:17	04/10/14 03:18	500
Pyrene	3000000		870000	5600	ug/Kg	₽	04/09/14 09:17	04/10/14 03:18	500
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	0	X	37 - 120				04/09/14 09:17	04/10/14 03:18	500
Nitrobenzene-d5 (Surr)	0	X	34 - 132				04/09/14 09:17	04/10/14 03:18	500
p-Terphenyl-d14 (Surr)	0	X	65 - 153				04/09/14 09:17	04/10/14 03:18	500

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	18		2.1	0.42	mg/Kg		04/08/14 13:25	04/15/14 13:14	1
Barium	710		0.53	0.12	mg/Kg		04/08/14 13:25	04/15/14 13:14	1
Cadmium	0.98		0.21	0.032	mg/Kg		04/08/14 13:25	04/15/14 13:14	1
Chromium	12		0.53	0.21	mg/Kg		04/08/14 13:25	04/15/14 13:14	1
Lead	210		1.1	0.25	mg/Kg		04/08/14 13:25	04/15/14 13:14	1
Selenium	2.5	J	4.2	0.42	mg/Kg		04/08/14 13:25	04/15/14 13:14	1
Silver	0.40	J	0.63	0.21	mg/Kg		04/08/14 13:25	04/15/14 13:14	

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)											
	Analyte	Result	Qualifier	RL	MDL	Unit		כ	Prepared	Analyzed	Dil Fac
	Hg	0.19		0.020	0.0081	mg/Kg		_	04/09/14 12:00	04/09/14 15:42	1

2

TestAmerica Job ID: 480-57320-1

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Client Sample ID: TP-4 (1.5-2')

Date Collected: 04/03/14 11:25 Date Received: 04/05/14 02:00 Lab Sample ID: 480-57320-19

Matrix: Solid

Percent Solids: 85.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	14	J	190	2.3	ug/Kg	<u> </u>	04/09/14 09:17	04/09/14 22:22	1
Acenaphthylene	ND		190	1.6	ug/Kg	₽	04/09/14 09:17	04/09/14 22:22	1
Anthracene	22	J	190	4.9	ug/Kg	₽	04/09/14 09:17	04/09/14 22:22	1
Benzo[a]anthracene	110	J	190	3.3	ug/Kg	₽	04/09/14 09:17	04/09/14 22:22	1
Benzo[a]pyrene	110	J	190	4.6	ug/Kg	₽	04/09/14 09:17	04/09/14 22:22	1
Benzo[b]fluoranthene	140	J	190	3.7	ug/Kg	₽	04/09/14 09:17	04/09/14 22:22	1
Benzo[g,h,i]perylene	43	J	190	2.3	ug/Kg	₽	04/09/14 09:17	04/09/14 22:22	1
Benzo[k]fluoranthene	14	J	190	2.1	ug/Kg	≎	04/09/14 09:17	04/09/14 22:22	1
Chrysene	160	J	190	1.9	ug/Kg	≎	04/09/14 09:17	04/09/14 22:22	1
Dibenz(a,h)anthracene	17	J	190	2.3	ug/Kg	₽	04/09/14 09:17	04/09/14 22:22	1
Fluoranthene	230		190	2.8	ug/Kg	☼	04/09/14 09:17	04/09/14 22:22	1
Fluorene	9.6	J	190	4.4	ug/Kg	☼	04/09/14 09:17	04/09/14 22:22	1
Indeno[1,2,3-cd]pyrene	35	J	190	5.3	ug/Kg	₽	04/09/14 09:17	04/09/14 22:22	1
Naphthalene	30	J	190	3.2	ug/Kg	☼	04/09/14 09:17	04/09/14 22:22	1
Phenanthrene	150	J	190	4.0	ug/Kg	₽	04/09/14 09:17	04/09/14 22:22	1
Pyrene	200		190	1.2	ug/Kg	₽	04/09/14 09:17	04/09/14 22:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	100		37 - 120				04/09/14 09:17	04/09/14 22:22	1
Nitrobenzene-d5 (Surr)	78		34 - 132				04/09/14 09:17	04/09/14 22:22	1
p-Terphenyl-d14 (Surr)	98		65 - 153				04/09/14 09:17	04/09/14 22:22	1
Method: 8015D - Diesel Ran	ge Organics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		19	5.7	mg/Kg	<u> </u>	04/09/14 09:42	04/09/14 23:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	86		48 - 125				04/09/14 09:42	04/09/14 23:05	

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.5		2.1	0.42	mg/Kg		04/08/14 13:25	04/15/14 13:17	1
Barium	16		0.53	0.12	mg/Kg		04/08/14 13:25	04/15/14 13:17	1
Cadmium	0.050	J	0.21	0.032	mg/Kg		04/08/14 13:25	04/15/14 13:17	1
Chromium	7.8		0.53	0.21	mg/Kg		04/08/14 13:25	04/15/14 13:17	1
Lead	14		1.1	0.25	mg/Kg		04/08/14 13:25	04/15/14 13:17	1
Selenium	ND		4.2	0.42	mg/Kg		04/08/14 13:25	04/15/14 13:17	1
Silver	ND		0.63	0.21	mg/Kg		04/08/14 13:25	04/15/14 13:17	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Hg	19		1.9	0.79	mg/Kg		04/09/14 12:00	04/09/14 16:15	100	

Client Sample ID: TP-5 (4-4.5')

Date Collected: 04/03/14 11:55

Lab Sample ID: 480-57320-22

Matrix: Solid

Date Received: 04/05/14 17:55

Date Received: 04/05/14 02:00

Percent Solids: 80.7

Method: 8270D - Semivolatile Organic Compounds (GC/MS)									
	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Acenaphthene	4.3 J	210	2.5	ug/Kg	*	04/09/14 09:17	04/09/14 22:47	1
	Acenaphthylene	ND	210	1.7	ug/Kg	₩	04/09/14 09:17	04/09/14 22:47	1

Client: Resource Control Associates, Inc.

Client Sample ID: TP-5 (4-4.5')

Method: 8015D - Diesel Range Organics (DRO) (GC)

Project/Site: 7131A Rhode Island

Date Collected: 04/03/14 11:55

Date Received: 04/05/14 02:00

Lab Sample ID: 480-57320-22

Matrix: Solid Percent Solids: 80.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	ND ND		210	5.3	ug/Kg	-	04/09/14 09:17	04/09/14 22:47	1
Benzo[a]anthracene	7.1	J	210	3.6	ug/Kg	φ.	04/09/14 09:17	04/09/14 22:47	1
Benzo[a]pyrene	ND		210	5.0	ug/Kg	₽	04/09/14 09:17	04/09/14 22:47	1
Benzo[b]fluoranthene	ND		210	4.1	ug/Kg	₽	04/09/14 09:17	04/09/14 22:47	1
Benzo[g,h,i]perylene	ND		210	2.5	ug/Kg	#	04/09/14 09:17	04/09/14 22:47	1
Benzo[k]fluoranthene	ND		210	2.3	ug/Kg	₽	04/09/14 09:17	04/09/14 22:47	1
Chrysene	ND		210	2.1	ug/Kg	₽	04/09/14 09:17	04/09/14 22:47	1
Dibenz(a,h)anthracene	ND		210	2.5	ug/Kg	₩.	04/09/14 09:17	04/09/14 22:47	1
Fluoranthene	10	J	210	3.0	ug/Kg	₽	04/09/14 09:17	04/09/14 22:47	1
Fluorene	ND		210	4.8	ug/Kg	₩	04/09/14 09:17	04/09/14 22:47	1
Indeno[1,2,3-cd]pyrene	ND		210	5.8	ug/Kg	₽	04/09/14 09:17	04/09/14 22:47	1
Naphthalene	21	J	210	3.5	ug/Kg	₽	04/09/14 09:17	04/09/14 22:47	1
Phenanthrene	9.0	J	210	4.4	ug/Kg	₩	04/09/14 09:17	04/09/14 22:47	1
Pyrene	4.9	J	210	1.4	ug/Kg	*	04/09/14 09:17	04/09/14 22:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	97		37 - 120				04/09/14 09:17	04/09/14 22:47	1
Nitrobenzene-d5 (Surr)	73		34 - 132				04/09/14 09:17	04/09/14 22:47	1
p-Terphenyl-d14 (Surr)	99		65 ₋ 153				04/09/14 09:17	04/09/14 22:47	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		20	6.1	mg/Kg	₩	04/09/14 09:42	04/09/14 23:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	87		48 - 125				04/09/14 09:42	04/09/14 23:39	1

Method: 6010C - Metals (I	•								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.8	J	1.9	0.38	mg/Kg		04/08/14 16:20	04/10/14 12:06	1
Barium	5.9		0.48	0.11	mg/Kg		04/08/14 16:20	04/10/14 12:06	1
Cadmium	ND		0.19	0.029	mg/Kg		04/08/14 16:20	04/10/14 12:06	1
Chromium	3.4		0.48	0.19	mg/Kg		04/08/14 16:20	04/10/14 12:06	1
Lead	1.8		0.96	0.23	mg/Kg		04/08/14 16:20	04/10/14 12:06	1
Selenium	ND		3.8	0.38	mg/Kg		04/08/14 16:20	04/10/14 12:06	1
Silver	ND		0.57	0.19	mg/Kg		04/08/14 16:20	04/10/14 12:06	1

Method: 7471B - Mercury in Solid	or Semisolid	Waste (Mar	nual Cold Va	por Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	0.071		0.019	0.0076	mg/Kg		04/09/14 12:00	04/09/14 15:52	1

Client Sample ID: TP-7 (2.5') Lab Sample ID: 480-57320-25

Date Collected: 04/03/14 12:55 **Matrix: Solid** Date Received: 04/05/14 02:00

Method: 6010C - Metals (ICP)								
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.0	1.8	0.37	mg/Kg		04/08/14 16:20	04/10/14 12:14	1
Barium	22	0.46	0.10	mg/Kg		04/08/14 16:20	04/10/14 12:14	1
Cadmium	ND	0.18	0.028	mg/Kg		04/08/14 16:20	04/10/14 12:14	1
Chromium	1.9	0.46	0.18	mg/Kg		04/08/14 16:20	04/10/14 12:14	1

Client Sample Results

Client: Resource Control Associates, Inc.

TestAmerica Job ID: 480-57320-1

Project/Site: 7131A Rhode Island

Client Sample ID: TP-7 (2.5')

Lab Sample ID: 480-57320-25

Date Collected: 04/03/14 12:55 Matrix: Solid Date Received: 04/05/14 02:00

Method: 6010C - Metals (ICP) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	130		0.92	0.22	mg/Kg		04/08/14 16:20	04/10/14 12:14	1
Selenium	ND		3.7	0.37	mg/Kg		04/08/14 16:20	04/10/14 12:14	1
Silver	ND		0.55	0.18	mg/Kg		04/08/14 16:20	04/10/14 12:14	1

Method: 7471B - Mercury in Solid	or Semisolid	Waste (Man	ual Cold Va	por Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	0.16		0.020	0.0083	mg/Kg		04/09/14 12:00	04/09/14 15:54	1

Client Sample ID: TP-8 (1-2') Lab Sample ID: 480-57320-26

Date Collected: 04/03/14 13:20 Matrix: Solid Date Received: 04/05/14 02:00 Percent Solids: 79.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	520000	J	1100000	12000	ug/Kg	₩	04/09/14 09:17	04/10/14 03:43	500
Acenaphthylene	ND		1100000	8600	ug/Kg	₩	04/09/14 09:17	04/10/14 03:43	500
Anthracene	1100000		1100000	27000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:43	500
Benzo[a]anthracene	2300000		1100000	18000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:43	500
Benzo[a]pyrene	1900000		1100000	25000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:43	500
Benzo[b]fluoranthene	2300000		1100000	20000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:43	500
Benzo[g,h,i]perylene	590000	J	1100000	13000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:43	500
Benzo[k]fluoranthene	1100000		1100000	12000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:43	500
Chrysene	2400000		1100000	11000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:43	500
Dibenz(a,h)anthracene	180000	J	1100000	12000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:43	500
Fluoranthene	5400000		1100000	15000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:43	500
Fluorene	510000	J	1100000	24000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:43	500
Indeno[1,2,3-cd]pyrene	550000	J	1100000	29000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:43	500
Naphthalene	370000	J	1100000	18000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:43	500
Phenanthrene	5100000		1100000	22000	ug/Kg	₽	04/09/14 09:17	04/10/14 03:43	500
Pyrene	3900000		1100000	6800	ug/Kg	₽	04/09/14 09:17	04/10/14 03:43	500
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	0	X	37 - 120	04/09/14 09:17	04/10/14 03:43	500
Nitrobenzene-d5 (Surr)	0	Χ	34 - 132	04/09/14 09:17	04/10/14 03:43	500
p-Terphenyl-d14 (Surr)	0	Χ	65 - 153	04/09/14 09:17	04/10/14 03:43	500

Method: 6010C - Metals (ICP)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	20		2.1	0.41	mg/Kg		04/08/14 16:20	04/10/14 12:17	1
Barium	360		0.52	0.11	mg/Kg		04/08/14 16:20	04/10/14 12:17	1
Cadmium	1.1		0.21	0.031	mg/Kg		04/08/14 16:20	04/10/14 12:17	1
Chromium	21		0.52	0.21	mg/Kg		04/08/14 16:20	04/10/14 12:17	1
Lead	350		1.0	0.25	mg/Kg		04/08/14 16:20	04/10/14 12:17	1
Selenium	1.5	J	4.1	0.41	mg/Kg		04/08/14 16:20	04/10/14 12:17	1
Silver	ND		0.62	0.21	mg/Kg		04/08/14 16:20	04/10/14 12:17	1

Method: 7471B - Mercury in Solid	or Semisolid	Waste (Man	nual Cold Vap	or Technic	que)					
Analyte	Result	Qualifier	RL	MDL	Unit	0)	Prepared	Analyzed	Dil Fac
Hg	0.20		0.019	0.0079	mg/Kg			04/09/14 12:00	04/09/14 15:56	1

TestAmerica Buffalo

Page 21 of 50

Lab Sample ID: 480-57320-27

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Client Sample ID: TP-8 (6')

Date Collected: 04/03/14 13:25 Matrix: Solid Date Received: 04/05/14 02:00

Percent Solids: 76.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	210	J	220	2.6	ug/Kg	₩	04/09/14 09:17	04/11/14 12:44	1
Acenaphthylene	ND		220	1.8	ug/Kg	₽	04/09/14 09:17	04/11/14 12:44	1
Anthracene	250		220	5.6	ug/Kg	₽	04/09/14 09:17	04/11/14 12:44	1
Benzo[a]anthracene	530		220	3.8	ug/Kg	\$	04/09/14 09:17	04/11/14 12:44	1
Benzo[a]pyrene	440		220	5.3	ug/Kg	₽	04/09/14 09:17	04/11/14 12:44	1
Benzo[b]fluoranthene	570		220	4.2	ug/Kg	≎	04/09/14 09:17	04/11/14 12:44	1
Benzo[g,h,i]perylene	170	J	220	2.6	ug/Kg	\$	04/09/14 09:17	04/11/14 12:44	1
Benzo[k]fluoranthene	250		220	2.4	ug/Kg	₽	04/09/14 09:17	04/11/14 12:44	1
Chrysene	530		220	2.2	ug/Kg	₽	04/09/14 09:17	04/11/14 12:44	1
Dibenz(a,h)anthracene	45	J	220	2.6	ug/Kg	\$	04/09/14 09:17	04/11/14 12:44	1
Fluoranthene	1100		220	3.2	ug/Kg	₽	04/09/14 09:17	04/11/14 12:44	1
Fluorene	140	J	220	5.0	ug/Kg	₩	04/09/14 09:17	04/11/14 12:44	1
Indeno[1,2,3-cd]pyrene	160	J	220	6.0	ug/Kg	₽	04/09/14 09:17	04/11/14 12:44	1
Naphthalene	460		220	3.6	ug/Kg	₩	04/09/14 09:17	04/11/14 12:44	1
Phenanthrene	1100		220	4.6	ug/Kg	≎	04/09/14 09:17	04/11/14 12:44	1
Pyrene	860		220	1.4	ug/Kg	₽	04/09/14 09:17	04/11/14 12:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	97		37 - 120				04/09/14 09:17	04/11/14 12:44	1
Nitrobenzene-d5 (Surr)	93		34 - 132				04/09/14 09:17	04/11/14 12:44	1
p-Terphenyl-d14 (Surr)	95		65 - 153				04/09/14 09:17	04/11/14 12:44	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.60	J	2.1	0.41	mg/Kg		04/08/14 16:20	04/10/14 12:20	1
Barium	6.6		0.51	0.11	mg/Kg		04/08/14 16:20	04/10/14 12:20	1
Cadmium	0.051	J	0.21	0.031	mg/Kg		04/08/14 16:20	04/10/14 12:20	1
Chromium	26		0.51	0.21	mg/Kg		04/08/14 16:20	04/10/14 12:20	1
Lead	1.6		1.0	0.25	mg/Kg		04/08/14 16:20	04/10/14 12:20	1
Selenium	ND		4.1	0.41	mg/Kg		04/08/14 16:20	04/10/14 12:20	1
Silver	ND		0.62	0.21	mg/Kg		04/08/14 16:20	04/10/14 12:20	1

Method: 7471B - Mercury in Solid of	or Semisolid	Waste (Mar	nual Cold Va	por Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	0.097		0.019	0.0075	mg/Kg		04/09/14 12:00	04/09/14 16:02	1

Client Sample ID: TP-9 (5.5-6') Lab Sample ID: 480-57320-28

Date Collected: 04/03/14 14:20 Date Received: 04/05/14 02:00 Percent Solids: 88.8

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.6	0.40	ug/Kg	\$	04/07/14 01:35	04/08/14 20:26	1
1,1,2,2-Tetrachloroethane	ND	5.6	0.90	ug/Kg	₽	04/07/14 01:35	04/08/14 20:26	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.6	1.3	ug/Kg	₽	04/07/14 01:35	04/08/14 20:26	1
1,1,2-Trichloroethane	ND	5.6	0.73	ug/Kg	₽	04/07/14 01:35	04/08/14 20:26	1
1,1-Dichloroethane	ND	5.6	0.68	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	1
1,1-Dichloroethene	ND	5.6	0.68	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	1
1,2,4-Trichlorobenzene	ND	5.6	0.34	ug/Kg	₽	04/07/14 01:35	04/08/14 20:26	1
1,2-Dibromo-3-Chloropropane	ND	5.6	2.8	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	1

TestAmerica Buffalo

Page 22 of 50

Matrix: Solid

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Client Sample ID: TP-9 (5.5-6')

Date Collected: 04/03/14 14:20 Date Received: 04/05/14 02:00

Barium

Lab Sample ID: 480-57320-28

Matrix: Solid

Percent Solids: 88.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		5.6	0.72	ug/Kg	*	04/07/14 01:35	04/08/14 20:26	
1,2-Dichlorobenzene	ND		5.6	0.44	ug/Kg		04/07/14 01:35	04/08/14 20:26	
1,2-Dichloroethane	ND		5.6	0.28	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
1,2-Dichloropropane	ND		5.6	2.8	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
1,3-Dichlorobenzene	ND		5.6	0.29	ug/Kg		04/07/14 01:35	04/08/14 20:26	
1,4-Dichlorobenzene	ND		5.6	0.78	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
2-Butanone (MEK)	ND	*	28	2.0	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
2-Hexanone	ND		28	2.8	ug/Kg		04/07/14 01:35	04/08/14 20:26	
4-Methyl-2-pentanone (MIBK)	ND		28	1.8	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
Acetone	6.2	J	28	4.7	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
Benzene	ND		5.6	0.27	ug/Kg		04/07/14 01:35	04/08/14 20:26	
Bromodichloromethane	ND		5.6	0.75	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
Bromoform	ND		5.6	2.8		₽	04/07/14 01:35	04/08/14 20:26	
Bromomethane	ND		5.6	0.50	ug/Kg		04/07/14 01:35	04/08/14 20:26	
Carbon disulfide	ND		5.6	2.8	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
Carbon tetrachloride	ND		5.6	0.54	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
Chlorobenzene	ND		5.6		ug/Kg		04/07/14 01:35	04/08/14 20:26	
Chloroethane	ND		5.6		ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
Chloroform	ND		5.6		ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
Chloromethane	ND		5.6		ug/Kg		04/07/14 01:35	04/08/14 20:26	
cis-1,2-Dichloroethene	ND		5.6	0.71	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
cis-1,3-Dichloropropene	ND		5.6	0.80	ug/Kg ug/Kg	₽	04/07/14 01:35	04/08/14 20:26	
Cyclohexane	ND		5.6		ug/Kg		04/07/14 01:35	04/08/14 20:26	
Dibromochloromethane	ND		5.6	0.78	ug/Kg ug/Kg		04/07/14 01:35	04/08/14 20:26	
Dichlorodifluoromethane	ND ND		5.6	0.71			04/07/14 01:35	04/08/14 20:26	
					ug/Kg				
Ethylbenzene	ND ND		5.6	0.38	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
Isopropylbenzene			5.6	0.84	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
Methyl acetate	ND		5.6	1.0	ug/Kg		04/07/14 01:35	04/08/14 20:26	
Methyl tert-butyl ether	ND		5.6		ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
Methylcyclohexane	ND		5.6	0.85	ug/Kg	₩	04/07/14 01:35	04/08/14 20:26	
Methylene Chloride	ND		5.6		ug/Kg		04/07/14 01:35	04/08/14 20:26	
Styrene	ND		5.6		ug/Kg		04/07/14 01:35	04/08/14 20:26	
Tetrachloroethene	ND	*	5.6		ug/Kg	₩.	04/07/14 01:35	04/08/14 20:26	
Toluene	ND		5.6		ug/Kg		04/07/14 01:35	04/08/14 20:26	
trans-1,2-Dichloroethene	ND		5.6		ug/Kg	‡	04/07/14 01:35	04/08/14 20:26	
trans-1,3-Dichloropropene	ND		5.6		ug/Kg	*	04/07/14 01:35	04/08/14 20:26	
Trichloroethene	ND		5.6		ug/Kg		04/07/14 01:35	04/08/14 20:26	
Trichlorofluoromethane	ND		5.6		ug/Kg	*	04/07/14 01:35	04/08/14 20:26	
Vinyl chloride	ND		5.6		ug/Kg	*	04/07/14 01:35	04/08/14 20:26	
Xylenes, Total	ND		11	0.94	ug/Kg	‡	04/07/14 01:35	04/08/14 20:26	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	106		64 - 126				04/07/14 01:35	04/08/14 20:26	
4-Bromofluorobenzene (Surr)	101		72 - 126				04/07/14 01:35	04/08/14 20:26	
Toluene-d8 (Surr)	100		71 - 125				04/07/14 01:35	04/08/14 20:26	
Method: 6010C - Metals (ICP)									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.98	J	2.0	0.40	mg/Kg		04/08/14 16:20	04/10/14 12:22	

TestAmerica Buffalo

04/10/14 12:22

04/08/14 16:20

0.50

0.11 mg/Kg

6.6

Client Sample Results

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-1

Client Sample ID: TP-9 (5.5-6')

Lab Sample ID: 480-57320-28

Matrix: Solid

Date Collected: 04/03/14 14:20 Date Received: 04/05/14 02:00

Method: 6010C - Metals (ICF	P) (Continued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.20	0.030	mg/Kg		04/08/14 16:20	04/10/14 12:22	1
Chromium	1.9		0.50	0.20	mg/Kg		04/08/14 16:20	04/10/14 12:22	1
Lead	1.3		0.99	0.24	mg/Kg		04/08/14 16:20	04/10/14 12:22	1
Selenium	ND		4.0	0.40	mg/Kg		04/08/14 16:20	04/10/14 12:22	1
Silver	ND		0.60	0.20	mg/Kg		04/08/14 16:20	04/10/14 12:22	1

Method: 7471B - Mercury in Solid	or Semisolid \	Naste (Man	ual Cold Vap	or Technic	que)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Ha	ND		0.020	0.0081	ma/Ka		04/09/14 12:00	04/09/14 16:04	1	

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

12DCE BFB TOI
12502 515 101
Lab Sample ID Client Sample ID (64-126) (72-126) (71-126)
480-57320-28 TP-9 (5.5-6') 106 101 100
LCS 480-174450/5 Lab Control Sample 107 101 100
MB 480-174450/7 Method Blank 99 98 99

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

				Percent Surrog	gate Recovery (Acce
		FBP	NBZ	TPH	
Lab Sample ID	Client Sample ID	(37-120)	(34-132)	(65-153)	
480-57320-3	S-101	97	78	103	 -
480-57320-4	S-102	96	78	98	
480-57320-15	TP-2 (2-2.5')	93	74	100	
480-57320-16	TP-2 (4.8')	95	78	101	
480-57320-17	TP-3 (5-5.5')	92	76	92	
480-57320-18	TP-3 (2-2.5')	0 X	0 X	0 X	
480-57320-19	TP-4 (1.5-2')	100	78	98	
480-57320-22	TP-5 (4-4.5')	97	73	99	
480-57320-26	TP-8 (1-2')	0 X	0 X	0 X	
480-57320-27	TP-8 (6')	97	93	95	
LCS 480-174663/2-A	Lab Control Sample	97	92	102	
MB 480-174663/1-A	Method Blank	97	86	105	

Surrogate Legend

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPH = p-Terphenyl-d14 (Surr)

Method: 8015D - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		ОТРН	
Lab Sample ID	Client Sample ID	(48-125)	
480-57320-3	S-101	85	
480-57320-4	S-102	88	
480-57320-19	TP-4 (1.5-2')	86	
480-57320-22	TP-5 (4-4.5')	87	
LCS 480-174686/2-A	Lab Control Sample	91	
LCSD 480-174686/3-A	Lab Control Sample Dup	92	
MB 480-174686/1-A	Method Blank	86	
Surrogate Legend			
OTPH = o-Terphenyl			

TestAmerica Buffalo

Page 25 of 50

4/16/2014

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-174450/7

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.36	ug/Kg			04/08/14 12:32	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.81	ug/Kg			04/08/14 12:32	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/Kg			04/08/14 12:32	1
1,1,2-Trichloroethane	ND		5.0	0.65	ug/Kg			04/08/14 12:32	1
1,1-Dichloroethane	ND		5.0	0.61	ug/Kg			04/08/14 12:32	1
1,1-Dichloroethene	ND		5.0		ug/Kg			04/08/14 12:32	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/Kg			04/08/14 12:32	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/Kg			04/08/14 12:32	1
1,2-Dibromoethane	ND		5.0		ug/Kg			04/08/14 12:32	1
1,2-Dichlorobenzene	ND		5.0		ug/Kg			04/08/14 12:32	1
1,2-Dichloroethane	ND		5.0		ug/Kg			04/08/14 12:32	1
1,2-Dichloropropane	ND		5.0		ug/Kg			04/08/14 12:32	1
1,3-Dichlorobenzene	ND		5.0		ug/Kg			04/08/14 12:32	1
1,4-Dichlorobenzene	ND		5.0		ug/Kg			04/08/14 12:32	1
2-Butanone (MEK)	ND		25		ug/Kg			04/08/14 12:32	1
2-Hexanone	ND		25		ug/Kg			04/08/14 12:32	1
4-Methyl-2-pentanone (MIBK)	ND		25		ug/Kg			04/08/14 12:32	1
Acetone	ND		25		ug/Kg			04/08/14 12:32	1
Benzene	ND		5.0		ug/Kg			04/08/14 12:32	· · · · · · · · 1
Bromodichloromethane	ND		5.0		ug/Kg			04/08/14 12:32	1
Bromoform	ND		5.0		ug/Kg			04/08/14 12:32	1
Bromomethane	ND		5.0		ug/Kg			04/08/14 12:32	· · · · · · · · · · · · · · · · · · ·
Carbon disulfide	ND		5.0		ug/Kg			04/08/14 12:32	1
Carbon tetrachloride	ND		5.0		ug/Kg			04/08/14 12:32	1
Chlorobenzene	ND		5.0		ug/Kg			04/08/14 12:32	
Chloroethane	ND		5.0		ug/Kg			04/08/14 12:32	1
Chloroform	ND		5.0		ug/Kg			04/08/14 12:32	1
Chloromethane	ND		5.0		ug/Kg			04/08/14 12:32	1
cis-1,2-Dichloroethene	ND		5.0		ug/Kg			04/08/14 12:32	1
cis-1,3-Dichloropropene	ND		5.0		ug/Kg			04/08/14 12:32	1
Cyclohexane	ND		5.0		ug/Kg			04/08/14 12:32	
Dibromochloromethane	ND		5.0		ug/Kg			04/08/14 12:32	1
Dichlorodifluoromethane	ND		5.0		ug/Kg			04/08/14 12:32	1
Ethylbenzene	ND		5.0		ug/Kg			04/08/14 12:32	1
Isopropylbenzene	ND		5.0		ug/Kg			04/08/14 12:32	1
Methyl acetate	ND		5.0		ug/Kg			04/08/14 12:32	1
Methyl tert-butyl ether	ND		5.0		ug/Kg			04/08/14 12:32	
Methylcyclohexane	ND		5.0		ug/Kg ug/Kg			04/08/14 12:32	1
Methylene Chloride	ND		5.0		ug/Kg ug/Kg			04/08/14 12:32	1
Styrene	ND		5.0		ug/Kg			04/08/14 12:32	1
•	ND		5.0		ug/Kg ug/Kg			04/08/14 12:32	
Tetrachloroethene Toluene	ND ND		5.0		ug/Kg ug/Kg			04/08/14 12:32	1
	ND		5.0		ug/Kg ug/Kg			04/08/14 12:32	1
trans-1,2-Dichloroethene	ND ND		5.0 5.0		ug/Kg ug/Kg			04/08/14 12:32	1
trans-1,3-Dichloropropene									
Trichlorofluoromothano	ND		5.0		ug/Kg			04/08/14 12:32	1
Trichlorofluoromethane	ND		5.0		ug/Kg			04/08/14 12:32	1
Vinyl chloride	ND		5.0	0.01	ug/Kg			04/08/14 12:32	1

TestAmerica Buffalo

4/16/2014

Page 26 of 50

2

3

5

7

10

12

14

15

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

99

Lab Sample ID: MB 480-174450/7

Matrix: Solid

Surrogate

Analysis Batch: 174450

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Client Sample ID: Method Blank Prep Type: Total/NA

04/08/14 12:32

MB MB %Recovery Qualifier Limits Prepared Analyzed 99 64 - 126 04/08/14 12:32 98 72 - 126 04/08/14 12:32

Lab Sample ID: LCS 480-174450/5

Matrix: Solid

Toluene-d8 (Surr)

Analysis Batch: 174450

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	50.0	51.1		ug/Kg		102	73 - 126	
1,1-Dichloroethene	50.0	50.7		ug/Kg		101	59 ₋ 125	
1,2-Dichlorobenzene	50.0	50.2		ug/Kg		100	75 _ 120	
1,2-Dichloroethane	50.0	47.5		ug/Kg		95	77 - 122	
Benzene	50.0	49.8		ug/Kg		100	79 _ 127	
Chlorobenzene	50.0	50.8		ug/Kg		102	76 - 124	
cis-1,2-Dichloroethene	50.0	49.9		ug/Kg		100	81 _ 117	
Ethylbenzene	50.0	51.4		ug/Kg		103	80 - 120	
Methyl tert-butyl ether	50.0	47.5		ug/Kg		95	63 - 125	
Tetrachloroethene	50.0	60.9		ug/Kg		122	74 - 122	
Toluene	50.0	50.9		ug/Kg		102	74 - 128	
trans-1,2-Dichloroethene	50.0	50.0		ug/Kg		100	78 - 126	
Trichloroethene	50.0	51.1		ug/Kg		102	77 - 129	

71 - 125

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107		64 - 126
4-Bromofluorobenzene (Surr)	101		72 - 126
Toluene-d8 (Surr)	100		71 - 125

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-174663/1-A

Matrix: Solid

Analysis Batch: 175108

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 174663**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		170	2.0	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Acenaphthylene	ND		170	1.4	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Anthracene	ND		170	4.3	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzo[a]anthracene	ND		170	2.9	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzo[a]pyrene	ND		170	4.0	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzo[b]fluoranthene	ND		170	3.2	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzo[g,h,i]perylene	ND		170	2.0	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzo[k]fluoranthene	ND		170	1.8	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Chrysene	ND		170	1.7	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Dibenz(a,h)anthracene	ND		170	2.0	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Fluoranthene	ND		170	2.4	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Fluorene	ND		170	3.8	ug/Kg		04/09/14 09:17	04/11/14 10:41	1

TestAmerica Buffalo

Page 27 of 50

Dil Fac

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-174663/1-A

Matrix: Solid

Analysis Batch: 175108

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 174663

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	ND		170	4.6	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Naphthalene	ND		170	2.8	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Phenanthrene	ND		170	3.5	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Pyrene	ND		170	1.1	ug/Kg		04/09/14 09:17	04/11/14 10:41	1

мв мв

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	97		37 - 120	04/09/14 09:17	04/11/14 10:41	1
Nitrobenzene-d5 (Surr)	86		34 - 132	04/09/14 09:17	04/11/14 10:41	1
p-Terphenyl-d14 (Surr)	105		65 ₋ 153	04/09/14 09:17	04/11/14 10:41	1

Lab Sample ID: LCS 480-174663/2-A Client Sample ID: Lab Control Sample

Matrix: Solid Prep Type: Total/NA Analysis Batch: 175108 **Prep Batch: 174663**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	3240	3140		ug/Kg		97	53 - 120	
Acenaphthylene	3240	3100		ug/Kg		95	58 - 121	
Anthracene	3240	3250		ug/Kg		100	62 - 129	
Benzo[a]anthracene	3240	3210		ug/Kg		99	65 - 133	
Benzo[a]pyrene	3240	3340		ug/Kg		103	64 - 127	
Benzo[b]fluoranthene	3240	3630		ug/Kg		112	64 - 135	
Benzo[g,h,i]perylene	3240	3680		ug/Kg		113	50 - 152	
Benzo[k]fluoranthene	3240	3280		ug/Kg		101	58 - 138	
Chrysene	3240	3210		ug/Kg		99	64 - 131	
Dibenz(a,h)anthracene	3240	3720		ug/Kg		115	54 - 148	
Fluoranthene	3240	3420		ug/Kg		105	62 - 131	
Fluorene	3240	3180		ug/Kg		98	63 - 126	
Indeno[1,2,3-cd]pyrene	3240	3660		ug/Kg		113	56 - 149	
Naphthalene	3240	2880		ug/Kg		89	46 - 120	
Phenanthrene	3240	3280		ug/Kg		101	60 - 130	
Pyrene	3240	3170		ug/Kg		98	51 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	97		37 - 120
Nitrobenzene-d5 (Surr)	92		34 - 132
p-Terphenyl-d14 (Surr)	102		65 ₋ 153

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 480-174686/1-A

Matrix: Solid

Analysis Batch: 174716

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 174686

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		16	4.9	mg/Kg		04/09/14 09:42	04/09/14 19:09	1

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Method: 8015D - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 480-174686/1-A

Lab Sample ID: LCS 480-174686/2-A

Lab Sample ID: LCSD 480-174686/3-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 174716

Analysis Batch: 174716

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 174686

MB MB

%Recovery Qualifier Limits Prepared Surrogate Analyzed Dil Fac 04/09/14 09:42 o-Terphenyl 86 48 - 125 04/09/14 19:09

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 174686

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 49.9 43.4 87 63 - 127 Diesel Range Organics mg/Kg

[C10-C28]

LCS LCS

%Recovery Qualifier Limits Surrogate o-Terphenyl 91 48 - 125

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 174716 Prep Batch: 174686 Spike LCSD LCSD RPD %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit Diesel Range Organics 49.2 42.8 mg/Kg 87 63 - 127

[C10-C28]

Matrix: Solid

LCSD LCSD

Surrogate %Recovery Qualifier Limits 92 48 - 125 o-Terphenyl

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-174368/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 176107

Prep Batch: 174368 мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		2.2	0.43	mg/Kg		04/08/14 13:25	04/15/14 11:29	1
Barium	ND	^	0.54	0.12	mg/Kg		04/08/14 13:25	04/15/14 11:29	1
Cadmium	ND		0.22	0.032	mg/Kg		04/08/14 13:25	04/15/14 11:29	1
Chromium	ND		0.54	0.22	mg/Kg		04/08/14 13:25	04/15/14 11:29	1
Lead	ND		1.1	0.26	mg/Kg		04/08/14 13:25	04/15/14 11:29	1
Selenium	ND		4.3	0.43	mg/Kg		04/08/14 13:25	04/15/14 11:29	1
Silver	ND		0.65	0.22	mg/Kg		04/08/14 13:25	04/15/14 11:29	1

Lab Sample ID: LCSSRM 480-174368/2-A **Client Sample ID: Lab Control Sample Matrix: Solid**

Analysis Batch: 176107

Prep Type: Total/NA Prep Batch: 174368

	Бріке	LCSSKW	LCSSKIVI				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	88.5	83.1		mg/Kg		93.8	69.0 - 131.	
							2	
Barium	210	184	٨	mg/Kg		87.4	73.3 - 126.	
							7	

TestAmerica Buffalo

Page 29 of 50

4/16/2014

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-174368/2-A

Client Sample ID: Lab Control Sample Prep Type: Total/NA

93.4 67.1 - 132.

Analysis Batch: 176107							Prep E	Batch: 174368
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	143	129		mg/Kg		90.2	72.7 - 127.	
							3	
Chromium	86.9	76.6		mg/Kg		88.1	69.1 - 131.	
							3	
Lead	98.0	95.4		mg/Kg		97.3	70.8 - 128.	
							7	
Selenium	127	120		mg/Kg		94.7	66.6 - 133.	
Selenium	127	120		mg/Kg		94.7	66.6 - 133.	

61.9

mg/Kg

66.3

Lab Sample ID: 480-57320-1 MS

Matrix: Solid

Silver

Matrix: Solid

Analysis Batch: 176107

Client Sample ID: TP-1 (2.5-3.5) Prep Type: Total/NA

Prep Batch: 174368

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	1.6	J	38.2	42.0		mg/Kg		106	75 - 125	
Barium	8.4	^	38.2	51.6	۸	mg/Kg		113	75 - 125	
Cadmium	0.035	J	38.2	37.7		mg/Kg		99	75 ₋ 125	
Chromium	2.9		38.2	41.2		mg/Kg		100	75 - 125	
Lead	15		38.2	51.0		mg/Kg		95	75 ₋ 125	
Selenium	ND		38.2	38.4		mg/Kg		100	75 ₋ 125	
Silver	ND		9.56	9.48		mg/Kg		99	75 ₋ 125	

Lab Sample ID: 480-57320-1 MSD

Matrix: Solid

Analysis Ratch: 176107

Client Sample ID: TP-1 (2.5-3.5)

Prep Type: Total/NA

Analysis Batch: 176107									Prep i	Saton: 1	74300
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	1.6	J	41.0	44.8		mg/Kg		105	75 - 125	7	20
Barium	8.4	٨	41.0	51.7	۸	mg/Kg		106	75 - 125	0	20
Cadmium	0.035	J	41.0	40.6		mg/Kg		99	75 - 125	7	20
Chromium	2.9		41.0	43.5		mg/Kg		99	75 - 125	5	20
Lead	15		41.0	55.6		mg/Kg		100	75 - 125	8	20
Selenium	ND		41.0	41.4		mg/Kg		101	75 - 125	8	20
Silver	ND		10.3	10.0		mg/Kg		98	75 - 125	6	20

Lab Sample ID: MB 480-174370/1-A

Matrix: Solid

Analysis Batch: 175136

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 174370

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.9	0.39	mg/Kg		04/08/14 16:20	04/10/14 11:29	1
Barium	ND		0.48	0.11	mg/Kg		04/08/14 16:20	04/10/14 11:29	1
Cadmium	ND		0.19	0.029	mg/Kg		04/08/14 16:20	04/10/14 11:29	1
Chromium	ND		0.48	0.19	mg/Kg		04/08/14 16:20	04/10/14 11:29	1
Lead	ND		0.97	0.23	mg/Kg		04/08/14 16:20	04/10/14 11:29	1
Selenium	ND		3.9	0.39	mg/Kg		04/08/14 16:20	04/10/14 11:29	1
Silver	ND		0.58	0.19	mg/Kg		04/08/14 16:20	04/10/14 11:29	1

TestAmerica Buffalo

Page 30 of 50

4/16/2014

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-174370/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA

Analysis Batch: 175136							Prep Ba	tch: 174370
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	88.6	86.6		mg/Kg		97.7	69.0 - 131.	
							2	
Barium	210	194		mg/Kg		92.3	73.3 - 126.	
							7	
Cadmium	143	132		mg/Kg		92.4	72.7 - 127.	
							3	
Chromium	87.0	80.2		mg/Kg		92.3	69.1 - 131.	
							3	
Lead	98.1	97.1		mg/Kg		99.0	70.8 - 128.	
							7	
Selenium	127	122		mg/Kg		95.5	66.6 - 133.	
							9	
Silver	66.3	62.9		mg/Kg		94.8	67.1 - 132.	
_							9	

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Lab Sample ID: MB 480-174619/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 174789

	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
Hg	ND		0.018	0.0074	mg/Kg	_	04/09/14 12:00	04/09/14 15:17	1

Lab Sample ID: LCSSRM 480-174619/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 174789 **Prep Batch: 174619**

		Spike	LCSSRM	LCSSRM				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hg		3.77	3.44		mg/Kg		91.2	50.9 - 149.	
								4	

Lab Sample ID: 480-57320-1 MS **Client Sample ID: TP-1 (2.5-3.5)** Matrix: Solid Prep Type: Total/NA

Analysis Batch: 174789

Analysis Batch: 174789									Prep	Batch: 174619
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hg	0.014	J	0.343	0.386		mg/Kg		108	80 - 120	

Lab Sample ID: 480-57320-1 MSD **Client Sample ID: TP-1 (2.5-3.5) Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 174789 **Prep Batch: 174619**

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Hg	0.014	J	0.324	0.385		mg/Kg		114	80 - 120	0	20	

TestAmerica Buffalo

Prep Batch: 174619

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

GC/MS VOA

Prep Batch: 174119

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-28	TP-9 (5.5-6')	Total/NA	Solid	5035A	

Analysis Batch: 174450

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-28	TP-9 (5.5-6')	Total/NA	Solid	8260C	174119
LCS 480-174450/5	Lab Control Sample	Total/NA	Solid	8260C	
MB 480-174450/7	Method Blank	Total/NA	Solid	8260C	

GC/MS Semi VOA

Prep Batch: 174663

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-3	S-101	Total/NA	Solid	3550C	_
480-57320-4	S-102	Total/NA	Solid	3550C	
480-57320-15	TP-2 (2-2.5')	Total/NA	Solid	3550C	
480-57320-16	TP-2 (4.8')	Total/NA	Solid	3550C	
480-57320-17	TP-3 (5-5.5')	Total/NA	Solid	3550C	
480-57320-18	TP-3 (2-2.5')	Total/NA	Solid	3550C	
480-57320-19	TP-4 (1.5-2')	Total/NA	Solid	3550C	
480-57320-22	TP-5 (4-4.5')	Total/NA	Solid	3550C	
480-57320-26	TP-8 (1-2')	Total/NA	Solid	3550C	
480-57320-27	TP-8 (6')	Total/NA	Solid	3550C	
LCS 480-174663/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-174663/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 174773

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-3	S-101	Total/NA	Solid	8270D	174663
480-57320-4	S-102	Total/NA	Solid	8270D	174663
480-57320-15	TP-2 (2-2.5')	Total/NA	Solid	8270D	174663
480-57320-16	TP-2 (4.8')	Total/NA	Solid	8270D	174663
480-57320-17	TP-3 (5-5.5')	Total/NA	Solid	8270D	174663
480-57320-18	TP-3 (2-2.5')	Total/NA	Solid	8270D	174663
480-57320-19	TP-4 (1.5-2')	Total/NA	Solid	8270D	174663
480-57320-22	TP-5 (4-4.5')	Total/NA	Solid	8270D	174663
480-57320-26	TP-8 (1-2')	Total/NA	Solid	8270D	174663

Analysis Batch: 175108

Lab Sample ID 480-57320-27	Client Sample ID TP-8 (6')	Prep Type Total/NA	Matrix Solid	Method 8270D	Prep Batch 174663
LCS 480-174663/2-A	Lab Control Sample	Total/NA	Solid	8270D	174663
MB 480-174663/1-A	Method Blank	Total/NA	Solid	8270D	174663

GC Semi VOA

Prep Batch: 174686

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-3	S-101	Total/NA	Solid	3550C	
480-57320-4	S-102	Total/NA	Solid	3550C	
480-57320-19	TP-4 (1.5-2')	Total/NA	Solid	3550C	

TestAmerica Buffalo

Page 32 of 50

-

3

4

6

7

10

13

14

16

15

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

GC Semi VOA (Continued)

Prep Batch: 174686 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-22	TP-5 (4-4.5')	Total/NA	Solid	3550C	
LCS 480-174686/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 480-174686/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
MB 480-174686/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 174716

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-3	S-101	Total/NA	Solid	8015D	174686
480-57320-4	S-102	Total/NA	Solid	8015D	174686
480-57320-19	TP-4 (1.5-2')	Total/NA	Solid	8015D	174686
480-57320-22	TP-5 (4-4.5')	Total/NA	Solid	8015D	174686
LCS 480-174686/2-A	Lab Control Sample	Total/NA	Solid	8015D	174686
LCSD 480-174686/3-A	Lab Control Sample Dup	Total/NA	Solid	8015D	174686
MB 480-174686/1-A	Method Blank	Total/NA	Solid	8015D	174686

Metals

Prep Batch: 174368

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-57320-1	TP-1 (2.5-3.5)	Total/NA	Solid	3050B	
480-57320-1 MS	TP-1 (2.5-3.5)	Total/NA	Solid	3050B	
480-57320-1 MSD	TP-1 (2.5-3.5)	Total/NA	Solid	3050B	
480-57320-3	S-101	Total/NA	Solid	3050B	
480-57320-4	S-102	Total/NA	Solid	3050B	
480-57320-5	S-103	Total/NA	Solid	3050B	
480-57320-6	S-104	Total/NA	Solid	3050B	
480-57320-7	S-105	Total/NA	Solid	3050B	
480-57320-8	S-106	Total/NA	Solid	3050B	
480-57320-9	S-107	Total/NA	Solid	3050B	
480-57320-10	S-108	Total/NA	Solid	3050B	
480-57320-11	S-109	Total/NA	Solid	3050B	
480-57320-12	S-110	Total/NA	Solid	3050B	
480-57320-13	S-111	Total/NA	Solid	3050B	
480-57320-14	S-112	Total/NA	Solid	3050B	
480-57320-15	TP-2 (2-2.5')	Total/NA	Solid	3050B	
480-57320-16	TP-2 (4.8')	Total/NA	Solid	3050B	
480-57320-17	TP-3 (5-5.5')	Total/NA	Solid	3050B	
480-57320-18	TP-3 (2-2.5')	Total/NA	Solid	3050B	
480-57320-19	TP-4 (1.5-2')	Total/NA	Solid	3050B	
LCSSRM 480-174368/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-174368/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 174370

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-22	TP-5 (4-4.5')	Total/NA	Solid	3050B	_
480-57320-25	TP-7 (2.5')	Total/NA	Solid	3050B	
480-57320-26	TP-8 (1-2')	Total/NA	Solid	3050B	
480-57320-27	TP-8 (6')	Total/NA	Solid	3050B	
480-57320-28	TP-9 (5.5-6')	Total/NA	Solid	3050B	
LCSSRM 480-174370/2-A	Lab Control Sample	Total/NA	Solid	3050B	

Page 33 of 50

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Metals (Continued)

Prep Batch: 174370 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-174370/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 174619

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-57320-1	TP-1 (2.5-3.5)	Total/NA	Solid	7471B	
480-57320-1 MS	TP-1 (2.5-3.5)	Total/NA	Solid	7471B	
480-57320-1 MSD	TP-1 (2.5-3.5)	Total/NA	Solid	7471B	
480-57320-3	S-101	Total/NA	Solid	7471B	
480-57320-4	S-102	Total/NA	Solid	7471B	
480-57320-15	TP-2 (2-2.5')	Total/NA	Solid	7471B	
480-57320-16	TP-2 (4.8')	Total/NA	Solid	7471B	
480-57320-17	TP-3 (5-5.5')	Total/NA	Solid	7471B	
480-57320-18	TP-3 (2-2.5')	Total/NA	Solid	7471B	
480-57320-19	TP-4 (1.5-2')	Total/NA	Solid	7471B	
480-57320-22	TP-5 (4-4.5')	Total/NA	Solid	7471B	
480-57320-25	TP-7 (2.5')	Total/NA	Solid	7471B	
480-57320-26	TP-8 (1-2')	Total/NA	Solid	7471B	
480-57320-27	TP-8 (6')	Total/NA	Solid	7471B	
480-57320-28	TP-9 (5.5-6')	Total/NA	Solid	7471B	
LCSSRM 480-174619/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-174619/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 174789

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-1	TP-1 (2.5-3.5)	Total/NA	Solid	7471B	174619
480-57320-1 MS	TP-1 (2.5-3.5)	Total/NA	Solid	7471B	174619
480-57320-1 MSD	TP-1 (2.5-3.5)	Total/NA	Solid	7471B	174619
480-57320-3	S-101	Total/NA	Solid	7471B	174619
480-57320-4	S-102	Total/NA	Solid	7471B	174619
480-57320-15	TP-2 (2-2.5')	Total/NA	Solid	7471B	174619
480-57320-16	TP-2 (4.8')	Total/NA	Solid	7471B	174619
480-57320-17	TP-3 (5-5.5')	Total/NA	Solid	7471B	174619
480-57320-18	TP-3 (2-2.5')	Total/NA	Solid	7471B	174619
480-57320-19	TP-4 (1.5-2')	Total/NA	Solid	7471B	174619
480-57320-22	TP-5 (4-4.5')	Total/NA	Solid	7471B	174619
480-57320-25	TP-7 (2.5')	Total/NA	Solid	7471B	174619
480-57320-26	TP-8 (1-2')	Total/NA	Solid	7471B	174619
480-57320-27	TP-8 (6')	Total/NA	Solid	7471B	174619
480-57320-28	TP-9 (5.5-6')	Total/NA	Solid	7471B	174619
LCSSRM 480-174619/2-A	Lab Control Sample	Total/NA	Solid	7471B	174619
MB 480-174619/1-A	Method Blank	Total/NA	Solid	7471B	174619

Analysis Batch: 175136

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-22	TP-5 (4-4.5')	Total/NA	Solid	6010C	174370
480-57320-25	TP-7 (2.5')	Total/NA	Solid	6010C	174370
480-57320-26	TP-8 (1-2')	Total/NA	Solid	6010C	174370
480-57320-27	TP-8 (6')	Total/NA	Solid	6010C	174370
480-57320-28	TP-9 (5.5-6')	Total/NA	Solid	6010C	174370
LCSSRM 480-174370/2-A	Lab Control Sample	Total/NA	Solid	6010C	174370
MB 480-174370/1-A	Method Blank	Total/NA	Solid	6010C	174370

TestAmerica Buffalo

Page 34 of 50

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Metals (Continued)

Analysis Batch: 176107

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-1	TP-1 (2.5-3.5)	Total/NA	Solid	6010C	174368
480-57320-1 MS	TP-1 (2.5-3.5)	Total/NA	Solid	6010C	174368
480-57320-1 MSD	TP-1 (2.5-3.5)	Total/NA	Solid	6010C	174368
480-57320-3	S-101	Total/NA	Solid	6010C	174368
480-57320-4	S-102	Total/NA	Solid	6010C	174368
480-57320-5	S-103	Total/NA	Solid	6010C	174368
480-57320-6	S-104	Total/NA	Solid	6010C	174368
480-57320-8	S-106	Total/NA	Solid	6010C	174368
480-57320-9	S-107	Total/NA	Solid	6010C	174368
480-57320-10	S-108	Total/NA	Solid	6010C	174368
480-57320-11	S-109	Total/NA	Solid	6010C	174368
480-57320-12	S-110	Total/NA	Solid	6010C	174368
480-57320-13	S-111	Total/NA	Solid	6010C	174368
480-57320-14	S-112	Total/NA	Solid	6010C	174368
480-57320-15	TP-2 (2-2.5')	Total/NA	Solid	6010C	174368
480-57320-16	TP-2 (4.8')	Total/NA	Solid	6010C	174368
480-57320-17	TP-3 (5-5.5')	Total/NA	Solid	6010C	174368
480-57320-18	TP-3 (2-2.5')	Total/NA	Solid	6010C	174368
480-57320-19	TP-4 (1.5-2')	Total/NA	Solid	6010C	174368
LCSSRM 480-174368/2-A	Lab Control Sample	Total/NA	Solid	6010C	174368
MB 480-174368/1-A	Method Blank	Total/NA	Solid	6010C	174368

Analysis Batch: 176243

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-7	S-105	Total/NA	Solid	6010C	174368
480-57320-17	TP-3 (5-5.5')	Total/NA	Solid	6010C	174368

General Chemistry

Analysis Batch: 174093

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-57320-1	TP-1 (2.5-3.5)	Total/NA	Solid	Moisture	_
480-57320-3	S-101	Total/NA	Solid	Moisture	
480-57320-4	S-102	Total/NA	Solid	Moisture	
180-57320-5	S-103	Total/NA	Solid	Moisture	
480-57320-6	S-104	Total/NA	Solid	Moisture	
480-57320-7	S-105	Total/NA	Solid	Moisture	
480-57320-8	S-106	Total/NA	Solid	Moisture	
180-57320-9	S-107	Total/NA	Solid	Moisture	
480-57320-10	S-108	Total/NA	Solid	Moisture	
480-57320-11	S-109	Total/NA	Solid	Moisture	
180-57320-12	S-110	Total/NA	Solid	Moisture	
180-57320-13	S-111	Total/NA	Solid	Moisture	
480-57320-14	S-112	Total/NA	Solid	Moisture	
180-57320-15	TP-2 (2-2.5')	Total/NA	Solid	Moisture	
180-57320-16	TP-2 (4.8')	Total/NA	Solid	Moisture	
480-57320-17	TP-3 (5-5.5')	Total/NA	Solid	Moisture	
180-57320-18	TP-3 (2-2.5')	Total/NA	Solid	Moisture	
180-57320-19	TP-4 (1.5-2')	Total/NA	Solid	Moisture	
480-57320-22	TP-5 (4-4.5')	Total/NA	Solid	Moisture	

TestAmerica Buffalo

Page 35 of 50

QC Association Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-1

General Chemistry (Continued)

Analysis Batch: 174093 (Continued)

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
	480-57320-25	TP-7 (2.5')	Total/NA	Solid	Moisture
	480-57320-26	TP-8 (1-2')	Total/NA	Solid	Moisture
	480-57320-27	TP-8 (6')	Total/NA	Solid	Moisture
	480-57320-28	TP-9 (5.5-6')	Total/NA	Solid	Moisture

3

4

_

6

8

9

4 4

12

1 4

11

Client: Resource Control Associates, Inc.

Client Sample ID: TP-1 (2.5-3.5)

Project/Site: 7131A Rhode Island

Lab Sample ID: 480-57320-1

Date Collected: 04/02/14 11:50 Date Received: 04/05/14 02:00

Client Sample ID: S-101

Date Collected: 04/02/14 12:05

Date Received: 04/05/14 02:00

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 11:35	AMH	TAL BUF
Total/NA	Prep	7471B			174619	04/09/14 12:00	LRK	TAL BUF
Total/NA	Analysis	7471B		1	174789	04/09/14 15:20	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Lab Sample ID: 480-57320-3

Matrix: Solid

Percent Solids: 83.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			174663	04/09/14 09:17	CAM	TAL BUF
Total/NA	Analysis	8270D		1	174773	04/09/14 19:54	HTL	TAL BUF
Total/NA	Prep	3550C			174686	04/09/14 09:42	CAM	TAL BUF
Total/NA	Analysis	8015D		1	174716	04/09/14 21:58	DLE	TAL BUF
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 12:05	AMH	TAL BUF
Total/NA	Prep	7471B			174619	04/09/14 12:00	LRK	TAL BUF
Total/NA	Analysis	7471B		1	174789	04/09/14 15:33	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Client Sample ID: S-102 Lab Sample ID: 480-57320-4

Percent Solids: 74.8

Date Collected: 04/02/14 12:07 **Matrix: Solid** Date Received: 04/05/14 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			174663	04/09/14 09:17	CAM	TAL BUF
Total/NA	Analysis	8270D		1	174773	04/09/14 20:19	HTL	TAL BUF
Total/NA	Prep	3550C			174686	04/09/14 09:42	CAM	TAL BUF
Total/NA	Analysis	8015D		1	174716	04/09/14 22:32	DLE	TAL BUF
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 12:08	AMH	TAL BUF
Total/NA	Prep	7471B			174619	04/09/14 12:00	LRK	TAL BUF
Total/NA	Analysis	7471B		1	174789	04/09/14 15:35	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Client Sample ID: S-103 Lab Sample ID: 480-57320-5

Date Collected: 04/02/14 12:21 **Matrix: Solid**

Date Received: 04/05/14 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 12:10	AMH	TAL BUF

TestAmerica Buffalo

Page 37 of 50

10

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Lab Sample ID: 480-57320-5

Matrix: Solid

Date Collected: 04/02/14 12:21 Date Received: 04/05/14 02:00

Client Sample ID: S-103

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Client Sample ID: S-104 Lab Sample ID: 480-57320-6

Date Collected: 04/02/14 12:22 **Matrix: Solid**

Date Received: 04/05/14 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 12:13	AMH	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Client Sample ID: S-105 Lab Sample ID: 480-57320-7

Date Collected: 04/02/14 12:23 Matrix: Solid

Date Received: 04/05/14 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		5	176243	04/16/14 13:13	AMH	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Client Sample ID: S-106 Lab Sample ID: 480-57320-8

Date Collected: 04/02/14 12:24 **Matrix: Solid**

Date Received: 04/05/14 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 12:33	AMH	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Lab Sample ID: 480-57320-9 Client Sample ID: S-107

Date Collected: 04/02/14 12:25 Date Received: 04/05/14 02:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 12:35	AMH	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

TestAmerica Buffalo

Matrix: Solid

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Lab Sample ID: 480-57320-10

Matrix: Solid

Client Sample ID: S-108 Date Collected: 04/02/14 14:00 Date Received: 04/05/14 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 12:38	AMH	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Lab Sample ID: 480-57320-11

Matrix: Solid

Date Collected: 04/02/14 14:01 Date Received: 04/05/14 02:00

Client Sample ID: S-109

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 12:41	AMH	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Client Sample ID: S-110 Lab Sample ID: 480-57320-12 Date Collected: 04/02/14 14:02

Matrix: Solid

Date Received: 04/05/14 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 12:44	AMH	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Client Sample ID: S-111 Lab Sample ID: 480-57320-13 **Matrix: Solid**

Date Collected: 04/02/14 14:03

Date Received: 04/05/14 02:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 12:46	AMH	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Client Sample ID: S-112 Lab Sample ID: 480-57320-14

Date Collected: 04/02/14 14:04 **Matrix: Solid**

Date Received: 04/05/14 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 12:49	AMH	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Client Sample ID: TP-2 (2-2.5')

Analysis

Analysis

7471B

Moisture

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

TAL BUF TAL BUF

Lab Sample ID: 480-57320-15

Matrix: Solid Percent Solids: 93.0

Date Collected: 04/03/14 09:15 Date Received: 04/05/14 02:00

Total/NA

Total/NA

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Total/NA Prep 3550C 174663 04/09/14 09:17 CAM TAL BUF Total/NA 8270D 04/09/14 20:43 HTL TAL BUF Analysis 1 174773 Total/NA Prep 3050B 174368 04/08/14 13:25 EHD TAL BUF Total/NA 6010C 176107 04/15/14 13:06 AMH TAL BUF Analysis 1 Total/NA 7471B 174619 04/09/14 12:00 LRK TAL BUF Prep

Client Sample ID: TP-2 (4.8') Lab Sample ID: 480-57320-16 Date Collected: 04/03/14 09:20 Matrix: Solid Date Received: 04/05/14 02:00 Percent Solids: 75.6

1

174789

174093

04/09/14 15:37

04/05/14 13:49

LRK

CMK

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			174663	04/09/14 09:17	CAM	TAL BUF
Total/NA	Analysis	8270D		1	174773	04/09/14 21:08	HTL	TAL BUF
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 13:09	AMH	TAL BUF
Total/NA	Prep	7471B			174619	04/09/14 12:00	LRK	TAL BUF
Total/NA	Analysis	7471B		1	174789	04/09/14 15:39	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Client Sample ID: TP-3 (5-5.5') Lab Sample ID: 480-57320-17

Date Collected: 04/03/14 10:00 Matrix: Solid Date Received: 04/05/14 02:00 Percent Solids: 25.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			174663	04/09/14 09:17	CAM	TAL BUF
Total/NA	Analysis	8270D		5	174773	04/09/14 21:33	HTL	TAL BUF
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 13:11	AMH	TAL BUF
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		10	176243	04/16/14 13:18	AMH	TAL BUF
Total/NA	Prep	7471B			174619	04/09/14 12:00	LRK	TAL BUF
Total/NA	Analysis	7471B		5	174789	04/09/14 16:17	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Client Sample ID: TP-3 (2-2.5') Lab Sample ID: 480-57320-18

Date Collected: 04/03/14 10:05 Matrix: Solid Percent Solids: 87.1 Date Received: 04/05/14 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			174663	04/09/14 09:17	CAM	TAL BUF
Total/NA	Analysis	8270D		500	174773	04/10/14 03:18	HTL	TAL BUF

TestAmerica Buffalo

Page 40 of 50

10

1

Prepared

04/09/14 15:42

04/05/14 13:49

174789

174093

Analyst

EHD

AMH

LRK

LRK

CMK

Lab

TAL BUF

TAL BUF

TAL BUF

TAL BUF

TAL BUF

TestAmerica Job ID: 480-57320-1

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Date Received: 04/05/14 02:00

Total/NA

Total/NA

Lab Sample ID: 480-57320-18

Matrix: Solid

Client Sample ID: TP-3 (2-2.5') Date Collected: 04/03/14 10:05

Batch Batch Dilution Batch **Prep Type** Туре Method Run Factor Number or Analyzed Total/NA Prep 3050B 174368 04/08/14 13:25 Total/NA 6010C 176107 04/15/14 13:14 Analysis 1 Total/NA Prep 7471B 174619 04/09/14 12:00

7471B

Moisture

Lab Sample ID: 480-57320-19

Matrix: Solid

Percent Solids: 85.4

Client Sample ID: TP-4 (1.5-2')

Analysis

Analysis

Date Collected: 04/03/14 11:25 Date Received: 04/05/14 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			174663	04/09/14 09:17	CAM	TAL BUF
Total/NA	Analysis	8270D		1	174773	04/09/14 22:22	HTL	TAL BUF
Total/NA	Prep	3550C			174686	04/09/14 09:42	CAM	TAL BUF
Total/NA	Analysis	8015D		1	174716	04/09/14 23:05	DLE	TAL BUF
Total/NA	Prep	3050B			174368	04/08/14 13:25	EHD	TAL BUF
Total/NA	Analysis	6010C		1	176107	04/15/14 13:17	AMH	TAL BUF
Total/NA	Prep	7471B			174619	04/09/14 12:00	LRK	TAL BUF
Total/NA	Analysis	7471B		100	174789	04/09/14 16:15	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Client Sample ID: TP-5 (4-4.5') Lab Sample ID: 480-57320-22

Date Collected: 04/03/14 11:55

Date Received: 04/05/14 02:00							Percent Solids: 80.		
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3550C			174663	04/09/14 09:17	CAM	TAL BUF	_
Total/NA	Analysis	8270D		1	174773	04/09/14 22:47	HTL	TAL BUF	
Total/NA	Prep	3550C			174686	04/09/14 09:42	CAM	TAL BUF	

Total/NA Analysis 8015D 174716 04/09/14 23:39 DLE TAL BUF Total/NA TAL BUF Prep 3050B 174370 04/08/14 16:20 EHD Total/NA Analysis 6010C 175136 04/10/14 12:06 LMH TAL BUF Total/NA 7471B LRK TAL BUF Prep 174619 04/09/14 12:00 Total/NA 7471B 174789 04/09/14 15:52 LRK TAL BUF Analysis TAL BUF Total/NA Analysis Moisture 1 174093 04/05/14 13:49 CMK

Client Sample ID: TP-7 (2.5') Lab Sample ID: 480-57320-25

Date Collected: 04/03/14 12:55

Date Received: 04/05/14 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			174370	04/08/14 16:20	EHD	TAL BUF
Total/NA	Analysis	6010C		1	175136	04/10/14 12:14	LMH	TAL BUF

Matrix: Solid

Page 41 of 50

10

Matrix: Solid

Project/Site: 7131A Rhode Island

Client Sample ID: TP-7 (2.5')

Client: Resource Control Associates, Inc.

Lab Sample ID: 480-57320-25

Matrix: Solid

Date Collected: 04/03/14 12:55 Date Received: 04/05/14 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7471B		· 	174619	04/09/14 12:00	LRK	TAL BUF
Total/NA	Analysis	7471B		1	174789	04/09/14 15:54	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Client Sample ID: TP-8 (1-2') Lab Sample ID: 480-57320-26

Date Collected: 04/03/14 13:20 **Matrix: Solid**

Date Received: 04/05/14 02:00 Percent Solids: 79.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			174663	04/09/14 09:17	CAM	TAL BUF
Total/NA	Analysis	8270D		500	174773	04/10/14 03:43	HTL	TAL BUF
Total/NA	Prep	3050B			174370	04/08/14 16:20	EHD	TAL BUF
Total/NA	Analysis	6010C		1	175136	04/10/14 12:17	LMH	TAL BUF
Total/NA	Prep	7471B			174619	04/09/14 12:00	LRK	TAL BUF
Total/NA	Analysis	7471B		1	174789	04/09/14 15:56	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Client Sample ID: TP-8 (6') Lab Sample ID: 480-57320-27

Date Collected: 04/03/14 13:25 **Matrix: Solid** Date Received: 04/05/14 02:00 Percent Solids: 76.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			174663	04/09/14 09:17	CAM	TAL BUF
Total/NA	Analysis	8270D		1	175108	04/11/14 12:44	HTL	TAL BUF
Total/NA	Prep	3050B			174370	04/08/14 16:20	EHD	TAL BUF
Total/NA	Analysis	6010C		1	175136	04/10/14 12:20	LMH	TAL BUF
Total/NA	Prep	7471B			174619	04/09/14 12:00	LRK	TAL BUF
Total/NA	Analysis	7471B		1	174789	04/09/14 16:02	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Lab Sample ID: 480-57320-28 Client Sample ID: TP-9 (5.5-6')

Date Collected: 04/03/14 14:20 **Matrix: Solid**

Date Received: 04/05/14 02:00 Percent Solids: 88.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			174119	04/07/14 01:35	CDC	TAL BUF
Total/NA	Analysis	8260C		1	174450	04/08/14 20:26	CDC	TAL BUF
Total/NA	Prep	3050B			174370	04/08/14 16:20	EHD	TAL BUF
Total/NA	Analysis	6010C		1	175136	04/10/14 12:22	LMH	TAL BUF
Total/NA	Prep	7471B			174619	04/09/14 12:00	LRK	TAL BUF
Total/NA	Analysis	7471B		1	174789	04/09/14 16:04	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

TestAmerica Buffalo

Page 42 of 50

Lab Chronicle

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-1

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

8

9

10

46

13

14

Certification Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Rhode Island	State Program	1	LAO00328	12-30-14

3

4

5

Q

9

11

12

14

Method Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
3270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8015D	Diesel Range Organics (DRO) (GC)	SW846	TAL BUF
010C	Metals (ICP)	SW846	TAL BUF
471B	Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

0

9

10

12

4 /

Sample Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-57320-1	TP-1 (2.5-3.5)	Solid	04/02/14 11:50	04/05/14 02:00
480-57320-3	S-101	Solid	04/02/14 12:05	04/05/14 02:00
480-57320-4	S-102	Solid	04/02/14 12:07	04/05/14 02:00
480-57320-5	S-103	Solid	04/02/14 12:21	04/05/14 02:00
480-57320-6	S-104	Solid	04/02/14 12:22	04/05/14 02:00
480-57320-7	S-105	Solid	04/02/14 12:23	04/05/14 02:00
480-57320-8	S-106	Solid	04/02/14 12:24	04/05/14 02:00
480-57320-9	S-107	Solid	04/02/14 12:25	04/05/14 02:0
480-57320-10	S-108	Solid	04/02/14 14:00	04/05/14 02:0
480-57320-11	S-109	Solid	04/02/14 14:01	04/05/14 02:0
480-57320-12	S-110	Solid	04/02/14 14:02	04/05/14 02:0
480-57320-13	S-111	Solid	04/02/14 14:03	04/05/14 02:0
480-57320-14	S-112	Solid	04/02/14 14:04	04/05/14 02:0
480-57320-15	TP-2 (2-2.5')	Solid	04/03/14 09:15	04/05/14 02:0
480-57320-16	TP-2 (4.8')	Solid	04/03/14 09:20	04/05/14 02:0
480-57320-17	TP-3 (5-5.5')	Solid	04/03/14 10:00	04/05/14 02:0
480-57320-18	TP-3 (2-2.5')	Solid	04/03/14 10:05	04/05/14 02:0
480-57320-19	TP-4 (1.5-2')	Solid	04/03/14 11:25	04/05/14 02:0
480-57320-22	TP-5 (4-4.5')	Solid	04/03/14 11:55	04/05/14 02:0
480-57320-25	TP-7 (2.5')	Solid	04/03/14 12:55	04/05/14 02:0
480-57320-26	TP-8 (1-2')	Solid	04/03/14 13:20	04/05/14 02:0
480-57320-27	TP-8 (6')	Solid	04/03/14 13:25	04/05/14 02:0
480-57320-28	TP-9 (5.5-6')	Solid	04/03/14 14:20	04/05/14 02:0

Л

5

7

9

10

11

12

14

#1

Y.

ct. 5. 14

カトカーカ

QC Requirements (Specify)

Date

3. Received By

4 C C

2. Receii

ころ

□ Othe

☐ 21 Days

☐ 14 Days

□ 7 Days

48 Hours

24 Hours

1. Relinquished By

3. Relinquis 3. Relinquis 4/16/5014

Tum Around Time Required

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

ater? Yes□ No□ 480-57320 Chain of Custody **Custody Record**

Chain of

TestAmerica e on Receipt

Special Instructions/ Conditions of Receipt Page THE LEADER IN ENVIRONMENTAL TESTING posals TISS BI Analysis (Attach list if more space is needed) 57242M Daniello Getshaer Telephone Number (Area Code)/Fax Numbe (40) | 734 - (6<10 Lab Contact Carrier/Waybill Number Site Contact Zip Code Odyslo RESERVE CONTROL ASSECTOR That Island State 7 THE Broaken Project Name and Location (State) Particket 733K TAL-4124 (1007)

Sample I.D. No. and Description	Date	Time	Matrix suoents	Containers & Conta	Missing Answell Chals	70N	no) An EG	
Contained to each sample may be compared on one may	DIR.	0.531	8	V) ×	is	7	
Th consposite	, promote con	12	7				×	
101-7		13-05	ナ		XX			
201-		tae1	*		×			
03		1881	*		×			
50		282	*		X			:
701-7		[233	7		×			
5-106		288	7		×			
401-2		LS&E	*		X			
× 0		0071	+		×			
0015		1907	*		×			
013	≫	1402	*		×			
			<u> </u>		: : :	;	(A fee may be assess	(A fee may be assessed if samples are retained
🗌 Non-Hazard 🔝 Flammable 🔛 Skin Irritant	Poison B	Unknown	Return To Client	Disposal By Lab	Archive For	Months	longer than 1 month)	

DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Copy

TestAmerica Temperature on Receipt -

Custody Record

Chain of

	Chain of Custody Number 261764	Page of C		Snavial Instructions/	Conditions of Receipt									2	なる		10 To To	1927	(A fee may be assessed if samples are retained longer than 1 month)		Date Time	Date Time	Date Time	1
THE LEADER IN ENVIRONMENTAL TESTING	Date 4/3/14	Lab Number	Analysis (Attach list if more space is needed)	1750 1749	Jein Jein	ov km													(A fee may be a Months longer than 1 m			7		THO!
THE LEADER IN ENV	3		A	hyno spy:	ers & comments of the same of	HOEN HOEN	×	×	X	×	X	<i>× ×</i>	XXXXXX			×			By Lab Archive For	8	By Mari	7 60 19	By	
er? Yes□ No□	in Cretsing	Area X		Vumber	Matrix Containers & Preservatives	IOH EONH FOSZH Sejdun IIOS POS	X	*	X	*	*	イ	*	7	7	*	*	メ	Sample Disposal Return To Client Disposal By Lab		Time 1. Received B)	Time 2. Received By	Time 3. Received B)	
Drinking Water? Yes□	Project Manager	Telephone Number		Carrier/Waybill Number		Time	14 MO3	アのブ	SISO h	OL 60	1000	3001	[SC]	0.511	0511	2511	SKI	arti	П Ипкпомп	Days Other		Pate CANAGE	Date	
Tel 4124 (1007)	Client Control ASSONOTES	Adress And Man	City State Zip Code	1 1 10 100		Sample I.D. No. and Description (Containers for each sample may be combined on one line)	h1/e/h	4	h/2/h (156-8)2-dl a	(、8、h) を-d上4 ge	(15:52) E-CI-O	12-3	(15-51)	(3:)	(1.5-8.5.1) S-AL	J.S.h-h) S-JL	15-6(1,5-2)	TP-6 (3.5')	Possible Hazard Identification Non-Hazard	9 Required 7 Days 14 Days		2. Relinquished By Office Offi	3. Relinquished By 50 3. Relinquished By 50 3.	Comments

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

№

Drinking Water? Yes□

Temperature on Receipt

Chain of Custody Record

TAL-4124 (1007)				And the second s	
Client		Project Manager		Date Date	Chain of Custody Number
Address Address		10	ode)/Fax Number	Lab Number	221707
Sorrovers THT		-Xx+(10h)	02/20		Page > of 5
State 2	5	Site Contact	Lab Contact	Analysis (Attach list if more space is needed)	
		Carrier/Waybill Number		men men	Special Instructions/
3		Matrix	Containers & Preservatives	21700	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date Ti	Time suceuph suceuph	Unpres.	SAM SAM	
(152) +- 4	21	13581		×	
(18-1) 8-21	13.	1320 4		× × ×	
(,9) %-QL Pa	1375	1/2		× × ×	
(9-5½) b-d-4	ceh!	X		×	
8 of	-	1420 X		×	
F					
7 21 11 11 11 11 12 12		Samoo Dicascos			
Possible hazard identification Non-Hazard	□ Poison B □ UI	☐ Unknown ☐ Return To Client	Disposal By Lab	(A fee may be a: (A fee may be a: Months longer than 1 mc	(A fee may be assessed if samples are retained longer than 1 month)
Tum Around Time Required 24 Hours		Other	OC Requirements (Specify)	孙	
dBy	7	Date // // / Time	1. Received By	Jag .	Type Time
2. Relinquished By A		Date Time	2. Hecarearies &	JA JA	Date Time
3. Relinquished By (7	Date Time	3. Received By		Date Time
4 Comments				N.	一大

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Resource Control Associates, Inc.

Job Number: 480-57320-1

Login Number: 57320 List Source: TestAmerica Buffalo

List Number: 1

Creator: Wienke, Robert K

ordator. Worke, Robert R		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	No dates listed for samples 25-29. Taken from bottles
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

J

5

6

8

46

46

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-57320-3

Client Project/Site: 7131A Rhode Island

For:

Resource Control Associates, Inc. 474 Broadway
Pawtucket, Rhode Island 02860

Attn: Ms. Danielle Eastman-Getsinger

Authorized for release by: 4/14/2014 2:43:04 PM

Steve Hartmann, Service Center Manager (413)572-4000

steve.hartmann@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	12
QC Association Summary	20
Lab Chronicle	23
Certification Summary	24
Method Summary	25
Sample Summary	26
Chain of Custody	27
Receipt Checklists	30

5

	0	

E

Definitions/Glossary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-3

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

LCS or LCSD exceeds the control limits

GC/MS Semi VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CNF** Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration MDA Minimum detectable activity **Estimated Detection Limit EDL** MDC Minimum detectable concentration

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

Not detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

Quality Control QC **RER** Relative error ratio

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TFF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Case Narrative

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-3

Job ID: 480-57320-3

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-57320-3

Comments

No additional comments.

Receipt

The samples were received on 4/5/2014 2:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.8° C.

GC/MS VOA

Method(s) 8260C: The laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) for batch 174570 recovered outside control limits for the following analytes: Bromomethane, Dichlorodifluoromethane, Trichlorofluoromethane and Vinyl Chloride. These were not requested spike compounds; therefore, the data have been qualified and reported.

No other analytical or quality issues were noted.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

3

4

5

6

7

8

4.0

11

13

14

Detection Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Client Sample ID: DISPOSAL

TestAmerica Job ID: 480-57320-3

Lab Sample ID: 480-57320-29

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Free Liquid	passed				mL/100g	1	_	9095B	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methyl acetate	120		53	25	ug/Kg	1	₩	8260C	Total/NA
2-Methylnaphthalene	27	J	200	2.4	ug/Kg	1	₩	8270D	Total/NA
Acenaphthene	48	J	200	2.3	ug/Kg	1	₩	8270D	Total/NA
Acenaphthylene	40	J	200	1.6	ug/Kg	1	₩	8270D	Total/NA
Anthracene	110	J	200	5.0	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]anthracene	560		200	3.4	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	460		200	4.7	ug/Kg	1	₽	8270D	Total/NA
Benzo[b]fluoranthene	710		200	3.8	ug/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	200		200	2.4	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	220		200	2.2	ug/Kg	1	₽	8270D	Total/NA
Carbazole	38	J	200	2.3	ug/Kg	1	₩	8270D	Total/NA
Chrysene	570		200	2.0	ug/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	70	J	200	2.3	ug/Kg	1	₩	8270D	Total/NA
Dibenzofuran	27	J	200	2.0	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	1100		200	2.8	ug/Kg	1	₩	8270D	Total/NA
Fluorene	35	J	200	4.5	ug/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	190	J	200	5.4	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	95	J	200	3.3	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	530		200	4.1	ug/Kg	1	₩	8270D	Total/NA
Pyrene	820		200	1.3	ug/Kg	1	₽	8270D	Total/NA
Diesel Range Organics [C10-C28]	21		20	5.9	mg/Kg	1	₩	8015D	Total/NA
Arsenic	2.8		2.1	0.42	mg/Kg	1		6010C	Total/NA
Barium	21		0.52	0.11	mg/Kg	1		6010C	Total/NA
Cadmium	0.053	J	0.21	0.031	mg/Kg	1		6010C	Total/NA
Chromium	370		0.52	0.21	mg/Kg	1		6010C	Total/NA
Lead	49		1.0	0.25	mg/Kg	1		6010C	Total/NA
Selenium	0.49	J	4.2	0.42	mg/Kg	1		6010C	Total/NA
Hg	0.51		0.020	0.0079	mg/Kg	1		7471B	Total/NA
Analyte	Result	Qualifier	RL	RL		Dil Fac	D	Method	Prep Type
Flashpoint	>176.0		50.0	50.0	Degrees F	1	_	1010	Total/NA
pH	5.76		0.100	0.100	SU	1		9045C	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-3

Client Sample ID: DISPOSAL

Lab Sample ID: 480-57320-29 Date Collected: 04/03/14 14:20 Matrix: Solid Date Received: 04/05/14 02:00

Percent Solids: 84.2

Analyte	Compounds Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
,1,1-Trichloroethane	ND		53	15	ug/Kg	<u></u>	04/08/14 20:03	04/09/14 12:06	
,1,2,2-Tetrachloroethane	ND		53	8.7	ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
,1,2-Trichloro-1,2,2-trifluoroethane	ND		53	27	ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
,1,2-Trichloroethane	ND		53	11	ug/Kg	 \$	04/08/14 20:03	04/09/14 12:06	
,1-Dichloroethane	ND		53		ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
,1-Dichloroethene	ND		53		ug/Kg	₩	04/08/14 20:03	04/09/14 12:06	
,2,4-Trichlorobenzene	ND		53		ug/Kg		04/08/14 20:03	04/09/14 12:06	
,2-Dibromo-3-Chloropropane	ND		53		ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
,2-Dibromoethane	ND		53		ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
,2-Dichlorobenzene	ND		53		ug/Kg		04/08/14 20:03	04/09/14 12:06	
,2-Dichloroethane	ND		53		ug/Kg ug/Kg	₩	04/08/14 20:03	04/09/14 12:06	
•	ND		53		ug/Kg ug/Kg	₩	04/08/14 20:03	04/09/14 12:06	
,2-Dichloropropane						· · · · · · · · · · · · · · · · · · ·			
,3-Dichlorobenzene	ND		53 53		ug/Kg	₩	04/08/14 20:03	04/09/14 12:06	
,4-Dichlorobenzene	ND		53 270		ug/Kg	₩	04/08/14 20:03	04/09/14 12:06	
2-Butanone (MEK)	ND		270	160	ug/Kg	¥ 	04/08/14 20:03	04/09/14 12:06	
2-Hexanone	ND		270	110	ug/Kg		04/08/14 20:03	04/09/14 12:06	
-Methyl-2-pentanone (MIBK)	ND		270	17	ug/Kg	₩.	04/08/14 20:03	04/09/14 12:06	
Acetone	ND		270	220	ug/Kg	T.	04/08/14 20:03	04/09/14 12:06	
Benzene	ND		53		ug/Kg		04/08/14 20:03	04/09/14 12:06	
Bromodichloromethane	ND		53	11	ug/Kg	*	04/08/14 20:03	04/09/14 12:06	
Bromoform	ND		53		ug/Kg		04/08/14 20:03	04/09/14 12:06	
Bromomethane	ND	*	53		ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
Carbon disulfide	ND		53		ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
Carbon tetrachloride	ND		53	14	ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
Chlorobenzene	ND		53	7.1	ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
Chloroethane	ND		53	11	ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
Chloroform	ND		53	37	ug/Kg	₩	04/08/14 20:03	04/09/14 12:06	
Chloromethane	ND		53	13	ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
sis-1,2-Dichloroethene	ND		53	15	ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
sis-1,3-Dichloropropene	ND		53	13	ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
Cyclohexane	ND		53	12	ug/Kg		04/08/14 20:03	04/09/14 12:06	
Dibromochloromethane	ND		53	26	ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
Dichlorodifluoromethane	ND	*	53	23	ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
Ethylbenzene	ND		53		ug/Kg		04/08/14 20:03	04/09/14 12:06	
sopropylbenzene	ND		53	8.0	ug/Kg	₩	04/08/14 20:03	04/09/14 12:06	
Methyl acetate	120		53		ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
Nethyl tert-butyl ether	ND		53		ug/Kg	 \$	04/08/14 20:03	04/09/14 12:06	
Methylcyclohexane	ND		53		ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
Methylene Chloride	ND		53		ug/Kg ug/Kg	₽	04/08/14 20:03	04/09/14 12:06	
Styrene	ND		53		ug/Kg ug/Kg		04/08/14 20:03	04/09/14 12:06	
etrachloroethene	ND		53		ug/Kg ug/Kg	т Ф	04/08/14 20:03	04/09/14 12:06	
						₩			
oluene	ND.		53		ug/Kg		04/08/14 20:03	04/09/14 12:06	
rans-1,2-Dichloroethene	ND		53		ug/Kg	‡	04/08/14 20:03	04/09/14 12:06	
rans-1,3-Dichloropropene	ND		53		ug/Kg	‡	04/08/14 20:03	04/09/14 12:06	
Tichloroethene	ND		53		ug/Kg	<u></u> .	04/08/14 20:03	04/09/14 12:06	
richlorofluoromethane	ND		53		ug/Kg	₩.	04/08/14 20:03	04/09/14 12:06	
/inyl chloride	ND	*	53	18	ug/Kg	≎	04/08/14 20:03	04/09/14 12:06	

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Date Collected: 04/03/14 14:20

Date Received: 04/05/14 02:00

Client Sample ID: DISPOSAL

TestAmerica Job ID: 480-57320-3

Lab Sample ID: 480-57320-29

Matrix: Solid

Percent Solids: 84.2

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		53 - 146	04/08/14 20:03	04/09/14 12:06	1
4-Bromofluorobenzene (Surr)	97		49 - 148	04/08/14 20:03	04/09/14 12:06	1

4-bromonuorobenzene (Surr)	31	43 - 140				04/06/14 20.03	04/09/14 12.00	,
Toluene-d8 (Surr)	100	50 - 149				04/08/14 20:03	04/09/14 12:06	1
		10.						
Method: 8270D - Semivolatile Organalyte	ganic Compounds (GC/M Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND -	200	43	ug/Kg		04/09/14 09:17	04/11/14 13:09	1
2,4,6-Trichlorophenol	ND	200	13 (ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
2,4-Dichlorophenol	ND	200	10 (ug/Kg	₩	04/09/14 09:17	04/11/14 13:09	1
2,4-Dimethylphenol	ND	200	53 (ug/Kg		04/09/14 09:17	04/11/14 13:09	1
2,4-Dinitrophenol	ND	380	69 (ug/Kg	₩	04/09/14 09:17	04/11/14 13:09	1
2,4-Dinitrotoluene	ND	200	30	ug/Kg	₩	04/09/14 09:17	04/11/14 13:09	1
2,6-Dinitrotoluene	ND	200	48 (ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
2-Chloronaphthalene	ND	200	13 (ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
2-Chlorophenol	ND	200	10	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
2-Methylnaphthalene	27 J	200	2.4	ug/Kg	φ	04/09/14 09:17	04/11/14 13:09	1
2-Methylphenol	ND	200	6.0	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
2-Nitroaniline	ND	380	63	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
2-Nitrophenol	ND	200	9.0	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
3,3'-Dichlorobenzidine	ND	200	170	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
3-Nitroaniline	ND	380	45 (ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
4,6-Dinitro-2-methylphenol	ND	380	68 (ug/Kg	\$	04/09/14 09:17	04/11/14 13:09	1
4-Bromophenyl phenyl ether	ND	200	62 (ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
4-Chloro-3-methylphenol	ND	200	8.1	ug/Kg	₩	04/09/14 09:17	04/11/14 13:09	1
4-Chloroaniline	ND	200	58 (ug/Kg	\$	04/09/14 09:17	04/11/14 13:09	1
4-Chlorophenyl phenyl ether	ND	200	4.2	ug/Kg	₩	04/09/14 09:17	04/11/14 13:09	1
4-Methylphenol	ND	380	11 (ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
4-Nitroaniline	ND	380	22 1	ug/Kg	\$	04/09/14 09:17	04/11/14 13:09	1
4-Nitrophenol	ND	380	48 ।	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
Acenaphthene	48 J	200	2.3	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
Acenaphthylene	40 J	200	1.6	ug/Kg	\$	04/09/14 09:17	04/11/14 13:09	1
Acetophenone	ND	200	10	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
Anthracene	110 J	200	5.0	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
Atrazine	ND	200	8.7	ug/Kg	\$	04/09/14 09:17	04/11/14 13:09	1
Benzaldehyde	ND	200	22 (ug/Kg	₩	04/09/14 09:17	04/11/14 13:09	1
Benzo[a]anthracene	560	200	3.4	ug/Kg	₩	04/09/14 09:17	04/11/14 13:09	1
Benzo[a]pyrene	460	200	4.7	ug/Kg	‡	04/09/14 09:17	04/11/14 13:09	1
Benzo[b]fluoranthene	710	200	3.8	ug/Kg	₩	04/09/14 09:17	04/11/14 13:09	1
Benzo[g,h,i]perylene	200	200	2.4	ug/Kg	₩	04/09/14 09:17	04/11/14 13:09	1
Benzo[k]fluoranthene	220	200	2.2	ug/Kg	‡	04/09/14 09:17	04/11/14 13:09	1
Biphenyl	ND	200	12 (ug/Kg	₩	04/09/14 09:17	04/11/14 13:09	1
bis (2-chloroisopropyl) ether	ND	200	20 (ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
Bis(2-chloroethoxy)methane	ND	200	11 (ug/Kg	.	04/09/14 09:17	04/11/14 13:09	1
Bis(2-chloroethyl)ether	ND	200	17	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
Bis(2-ethylhexyl) phthalate	ND	200	63	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
Butyl benzyl phthalate	ND	200	53 (ug/Kg	\$	04/09/14 09:17	04/11/14 13:09	1
Caprolactam	ND	200	85 (ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
Carbazole	38 J	200	2.3	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	1
Chrysene	570	200	2.0	ug/Kg	‡	04/09/14 09:17	04/11/14 13:09	1
Dibenz(a,h)anthracene	70 J	200	0.0	ug/Kg	₩	04/09/14 09:17	04/11/14 13:09	1

TestAmerica Buffalo

Page 7 of 30

4/14/2014

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-3

Client Sample ID: DISPOSAL

Lab Sample ID: 480-57320-29

Matrix: Solid

Date Collected: 04/03/14 14:20 Date Received: 04/05/14 02:00

Tetrachloro-m-xylene

Percent Solids: 84.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dibenzofuran	27	J	200	2.0	ug/Kg		04/09/14 09:17	04/11/14 13:09	
Diethyl phthalate	ND		200	5.9	ug/Kg	\$	04/09/14 09:17	04/11/14 13:09	
Dimethyl phthalate	ND		200	5.1	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	
Di-n-butyl phthalate	ND		200	68	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	
Di-n-octyl phthalate	ND		200	4.6	ug/Kg		04/09/14 09:17	04/11/14 13:09	
Fluoranthene	1100		200	2.8	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	
Fluorene	35	J	200	4.5	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	
Hexachlorobenzene	ND		200	9.7	ug/Kg		04/09/14 09:17	04/11/14 13:09	
Hexachlorobutadiene	ND		200	10	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	
Hexachlorocyclopentadiene	ND		200	59	ug/Kg	₩	04/09/14 09:17	04/11/14 13:09	
Hexachloroethane	ND		200	15	ug/Kg		04/09/14 09:17	04/11/14 13:09	
Indeno[1,2,3-cd]pyrene	190	J	200	5.4		₽	04/09/14 09:17	04/11/14 13:09	
Isophorone	ND		200	9.8	ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	
Naphthalene	95		200	3.3			04/09/14 09:17	04/11/14 13:09	· · · · · · .
Nitrobenzene	ND	-	200	8.7		☼	04/09/14 09:17	04/11/14 13:09	
N-Nitrosodi-n-propylamine	ND		200		ug/Kg	☼	04/09/14 09:17	04/11/14 13:09	
N-Nitrosodiphenylamine	ND		200		ug/Kg		04/09/14 09:17	04/11/14 13:09	
Pentachlorophenol	ND.		380	67		₽	04/09/14 09:17	04/11/14 13:09	
Phenanthrene	530		200	4.1	0 0	₽	04/09/14 09:17	04/11/14 13:09	
Phenol	ND		200	21	ug/Kg		04/09/14 09:17	04/11/14 13:09	
Pyrene	820		200		ug/Kg	₽	04/09/14 09:17	04/11/14 13:09	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	105		39 - 146				04/09/14 09:17	04/11/14 13:09	
2-Fluorobiphenyl	103		37 - 120				04/09/14 09:17	04/11/14 13:09	
2-Fluorophenol (Surr)	95		18 - 120				04/09/14 09:17	04/11/14 13:09	
Nitrobenzene-d5 (Surr)	95		34 - 132				04/09/14 09:17	04/11/14 13:09	
Phenol-d5 (Surr)	95		11 - 120				04/09/14 09:17	04/11/14 13:09	
p-Terphenyl-d14 (Surr)	98		65 - 153				04/09/14 09:17	04/11/14 13:09	
Method: 8015D - Diesel Range O	rganics (DRO)	(GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics [C10-C28]	21		20	5.9	mg/Kg	<u></u>	04/09/14 09:42	04/10/14 00:13	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	90		48 - 125				04/09/14 09:42	04/10/14 00:13	
Method: 8082A - Polychlorinated	l Binhenvis (Pi	CBs) by Gas	s Chromatogra	nhv					
Analyte		Qualifier	RL	-	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		0.23		mg/Kg	<u> </u>	04/10/14 15:16	04/11/14 22:12	
PCB-1221	ND		0.23		mg/Kg	₽	04/10/14 15:16	04/11/14 22:12	
PCB-1232	ND		0.23		mg/Kg	₽	04/10/14 15:16	04/11/14 22:12	
PCB-1242	ND		0.23		mg/Kg		04/10/14 15:16	04/11/14 22:12	
PCB-1248	ND		0.23		mg/Kg	₩	04/10/14 15:16	04/11/14 22:12	
PCB-1254	ND		0.23		mg/Kg	₽	04/10/14 15:16	04/11/14 22:12	
PCB-1260	ND		0.23	0.11			04/10/14 15:16	04/11/14 22:12	
PCB-1262	ND ND		0.23	0.11		₽	04/10/14 15:16	04/11/14 22:12	
PCB-1268	ND ND		0.23		mg/Kg	₽	04/10/14 15:16	04/11/14 22:12	
Starra mate	0/ 0	Ouglië:	1 imit-		-		Dwan	Amal:	D:: F
Surrogate	%Recovery	Quantier	Limits				Prepared	Analyzed	Dil Fa

TestAmerica Buffalo

46 - 175

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Date Collected: 04/03/14 14:20

Date Received: 04/05/14 02:00

Client Sample ID: DISPOSAL

TestAmerica Job ID: 480-57320-3

Lab Sample ID: 480-57320-29

Matrix: Solid

Percent Solids: 84.2

Method: 80824	- Polychlorinated Binhenyl	s (PCBs) by Gas Ch	romatography (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	111		47 - 176	04/10/14 15:16	04/11/14 22:12	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.8		2.1	0.42	mg/Kg		04/08/14 16:20	04/10/14 12:25	1
Barium	21		0.52	0.11	mg/Kg		04/08/14 16:20	04/10/14 12:25	1
Cadmium	0.053	J	0.21	0.031	mg/Kg		04/08/14 16:20	04/10/14 12:25	1
Chromium	370		0.52	0.21	mg/Kg		04/08/14 16:20	04/10/14 12:25	1
Lead	49		1.0	0.25	mg/Kg		04/08/14 16:20	04/10/14 12:25	1
Selenium	0.49	J	4.2	0.42	mg/Kg		04/08/14 16:20	04/10/14 12:25	1
Silver	ND		0.63	0.21	mg/Kg		04/08/14 16:20	04/10/14 12:25	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	0.51		0.020	0.0079	mg/Kg		04/09/14 12:00	04/09/14 16:06	1

General Chemistry									
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Free Liquid	passed				mL/100g			04/08/14 18:35	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Reactive	ND		10	0.0030	mg/Kg		04/10/14 00:30	04/10/14 10:26	1
Sulfide, Reactive	ND		10	0.57	mg/Kg		04/10/14 07:33	04/10/14 08:20	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Flashpoint	>176.0		50.0	50.0	Degrees F			04/11/14 15:15	1
рН	5.76		0.100	0.100	SU			04/09/14 17:15	1

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

				Percent Surrog	ate Recovery (Acceptance Limits)
		12DCE	BFB	TOL	
_ab Sample ID	Client Sample ID	(53-146)	(49-148)	(50-149)	
480-57320-29	DISPOSAL	101	97	100	
LCS 480-174570/1-A	Lab Control Sample	103	96	94	
MB 480-174570/2-A	Method Blank	107	101	99	

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Li						
		ТВР	FBP	2FP	NBZ	PHL	TPH	
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(11-120)	(65-153)	
480-57320-29	DISPOSAL	105	103	95	95	95	98	
LCS 480-174663/2-A	Lab Control Sample	103	97	84	92	85	102	
MB 480-174663/1-A	Method Blank	87	97	86	86	90	105	

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = p-Terphenyl-d14 (Surr)

Method: 8015D - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		ОТРН	
Lab Sample ID	Client Sample ID	(48-125)	
480-57320-29	DISPOSAL	90	
LCS 480-174686/2-A	Lab Control Sample	91	
LCSD 480-174686/3-A	Lab Control Sample Dup	92	
MB 480-174686/1-A	Method Blank	86	
Surrogate Legend			
OTPH = o-Terphenyl			

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(46-175)	(47-176)	
480-57320-29	DISPOSAL	106	111	
LCS 480-175027/2-A	Lab Control Sample	114	130	
MB 480-175027/1-A	Method Blank	104	115	

Page 10 of 30

Surrogate Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-3

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

3

7

10

11

13

14

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-174570/2-A

Matrix: Solid

Xylenes, Total

Analysis Batch: 174648

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 174570

-	MB	MB						Prep Batc				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
1,1,1-Trichloroethane	ND		94	26	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
1,1,2,2-Tetrachloroethane	ND		94	15	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		94	47	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
1,1,2-Trichloroethane	ND		94	20	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
1,1-Dichloroethane	ND		94	29	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
1,1-Dichloroethene	ND		94	33	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
1,2,4-Trichlorobenzene	ND		94	36	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
1,2-Dibromo-3-Chloropropane	ND		94	47	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
1,2-Dibromoethane	ND		94	16	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
1,2-Dichlorobenzene	ND		94	24	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
1,2-Dichloroethane	ND		94	38	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
1,2-Dichloropropane	ND		94	15	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
1,3-Dichlorobenzene	ND		94	25	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
1,4-Dichlorobenzene	ND		94		ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
2-Butanone (MEK)	ND		470	280	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
2-Hexanone	ND		470	190	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
4-Methyl-2-pentanone (MIBK)	ND		470	30	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Acetone	ND		470	390	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Benzene	ND		94		ug/Kg		04/08/14 20:03	04/09/14 11:30	 1			
Bromodichloromethane	ND		94		ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Bromoform	ND		94		ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Bromomethane	ND		94		ug/Kg		04/08/14 20:03	04/09/14 11:30				
Carbon disulfide	ND		94		ug/Kg ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Carbon tetrachloride	ND ND		94		ug/Kg ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Chlorobenzene	ND		94				04/08/14 20:03	04/09/14 11:30				
Chloroethane	ND ND		94		ug/Kg ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Chloroform	ND ND		94				04/08/14 20:03	04/09/14 11:30	1			
					ug/Kg							
Chloromethane	ND		94		ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
cis-1,2-Dichloroethene	ND		94		ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
cis-1,3-Dichloropropene	ND		94		ug/Kg		04/08/14 20:03	04/09/14 11:30				
Cyclohexane	ND		94		ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Dibromochloromethane	ND		94		ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Dichlorodifluoromethane	ND		94		ug/Kg		04/08/14 20:03	04/09/14 11:30				
Ethylbenzene	ND		94		ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Isopropylbenzene	ND		94		ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Methyl acetate	ND		94		ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Methyl tert-butyl ether	ND		94	36	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Methylcyclohexane	ND		94		ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Methylene Chloride	ND		94	19	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Styrene	ND		94	23	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Tetrachloroethene	ND		94	13	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Toluene	ND		94	25	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
trans-1,2-Dichloroethene	ND		94	22	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
trans-1,3-Dichloropropene	ND		94	9.2	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Trichloroethene	ND		94	26	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Trichlorofluoromethane	ND		94	44	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
Vinyl chloride	ND		94	31	ug/Kg		04/08/14 20:03	04/09/14 11:30	1			
=												

TestAmerica Buffalo

04/09/14 11:30

04/08/14 20:03

Page 12 of 30

190

16 ug/Kg

ND

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-174570/2-A

Lab Sample ID: LCS 480-174570/1-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 174648

Analysis Batch: 174648

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 174570

	MB M	В	
Surrogate	%Recovery Q	ualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107		53 - 146
4-Bromofluorobenzene (Surr)	101		49 - 148
Toluene-d8 (Surr)	99		50 - 149

rrepareu	Allalyzeu	DII Fac
04/08/14 20:03	04/09/14 11:30	1
04/08/14 20:03	04/09/14 11:30	1
04/08/14 20:03	04/09/14 11:30	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 174570

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	2490	2210		ug/Kg		89	82 - 138	
1,1-Dichloroethene	2490	1830		ug/Kg		73	54 _ 144	
1,2-Dichlorobenzene	2490	2420		ug/Kg		97	80 _ 132	
1,2-Dichloroethane	2490	2290		ug/Kg		92	78 - 129	
Benzene	2490	2220		ug/Kg		89	75 _ 131	
Chlorobenzene	2490	2290		ug/Kg		92	80 - 127	
cis-1,2-Dichloroethene	2490	2210		ug/Kg		89	79 ₋ 128	
Ethylbenzene	2490	2220		ug/Kg		89	78 - 136	
Methyl tert-butyl ether	2490	2400		ug/Kg		97	67 - 137	
Tetrachloroethene	2490	2110		ug/Kg		85	72 ₋ 141	
Toluene	2490	2100		ug/Kg		84	76 - 133	
trans-1,2-Dichloroethene	2490	2000		ug/Kg		81	81 ₋ 147	
Trichloroethene	2490	2110		ug/Kg		85	77 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		53 - 146
4-Bromofluorobenzene (Surr)	96		49 - 148
Toluene-d8 (Surr)	94		50 - 149

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-174663/1-A

Matrix: Solid

Analysis Batch: 175108

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 174663

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		170	36	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2,4,6-Trichlorophenol	ND		170	11	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2,4-Dichlorophenol	ND		170	8.7	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2,4-Dimethylphenol	ND		170	45	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2,4-Dinitrophenol	ND		330	58	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2,4-Dinitrotoluene	ND		170	26	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2,6-Dinitrotoluene	ND		170	41	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2-Chloronaphthalene	ND		170	11	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2-Chlorophenol	ND		170	8.5	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2-Methylnaphthalene	ND		170	2.0	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2-Methylphenol	ND		170	5.1	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
2-Nitroaniline	ND		330	53	ug/Kg		04/09/14 09:17	04/11/14 10:41	1

TestAmerica Buffalo

Page 13 of 30

4/14/2014

QC Sample Results

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-3

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-174663/1-A

Matrix: Solid

Analysis Batch: 175108

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 174663

	MB MB					_		
Analyte	Result Qual		MDL		D	Prepared	Analyzed	Dil Fac
2-Nitrophenol	ND	170	7.6	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
3,3'-Dichlorobenzidine	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
3-Nitroaniline	ND	330		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
4,6-Dinitro-2-methylphenol	ND	330		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
4-Bromophenyl phenyl ether	ND	170	53	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
4-Chloro-3-methylphenol	ND	170	6.9	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
4-Chloroaniline	ND	170	49	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
4-Chlorophenyl phenyl ether	ND	170	3.6	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
4-Methylphenol	ND	330	9.3	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
4-Nitroaniline	ND	330	19	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
4-Nitrophenol	ND	330	40	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Acenaphthene	ND	170	2.0	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Acenaphthylene	ND	170	1.4	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Acetophenone	ND	170	8.6	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Anthracene	ND	170	4.3	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Atrazine	ND	170	7.4	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzaldehyde	ND	170	18	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzo[a]anthracene	ND	170	2.9	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzo[a]pyrene	ND	170	4.0	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzo[b]fluoranthene	ND	170	3.2	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzo[g,h,i]perylene	ND	170	2.0	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Benzo[k]fluoranthene	ND	170	1.8	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Biphenyl	ND	170	10	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
bis (2-chloroisopropyl) ether	ND	170	17	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Bis(2-chloroethoxy)methane	ND	170	9.1	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Bis(2-chloroethyl)ether	ND	170	14	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Bis(2-ethylhexyl) phthalate	ND	170	54	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Butyl benzyl phthalate	ND	170	45	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Caprolactam	ND	170	72	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Carbazole	ND	170	1.9	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Chrysene	ND	170	1.7	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Dibenz(a,h)anthracene	ND	170	2.0	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Dibenzofuran	ND	170	1.7	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Diethyl phthalate	ND	170	5.0	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Dimethyl phthalate	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Di-n-butyl phthalate	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Di-n-octyl phthalate	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Fluoranthene	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Fluorene	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Hexachlorobenzene	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	· · · · · · · · · · · · · · · · · · ·
Hexachlorobutadiene	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Hexachlorocyclopentadiene	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Hexachloroethane	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	
Indeno[1,2,3-cd]pyrene	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Isophorone	ND	170		ug/Kg ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Naphthalene	ND	170		ug/Kg		04/09/14 09:17	04/11/14 10:41	
Nitrobenzene	ND ND	170		ug/Kg ug/Kg		04/09/14 09:17	04/11/14 10:41	1
N-Nitrosodi-n-propylamine	ND ND	170		ug/Kg ug/Kg		04/09/14 09:17	04/11/14 10:41	1

TestAmerica Buffalo

Page 14 of 30

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 480-174663/1-A

Matrix: Solid

Analysis Batch: 175108

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 174663

	····D	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Nitrosodiphenylamine	ND		170	9.1	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Pentachlorophenol	ND		330	57	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Phenanthrene	ND		170	3.5	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Phenol	ND		170	18	ug/Kg		04/09/14 09:17	04/11/14 10:41	1
Pyrene	ND		170	1.1	ug/Kg		04/09/14 09:17	04/11/14 10:41	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	87		39 - 146	04/09/14 09:17	04/11/14 10:41	1
2-Fluorobiphenyl	97		37 - 120	04/09/14 09:17	04/11/14 10:41	1
2-Fluorophenol (Surr)	86		18 - 120	04/09/14 09:17	04/11/14 10:41	1
Nitrobenzene-d5 (Surr)	86		34 - 132	04/09/14 09:17	04/11/14 10:41	1
Phenol-d5 (Surr)	90		11 - 120	04/09/14 09:17	04/11/14 10:41	1
p-Terphenyl-d14 (Surr)	105		65 - 153	04/09/14 09:17	04/11/14 10:41	1

Lab Sample ID: LCS 480-174663/2-A

Matrix: Solid

Analysis Batch: 175108

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 174663

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-Dinitrotoluene	3240	3320		ug/Kg		102	55 - 125	
2-Chlorophenol	3240	2670		ug/Kg		82	38 _ 120	
4-Chloro-3-methylphenol	3240	3230		ug/Kg		99	49 _ 125	
4-Nitrophenol	6490	7170		ug/Kg		110	43 - 137	
Acenaphthene	3240	3140		ug/Kg		97	53 _ 120	
Atrazine	3240	3220		ug/Kg		99	60 - 164	
Bis(2-ethylhexyl) phthalate	3240	3300		ug/Kg		102	61 _ 133	
Fluorene	3240	3180		ug/Kg		98	63 _ 126	
Hexachloroethane	3240	2570		ug/Kg		79	41 - 120	
N-Nitrosodi-n-propylamine	3240	2790		ug/Kg		86	46 - 120	
Pentachlorophenol	6490	6570		ug/Kg		101	33 _ 136	
Phenol	3240	2680		ug/Kg		83	36 _ 120	
Pyrene	3240	3170		ug/Kg		98	51 ₋ 133	

LCS	LCS
overv	Ousl

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	103		39 - 146
2-Fluorobiphenyl	97		37 - 120
2-Fluorophenol (Surr)	84		18 - 120
Nitrobenzene-d5 (Surr)	92		34 - 132
Phenol-d5 (Surr)	85		11 - 120
p-Terphenyl-d14 (Surr)	102		65 ₋ 153

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

[C10-C28]

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 480-174686/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 174716 Prep Batch: 174686

мв мв Result Qualifier RLMDL Unit D Prepared Dil Fac Analyte Analyzed

16 04/09/14 09:42 Diesel Range Organics [C10-C28] ND 4.9 mg/Kg 04/09/14 19:09

MB MB Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 48 - 125 04/09/14 09:42 o-Terphenyl 86 04/09/14 19:09

Lab Sample ID: LCS 480-174686/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 174716 Prep Batch: 174686 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Limits Unit %Rec 49.9 87 63 _ 127 Diesel Range Organics 43.4 mg/Kg

LCS LCS Surrogate %Recovery Qualifier Limits

o-Terphenyl 91 48 - 125

Lab Sample ID: LCSD 480-174686/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 174716 Prep Batch: 174686 Spike LCSD LCSD **RPD**

Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Diesel Range Organics 49 2 42.8 mg/Kg 87 63 _ 127 35 [C10-C28]

LCSD LCSD %Recovery Qualifier Limits Surrogate

48 - 125 o-Terphenyl 92

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-175027/1-A Client Sample ID: Method Blank **Matrix: Solid**

Prep Type: Total/NA Analysis Batch: 175178 **Prep Batch: 175027** MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac PCB-1016 ND 0.21 0.040 mg/Kg 04/10/14 15:16 04/11/14 19:01 PCB-1221 ND 0.21 04/10/14 15:16 04/11/14 19:01 0.040 mg/Kg PCB-1232 ND 0.21 0.040 mg/Kg 04/10/14 15:16 04/11/14 19:01 PCB-1242 ND 0.21 0.040 mg/Kg 04/10/14 15:16 04/11/14 19:01 PCB-1248 ND 0.21 0.040 mg/Kg 04/10/14 15:16 04/11/14 19:01 PCB-1254 ND 0.21 04/10/14 15:16 04/11/14 19:01 0.096 mg/Kg PCB-1260 ND 0.21 0.096 mg/Kg 04/10/14 15:16 04/11/14 19:01 PCB-1262 ND 0.21 0.096 mg/Kg 04/10/14 15:16 04/11/14 19:01 PCB-1268 ND 0.21 0.096 mg/Kg 04/10/14 15:16 04/11/14 19:01

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Tetrachloro-m-xylene 104 46 - 175 04/10/14 15:16 04/11/14 19:01 DCB Decachlorobiphenyl 115 47 - 176 04/10/14 15:16 04/11/14 19:01

TestAmerica Buffalo

4/14/2014

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 480-175027/2-A

Matrix: Solid

Surrogate

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

Analysis Batch: 175178

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 175027

	эріке	LUS	LUS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	 2.27	2.93		mg/Kg		129	51 - 185	
PCB-1260	2.27	3.20		mg/Kg		141	61 - 184	

100 100

Cnika

LCS LCS %Recovery Qualifier Limits 114 46 - 175 130 47 - 176

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-174370/1-A

Matrix: Solid Analysis Batch: 175136

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 174370

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.9	0.39	mg/Kg		04/08/14 16:20	04/10/14 11:29	1
Barium	ND		0.48	0.11	mg/Kg		04/08/14 16:20	04/10/14 11:29	1
Cadmium	ND		0.19	0.029	mg/Kg		04/08/14 16:20	04/10/14 11:29	1
Chromium	ND		0.48	0.19	mg/Kg		04/08/14 16:20	04/10/14 11:29	1
Lead	ND		0.97	0.23	mg/Kg		04/08/14 16:20	04/10/14 11:29	1
Selenium	ND		3.9	0.39	mg/Kg		04/08/14 16:20	04/10/14 11:29	1
Silver	ND		0.58	0.19	mg/Kg		04/08/14 16:20	04/10/14 11:29	1

Lab Sample ID: LCSSRM 480-174370/2-A

Matrix: Solid

Analysis Batch: 175136

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 175136	Spike	LCSSRM	LCSSRM				Prep Batch: %Rec.	174370
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	88.6	86.6	-	mg/Kg		97.7	69.0 - 131.	
Barium	210	194		mg/Kg		92.3	2 73.3 - 126.	
Cadmium	143	132		mg/Kg		92.4	72.7 - 127. 3	
Chromium	87.0	80.2		mg/Kg		92.3	69.1 _{- 131.}	
Lead	98.1	97.1		mg/Kg		99.0	70.8 _{- 128.}	
Selenium	127	122		mg/Kg		95.5	66.6 - 133. 9	
Silver	66.3	62.9		mg/Kg		94.8	67.1 _{- 132.}	

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Lab Sample ID: MB 480-174619/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 174789 **Prep Batch: 174619**

мв мв

мв мв

Qualifier

Result

ND

Result Qualifier RL MDL Unit D Prepared Dil Fac Analyte Analyzed 0.018 0.0074 mg/Kg 04/09/14 12:00 Hg ND 04/09/14 15:17

Lab Sample ID: LCSSRM 480-174619/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 174789

Spike LCSSRM LCSSRM Analyte Added Result Qualifier Unit %Rec Limits Hg 3.77 3.44 mg/Kg 91.2 50.9 - 149.

1

Method: 1010 - Ignitability, Pensky-Martens Closed-Cup Method

Lab Sample ID: LCS 480-175100/1 Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

RL

10

MDL Unit

mg/Kg

0.0030

203

Analysis Batch: 175100

Spike LCS LCS %Rec. Added Result Qualifier %Rec Limits Analyte D Unit 81.0 Flashpoint 81.00 Degrees F 100 97.5 - 102.

5

Method: 9012 - Cyanide, Reactive

Lab Sample ID: MB 480-174856/1-A

Matrix: Solid

Cyanide, Reactive

Analyte

Analysis Batch: 174966

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 174856

Prep Batch: 174619

Analyzed Dil Fac

04/10/14 10:26

Lab Sample ID: LCS 480-174856/2-A

Method: 9034 - Sulfide, Reactive

Matrix: Solid

Cyanide, Reactive

Analysis Batch: 174966

Client Sample ID: Lab Control Sample Prep Type: Total/NA

10 - 100

Prepared

04/10/14 00:30

20

Prep Batch: 174856

Prep Batch: 174864

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits

1000

Lab Sample ID: MB 480-174864/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 174962

MB MB Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac 04/10/14 07:33 Sulfide, Reactive ND 10 0.57 mg/Kg 04/10/14 08:20

mg/Kg

TestAmerica Buffalo

QC Sample Results

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-3

Method: 9034 - Sulfide, Reactive (Continued)

Lab Sample ID: LCS 480-174864/2-A

Matrix: Solid

Analysis Batch: 174962

Spike

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 174864

%Rec.

 Analyte
 Added Sulfide, Reactive
 Result 1000
 Result Result 822
 Unit mg/Kg
 D %Rec Limits 10 - 100

Method: 9045C - pH

Lab Sample ID: LCS 480-174815/1

Matrix: Solid

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 174815

Spike LCS LCS

 Analyte
 Added pH
 Result 7.00
 Qualifier 7.00
 Unit SU
 D SU
 MRec Limits 100
 Limits 100
 PB - 101

8

46

44

12

4 4

QC Association Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-3

GC/MS VOA

Pre	рΒ	atc	h: 1	174570
-----	----	-----	------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	5035A	
LCS 480-174570/1-A	Lab Control Sample	Total/NA	Solid	5035A	
MB 480-174570/2-A	Method Blank	Total/NA	Solid	5035A	

Analysis Batch: 174648

Lab S	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-5	7320-29	DISPOSAL	Total/NA	Solid	8260C	174570
LCS 4	480-174570/1-A	Lab Control Sample	Total/NA	Solid	8260C	174570
MB 48	80-174570/2-A	Method Blank	Total/NA	Solid	8260C	174570

GC/MS Semi VOA

Prep Batch: 174663

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	480-57320-29	DISPOSAL	Total/NA	Solid	3550C	
	LCS 480-174663/2-A	Lab Control Sample	Total/NA	Solid	3550C	
Į	MB 480-174663/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 175108

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	8270D	174663
LCS 480-174663/2-A	Lab Control Sample	Total/NA	Solid	8270D	174663
MB 480-174663/1-A	Method Blank	Total/NA	Solid	8270D	174663

GC Semi VOA

Prep Batch: 174686

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	3550C	
LCS 480-174686/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 480-174686/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
MB 480-174686/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 174716

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	8015D	174686
LCS 480-174686/2-A	Lab Control Sample	Total/NA	Solid	8015D	174686
LCSD 480-174686/3-A	Lab Control Sample Dup	Total/NA	Solid	8015D	174686
MB 480-174686/1-A	Method Blank	Total/NA	Solid	8015D	174686

Prep Batch: 175027

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	3550C	
LCS 480-175027/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-175027/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 175178

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch		
480-57320-29	DISPOSAL	Total/NA	Solid	8082A	175027		
LCS 480-175027/2-A	Lab Control Sample	Total/NA	Solid	8082A	175027		

TestAmerica Buffalo

Page 20 of 30

QC Association Summary

Client: Resource Control Associates, Inc.

TestAmerica Job ID: 480-57320-3

Project/Site: 7131A Rhode Island	
----------------------------------	--

Analysis	Batch:	175178	(Continued)	١

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-175027/1-A	Method Blank	Total/NA	Solid	8082A	175027

Metals

Prep Batch: 174370

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	3050B	
LCSSRM 480-174370/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-174370/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 174619

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	7471B	
LCSSRM 480-174619/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-174619/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 174789

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	7471B	174619
LCSSRM 480-174619/2-A	Lab Control Sample	Total/NA	Solid	7471B	174619
MB 480-174619/1-A	Method Blank	Total/NA	Solid	7471B	174619

Analysis Batch: 175136

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	6010C	174370
LCSSRM 480-174370/2-A	Lab Control Sample	Total/NA	Solid	6010C	174370
MB 480-174370/1-A	Method Blank	Total/NA	Solid	6010C	174370

General Chemistry

Analysis Batch: 174093

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	Moisture	

Analysis Batch: 174566

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	9095B	

Analysis Batch: 174815

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	9045C	
LCS 480-174815/1	Lab Control Sample	Total/NA	Solid	9045C	

Prep Batch: 174856

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	7.3.3	
LCS 480-174856/2-A	Lab Control Sample	Total/NA	Solid	7.3.3	
MB 480-174856/1-A	Method Blank	Total/NA	Solid	7.3.3	

TestAmerica Buffalo

Page 21 of 30

QC Association Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-3

General Chemistry (Continued)

Prep I	Batch: '	174864
--------	----------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	7.3.4	
LCS 480-174864/2-A	Lab Control Sample	Total/NA	Solid	7.3.4	
MB 480-174864/1-A	Method Blank	Total/NA	Solid	7.3.4	

Analysis Batch: 174962

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	9034	174864
LCS 480-174864/2-A	Lab Control Sample	Total/NA	Solid	9034	174864
MB 480-174864/1-A	Method Blank	Total/NA	Solid	9034	174864

Analysis Batch: 174966

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	9012	174856
LCS 480-174856/2-A	Lab Control Sample	Total/NA	Solid	9012	174856
MB 480-174856/1-A	Method Blank	Total/NA	Solid	9012	174856

Analysis Batch: 175100

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57320-29	DISPOSAL	Total/NA	Solid	1010	
LCS 480-175100/1	Lab Control Sample	Total/NA	Solid	1010	

Lab Chronicle

Client: Resource Control Associates, Inc.

Project/Site: 7131A Rhode Island

Client Sample ID: DISPOSAL

Date Collected: 04/03/14 14:20

Date Received: 04/05/14 02:00

TestAmerica Job ID: 480-57320-3

Lab Sample ID: 480-57320-29

Matrix: Solid

Percent Solids: 84.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			174570	04/08/14 20:03	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	174648	04/09/14 12:06	NMD1	TAL BUF
Total/NA	Prep	3550C			174663	04/09/14 09:17	CAM	TAL BUF
Total/NA	Analysis	8270D		1	175108	04/11/14 13:09	HTL	TAL BUF
Total/NA	Prep	3550C			174686	04/09/14 09:42	CAM	TAL BUF
Total/NA	Analysis	8015D		1	174716	04/10/14 00:13	DLE	TAL BUF
Total/NA	Prep	3550C			175027	04/10/14 15:16	JRL	TAL BUF
Total/NA	Analysis	8082A		1	175178	04/11/14 22:12	JMM	TAL BUF
Total/NA	Prep	3050B			174370	04/08/14 16:20	EHD	TAL BUF
Total/NA	Analysis	6010C		1	175136	04/10/14 12:25	LMH	TAL BUF
Total/NA	Prep	7471B			174619	04/09/14 12:00	LRK	TAL BUF
Total/NA	Analysis	7471B		1	174789	04/09/14 16:06	LRK	TAL BUF
Total/NA	Analysis	1010		1	175100	04/11/14 15:15	JMB	TAL BUF
Total/NA	Prep	7.3.3			174856	04/10/14 00:30	LAW	TAL BUF
Total/NA	Analysis	9012		1	174966	04/10/14 10:26	LAW	TAL BUF
Total/NA	Prep	7.3.4			174864	04/10/14 07:33	LAW	TAL BUF
Total/NA	Analysis	9034		1	174962	04/10/14 08:20	LAW	TAL BUF
Total/NA	Analysis	9045C		1	174815	04/09/14 17:15	EGS	TAL BUF
Total/NA	Analysis	9095B		1	174566	04/08/14 18:35	KJ1	TAL BUF
Total/NA	Analysis	Moisture		1	174093	04/05/14 13:49	CMK	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

6

8

11

12

1/

Certification Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-3

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Rhode Island	State Program	1	LAO00328	12-30-14

2

- - -

4

5

7

ŏ

10

4.0

13

Ľ

Method Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-3

Method	Method Description	Protocol	Laboratory
3260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
3270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
3015D	Diesel Range Organics (DRO) (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
010C	Metals (ICP)	SW846	TAL BUF
'471B	Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)	SW846	TAL BUF
010	Ignitability, Pensky-Martens Closed-Cup Method	SW846	TAL BUF
012	Cyanide, Reactive	SW846	TAL BUF
034	Sulfide, Reactive	SW846	TAL BUF
045C	pH	SW846	TAL BUF
095B	Paint Filter	SW846	TAL BUF
/loisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

6

q

TU

12

13

1

TestAmerica Buffalo

Sample Summary

Client: Resource Control Associates, Inc. Project/Site: 7131A Rhode Island

TestAmerica Job ID: 480-57320-3

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-57320-29	DISPOSAL	Solid	04/03/14 14:20	04/05/14 02:00

e

4

5

9

10

11

13

14

1200

4.5.14 Date

カトかっか

2. Received Br

Time (SSS)

A Co CR

3. Relinquished By Comments

1. Relinquished By

2. Relind

1. Rece

Sylve In Time

3. Received By

#

7

DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Copy

(A fee may be assessed if samples are retained Months longer than 1 month) THE LEADER IN ENVIRONMENTAL TESTING **[estAmerica** 1020/56 18/2014 more space is needed) × Analysis (Attach list if Single Meleck Aronic only Har-×× ☐ Disposal By Lab ☐ Archive For × × × OC Requiraments (Specify) NOANZ HOBN Containers & Preservatives HOBN Darrello Getshaper IDH Telephone Number (Area Code)/Fax Number (401 | 73% - (6<10 Lab Contact EONH ater? Yes□ No□ DOSZH nuble ☐ Unknown ☐ Return To Client e on Receipt Sample Disposa 7 $\overline{\star}$ × 1105 Carrier/Waybill Number Matrix pes Site Contact 114 Other. 1402 +081 0021 (205) रक्श 28 BOST 1823 10 M 1881 029 Time ☐ 21 Days Zip Code OPSCO 480-57320 Chain of Custody ☐ Poison B エルブ Date PESCONO CONTRO ASSECTORE ☐ 14 Days Sample I.D. No. and Description (Containers for each sample may be combined on one line) Skin Irritant That Island ☐ 7 Days THE Brooken | Flammable Contract/Purchase Order/Quote No. 10-1 (25-35) Custody Record Project Name and Location (State) Th composite ☐ 48 Hours Possible Hazard Identification Particket Tum Around Time Required Chain of Non-Hazard Page 27 of 30 5-103 5-107 201-2 5-100 24 Hours TAL-4124 (1007) Client 5-104 3-108 801-5 015

Special Instructions/ Conditions of Receipt

Page

rica	NTAL TESTING	3/14 Chain of Custody Number	ber		7250	Conditions of Receipt	Y								400	25 7		100 to	J2074	(A fee may be assessa longer than 1 month)		Date Time	71 Date Time 1000	Time
TestAmerico	THE LEADER IN ENVIRONMENTAL TESTING	Date	Lab Num	Analysis (Attach list if more space is needed)	tyno spy	mp fy		×.	×	X	×	X	×	XXX	,		×			Months	8	mail John	778	
Receipt	, Yes□ No□	Ca Manager	Telephone Number (Area Code)/Fax Number	Lab Contact	ber	Containers & Preservatives	HOBN IDH FONH FOSZH Sell	X	*	*	*	\	7	*	7	*	*	*	イ	Sample Disposal Return To Client Disposal By Lab		Time 1. Received By	0	Time 3. Received By
Temperature on Receipt	Drinking Water? Yes□	Project Manager	Telephone Number (Carrier/Waybill Number	Matrix	ite Time Air Air	1403		SIGO HI	<u> </u>	1000	1,005	1135	0.51	0.511	1155	SKI	arti,	П Опкпомп	John Med	Date CA/W/W	1	1 —
Chain of	Custody Record	Client Clinto (Chero) Assonates	Address This along	City Code	tte)	e Order/Quote No.	Sample I.D. No. and Description (Containers for each sample may be combined on one line)	h1/e/h	2-1	1/2/h (,5e-2)2- CL Pag	12-2(4.8.)	1		(12-S1) h-d	(31)	TD-5 (15-35:)	(,Sh-h) 5-dL	(2-51)9-0	TP-6 (3.51)	Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B	9 Required 7 Dans 14 Dans		2. Relinquishdd By	3. Relinquished By

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

№

Drinking Water? Yes□

Temperature on Receipt

Chain of Custody Record

TAL-4124 (1007)				And the second s	
Client		Project Manager		Date Da	Chain of Custody Number
Address Address		10	ode)/Fax Number	Lab Number	221707
Sorrovers THT		-Xx+(10h)	00%9		Page > of 5
State 2	5	Site Contact	Lab Contact	Analysis (Attach list if more space is needed)	
		Carrier/Waybill Number		men men men men men men men men men men	Special Instructions/
3		Matrix	Containers & Preservatives	2000 2000 3-100	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date Ti	Time suceuph suceuph	Unpies.	SAM SAM	
(152) +- 4	ال	13581		×	
(18-1) B-CL	1320	20 00		× × ×	
('3) X-21 Pag	1375	7 1/2		× ×	
(19-51) b-al- 2	ceh!	X		×	
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	-	1420 X		×	
 	•				
	,				
Boosito Darad Hontification		Sample Disposal			
mable 🔲 Skin Irritant	□ Poison B □ UI	☐ Unknown ☐ Return To Client	Disposal By Lab	(A fee may be a: Anothis longer than 1 mg	(A fee may be assessed it samples are relained longer than 1 month)
Tum Around Time Required 24 Hours	21 Days	Other	OC Requirements (Specify)	iń	
dBy		Date / 14 / 14 134	J. Received By	Jag .	CYCY RAGE
2. Relinquished By 24/1		Date Time	2. Heckfred By	THE THE	Date Time
3. Relinquished By (Date Time	3. Received By		Date Time
4 Comments				N.	一大

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Resource Control Associates, Inc.

Job Number: 480-57320-3

Login Number: 57320 List Source: TestAmerica Buffalo

List Number: 1

Creator: Wienke, Robert K

ordator. Worke, Robert R		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	No dates listed for samples 25-29. Taken from bottles
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

5

0

q

11

13

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-60422-1

Client Project/Site: Bay Spring Realty CO / 7131A

For:

Resource Control Associates, Inc. 474 Broadway
Pawtucket, Rhode Island 02860

Attn: Ms. Danielle Eastman-Getsinger

Riv

Authorized for release by: 6/3/2014 3:08:43 PM Rich Emerich, Analyst V rich.emerich@testamericainc.com

Designee for

Steve Hartmann, Service Center Manager (413)572-4000 steve.hartmann@testamericainc.com

Links

results through
Total Access

Review your project

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	15
Surrogate Summary	42
QC Sample Results	44
QC Association Summary	60
Lab Chronicle	68
Certification Summary	77
Method Summary	78
Sample Summary	79
Chain of Custody	80
Receipt Checklists	84

3

4

R

9

11

13

14

Definitions/Glossary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD exceeds the control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
CC/MS Somi	VOA

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F2	MS/MSD RPD exceeds control limits
В	Compound was found in the blank and sample.
*	ISTD response or retention time outside acceptable limits
X	Surrogate is outside control limits
*	LCS or LCSD exceeds the control limits
F1	MS and/or MSD Recovery exceeds the control limits
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
E	Result exceeded calibration range.

GC Semi VOA

Qualifier	Qualifier Description
X	Surrogate is outside control limits

Metals

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
۸	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.
F1	MS and/or MSD Recovery exceeds the control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Page 3 of 84

Case Narrative

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Job ID: 480-60422-1

Laboratory: TestAmerica Buffalo

Narrative

Receipt

The samples were received on 5/23/2014 at 1:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.4° C and 2.6° C.

GC/MS VOA

Method 8260C: The laboratory control sample (LCS) for batch 183935 recovered outside control limits for the following analyte: Chloroethane. This analyte was not a requested spike compound so the data have been qualified and reported.

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: Cistern Disposal (480-60422-31). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The following samples were diluted due to the nature of the sample matrix: (480-60422-31 MS), (480-60422-31 MSD) and Cistern Disposal (480-60422-31). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

Method 8270D: The matrix spike / matrix spike duplicate (MS/MSD precision for batch 183839 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8270D: The following samples were diluted due to the nature of the sample matrix: S-212 (480-60422-12) and S-213 (480-60422-13). Elevated reporting limits (RLs) are provided.

Method 8270D: Internal standard responses were outside of acceptance limits for the following samples: TP-104 (2-3') (480-60422-23), TP-104 (4) (480-60422-24), TP-105 (10') (480-60422-26), TP-105 (4-5') (480-60422-25), TP-106 (10) (480-60422-28), TP-106 (4-5') (480-60422-27), TP-107 (10') (480-60422-30) and TP-107 (5-5.5) (480-60422-29). The samples shows evidence of matrix interference. There were no detections for any target analytes associated with the failing internal standards, therefore the data has been reported.

Method 8270D: The following sample was diluted due to the nature of the sample matrix: TP-103 (4') (480-60422-22). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

Method 8270D: The continuing calibration verification (CCV) associated with batch 184350 recovered above the upper control limit for 2,4-Dinitrophenol. The samples associated with this CCV were non-detects for the affected analytes so the data have been reported. The following sample was impacted: (CCVIS 480-184350/3).

Method 8270D: The laboratory control sample and the laboratory control sample duplicate (LCS/LCSD) for batch 183840 recovered outside control limits for the following analytes: Benzo(g,h,i)perylene and Indeno[1,2,3-cd]pyrene. This method allows for 3 analytes to recover outside of the control limits so re-extraction/re-analysis was not performed.

Method 8270D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 183840 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8270D: The continuing calibration verification (CCV) associated with batch 184383 recovered above the upper control limit for 2,4-Dinitrophenol and Benzaldehyde. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample was impacted: (CCV 480-184383/4), (CCVIS 480-184383/3).

Method 8270D: The following sample was diluted due to the abundance of target analytes: Cistern Disposal (480-60422-31). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

_

7

10

12

13

Case Narrative

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Job ID: 480-60422-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

GC Semi VOA

Method 8015D: The following samples were diluted due to the abundance of target analytes: Cistern Disposal (480-60422-31). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 6010C: The low level continuing calibration verification (CCVL 480-184551/60) recovered above the upper control limit for barium. The sample TP-107 (10') (480-60422-30) associated with this CCVL contained this analyte at a concentration greater than 10X the value found in the CCVL so re-analysis of samples was not performed.

Method 6010C: The following sample was diluted to bring the concentration of target analyte chromium within the calibration range: S-212 (480-60422-12). Elevated reporting limits (RLs) are provided.

Method 7471B: The following sample was diluted to bring the concentration of the target analyte total mercury within the calibration range: S-212 (480-60422-12). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3550C: Due to the matrix, the following samples could not be concentrated to the final method required volume: Cistern Disposal (480-60422-31). The reporting limits (RLs) are elevated proportionately.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

6

8

11

12

14

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Lab Sample ID: 480-60422-1 Client Sample ID: S-201

	~~	Gampio in	71 100 00 122
Dil Fac	D	Method	Prep Type
1	₩	8270D	Total/NA
1	₽	8270D	Total/NA
1	₽	8270D	Total/NA
1	₽	8270D	Total/NA
1	₩	8270D	Total/NA
1	₩	8270D	Total/NA
1	₩	8270D	Total/NA
1	₩	8270D	Total/NA
1	₽	8270D	Total/NA
1	₽	8270D	Total/NA
1	₩	8270D	Total/NA
1	₽	8270D	Total/NA

MDL Unit Result Qualifier Analyte RL 2.2 ug/Kg 4.2 J 190 2-Methylnaphthalene 6.2 J Acenaphthene 190 2.2 ug/Kg Acenaphthylene 4.1 J 190 1.5 ug/Kg Anthracene 11 J 190 4.7 ug/Kg Benzo[a]anthracene 56 J 190 3.2 ug/Kg 56 J 190 Benzo[a]pyrene 4.5 ug/Kg Benzo[b]fluoranthene 77 J 190 3.6 ug/Kg Benzo[g,h,i]perylene 110 J 190 2.2 ug/Kg Benzo[k]fluoranthene 31 J 190 2.0 ug/Kg Chrysene 69 J 190 1.9 ug/Kg Dibenz(a,h)anthracene 29 J 190 2.2 ug/Kg Fluoranthene 120 190 2.7 ug/Kg 190 1 ♀ 8270D Total/NA Indeno[1,2,3-cd]pyrene 77 J ug/Kg Naphthalene 8.1 J 190 3.1 ug/Kg 1 ☆ 8270D Total/NA Phenanthrene 81 J 190 3.9 ug/Kg 1 * 8270D Total/NA Pyrene 150 J 190 1.2 ug/Kg 1 🌣 8270D Total/NA

Client Sample ID: S-202

Lab Sample ID: 480-60422-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	3.1	J	190	2.2	ug/Kg		₩	8270D	Total/NA
Anthracene	7.6	J	190	4.8	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	26	J	190	3.2	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]pyrene	18	J	190	4.5	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	23	J	190	3.6	ug/Kg	1	₽	8270D	Total/NA
Benzo[g,h,i]perylene	31	J	190	2.2	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	12	J	190	2.0	ug/Kg	1	₽	8270D	Total/NA
Chrysene	25	J	190	1.9	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	42	J	190	2.7	ug/Kg	1	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	19	J	190	5.1	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	34	J	190	3.9	ug/Kg	1	₽	8270D	Total/NA
Pyrene	51	J	190	1.2	ug/Kg	1	₩	8270D	Total/NA

Client Sample ID: S-203

Lab Sample ID: 480-60422-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	13	J	190	3.2	ug/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	11	J	190	2.3	ug/Kg	1	₽	8270D	Total/NA
Chrysene	12	J	190	1.9	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	18	J	190	2.7	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	12	J	190	3.9	ug/Kg	1	₽	8270D	Total/NA
Pyrene	25	J	190	1.2	ug/Kg	1	₽	8270D	Total/NA

Client Sample ID: S-204

Lab Sample ID: 480-60422-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	3.5	J	190	2.2	ug/Kg	1	₩	8270D	Total/NA
Anthracene	10	J	190	4.7	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	43	J	190	3.2	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	34	J	190	4.4	ug/Kg	1	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 6 of 84

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: S-204 (Continued)

Lab Sample ID: 480-60422-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[b]fluoranthene	45	J	190	3.6	ug/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	31	J	190	2.2	ug/Kg	1	₽	8270D	Total/NA
Benzo[k]fluoranthene	23	J	190	2.0	ug/Kg	1	₽	8270D	Total/NA
Chrysene	54	J	190	1.8	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	87	J	190	2.7	ug/Kg	1	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	27	J	190	5.1	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	64	J	190	3.9	ug/Kg	1	₽	8270D	Total/NA
Pyrene	110	J	190	1.2	ug/Kg	1	₩	8270D	Total/NA

Client Sample ID: S-205

Lab Sample ID: 480-60422-5

No Detections.

Client Sample ID: S-206

Lab Sample ID: 480-60422-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	10	J	180	3.0	ug/Kg	1	₩	8270D	Total/NA
Chrysene	9.0	J	180	1.7	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	12	J	180	2.5	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	4.6	J	180	3.7	ug/Kg	1	₽	8270D	Total/NA
Pyrene	14	J	180	1.1	ug/Kg	1	₽	8270D	Total/NA

Client Sample ID: S-207

Lab Sample ID: 480-60422-7

_									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	15	J	180	3.1	ug/Kg	1	₩	8270D	Total/NA
Chrysene	16	J	180	1.8	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	23	J	180	2.6	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	10	J	180	3.7	ug/Kg	1	₩	8270D	Total/NA
Pyrene	25	J	180	1.2	ug/Kg	1	₽	8270D	Total/NA

Client Sample ID: S-208

Lab Sample ID: 480-60422-8

No Detections.

Client Sample ID: S-209

Lab Sample ID: 480-60422-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	20	J	180	3.1	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	22	J	180	3.5	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	10	J	180	2.0	ug/Kg	1	₽	8270D	Total/NA
Chrysene	22	J	180	1.8	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	35	J	180	2.6	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	17	J	180	3.8	ug/Kg	1	₽	8270D	Total/NA
Pyrene	40	J	180	1.2	ug/Kg	1	₽	8270D	Total/NA

Client Sample ID: S-210

Lab Sample ID: 480-60422-10

No Detections.

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 7 of 84

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: S-211 Lab Sample ID: 480-60422-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.71	J	2.0	0.40	mg/Kg	1	_	6010C	Total/NA
Barium	5.5		0.50	0.11	mg/Kg	1		6010C	Total/NA
Cadmium	0.044	J	0.20	0.030	mg/Kg	1		6010C	Total/NA
Chromium	20		0.50	0.20	mg/Kg	1		6010C	Total/NA
Lead	1.1		0.99	0.24	mg/Kg	1		6010C	Total/NA

Client Sample ID: S-212 Lab Sample ID: 480-60422-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	120	J	2900	73	ug/Kg		₩	8270D	Total/NA
Benzo[a]anthracene	580	J	2900	49	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]pyrene	1000	J	2900	69	ug/Kg	10	₽	8270D	Total/NA
Benzo[b]fluoranthene	980	J	2900	55	ug/Kg	10	₩	8270D	Total/NA
Benzo[g,h,i]perylene	1300	J	2900	34	ug/Kg	10	₽	8270D	Total/NA
Benzo[k]fluoranthene	400	J	2900	31	ug/Kg	10	₩	8270D	Total/NA
Chrysene	780	J	2900	28	ug/Kg	10	₽	8270D	Total/NA
Dibenz(a,h)anthracene	690	J	2900	33	ug/Kg	10	₩	8270D	Total/NA
Fluoranthene	900	J	2900	41	ug/Kg	10	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	910	J	2900	79	ug/Kg	10	₩	8270D	Total/NA
Phenanthrene	610	J	2900	60	ug/Kg	10	₩	8270D	Total/NA
Pyrene	880	J	2900	18	ug/Kg	10	₩	8270D	Total/NA
Arsenic	14		2.0	0.41	mg/Kg	1		6010C	Total/NA
Barium	180		0.51	0.11	mg/Kg	1		6010C	Total/NA
Cadmium	1.6		0.20	0.031	mg/Kg	1		6010C	Total/NA
Chromium	5400		5.1	2.0	mg/Kg	10		6010C	Total/NA
Lead	730		1.0	0.24	mg/Kg	1		6010C	Total/NA
Selenium	2.3	J	4.1	0.41	mg/Kg	1		6010C	Total/NA
Silver	0.64		0.61	0.20	mg/Kg	1		6010C	Total/NA
Hg	1.3		0.10	0.042	mg/Kg	5		7471B	Total/NA

Client Sample ID: S-213 Lab Sample ID: 480-60422-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Methylnaphthalene	73	J	2000	24	ug/Kg	10	₩	8270D	Total/NA
Acenaphthene	220	J	2000	23	ug/Kg	10	₽	8270D	Total/NA
Anthracene	540	J	2000	51	ug/Kg	10	₽	8270D	Total/NA
Benzo[a]anthracene	1500	J	2000	35	ug/Kg	10	₽	8270D	Total/NA
Benzo[a]pyrene	1200	J	2000	48	ug/Kg	10	₽	8270D	Total/NA
Benzo[b]fluoranthene	1700	J	2000	39	ug/Kg	10	₽	8270D	Total/NA
Benzo[g,h,i]perylene	890	J	2000	24	ug/Kg	10	₽	8270D	Total/NA
Benzo[k]fluoranthene	690	J	2000	22	ug/Kg	10	₩	8270D	Total/NA
Chrysene	1700	J	2000	20	ug/Kg	10	₩	8270D	Total/NA
Dibenz(a,h)anthracene	320	J	2000	24	ug/Kg	10	₽	8270D	Total/NA
Fluoranthene	3400		2000	29	ug/Kg	10	₩	8270D	Total/NA
Fluorene	220	J	2000	46	ug/Kg	10	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	870	J	2000	55	ug/Kg	10	₩	8270D	Total/NA
Naphthalene	180	J	2000	33	ug/Kg	10	₩	8270D	Total/NA
Phenanthrene	2500		2000	42	ug/Kg	10	₽	8270D	Total/NA
Pyrene	3000		2000	13	ug/Kg	10	₩	8270D	Total/NA
Arsenic	4.9		2.0	0.40	mg/Kg	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

6/3/2014

Page 8 of 84

-

3

5

7

0

J 6

11

14

11:

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

-2

Lab Sample ID: 480-60422-13

Client Sample ID: S-213 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	210		0.51	0.11	mg/Kg	1	_	6010C	Total/NA
Cadmium	0.16	J	0.20	0.030	mg/Kg	1		6010C	Total/NA
Chromium	1100		0.51	0.20	mg/Kg	1		6010C	Total/NA
Lead	2800		1.0	0.24	mg/Kg	1		6010C	Total/NA
Selenium	1.0	J	4.0	0.40	mg/Kg	1		6010C	Total/NA
Hg	0.18		0.020	0.0081	mg/Kg	1		7471B	Total/NA

5

Client Sample ID: S-214

Lab Sample ID: 480-60422-14

Analyte Result Qualifier RL MDL Unit Method Prep Type 2-Methylnaphthalene 37 J 210 2.5 ug/Kg 1 ₩ 8270D Total/NA ₩ Acenaphthene 44 210 ug/Kg 8270D Total/NA Acenaphthylene 42 210 ug/Kg ₩ 8270D Total/NA 1.7 Anthracene 100 210 ug/Kg ₽ 8270D Total/NA Benzo[a]anthracene 540 210 3.6 1 ₩ 8270D Total/NA ug/Kg Benzo[a]pyrene 470 210 ug/Kg ₩ 8270D Total/NA Benzo[b]fluoranthene 690 210 4.0 ug/Kg ₩ 8270D Total/NA Benzo[g,h,i]perylene 310 210 2.5 ₩ 8270D Total/NA ug/Kg Benzo[k]fluoranthene 240 210 8270D Total/NA 2.3 ug/Kg ₩ 710 210 8270D Total/NA Chrysene 2.1 ug/Kg Dibenz(a,h)anthracene 84 J 210 ₩ 8270D Total/NA ug/Kg Fluoranthene 1300 210 ₽ 8270D Total/NA 3.0 ug/Kg Fluorene 46 210 4.8 ug/Kg ₽ 8270D Total/NA 8270D Indeno[1,2,3-cd]pyrene 300 210 5.7 ug/Kg ₽ Total/NA Naphthalene 35 210 ug/Kg ₩ 8270D Total/NA Phenanthrene 820 210 ₽ 8270D Total/NA 4.4 ug/Kg ₽ Pyrene 1300 210 1.3 ug/Kg 8270D Total/NA Arsenic 5.3 2.0 0.39 6010C Total/NA mg/Kg 6010C Total/NA Barium 46 0.49 0.11 mg/Kg 6010C Cadmium 0.076 J 0.20 0.030 mg/Kg Total/NA Chromium 7.1 0.49 0.20 mg/Kg 6010C Total/NA Lead 51 0.99 0.24 mg/Kg 6010C Total/NA 6010C Selenium 0.76 3.9 0.39 mg/Kg Total/NA 0.059 0.020 0.0082 mg/Kg 7471B Total/NA Hg

15

Client Sample ID: S-215

Lab Sample ID: 480-60422-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Methylnaphthalene	23	J	190	2.2	ug/Kg		₩	8270D	Total/NA
Acenaphthene	4.3	J	190	2.2	ug/Kg	1	₩	8270D	Total/NA
Acenaphthylene	4.8	J	190	1.5	ug/Kg	1	₽	8270D	Total/NA
Anthracene	15	J	190	4.8	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	50	J	190	4.5	ug/Kg	1	₽	8270D	Total/NA
Benzo[b]fluoranthene	130	J	190	3.6	ug/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	85	J	190	2.2	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	24	J	190	2.0	ug/Kg	1	₩	8270D	Total/NA
Chrysene	140	J	190	1.9	ug/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	26	J	190	2.2	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	110	J	190	2.7	ug/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	71	J	190	5.1	ug/Kg	1	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

3

Client Sample ID: S-215 (Continued)

Client Sample ID: S-216

Lab Sample ID: 480-60422-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Naphthalene	21	J	190	3.1	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	120	J	190	3.9	ug/Kg	1	₩	8270D	Total/NA
Pyrene	110	J	190	1.2	ug/Kg	1	₽	8270D	Total/NA
Arsenic	29		1.8	0.37	mg/Kg	1		6010C	Total/NA
Barium	45		0.46	0.10	mg/Kg	1		6010C	Total/NA
Cadmium	0.21		0.18	0.027	mg/Kg	1		6010C	Total/NA
Chromium	9.8		0.46	0.18	mg/Kg	1		6010C	Total/NA
Lead	22		0.91	0.22	mg/Kg	1		6010C	Total/NA
Selenium	7.3		3.7	0.37	mg/Kg	1		6010C	Total/NA
Hg	0.089		0.021	0.0084	mg/Kg	1		7471B	Total/NA

Lab Sample ID: 480-60422-16

onent cample ib. c 210								dilipic ib.	100 00422 1
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	3.3	J	190	2.2	ug/Kg		₩	8270D	Total/NA
Anthracene	6.7	J	190	4.7	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]anthracene	47	J	190	3.2	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	37	J	190	4.5	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	56	J	190	3.6	ug/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	27	J	190	2.2	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	21	J	190	2.0	ug/Kg	1	₽	8270D	Total/NA
Chrysene	57	J	190	1.9	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	100	J	190	2.7	ug/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	26	J	190	5.1	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	55	J	190	3.9	ug/Kg	1	₩	8270D	Total/NA
Pyrene	100	J	190	1.2	ug/Kg	1	₽	8270D	Total/NA
Arsenic	1.8	J	2.1	0.42	mg/Kg	1		6010C	Total/NA
Barium	8.7		0.53	0.12	mg/Kg	1		6010C	Total/NA
Chromium	220		0.53	0.21	mg/Kg	1		6010C	Total/NA
Lead	5.9		1.1	0.25	mg/Kg	1		6010C	Total/NA
Hq	0.024		0.020	0.0082	mg/Kg	1		7471B	Total/NA

Client Sample ID: TP-101 (5-5.5') Lab Sample ID: 480-60422-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Methylnaphthalene	5.8	J	200	2.4	ug/Kg		₩	8270D	Total/NA
Acenaphthene	4.2	J	200	2.3	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	22	JB	200	3.2	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	8.8	J	200	4.1	ug/Kg	1	₩	8270D	Total/NA
Arsenic	1.1	J	1.9	0.39	mg/Kg	1		6010C	Total/NA
Barium	7.1		0.49	0.11	mg/Kg	1		6010C	Total/NA
Chromium	1.3		0.49	0.19	mg/Kg	1		6010C	Total/NA
Lead	1.2		0.97	0.23	mg/Kg	1		6010C	Total/NA

Client Sample ID: TP-101 (10') Lab Sample ID: 480-60422-18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	1.0	J	2.0	0.40	mg/Kg	1	_	6010C	Total/NA
Barium	7.0		0.50	0.11	mg/Kg	1		6010C	Total/NA
Cadmium	0.040	J	0.20	0.030	mg/Kg	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

2

4

5

7

9

11

12

1 1

1 E

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: TP-101 (10') (Continued)

Lab Sample ID: 480-60422-18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	1.4		0.50	0.20	mg/Kg	1	_	6010C	Total/NA
Lead	1.1		1.0	0.24	mg/Kg	1		6010C	Total/NA
Selenium	0.40	J	4.0	0.40	mg/Kg	1		6010C	Total/NA

Client Sample ID: TP-102 (4-5')

Lab Sample ID: 480-60422-19

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	1.3	J	2.0	0.40	mg/Kg	1	_	6010C	Total/NA
Barium	11		0.50	0.11	mg/Kg	1		6010C	Total/NA
Chromium	2.1		0.50	0.20	mg/Kg	1		6010C	Total/NA
Lead	1.5		1.0	0.24	mg/Kg	1		6010C	Total/NA
Selenium	0.48	J	4.0	0.40	mg/Kg	1		6010C	Total/NA

Client Sample ID: TP-102 (9.5')

Lab Sample ID: 480-60422-20

Analyte	Result Qua	alifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.90 J	1.9	0.39	mg/Kg	1	_	6010C	Total/NA
Barium	6.3	0.48	0.11	mg/Kg	1		6010C	Total/NA
Chromium	1.4	0.48	0.19	mg/Kg	1		6010C	Total/NA
Lead	0.80 J	0.97	0.23	mg/Kg	1		6010C	Total/NA

Client Sample ID: TP-103 (2-3')

Lab Sample ID: 480-60422-21

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoranthene	10	J	190	2.7	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	6.7	J	190	3.9	ug/Kg	1	₩	8270D	Total/NA
Arsenic	1.0	J	2.1	0.42	mg/Kg	1		6010C	Total/NA
Barium	5.2		0.52	0.11	mg/Kg	1		6010C	Total/NA
Chromium	0.53		0.52	0.21	mg/Kg	1		6010C	Total/NA
Lead	5.5		1.0	0.25	mg/Kg	1		6010C	Total/NA
Hg	0.0099	J	0.018	0.0072	mg/Kg	1		7471B	Total/NA

Client Sample ID: TP-103 (4')

Lab Sample ID: 480-60422-22

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoranthene	190	J	4100	60	ug/Kg	20	₩	8270D	Total/NA
Arsenic	1.4	J	2.2	0.44	mg/Kg	1		6010C	Total/NA
Barium	2.8		0.55	0.12	mg/Kg	1		6010C	Total/NA
Chromium	0.31	J	0.55	0.22	mg/Kg	1		6010C	Total/NA
Lead	3.0		1.1	0.27	mg/Kg	1		6010C	Total/NA
Selenium	0.45	J	4.4	0.44	mg/Kg	1		6010C	Total/NA
Silver	0.22	J	0.66	0.22	mg/Kg	1		6010C	Total/NA
Hg	0.20		0.020	0.0081	mg/Kg	1		7471B	Total/NA

Client Sample ID: TP-104 (2-3')

Lab Sample ID: 480-60422-23

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoranthene	7.6	J	180	2.6	ug/Kg		₩	8270D	Total/NA
Phenanthrene	6.4	J	180	3.8	ug/Kg	1	₩	8270D	Total/NA
Arsenic	0.50	J	2.0	0.39	mg/Kg	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

422-23

Client Sample ID: TP-104 (2-3') (Cont	inued)		Lab Sample ID: 4	80-604

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Barium	5.2	0.49	0.11 mg/Kg		6010C	Total/NA
Lead	12	0.98	0.24 mg/Kg	1	6010C	Total/NA

Client Sample ID: TP-104 (4)

Lab	Samp	le ID:	480-60422-24
-----	------	--------	--------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	3.1		1.9	0.38	mg/Kg		_	6010C	Total/NA
Barium	14		0.48	0.11	mg/Kg	1		6010C	Total/NA
Chromium	1.3		0.48	0.19	mg/Kg	1		6010C	Total/NA
Lead	83		0.96	0.23	mg/Kg	1		6010C	Total/NA
Selenium	0.49	J	3.8	0.38	mg/Kg	1		6010C	Total/NA
Hg	0.0081	J	0.019	0.0075	mg/Kg	1		7471B	Total/NA

Client Sample ID: TP-105 (4-5')

- 1-	0	1-	ID. 400 CO400 OF
Lab	Samb	ıe	ID: 480-60422-25

Analyte	Result Qua	alifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	1.5 J	2.0	0.40	mg/Kg	1	_	6010C	Total/NA
Barium	7.4	0.50	0.11	mg/Kg	1		6010C	Total/NA
Chromium	2.1	0.50	0.20	mg/Kg	1		6010C	Total/NA
Lead	1.3	0.99	0.24	mg/Kg	1		6010C	Total/NA

Client Sample ID: TP-105 (10')

Lab Sampl	e ID: 480	-60422-26
-----------	-----------	-----------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	12	J	200	3.4	ug/Kg	1	₩	8270D	Total/NA
Chrysene	11	J	200	2.0	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	18	J	200	2.9	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	14	J	200	4.1	ug/Kg	1	₽	8270D	Total/NA
Pyrene	21	J	200	1.3	ug/Kg	1	₽	8270D	Total/NA
Arsenic	0.96	J	2.0	0.40	mg/Kg	1		6010C	Total/NA
Barium	7.2		0.50	0.11	mg/Kg	1		6010C	Total/NA
Cadmium	0.039	J	0.20	0.030	mg/Kg	1		6010C	Total/NA
Chromium	1.7		0.50	0.20	mg/Kg	1		6010C	Total/NA
Lead	0.98	J	1.0	0.24	mg/Kg	1		6010C	Total/NA

Client Sample ID: TP-106 (4-5')

Client Sample ID: TP-106 (10)

.ai	0	Sa	mĮ	οle) I	D:	4	80	-6	U4	42	2	2	7	
-----	---	----	----	-----	-----	----	---	----	----	----	----	---	---	---	--

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	1.3	J	1.9	0.38	mg/Kg		_	6010C	Total/NA
Barium	6.0		0.47	0.10	mg/Kg	1		6010C	Total/NA
Cadmium	0.036	J	0.19	0.028	mg/Kg	1		6010C	Total/NA
Chromium	1.7		0.47	0.19	mg/Kg	1		6010C	Total/NA
Lead	1.2		0.94	0.23	mg/Kg	1		6010C	Total/NA

Lab Sample ID: 480-60422-28

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.90	J	1.9	0.38	mg/Kg	1	_	6010C	Total/NA
Barium	6.3		0.47	0.10	mg/Kg	1		6010C	Total/NA
Cadmium	0.030	J	0.19	0.028	mg/Kg	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Lab Sample ID: 480-60422-28

Client Sample ID: TP	-106 (10) (Continued)
----------------------	-----------------------

Client Sample ID: TP-107 (5-5.5)

	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
	Chromium	1.3		0.47	0.19	mg/Kg	1	_	6010C	Total/NA
Į	Lead	0.72	J	0.94	0.23	mg/Kg	1		6010C	Total/NA

Lab Sample ID: 480-60422-29

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.96	J	2.1	0.43	mg/Kg		_	6010C	Total/NA
Barium	8.0		0.53	0.12	mg/Kg	1		6010C	Total/NA
Chromium	1.4		0.53	0.21	mg/Kg	1		6010C	Total/NA
Lead	1.2		1.1	0.26	mg/Kg	1		6010C	Total/NA

Client Sample ID: TP-107 (10') Lab Sample ID: 480-60422-30

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	1.1	J	2.0	0.40	mg/Kg		_	6010C	Total/NA
Barium	4.3	٨	0.51	0.11	mg/Kg	1		6010C	Total/NA
Chromium	1.3		0.51	0.20	mg/Kg	1		6010C	Total/NA
Lead	0.88	J	1.0	0.24	mg/Kg	1		6010C	Total/NA

Client Sample ID: Cistern Disposal

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Free Liquid	passed				mL/100g		_	9095B	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	1400		320	88	ug/Kg		₩	8260C	Total/NA
1,1-Dichloroethane	580		320	98	ug/Kg	5	₽	8260C	Total/NA
cis-1,2-Dichloroethene	660		320	88	ug/Kg	5	₽	8260C	Total/NA
Cyclohexane	190	J	320	71	ug/Kg	5	₽	8260C	Total/NA
Ethylbenzene	3300		320	92	ug/Kg	5	₩	8260C	Total/NA
Methylcyclohexane	620		320	150	ug/Kg	5	₽	8260C	Total/NA
Toluene	1600		320	85	ug/Kg	5	₽	8260C	Total/NA
Trichloroethene	14000		320	88	ug/Kg	5	₩	8260C	Total/NA
Xylenes, Total	16000		640	53	ug/Kg	5	₽	8260C	Total/NA
2-Methylnaphthalene	9300		7800	94	ug/Kg	40	₽	8270D	Total/NA
4-Methylphenol	820	J	15000	430	ug/Kg	40	₽	8270D	Total/NA
Acenaphthene	27000		7800	91	ug/Kg	40	₽	8270D	Total/NA
Acenaphthylene	1100	J	7800	63	ug/Kg	40	₽	8270D	Total/NA
Anthracene	52000		7800	200	ug/Kg	40	₽	8270D	Total/NA
Benzo[a]anthracene	100000		7800	130	ug/Kg	40	₩	8270D	Total/NA
Benzo[a]pyrene	88000		7800	190	ug/Kg	40	₽	8270D	Total/NA
Benzo[b]fluoranthene	120000		7800	150	ug/Kg	40	₽	8270D	Total/NA
Benzo[g,h,i]perylene	30000	*	7800	93	ug/Kg	40	₽	8270D	Total/NA
Benzo[k]fluoranthene	64000		7800	85	ug/Kg	40	₽	8270D	Total/NA
Biphenyl	2400	J	7800	480	ug/Kg	40	₽	8270D	Total/NA
Carbazole	26000		7800	89	ug/Kg	40	₽	8270D	Total/NA
Chrysene	120000		7800	77	ug/Kg	40	₽	8270D	Total/NA
Dibenz(a,h)anthracene	11000		7800	91	ug/Kg	40	₩	8270D	Total/NA
Dibenzofuran	18000		7800	80	ug/Kg	40	₽	8270D	Total/NA
Fluoranthene	240000		7800	110	ug/Kg	40	₽	8270D	Total/NA
Fluorene	27000		7800	180	ug/Kg	40	₽	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Lab Sample ID: 480-60422-31

3

Client Sample ID: Cistern Disposal (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Indeno[1,2,3-cd]pyrene	27000	*	7800	210	ug/Kg	40	₩	8270D	Total/NA
Naphthalene	21000		7800	130	ug/Kg	40	₽	8270D	Total/NA
Pyrene	170000		7800	50	ug/Kg	40	₽	8270D	Total/NA
Phenanthrene - DL	280000		16000	320	ug/Kg	80	₩	8270D	Total/NA
Diesel Range Organics [C10-C28]	5700		1700	520	mg/Kg	10	₽	8015D	Total/NA
Arsenic	4.9		2.1	0.41	mg/Kg	1		6010B	Total/NA
Barium	48		0.52	0.11	mg/Kg	1		6010B	Total/NA
Cadmium	0.36		0.21	0.031	mg/Kg	1		6010B	Total/NA
Chromium	25		0.52	0.21	mg/Kg	1		6010B	Total/NA
Lead	65		1.0	0.25	mg/Kg	1		6010B	Total/NA
Selenium	0.41	J	4.1	0.41	mg/Kg	1		6010B	Total/NA
Hg	0.48		0.020	0.0082	mg/Kg	1		7471A	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Flashpoint	>176.0		50.0	50.0	Degrees F	1	_	1010	Total/NA
рН	7.60		0.100	0.100	SU	1		9045C	Total/NA

4

6

46

. .

12

13

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: S-201

Lab Sample ID: 480-60422-1 Date Collected: 05/21/14 11:30 Matrix: Solid Date Received: 05/23/14 01:00 Percent Solids: 89.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	4.2	J	190	2.2	ug/Kg	₩	05/23/14 12:27	05/28/14 20:09	1
Acenaphthene	6.2	J	190	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 20:09	1
Acenaphthylene	4.1	J	190	1.5	ug/Kg	₽	05/23/14 12:27	05/28/14 20:09	1
Anthracene	11	J	190	4.7	ug/Kg	₽	05/23/14 12:27	05/28/14 20:09	1
Benzo[a]anthracene	56	J	190	3.2	ug/Kg	₽	05/23/14 12:27	05/28/14 20:09	1
Benzo[a]pyrene	56	J	190	4.5	ug/Kg	₽	05/23/14 12:27	05/28/14 20:09	1
Benzo[b]fluoranthene	77	J	190	3.6	ug/Kg	₽	05/23/14 12:27	05/28/14 20:09	1
Benzo[g,h,i]perylene	110	J	190	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 20:09	1
Benzo[k]fluoranthene	31	J	190	2.0	ug/Kg	₽	05/23/14 12:27	05/28/14 20:09	1
Chrysene	69	J	190	1.9	ug/Kg	₽	05/23/14 12:27	05/28/14 20:09	1
Dibenz(a,h)anthracene	29	J	190	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 20:09	1
Fluoranthene	120	J	190	2.7	ug/Kg	₽	05/23/14 12:27	05/28/14 20:09	1
Fluorene	ND		190	4.3	ug/Kg	₽	05/23/14 12:27	05/28/14 20:09	1
Indeno[1,2,3-cd]pyrene	77	J	190	5.1	ug/Kg	₽	05/23/14 12:27	05/28/14 20:09	1
Naphthalene	8.1	J	190	3.1	ug/Kg	₽	05/23/14 12:27	05/28/14 20:09	1
Phenanthrene	81	J	190	3.9	ug/Kg	\$	05/23/14 12:27	05/28/14 20:09	1
Pyrene	150	J	190	1.2	ug/Kg	₽	05/23/14 12:27	05/28/14 20:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	76		37 - 120				05/23/14 12:27	05/28/14 20:09	1
Nitrobenzene-d5 (Surr)	70		34 - 132				05/23/14 12:27	05/28/14 20:09	1
p-Terphenyl-d14 (Surr)	111		65 ₋ 153				05/23/14 12:27	05/28/14 20:09	1

Lab Sample ID: 480-60422-2 Client Sample ID: S-202 Date Collected: 05/21/14 11:31 **Matrix: Solid**

Date Received: 05/23/14 01:00 Percent Solids: 88.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		190	2.3	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Acenaphthene	3.1	J	190	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Acenaphthylene	ND		190	1.5	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Anthracene	7.6	J	190	4.8	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Benzo[a]anthracene	26	J	190	3.2	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Benzo[a]pyrene	18	J	190	4.5	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Benzo[b]fluoranthene	23	J	190	3.6	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Benzo[g,h,i]perylene	31	J	190	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Benzo[k]fluoranthene	12	J	190	2.0	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Chrysene	25	J	190	1.9	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Dibenz(a,h)anthracene	ND		190	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Fluoranthene	42	J	190	2.7	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Fluorene	ND		190	4.3	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Indeno[1,2,3-cd]pyrene	19	J	190	5.1	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Naphthalene	ND		190	3.1	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Phenanthrene	34	J	190	3.9	ug/Kg	\$	05/23/14 12:27	05/28/14 20:32	1
Pyrene	51	J	190	1.2	ug/Kg	₽	05/23/14 12:27	05/28/14 20:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	73		37 - 120				05/23/14 12:27	05/28/14 20:32	1
Nitrobenzene-d5 (Surr)	65		34 - 132				05/23/14 12:27	05/28/14 20:32	1

TestAmerica Buffalo

Page 15 of 84

6/3/2014

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

TestAmerica Job ID: 480-60422-1

Client Sample ID: S-202

Date Collected: 05/21/14 11:31 Date Received: 05/23/14 01:00 Lab Sample ID: 480-60422-2

Matrix: Solid

Percent Solids: 88.3

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Surrogate%Recovery
p-Terphenyl-d14 (Surr)Qualifier
107Limits
65 - 153Prepared
05/23/14 12:27Analyzed
05/23/14 12:27Dil Fac
05/28/14 20:32

Client Sample ID: S-203 Lab Sample ID: 480-60422-3

Date Collected: 05/21/14 11:32 Matrix: Solid
Date Received: 05/23/14 01:00 Percent Solids: 88.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		190	2.3	ug/Kg	₩	05/23/14 12:27	05/28/14 20:55	1
Acenaphthene	ND		190	2.2	ug/Kg	≎	05/23/14 12:27	05/28/14 20:55	1
Acenaphthylene	ND		190	1.5	ug/Kg	≎	05/23/14 12:27	05/28/14 20:55	1
Anthracene	ND		190	4.8	ug/Kg	*	05/23/14 12:27	05/28/14 20:55	1
Benzo[a]anthracene	13	J	190	3.2	ug/Kg	₩	05/23/14 12:27	05/28/14 20:55	1
Benzo[a]pyrene	ND		190	4.5	ug/Kg	₩	05/23/14 12:27	05/28/14 20:55	1
Benzo[b]fluoranthene	ND		190	3.6	ug/Kg	*	05/23/14 12:27	05/28/14 20:55	1
Benzo[g,h,i]perylene	11	J	190	2.3	ug/Kg	₩	05/23/14 12:27	05/28/14 20:55	1
Benzo[k]fluoranthene	ND		190	2.1	ug/Kg	₩	05/23/14 12:27	05/28/14 20:55	1
Chrysene	12	J	190	1.9	ug/Kg	*	05/23/14 12:27	05/28/14 20:55	1
Dibenz(a,h)anthracene	ND		190	2.2	ug/Kg	₩	05/23/14 12:27	05/28/14 20:55	1
Fluoranthene	18	J	190	2.7	ug/Kg	₩	05/23/14 12:27	05/28/14 20:55	1
Fluorene	ND		190	4.3	ug/Kg	*	05/23/14 12:27	05/28/14 20:55	1
Indeno[1,2,3-cd]pyrene	ND		190	5.2	ug/Kg	₩	05/23/14 12:27	05/28/14 20:55	1
Naphthalene	ND		190	3.1	ug/Kg	₩	05/23/14 12:27	05/28/14 20:55	1
Phenanthrene	12	J	190	3.9	ug/Kg	₽	05/23/14 12:27	05/28/14 20:55	1
Pyrene	25	J	190	1.2	ug/Kg	₽	05/23/14 12:27	05/28/14 20:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	76		37 - 120				05/23/14 12:27	05/28/14 20:55	1
Nitrobenzene-d5 (Surr)	67		34 - 132				05/23/14 12:27	05/28/14 20:55	1
p-Terphenyl-d14 (Surr)	112		65 - 153				05/23/14 12:27	05/28/14 20:55	1

 Client Sample ID: S-204
 Lab Sample ID: 480-60422-4

 Date Collected: 05/21/14 11:33
 Matrix: Solid

 Date Received: 05/23/14 01:00
 Percent Solids: 89.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		190	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 21:18	1
Acenaphthene	3.5	J	190	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 21:18	1
Acenaphthylene	ND		190	1.5	ug/Kg	₽	05/23/14 12:27	05/28/14 21:18	1
Anthracene	10	J	190	4.7	ug/Kg	₽	05/23/14 12:27	05/28/14 21:18	1
Benzo[a]anthracene	43	J	190	3.2	ug/Kg	₽	05/23/14 12:27	05/28/14 21:18	1
Benzo[a]pyrene	34	J	190	4.4	ug/Kg	₽	05/23/14 12:27	05/28/14 21:18	1
Benzo[b]fluoranthene	45	J	190	3.6	ug/Kg	\$	05/23/14 12:27	05/28/14 21:18	1
Benzo[g,h,i]perylene	31	J	190	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 21:18	1
Benzo[k]fluoranthene	23	J	190	2.0	ug/Kg	₽	05/23/14 12:27	05/28/14 21:18	1
Chrysene	54	J	190	1.8	ug/Kg	₽	05/23/14 12:27	05/28/14 21:18	1
Dibenz(a,h)anthracene	ND		190	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 21:18	1
Fluoranthene	87	J	190	2.7	ug/Kg	₩	05/23/14 12:27	05/28/14 21:18	1
Fluorene	ND		190	4.2	ug/Kg	₽	05/23/14 12:27	05/28/14 21:18	1

TestAmerica Buffalo

Page 16 of 84

6/3/2014

5

6

9

40

10

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Client Sample ID: S-204

Date Collected: 05/21/14 11:33 Date Received: 05/23/14 01:00

Lab Sample ID: 480-60422-4

Matrix: Solid Percent Solids: 89.8

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Dil Fac Analyte Result Qualifier MDL Unit D Prepared Analyzed $\overline{\varphi}$ 27 190 5.1 ug/Kg 05/23/14 12:27 05/28/14 21:18 Indeno[1,2,3-cd]pyrene Naphthalene ND 190 05/23/14 12:27 3.1 ug/Kg 05/28/14 21:18 ₩ **Phenanthrene** 64 190 3.9 ug/Kg 05/23/14 12:27 05/28/14 21:18 190 1.2 ug/Kg 05/23/14 12:27 05/28/14 21:18 **Pyrene** 110 J Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 05/23/14 12:27 2-Fluorobiphenyl 77 37 - 120 05/28/14 21:18 Nitrobenzene-d5 (Surr) 68 34 - 132 05/23/14 12:27 05/28/14 21:18 05/23/14 12:27 05/28/14 21:18 p-Terphenyl-d14 (Surr) 115 65 - 153

Client Sample ID: S-205 Lab Sample ID: 480-60422-5

Date Collected: 05/21/14 11:34 **Matrix: Solid** Date Received: 05/23/14 01:00 Percent Solids: 92.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		180	2.2	ug/Kg	\	05/23/14 12:27	05/28/14 21:40	1
Acenaphthene	ND		180	2.1	ug/Kg	₽	05/23/14 12:27	05/28/14 21:40	1
Acenaphthylene	ND		180	1.5	ug/Kg	₽	05/23/14 12:27	05/28/14 21:40	1
Anthracene	ND		180	4.6	ug/Kg	₽	05/23/14 12:27	05/28/14 21:40	1
Benzo[a]anthracene	ND		180	3.1	ug/Kg	₽	05/23/14 12:27	05/28/14 21:40	1
Benzo[a]pyrene	ND		180	4.4	ug/Kg	₽	05/23/14 12:27	05/28/14 21:40	1
Benzo[b]fluoranthene	ND		180	3.5	ug/Kg	₽	05/23/14 12:27	05/28/14 21:40	1
Benzo[g,h,i]perylene	ND		180	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 21:40	1
Benzo[k]fluoranthene	ND		180	2.0	ug/Kg	₩	05/23/14 12:27	05/28/14 21:40	1
Chrysene	ND		180	1.8	ug/Kg	₽	05/23/14 12:27	05/28/14 21:40	1
Dibenz(a,h)anthracene	ND		180	2.1	ug/Kg	₽	05/23/14 12:27	05/28/14 21:40	1
Fluoranthene	ND		180	2.6	ug/Kg	₩	05/23/14 12:27	05/28/14 21:40	1
Fluorene	ND		180	4.2	ug/Kg	₽	05/23/14 12:27	05/28/14 21:40	1
Indeno[1,2,3-cd]pyrene	ND		180	5.0	ug/Kg	₩	05/23/14 12:27	05/28/14 21:40	1
Naphthalene	ND		180	3.0	ug/Kg	₩	05/23/14 12:27	05/28/14 21:40	1
Phenanthrene	ND		180	3.8	ug/Kg	\$	05/23/14 12:27	05/28/14 21:40	1
Pyrene	ND		180	1.2	ug/Kg	₽	05/23/14 12:27	05/28/14 21:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	70		37 - 120				05/23/14 12:27	05/28/14 21:40	1
Nitrobenzene-d5 (Surr)	60		34 - 132				05/23/14 12:27	05/28/14 21:40	1
p-Terphenyl-d14 (Surr)	115		65 - 153				05/23/14 12:27	05/28/14 21:40	1

Client Sample ID: S-206 Lab Sample ID: 480-60422-6 Date Collected: 05/21/14 11:45 **Matrix: Solid**

Date Received: 05/23/14 01:00 Percent Solids: 95.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		180	2.1	ug/Kg	₩	05/23/14 12:27	05/28/14 22:03	1
Acenaphthene	ND		180	2.1	ug/Kg	₽	05/23/14 12:27	05/28/14 22:03	1
Acenaphthylene	ND		180	1.4	ug/Kg	₽	05/23/14 12:27	05/28/14 22:03	1
Anthracene	ND		180	4.5	ug/Kg	₽	05/23/14 12:27	05/28/14 22:03	1
Benzo[a]anthracene	10	J	180	3.0	ug/Kg	≎	05/23/14 12:27	05/28/14 22:03	1

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: S-206

Date Collected: 05/21/14 11:45

Date Received: 05/23/14 01:00

TestAmerica Job ID: 480-60422-1

Lab Sample ID: 480-60422-6

Matrix: Solid

Percent Solids: 95.5

Method: 8270D - Semivolatil	le Organic Compou	nds (GC/M	S) (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	ND		180	4.2	ug/Kg	<u> </u>	05/23/14 12:27	05/28/14 22:03	1
Benzo[b]fluoranthene	ND		180	3.4	ug/Kg	₽	05/23/14 12:27	05/28/14 22:03	1
Benzo[g,h,i]perylene	ND		180	2.1	ug/Kg	₽	05/23/14 12:27	05/28/14 22:03	1
Benzo[k]fluoranthene	ND		180	1.9	ug/Kg	₽	05/23/14 12:27	05/28/14 22:03	1
Chrysene	9.0	J	180	1.7	ug/Kg	₽	05/23/14 12:27	05/28/14 22:03	1
Dibenz(a,h)anthracene	ND		180	2.1	ug/Kg	☼	05/23/14 12:27	05/28/14 22:03	1
Fluoranthene	12	J	180	2.5	ug/Kg	☼	05/23/14 12:27	05/28/14 22:03	1
Fluorene	ND		180	4.0	ug/Kg	₽	05/23/14 12:27	05/28/14 22:03	1
Indeno[1,2,3-cd]pyrene	ND		180	4.8	ug/Kg	☼	05/23/14 12:27	05/28/14 22:03	1
Naphthalene	ND		180	2.9	ug/Kg	₽	05/23/14 12:27	05/28/14 22:03	1
Phenanthrene	4.6	J	180	3.7	ug/Kg	₽	05/23/14 12:27	05/28/14 22:03	1
Pyrene	14	J	180	1.1	ug/Kg	₽	05/23/14 12:27	05/28/14 22:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	79		37 - 120				05/23/14 12:27	05/28/14 22:03	1
Nitrobenzene-d5 (Surr)	70		34 - 132				05/23/14 12:27	05/28/14 22:03	1
p-Terphenyl-d14 (Surr)	115		65 - 153				05/23/14 12:27	05/28/14 22:03	1

Client Sample ID: S-207 Lab Sample ID: 480-60422-7 Date Collected: 05/21/14 11:46 **Matrix: Solid**

Date Received: 05/23/14 01:00 Percent Solids: 93.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		180	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 22:26	1
Acenaphthene	ND		180	2.1	ug/Kg	₩	05/23/14 12:27	05/28/14 22:26	1
Acenaphthylene	ND		180	1.5	ug/Kg	₩	05/23/14 12:27	05/28/14 22:26	1
Anthracene	ND		180	4.6	ug/Kg	₽	05/23/14 12:27	05/28/14 22:26	1
Benzo[a]anthracene	15	J	180	3.1	ug/Kg	₽	05/23/14 12:27	05/28/14 22:26	1
Benzo[a]pyrene	ND		180	4.3	ug/Kg	₽	05/23/14 12:27	05/28/14 22:26	1
Benzo[b]fluoranthene	ND		180	3.5	ug/Kg	₽	05/23/14 12:27	05/28/14 22:26	1
Benzo[g,h,i]perylene	ND		180	2.1	ug/Kg	₽	05/23/14 12:27	05/28/14 22:26	1
Benzo[k]fluoranthene	ND		180	2.0	ug/Kg	₽	05/23/14 12:27	05/28/14 22:26	1
Chrysene	16	J	180	1.8	ug/Kg	₽	05/23/14 12:27	05/28/14 22:26	1
Dibenz(a,h)anthracene	ND		180	2.1	ug/Kg	₽	05/23/14 12:27	05/28/14 22:26	1
Fluoranthene	23	J	180	2.6	ug/Kg	₽	05/23/14 12:27	05/28/14 22:26	1
Fluorene	ND		180	4.1	ug/Kg	₽	05/23/14 12:27	05/28/14 22:26	1
Indeno[1,2,3-cd]pyrene	ND		180	4.9	ug/Kg	₽	05/23/14 12:27	05/28/14 22:26	1
Naphthalene	ND		180	3.0	ug/Kg	₽	05/23/14 12:27	05/28/14 22:26	1
Phenanthrene	10	J	180	3.7	ug/Kg	₽	05/23/14 12:27	05/28/14 22:26	1
Pyrene	25	J	180	1.2	ug/Kg	₩	05/23/14 12:27	05/28/14 22:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	77		37 - 120				05/23/14 12:27	05/28/14 22:26	1
Nitrobenzene-d5 (Surr)	72		34 - 132				05/23/14 12:27	05/28/14 22:26	1
p-Terphenyl-d14 (Surr)	114		65 - 153				05/23/14 12:27	05/28/14 22:26	1

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: S-208 Lab Sample ID: 480-60422-8

Date Collected: 05/21/14 11:47

Matrix: Solid

Date Received: 05/23/14 01:00

Percent Solids: 90.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		190	2.3	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Acenaphthene	ND		190	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Acenaphthylene	ND		190	1.5	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Anthracene	ND		190	4.8	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Benzo[a]anthracene	ND		190	3.2	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Benzo[a]pyrene	ND		190	4.5	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Benzo[b]fluoranthene	ND		190	3.6	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Benzo[g,h,i]perylene	ND		190	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Benzo[k]fluoranthene	ND		190	2.0	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Chrysene	ND		190	1.9	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Dibenz(a,h)anthracene	ND		190	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Fluoranthene	ND		190	2.7	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Fluorene	ND		190	4.3	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Indeno[1,2,3-cd]pyrene	ND		190	5.1	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Naphthalene	ND		190	3.1	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Phenanthrene	ND		190	3.9	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Pyrene	ND		190	1.2	ug/Kg	₽	05/23/14 12:27	05/28/14 22:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	79		37 - 120				05/23/14 12:27	05/28/14 22:49	1
Nitrobenzene-d5 (Surr)	73		34 - 132				05/23/14 12:27	05/28/14 22:49	1
p-Terphenyl-d14 (Surr)	115		65 - 153				05/23/14 12:27	05/28/14 22:49	1

Client Sample ID: S-209

Lab Sample ID: 480-60422-9

Date Collected: 05/21/14 11:48

Matrix: Solid

Date Received: 05/23/14 01:00

Percent Solids: 92.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		180	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Acenaphthene	ND		180	2.1	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Acenaphthylene	ND		180	1.5	ug/Kg	☼	05/23/14 12:27	05/28/14 23:12	1
Anthracene	ND		180	4.6	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Benzo[a]anthracene	20	J	180	3.1	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Benzo[a]pyrene	ND		180	4.4	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Benzo[b]fluoranthene	22	J	180	3.5	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Benzo[g,h,i]perylene	ND		180	2.2	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Benzo[k]fluoranthene	10	J	180	2.0	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Chrysene	22	J	180	1.8	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Dibenz(a,h)anthracene	ND		180	2.1	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Fluoranthene	35	J	180	2.6	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Fluorene	ND		180	4.2	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Indeno[1,2,3-cd]pyrene	ND		180	5.0	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Naphthalene	ND		180	3.0	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Phenanthrene	17	J	180	3.8	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Pyrene	40	J	180	1.2	ug/Kg	₽	05/23/14 12:27	05/28/14 23:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	79		37 - 120				05/23/14 12:27	05/28/14 23:12	1
Nitrobenzene-d5 (Surr)	73		34 - 132				05/23/14 12:27	05/28/14 23:12	1

TestAmerica Buffalo

Page 19 of 84

6/3/2014

2

A

6

8

10

11 12

13

14

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

TestAmerica Job ID: 480-60422-1

Client Sample ID: S-209

Benzo[a]anthracene

Benzo[b]fluoranthene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

Dibenz(a,h)anthracene

Benzo[a]pyrene

Chrysene

Fluorene

Fluoranthene

Date Collected: 05/21/14 11:48 Date Received: 05/23/14 01:00 Lab Sample ID: 480-60422-9

Matrix: Solid

Percent Solids: 92.0

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: S-210 Lab Sample ID: 480-60422-10

 Date Collected: 05/21/14 11:49
 Matrix: Solid

 Date Received: 05/23/14 01:00
 Percent Solids: 94.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		180	2.1	ug/Kg	₩	05/23/14 12:27	05/29/14 04:05	1
Acenaphthene	ND		180	2.1	ug/Kg	₽	05/23/14 12:27	05/29/14 04:05	1
Acenaphthylene	ND		180	1.4	ug/Kg	₽	05/23/14 12:27	05/29/14 04:05	1
Anthracene	ND		180	4.5	ug/Kg	₽	05/23/14 12:27	05/29/14 04:05	1
Benzo[a]anthracene	ND		180	3.1	ug/Kg	≎	05/23/14 12:27	05/29/14 04:05	1
Benzo[a]pyrene	ND		180	4.3	ug/Kg	₽	05/23/14 12:27	05/29/14 04:05	1
Benzo[b]fluoranthene	ND		180	3.4	ug/Kg	\$	05/23/14 12:27	05/29/14 04:05	1
Benzo[g,h,i]perylene	ND		180	2.1	ug/Kg	₽	05/23/14 12:27	05/29/14 04:05	1
Benzo[k]fluoranthene	ND		180	1.9	ug/Kg	≎	05/23/14 12:27	05/29/14 04:05	1
Chrysene	ND		180	1.8	ug/Kg	₽	05/23/14 12:27	05/29/14 04:05	1
Dibenz(a,h)anthracene	ND		180	2.1	ug/Kg	≎	05/23/14 12:27	05/29/14 04:05	1
Fluoranthene	ND		180	2.6	ug/Kg	₩	05/23/14 12:27	05/29/14 04:05	1
Fluorene	ND		180	4.1	ug/Kg	₽	05/23/14 12:27	05/29/14 04:05	1
Indeno[1,2,3-cd]pyrene	ND		180	4.9	ug/Kg	₩	05/23/14 12:27	05/29/14 04:05	1
Naphthalene	ND		180	2.9	ug/Kg	₩	05/23/14 12:27	05/29/14 04:05	1
Phenanthrene	ND		180	3.7	ug/Kg	₽	05/23/14 12:27	05/29/14 04:05	1
Pyrene	ND		180	1.1	ug/Kg	\$	05/23/14 12:27	05/29/14 04:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	80		37 - 120				05/23/14 12:27	05/29/14 04:05	1
Nitrobenzene-d5 (Surr)	74		34 - 132				05/23/14 12:27	05/29/14 04:05	1
p-Terphenyl-d14 (Surr)	94		65 - 153				05/23/14 12:27	05/29/14 04:05	1

Client Sample ID: S-211

Date Collected: 05/21/14 12:45

Lab Sample ID: 480-60422-11

Matrix: Solid

Date Received: 05/23/14 01:00 Percent Solids: 78.4 Method: 8270D - Semivolatile Organic Compounds (GC/MS) MDL Unit Analyte Result Qualifier RL D Prepared Dil Fac Analyzed ₩ 2-Methylnaphthalene ND 210 2.5 ug/Kg 05/23/14 12:27 05/29/14 04:28 Acenaphthene ND 210 2.5 ug/Kg 05/23/14 12:27 05/29/14 04:28 ₩ Acenaphthylene ND 210 ug/Kg 05/23/14 12:27 05/29/14 04:28 ₩ Anthracene ND 210 5.4 ug/Kg 05/23/14 12:27 05/29/14 04:28

210

210

210

210

210

210

210

210

210

3.6 ug/Kg

5.1 ug/Kg

4.1 ug/Kg

2.3 ug/Kg

2.1 ug/Kg

2.5 ug/Kg

3.0 ug/Kg

4.8 ug/Kg

ug/Kg

ND

ND

ND

ND

ND

ND

ND

ND

ND

05/29/14 04:28

05/29/14 04:28

05/29/14 04:28

05/29/14 04:28

05/29/14 04:28

05/29/14 04:28

05/29/14 04:28

05/23/14 12:27

05/23/14 12:27

05/23/14 12:27

05/23/14 12:27

05/23/14 12:27

05/23/14 12:27

05/23/14 12:27

₩

₩

Ü

Page 20 of 84

6/3/2014

TestAmerica Buffalo

4

6

7

9

11

13

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Client Sample ID: S-211
Date Collected: 05/21/14 12:45

Date Received: 05/23/14 01:00

Pyrene

Lab Sample ID: 480-60422-11

Matrix: Solid

Analyzed

05/29/14 04:28 05/29/14 04:28 05/29/14 04:28

05/29/14 04:28

05/23/14 12:27

Percent Solids: 78.4

Dil Fac

Method: 8270D - Semivolatile	•						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared
Indeno[1,2,3-cd]pyrene	ND		210	5.8	ug/Kg	<u> </u>	05/23/14 12:27
Naphthalene	ND		210	3.5	ug/Kg	₽	05/23/14 12:27
Phenanthrene	ND		210	4.4	ug/Kg		05/23/14 12:27

ND

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	82		37 - 120	05/23/14 12:27	05/29/14 04:28	1
Nitrobenzene-d5 (Surr)	75		34 - 132	05/23/14 12:27	05/29/14 04:28	1
p-Terphenyl-d14 (Surr)	93		65 - 153	05/23/14 12:27	05/29/14 04:28	1

210

1.4 ug/Kg

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.71	J	2.0	0.40	mg/Kg		05/23/14 13:50	05/28/14 19:05	1
Barium	5.5		0.50	0.11	mg/Kg		05/23/14 13:50	05/28/14 19:05	1
Cadmium	0.044	J	0.20	0.030	mg/Kg		05/23/14 13:50	05/28/14 19:05	1
Chromium	20		0.50	0.20	mg/Kg		05/23/14 13:50	05/28/14 19:05	1
Lead	1.1		0.99	0.24	mg/Kg		05/23/14 13:50	05/28/14 19:05	1
Selenium	ND		4.0	0.40	mg/Kg		05/23/14 13:50	05/28/14 19:05	1
Silver	ND		0.59	0.20	mg/Kg		05/23/14 13:50	05/28/14 19:05	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Hg	ND		0.018	0.0075	mg/Kg		05/30/14 10:00	05/31/14 09:09	1

 Client Sample ID: S-212
 Lab Sample ID: 480-60422-12

 Date Collected: 05/21/14 13:05
 Matrix: Solid

 Date Received: 05/23/14 01:00
 Percent Solids: 58.2

Method: 8270D - Semivolatil	•	•	•			_			5
Analyte		Qualifier	RL			D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		2900	35	ug/Kg	₽	05/23/14 12:27	05/29/14 04:51	10
Acenaphthene	ND		2900	33	ug/Kg	₽	05/23/14 12:27	05/29/14 04:51	10
Acenaphthylene	ND		2900	23	ug/Kg	₩	05/23/14 12:27	05/29/14 04:51	10
Anthracene	120	J	2900	73	ug/Kg	₽	05/23/14 12:27	05/29/14 04:51	10
Benzo[a]anthracene	580	J	2900	49	ug/Kg	₽	05/23/14 12:27	05/29/14 04:51	10
Benzo[a]pyrene	1000	J	2900	69	ug/Kg	₽	05/23/14 12:27	05/29/14 04:51	10
Benzo[b]fluoranthene	980	J	2900	55	ug/Kg	₽	05/23/14 12:27	05/29/14 04:51	10
Benzo[g,h,i]perylene	1300	J	2900	34	ug/Kg	₽	05/23/14 12:27	05/29/14 04:51	10
Benzo[k]fluoranthene	400	J	2900	31	ug/Kg	₽	05/23/14 12:27	05/29/14 04:51	10
Chrysene	780	J	2900	28	ug/Kg	₽	05/23/14 12:27	05/29/14 04:51	10
Dibenz(a,h)anthracene	690	J	2900	33	ug/Kg	₽	05/23/14 12:27	05/29/14 04:51	10
Fluoranthene	900	J	2900	41	ug/Kg	₽	05/23/14 12:27	05/29/14 04:51	10
Fluorene	ND		2900	66	ug/Kg	₽	05/23/14 12:27	05/29/14 04:51	10
Indeno[1,2,3-cd]pyrene	910	J	2900	79	ug/Kg	₽	05/23/14 12:27	05/29/14 04:51	10
Naphthalene	ND		2900	47	ug/Kg	₽	05/23/14 12:27	05/29/14 04:51	10
Phenanthrene	610	J	2900	60	ug/Kg		05/23/14 12:27	05/29/14 04:51	10
Pyrene	880	J	2900	18	ug/Kg	₽	05/23/14 12:27	05/29/14 04:51	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	72		37 - 120				05/23/14 12:27	05/29/14 04:51	10
Nitrobenzene-d5 (Surr)	75		34 - 132				05/23/14 12:27	05/29/14 04:51	10

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: S-212

Date Collected: 05/21/14 13:05

Date Received: 05/23/14 01:00

TestAmerica Job ID: 480-60422-1

Lab Sample ID: 480-60422-12

. Matrix: Solid

Percent Solids: 58.2

Method: 8270D - S	Semivolatile Orga	anic Compounds	(GC/MS)	(Continued)	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl-d14 (Surr)	94		65 - 153	05/23/14 12:27	05/29/14 04:51	10

Method: 6010C - Metals (ICP)									
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	14		2.0	0.41	mg/Kg		05/23/14 13:50	05/28/14 19:19	1
Barium	180		0.51	0.11	mg/Kg		05/23/14 13:50	05/28/14 19:19	1
Cadmium	1.6		0.20	0.031	mg/Kg		05/23/14 13:50	05/28/14 19:19	1
Chromium	5400		5.1	2.0	mg/Kg		05/23/14 13:50	05/30/14 13:00	10
Lead	730		1.0	0.24	mg/Kg		05/23/14 13:50	05/28/14 19:19	1
Selenium	2.3	J	4.1	0.41	mg/Kg		05/23/14 13:50	05/28/14 19:19	1
Silver	0.64		0.61	0.20	mg/Kg		05/23/14 13:50	05/28/14 19:19	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	1.3		0.10	0.042	mg/Kg		05/30/14 10:00	05/31/14 10:47	5

Client Sample ID: S-213

Date Collected: 05/21/14 13:06

Lab Sample ID: 480-60422-13

Matrix: Solid

Date Received: 05/23/14 01:00 Received: 05/23/14 01:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	73	J	2000	24	ug/Kg	₩	05/23/14 12:27	05/29/14 05:14	10
Acenaphthene	220	J	2000	23	ug/Kg	₩	05/23/14 12:27	05/29/14 05:14	10
Acenaphthylene	ND		2000	16	ug/Kg	₩	05/23/14 12:27	05/29/14 05:14	10
Anthracene	540	J	2000	51	ug/Kg	\	05/23/14 12:27	05/29/14 05:14	10
Benzo[a]anthracene	1500	J	2000	35	ug/Kg	₩	05/23/14 12:27	05/29/14 05:14	10
Benzo[a]pyrene	1200	J	2000	48	ug/Kg	₩	05/23/14 12:27	05/29/14 05:14	10
Benzo[b]fluoranthene	1700	J	2000	39	ug/Kg	₽	05/23/14 12:27	05/29/14 05:14	10
Benzo[g,h,i]perylene	890	J	2000	24	ug/Kg	₩	05/23/14 12:27	05/29/14 05:14	10
Benzo[k]fluoranthene	690	J	2000	22	ug/Kg	₽	05/23/14 12:27	05/29/14 05:14	10
Chrysene	1700	J	2000	20	ug/Kg	₽	05/23/14 12:27	05/29/14 05:14	10
Dibenz(a,h)anthracene	320	J	2000	24	ug/Kg	₽	05/23/14 12:27	05/29/14 05:14	10
Fluoranthene	3400		2000	29	ug/Kg	₽	05/23/14 12:27	05/29/14 05:14	10
Fluorene	220	J	2000	46	ug/Kg	₽	05/23/14 12:27	05/29/14 05:14	10
Indeno[1,2,3-cd]pyrene	870	J	2000	55	ug/Kg	₽	05/23/14 12:27	05/29/14 05:14	10
Naphthalene	180	J	2000	33	ug/Kg	₽	05/23/14 12:27	05/29/14 05:14	10
Phenanthrene	2500		2000	42	ug/Kg	₽	05/23/14 12:27	05/29/14 05:14	10
Pyrene	3000		2000	13	ug/Kg	₽	05/23/14 12:27	05/29/14 05:14	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	83		37 - 120				05/23/14 12:27	05/29/14 05:14	10
Nitrobenzene-d5 (Surr)	77		34 - 132				05/23/14 12:27	05/29/14 05:14	10
p-Terphenyl-d14 (Surr)	110		65 - 153				05/23/14 12:27	05/29/14 05:14	10

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.9		2.0	0.40	mg/Kg		05/23/14 13:50	05/28/14 19:22	1
Barium	210		0.51	0.11	mg/Kg		05/23/14 13:50	05/28/14 19:22	1
Cadmium	0.16	J	0.20	0.030	mg/Kg		05/23/14 13:50	05/28/14 19:22	1

TestAmerica Buffalo

Page 22 of 84

3

4

C

9

10

13

14

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Lab Sample ID: 480-60422-13

Matrix: Solid

Client Sample ID: S-213 Date Collected: 05/21/14 13:06

Date Received: 05/23/14 01:00

Method: 6010C - Metals (ICP) (Co	ntinued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	1100		0.51	0.20	mg/Kg		05/23/14 13:50	05/28/14 19:22	1
Lead	2800		1.0	0.24	mg/Kg		05/23/14 13:50	05/28/14 19:22	1
Selenium	1.0	J	4.0	0.40	mg/Kg		05/23/14 13:50	05/28/14 19:22	1
Silver	ND		0.61	0.20	mg/Kg		05/23/14 13:50	05/28/14 19:22	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	0.18		0.020	0.0081	mg/Kg		05/30/14 10:00	05/31/14 09:13	1

Lab Sample ID: 480-60422-14 Client Sample ID: S-214 Date Collected: 05/21/14 13:07 Matrix: Solid

Date Received: 05/23/14 01:00 Percent Solids: 80.6

Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	37	J		210	2.5	ug/Kg	₩	05/23/14 12:27	05/29/14 05:37	1
Acenaphthene	44	J		210	2.4	ug/Kg	₽	05/23/14 12:27	05/29/14 05:37	1
Acenaphthylene	42	J		210	1.7	ug/Kg	₽	05/23/14 12:27	05/29/14 05:37	1
Anthracene	100	J		210	5.3	ug/Kg	\$	05/23/14 12:27	05/29/14 05:37	1
Benzo[a]anthracene	540			210	3.6	ug/Kg	₽	05/23/14 12:27	05/29/14 05:37	1
Benzo[a]pyrene	470			210	5.0	ug/Kg	₽	05/23/14 12:27	05/29/14 05:37	1
Benzo[b]fluoranthene	690			210	4.0	ug/Kg	₽	05/23/14 12:27	05/29/14 05:37	1
Benzo[g,h,i]perylene	310			210	2.5	ug/Kg	₽	05/23/14 12:27	05/29/14 05:37	1
Benzo[k]fluoranthene	240			210	2.3	ug/Kg	₽	05/23/14 12:27	05/29/14 05:37	1
Chrysene	710			210	2.1	ug/Kg	₽	05/23/14 12:27	05/29/14 05:37	1
Dibenz(a,h)anthracene	84	J		210	2.4	ug/Kg	₽	05/23/14 12:27	05/29/14 05:37	1
Fluoranthene	1300			210	3.0	ug/Kg	₽	05/23/14 12:27	05/29/14 05:37	1
Fluorene	46	J		210	4.8	ug/Kg	₽	05/23/14 12:27	05/29/14 05:37	1
Indeno[1,2,3-cd]pyrene	300			210	5.7	ug/Kg	₽	05/23/14 12:27	05/29/14 05:37	1
Naphthalene	35	J		210	3.5	ug/Kg	₽	05/23/14 12:27	05/29/14 05:37	1
Phenanthrene	820			210	4.4	ug/Kg	₽	05/23/14 12:27	05/29/14 05:37	1
Pyrene	1300			210	1.3	ug/Kg	₽	05/23/14 12:27	05/29/14 05:37	1
Surrogate	%Recovery	Qualifier	Lim	its				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	81		37 -	120				05/23/14 12:27	05/29/14 05:37	1
Nitrohanzana d5 (Surr)	7.1		34	132				05/23/14 12:27	05/20/14 05:37	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	81		37 - 120	05/23/14 12:27	05/29/14 05:37	1
Nitrobenzene-d5 (Surr)	74		34 - 132	05/23/14 12:27	05/29/14 05:37	1
p-Terphenyl-d14 (Surr)	104		65 - 153	05/23/14 12:27	05/29/14 05:37	1

wethou. 60 foc - wetals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.3		2.0	0.39	mg/Kg		05/23/14 13:50	05/28/14 19:36	1
Barium	46		0.49	0.11	mg/Kg		05/23/14 13:50	05/28/14 19:36	1
Cadmium	0.076	J	0.20	0.030	mg/Kg		05/23/14 13:50	05/28/14 19:36	1
Chromium	7.1		0.49	0.20	mg/Kg		05/23/14 13:50	05/28/14 19:36	1
Lead	51		0.99	0.24	mg/Kg		05/23/14 13:50	05/28/14 19:36	1
Selenium	0.76	J	3.9	0.39	mg/Kg		05/23/14 13:50	05/28/14 19:36	1
Silver	ND		0.59	0.20	mg/Kg		05/23/14 13:50	05/28/14 19:36	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Hg	0.059		0.020	0.0082	mg/Kg		05/30/14 10:00	05/31/14 09:14	1		

TestAmerica Buffalo

Page 23 of 84

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: S-215 Date Collected: 05/21/14 13:08

Date Received: 05/23/14 01:00

Lab Sample ID: 480-60422-15

Matrix: Solid

Matrix: Solid Percent Solids: 88.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	23	J	190	2.2	ug/Kg	<u> </u>	05/23/14 12:27	05/29/14 06:00	1
Acenaphthene	4.3	J	190	2.2	ug/Kg	₽	05/23/14 12:27	05/29/14 06:00	1
Acenaphthylene	4.8	J	190	1.5	ug/Kg	₩	05/23/14 12:27	05/29/14 06:00	1
Anthracene	15	J	190	4.8	ug/Kg	₽	05/23/14 12:27	05/29/14 06:00	1
Benzo[a]anthracene	ND		190	3.2	ug/Kg	₽	05/23/14 12:27	05/29/14 06:00	1
Benzo[a]pyrene	50	J	190	4.5	ug/Kg	₩	05/23/14 12:27	05/29/14 06:00	1
Benzo[b]fluoranthene	130	J	190	3.6	ug/Kg	\$	05/23/14 12:27	05/29/14 06:00	1
Benzo[g,h,i]perylene	85	J	190	2.2	ug/Kg	₩	05/23/14 12:27	05/29/14 06:00	1
Benzo[k]fluoranthene	24	J	190	2.0	ug/Kg	₩	05/23/14 12:27	05/29/14 06:00	1
Chrysene	140	J	190	1.9	ug/Kg		05/23/14 12:27	05/29/14 06:00	1
Dibenz(a,h)anthracene	26	J	190	2.2	ug/Kg	₩	05/23/14 12:27	05/29/14 06:00	1
Fluoranthene	110	J	190	2.7	ug/Kg	₽	05/23/14 12:27	05/29/14 06:00	1
Fluorene	ND		190	4.3	ug/Kg	₽	05/23/14 12:27	05/29/14 06:00	1
Indeno[1,2,3-cd]pyrene	71	J	190	5.1	ug/Kg	₩	05/23/14 12:27	05/29/14 06:00	1
Naphthalene	21	J	190	3.1	ug/Kg	₽	05/23/14 12:27	05/29/14 06:00	1
Phenanthrene	120	J	190	3.9	ug/Kg	₩.	05/23/14 12:27	05/29/14 06:00	1
Pyrene	110	J	190	1.2	ug/Kg	₽	05/23/14 12:27	05/29/14 06:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	82		37 - 120				05/23/14 12:27	05/29/14 06:00	1
Nitrobenzene-d5 (Surr)	76		34 - 132				05/23/14 12:27	05/29/14 06:00	1
p-Terphenyl-d14 (Surr)	106		65 - 153				05/23/14 12:27	05/29/14 06:00	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	29		1.8	0.37	mg/Kg		05/23/14 13:50	05/28/14 19:39	1
Barium	45		0.46	0.10	mg/Kg		05/23/14 13:50	05/28/14 19:39	1
Cadmium	0.21		0.18	0.027	mg/Kg		05/23/14 13:50	05/28/14 19:39	1
Chromium	9.8		0.46	0.18	mg/Kg		05/23/14 13:50	05/28/14 19:39	1
Lead	22		0.91	0.22	mg/Kg		05/23/14 13:50	05/28/14 19:39	1
Selenium	7.3		3.7	0.37	mg/Kg		05/23/14 13:50	05/28/14 19:39	1
Silver	ND		0.55	0.18	mg/Kg		05/23/14 13:50	05/28/14 19:39	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Hg	0.089		0.021	0.0084	mg/Kg		05/30/14 10:00	05/31/14 09:16	1	

Client Sample ID: S-216

Date Collected: 05/21/14 13:15

Lab Sample ID: 480-60422-16

Matrix: Solid

Date Collected: 05/21/14 13:15

Date Received: 05/23/14 01:00

Percent Solids: 89.9

Method: 8270D - Semivolatile Organic Compounds (GC/MS)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
2-Methylnaphthalene	ND		190	2.2	ug/Kg	\$	05/23/14 12:27	05/29/14 06:23	1		
Acenaphthene	3.3	J	190	2.2	ug/Kg	₩	05/23/14 12:27	05/29/14 06:23	1		
Acenaphthylene	ND		190	1.5	ug/Kg	₩	05/23/14 12:27	05/29/14 06:23	1		
Anthracene	6.7	J	190	4.7	ug/Kg	₩	05/23/14 12:27	05/29/14 06:23	1		
Benzo[a]anthracene	47	J	190	3.2	ug/Kg	₩	05/23/14 12:27	05/29/14 06:23	1		
Benzo[a]pyrene	37	J	190	4.5	ug/Kg	₩	05/23/14 12:27	05/29/14 06:23	1		
Benzo[b]fluoranthene	56	J	190	3.6	ug/Kg	₽	05/23/14 12:27	05/29/14 06:23	1		

TestAmerica Buffalo

Page 24 of 84

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: S-216

Date Collected: 05/21/14 13:15 Date Received: 05/23/14 01:00

Lab Sample ID: 480-60422-16

Matrix: Solid Percent Solids: 89.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[g,h,i]perylene	27	J	190	2.2	ug/Kg	-	05/23/14 12:27	05/29/14 06:23	1
Benzo[k]fluoranthene	21	J	190	2.0	ug/Kg	₽	05/23/14 12:27	05/29/14 06:23	1
Chrysene	57	J	190	1.9	ug/Kg	\$	05/23/14 12:27	05/29/14 06:23	1
Dibenz(a,h)anthracene	ND		190	2.2	ug/Kg	₽	05/23/14 12:27	05/29/14 06:23	1
Fluoranthene	100	J	190	2.7	ug/Kg	₽	05/23/14 12:27	05/29/14 06:23	1
Fluorene	ND		190	4.3	ug/Kg	₽	05/23/14 12:27	05/29/14 06:23	1
Indeno[1,2,3-cd]pyrene	26	J	190	5.1	ug/Kg	₽	05/23/14 12:27	05/29/14 06:23	1
Naphthalene	ND		190	3.1	ug/Kg	₽	05/23/14 12:27	05/29/14 06:23	1
Phenanthrene	55	J	190	3.9	ug/Kg	\$	05/23/14 12:27	05/29/14 06:23	1
Pyrene	100	J	190	1.2	ug/Kg	₽	05/23/14 12:27	05/29/14 06:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	81		37 - 120				05/23/14 12:27	05/29/14 06:23	1
Nitrobenzene-d5 (Surr)	75		34 - 132				05/23/14 12:27	05/29/14 06:23	1
p-Terphenyl-d14 (Surr)	104		65 ₋ 153				05/23/14 12:27	05/29/14 06:23	1

Method: 6010C - Metals (ICI Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.8	J	2.1	0.42	mg/Kg		05/23/14 13:50	05/28/14 19:42	1
Barium	8.7		0.53	0.12	mg/Kg		05/23/14 13:50	05/28/14 19:42	1
Cadmium	ND		0.21	0.032	mg/Kg		05/23/14 13:50	05/28/14 19:42	1
Chromium	220		0.53	0.21	mg/Kg		05/23/14 13:50	05/28/14 19:42	1
Lead	5.9		1.1	0.25	mg/Kg		05/23/14 13:50	05/28/14 19:42	1
Selenium	ND		4.2	0.42	mg/Kg		05/23/14 13:50	05/28/14 19:42	1
Silver	ND		0.63	0.21	mg/Kg		05/23/14 13:50	05/28/14 19:42	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)									
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	Hg	0.024	0.020	0.0082 mg/Kg		05/30/14 10:00	05/31/14 09:18	1	

Client Sample ID: TP-101 (5-5.5') Lab Sample ID: 480-60422-17 Date Collected: 05/21/14 14:32 Matrix: Solid Date Received: 05/23/14 01:00 Percent Solids: 85.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	5.8	J	200	2.4	ug/Kg	*	05/23/14 12:33	05/28/14 13:09	1
Acenaphthene	4.2	J	200	2.3	ug/Kg	₩	05/23/14 12:33	05/28/14 13:09	1
Acenaphthylene	ND		200	1.6	ug/Kg	₽	05/23/14 12:33	05/28/14 13:09	1
Anthracene	ND		200	5.0	ug/Kg	₽	05/23/14 12:33	05/28/14 13:09	1
Benzo[a]anthracene	ND		200	3.4	ug/Kg	₽	05/23/14 12:33	05/28/14 13:09	1
Benzo[a]pyrene	ND		200	4.7	ug/Kg	₽	05/23/14 12:33	05/28/14 13:09	1
Benzo[b]fluoranthene	ND		200	3.8	ug/Kg	*	05/23/14 12:33	05/28/14 13:09	1
Benzo[g,h,i]perylene	ND		200	2.3	ug/Kg	₽	05/23/14 12:33	05/28/14 13:09	1
Benzo[k]fluoranthene	ND		200	2.1	ug/Kg	₩	05/23/14 12:33	05/28/14 13:09	1
Chrysene	ND		200	1.9	ug/Kg	₽	05/23/14 12:33	05/28/14 13:09	1
Dibenz(a,h)anthracene	ND		200	2.3	ug/Kg	₽	05/23/14 12:33	05/28/14 13:09	1
Fluoranthene	ND		200	2.8	ug/Kg	₽	05/23/14 12:33	05/28/14 13:09	1
Fluorene	ND		200	4.5	ug/Kg	₽	05/23/14 12:33	05/28/14 13:09	1
Indeno[1,2,3-cd]pyrene	ND		200	5.4	ug/Kg	₽	05/23/14 12:33	05/28/14 13:09	1

Page 25 of 84

2

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

TestAmerica Job ID: 480-60422-1

Client Sample ID: TP-101 (5-5.5')

Date Collected: 05/21/14 14:32 Date Received: 05/23/14 01:00

p-Terphenyl-d14 (Surr)

Lab Sample ID: 480-60422-17

Matrix: Solid

Percent Solids: 85.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	22	JB	200	3.2	ug/Kg	₩	05/23/14 12:33	05/28/14 13:09	1
Phenanthrene	8.8	J	200	4.1	ug/Kg	₽	05/23/14 12:33	05/28/14 13:09	1
Pyrene	ND		200	1.3	ug/Kg	₽	05/23/14 12:33	05/28/14 13:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	79		37 - 120				05/23/14 12:33	05/28/14 13:09	1
Nitrobenzene-d5 (Surr)	72		34 - 132				05/23/14 12:33	05/28/14 13:09	1
p-Terphenyl-d14 (Surr)	93		65 - 153				05/23/14 12:33	05/28/14 13:09	1

Method: 6010C - Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.1	J	1.9	0.39	mg/Kg		05/23/14 13:50	05/28/14 19:45	1
Barium	7.1		0.49	0.11	mg/Kg		05/23/14 13:50	05/28/14 19:45	1
Cadmium	ND		0.19	0.029	mg/Kg		05/23/14 13:50	05/28/14 19:45	1
Chromium	1.3		0.49	0.19	mg/Kg		05/23/14 13:50	05/28/14 19:45	1
Lead	1.2		0.97	0.23	mg/Kg		05/23/14 13:50	05/28/14 19:45	1
Selenium	ND		3.9	0.39	mg/Kg		05/23/14 13:50	05/28/14 19:45	1
Silver	ND		0.58	0.19	mg/Kg		05/23/14 13:50	05/28/14 19:45	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Hg	ND		0.018	0.0073	mg/Kg		05/30/14 10:00	05/31/14 09:29	1	

Client Sample ID: TP-101 (10')

Lab Sample ID: 480-60422-18

Date Collected: 05/21/14 14:30
Date Received: 05/23/14 01:00

97

Matrix: Solid
Percent Solids: 96.4

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		170	2.1	ug/Kg	<u> </u>	05/23/14 12:33	05/28/14 13:32	1
Acenaphthene	ND		170	2.0	ug/Kg	₩	05/23/14 12:33	05/28/14 13:32	1
Acenaphthylene	ND		170	1.4	ug/Kg	₽	05/23/14 12:33	05/28/14 13:32	1
Anthracene	ND		170	4.4	ug/Kg	₽	05/23/14 12:33	05/28/14 13:32	1
Benzo[a]anthracene	ND		170	3.0	ug/Kg	₽	05/23/14 12:33	05/28/14 13:32	1
Benzo[a]pyrene	ND		170	4.1	ug/Kg	₽	05/23/14 12:33	05/28/14 13:32	1
Benzo[b]fluoranthene	ND		170	3.3	ug/Kg	\$	05/23/14 12:33	05/28/14 13:32	1
Benzo[g,h,i]perylene	ND		170	2.1	ug/Kg	₽	05/23/14 12:33	05/28/14 13:32	1
Benzo[k]fluoranthene	ND		170	1.9	ug/Kg	₽	05/23/14 12:33	05/28/14 13:32	1
Chrysene	ND		170	1.7	ug/Kg	\$	05/23/14 12:33	05/28/14 13:32	1
Dibenz(a,h)anthracene	ND		170	2.0	ug/Kg	₽	05/23/14 12:33	05/28/14 13:32	1
Fluoranthene	ND		170	2.5	ug/Kg	₩	05/23/14 12:33	05/28/14 13:32	1
Fluorene	ND		170	4.0	ug/Kg	₽	05/23/14 12:33	05/28/14 13:32	1
Indeno[1,2,3-cd]pyrene	ND		170	4.7	ug/Kg	₽	05/23/14 12:33	05/28/14 13:32	1
Naphthalene	ND		170	2.9	ug/Kg	₽	05/23/14 12:33	05/28/14 13:32	1
Phenanthrene	ND		170	3.6	ug/Kg	₽	05/23/14 12:33	05/28/14 13:32	1
Pyrene	ND		170	1.1	ug/Kg	₽	05/23/14 12:33	05/28/14 13:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	81		37 - 120				05/23/14 12:33	05/28/14 13:32	1
Nitrobenzene-d5 (Surr)	75		34 - 132				05/23/14 12:33	05/28/14 13:32	1

TestAmerica Buffalo

05/28/14 13:32

05/23/14 12:33

65 - 153

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Lab Sample ID: 480-60422-18

Matrix: Solid

Date Collected: 05/21/14 14:30	
Date Received: 05/23/14 01:00	

Client Sample ID: TP-101 (10')

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.0	J	2.0	0.40	mg/Kg		05/23/14 13:50	05/28/14 19:47	1
Barium	7.0		0.50	0.11	mg/Kg		05/23/14 13:50	05/28/14 19:47	1
Cadmium	0.040	J	0.20	0.030	mg/Kg		05/23/14 13:50	05/28/14 19:47	1
Chromium	1.4		0.50	0.20	mg/Kg		05/23/14 13:50	05/28/14 19:47	1
Lead	1.1		1.0	0.24	mg/Kg		05/23/14 13:50	05/28/14 19:47	1
Selenium	0.40	J	4.0	0.40	mg/Kg		05/23/14 13:50	05/28/14 19:47	1
Silver	ND		0.61	0.20	mg/Kg		05/23/14 13:50	05/28/14 19:47	1

Method: 7471B - Mercury in Solid	or Semisolid	Waste (Man	ual Cold Va	oor Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hq	ND		0.020	0.0082	mg/Kg		05/30/14 10:00	05/31/14 09:31	1

Client Sample ID: TP-102 (4-5') Lab Sample ID: 480-60422-19

Date Collected: 05/21/14 14:38 Matrix: Solid Date Received: 05/23/14 01:00 Percent Solids: 97.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		170	2.1	ug/Kg	₽	05/23/14 12:33	05/28/14 13:55	1
Acenaphthene	ND		170	2.0	ug/Kg	₽	05/23/14 12:33	05/28/14 13:55	1
Acenaphthylene	ND		170	1.4	ug/Kg	₽	05/23/14 12:33	05/28/14 13:55	1
Anthracene	ND		170	4.4	ug/Kg	₽	05/23/14 12:33	05/28/14 13:55	1
Benzo[a]anthracene	ND		170	3.0	ug/Kg	₽	05/23/14 12:33	05/28/14 13:55	1
Benzo[a]pyrene	ND		170	4.1	ug/Kg	₩	05/23/14 12:33	05/28/14 13:55	1
Benzo[b]fluoranthene	ND		170	3.3	ug/Kg	₽	05/23/14 12:33	05/28/14 13:55	1
Benzo[g,h,i]perylene	ND		170	2.1	ug/Kg	₩	05/23/14 12:33	05/28/14 13:55	1
Benzo[k]fluoranthene	ND		170	1.9	ug/Kg	₩	05/23/14 12:33	05/28/14 13:55	1
Chrysene	ND		170	1.7	ug/Kg	\$	05/23/14 12:33	05/28/14 13:55	1
Dibenz(a,h)anthracene	ND		170	2.0	ug/Kg	₩	05/23/14 12:33	05/28/14 13:55	1
Fluoranthene	ND		170	2.5	ug/Kg	₩	05/23/14 12:33	05/28/14 13:55	1
Fluorene	ND		170	3.9	ug/Kg	₽	05/23/14 12:33	05/28/14 13:55	1
Indeno[1,2,3-cd]pyrene	ND		170	4.7	ug/Kg	₩	05/23/14 12:33	05/28/14 13:55	1
Naphthalene	ND		170	2.8	ug/Kg	₩	05/23/14 12:33	05/28/14 13:55	1
Phenanthrene	ND		170	3.6	ug/Kg		05/23/14 12:33	05/28/14 13:55	1
Pyrene	ND		170	1.1	ug/Kg	₽	05/23/14 12:33	05/28/14 13:55	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	87		37 - 120	05/23/14 12:33	05/28/14 13:55	1
Nitrobenzene-d5 (Surr)	78		34 - 132	05/23/14 12:33	05/28/14 13:55	1
p-Terphenyl-d14 (Surr)	100		65 - 153	05/23/14 12:33	05/28/14 13:55	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.3	J	2.0	0.40	mg/Kg		05/23/14 13:50	05/28/14 19:50	1
Barium	11		0.50	0.11	mg/Kg		05/23/14 13:50	05/28/14 19:50	1
Cadmium	ND		0.20	0.030	mg/Kg		05/23/14 13:50	05/28/14 19:50	1
Chromium	2.1		0.50	0.20	mg/Kg		05/23/14 13:50	05/28/14 19:50	1
Lead	1.5		1.0	0.24	mg/Kg		05/23/14 13:50	05/28/14 19:50	1
Selenium	0.48	J	4.0	0.40	mg/Kg		05/23/14 13:50	05/28/14 19:50	1
Silver	ND		0.60	0.20	mg/Kg		05/23/14 13:50	05/28/14 19:50	1

TestAmerica Buffalo

Page 27 of 84

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Lab Sample ID: 480-60422-19

Matrix: Solid

Matrix: Solid

Client Sample ID: TP-102 (4-5')

Date Collected: 05/21/14 14:38 Date Received: 05/23/14 01:00

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Hg	ND		0.020	0.0082	mg/Kg		05/30/14 10:00	05/31/14 09:32	1	

Lab Sample ID: 480-60422-20 Client Sample ID: TP-102 (9.5')

Date Collected: 05/21/14 14:45

Date Received: 05/23/14 01:00 Percent Solids: 83.2

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND	200	2.4	ug/Kg	₩	05/23/14 12:33	05/28/14 14:19	1
Acenaphthene	ND	200	2.4	ug/Kg	₽	05/23/14 12:33	05/28/14 14:19	1
Acenaphthylene	ND	200	1.6	ug/Kg	₽	05/23/14 12:33	05/28/14 14:19	1
Anthracene	ND	200	5.1	ug/Kg	₽	05/23/14 12:33	05/28/14 14:19	1
Benzo[a]anthracene	ND	200	3.5	ug/Kg	₽	05/23/14 12:33	05/28/14 14:19	1
Benzo[a]pyrene	ND	200	4.8	ug/Kg	₽	05/23/14 12:33	05/28/14 14:19	1
Benzo[b]fluoranthene	ND	200	3.9	ug/Kg	₽	05/23/14 12:33	05/28/14 14:19	1
Benzo[g,h,i]perylene	ND	200	2.4	ug/Kg	₽	05/23/14 12:33	05/28/14 14:19	1
Benzo[k]fluoranthene	ND	200	2.2	ug/Kg	₽	05/23/14 12:33	05/28/14 14:19	1
Chrysene	ND	200	2.0	ug/Kg	₽	05/23/14 12:33	05/28/14 14:19	1
Dibenz(a,h)anthracene	ND	200	2.4	ug/Kg	₽	05/23/14 12:33	05/28/14 14:19	1
Fluoranthene	ND	200	2.9	ug/Kg	₽	05/23/14 12:33	05/28/14 14:19	1
Fluorene	ND	200	4.6	ug/Kg	\$	05/23/14 12:33	05/28/14 14:19	1
Indeno[1,2,3-cd]pyrene	ND	200	5.5	ug/Kg	₩	05/23/14 12:33	05/28/14 14:19	1
Naphthalene	ND	200	3.3	ug/Kg	₩	05/23/14 12:33	05/28/14 14:19	1
Phenanthrene	ND	200	4.2	ug/Kg	₩	05/23/14 12:33	05/28/14 14:19	1
Pyrene	ND	200	1.3	ug/Kg	₽	05/23/14 12:33	05/28/14 14:19	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	83		37 - 120	05/23/14 12:33	05/28/14 14:19	1
Nitrobenzene-d5 (Surr)	76		34 - 132	05/23/14 12:33	05/28/14 14:19	1
p-Terphenyl-d14 (Surr)	97		65 - 153	05/23/14 12:33	05/28/14 14:19	1

— Method: 6010C - Metals (I	ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.90	J	1.9	0.39	mg/Kg		05/23/14 13:50	05/28/14 19:53	1
Barium	6.3		0.48	0.11	mg/Kg		05/23/14 13:50	05/28/14 19:53	1
Cadmium	ND		0.19	0.029	mg/Kg		05/23/14 13:50	05/28/14 19:53	1
Chromium	1.4		0.48	0.19	mg/Kg		05/23/14 13:50	05/28/14 19:53	1
Lead	0.80	J	0.97	0.23	mg/Kg		05/23/14 13:50	05/28/14 19:53	1
Selenium	ND		3.9	0.39	mg/Kg		05/23/14 13:50	05/28/14 19:53	1
Silver	ND		0.58	0.19	mg/Kg		05/23/14 13:50	05/28/14 19:53	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	ND		0.019	0.0077	mg/Kg		05/30/14 10:00	05/31/14 09:34	1

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: TP-103 (2-3')

Date Collected: 05/21/14 15:35 Date Received: 05/23/14 01:00 Lab Sample ID: 480-60422-21

Matrix: Solid

Percent Solids: 89.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		190	2.3	ug/Kg		05/23/14 12:33	05/28/14 14:42	1
Acenaphthene	ND		190	2.2	ug/Kg	₽	05/23/14 12:33	05/28/14 14:42	1
Acenaphthylene	ND		190	1.5	ug/Kg	₩	05/23/14 12:33	05/28/14 14:42	1
Anthracene	ND		190	4.8	ug/Kg	₽	05/23/14 12:33	05/28/14 14:42	1
Benzo[a]anthracene	ND		190	3.2	ug/Kg	₩	05/23/14 12:33	05/28/14 14:42	1
Benzo[a]pyrene	ND		190	4.5	ug/Kg	₽	05/23/14 12:33	05/28/14 14:42	1
Benzo[b]fluoranthene	ND		190	3.6	ug/Kg	\$	05/23/14 12:33	05/28/14 14:42	1
Benzo[g,h,i]perylene	ND		190	2.2	ug/Kg	₩	05/23/14 12:33	05/28/14 14:42	1
Benzo[k]fluoranthene	ND		190	2.1	ug/Kg	₽	05/23/14 12:33	05/28/14 14:42	1
Chrysene	ND		190	1.9	ug/Kg	₽	05/23/14 12:33	05/28/14 14:42	1
Dibenz(a,h)anthracene	ND		190	2.2	ug/Kg	₽	05/23/14 12:33	05/28/14 14:42	1
Fluoranthene	10	J	190	2.7	ug/Kg	₽	05/23/14 12:33	05/28/14 14:42	1
Fluorene	ND		190	4.3	ug/Kg	₽	05/23/14 12:33	05/28/14 14:42	1
Indeno[1,2,3-cd]pyrene	ND		190	5.2	ug/Kg	₽	05/23/14 12:33	05/28/14 14:42	1
Naphthalene	ND		190	3.1	ug/Kg	₽	05/23/14 12:33	05/28/14 14:42	1
Phenanthrene	6.7	J	190	3.9	ug/Kg	₽	05/23/14 12:33	05/28/14 14:42	1
Pyrene	ND		190	1.2	ug/Kg	₽	05/23/14 12:33	05/28/14 14:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	84		37 - 120				05/23/14 12:33	05/28/14 14:42	1
Nitrobenzene-d5 (Surr)	76		34 - 132				05/23/14 12:33	05/28/14 14:42	1
p-Terphenyl-d14 (Surr)	97		65 - 153				05/23/14 12:33	05/28/14 14:42	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.0	J	2.1	0.42	mg/Kg		05/23/14 13:50	05/28/14 19:56	1
Barium	5.2		0.52	0.11	mg/Kg		05/23/14 13:50	05/28/14 19:56	1
Cadmium	ND		0.21	0.031	mg/Kg		05/23/14 13:50	05/28/14 19:56	1
Chromium	0.53		0.52	0.21	mg/Kg		05/23/14 13:50	05/28/14 19:56	1
Lead	5.5		1.0	0.25	mg/Kg		05/23/14 13:50	05/28/14 19:56	1
Selenium	ND		4.2	0.42	mg/Kg		05/23/14 13:50	05/28/14 19:56	1
Silver	ND		0.62	0.21	mg/Kg		05/23/14 13:50	05/28/14 19:56	1

Method: 7471B - Mercury in Solid	Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Hg	0.0099	J	0.018	0.0072	mg/Kg		05/30/14 10:00	05/31/14 09:36	1		

 Client Sample ID: TP-103 (4')
 Lab Sample ID: 480-60422-22

 Date Collected: 05/21/14 15:38
 Matrix: Solid

 Date Received: 05/23/14 01:00
 Percent Solids: 81.7

Method: 8270D - Semivolatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		4100	50	ug/Kg	*	05/23/14 12:33	05/28/14 15:06	20
Acenaphthene	ND		4100	48	ug/Kg	₽	05/23/14 12:33	05/28/14 15:06	20
Acenaphthylene	ND		4100	34	ug/Kg	₩	05/23/14 12:33	05/28/14 15:06	20
Anthracene	ND		4100	110	ug/Kg	₽	05/23/14 12:33	05/28/14 15:06	20
Benzo[a]anthracene	ND		4100	71	ug/Kg	₽	05/23/14 12:33	05/28/14 15:06	20
Benzo[a]pyrene	ND		4100	99	ug/Kg	₩	05/23/14 12:33	05/28/14 15:06	20
Benzo[b]fluoranthene	ND		4100	80	ug/Kg		05/23/14 12:33	05/28/14 15:06	20

TestAmerica Buffalo

Page 29 of 84

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: TP-103 (4')

Date Collected: 05/21/14 15:38 Date Received: 05/23/14 01:00 Lab Sample ID: 480-60422-22

Matrix: Solid

Percent Solids: 81.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[g,h,i]perylene	ND		4100	49	ug/Kg	₩	05/23/14 12:33	05/28/14 15:06	20
Benzo[k]fluoranthene	ND		4100	45	ug/Kg	₽	05/23/14 12:33	05/28/14 15:06	20
Chrysene	ND		4100	41	ug/Kg	₽	05/23/14 12:33	05/28/14 15:06	20
Dibenz(a,h)anthracene	ND		4100	48	ug/Kg	₽	05/23/14 12:33	05/28/14 15:06	20
Fluoranthene	190	J	4100	60	ug/Kg	₩	05/23/14 12:33	05/28/14 15:06	20
Fluorene	ND		4100	95	ug/Kg	₽	05/23/14 12:33	05/28/14 15:06	20
Indeno[1,2,3-cd]pyrene	ND		4100	110	ug/Kg	₩	05/23/14 12:33	05/28/14 15:06	20
Naphthalene	ND		4100	68	ug/Kg	₽	05/23/14 12:33	05/28/14 15:06	20
Phenanthrene	ND		4100	86	ug/Kg	₽	05/23/14 12:33	05/28/14 15:06	20
Pyrene	ND		4100	27	ug/Kg	₩	05/23/14 12:33	05/28/14 15:06	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	49		37 - 120				05/23/14 12:33	05/28/14 15:06	20
Nitrobenzene-d5 (Surr)	71		34 - 132				05/23/14 12:33	05/28/14 15:06	20
p-Terphenyl-d14 (Surr)	91		65 - 153				05/23/14 12:33	05/28/14 15:06	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.4	J	2.2	0.44	mg/Kg		05/23/14 13:50	05/28/14 20:10	1
Barium	2.8		0.55	0.12	mg/Kg		05/23/14 13:50	05/28/14 20:10	1
Cadmium	ND		0.22	0.033	mg/Kg		05/23/14 13:50	05/28/14 20:10	1
Chromium	0.31	J	0.55	0.22	mg/Kg		05/23/14 13:50	05/28/14 20:10	1
Lead	3.0		1.1	0.27	mg/Kg		05/23/14 13:50	05/28/14 20:10	1
Selenium	0.45	J	4.4	0.44	mg/Kg		05/23/14 13:50	05/28/14 20:10	1
Silver	0.22	J	0.66	0.22	mg/Kg		05/23/14 13:50	05/28/14 20:10	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	0.20		0.020	0.0081	mg/Kg		05/30/14 10:00	05/31/14 09:38	1

 Client Sample ID: TP-104 (2-3')
 Lab Sample ID: 480-60422-23

 Date Collected: 05/21/14 15:55
 Matrix: Solid

 Date Received: 05/23/14 01:00
 Percent Solids: 93.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		180	2.2	ug/Kg	₩	05/23/14 12:33	05/28/14 15:30	1
Acenaphthene	ND		180	2.1	ug/Kg	₽	05/23/14 12:33	05/28/14 15:30	1
Acenaphthylene	ND		180	1.5	ug/Kg	₽	05/23/14 12:33	05/28/14 15:30	1
Anthracene	ND		180	4.6	ug/Kg	\$	05/23/14 12:33	05/28/14 15:30	1
Benzo[a]anthracene	ND		180	3.1	ug/Kg	₽	05/23/14 12:33	05/28/14 15:30	1
Benzo[a]pyrene	ND	*	180	4.3	ug/Kg	₽	05/23/14 12:33	05/28/14 15:30	1
Benzo[b]fluoranthene	ND	*	180	3.5	ug/Kg	\$	05/23/14 12:33	05/28/14 15:30	1
Benzo[g,h,i]perylene	ND	*	180	2.1	ug/Kg	₽	05/23/14 12:33	05/28/14 15:30	1
Benzo[k]fluoranthene	ND	*	180	2.0	ug/Kg	₽	05/23/14 12:33	05/28/14 15:30	1
Chrysene	ND		180	1.8	ug/Kg	₽	05/23/14 12:33	05/28/14 15:30	1
Dibenz(a,h)anthracene	ND	*	180	2.1	ug/Kg	₽	05/23/14 12:33	05/28/14 15:30	1
Fluoranthene	7.6	J	180	2.6	ug/Kg	₽	05/23/14 12:33	05/28/14 15:30	1
Fluorene	ND		180	4.1	ug/Kg	₽	05/23/14 12:33	05/28/14 15:30	1
Indeno[1,2,3-cd]pyrene	ND	*	180	4.9	ug/Kg	₽	05/23/14 12:33	05/28/14 15:30	1

TestAmerica Buffalo

3

4

6

9

1 4

12

1 /

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: TP-104 (2-3')

Date Collected: 05/21/14 15:55 Date Received: 05/23/14 01:00

p-Terphenyl-d14 (Surr)

Lab Sample ID: 480-60422-23

Matrix: Solid

Percent Solids: 93.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		180	3.0	ug/Kg	₩	05/23/14 12:33	05/28/14 15:30	1
Phenanthrene	6.4	J	180	3.8	ug/Kg	₽	05/23/14 12:33	05/28/14 15:30	1
Pyrene	ND		180	1.2	ug/Kg	₽	05/23/14 12:33	05/28/14 15:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	83		37 - 120				05/23/14 12:33	05/28/14 15:30	1
Nitrobenzene-d5 (Surr)	76		34 - 132				05/23/14 12:33	05/28/14 15:30	1
p-Terphenyl-d14 (Surr)	117		65 - 153				05/23/14 12:33	05/28/14 15:30	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.50	J	2.0	0.39	mg/Kg		05/23/14 13:50	05/28/14 20:13	1
Barium	5.2		0.49	0.11	mg/Kg		05/23/14 13:50	05/28/14 20:13	1
Cadmium	ND		0.20	0.029	mg/Kg		05/23/14 13:50	05/28/14 20:13	1
Chromium	ND		0.49	0.20	mg/Kg		05/23/14 13:50	05/28/14 20:13	1
Lead	12		0.98	0.24	mg/Kg		05/23/14 13:50	05/28/14 20:13	1
Selenium	ND		3.9	0.39	mg/Kg		05/23/14 13:50	05/28/14 20:13	1
Silver	ND		0.59	0.20	mg/Kg		05/23/14 13:50	05/28/14 20:13	1

Method: 7471B - Mercury in Solid	or Semisolid	Waste (Mar	nual Cold Va	por Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND		0.020	0.0081	mg/Kg		05/30/14 10:00	05/31/14 09:39	1

Client Sample ID: TP-104 (4) Lab Sample ID: 480-60422-24

Date Collected: 05/21/14 15:56 **Matrix: Solid** Date Received: 05/23/14 01:00 Percent Solids: 87.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		190	2.3	ug/Kg	<u> </u>	05/23/14 12:33	05/28/14 15:53	1
Acenaphthene	ND		190	2.2	ug/Kg	₽	05/23/14 12:33	05/28/14 15:53	1
Acenaphthylene	ND		190	1.6	ug/Kg	₽	05/23/14 12:33	05/28/14 15:53	1
Anthracene	ND		190	4.9	ug/Kg	₽	05/23/14 12:33	05/28/14 15:53	1
Benzo[a]anthracene	ND		190	3.3	ug/Kg	₽	05/23/14 12:33	05/28/14 15:53	1
Benzo[a]pyrene	ND	*	190	4.6	ug/Kg	₽	05/23/14 12:33	05/28/14 15:53	1
Benzo[b]fluoranthene	ND	*	190	3.7	ug/Kg	\$	05/23/14 12:33	05/28/14 15:53	1
Benzo[g,h,i]perylene	ND	*	190	2.3	ug/Kg	₩	05/23/14 12:33	05/28/14 15:53	1
Benzo[k]fluoranthene	ND	*	190	2.1	ug/Kg	₽	05/23/14 12:33	05/28/14 15:53	1
Chrysene	ND		190	1.9	ug/Kg	\$	05/23/14 12:33	05/28/14 15:53	1
Dibenz(a,h)anthracene	ND	*	190	2.2	ug/Kg	₽	05/23/14 12:33	05/28/14 15:53	1
Fluoranthene	ND		190	2.8	ug/Kg	₩	05/23/14 12:33	05/28/14 15:53	1
Fluorene	ND		190	4.4	ug/Kg	₩.	05/23/14 12:33	05/28/14 15:53	1
Indeno[1,2,3-cd]pyrene	ND	*	190	5.3	ug/Kg	₽	05/23/14 12:33	05/28/14 15:53	1
Naphthalene	ND		190	3.2	ug/Kg	₽	05/23/14 12:33	05/28/14 15:53	1
Phenanthrene	ND		190	4.0	ug/Kg	₩.	05/23/14 12:33	05/28/14 15:53	1
Pyrene	ND		190	1.2	ug/Kg	₽	05/23/14 12:33	05/28/14 15:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	87		37 - 120				05/23/14 12:33	05/28/14 15:53	1
Nitrobenzene-d5 (Surr)	78		34 - 132				05/23/14 12:33	05/28/14 15:53	1

TestAmerica Buffalo

05/28/14 15:53

05/23/14 12:33

65 - 153

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: TP-104 (4)

TestAmerica Job ID: 480-60422-1

Lab Sample ID: 480-60422-24

Matrix: Solid

Date Collected: 05/21/14 15:56 Date Received: 05/23/14 01:00

Method: 6010C - Metals (ICP)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.1	1.9	0.38	mg/Kg		05/23/14 13:50	05/28/14 20:15	1
Barium	14	0.48	0.11	mg/Kg		05/23/14 13:50	05/28/14 20:15	1
Cadmium	ND	0.19	0.029	mg/Kg		05/23/14 13:50	05/28/14 20:15	1
Chromium	1.3	0.48	0.19	mg/Kg		05/23/14 13:50	05/28/14 20:15	1
Lead	83	0.96	0.23	mg/Kg		05/23/14 13:50	05/28/14 20:15	1
Selenium	0.49 J	3.8	0.38	mg/Kg		05/23/14 13:50	05/28/14 20:15	1
Silver	ND	0.58	0.19	mg/Kg		05/23/14 13:50	05/28/14 20:15	1

Method: 7471B - Mercury in Solid	or Semisolid	Waste (Man	ual Cold Va	por Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
На	0.0081	J	0.019	0.0075	mg/Kg		05/30/14 10:00	05/31/14 09:41	1

Client Sample ID: TP-105 (4-5') Lab Sample ID: 480-60422-25

Date Collected: 05/21/14 16:20 Matrix: Solid Date Received: 05/23/14 01:00 Percent Solids: 95.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		180	2.1	ug/Kg	₩	05/23/14 12:33	05/28/14 16:17	1
Acenaphthene	ND		180	2.1	ug/Kg	₽	05/23/14 12:33	05/28/14 16:17	1
Acenaphthylene	ND		180	1.4	ug/Kg	₽	05/23/14 12:33	05/28/14 16:17	1
Anthracene	ND		180	4.5	ug/Kg	\$	05/23/14 12:33	05/28/14 16:17	1
Benzo[a]anthracene	ND		180	3.0	ug/Kg	₽	05/23/14 12:33	05/28/14 16:17	1
Benzo[a]pyrene	ND	*	180	4.2	ug/Kg	₩	05/23/14 12:33	05/28/14 16:17	1
Benzo[b]fluoranthene	ND	*	180	3.4	ug/Kg	₽	05/23/14 12:33	05/28/14 16:17	1
Benzo[g,h,i]perylene	ND	*	180	2.1	ug/Kg	₽	05/23/14 12:33	05/28/14 16:17	1
Benzo[k]fluoranthene	ND	*	180	1.9	ug/Kg	₩	05/23/14 12:33	05/28/14 16:17	1
Chrysene	ND		180	1.7	ug/Kg	₽	05/23/14 12:33	05/28/14 16:17	1
Dibenz(a,h)anthracene	ND	*	180	2.1	ug/Kg	₩	05/23/14 12:33	05/28/14 16:17	1
Fluoranthene	ND		180	2.5	ug/Kg	₽	05/23/14 12:33	05/28/14 16:17	1
Fluorene	ND		180	4.0	ug/Kg	₽	05/23/14 12:33	05/28/14 16:17	1
Indeno[1,2,3-cd]pyrene	ND	*	180	4.8	ug/Kg	₽	05/23/14 12:33	05/28/14 16:17	1
Naphthalene	ND		180	2.9	ug/Kg	₩	05/23/14 12:33	05/28/14 16:17	1
Phenanthrene	ND		180	3.7	ug/Kg	₩	05/23/14 12:33	05/28/14 16:17	1
Pyrene	ND		180	1.1	ug/Kg	₽	05/23/14 12:33	05/28/14 16:17	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	84		37 - 120	05/23/14 12:33	05/28/14 16:17	1
Nitrobenzene-d5 (Surr)	77		34 - 132	05/23/14 12:33	05/28/14 16:17	1
p-Terphenyl-d14 (Surr)	122		65 - 153	05/23/14 12:33	05/28/14 16:17	1

Method: 6010C - Metals (ICP)									
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.5		2.0	0.40	mg/Kg		05/23/14 13:50	05/28/14 20:18	1
Barium	7.4		0.50	0.11	mg/Kg		05/23/14 13:50	05/28/14 20:18	1
Cadmium	ND		0.20	0.030	mg/Kg		05/23/14 13:50	05/28/14 20:18	1
Chromium	2.1		0.50	0.20	mg/Kg		05/23/14 13:50	05/28/14 20:18	1
Lead	1.3		0.99	0.24	mg/Kg		05/23/14 13:50	05/28/14 20:18	1
Selenium	ND		4.0	0.40	mg/Kg		05/23/14 13:50	05/28/14 20:18	1
Silver	ND		0.60	0.20	mg/Kg		05/23/14 13:50	05/28/14 20:18	1

TestAmerica Buffalo

Page 32 of 84

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Lab Sample ID: 480-60422-25

Matrix: Solid

Client Sample ID: TP-105 (4-5')

Date Collected: 05/21/14 16:20 Date Received: 05/23/14 01:00

Method: 7471B - Mercury in Solid or Se	misolid	Waste (Manua	al Cold Vapo	r Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND		0.021	0.0083	mg/Kg		05/30/14 10:00	05/31/14 09:43	1

Client Sample ID: TP-105 (10') Lab Sample ID: 480-60422-26

Date Collected: 05/21/14 16:23

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Methylnaphthalene	ND		200	2.4	ug/Kg	<u> </u>	05/23/14 12:33	05/28/14 16:41	-
Acenaphthene	ND		200	2.3	ug/Kg	₩	05/23/14 12:33	05/28/14 16:41	
Acenaphthylene	ND		200	1.6	ug/Kg	₩	05/23/14 12:33	05/28/14 16:41	
Anthracene	ND		200	5.1	ug/Kg	₽	05/23/14 12:33	05/28/14 16:41	
Benzo[a]anthracene	12	J	200	3.4	ug/Kg	₽	05/23/14 12:33	05/28/14 16:41	
Benzo[a]pyrene	ND	*	200	4.8	ug/Kg	₽	05/23/14 12:33	05/28/14 16:41	
Benzo[b]fluoranthene	ND	*	200	3.8	ug/Kg	₽	05/23/14 12:33	05/28/14 16:41	
Benzo[g,h,i]perylene	ND	*	200	2.4	ug/Kg	₽	05/23/14 12:33	05/28/14 16:41	
Benzo[k]fluoranthene	ND	*	200	2.2	ug/Kg	₩	05/23/14 12:33	05/28/14 16:41	
Chrysene	11	J	200	2.0	ug/Kg	₽	05/23/14 12:33	05/28/14 16:41	
Dibenz(a,h)anthracene	ND	*	200	2.3	ug/Kg	₽	05/23/14 12:33	05/28/14 16:41	
Fluoranthene	18	J	200	2.9	ug/Kg	₽	05/23/14 12:33	05/28/14 16:41	
Fluorene	ND		200	4.6	ug/Kg	\$	05/23/14 12:33	05/28/14 16:41	
Indeno[1,2,3-cd]pyrene	ND	*	200	5.5	ug/Kg	₽	05/23/14 12:33	05/28/14 16:41	
Naphthalene	ND		200	3.3	ug/Kg	₽	05/23/14 12:33	05/28/14 16:41	
Phenanthrene	14	J	200	4.1	ug/Kg	₽	05/23/14 12:33	05/28/14 16:41	
Pyrene	21	J	200	1.3	ug/Kg	\$	05/23/14 12:33	05/28/14 16:41	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	86		37 - 120				05/23/14 12:33	05/28/14 16:41	
Nitrobenzene-d5 (Surr)	77		34 - 132				05/23/14 12:33	05/28/14 16:41	
p-Terphenyl-d14 (Surr)	123		65 - 153				05/23/14 12:33	05/28/14 16:41	

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.96	J	2.0	0.40	mg/Kg		05/23/14 13:50	05/28/14 20:21	1
Barium	7.2		0.50	0.11	mg/Kg		05/23/14 13:50	05/28/14 20:21	1
Cadmium	0.039	J	0.20	0.030	mg/Kg		05/23/14 13:50	05/28/14 20:21	1
Chromium	1.7		0.50	0.20	mg/Kg		05/23/14 13:50	05/28/14 20:21	1
Lead	0.98	J	1.0	0.24	mg/Kg		05/23/14 13:50	05/28/14 20:21	1
Selenium	ND		4.0	0.40	mg/Kg		05/23/14 13:50	05/28/14 20:21	1
Silver	ND		0.60	0.20	mg/Kg		05/23/14 13:50	05/28/14 20:21	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND		0.020	0.0082	mg/Kg		05/30/14 10:00	05/31/14 09:48	1

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: TP-106 (4-5')

Date Collected: 05/21/14 16:35 Date Received: 05/23/14 01:00 Lab Sample ID: 480-60422-27

Matrix: Solid

Percent Solids: 95.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		180	2.1	ug/Kg	<u> </u>	05/23/14 12:33	05/28/14 17:04	1
Acenaphthene	ND		180	2.0	ug/Kg	₩	05/23/14 12:33	05/28/14 17:04	1
Acenaphthylene	ND		180	1.4	ug/Kg	₽	05/23/14 12:33	05/28/14 17:04	1
Anthracene	ND		180	4.5	ug/Kg	₽	05/23/14 12:33	05/28/14 17:04	1
Benzo[a]anthracene	ND		180	3.0	ug/Kg	₽	05/23/14 12:33	05/28/14 17:04	1
Benzo[a]pyrene	ND	*	180	4.2	ug/Kg	₩	05/23/14 12:33	05/28/14 17:04	1
Benzo[b]fluoranthene	ND	*	180	3.4	ug/Kg		05/23/14 12:33	05/28/14 17:04	1
Benzo[g,h,i]perylene	ND	*	180	2.1	ug/Kg	₩	05/23/14 12:33	05/28/14 17:04	1
Benzo[k]fluoranthene	ND	*	180	1.9	ug/Kg	₽	05/23/14 12:33	05/28/14 17:04	1
Chrysene	ND		180	1.7	ug/Kg		05/23/14 12:33	05/28/14 17:04	1
Dibenz(a,h)anthracene	ND	*	180	2.0	ug/Kg	₩	05/23/14 12:33	05/28/14 17:04	1
Fluoranthene	ND		180	2.5	ug/Kg	₩	05/23/14 12:33	05/28/14 17:04	1
Fluorene	ND		180	4.0	ug/Kg	₽	05/23/14 12:33	05/28/14 17:04	1
Indeno[1,2,3-cd]pyrene	ND	*	180	4.8	ug/Kg	₩	05/23/14 12:33	05/28/14 17:04	1
Naphthalene	ND		180	2.9	ug/Kg	₽	05/23/14 12:33	05/28/14 17:04	1
Phenanthrene	ND		180	3.7	ug/Kg	\$	05/23/14 12:33	05/28/14 17:04	1
Pyrene	ND		180	1.1	ug/Kg	₽	05/23/14 12:33	05/28/14 17:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	87		37 - 120				05/23/14 12:33	05/28/14 17:04	1
Nitrobenzene-d5 (Surr)	78		34 - 132				05/23/14 12:33	05/28/14 17:04	1
p-Terphenyl-d14 (Surr)	128		65 - 153				05/23/14 12:33	05/28/14 17:04	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.3	J	1.9	0.38	mg/Kg		05/23/14 13:50	05/28/14 20:24	1
Barium	6.0		0.47	0.10	mg/Kg		05/23/14 13:50	05/28/14 20:24	1
Cadmium	0.036	J	0.19	0.028	mg/Kg		05/23/14 13:50	05/28/14 20:24	1
Chromium	1.7		0.47	0.19	mg/Kg		05/23/14 13:50	05/28/14 20:24	1
Lead	1.2		0.94	0.23	mg/Kg		05/23/14 13:50	05/28/14 20:24	1
Selenium	ND		3.8	0.38	mg/Kg		05/23/14 13:50	05/28/14 20:24	1
Silver	ND		0.57	0.19	mg/Kg		05/23/14 13:50	05/28/14 20:24	1

Method: 7471B - Mercury in Solid	or Semisolid	Waste (Man	ual Cold Va	por Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND		0.020	0.0081	mg/Kg		05/30/14 10:00	05/31/14 09:50	1

Client Sample ID: TP-106 (10) Lab Sample ID: 480-60422-28 Date Collected: 05/21/14 16:38 Matrix: Solid Date Received: 05/23/14 01:00 Percent Solids: 80.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		210	2.5	ug/Kg	\$	05/23/14 12:33	05/28/14 17:27	1
Acenaphthene	ND		210	2.4	ug/Kg	₽	05/23/14 12:33	05/28/14 17:27	1
Acenaphthylene	ND		210	1.7	ug/Kg	₽	05/23/14 12:33	05/28/14 17:27	1
Anthracene	ND		210	5.3	ug/Kg	₽	05/23/14 12:33	05/28/14 17:27	1
Benzo[a]anthracene	ND		210	3.6	ug/Kg	₽	05/23/14 12:33	05/28/14 17:27	1
Benzo[a]pyrene	ND	*	210	5.0	ug/Kg	₽	05/23/14 12:33	05/28/14 17:27	1
Benzo[b]fluoranthene	ND	*	210	4.0	ug/Kg		05/23/14 12:33	05/28/14 17:27	1

TestAmerica Buffalo

Page 34 of 84

6/3/2014

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: TP-106 (10)

Date Collected: 05/21/14 16:38 Date Received: 05/23/14 01:00 Lab Sample ID: 480-60422-28

Matrix: Solid

Percent Solids: 80.9

Method: 8270D - Semivolati Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[g,h,i]perylene	ND	*	210		ug/Kg	<u></u>	05/23/14 12:33	05/28/14 17:27	1
Benzo[k]fluoranthene	ND	*	210	2.3	ug/Kg	₽	05/23/14 12:33	05/28/14 17:27	1
Chrysene	ND		210	2.1	ug/Kg		05/23/14 12:33	05/28/14 17:27	1
Dibenz(a,h)anthracene	ND	*	210	2.4	ug/Kg	₽	05/23/14 12:33	05/28/14 17:27	1
Fluoranthene	ND		210	3.0	ug/Kg	₽	05/23/14 12:33	05/28/14 17:27	1
Fluorene	ND		210	4.7	ug/Kg		05/23/14 12:33	05/28/14 17:27	1
Indeno[1,2,3-cd]pyrene	ND	*	210	5.7	ug/Kg	₽	05/23/14 12:33	05/28/14 17:27	1
Naphthalene	ND		210	3.4	ug/Kg	₩	05/23/14 12:33	05/28/14 17:27	1
Phenanthrene	ND		210	4.3	ug/Kg		05/23/14 12:33	05/28/14 17:27	1
Pyrene	ND		210	1.3	ug/Kg	₽	05/23/14 12:33	05/28/14 17:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	82		37 - 120				05/23/14 12:33	05/28/14 17:27	1
Nitrobenzene-d5 (Surr)	72		34 - 132				05/23/14 12:33	05/28/14 17:27	1
p-Terphenyl-d14 (Surr)	124		65 ₋ 153				05/23/14 12:33	05/28/14 17:27	1

Method: 6010C - Metals (ICP) Analyte	Posult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier							— DII Fac
Arsenic	0.90	J	1.9	0.38	mg/Kg		05/23/14 13:50	05/28/14 20:26	1
Barium	6.3		0.47	0.10	mg/Kg		05/23/14 13:50	05/28/14 20:26	1
Cadmium	0.030	J	0.19	0.028	mg/Kg		05/23/14 13:50	05/28/14 20:26	1
Chromium	1.3		0.47	0.19	mg/Kg		05/23/14 13:50	05/28/14 20:26	1
Lead	0.72	J	0.94	0.23	mg/Kg		05/23/14 13:50	05/28/14 20:26	1
Selenium	ND		3.8	0.38	mg/Kg		05/23/14 13:50	05/28/14 20:26	1
Silver	ND		0.56	0.19	mg/Kg		05/23/14 13:50	05/28/14 20:26	1

Method: 7471B - Mercury in Solid	or Semisolid Waste (Manu	ıal Cold Vapo	r Technique)				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND —	0.020	0.0081 mg/Kg		05/30/14 10:00	05/31/14 09:52	1

Client Sample ID: TP-107 (5-5.5)

Lab Sample ID: 480-60422-29

Date Collected: 05/21/14 17:00 Matrix: Solid
Date Received: 05/23/14 01:00 Percent Solids: 97.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		170	2.1	ug/Kg	₩	05/23/14 12:33	05/28/14 17:51	1
Acenaphthene	ND		170	2.0	ug/Kg	₽	05/23/14 12:33	05/28/14 17:51	1
Acenaphthylene	ND		170	1.4	ug/Kg	₽	05/23/14 12:33	05/28/14 17:51	1
Anthracene	ND		170	4.4	ug/Kg	₽	05/23/14 12:33	05/28/14 17:51	1
Benzo[a]anthracene	ND	*	170	3.0	ug/Kg	₽	05/23/14 12:33	05/28/14 17:51	1
Benzo[a]pyrene	ND	*	170	4.1	ug/Kg	₽	05/23/14 12:33	05/28/14 17:51	1
Benzo[b]fluoranthene	ND	*	170	3.3	ug/Kg	\$	05/23/14 12:33	05/28/14 17:51	1
Benzo[g,h,i]perylene	ND	*	170	2.1	ug/Kg	₽	05/23/14 12:33	05/28/14 17:51	1
Benzo[k]fluoranthene	ND	*	170	1.9	ug/Kg	₽	05/23/14 12:33	05/28/14 17:51	1
Chrysene	ND	*	170	1.7	ug/Kg	₽	05/23/14 12:33	05/28/14 17:51	1
Dibenz(a,h)anthracene	ND	*	170	2.0	ug/Kg	₽	05/23/14 12:33	05/28/14 17:51	1
Fluoranthene	ND		170	2.5	ug/Kg	₽	05/23/14 12:33	05/28/14 17:51	1
Fluorene	ND		170	4.0	ug/Kg	₽	05/23/14 12:33	05/28/14 17:51	1
Indeno[1,2,3-cd]pyrene	ND	*	170	4.8	ug/Kg	₽	05/23/14 12:33	05/28/14 17:51	1

TestAmerica Buffalo

3

4

6

8

10

13

14

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Lab Sample ID: 480-60422-29

TestAmerica Job ID: 480-60422-1

Matrix: Solid

Percent Solids: 97.0

Client Sample ID: TP-107 (5-5.5)

Date Collected: 05/21/14 17:00 Date Received: 05/23/14 01:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		170	2.9	ug/Kg	₩	05/23/14 12:33	05/28/14 17:51	1
Phenanthrene	ND		170	3.6	ug/Kg	₽	05/23/14 12:33	05/28/14 17:51	1
Pyrene	ND	*	170	1.1	ug/Kg	₽	05/23/14 12:33	05/28/14 17:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	86		37 - 120				05/23/14 12:33	05/28/14 17:51	1
Nitrobenzene-d5 (Surr)	77		34 - 132				05/23/14 12:33	05/28/14 17:51	1
p-Terphenyl-d14 (Surr)	132	*	65 - 153				05/23/14 12:33	05/28/14 17:51	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.96	J	2.1	0.43	mg/Kg		05/23/14 13:50	05/28/14 20:29	1
Barium	8.0		0.53	0.12	mg/Kg		05/23/14 13:50	05/28/14 20:29	1
Cadmium	ND		0.21	0.032	mg/Kg		05/23/14 13:50	05/28/14 20:29	1
Chromium	1.4		0.53	0.21	mg/Kg		05/23/14 13:50	05/28/14 20:29	1
Lead	1.2		1.1	0.26	mg/Kg		05/23/14 13:50	05/28/14 20:29	1
Selenium	ND		4.3	0.43	mg/Kg		05/23/14 13:50	05/28/14 20:29	1
Silver	ND		0.64	0.21	mg/Kg		05/23/14 13:50	05/28/14 20:29	1

Method: 7471B - Mercury in Solid of	or Semisolid	Waste (Mar	nual Cold Va	por Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND		0.020	0.0079	mg/Kg		05/30/14 10:00	05/31/14 09:54	1

Client Sample ID: TP-107 (10')

Lab Sample ID: 480-60422-30

Date Collected: 05/21/14 17:02 Date Received: 05/23/14 01:00

Phenanthrene

Pyrene

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		200	2.4	ug/Kg		05/23/14 12:33	05/28/14 18:14	1
Acenaphthene	ND		200	2.3	ug/Kg	₽	05/23/14 12:33	05/28/14 18:14	1
Acenaphthylene	ND		200	1.6	ug/Kg	₽	05/23/14 12:33	05/28/14 18:14	1
Anthracene	ND		200	5.0	ug/Kg	\$	05/23/14 12:33	05/28/14 18:14	1
Benzo[a]anthracene	ND	*	200	3.4	ug/Kg	₽	05/23/14 12:33	05/28/14 18:14	1
Benzo[a]pyrene	ND	*	200	4.7	ug/Kg	₽	05/23/14 12:33	05/28/14 18:14	1
Benzo[b]fluoranthene	ND	*	200	3.8	ug/Kg	\$	05/23/14 12:33	05/28/14 18:14	1
Benzo[g,h,i]perylene	ND	*	200	2.4	ug/Kg	₽	05/23/14 12:33	05/28/14 18:14	1
Benzo[k]fluoranthene	ND	*	200	2.2	ug/Kg	₽	05/23/14 12:33	05/28/14 18:14	1
Chrysene	ND	*	200	2.0	ug/Kg	₽	05/23/14 12:33	05/28/14 18:14	1
Dibenz(a,h)anthracene	ND	*	200	2.3	ug/Kg	₽	05/23/14 12:33	05/28/14 18:14	1
Fluoranthene	ND		200	2.9	ug/Kg	₽	05/23/14 12:33	05/28/14 18:14	1
Fluorene	ND		200	4.5	ug/Kg	₽	05/23/14 12:33	05/28/14 18:14	1
Indeno[1,2,3-cd]pyrene	ND	*	200	5.4	ug/Kg	₽	05/23/14 12:33	05/28/14 18:14	1
Naphthalene	ND		200	3.3	ug/Kg	₽	05/23/14 12:33	05/28/14 18:14	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	95		37 - 120	05/23/14 12:33	05/28/14 18:14	1
Nitrobenzene-d5 (Surr)	83		34 - 132	05/23/14 12:33	05/28/14 18:14	1
p-Terphenyl-d14 (Surr)	140	*	65 - 153	05/23/14 12:33	05/28/14 18:14	1

200

200

4.1 ug/Kg

1.3 ug/Kg

05/23/14 12:33

05/23/14 12:33

ND

ND *

TestAmerica Buffalo

05/28/14 18:14

05/28/14 18:14

Page 36 of 84

6/3/2014

4

6

8

10

12

13

15

Matrix: Solid Percent Solids: 83.4

Client Sample Results

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Client Sample ID: TP-107 (10')

Date Received: 05/23/14 01:00

Date Collected: 05/21/14 17:02

Lab Sample ID: 480-60422-30

Matrix: Solid

Method: 6010C - Metals (ICP) Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Arsenic 2.0 0.40 mg/Kg 05/23/14 13:50 05/28/14 20:43 1.1 J 0.51 05/23/14 13:50 05/28/14 20:43 **Barium** 4.3 ^ 0.11 mg/Kg Cadmium ND 0.20 0.030 mg/Kg 05/23/14 13:50 05/28/14 20:43 Chromium 0.51 0.20 mg/Kg 05/23/14 13:50 05/28/14 20:43 1.3 Lead 0.88 J 1.0 0.24 mg/Kg 05/23/14 13:50 05/28/14 20:43 Selenium ND 4.0 0.40 mg/Kg 05/23/14 13:50 05/28/14 20:43 Silver ND 0.61 0.20 mg/Kg 05/23/14 13:50 05/28/14 20:43

Method: 7471B - Mercury in Solid	or Semisolid	Waste (Man	ual Cold Va	por Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND		0.020	0.0081	mg/Kg		05/30/14 10:00	05/31/14 09:55	1

Client Sample ID: Cistern Disposal Lab Sample ID: 480-60422-31

Date Collected: 05/21/14 17:30 **Matrix: Solid**

Method: 8260C - Volatile Organic (•							
Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	1400	320	88	ug/Kg	*	05/23/14 16:38	05/24/14 15:49	į
1,1,2,2-Tetrachloroethane	ND	320	52	ug/Kg	₩	05/23/14 16:38	05/24/14 15:49	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	320	160	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	
1,1,2-Trichloroethane	ND	320	67	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	
1,1-Dichloroethane	580	320	98	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	
1,1-Dichloroethene	ND	320	110	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	
1,2,4-Trichlorobenzene	ND	320	120	ug/Kg	*	05/23/14 16:38	05/24/14 15:49	
1,2-Dibromo-3-Chloropropane	ND	320	160	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	
1,2-Dibromoethane	ND	320	56	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	
1,2-Dichlorobenzene	ND	320	81	ug/Kg	\$	05/23/14 16:38	05/24/14 15:49	
1,2-Dichloroethane	ND	320	130	ug/Kg	☼	05/23/14 16:38	05/24/14 15:49	
1,2-Dichloropropane	ND	320	51	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	
1,3-Dichlorobenzene	ND	320	85	ug/Kg		05/23/14 16:38	05/24/14 15:49	
1,4-Dichlorobenzene	ND	320	44	ug/Kg	☼	05/23/14 16:38	05/24/14 15:49	
2-Butanone (MEK)	ND	1600	940	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	
2-Hexanone	ND	1600	650	ug/Kg		05/23/14 16:38	05/24/14 15:49	
4-Methyl-2-pentanone (MIBK)	ND	1600	100	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	
Acetone	ND	1600	1300	ug/Kg	☼	05/23/14 16:38	05/24/14 15:49	
Benzene	ND	320	60	ug/Kg		05/23/14 16:38	05/24/14 15:49	
Bromodichloromethane	ND	320	64	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	
Bromoform	ND	320	160	ug/Kg	₩	05/23/14 16:38	05/24/14 15:49	į
Bromomethane	ND	320	70	ug/Kg		05/23/14 16:38	05/24/14 15:49	
Carbon disulfide	ND	320	140	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	į
Carbon tetrachloride	ND	320	81	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	
Chlorobenzene	ND	320	42	ug/Kg		05/23/14 16:38	05/24/14 15:49	
Chloroethane	ND *	320	66	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	
Chloroform	ND	320	220	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	
Chloromethane	ND	320	76	ug/Kg	 Ф	05/23/14 16:38	05/24/14 15:49	;
cis-1,2-Dichloroethene	660	320	88	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	
cis-1,3-Dichloropropene	ND	320	76	ug/Kg	₩	05/23/14 16:38	05/24/14 15:49	;
Cyclohexane	190 J	320	71	ug/Kg		05/23/14 16:38	05/24/14 15:49	
Dibromochloromethane	ND	320		ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	

TestAmerica Buffalo

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: Cistern Disposal

Date Collected: 05/21/14 17:30 Date Received: 05/23/14 01:00 Lab Sample ID: 480-60422-31

Matrix: Solid

Percent Solids: 86.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		320	140	ug/Kg	<u> </u>	05/23/14 16:38	05/24/14 15:49	5
Ethylbenzene	3300		320	92	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	5
Isopropylbenzene	ND		320	48	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	5
Methyl acetate	ND		320	150	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	5
Methyl tert-butyl ether	ND		320	120	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	5
Methylcyclohexane	620		320	150	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	5
Methylene Chloride	ND		320	63	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	5
Styrene	ND		320	77	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	5
Tetrachloroethene	ND		320	43	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	5
Toluene	1600		320	85	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	5
trans-1,2-Dichloroethene	ND		320	75	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	5
trans-1,3-Dichloropropene	ND		320	31	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	5
Trichloroethene	14000		320	88	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	5
Trichlorofluoromethane	ND		320	150	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	5
Vinyl chloride	ND		320	110	ug/Kg	₽	05/23/14 16:38	05/24/14 15:49	5
Xylenes, Total	16000		640	53	ug/Kg	\$	05/23/14 16:38	05/24/14 15:49	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			53 - 146				05/23/14 16:38	05/24/14 15:49	5
4-Bromofluorobenzene (Surr)	97		49 - 148				05/23/14 16:38	05/24/14 15:49	5
Toluene-d8 (Surr)	106		50 - 149				05/23/14 16:38	05/24/14 15:49	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		7800	1700	ug/Kg	\$	05/23/14 12:34	05/28/14 21:27	40
2,4,6-Trichlorophenol	ND		7800	510	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
2,4-Dichlorophenol	ND		7800	410	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
2,4-Dimethylphenol	ND		7800	2100	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
2,4-Dinitrophenol	ND		15000	2700	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
2,4-Dinitrotoluene	ND		7800	1200	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
2,6-Dinitrotoluene	ND		7800	1900	ug/Kg	\$	05/23/14 12:34	05/28/14 21:27	40
2-Chloronaphthalene	ND		7800	520	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
2-Chlorophenol	ND		7800	390	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
2-Methylnaphthalene	9300		7800	94	ug/Kg	\$	05/23/14 12:34	05/28/14 21:27	40
2-Methylphenol	ND		7800	240	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
2-Nitroaniline	ND		15000	2500	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
2-Nitrophenol	ND		7800	350	ug/Kg	\$	05/23/14 12:34	05/28/14 21:27	40
3,3'-Dichlorobenzidine	ND		7800	6800	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
3-Nitroaniline	ND		15000	1800	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
4,6-Dinitro-2-methylphenol	ND		15000	2700	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
4-Bromophenyl phenyl ether	ND		7800	2500	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
4-Chloro-3-methylphenol	ND		7800	320	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
4-Chloroaniline	ND		7800	2300	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
4-Chlorophenyl phenyl ether	ND		7800	160	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
4-Methylphenol	820	J	15000	430	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
4-Nitroaniline	ND		15000	860	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
4-Nitrophenol	ND		15000	1900	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
Acenaphthene	27000		7800	91	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
Acenaphthylene	1100	J	7800	63	ug/Kg		05/23/14 12:34	05/28/14 21:27	40
Acetophenone	ND		7800	400	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40

TestAmerica Buffalo

Page 38 of 84

6/3/2014

3

0

8

10

11 12

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: Cistern Disposal

Lab Sample ID: 480-60422-31 Date Collected: 05/21/14 17:30 Date Received: 05/23/14 01:00

Matrix: Solid Percent Solids: 86.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	52000		7800	200	ug/Kg	\	05/23/14 12:34	05/28/14 21:27	40
Atrazine	ND		7800	340	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
Benzaldehyde	ND		7800	850	ug/Kg	₩	05/23/14 12:34	05/28/14 21:27	40
Benzo[a]anthracene	100000		7800	130	ug/Kg	₩	05/23/14 12:34	05/28/14 21:27	40
Benzo[a]pyrene	88000		7800	190	ug/Kg	*	05/23/14 12:34	05/28/14 21:27	40
Benzo[b]fluoranthene	120000		7800	150	ug/Kg	≎	05/23/14 12:34	05/28/14 21:27	40
Benzo[g,h,i]perylene	30000	*	7800	93	ug/Kg	₩	05/23/14 12:34	05/28/14 21:27	40
Benzo[k]fluoranthene	64000		7800	85	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
Biphenyl	2400	J	7800	480	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
bis (2-chloroisopropyl) ether	ND		7800	810	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
Bis(2-chloroethoxy)methane	ND		7800	420	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
Bis(2-chloroethyl)ether	ND		7800	670	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
Bis(2-ethylhexyl) phthalate	ND		7800	2500	ug/Kg	₩	05/23/14 12:34	05/28/14 21:27	40
Butyl benzyl phthalate	ND		7800	2100	ug/Kg		05/23/14 12:34	05/28/14 21:27	40
Caprolactam	ND		7800	3300	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
Carbazole	26000		7800	89	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
Chrysene	120000		7800	77	ug/Kg		05/23/14 12:34	05/28/14 21:27	40
Dibenz(a,h)anthracene	11000		7800	91	ug/Kg	₩	05/23/14 12:34	05/28/14 21:27	40
Dibenzofuran	18000		7800	80	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
Diethyl phthalate	ND		7800	230	ug/Kg		05/23/14 12:34	05/28/14 21:27	40
Dimethyl phthalate	ND		7800	200	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
Di-n-butyl phthalate	ND		7800	2700	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
Di-n-octyl phthalate	ND		7800	180	ug/Kg		05/23/14 12:34	05/28/14 21:27	40
Fluoranthene	240000		7800	110	ug/Kg	₩	05/23/14 12:34	05/28/14 21:27	40
Fluorene	27000		7800	180	ug/Kg	₽	05/23/14 12:34	05/28/14 21:27	40
Hexachlorobenzene	ND		7800	380			05/23/14 12:34	05/28/14 21:27	40
Hexachlorobutadiene	ND		7800	400	ug/Kg	₩	05/23/14 12:34	05/28/14 21:27	40
Hexachlorocyclopentadiene	ND		7800	2300		₩	05/23/14 12:34	05/28/14 21:27	40
Hexachloroethane	ND		7800	600	ug/Kg ug/Kg		05/23/14 12:34	05/28/14 21:27	40
	27000		7800	210	ug/Kg ug/Kg	₩	05/23/14 12:34	05/28/14 21:27	40
ndeno[1,2,3-cd]pyrene sophorone	27000 ND		7800	390	ug/Kg ug/Kg		05/23/14 12:34	05/28/14 21:27	40
·			7800	130	ug/Kg ug/Kg		05/23/14 12:34	05/28/14 21:27	40
Naphthalene Nitrobenzene	21000 ND		7800	340		₩	05/23/14 12:34	05/28/14 21:27	40
					ug/Kg	₩			
N-Nitrosodi-n-propylamine	ND		7800	610	ug/Kg		05/23/14 12:34	05/28/14 21:27	40
N-Nitrosodiphenylamine	ND		7800		ug/Kg	₩	05/23/14 12:34	05/28/14 21:27	40
Pentachlorophenol	ND		15000		ug/Kg		05/23/14 12:34	05/28/14 21:27	40
Phenol _ · · · · · · · · · · · · · · · · · · ·	ND		7800		ug/Kg	" .	05/23/14 12:34	05/28/14 21:27	40
Pyrene	170000		7800	50	ug/Kg	₩	05/23/14 12:34	05/28/14 21:27	40
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)		X	39 - 146				05/23/14 12:34	05/28/14 21:27	40
2-Fluorobiphenyl	64		37 - 120				05/23/14 12:34	05/28/14 21:27	40
2-Fluorophenol (Surr)	59		18 - 120				05/23/14 12:34	05/28/14 21:27	40
Nitrobenzene-d5 (Surr)	57		34 - 132				05/23/14 12:34	05/28/14 21:27	40
Phenol-d5 (Surr)	55		11 - 120				05/23/14 12:34	05/28/14 21:27	40
p-Terphenyl-d14 (Surr)	59	X	65 - 153				05/23/14 12:34	05/28/14 21:27	40
• •									
Method: 8270D - Semivolatile			- Table 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1						
Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac

TestAmerica Buffalo

Client Sample Results

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: Cistern Disposal

Date Collected: 05/21/14 17:30

Date Received: 05/23/14 01:00

TestAmerica Job ID: 480-60422-1

Percent Solids: 86.3

Lab Sample ID: 480-60422-31 Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)		X	39 - 146				05/23/14 12:34	05/29/14 02:09	80
2-Fluorobiphenyl	71		37 - 120				05/23/14 12:34	05/29/14 02:09	80
2-Fluorophenol (Surr)	0	Χ	18 - 120				05/23/14 12:34	05/29/14 02:09	80
Nitrobenzene-d5 (Surr)	0	X	34 - 132				05/23/14 12:34	05/29/14 02:09	80
Phenol-d5 (Surr)	0	Χ	11 - 120				05/23/14 12:34	05/29/14 02:09	80
p-Terphenyl-d14 (Surr)	0	X	65 - 153				05/23/14 12:34	05/29/14 02:09	80
- Method: 8015D - Diesel Range Org	anics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	5700		1700	520	mg/Kg	-	05/27/14 14:56	05/29/14 08:38	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	748	X	48 - 125				05/27/14 14:56	05/29/14 08:38	10
- Method: 8082A - Polychlorinated B	Siphenyls (Po	CBs) by Ga	s Chromatogra	phy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.22	0.043	mg/Kg	₩	05/27/14 10:26	05/28/14 15:22	1
PCB-1221	ND		0.22	0.043	mg/Kg	₽	05/27/14 10:26	05/28/14 15:22	1
PCB-1232	ND		0.22	0.043	mg/Kg	₩	05/27/14 10:26	05/28/14 15:22	1
PCB-1242	ND		0.22	0.043	mg/Kg	₩	05/27/14 10:26	05/28/14 15:22	1
PCB-1248	ND		0.22	0.043	mg/Kg	₩	05/27/14 10:26	05/28/14 15:22	1
PCB-1254	ND		0.22	0.10	mg/Kg	₩	05/27/14 10:26	05/28/14 15:22	1
PCB-1260	ND		0.22	0.10	mg/Kg	₩	05/27/14 10:26	05/28/14 15:22	1
PCB-1262	ND		0.22	0.10	mg/Kg	₩	05/27/14 10:26	05/28/14 15:22	1
PCB-1268	ND		0.22	0.10	mg/Kg	₩	05/27/14 10:26	05/28/14 15:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	80		46 - 175				05/27/14 10:26	05/28/14 15:22	1
DCB Decachlorobiphenyl	111		47 - 176				05/27/14 10:26	05/28/14 15:22	1
_ Method: 6010B - Inductively Coupl	ed Plasma -	Atomic Em	ission Spectro	metry					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.9		2.1	0.41	mg/Kg		05/23/14 13:50	05/27/14 17:02	1
Barium	48		0.52	0.11	mg/Kg		05/23/14 13:50	05/27/14 17:02	1
Cadmium	0.36		0.21	0.031	mg/Kg		05/23/14 13:50	05/27/14 17:02	1
Chromium	25		0.52	0.21	mg/Kg		05/23/14 13:50	05/27/14 17:02	1
Lead	65		1.0	0.25	mg/Kg		05/23/14 13:50	05/27/14 17:02	1
Selenium	0.41	J	4.1	0.41	mg/Kg		05/23/14 13:50	05/27/14 17:02	1
Silver -	ND		0.62	0.21	mg/Kg		05/23/14 13:50	05/27/14 17:02	1
Method: 7471A - Mercury (CVAA)									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL 0.020		Unit mg/Kg	_ <u>D</u>	Prepared 05/30/14 10:00	Analyzed 05/31/14 10:01	Dil Fac
Analyte Hg General Chemistry	0.48		0.020	0.0082	mg/Kg		05/30/14 10:00	05/31/14 10:01	1
Analyte Hg General Chemistry Analyte	0.48	Qualifier Qualifier			mg/Kg	D D		05/31/14 10:01 Analyzed	1 Dil Fac
Analyte Hg General Chemistry	0.48		0.020	0.0082	mg/Kg		05/30/14 10:00	05/31/14 10:01	1
Analyte Hg General Chemistry Analyte	0.48 Result passed		0.020	0.0082 NONE	mg/Kg		05/30/14 10:00	05/31/14 10:01 Analyzed	1 Dil Fac
Analyte Hg General Chemistry Analyte Free Liquid	0.48 Result passed	Qualifier	0.020 NONE	0.0082 NONE	mg/Kg Unit mL/100g Unit	D	05/30/14 10:00 Prepared	05/31/14 10:01 Analyzed 06/03/14 09:58	Dil Fac

Client Sample Results

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Lab Sample ID: 480-60422-31

Matrix: Solid

Client Sample ID: Cistern Disposal Date Collected: 05/21/14 17:30

Date Received: 05/23/14 01:00

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Flashpoint	>176.0		50.0	50.0	Degrees F			05/27/14 08:49	1
рН	7.60		0.100	0.100	SU			05/23/14 22:57	1

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

				Percent Surrog	ate Recovery (Acceptance Lim
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(53-146)	(49-148)	(50-149)	
480-60422-31	Cistern Disposal	117	97	106	
LCS 480-183905/1-A	Lab Control Sample	114	98	105	
MB 480-183905/2-A	Method Blank	119	91	104	

12DCE = 1,2-Dichloroethane-d4 (Surr) BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

-				Percent Sui	rrogate Reco	very (Accepta	ance Limits)	
		FBP	ТВР	2FP	NBZ	TPH	PHL	
Lab Sample ID	Client Sample ID	(37-120)	(39-146)	(18-120)	(34-132)	(65-153)	(11-120)	
480-60422-1	S-201	76			70	111		
480-60422-1 MS	S-201	76			68	107		
480-60422-1 MSD	S-201	76			68	110		
480-60422-2	S-202	73			65	107		
480-60422-3	S-203	76			67	112		
480-60422-4	S-204	77			68	115		
480-60422-5	S-205	70			60	115		
480-60422-6	S-206	79			70	115		
480-60422-7	S-207	77			72	114		
480-60422-8	S-208	79			73	115		
480-60422-9	S-209	79			73	114		
480-60422-10	S-210	80			74	94		
480-60422-11	S-211	82			75	93		
480-60422-12	S-212	72			75	94		
480-60422-13	S-213	83			77	110		
480-60422-14	S-214	81			74	104		
480-60422-15	S-215	82			76	106		
480-60422-16	S-216	81			75	104		
480-60422-17	TP-101 (5-5.5')	79			72	93		
480-60422-18	TP-101 (10')	81			75	97		
480-60422-19	TP-102 (4-5')	87			78	100		
480-60422-20	TP-102 (9.5')	83			76	97		
480-60422-21	TP-103 (2-3')	84			76	97		
480-60422-22	TP-103 (4')	49			71	91		
480-60422-23	TP-104 (2-3')	83			76	117		
480-60422-24	TP-104 (4)	87			78	124		
480-60422-25	TP-105 (4-5')	84			77	122		
480-60422-26	TP-105 (10')	86			77	123		
480-60422-27	TP-106 (4-5')	87			78	128		
480-60422-28	TP-106 (10)	82			72	124		
480-60422-29	TP-107 (5-5.5)	86			77	132 *		
480-60422-30	TP-107 (10')	95			83	140 *		
480-60422-31	Cistern Disposal	64	0 X	59	57	59 X	55	
480-60422-31 - DL	Cistern Disposal	71	0 X	0 X	0 X	0 X	0 X	

TestAmerica Buffalo

Page 42 of 84

6/3/2014

2

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Sur	rogate Reco	very (Accept	ance Limits
		FBP	TBP	2FP	NBZ	TPH	PHL
ab Sample ID	Client Sample ID	(37-120)	(39-146)	(18-120)	(34-132)	(65-153)	(11-120)
80-60422-31 MS	Cistern Disposal	86	0 X	79	86	78	90
80-60422-31 MSD	Cistern Disposal	83	95	86	82	77	83
CS 480-183839/2-A	Lab Control Sample	76			68	110	
CS 480-183840/2-A	Lab Control Sample	86	93	81	81	73	82
S 480-183840/2-A	Lab Control Sample	83			77	89	
3 480-183839/1-A	Method Blank	75			68	112	
B 480-183840/1-A	Method Blank	82	82	80	82	72	84
B 480-183840/1-A	Method Blank	80			74	96	

Surrogate Legend

FBP = 2-Fluorobiphenyl

TBP = 2,4,6-Tribromophenol (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPH = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Method: 8015D - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

_			Percent Surrogate Recovery (Acceptance Limits)
		ОТРН	
Lab Sample ID	Client Sample ID	(48-125)	
480-60422-31	Cistern Disposal	748 X	
LCS 480-184210/2-A	Lab Control Sample	103	
LCSD 480-184210/3-A	Lab Control Sample Dup	94	
MB 480-184210/1-A	Method Blank	98	
Surrogate Legend			
OTPH = o-Terphenyl			

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(46-175)	(47-176)	
480-60422-31	Cistern Disposal	80	111	
LCS 480-184145/2-A	Lab Control Sample	117	114	
MB 480-184145/1-A	Method Blank	98	105	
Surrogate Legend				
TCX = Tetrachloro-m-xy	ylene			
DCB = DCB Decachloro	bbiphenyl			

TestAmerica Buffalo

RL

MDL Unit

D

Prepared

TestAmerica Job ID: 480-60422-1

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB Result Qualifier

Lab Sample ID: MB 480-183905/2-A

Matrix: Solid

Analyte

Analysis Batch: 183935

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Xylenes, Total

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

Prep Batch: 183905

Dil Fac

	THE COURT COMME			pu	,u., _ u	
1,1,1-Trichloroethane	ND	98	27 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
1,1,2,2-Tetrachloroethane	ND	98	16 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	98	49 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
1,1,2-Trichloroethane	ND	98	21 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
1,1-Dichloroethane	ND	98	30 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
1,1-Dichloroethene	ND	98	34 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
1,2,4-Trichlorobenzene	ND	98	37 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
1,2-Dibromo-3-Chloropropane	ND	98	49 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
1,2-Dibromoethane	ND	98	17 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
1,2-Dichlorobenzene	ND	98	25 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
1,2-Dichloroethane	ND	98	40 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
1,2-Dichloropropane	ND	98	16 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
1,3-Dichlorobenzene	ND	98	26 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
1,4-Dichlorobenzene	ND	98	14 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
2-Butanone (MEK)	ND	490	290 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
2-Hexanone	ND	490	200 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
4-Methyl-2-pentanone (MIBK)	ND	490	31 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Acetone	ND	490	400 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Benzene	ND	98	19 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Bromodichloromethane	ND	98	20 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Bromoform	ND	98	49 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Bromomethane	ND	98	22 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Carbon disulfide	ND	98	45 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Carbon tetrachloride	ND	98	25 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Chlorobenzene	ND	98	13 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Chloroethane	ND	98	20 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Chloroform	ND	98	67 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Chloromethane	ND	98	23 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
cis-1,2-Dichloroethene	ND	98	27 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
cis-1,3-Dichloropropene	ND	98	23 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Cyclohexane	ND	98	22 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Dibromochloromethane	ND	98	47 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Dichlorodifluoromethane	ND	98	43 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Ethylbenzene	ND	98	28 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Isopropylbenzene	ND	98	15 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Methyl acetate	ND	98	47 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Methyl tert-butyl ether	ND	98	37 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Methylcyclohexane	ND	98	46 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Methylene Chloride	33.8 J	98	19 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Styrene	ND	98	24 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Tetrachloroethene	ND	98	13 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
Toluene	ND	98	26 ug/Kg	05/23/14 16:38	05/24/14 02:14	1
trans-1,2-Dichloroethene	ND	98	23 ug/Kg	05/23/14 16:38	05/24/14 02:14	1

TestAmerica Buffalo

6/3/2014

05/24/14 02:14

05/24/14 02:14

05/24/14 02:14

05/24/14 02:14

05/24/14 02:14

Page 44 of 84

98

98

98

98

200

9.6 ug/Kg

27 ug/Kg

33 ug/Kg

16 ug/Kg

ug/Kg

05/23/14 16:38

05/23/14 16:38

05/23/14 16:38

05/23/14 16:38

05/23/14 16:38

ND

ND

ND

ND

ND

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MD MD

Lab Sample ID: MB 480-183905/2-A

Matrix: Solid

Analysis Batch: 183935

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 183905

	IVID	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	119		53 - 146	05/23/14 16:38	05/24/14 02:14	1
4-Bromofluorobenzene (Surr)	91		49 - 148	05/23/14 16:38	05/24/14 02:14	1
Toluene-d8 (Surr)	104		50 ₋ 149	05/23/14 16:38	05/24/14 02:14	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 480-183905/1-A Matrix: Solid Prep Type: Total/NA Analysis Batch: 183935 **Prep Batch: 183905**

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	2470	2450		ug/Kg		100	82 - 138	
1,1-Dichloroethene	2470	1510		ug/Kg		61	54 - 144	
1,2-Dichlorobenzene	2470	2480		ug/Kg		101	80 - 132	
1,2-Dichloroethane	2470	2610		ug/Kg		106	78 - 129	
Benzene	2470	2460		ug/Kg		100	75 _ 131	
Chlorobenzene	2470	2480		ug/Kg		101	80 - 127	
cis-1,2-Dichloroethene	2470	2480		ug/Kg		100	79 ₋ 128	
Ethylbenzene	2470	2550		ug/Kg		103	78 - 136	
Methyl tert-butyl ether	2470	2280		ug/Kg		93	67 - 137	
Tetrachloroethene	2470	2340		ug/Kg		95	72 ₋ 141	
Toluene	2470	2510		ug/Kg		102	76 ₋ 133	
trans-1,2-Dichloroethene	2470	2310		ug/Kg		94	81 ₋ 147	
Trichloroethene	2470	2440		ug/Kg		99	77 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	114		53 - 146
4-Bromofluorobenzene (Surr)	98		49 - 148
Toluene-d8 (Surr)	105		50 - 149

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-183839/1-A

Matrix: Solid

Analysis Batch: 184368

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 183839**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		170	2.0	ug/Kg		05/23/14 12:27	05/28/14 18:37	1
Acenaphthene	ND		170	2.0	ug/Kg		05/23/14 12:27	05/28/14 18:37	1
Acenaphthylene	ND		170	1.4	ug/Kg		05/23/14 12:27	05/28/14 18:37	1
Anthracene	ND		170	4.3	ug/Kg		05/23/14 12:27	05/28/14 18:37	1
Benzo[a]anthracene	ND		170	2.9	ug/Kg		05/23/14 12:27	05/28/14 18:37	1
Benzo[a]pyrene	ND		170	4.0	ug/Kg		05/23/14 12:27	05/28/14 18:37	1
Benzo[b]fluoranthene	ND		170	3.2	ug/Kg		05/23/14 12:27	05/28/14 18:37	1
Benzo[g,h,i]perylene	ND		170	2.0	ug/Kg		05/23/14 12:27	05/28/14 18:37	1
Benzo[k]fluoranthene	ND		170	1.8	ug/Kg		05/23/14 12:27	05/28/14 18:37	1
Chrysene	ND		170	1.7	ug/Kg		05/23/14 12:27	05/28/14 18:37	1
Dibenz(a,h)anthracene	ND		170	2.0	ug/Kg		05/23/14 12:27	05/28/14 18:37	1
Fluoranthene	ND		170	2.4	ug/Kg		05/23/14 12:27	05/28/14 18:37	1

TestAmerica Buffalo

Page 45 of 84

6/3/2014

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-183839/1-A

Matrix: Solid

Analysis Batch: 184368

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 183839

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	ND		170	3.8	ug/Kg		05/23/14 12:27	05/28/14 18:37	1
Indeno[1,2,3-cd]pyrene	ND		170	4.6	ug/Kg		05/23/14 12:27	05/28/14 18:37	1
Naphthalene	ND		170	2.8	ug/Kg		05/23/14 12:27	05/28/14 18:37	1
Phenanthrene	ND		170	3.5	ug/Kg		05/23/14 12:27	05/28/14 18:37	1
Pyrene	ND		170	1.1	ug/Kg		05/23/14 12:27	05/28/14 18:37	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	75		37 - 120	05/23/14 12:27	05/28/14 18:37	1
Nitrobenzene-d5 (Surr)	68		34 - 132	05/23/14 12:27	05/28/14 18:37	1
p-Terphenyl-d14 (Surr)	112		65 - 153	05/23/14 12:27	05/28/14 18:37	1

Client Sample ID: Lab Control Sample

51 - 133

Prep Type: Total/NA Prep Batch: 183839

Matrix: Solid

Analysis Batch: 184368

Lab Sample ID: LCS 480-183839/2-A

						Prep Bat	ch: 18383
Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
1620	1320		ug/Kg		82	53 - 120	
1620	1360		ug/Kg		84	58 - 121	
1620	1420		ug/Kg		87	62 _ 129	
1620	1420		ug/Kg		88	65 - 133	
1620	1330		ug/Kg		82	64 - 127	
1620	1320		ug/Kg		82	64 - 135	
1620	1300		ug/Kg		80	50 - 152	
1620	1410		ug/Kg		87	58 - 138	
1620	1460		ug/Kg		90	64 - 131	
1620	1380		ug/Kg		85	54 - 148	
1620	1350		ug/Kg		83	62 - 131	
1620	1380		ug/Kg		85	63 - 126	
1620	1270		ug/Kg		79	56 - 149	
1620	1230		ug/Kg		76	46 - 120	
1620	1410		ug/Kg		87	60 - 130	
	Added 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620	Added Result 1620 1320 1620 1360 1620 1420 1620 1420 1620 1330 1620 1300 1620 1410 1620 1460 1620 1380 1620 1380 1620 1380 1620 1270 1620 1230	Added Result Qualifier 1620 1320 1620 1360 1620 1420 1620 1420 1620 1330 1620 1320 1620 1300 1620 1410 1620 1460 1620 1380 1620 1380 1620 1380 1620 1270 1620 1230	Added Result Qualifier Unit 1620 1320 ug/Kg 1620 1360 ug/Kg 1620 1420 ug/Kg 1620 1420 ug/Kg 1620 1330 ug/Kg 1620 1320 ug/Kg 1620 1300 ug/Kg 1620 1410 ug/Kg 1620 1460 ug/Kg 1620 1380 ug/Kg 1620 1270 ug/Kg 1620 1230 ug/Kg	Added Result Qualifier Unit D 1620 1320 ug/Kg ug/Kg 1620 1360 ug/Kg ug/Kg 1620 1420 ug/Kg 1620 1330 ug/Kg 1620 1320 ug/Kg 1620 1300 ug/Kg 1620 1410 ug/Kg 1620 1460 ug/Kg 1620 1380 ug/Kg 1620 1380 ug/Kg 1620 1380 ug/Kg 1620 1270 ug/Kg 1620 1230 ug/Kg	Added Result Qualifier Unit D %Rec 1620 1320 ug/Kg 82 1620 1360 ug/Kg 84 1620 1420 ug/Kg 87 1620 1420 ug/Kg 88 1620 1330 ug/Kg 82 1620 1320 ug/Kg 80 1620 1300 ug/Kg 87 1620 1410 ug/Kg 87 1620 1460 ug/Kg 90 1620 1380 ug/Kg 85 1620 1380 ug/Kg 85 1620 1380 ug/Kg 85 1620 1270 ug/Kg 79 1620 1230 ug/Kg 76	Spike LCS LCS WRec. MRec. Limits 1620 1320 ug/Kg 82 53 - 120 1620 1360 ug/Kg 84 58 - 121 1620 1420 ug/Kg 87 62 - 129 1620 1420 ug/Kg 88 65 - 133 1620 1330 ug/Kg 82 64 - 127 1620 1320 ug/Kg 82 64 - 135 1620 1300 ug/Kg 80 50 - 152 1620 1410 ug/Kg 87 58 - 138 1620 1460 ug/Kg 90 64 - 131 1620 1380 ug/Kg 85 54 - 148 1620 1350 ug/Kg 85 63 - 126 1620 1380 ug/Kg 85 63 - 126 1620 1380 ug/Kg 79 56 - 149 1620 1270 ug/Kg 79 56 - 149 1620 <td< td=""></td<>

1620

1730

ug/Kg

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	76		37 - 120
Nitrobenzene-d5 (Surr)	68		34 - 132
p-Terphenyl-d14 (Surr)	110		65 ₋ 153

Lab Sample ID: 480-60422-1 MS

Matrix: Solid

Pyrene

Analysis Batch: 184368

Client Sample ID: S-201
Prep Type: Total/NA
Prep Batch: 183839

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	6.2	J	1830	1530		ug/Kg	₩	83	53 - 120
Acenaphthylene	4.1	J	1830	1570		ug/Kg	≎	85	58 - 121
Anthracene	11	J	1830	1610		ug/Kg	≎	87	62 _ 129
Benzo[a]anthracene	56	J	1830	1690		ug/Kg	₽	89	65 - 133
Benzo[a]pyrene	56	J	1830	1600		ug/Kg	₩	84	64 - 127

TestAmerica Buffalo

Page 46 of 84

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-60422-1 MS

Matrix: Solid

Analysis Batch: 184368

Client Sample ID: S-201

Prep Type: Total/NA Prep Batch: 183839

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[b]fluoranthene	77	J	1830	1600		ug/Kg	₽	83	64 - 135	
Benzo[g,h,i]perylene	110	J	1830	1900		ug/Kg	₽	98	50 - 152	
Benzo[k]fluoranthene	31	J	1830	1610		ug/Kg	₽	86	58 ₋ 138	
Chrysene	69	J	1830	1730		ug/Kg	₽	91	64 - 131	
Dibenz(a,h)anthracene	29	J	1830	1720		ug/Kg	*	92	54 - 148	
Fluoranthene	120	J	1830	1690		ug/Kg	₩	86	62 - 131	
Fluorene	ND		1830	1590		ug/Kg	₽	87	63 - 126	
Indeno[1,2,3-cd]pyrene	77	J	1830	2110		ug/Kg	₩	111	56 - 149	
Naphthalene	8.1	J	1830	1410		ug/Kg	₩	76	46 - 120	
Phenanthrene	81	J	1830	1690		ug/Kg	₩	88	60 - 130	
Pyrene	150	J	1830	2100		ug/Kg	\$	106	51 - 133	

MS MS

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl	76	37 - 120
Nitrobenzene-d5 (Surr)	68	34 - 132
p-Terphenvl-d14 (Surr)	107	65 - 153

Lab Sample ID: 480-60422-1 MSD

Matrix: Solid

Client Sample ID: S-201 Prep Type: Total/NA

Analysis Batch: 184368									Prep I	Batch: 1	83839
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	6.2	J	1840	1530		ug/Kg	₩	83	53 - 120	0	35
Acenaphthylene	4.1	J	1840	1580		ug/Kg	☼	86	58 - 121	1	18
Anthracene	11	J	1840	1630		ug/Kg	≎	88	62 - 129	1	15
Benzo[a]anthracene	56	J	1840	1700		ug/Kg	₽	89	65 - 133	1	15
Benzo[a]pyrene	56	J	1840	1630		ug/Kg	☼	86	64 - 127	2	15
Benzo[b]fluoranthene	77	J	1840	1650		ug/Kg	≎	86	64 - 135	3	15
Benzo[g,h,i]perylene	110	J	1840	1870		ug/Kg		96	50 - 152	1	15
Benzo[k]fluoranthene	31	J	1840	1670		ug/Kg	₽	89	58 - 138	4	22
Chrysene	69	J	1840	1750		ug/Kg	≎	91	64 - 131	1	15
Dibenz(a,h)anthracene	29	J	1840	1740		ug/Kg	\$	93	54 - 148	1	15
Fluoranthene	120	J	1840	1690		ug/Kg	≎	86	62 - 131	0	15
Fluorene	ND		1840	1590		ug/Kg	≎	87	63 - 126	0	15
Indeno[1,2,3-cd]pyrene	77	J	1840	1720	F2	ug/Kg	\$	90	56 - 149	20	15
Naphthalene	8.1	J	1840	1420		ug/Kg	₽	77	46 - 120	1	29
Phenanthrene	81	J	1840	1680		ug/Kg	₽	87	60 - 130	0	15
Pyrene	150	J	1840	2100		ug/Kg	\$	106	51 - 133	0	35

WSD	MSD	

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl	76	37 - 120
Nitrobenzene-d5 (Surr)	68	34 - 132
p-Terphenyl-d14 (Surr)	110	65 - 153

TestAmerica Buffalo

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-183840/1-A

Matrix: Solid

Analysis Batch: 184368

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 183840

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	MD		170	2.0	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Acenaphthene	ND		170	2.0	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Acenaphthylene	ND		170	1.4	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Anthracene	ND		170	4.3	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Benzo[a]anthracene	ND		170	2.9	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Benzo[a]pyrene	ND		170	4.0	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Benzo[b]fluoranthene	ND		170	3.3	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Benzo[g,h,i]perylene	ND		170	2.0	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Benzo[k]fluoranthene	ND		170	1.8	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Chrysene	ND		170	1.7	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Dibenz(a,h)anthracene	ND		170	2.0	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Fluoranthene	ND		170	2.4	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Fluorene	ND		170	3.9	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Indeno[1,2,3-cd]pyrene	ND		170	4.6	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Naphthalene	6.07	J	170	2.8	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Phenanthrene	ND		170	3.5	ug/Kg		05/23/14 12:33	05/28/14 12:22	1
Pyrene	ND		170	1.1	ug/Kg		05/23/14 12:33	05/28/14 12:22	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	80	37 - 120	05/23/14 12:33	05/28/14 12:22	1
Nitrobenzene-d5 (Surr)	74	34 - 132	05/23/14 12:33	05/28/14 12:22	1
p-Terphenyl-d14 (Surr)	96	65 ₋ 153	05/23/14 12:33	05/28/14 12:22	1

Lab Sample ID: MB 480-183840/1-A

Matrix: Solid

Analysis Batch: 184350

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 183840

-	MB	MB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		170	37	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
2,4,6-Trichlorophenol	ND		170	11	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
2,4-Dichlorophenol	ND		170	8.8	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
2,4-Dimethylphenol	ND		170	45	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
2,4-Dinitrophenol	ND		330	59	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
2,4-Dinitrotoluene	ND		170	26	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
2,6-Dinitrotoluene	ND		170	41	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
2-Chloronaphthalene	ND		170	11	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
2-Chlorophenol	ND		170	8.5	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
2-Methylnaphthalene	ND		170	2.0	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
2-Methylphenol	ND		170	5.2	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
2-Nitroaniline	ND		330	54	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
2-Nitrophenol	ND		170	7.7	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
3,3'-Dichlorobenzidine	ND		170	150	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
3-Nitroaniline	ND		330	39	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
4,6-Dinitro-2-methylphenol	ND		330	58	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
4-Bromophenyl phenyl ether	ND		170	53	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
4-Chloro-3-methylphenol	ND		170	6.9	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
4-Chloroaniline	ND		170	49	ug/Kg		05/23/14 12:33	05/28/14 19:50	1
4-Chlorophenyl phenyl ether	ND		170	3.6	ug/Kg		05/23/14 12:33	05/28/14 19:50	1

TestAmerica Buffalo

Page 48 of 84

6

3

5

7

9

111

13

14

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-183840/1-A

Matrix: Solid

Analysis Batch: 184350

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 183840

Ameliate		MB			1114	_	B	A !	D:: -
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
4-Methylphenol	ND		330		ug/Kg		05/23/14 12:33	05/28/14 19:50	
4-Nitroaniline	ND		330		ug/Kg		05/23/14 12:33	05/28/14 19:50	
4-Nitrophenol	ND		330	41			05/23/14 12:33	05/28/14 19:50	
Acenaphthene	ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
Acenaphthylene	ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
Acetophenone	ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
Anthracene	ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
Atrazine	ND		170	7.5	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Benzaldehyde	ND		170	18	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Benzo[a]anthracene	ND		170	2.9	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Benzo[a]pyrene	ND		170	4.0	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Benzo[b]fluoranthene	ND		170	3.3	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Benzo[g,h,i]perylene	ND		170	2.0	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Benzo[k]fluoranthene	ND		170	1.8	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Biphenyl	ND		170	10	ug/Kg		05/23/14 12:33	05/28/14 19:50	
bis (2-chloroisopropyl) ether	ND		170	18	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Bis(2-chloroethoxy)methane	ND		170	9.1	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Bis(2-chloroethyl)ether	ND		170	14	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Bis(2-ethylhexyl) phthalate	ND		170	54	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Butyl benzyl phthalate	ND		170	45	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Caprolactam	ND		170	73	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Carbazole	ND		170				05/23/14 12:33	05/28/14 19:50	
Chrysene	ND		170	1.7	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Dibenz(a,h)anthracene	ND		170	2.0	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Dibenzofuran	ND		170	1.7			05/23/14 12:33	05/28/14 19:50	
Diethyl phthalate	ND		170	5.1	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Dimethyl phthalate	ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
Di-n-butyl phthalate	ND		170	58	ug/Kg		05/23/14 12:33	05/28/14 19:50	
Di-n-octyl phthalate	ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
Fluoranthene	ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
Fluorene	ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
Hexachlorobenzene	ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
Hexachlorobutadiene	ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
Hexachlorocyclopentadiene	ND		170	51			05/23/14 12:33	05/28/14 19:50	
Hexachloroethane	ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
Indeno[1,2,3-cd]pyrene	ND		170		ug/Kg ug/Kg		05/23/14 12:33	05/28/14 19:50	
Isophorone							05/23/14 12:33		
	ND		170		ug/Kg ug/Kg			05/28/14 19:50	
Naphthalene	ND ND		170				05/23/14 12:33	05/28/14 19:50	
Nitrobenzene	ND ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
N-Nitrosodi-n-propylamine	ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
N-Nitrosodiphenylamine	ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
Pentachlorophenol	ND		330		ug/Kg		05/23/14 12:33	05/28/14 19:50	
Phenanthrene	ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
Phenol	ND		170		ug/Kg		05/23/14 12:33	05/28/14 19:50	
Pyrene	ND		170	1.1	ug/Kg		05/23/14 12:33	05/28/14 19:50	
	MB	MB							
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	82		39 - 146				05/23/14 12:33	05/28/14 19:50	

TestAmerica Buffalo

Page 49 of 84

6/3/2014

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-183840/1-A

Lab Sample ID: LCS 480-183840/2-A

Matrix: Solid

Benzo[a]anthracene

Fluoranthene

Analysis Batch: 184350

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 183840

MB	MB				
%Recovery	Qualifier	Limits		Prepared	Analyzed
82		37 - 120		05/23/14 12:33	05/28/14 19:50
80		18 - 120		05/23/14 12:33	05/28/14 19:50
82		34 - 132		05/23/14 12:33	05/28/14 19:50
84		11 - 120		05/23/14 12:33	05/28/14 19:50
72		65 - 153		05/23/14 12:33	05/28/14 19:50
	%Recovery 82 80 82	82 80 82	%Recovery Qualifier Limits 82 37 - 120 80 18 - 120 82 34 - 132 84 11 - 120	%Recovery Qualifier Limits 82 37 - 120 80 18 - 120 82 34 - 132 84 11 - 120	%Recovery Qualifier Limits Prepared 82 37 - 120 05/23/14 12:33 80 18 - 120 05/23/14 12:33 82 34 - 132 05/23/14 12:33 84 11 - 120 05/23/14 12:33

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 183840**

65 - 133

62 - 131

51 - 133

91

95

Matrix: Solid Analysis Batch: 184368 LCS LCS %Rec. Spike Analyte Added Result Qualifier Unit D %Rec Limits Acenaphthene 1660 1460 ug/Kg 88 53 - 120 Acenaphthylene 1660 1540 93 58 - 121 ug/Kg Anthracene 1660 1530 ug/Kg 92 62 _ 129

1510

1580

ug/Kg

ug/Kg

ug/Kg

Benzo[a]pyrene 1660 1520 ug/Kg 92 64 - 127 1660 Benzo[b]fluoranthene 1520 ug/Kg 92 64 - 135 Benzo[g,h,i]perylene 1660 1620 ug/Kg 98 50 - 152 Benzo[k]fluoranthene 1660 1460 ug/Kg 88 58 - 138 Chrysene 1660 1600 ug/Kg 96 64 - 131 Dibenz(a,h)anthracene 1660 1600 97 54 - 148 ug/Kg

1660

Fluorene 1660 1490 ug/Kg 90 63 - 126 1660 1600 97 56 - 149 Indeno[1,2,3-cd]pyrene ug/Kg Naphthalene 1660 1400 ug/Kg 84 46 - 120 Phenanthrene 1660 1530 ug/Kg 93 60 - 130

1660

Pyrene 1660 1490 LCS LCS Surrogate %Recovery Qualifier Limits

2-Fluorobiphenyl 83 37 - 120 Nitrobenzene-d5 (Surr) 77 34 - 132 65 - 153 p-Terphenyl-d14 (Surr) 89

Lab Sample ID: LCS 480-183840/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 184350 Prep Batch: 183840 LCS LCS Spike %Rec.

	Opino						701100.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-Dinitrotoluene	1660	1520		ug/Kg		92	55 - 125	
2-Chlorophenol	1660	1330		ug/Kg		81	38 _ 120	
4-Chloro-3-methylphenol	1660	1500		ug/Kg		91	49 _ 125	
4-Nitrophenol	3310	3020		ug/Kg		91	43 - 137	
Acenaphthene	1660	1450		ug/Kg		87	53 _ 120	
Acenaphthylene	1660	1500		ug/Kg		91	58 - 121	
Anthracene	1660	1520		ug/Kg		91	62 _ 129	
Atrazine	3310	3100		ug/Kg		94	60 - 164	
Benzo[a]anthracene	1660	1440		ug/Kg		87	65 - 133	
Benzo[a]pyrene	1660	1540		ug/Kg		93	64 _ 127	

TestAmerica Buffalo

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-183840/2-A

Matrix: Solid

Analysis Batch: 184350

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 183840**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[b]fluoranthene	1660	1740		ug/Kg		105	64 - 135	
Benzo[g,h,i]perylene	1660	779	*	ug/Kg		47	50 - 152	
Benzo[k]fluoranthene	1660	1590		ug/Kg		96	58 - 138	
Bis(2-ethylhexyl) phthalate	1660	1310		ug/Kg		79	61 - 133	
Chrysene	1660	1530		ug/Kg		92	64 - 131	
Dibenz(a,h)anthracene	1660	927		ug/Kg		56	54 - 148	
Fluoranthene	1660	1530		ug/Kg		92	62 _ 131	
Fluorene	1660	1430		ug/Kg		86	63 - 126	
Hexachloroethane	1660	1250		ug/Kg		76	41 - 120	
Indeno[1,2,3-cd]pyrene	1660	876	*	ug/Kg		53	56 - 149	
Naphthalene	1660	1360		ug/Kg		82	46 - 120	
N-Nitrosodi-n-propylamine	1660	1340		ug/Kg		81	46 - 120	
Pentachlorophenol	3310	3280		ug/Kg		99	33 - 136	
Phenanthrene	1660	1480		ug/Kg		90	60 - 130	
Phenol	1660	1390		ug/Kg		84	36 - 120	
Pyrene	1660	1270		ug/Kg		76	51 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	93		39 - 146
2-Fluorobiphenyl	86		37 - 120
2-Fluorophenol (Surr)	81		18 - 120
Nitrobenzene-d5 (Surr)	81		34 - 132
Phenol-d5 (Surr)	82		11 - 120
p-Terphenyl-d14 (Surr)	73		65 - 153

Lab Sample ID: 480-60422-31 MS

Matrix: Solid

Analysis Batch: 184350

Client Sample	ID: Cistern Disposal
	Prep Type: Total/NA
	Prep Batch: 183840

Alialysis Datcil. 104000									Fieb Date	,II. 1030 4 0
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-Dinitrotoluene	ND		1880	ND	F1	ug/Kg	₽	0	55 _ 125	
2-Chlorophenol	ND		1880	1600	J	ug/Kg	₩	85	38 - 120	
4-Chloro-3-methylphenol	ND		1880	1560	J	ug/Kg	₽	83	49 - 125	
4-Nitrophenol	ND		3750	ND	F1	ug/Kg	₩	0	43 _ 137	
Acenaphthene	27000		1880	38500	4	ug/Kg	₽	614	53 _ 120	
Acenaphthylene	1100	J	1880	3430	JF1	ug/Kg	₽	126	58 - 121	
Anthracene	52000		1880	82300	4	ug/Kg		1608	62 _ 129	
Atrazine	ND		3750	3150	J	ug/Kg	₽	84	60 - 164	
Benzo[a]anthracene	100000		1880	151000	4	ug/Kg	₽	2571	65 _ 133	
Benzo[a]pyrene	88000		1880	127000	4	ug/Kg	₽	2079	64 - 127	
Benzo[b]fluoranthene	120000		1880	191000	4	ug/Kg	₽	3723	64 - 135	
Benzo[g,h,i]perylene	30000	*	1880	39400	4	ug/Kg	₽	493	50 ₋ 152	
Benzo[k]fluoranthene	64000		1880	69200	4	ug/Kg	₽	253	58 - 138	
Bis(2-ethylhexyl) phthalate	ND		1880	2430	J	ug/Kg	₽	NC	61 ₋ 133	
Chrysene	120000		1880	168000	4	ug/Kg	₩	2617	64 _ 131	
Dibenz(a,h)anthracene	11000		1880	15200	4	ug/Kg	₽	250	54 - 148	
Fluoranthene	240000		1880	349000	E 4	ug/Kg	₽	5982	62 _ 131	
Fluorene	27000		1880	41300	4	ug/Kg	₽	750	63 - 126	

TestAmerica Buffalo

Page 51 of 84

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-60422-31 MS

Matrix: Solid

Analysis Batch: 184350

Client Sample ID: Cistern Disposal Prep Type: Total/NA **Prep Batch: 183840**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hexachloroethane	ND		1880	1630	J	ug/Kg	\$	87	41 - 120	
Indeno[1,2,3-cd]pyrene	27000	*	1880	35900	4	ug/Kg	\$	454	56 - 149	
Naphthalene	21000		1880	32100	4	ug/Kg	₩	568	46 - 120	
N-Nitrosodi-n-propylamine	ND		1880	1510	J	ug/Kg	*	80	46 - 120	
Pentachlorophenol	ND		3750	12600	JF1	ug/Kg	₩	335	33 - 136	
Phenanthrene	250000		1880	366000	E 4	ug/Kg	₽	6358	60 - 130	
Phenol	ND		1880	2300	JF1	ug/Kg	₩	123	36 - 120	
Pyrene	170000		1880	237000	4	ug/Kg	₽	3770	51 - 133	

MS MS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	0	X	39 - 146
2-Fluorobiphenyl	86		37 - 120
2-Fluorophenol (Surr)	79		18 - 120
Nitrobenzene-d5 (Surr)	86		34 - 132
Phenol-d5 (Surr)	90		11 - 120
p-Terphenyl-d14 (Surr)	78		65 - 153

Client Sample ID: Cistern Disposal

Prep Type: Total/NA

Lab Sample ID: 480-60422-31 MSD Matrix: Solid

Watrix. Soliu									Fieb i	ype. 10	lai/iNP
Analysis Batch: 184350	0	0	0	MOD	MSD				Prep I %Rec.	Batch: 1	83840 RPE
Ameliate	•	Sample	Spike			1114	_	0/ D		RPD	
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		Limi
2,4-Dinitrotoluene	ND		1880	ND	F1	ug/Kg		0	55 - 125	NC	20
2-Chlorophenol	ND		1880	1390		ug/Kg	*	74	38 ₋ 120	14	25
4-Chloro-3-methylphenol	ND		1880	ND		ug/Kg		0	49 - 125	NC	27
4-Nitrophenol	ND		3760	ND	F1	ug/Kg	₽	0	43 _ 137	NC	25
Acenaphthene	27000		1880	44200	4	ug/Kg	₩	914	53 - 120	14	35
Acenaphthylene	1100	J	1880	3870	JF1	ug/Kg	₽	149	58 - 121	12	18
Anthracene	52000		1880	88400	4	ug/Kg	₽	1928	62 - 129	7	15
Atrazine	ND		3760	3160	J	ug/Kg	☼	84	60 - 164	0	20
Benzo[a]anthracene	100000		1880	167000	4	ug/Kg	₩	3444	65 - 133	10	15
Benzo[a]pyrene	88000		1880	139000	4	ug/Kg	₩	2705	64 - 127	9	15
Benzo[b]fluoranthene	120000		1880	201000	4	ug/Kg	₩	4228	64 - 135	5	15
Benzo[g,h,i]perylene	30000	*	1880	41700	4	ug/Kg	₩	616	50 - 152	6	15
Benzo[k]fluoranthene	64000		1880	88500	4 F2	ug/Kg	₩	1277	58 - 138	24	22
Bis(2-ethylhexyl) phthalate	ND		1880	3150	JF2	ug/Kg	₩	NC	61 - 133	26	15
Chrysene	120000		1880	177000	4	ug/Kg	₩	3068	64 - 131	5	15
Dibenz(a,h)anthracene	11000		1880	16000	4	ug/Kg	₩.	290	54 - 148	5	15
Fluoranthene	240000		1880	381000	E 4	ug/Kg	₩	7665	62 _ 131	9	15
Fluorene	27000		1880	48800	4 F2	ug/Kg	₽	1141	63 - 126	16	15
Hexachloroethane	ND		1880	1440	J	ug/Kg	₩.	77	41 - 120	12	46
Indeno[1,2,3-cd]pyrene	27000	*	1880	38400	4	ug/Kg	₽	588	56 - 149	7	15
Naphthalene	21000		1880	43100	4	ug/Kg	₽	1150	46 - 120	29	29
N-Nitrosodi-n-propylamine	ND		1880	1270	J	ug/Kg		67	46 - 120	17	3
Pentachlorophenol	ND		3760	ND	F1	ug/Kg	₩	0	33 - 136	NC	35
Phenanthrene	250000		1880	423000	E 4	ug/Kg	₩	9340	60 - 130	14	15
Phenol	ND		1880	2510	J F1	ug/Kg		133	36 - 120	9	35
Pyrene	170000		1880	262000	E 4	ug/Kg	₽	5063	51 - 133	10	35

TestAmerica Buffalo

Page 52 of 84

6/3/2014

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-60422-31 MSD Client Sample ID: Cistern Disposal **Matrix: Solid** Prep Type: Total/NA **Prep Batch: 183840 Analysis Batch: 184350**

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	95		39 - 146
2-Fluorobiphenyl	83		37 - 120
2-Fluorophenol (Surr)	86		18 - 120
Nitrobenzene-d5 (Surr)	82		34 - 132
Phenol-d5 (Surr)	83		11 - 120
p-Terphenyl-d14 (Surr)	77		65 - 153

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 480-184210/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA **Prep Batch: 184210** Analysis Batch: 184311

мв мв Result Qualifier MDL Unit Prepared Analyzed Dil Fac Analyte RL Diesel Range Organics [C10-C28] ND 05/27/14 14:56 05/28/14 14:26 5.0 mg/Kg

мв мв Limits Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac o-Terphenyl 98 48 - 125 05/27/14 14:56 05/28/14 14:26

Lab Sample ID: LCS 480-184210/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 184311 Prep Batch: 184210

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 48.9 Diesel Range Organics 50.8 mg/Kg 104 63 - 127

LCS LCS

[C10-C28]

Surrogate %Recovery Qualifier Limits o-Terphenyl 103 48 - 125

Lab Sample ID: LCSD 480-184210/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid**

Prep Type: Total/NA Analysis Batch: 184311 Prep Batch: 184210 LCSD LCSD Spike %Rec. RPD Added Result Qualifier Unit Limit

Analyte 49.5 47.5 mg/Kg 96 63 - 127 35 Diesel Range Organics [C10-C28]

LCSD LCSD Surrogate %Recovery Qualifier Limits 48 - 125 o-Terphenyl 94

TestAmerica Buffalo

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-184145/1-A

Matrix: Solid

Analysis Batch: 184309

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 184145

Analyte Result Qualifier RL MDL Unit PCB-1016 ND 0.23 0.045 mg/Kg PCB-1221 ND 0.23 0.045 mg/Kg PCB-1232 ND 0.23 0.045 mg/Kg PCB-1242 ND 0.23 0.045 mg/Kg PCB-1248 ND 0.23 0.045 mg/Kg PCB-1254 ND 0.23 0.11 mg/Kg PCB-1260 ND 0.23 0.11 mg/Kg PCB-1262 ND 0.23 0.11 mg/Kg PCB-1268 ND 0.23 0.11 mg/Kg		МВ	MB							
PCB-1221 ND 0.23 0.045 mg/Kg PCB-1232 ND 0.23 0.045 mg/Kg PCB-1242 ND 0.23 0.045 mg/Kg PCB-1248 ND 0.23 0.045 mg/Kg PCB-1254 ND 0.23 0.11 mg/Kg PCB-1260 ND 0.23 0.11 mg/Kg PCB-1262 ND 0.23 0.11 mg/Kg	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1232 ND 0.23 0.045 mg/Kg PCB-1242 ND 0.23 0.045 mg/Kg PCB-1248 ND 0.23 0.045 mg/Kg PCB-1254 ND 0.23 0.11 mg/Kg PCB-1260 ND 0.23 0.11 mg/Kg PCB-1262 ND 0.23 0.11 mg/Kg	PCB-1016	ND		0.23	0.045	mg/Kg		05/27/14 10:26	05/28/14 10:40	1
PCB-1242 ND 0.23 0.045 mg/Kg PCB-1248 ND 0.23 0.045 mg/Kg PCB-1254 ND 0.23 0.11 mg/Kg PCB-1260 ND 0.23 0.11 mg/Kg PCB-1262 ND 0.23 0.11 mg/Kg	PCB-1221	ND		0.23	0.045	mg/Kg		05/27/14 10:26	05/28/14 10:40	1
PCB-1248 ND 0.23 0.045 mg/Kg PCB-1254 ND 0.23 0.11 mg/Kg PCB-1260 ND 0.23 0.11 mg/Kg PCB-1262 ND 0.23 0.11 mg/Kg	PCB-1232	ND		0.23	0.045	mg/Kg		05/27/14 10:26	05/28/14 10:40	1
PCB-1254 ND 0.23 0.11 mg/Kg PCB-1260 ND 0.23 0.11 mg/Kg PCB-1262 ND 0.23 0.11 mg/Kg	PCB-1242	ND		0.23	0.045	mg/Kg		05/27/14 10:26	05/28/14 10:40	1
PCB-1260 ND 0.23 0.11 mg/Kg PCB-1262 ND 0.23 0.11 mg/Kg	PCB-1248	ND		0.23	0.045	mg/Kg		05/27/14 10:26	05/28/14 10:40	1
PCB-1262 ND 0.23 0.11 mg/Kg	PCB-1254	ND		0.23	0.11	mg/Kg		05/27/14 10:26	05/28/14 10:40	1
	PCB-1260	ND		0.23	0.11	mg/Kg		05/27/14 10:26	05/28/14 10:40	1
PCB-1268 ND 0.23 0.11 mg/Kg	PCB-1262	ND		0.23	0.11	mg/Kg		05/27/14 10:26	05/28/14 10:40	1
	PCB-1268	ND		0.23	0.11	mg/Kg		05/27/14 10:26	05/28/14 10:40	1

MB MB

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	98		46 - 175
DCB Decachlorobiphenyl	105		47 - 176

Client Sample ID: Lab Control Sample

Analyzed

05/28/14 10:40 05/28/14 10:40

Prepared

05/27/14 10:26

05/27/14 10:26

Prep Type: Total/NA Prep Batch: 184145

Matrix: Solid

Analysis Batch: 184309

Lab Sample ID: LCS 480-184145/2-A

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	 2.23	2.79		mg/Kg		125	51 - 185	
PCB-1260	2.23	2.79		mg/Kg		125	61 ₋ 184	

 Surrogate
 %Recovery
 Qualifier
 Limits

 Tetrachloro-m-xylene
 117
 46 - 175

 DCB Decachlorobiphenyl
 114
 47 - 176

Method: 6010B - Inductively Coupled Plasma - Atomic Emission Spectrometry

Lab Sample ID: MB 480-183837/1-A

Matrix: Solid

Analysis Batch: 184306

Client Sample II	D: Method Blank
Prep	Type: Total/NA

Client Sample ID: Lab Control Sample

2

Prep Batch: 183837

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		2.1	0.42	mg/Kg		05/23/14 13:50	05/27/14 16:29	1
Barium	ND		0.52	0.12	mg/Kg		05/23/14 13:50	05/27/14 16:29	1
Cadmium	ND		0.21	0.031	mg/Kg		05/23/14 13:50	05/27/14 16:29	1
Chromium	ND		0.52	0.21	mg/Kg		05/23/14 13:50	05/27/14 16:29	1
Lead	ND		1.0	0.25	mg/Kg		05/23/14 13:50	05/27/14 16:29	1
Selenium	ND		4.2	0.42	mg/Kg		05/23/14 13:50	05/27/14 16:29	1
Silver	ND		0.63	0.21	mg/Kg		05/23/14 13:50	05/27/14 16:29	1

Lab Sample ID: LCSSRM 480-183837/2-A

Matrix: Solid

Analyte Arsenic

Analysis Batch: 184306

					•	Prep 1	Гуре: Total/NA
						Prep	Batch: 183837
Spike	LCSSRM	LCSSRM				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
88.3	69.2		mg/Kg		78.4	69.0 - 131.	

TestAmerica Buffalo

Page 54 of 84

5

7

9

11

Dil Fac

12

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Method: 6010B - Inductively Coupled Plasma - Atomic Emission Spectrometry (Continued)

Lab Sample ID: LCSSRM 480-183837/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 184306** Prep Batch: 183837 LCSSRM LCSSRM

	Бріке	LCSSRW	LC55RW				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Barium	210	155		mg/Kg		73.8	73.3 - 126.	
							7	
Cadmium	143	106		mg/Kg		74.4	72.7 - 127.	
							3	
Chromium	86.7	62.9		mg/Kg		72.6	69.1 - 131.	
							3	
Lead	97.8	76.3		mg/Kg		78.1	70.8 - 128.	
							7	
Selenium	127	98.7		mg/Kg		77.9	66.6 - 133.	
							9	
Silver	66.1	50.0		mg/Kg		75.7	67.1 - 132.	
							9	

Lab Sample ID: 480-60422-31 MS **Client Sample ID: Cistern Disposal**

Matrix: Solid

Analysis Batch: 184306									Prep Bat	ch: 183837
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	4.9		40.9	44.5		mg/Kg		97	75 - 125	
Barium	48		40.9	111	F1	mg/Kg		154	75 - 125	
Cadmium	0.36		40.9	37.8		mg/Kg		92	75 ₋ 125	
Chromium	25		40.9	61.8		mg/Kg		89	75 ₋ 125	
Lead	65		40.9	156	F1	mg/Kg		223	75 ₋ 125	
Selenium	0.41	J	40.9	36.5		mg/Kg		89	75 ₋ 125	
Silver	ND		10.2	9.30		mg/Kg		91	75 - 125	

Lab Sample ID: 480-60422-31 MSD **Client Sample ID: Cistern Disposal Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 184306

Selenium

Silver

Spike MSD MSD RPD Sample Sample %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Arsenic 4.9 42.7 48.0 mg/Kg 101 75 - 125 8 20 Barium 48 42.7 133 F1 mg/Kg 200 75 - 125 18 20 Cadmium 0.36 42.7 42.3 mg/Kg 98 75 - 125 11 20 Chromium 25 42.7 67.8 100 75 - 125 9 20 mg/Kg Lead 65 42.7 141 F1 176 75 - 125 20 mg/Kg

41.8

10.5

mg/Kg

mg/Kg

98

75 - 125

75 - 125

42.7

10.7

0.41 J

MB MB

ND

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-183828/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 184551 Prep Batch: 183828

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Arsenic ND 1.9 mg/Kg 0.39 05/23/14 13:50 05/28/14 18:52 ND 0.49 Barium 0.11 mg/Kg 05/23/14 13:50 05/28/14 18:52 ND 0.19 05/23/14 13:50 05/28/14 18:52 Cadmium 0.029 mg/Kg Chromium ND 0.49 05/23/14 13:50 05/28/14 18:52 0.19 mg/Kg

TestAmerica Buffalo

Page 55 of 84

20

20

Prep Type: Total/NA

Prep Batch: 183837

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-183828/1-A

Matrix: Solid

Analysis Batch: 184551

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 183828

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.97	0.23	mg/Kg		05/23/14 13:50	05/28/14 18:52	1
Selenium	ND		3.9	0.39	mg/Kg		05/23/14 13:50	05/28/14 18:52	1
Silver	ND		0.58	0.19	mg/Kg		05/23/14 13:50	05/28/14 18:52	1

мв мв

Lab Sample ID: LCSSRM 480-183828/2-A

Matrix: Solid

Analysis Batch: 184551

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 183828

	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	88.4	91.1		mg/Kg		103.1	69.0 - 131.	
							2	
Barium	210	207		mg/Kg		98.6	73.3 - 126.	
							7	
Cadmium	143	156		mg/Kg		109.1	72.7 - 127.	
							3	
Chromium	86.8	96.5		mg/Kg		111.2	69.1 - 131.	
							3	
Lead	97.9	104		mg/Kg		106.0	70.8 - 128.	
							7	
Selenium	127	136		mg/Kg		107.4	66.6 - 133.	
							9	
Silver	66.2	67.0		mg/Kg		101.2	67.1 - 132.	
							9	

Lab Sample ID: 480-60422-11 MS

Matrix: Solid

Analysis Batch: 184551

Client Sample ID: S-211 Prep Type: Total/NA **Prep Batch: 183828**

,										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.71	J	44.0	43.9		mg/Kg		98	75 - 125	
Barium	5.5		44.0	51.2		mg/Kg		104	75 - 125	
Cadmium	0.044	J	44.0	42.9		mg/Kg		97	75 - 125	
Chromium	20		44.0	63.5		mg/Kg		98	75 - 125	
Lead	1.1		44.0	44.4		mg/Kg		98	75 - 125	
Selenium	ND		44.0	43.0		mg/Kg		98	75 - 125	
Silver	ND		11.0	10.8		mg/Kg		98	75 - 125	

Lab Sample ID: 480-60422-11 MSD

Matrix: Solid

Analysis Batch: 184551

Client Sample ID: S-211 Prep Type: Total/NA

Prep Batch: 183828

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	0.71	J	38.8	39.3		mg/Kg		100	75 - 125	11	20
Barium	5.5		38.8	46.6		mg/Kg		106	75 - 125	10	20
Cadmium	0.044	J	38.8	38.2		mg/Kg		98	75 - 125	12	20
Chromium	20		38.8	58.1		mg/Kg		97	75 - 125	9	20
Lead	1.1		38.8	39.7		mg/Kg		100	75 - 125	11	20
Selenium	ND		38.8	38.1		mg/Kg		98	75 - 125	12	20
Silver	ND		9.69	9.58		mg/Kg		99	75 - 125	12	20

TestAmerica Buffalo

Page 56 of 84

6/3/2014

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Client Sample ID: Method Blank

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 480-184620/1-A

Matrix: Solid

Analysis Batch: 185183

Prep Type: Total/NA

Prep Batch: 184620

Prep Type: Total/NA

Prep Batch: 184620

Prep Type: Total/NA Prep Batch: 184620

Prep Type: Total/NA

Prep Batch: 184620

RPD

Prep Type: Total/NA

Prep Batch: 184619

Prep Type: Total/NA

Prep Batch: 184619

Client Sample ID: S-216 Prep Type: Total/NA

Prep Batch: 184619

мв мв

Result Qualifier RL MDL Unit D Prepared Dil Fac Analyte Analyzed 0.019 0.0078 mg/Kg 05/30/14 10:00 Hg ND 05/31/14 09:57

Added

3.98

Spike

Added

0.343

Spike

Added

0.294

Spike

Added

9.03

Lab Sample ID: LCSSRM 480-184620/2-A

Matrix: Solid

Analyte

Hg

Analysis Batch: 185183

Spike

3.65

MS MS

MSD MSD

Result Qualifier

MDL Unit

0.0080 mg/Kg

Qualifier

0.786

0.823

RL

0.020

Result Qualifier

LCSSRM LCSSRM

Result Qualifier Unit mg/Kg

Unit

Unit

mg/Kg

mg/Kg

D

%Rec

%Rec

Prepared

05/30/14 10:00

%Rec

99.0

117

an

%Rec Limits 91.6 51.0 - 149.

0

Client Sample ID: Cistern Disposal

%Rec.

Limits

75 - 125

%Rec.

Limits

75 - 125

Client Sample ID: Method Blank

Analyzed

05/31/14 09:05

Client Sample ID: Lab Control Sample

%Rec.

Limits

51.3 - 148. 4

Client Sample ID: Cistern Disposal

Client Sample ID: Lab Control Sample

Lab Sample ID: 480-60422-31 MS

Matrix: Solid

Analysis Batch: 185183

Analyte

Hg

Lab Sample ID: 480-60422-31 MSD

Matrix: Solid

Hg

Analysis Batch: 185183

Analyte

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Lab Sample ID: MB 480-184619/1-A

0.48

Sample Sample

Sample Sample

Result Qualifier

MB MB

ND

Result Qualifier

0.48

Result Qualifier

Matrix: Solid

Analysis Batch: 185183

Analyte

Hg

Lab Sample ID: LCSSRM 480-184619/2-A

Matrix: Solid

Analyte

Hg

Analysis Batch: 185183

Hg

Lab Sample ID: 480-60422-16 MS

Matrix: Solid

Analysis Batch: 185183

Analyte 0.024

Sample Sample Spike Result Qualifier babbA 0.322

Result Qualifier 0.334

LCSSRM LCSSRM

Result

8.94

MS MS Unit mg/Kg

Unit

mg/Kg

%Rec 96

Limits 80 - 120

TestAmerica Buffalo

RPD

Limit

Dil Fac

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Prep Type: Total/NA

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique) (Continued)

Lab Sample ID: 480-60422-16 MS	D								Client San	nple ID:	S-216
Matrix: Solid									Prep T	ype: Tot	al/NA
Analysis Batch: 185183									Prep E	Batch: 1	84619
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ho —	0.024		0 345	0.341		ma/Ka		92	80 120		20

Method: 1010 - Ignitability, Pensky-Martens Closed-Cup Method

Matrix: Solid							Prep 1	Type: Total/NA	4
Analysis Batch: 184240									
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Flashpoint	 81.0	80.00		Degrees F		99	97.5 - 102.		_
							5		

Method: 9012 - Cyanide, Reactive

Lab Sample ID: MB 480-185139/1-A

Lab Sample ID: LCS 480-184240/1

Matrix: Solid Analysis Batch: 185302								Prep Type: T Prep Batch:	
Analysis Batch. 100002	МВ	МВ						r rep baten.	103133
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Reactive	ND		10	0.0030	mg/Kg		06/02/14 03:05	06/02/14 10:13	1

Lab Sample ID: LCS 480-185139/2-A					Client	Sample	ID: Lab C	ontrol Sample
Matrix: Solid							Prep 1	ype: Total/NA
Analysis Batch: 185302							Prep	Batch: 185139
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cyanide, Reactive	1000	450		mg/Kg		45	10 - 100	

Method: 9034 - Sulfide, Reactive

Lab Sample ID: MB 480-185164/1-A

Matrix: Solid

Matrix: Solid							Prep T	Type: Total/NA
Analysis Batch: 185165							Prep	Batch: 185164
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfide, Reactive	1000	802		mg/Kg		80	10 - 100	

TestAmerica Buffalo

QC Sample Results

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

TestAmerica Job ID: 480-60422-1

Method: 9045C - pH

Lab Sample ID: LCS 480-183952/23

Client Sample ID: Lab Control Sample
Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 183952

Spike	LCS	LCS				%Rec.
Analyte Added	Result	Qualifier	Unit	D	%Rec	Limits
pH 7.00	7.010		SU	_	100	99 - 101

2

А

4

6

R

9

11

13

14

QC Association Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

GC/MS VOA

Prep Batch: 183905

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	5035A	
LCS 480-183905/1-A	Lab Control Sample	Total/NA	Solid	5035A	
MB 480-183905/2-A	Method Blank	Total/NA	Solid	5035A	

Analysis Batch: 183935

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-183905/1-A	Lab Control Sample	Total/NA	Solid	8260C	183905
MB 480-183905/2-A	Method Blank	Total/NA	Solid	8260C	183905

Analysis Batch: 183987

_					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	8260C	183905

GC/MS Semi VOA

Prep Batch: 183839

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-60422-1	S-201	Total/NA	Solid	3550C	_
480-60422-1 MS	S-201	Total/NA	Solid	3550C	
480-60422-1 MSD	S-201	Total/NA	Solid	3550C	
480-60422-2	S-202	Total/NA	Solid	3550C	
480-60422-3	S-203	Total/NA	Solid	3550C	
480-60422-4	S-204	Total/NA	Solid	3550C	
480-60422-5	S-205	Total/NA	Solid	3550C	
480-60422-6	S-206	Total/NA	Solid	3550C	
480-60422-7	S-207	Total/NA	Solid	3550C	
480-60422-8	S-208	Total/NA	Solid	3550C	
480-60422-9	S-209	Total/NA	Solid	3550C	
480-60422-10	S-210	Total/NA	Solid	3550C	
480-60422-11	S-211	Total/NA	Solid	3550C	
480-60422-12	S-212	Total/NA	Solid	3550C	
480-60422-13	S-213	Total/NA	Solid	3550C	
480-60422-14	S-214	Total/NA	Solid	3550C	
480-60422-15	S-215	Total/NA	Solid	3550C	
480-60422-16	S-216	Total/NA	Solid	3550C	
LCS 480-183839/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-183839/1-A	Method Blank	Total/NA	Solid	3550C	

Prep Batch: 183840

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-17	TP-101 (5-5.5')	Total/NA	Solid	3550C	
480-60422-18	TP-101 (10')	Total/NA	Solid	3550C	
480-60422-19	TP-102 (4-5')	Total/NA	Solid	3550C	
480-60422-20	TP-102 (9.5')	Total/NA	Solid	3550C	
480-60422-21	TP-103 (2-3')	Total/NA	Solid	3550C	
480-60422-22	TP-103 (4')	Total/NA	Solid	3550C	
480-60422-23	TP-104 (2-3')	Total/NA	Solid	3550C	
480-60422-24	TP-104 (4)	Total/NA	Solid	3550C	
480-60422-25	TP-105 (4-5')	Total/NA	Solid	3550C	
480-60422-26	TP-105 (10')	Total/NA	Solid	3550C	

TestAmerica Buffalo

Page 60 of 84

_

0

46

11

40

14

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

GC/MS Semi VOA (Continued)

Prep Batch: 183840 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-27	TP-106 (4-5')	Total/NA	Solid	3550C	
480-60422-28	TP-106 (10)	Total/NA	Solid	3550C	
480-60422-29	TP-107 (5-5.5)	Total/NA	Solid	3550C	
480-60422-30	TP-107 (10')	Total/NA	Solid	3550C	
480-60422-31 - DL	Cistern Disposal	Total/NA	Solid	3550C	
480-60422-31	Cistern Disposal	Total/NA	Solid	3550C	
480-60422-31 MS	Cistern Disposal	Total/NA	Solid	3550C	
480-60422-31 MSD	Cistern Disposal	Total/NA	Solid	3550C	
LCS 480-183840/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-183840/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 184350

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	8270D	183840
480-60422-31 MS	Cistern Disposal	Total/NA	Solid	8270D	183840
480-60422-31 MSD	Cistern Disposal	Total/NA	Solid	8270D	183840
LCS 480-183840/2-A	Lab Control Sample	Total/NA	Solid	8270D	183840
MB 480-183840/1-A	Method Blank	Total/NA	Solid	8270D	183840

Analysis Batch: 184368

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-60422-1	S-201	Total/NA	Solid	8270D	183839
480-60422-1 MS	S-201	Total/NA	Solid	8270D	183839
480-60422-1 MSD	S-201	Total/NA	Solid	8270D	183839
480-60422-2	S-202	Total/NA	Solid	8270D	183839
480-60422-3	S-203	Total/NA	Solid	8270D	183839
480-60422-4	S-204	Total/NA	Solid	8270D	183839
480-60422-5	S-205	Total/NA	Solid	8270D	183839
480-60422-6	S-206	Total/NA	Solid	8270D	183839
480-60422-7	S-207	Total/NA	Solid	8270D	183839
480-60422-8	S-208	Total/NA	Solid	8270D	183839
480-60422-9	S-209	Total/NA	Solid	8270D	183839
480-60422-17	TP-101 (5-5.5')	Total/NA	Solid	8270D	183840
180-60422-18	TP-101 (10')	Total/NA	Solid	8270D	183840
180-60422-19	TP-102 (4-5')	Total/NA	Solid	8270D	183840
180-60422-20	TP-102 (9.5')	Total/NA	Solid	8270D	183840
180-60422-21	TP-103 (2-3')	Total/NA	Solid	8270D	183840
180-60422-22	TP-103 (4')	Total/NA	Solid	8270D	183840
180-60422-23	TP-104 (2-3')	Total/NA	Solid	8270D	183840
480-60422-24	TP-104 (4)	Total/NA	Solid	8270D	183840
180-60422-25	TP-105 (4-5')	Total/NA	Solid	8270D	183840
180-60422-26	TP-105 (10')	Total/NA	Solid	8270D	183840
180-60422-27	TP-106 (4-5')	Total/NA	Solid	8270D	183840
180-60422-28	TP-106 (10)	Total/NA	Solid	8270D	183840
480-60422-29	TP-107 (5-5.5)	Total/NA	Solid	8270D	183840
480-60422-30	TP-107 (10')	Total/NA	Solid	8270D	183840
_CS 480-183839/2-A	Lab Control Sample	Total/NA	Solid	8270D	183839
_CS 480-183840/2-A	Lab Control Sample	Total/NA	Solid	8270D	18384
MB 480-183839/1-A	Method Blank	Total/NA	Solid	8270D	183839
MB 480-183840/1-A	Method Blank	Total/NA	Solid	8270D	183840

TestAmerica Buffalo

Page 61 of 84

9

3

0

3

10

12

14

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

GC/MS Semi VOA (Continued)

Analysis Batch: 184383

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31 - DL	Cistern Disposal	Total/NA	Solid	8270D	183840

Analysis Batch: 184439

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-10	S-210	Total/NA	Solid	8270D	183839
480-60422-11	S-211	Total/NA	Solid	8270D	183839
480-60422-12	S-212	Total/NA	Solid	8270D	183839
480-60422-13	S-213	Total/NA	Solid	8270D	183839
480-60422-14	S-214	Total/NA	Solid	8270D	183839
480-60422-15	S-215	Total/NA	Solid	8270D	183839
480-60422-16	S-216	Total/NA	Solid	8270D	183839

GC Semi VOA

Prep Batch: 184145

Lab Sample ID 480-60422-31	Client Sample ID Cistern Disposal	Prep Type Total/NA	Matrix Solid	Method 3550C	Prep Batch
LCS 480-184145/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-184145/1-A	Method Blank	Total/NA	Solid	3550C	

Prep Batch: 184210

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	3550C	
LCS 480-184210/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 480-184210/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
MB 480-184210/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 184309

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	8082A	184145
LCS 480-184145/2-A	Lab Control Sample	Total/NA	Solid	8082A	184145
MB 480-184145/1-A	Method Blank	Total/NA	Solid	8082A	184145

Analysis Batch: 184311

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	8015D	184210
LCS 480-184210/2-A	Lab Control Sample	Total/NA	Solid	8015D	184210
LCSD 480-184210/3-A	Lab Control Sample Dup	Total/NA	Solid	8015D	184210
MB 480-184210/1-A	Method Blank	Total/NA	Solid	8015D	184210

Metals

Prep Batch: 183828

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-11	S-211	Total/NA	Solid	3050B	
480-60422-11 MS	S-211	Total/NA	Solid	3050B	
480-60422-11 MSD	S-211	Total/NA	Solid	3050B	
480-60422-12	S-212	Total/NA	Solid	3050B	
480-60422-13	S-213	Total/NA	Solid	3050B	
480-60422-14	S-214	Total/NA	Solid	3050B	

TestAmerica Buffalo

6/3/2014

Page 62 of 84

3

4

0

10

13

14

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

2

Metals (Continued)

Prep Batch: 183828 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-15	S-215	Total/NA	Solid	3050B	
480-60422-16	S-216	Total/NA	Solid	3050B	
480-60422-17	TP-101 (5-5.5')	Total/NA	Solid	3050B	
480-60422-18	TP-101 (10')	Total/NA	Solid	3050B	
480-60422-19	TP-102 (4-5')	Total/NA	Solid	3050B	
480-60422-20	TP-102 (9.5')	Total/NA	Solid	3050B	
480-60422-21	TP-103 (2-3')	Total/NA	Solid	3050B	
480-60422-22	TP-103 (4')	Total/NA	Solid	3050B	
480-60422-23	TP-104 (2-3')	Total/NA	Solid	3050B	
480-60422-24	TP-104 (4)	Total/NA	Solid	3050B	
480-60422-25	TP-105 (4-5')	Total/NA	Solid	3050B	
480-60422-26	TP-105 (10')	Total/NA	Solid	3050B	
480-60422-27	TP-106 (4-5')	Total/NA	Solid	3050B	
480-60422-28	TP-106 (10)	Total/NA	Solid	3050B	
480-60422-29	TP-107 (5-5.5)	Total/NA	Solid	3050B	
480-60422-30	TP-107 (10')	Total/NA	Solid	3050B	
LCSSRM 480-183828/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-183828/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 183837

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	3050B	
480-60422-31 MS	Cistern Disposal	Total/NA	Solid	3050B	
480-60422-31 MSD	Cistern Disposal	Total/NA	Solid	3050B	
LCSSRM 480-183837/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-183837/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 184306

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	6010B	183837
480-60422-31 MS	Cistern Disposal	Total/NA	Solid	6010B	183837
480-60422-31 MSD	Cistern Disposal	Total/NA	Solid	6010B	183837
LCSSRM 480-183837/2-A	Lab Control Sample	Total/NA	Solid	6010B	183837
MB 480-183837/1-A	Method Blank	Total/NA	Solid	6010B	183837

Analysis Batch: 184551

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-11	S-211	Total/NA	Solid	6010C	183828
480-60422-11 MS	S-211	Total/NA	Solid	6010C	183828
480-60422-11 MSD	S-211	Total/NA	Solid	6010C	183828
480-60422-12	S-212	Total/NA	Solid	6010C	183828
480-60422-13	S-213	Total/NA	Solid	6010C	183828
480-60422-14	S-214	Total/NA	Solid	6010C	183828
480-60422-15	S-215	Total/NA	Solid	6010C	183828
480-60422-16	S-216	Total/NA	Solid	6010C	183828
480-60422-17	TP-101 (5-5.5')	Total/NA	Solid	6010C	183828
480-60422-18	TP-101 (10')	Total/NA	Solid	6010C	183828
480-60422-19	TP-102 (4-5')	Total/NA	Solid	6010C	183828
480-60422-20	TP-102 (9.5')	Total/NA	Solid	6010C	183828
480-60422-21	TP-103 (2-3')	Total/NA	Solid	6010C	183828
480-60422-22	TP-103 (4')	Total/NA	Solid	6010C	183828

TestAmerica Buffalo

6/3/2014

Page 63 of 84

6

Q

9

10

12

13

QC Association Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

Metals (Continued)

Analysis Batch: 184551 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-23	TP-104 (2-3')	Total/NA	Solid	6010C	183828
480-60422-24	TP-104 (4)	Total/NA	Solid	6010C	183828
480-60422-25	TP-105 (4-5')	Total/NA	Solid	6010C	183828
480-60422-26	TP-105 (10')	Total/NA	Solid	6010C	183828
480-60422-27	TP-106 (4-5')	Total/NA	Solid	6010C	183828
480-60422-28	TP-106 (10)	Total/NA	Solid	6010C	183828
480-60422-29	TP-107 (5-5.5)	Total/NA	Solid	6010C	183828
480-60422-30	TP-107 (10')	Total/NA	Solid	6010C	183828
LCSSRM 480-183828/2-A	Lab Control Sample	Total/NA	Solid	6010C	183828
MB 480-183828/1-A	Method Blank	Total/NA	Solid	6010C	183828

Prep Batch: 184619

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-60422-11	S-211	Total/NA	Solid	7471B	
480-60422-12	S-212	Total/NA	Solid	7471B	
480-60422-13	S-213	Total/NA	Solid	7471B	
480-60422-14	S-214	Total/NA	Solid	7471B	
480-60422-15	S-215	Total/NA	Solid	7471B	
480-60422-16	S-216	Total/NA	Solid	7471B	
480-60422-16 MS	S-216	Total/NA	Solid	7471B	
480-60422-16 MSD	S-216	Total/NA	Solid	7471B	
480-60422-17	TP-101 (5-5.5')	Total/NA	Solid	7471B	
480-60422-18	TP-101 (10')	Total/NA	Solid	7471B	
480-60422-19	TP-102 (4-5')	Total/NA	Solid	7471B	
480-60422-20	TP-102 (9.5')	Total/NA	Solid	7471B	
480-60422-21	TP-103 (2-3')	Total/NA	Solid	7471B	
480-60422-22	TP-103 (4')	Total/NA	Solid	7471B	
480-60422-23	TP-104 (2-3')	Total/NA	Solid	7471B	
480-60422-24	TP-104 (4)	Total/NA	Solid	7471B	
480-60422-25	TP-105 (4-5')	Total/NA	Solid	7471B	
480-60422-26	TP-105 (10')	Total/NA	Solid	7471B	
480-60422-27	TP-106 (4-5')	Total/NA	Solid	7471B	
480-60422-28	TP-106 (10)	Total/NA	Solid	7471B	
480-60422-29	TP-107 (5-5.5)	Total/NA	Solid	7471B	
480-60422-30	TP-107 (10')	Total/NA	Solid	7471B	
LCSSRM 480-184619/2-A	Lab Control Sample	Total/NA	Solid	7471A	
MB 480-184619/1-A	Method Blank	Total/NA	Solid	7471A	

Prep Batch: 184620

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	7471A	
480-60422-31 MS	Cistern Disposal	Total/NA	Solid	7471A	
480-60422-31 MSD	Cistern Disposal	Total/NA	Solid	7471A	
LCSSRM 480-184620/2-A	Lab Control Sample	Total/NA	Solid	7471A	
MB 480-184620/1-A	Method Blank	Total/NA	Solid	7471A	

Analysis Batch: 185090

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-12	S-212	Total/NA	Solid	6010C	183828

TestAmerica Buffalo

Page 64 of 84

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Metals (Continued)

Analysis Batch: 185183

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-11	S-211	Total/NA	Solid	7471B	184619
480-60422-12	S-212	Total/NA	Solid	7471B	184619
480-60422-13	S-213	Total/NA	Solid	7471B	184619
480-60422-14	S-214	Total/NA	Solid	7471B	184619
480-60422-15	S-215	Total/NA	Solid	7471B	184619
480-60422-16	S-216	Total/NA	Solid	7471B	184619
480-60422-16 MS	S-216	Total/NA	Solid	7471B	184619
480-60422-16 MSD	S-216	Total/NA	Solid	7471B	184619
480-60422-17	TP-101 (5-5.5')	Total/NA	Solid	7471B	184619
480-60422-18	TP-101 (10')	Total/NA	Solid	7471B	184619
480-60422-19	TP-102 (4-5')	Total/NA	Solid	7471B	184619
480-60422-20	TP-102 (9.5')	Total/NA	Solid	7471B	184619
480-60422-21	TP-103 (2-3')	Total/NA	Solid	7471B	184619
480-60422-22	TP-103 (4')	Total/NA	Solid	7471B	184619
480-60422-23	TP-104 (2-3')	Total/NA	Solid	7471B	184619
480-60422-24	TP-104 (4)	Total/NA	Solid	7471B	184619
480-60422-25	TP-105 (4-5')	Total/NA	Solid	7471B	184619
480-60422-26	TP-105 (10')	Total/NA	Solid	7471B	184619
480-60422-27	TP-106 (4-5')	Total/NA	Solid	7471B	184619
480-60422-28	TP-106 (10)	Total/NA	Solid	7471B	184619
480-60422-29	TP-107 (5-5.5)	Total/NA	Solid	7471B	184619
480-60422-30	TP-107 (10')	Total/NA	Solid	7471B	184619
480-60422-31	Cistern Disposal	Total/NA	Solid	7471A	184620
480-60422-31 MS	Cistern Disposal	Total/NA	Solid	7471A	184620
480-60422-31 MSD	Cistern Disposal	Total/NA	Solid	7471A	184620
LCSSRM 480-184619/2-A	Lab Control Sample	Total/NA	Solid	7471B	184619
LCSSRM 480-184620/2-A	Lab Control Sample	Total/NA	Solid	7471A	184620
MB 480-184619/1-A	Method Blank	Total/NA	Solid	7471B	184619
MB 480-184620/1-A	Method Blank	Total/NA	Solid	7471A	184620

General Chemistry

Analysis Batch: 183883

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-60422-1	S-201	Total/NA	Solid	Moisture	_
480-60422-2	S-202	Total/NA	Solid	Moisture	
480-60422-3	S-203	Total/NA	Solid	Moisture	
480-60422-4	S-204	Total/NA	Solid	Moisture	
480-60422-5	S-205	Total/NA	Solid	Moisture	
480-60422-6	S-206	Total/NA	Solid	Moisture	
480-60422-7	S-207	Total/NA	Solid	Moisture	
480-60422-8	S-208	Total/NA	Solid	Moisture	
480-60422-9	S-209	Total/NA	Solid	Moisture	
480-60422-10	S-210	Total/NA	Solid	Moisture	
480-60422-11	S-211	Total/NA	Solid	Moisture	
480-60422-12	S-212	Total/NA	Solid	Moisture	
480-60422-13	S-213	Total/NA	Solid	Moisture	
480-60422-14	S-214	Total/NA	Solid	Moisture	
480-60422-15	S-215	Total/NA	Solid	Moisture	
480-60422-16	S-216	Total/NA	Solid	Moisture	

TestAmerica Buffalo

Page 65 of 84

5

3

5

7

9

10

12

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

TestAmerica Job ID: 480-60422-1

General Chemistry (Continued)

Analysis Batch: 183883 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-17	TP-101 (5-5.5')	Total/NA	Solid	Moisture	_
480-60422-18	TP-101 (10')	Total/NA	Solid	Moisture	
480-60422-19	TP-102 (4-5')	Total/NA	Solid	Moisture	
480-60422-20	TP-102 (9.5')	Total/NA	Solid	Moisture	
480-60422-21	TP-103 (2-3')	Total/NA	Solid	Moisture	
480-60422-22	TP-103 (4')	Total/NA	Solid	Moisture	
480-60422-23	TP-104 (2-3')	Total/NA	Solid	Moisture	
480-60422-24	TP-104 (4)	Total/NA	Solid	Moisture	
480-60422-25	TP-105 (4-5')	Total/NA	Solid	Moisture	
480-60422-26	TP-105 (10')	Total/NA	Solid	Moisture	
480-60422-27	TP-106 (4-5')	Total/NA	Solid	Moisture	
480-60422-28	TP-106 (10)	Total/NA	Solid	Moisture	
480-60422-29	TP-107 (5-5.5)	Total/NA	Solid	Moisture	
480-60422-30	TP-107 (10')	Total/NA	Solid	Moisture	
480-60422-31	Cistern Disposal	Total/NA	Solid	Moisture	

Analysis Batch: 183952

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	9045C	
LCS 480-183952/23	Lab Control Sample	Total/NA	Solid	9045C	

Analysis Batch: 184240

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	1010	
LCS 480-184240/1	Lab Control Sample	Total/NA	Solid	1010	

Prep Batch: 185139

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	7.3.3	
LCS 480-185139/2-A	Lab Control Sample	Total/NA	Solid	7.3.3	
MB 480-185139/1-A	Method Blank	Total/NA	Solid	7.3.3	

Prep Batch: 185164

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	7.3.4	
LCS 480-185164/2-A	Lab Control Sample	Total/NA	Solid	7.3.4	
MB 480-185164/1-A	Method Blank	Total/NA	Solid	7.3.4	

Analysis Batch: 185165

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	9034	185164
LCS 480-185164/2-A	Lab Control Sample	Total/NA	Solid	9034	185164
MB 480-185164/1-A	Method Blank	Total/NA	Solid	9034	185164

Analysis Batch: 185302

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	9012	185139
LCS 480-185139/2-A	Lab Control Sample	Total/NA	Solid	9012	185139
MB 480-185139/1-A	Method Blank	Total/NA	Solid	9012	185139

TestAmerica Buffalo

Page 66 of 84

QC Association Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-1

General Chemistry (Continued)

Analysis Batch: 185420

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	Total/NA	Solid	9095B	

4

O —

9

10

12

4 4

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Lab Sample ID: 480-60422-1

Matrix: Solid

Client Sample ID: S-201 Date Collected: 05/21/14 11:30 Date Received: 05/23/14 01:00 Percent Solids: 89.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183839	05/23/14 12:27	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 20:09	ANM	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: S-202 Lab Sample ID: 480-60422-2 Date Collected: 05/21/14 11:31 **Matrix: Solid**

Date Received: 05/23/14 01:00 Percent Solids: 88.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183839	05/23/14 12:27	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 20:32	ANM	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Lab Sample ID: 480-60422-3 Client Sample ID: S-203

Date Collected: 05/21/14 11:32 **Matrix: Solid** Date Received: 05/23/14 01:00 Percent Solids: 88.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183839	05/23/14 12:27	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 20:55	ANM	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: S-204 Lab Sample ID: 480-60422-4

Date Collected: 05/21/14 11:33 **Matrix: Solid** Date Received: 05/23/14 01:00 Percent Solids: 89.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183839	05/23/14 12:27	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 21:18	ANM	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: S-205 Lab Sample ID: 480-60422-5

Date Collected: 05/21/14 11:34 **Matrix: Solid** Date Received: 05/23/14 01:00 Percent Solids: 92.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183839	05/23/14 12:27	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 21:40	ANM	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

TestAmerica Buffalo

10

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Lab Sample ID: 480-60422-6

Matrix: Solid Percent Solids: 95.5

Percent Solids: 93.5

Matrix: Solid

Percent Solids: 90.1

TAL BUF

Client Sample ID: S-206

Date Collected: 05/21/14 11:45 Date Received: 05/23/14 01:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C		- <u> </u>	183839	05/23/14 12:27	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 22:03	ANM	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: S-207 Lab Sample ID: 480-60422-7 **Matrix: Solid**

Date Collected: 05/21/14 11:46

Date Received: 05/23/14 01:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183839	05/23/14 12:27	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 22:26	ANM	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: S-208 Lab Sample ID: 480-60422-8

Date Collected: 05/21/14 11:47

Date Received: 05/23/14 01:00

Batch Batch Dilution Batch Prepared Prep Type Method Factor Number or Analyzed Lab Type Run Analyst Prep Total/NA 3550C 05/23/14 12:27 AJM TAL BUF 183839 Total/NA Analysis 8270D 1 184368 05/28/14 22:49 ANM TAL BUF

Client Sample ID: S-209 Lab Sample ID: 480-60422-9

1

183883

05/23/14 14:55

CW

Analysis

Moisture

Total/NA

Date Collected: 05/21/14 11:48		Matrix: Solid			
Date Received: 05/23/14 01:00	Percent Solids: 92.0				
Batch	Batch	Dilution	Batch	Prepared	

	Datell	Datcii		Dilution	Daten	Frepareu		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183839	05/23/14 12:27	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 23:12	ANM	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: S-210 Lab Sample ID: 480-60422-10

Date Collected: 05/21/14 11:49

Date Received: 05/23/14 01:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183839	05/23/14 12:27	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184439	05/29/14 04:05	ANM	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

TestAmerica Buffalo

Page 69 of 84

Matrix: Solid

Percent Solids: 94.9

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: S-211

Lab Sample ID: 480-60422-11

Date Collected: 05/21/14 12:45 Date Received: 05/23/14 01:00

Matrix: Solid Percent Solids: 78.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183839	05/23/14 12:27	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184439	05/29/14 04:28	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 19:05	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:09	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

10

Client Sample ID: S-212

Lab Sample ID: 480-60422-12

Date Collected: 05/21/14 13:05 Date Received: 05/23/14 01:00

Matrix: Solid Percent Solids: 58.2

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183839	05/23/14 12:27	AJM	TAL BUF
Total/NA	Analysis	8270D		10	184439	05/29/14 04:51	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		10	185090	05/30/14 13:00	MTM2	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 19:19	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		5	185183	05/31/14 10:47	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: S-213

Lab Sample ID: 480-60422-13

Date Collected: 05/21/14 13:06 Date Received: 05/23/14 01:00

Matrix: Solid Percent Solids: 83.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183839	05/23/14 12:27	AJM	TAL BUF
Total/NA	Analysis	8270D		10	184439	05/29/14 05:14	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 19:22	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:13	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: S-214

Lab Sample ID: 480-60422-14

Date Collected: 05/21/14 13:07

Matrix: Solid

Date Received: 05/23/14 01:00

Percent Solids: 80.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183839	05/23/14 12:27	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184439	05/29/14 05:37	ANM	TAL BUF

TestAmerica Buffalo

Client: Resource Control Associates, Inc.

Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: S-214 Lab Sample ID: 480-60422-14

Date Collected: 05/21/14 13:07 Matrix: Solid Date Received: 05/23/14 01:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 19:36	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:14	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: S-215 Lab Sample ID: 480-60422-15 Date Collected: 05/21/14 13:08 **Matrix: Solid**

Date Received: 05/23/14 01:00 Percent Solids: 88.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183839	05/23/14 12:27	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184439	05/29/14 06:00	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 19:39	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:16	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: S-216 Lab Sample ID: 480-60422-16 Date Collected: 05/21/14 13:15

Date Received: 05/23/14 01:00 Percent Solids: 89.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183839	05/23/14 12:27	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184439	05/29/14 06:23	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 19:42	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:18	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: TP-101 (5-5.5') Lab Sample ID: 480-60422-17

Date Collected: 05/21/14 14:32 **Matrix: Solid** Date Received: 05/23/14 01:00 Percent Solids: 85.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183840	05/23/14 12:33	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 13:09	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 19:45	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:29	LRK	TAL BUF

TestAmerica Buffalo

Page 71 of 84

10

Matrix: Solid

6/3/2014

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: TP-101 (5-5.5')

Lab Sample ID: 480-60422-17

Date Collected: 05/21/14 14:32 Date Received: 05/23/14 01:00

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture	· ——	1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: TP-101 (10')

Lab Sample ID: 480-60422-18

Matrix: Solid

Date Collected: 05/21/14 14:30 Date Received: 05/23/14 01:00 Percent Solids: 96.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183840	05/23/14 12:33	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 13:32	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 19:47	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:31	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Lab Sample ID: 480-60422-19

Date Collected: 05/21/14 14:38 Date Received: 05/23/14 01:00

Client Sample ID: TP-102 (4-5')

Matrix: Solid

Percent Solids: 97.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183840	05/23/14 12:33	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 13:55	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 19:50	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:32	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: TP-102 (9.5')

Lab Sample ID: 480-60422-20

Matrix: Solid

Date Collected: 05/21/14 14:45 Date Received: 05/23/14 01:00

Percent Solids: 83.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183840	05/23/14 12:33	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 14:19	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 19:53	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:34	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: TP-103 (2-3')

Lab Sample ID: 480-60422-21 Matrix: Solid

Date Collected: 05/21/14 15:35 Date Received: 05/23/14 01:00

Client Sample ID: TP-103 (4')

Percent Solids: 89.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183840	05/23/14 12:33	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 14:42	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 19:56	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:36	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Lab Sample ID: 480-60422-22

Date Collected: 05/21/14 15:38 Date Received: 05/23/14 01:00

Matrix: Solid Percent Solids: 81.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183840	05/23/14 12:33	AJM	TAL BUF
Total/NA	Analysis	8270D		20	184368	05/28/14 15:06	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 20:10	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:38	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: TP-104 (2-3') Lab Sample ID: 480-60422-23

Date Collected: 05/21/14 15:55

Matrix: Solid Date Received: 05/23/14 01:00 Percent Solids: 93.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183840	05/23/14 12:33	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 15:30	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 20:13	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:39	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: TP-104 (4) Lab Sample ID: 480-60422-24

Date Collected: 05/21/14 15:56 Matrix: Solid Date Received: 05/23/14 01:00 Percent Solids: 87.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183840	05/23/14 12:33	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 15:53	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 20:15	MTM2	TAL BUF

TestAmerica Buffalo

Page 73 of 84

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Lab Sample ID: 480-60422-24

Matrix: Solid

Client Sample ID: TP-104 (4)
Date Collected: 05/21/14 15:56

Date Received: 05/23/14 01:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7471B	-		184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:41	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: TP-105 (4-5')

Lab Sample ID: 480-60422-25

Date Collected: 05/21/14 16:20

Date Received: 05/23/14 01:00

			Matrix: Solid
			Percent Solids: 95.9
n	Batch	Prepared	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183840	05/23/14 12:33	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 16:17	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 20:18	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:43	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: TP-105 (10')

Date Collected: 05/21/14 16:23 Date Received: 05/23/14 01:00

Lab Sample ID: 480-60422-26	
Matrix: Solid	
Percent Solids: 84.0	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183840	05/23/14 12:33	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 16:41	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 20:21	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:48	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: TP-106 (4-5')

Date Collected: 05/21/14 16:35 Date Received: 05/23/14 01:00

Lab Sample ID: 480	0-60422-27
ı	Matrix: Solid

Percent Solids: 95.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183840	05/23/14 12:33	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 17:04	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 20:24	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:50	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

TestAmerica Buffalo

10

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Client Sample ID: TP-106 (10)

Date Collected: 05/21/14 16:38 Date Received: 05/23/14 01:00 Lab Sample ID: 480-60422-28

Matrix: Solid
Percent Solids: 80.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183840	05/23/14 12:33	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 17:27	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 20:26	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:52	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: TP-107 (5-5.5)

Lab Sample ID: 480-60422-29

 Date Collected: 05/21/14 17:00
 Matrix: Solid

 Date Received: 05/23/14 01:00
 Percent Solids: 97.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183840	05/23/14 12:33	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 17:51	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 20:29	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:54	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: TP-107 (10')

Lab Sample ID: 480-60422-30

Date Collected: 05/21/14 17:02 Matrix: Solid
Date Received: 05/23/14 01:00 Percent Solids: 83.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			183840	05/23/14 12:33	AJM	TAL BUF
Total/NA	Analysis	8270D		1	184368	05/28/14 18:14	ANM	TAL BUF
Total/NA	Prep	3050B			183828	05/23/14 13:50	EHD	TAL BUF
Total/NA	Analysis	6010C		1	184551	05/28/14 20:43	MTM2	TAL BUF
Total/NA	Prep	7471B			184619	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471B		1	185183	05/31/14 09:55	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Client Sample ID: Cistern Disposal Lab Sample ID: 480-60422-31

Date Collected: 05/21/14 17:30 Matrix: Solid
Date Received: 05/23/14 01:00 Percent Solids: 86.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			183905	05/23/14 16:38	GTG	TAL BUF
Total/NA	Analysis	8260C		5	183987	05/24/14 15:49	GTG	TAL BUF
Total/NA	Prep	3550C			183840	05/23/14 12:34	AJM	TAL BUF
Total/NA	Analysis	8270D		40	184350	05/28/14 21:27	ANM	TAL BUF

TestAmerica Buffalo

Page 75 of 84

Lab Chronicle

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

TestAmerica Job ID: 480-60422-1

Lab Sample ID: 480-60422-31

Matrix: Solid

Percent Solids: 86.3

Client Sample ID: Cistern Disposal

Date Collected: 05/21/14 17:30 Date Received: 05/23/14 01:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C	DL	- <u> </u>	183840	05/23/14 12:34	AJM	TAL BUF
Total/NA	Analysis	8270D	DL	80	184383	05/29/14 02:09	ANM	TAL BUF
Total/NA	Prep	3550C			184210	05/27/14 14:56	AJM	TAL BUF
Total/NA	Analysis	8015D		10	184311	05/29/14 08:38	DLE	TAL BUF
Total/NA	Prep	3550C			184145	05/27/14 10:26	CPH	TAL BUF
Total/NA	Analysis	8082A		1	184309	05/28/14 15:22	JMM	TAL BUF
Total/NA	Prep	3050B			183837	05/23/14 13:50	SS1	TAL BUF
Total/NA	Analysis	6010B		1	184306	05/27/14 17:02	MTM2	TAL BUF
Total/NA	Prep	7471A			184620	05/30/14 10:00	EHD	TAL BUF
Total/NA	Analysis	7471A		1	185183	05/31/14 10:01	LRK	TAL BUF
Total/NA	Analysis	1010		1	184240	05/27/14 08:49	RP	TAL BUF
Total/NA	Prep	7.3.3			185139	06/02/14 03:05	LAW	TAL BUF
Total/NA	Analysis	9012		1	185302	06/02/14 10:13	LAW	TAL BUF
Total/NA	Prep	7.3.4			185164	06/02/14 03:05	LAW	TAL BUF
Total/NA	Analysis	9034		1	185165	06/02/14 06:50	LAW	TAL BUF
Total/NA	Analysis	9045C		1	183952	05/23/14 22:57	KS	TAL BUF
Total/NA	Analysis	9095B		1	185420	06/03/14 09:58	KJ1	TAL BUF
Total/NA	Analysis	Moisture		1	183883	05/23/14 14:55	CW	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

Į.

6

8

10

11

12

4 4

Certification Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

TestAmerica Job ID: 480-60422-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

	Authority	Program	EPA Region	Certification ID	Expiration Date
	Massachusetts	State Program	1	M-NY044	06-30-14
ı	Rhode Island	State Program	1	LAO00328	12-30-14

3

4

5

_

9

11

12

11

Method Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

TestAmerica Job ID: 480-60422-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8015D	Diesel Range Organics (DRO) (GC)	SW846	TAL BUF
3082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010B	Inductively Coupled Plasma - Atomic Emission Spectrometry	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7471A	Mercury (CVAA)	SW846	TAL BUF
7471B	Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)	SW846	TAL BUF
1010	Ignitability, Pensky-Martens Closed-Cup Method	SW846	TAL BUF
9012	Cyanide, Reactive	SW846	TAL BUF
9034	Sulfide, Reactive	SW846	TAL BUF
9045C	pH	SW846	TAL BUF
9095B	Paint Filter	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

7

8

10

11

12

4 1

Sample Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

TestAmerica Job ID: 480-60422-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-60422-1	S-201	Solid	05/21/14 11:30	05/23/14 01:00
480-60422-2	S-202	Solid	05/21/14 11:31	05/23/14 01:00
480-60422-3	S-203	Solid	05/21/14 11:32	05/23/14 01:00
480-60422-4	S-204	Solid	05/21/14 11:33	05/23/14 01:00
480-60422-5	S-205	Solid	05/21/14 11:34	05/23/14 01:00
480-60422-6	S-206	Solid	05/21/14 11:45	05/23/14 01:00
480-60422-7	S-207	Solid	05/21/14 11:46	05/23/14 01:00
480-60422-8	S-208	Solid	05/21/14 11:47	05/23/14 01:00
480-60422-9	S-209	Solid	05/21/14 11:48	05/23/14 01:00
480-60422-10	S-210	Solid	05/21/14 11:49	05/23/14 01:00
480-60422-11	S-211	Solid	05/21/14 12:45	05/23/14 01:00
480-60422-12	S-212	Solid	05/21/14 13:05	05/23/14 01:00
480-60422-13	S-213	Solid	05/21/14 13:06	05/23/14 01:00
480-60422-14	S-214	Solid	05/21/14 13:07	05/23/14 01:00
480-60422-15	S-215	Solid	05/21/14 13:08	05/23/14 01:00
480-60422-16	S-216	Solid	05/21/14 13:15	05/23/14 01:00
480-60422-17	TP-101 (5-5.5')	Solid	05/21/14 14:32	05/23/14 01:00
480-60422-18	TP-101 (10')	Solid	05/21/14 14:30	05/23/14 01:00
480-60422-19	TP-102 (4-5')	Solid	05/21/14 14:38	05/23/14 01:00
480-60422-20	TP-102 (9.5')	Solid	05/21/14 14:45	05/23/14 01:00
480-60422-21	TP-103 (2-3')	Solid	05/21/14 15:35	05/23/14 01:00
480-60422-22	TP-103 (4')	Solid	05/21/14 15:38	05/23/14 01:00
480-60422-23	TP-104 (2-3')	Solid	05/21/14 15:55	05/23/14 01:00
480-60422-24	TP-104 (4)	Solid	05/21/14 15:56	05/23/14 01:00
480-60422-25	TP-105 (4-5')	Solid	05/21/14 16:20	05/23/14 01:00
480-60422-26	TP-105 (10')	Solid	05/21/14 16:23	05/23/14 01:00
480-60422-27	TP-106 (4-5')	Solid	05/21/14 16:35	05/23/14 01:00
480-60422-28	TP-106 (10)	Solid	05/21/14 16:38	05/23/14 01:00
480-60422-29	TP-107 (5-5.5)	Solid	05/21/14 17:00	05/23/14 01:00
480-60422-30	TP-107 (10')	Solid	05/21/14 17:02	05/23/14 01:00
480-60422-31	Cistern Disposal	Solid	05/21/14 17:30	05/23/14 01:00

_5

6

8

9

10

11

13

14

subcontract labs, without any additional notification made by us, as necessary to fulfill R - Sodium Thiosulfate THE LEADER IN ENVIRONMENTAL TESTING America to use certified **TestAmerico** N - No Preservative J - Deionized Water Special Instructions & Notes: P - Sodium Sulfate Q - Sodium Sulfite S - Sulfuric Acid CT RSR EDD Required 30054 Sample Disposal Requirements (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Apisposal By Lab Archive For Months ► NOTE!! ALL SAMPLES MUST BE TRANSPORTED ON ICE!! ◀ GW1/S1 Regulatory Programs: ては uctions to the contrary, or reservation Codes B - Sodium Hydroxide A - Hydrochloric Acid E - Sodium Bisulfite 0100 H - Ascorbic Acid C - Zinc Acetate D - Nitric Acid 妆 F - Methanol **PDEP Filing** DEP Form Archive For MCP RCP S Lotal Number of Containers (per line) X22/14 Jate/Time: 4 ly Record Analyses Requested MOD , DOLL Cooler Temperature(s) °C and Other Remarks: 480-60422 Chain of Custody eceived by: <u>2001sm 2</u> 1 Perform MS/MSD on This Sample? (Y / N) Was the Sample Field Filtered? (Y / N) Matrix Type ** ompany urnaround Time (TAT) Requested (business days) Les. Phone: (781) 466-6900 Fax: (781) 466-65 Sample
Type:
C=Comp
G=Grab Radiological Sample Collector's Name (Please Print Neatly):

Emily Crowdilly? 600 S **Boston Service Center** x Coso-8ttlion 240 Bear Hill Road -- Suite 104 Time (24 Hr Clock) 1138 148 148 Sample Collection 133 9611 27 1134 ナンニ O=Oil X=Waste (non-water) Z=Other: 13 シニ 13 - 7131A-Possible Hazard Identification (please check off each that may apply); Waltham MA 02451 Smoop S128/14 (MM/DD/YY) WS ID Number: Sample Collection H/18/5 SSOW#: (UOL) TRG- 6K6 D
Jients Contact Email: Legardictur Prasoure control, com Ray pring Maine, Ramington, 7.1 71314 ** Matrix Types: A=Air S=Solid/Soil W=Water Phone: (413) 572-4000 Fax: (413) 572-3707 Sample Identification Custody Seal No. MALOUR GOKING EN Sou (bring Roothy CO / Respond Continuis 474 Binadulan Oles attall **TestAmerica Westfield** 0320 TOWN COCKET Sustody Seals Intact: Client Information: 53 Southampton Road とろい S- 200 せのやし Westfield MA 01085 6218 202-1 S-303 100 J 100 J 102-5 of 84 Δ Yes tate and Zip: Page

WI-QA-010-rev 7

structions to the contrary, or subcontract labs, without any specify which sub-contract additional nettification made by us, as necessary to fulfill R - Sodium Thiosulfate THE LEADER IN ENVIRONMENTAL TESTING America to use certified **TestAmerica** J - Deionized Water N - No Preservative Special Instructions & Notes: P - Sodium Sulfate Q - Sodium Sulfite S - Sulfuric Acid CT RSR EDD Required 30028 Sample Disposal Requirements (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Months GW1/S1 Regulatory Programs: 4 reservation Codes B - Sodium Hydroxide A - Hydrochloric Acid are or are not to be E - Sodium Bisulfite Inless you provide in-H - Ascorbic Acid S F - Methanol DEP Filing DEP Form Archive For Chain of Custody Record Disposal By Lab Analyses Requested Steve Harthna <u>バ</u>メ <u>×</u> × X X メメ メメ X ab PM's E-Mail Perform MS/MSD on This Sample? (Y / V) Matrix Type ** 401-7×7-1001 Phone: (781) 466-6900 Fax: (781) 466-6901 urnaround Time (TAT) Requested (business days): Radiological Type: C=Comp G=Grab Sample Collector's Name (Please Print Neatly):

Charles Galector's Phone: J **Boston Service Center** 240 Bear Hill Road -- Suite 104 Time (24 Hr Clock) رو ع 1635 15551 5/5/6 5251 H1/18/5 162X Sample Collection 1638 1702 8 Unknown Waltham MA 02451 Day 2 PO# TISIA. (MM/DD/YY) WS ID Number: Sample Collection Possible Hazard Identification (please check off each that may apply). :#MOS Poison B do 1451 asy Oracina Controle. Con-ents Phoject Name Musher: Boy Saries AR Bomisto, Skin Irritant Assison Fax: (413) 572-3707 Sample Identification [18-81) 12-107 (S-C) 15-H) SQ1-LL Monpared hen 12-106 14-51 PRIONE (Outage UC) - 72666 bient's Contact Email: (15-63 (2-31) Flammable **TestAmerica Westfield** (101) 901-EL 03880 (h) hol-dl HRI A Collection Site Name & Location: 1011 501-41 TP-103 (41) Parsel Phone: (413) 572-4000 4014 gomeso Client Information 53 Southampton Road Nestfield MA 01085 Non-Hazard State and Zip:

Page

Cooler Temperature(s) °C and Other Remarks:

Sompany

009,

O=Oil X=Waste (non-water) Z=Other:

* Matrix Types: A=Air S=Solid/Soil W=Water

LY CRIS

► NOTE!! ALL SAMPLES MUST BE TRANSPORTED ON ICE!! ◀

0000

Action Time:

WI-QA-010-rev 7

Custody Seal No.

Austody Seals Intact:

additional notification made by us, as necessary to fulfill your work order. subcontract labs, without ar R - Sodium Thiosulfate THE LEADER IN ENVIRONMENTAL TESTING advance to permit Test-America to use certified, TestAmerica J - Deionized Water Special Instructions & Notes: N - No Preservative P - Sodium Sulfate Q - Sodium Sulfite S - Suffuric Acid **EDD** Required GW1/S1 Sample Disposal Requirements (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Months ► NOTE!! ALL SAMPLES MUST BE TRANSPORTED ON ICE!! ◀ 3005 か ろ Regulatory Programs: ructions to the contrary, or B - Sodium Hydroxide A - Hydrochloric Acid E - Sodium Bisulfite # 0100 C - Zinc Acetate D - Nitric Acid H - Ascorbic Acid sed, you agree in F - Methanol 5 DEP Filing DEP Form 86 STAN 14 Total Number of Containers (per line) Chain of Custody Record **Analyses Requested** Cooler Temperature(s) °C and Other Remarks: Steve Handing Perform MS/MSD on This Sample? (Y / N) Type ** S Company 401-774-6660 x 3-33 Phone: (781) 466-6900 Fax: (781) 466-6901 Sample Collector's Name (Please Print Neaty):

Thur Bur Charles Phone: Sample Collector's Phone: urnaround Time (TAT) Requested (business days): Radiological Sample
Type:
C=Comp
G=Grab 009 **Boston Service Center** 240 Bear Hill Road - Suite 104 Time (24 Hr Clock) 1730 S=Solid/Soil W=Water O=Oil X=Waste (non-water) Z=Other: Sample Collection Possible Hazard Identification (please check off each that may apply): Waltham MA 02451 Date (MM/DD/YY) 5/21/1H Sample Collection PWS ID Number: Quote #: SSOW#: do esti aentehacasta as destidos Q. Client's Phone; (401) 73K - (656 & Survelle Batting Phone: (413) 572-4000 Fax: (413) 572-3707 Johnson Hen Sample Identification Custody Seal No.: gisteur Disposol Resistance Conflusions 2220 **TestAmerica Westfield** Particket * Matrix Types: A=Air Sustody Seals Intact: Client Information: 53 Southampton Road Westfield MA 01085 State and Zip: Non-Hazard Page

WI-QA-010-rev 7

Login Sample Receipt Checklist

Client: Resource Control Associates, Inc.

Job Number: 480-60422-1

Login Number: 60422 List Source: TestAmerica Buffalo

List Number: 1

Creator: Wienke, Robert K

oronton months, modern		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

4

5

9

11

40

14

2

3

5

7

10

12

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-60422-2

Client Project/Site: Bay Spring Realty CO / 7131A

For:

Resource Control Associates, Inc. 474 Broadway
Pawtucket, Rhode Island 02860

Attn: Ms. Danielle Eastman-Getsinger

B-7:2

Authorized for release by: 6/27/2014 3:12:57 PM Brian Fischer, Manager of Project Management (716)504-9835

brian.fischer@testamericainc.com

Designee for

Steve Hartmann, Service Center Manager (413)572-4000

steve.hartmann@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	19

3

4

6

9

11

16

14

Definitions/Glossary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-2

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

TEF

TEQ

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Case Narrative

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

TestAmerica Job ID: 480-60422-2

Job ID: 480-60422-2

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-60422-2

Comments

No additional comments.

Receipt

The samples were received on 5/23/2014 1:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.4° C and 2.6° C.

Except:

The following sample was activated for TCLP Volatiles analysis by the client on 6/20/14: Cistern Disposal (480-60422-31). This analysis was not originally requested on the chain-of-custody (COC).

GC/MS VOA

Method(s) 8260C: The following sample was analyzed outside of analytical holding time due to analysis being assigned after hold time was expired: Cistern Disposal (480-60422-31).

Method(s) 8260C: The following sample was diluted due to the nature of the TCLP matrix: (LB 480-189319/1-A), Cistern Disposal (480-60422-31). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

- 5

4

6

b

10

13

14

Detection Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

TestAmerica Job ID: 480-60422-2

Lab Sample ID: 480-60422-31

Client Sample ID: Cistern Disposal

Analyte	Result Quali	fier RL	MDL (Unit	Dil Fac	D Method	Prep Type
Benzene	0.0069 J H	0.010	0.0041 r	mg/L	10	8260C	TCLP
Trichloroethene	0.019 H	0.010	0.0046 r	ma/L	10	8260C	TCLP

4

-

ົ

7

0

10

11

13

14

Client Sample Results

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-2

Lab Sample ID: 480-60422-31

Matrix: Solid

Client Sample ID: Cistern Disposal

Date Collected: 05/21/14 17:30 Date Received: 05/23/14 01:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0069	J H	0.010	0.0041	mg/L			06/26/14 02:37	10
Carbon tetrachloride	ND	Н	0.010	0.0027	mg/L			06/26/14 02:37	10
Chlorobenzene	ND	Н	0.010	0.0075	mg/L			06/26/14 02:37	10
Chloroform	ND	Н	0.010	0.0034	mg/L			06/26/14 02:37	10
1,2-Dichloroethane	ND	Н	0.010	0.0021	mg/L			06/26/14 02:37	10
1,1-Dichloroethene	ND	Н	0.010	0.0029	mg/L			06/26/14 02:37	10
2-Butanone (MEK)	ND	Н	0.050	0.013	mg/L			06/26/14 02:37	10
Tetrachloroethene	ND	Н	0.010	0.0036	mg/L			06/26/14 02:37	10
Trichloroethene	0.019	H	0.010	0.0046	mg/L			06/26/14 02:37	10
Vinyl chloride	ND	Н	0.010	0.0090	mg/L			06/26/14 02:37	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		66 - 137			-		06/26/14 02:37	10
Toluene-d8 (Surr)	105		71 - 126					06/26/14 02:37	10
4-Bromofluorobenzene (Surr)	105		73 - 120					06/26/14 02:37	10

TestAmerica Buffalo

4

6

9

10

11

13

Surrogate Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

TestAmerica Job ID: 480-60422-2

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

				Percent Surro	ate Recover
		12DCE	TOL	BFB	
Lab Sample ID	Client Sample ID	(66-137)	(71-126)	(73-120)	
LCS 480-189885/5	Lab Control Sample	108	104	103	
MB 480-189885/6	Method Blank	109	106	107	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: TCLP

				Percent Surro	gate Recovery (Acce	eptance Li
		12DCE	TOL	BFB		
Lab Sample ID	Client Sample ID	(66-137)	(71-126)	(73-120)		
480-60422-31	Cistern Disposal	107	105	105		_
LB 480-189319/1-A	Method Blank	108	107	107		

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TestAmerica Buffalo

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-189885/6

Matrix: Solid

Vinyl chloride

Analysis Batch: 189885

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB MDL Unit Result Qualifier RLD Prepared Dil Fac Analyte Analyzed Benzene ND 0.0010 0.00041 mg/L 06/26/14 00:05 Carbon tetrachloride ND 0.0010 0.00027 mg/L 06/26/14 00:05 Chlorobenzene ND 0.0010 0.00075 mg/L 06/26/14 00:05 Chloroform ND 0.0010 0.00034 mg/L 06/26/14 00:05 1,2-Dichloroethane ND 0.0010 0.00021 mg/L 06/26/14 00:05 1,1-Dichloroethene ND 0.0010 0.00029 mg/L 06/26/14 00:05 2-Butanone (MEK) ND 0.0050 0.0013 mg/L 06/26/14 00:05 0.0010 0.00036 mg/L Tetrachloroethene ND 06/26/14 00:05 0.00046 mg/L Trichloroethene ND 0.0010 06/26/14 00:05

MB MB

ND

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		66 - 137	 	06/26/14 00:05	1
Toluene-d8 (Surr)	106		71 - 126		06/26/14 00:05	1
4-Bromofluorobenzene (Surr)	107		73 - 120		06/26/14 00:05	1

0.0010

0.00090 mg/L

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

06/26/14 00:05

Analysis Batch: 189885

Matrix: Solid

Lab Sample ID: LCS 480-189885/5

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.0250 0.0261 mg/L 104 71 - 124 0.0250 0.0253 Chlorobenzene mg/L 101 72 - 120 0.0250 0.0259 104 75 - 127 1.2-Dichloroethane mg/L 1,1-Dichloroethene 0.0250 0.0251 101 58 - 121 mg/L 0.0250 0.0259 Tetrachloroethene 104 74 - 122 mg/L Trichloroethene 0.0250 0.0262 mg/L 105 74 - 123

LCS LCS

Surrogate	%Recovery (Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		66 - 137
Toluene-d8 (Surr)	104		71 - 126
4-Bromofluorobenzene (Surr)	103		73 - 120

Lab Sample ID: LB 480-189319/1-A

Matrix: Solid

Analysis Batch: 189885

Client Sample ID: Method Blank

Prep Type: TCLP

	LB	LB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	ND		0.010	0.0041	mg/L			06/26/14 01:13	10	
Carbon tetrachloride	ND		0.010	0.0027	mg/L			06/26/14 01:13	10	
Chlorobenzene	ND		0.010	0.0075	mg/L			06/26/14 01:13	10	
Chloroform	ND		0.010	0.0034	mg/L			06/26/14 01:13	10	
1,2-Dichloroethane	ND		0.010	0.0021	mg/L			06/26/14 01:13	10	
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			06/26/14 01:13	10	
2-Butanone (MEK)	ND		0.050	0.013	mg/L			06/26/14 01:13	10	
Tetrachloroethene	ND		0.010	0.0036	mg/L			06/26/14 01:13	10	
Trichloroethene	ND		0.010	0.0046	mg/L			06/26/14 01:13	10	

TestAmerica Buffalo

Page 8 of 19

QC Sample Results

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-2

3

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LB 480-189319/1-A							Client Sample ID: Method Blan				
Matrix: Solid								Prep Type	e: TCLP		
Analysis Batch: 189885											
-	LB	LB									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Vinyl chloride	ND		0.010	0.0090	mg/L			06/26/14 01:13	10		
	LB	LB									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
1,2-Dichloroethane-d4 (Surr)	108		66 - 137			-		06/26/14 01:13	10		
Toluene-d8 (Surr)	107		71 - 126					06/26/14 01:13	10		
4-Bromofluorobenzene (Surr)	107		73 - 120					06/26/14 01:13	10		

5

0

10

11

13

14

QC Association Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-2

GC/MS VOA

Leach Batch: 189319

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	TCLP	Solid	1311	
LB 480-189319/1-A	Method Blank	TCLP	Solid	1311	

Analysis Batch: 189885

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60422-31	Cistern Disposal	TCLP	Solid	8260C	189319
LB 480-189319/1-A	Method Blank	TCLP	Solid	8260C	189319
LCS 480-189885/5	Lab Control Sample	Total/NA	Solid	8260C	
MB 480-189885/6	Method Blank	Total/NA	Solid	8260C	

-6

q

12

TestAmerica Buffalo

Lab Chronicle

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-2

Client Sample ID: Cistern Disposal

Date Collected: 05/21/14 17:30 Date Received: 05/23/14 01:00

Lab Sample ID: 480-60422-31

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			189319	06/23/14 12:06	MRB	TAL BUF
TCLP	Analysis	8260C		10	189885	06/26/14 02:37	RAS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

TestAmerica Job ID: 480-60422-2

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Massachusetts	State Program	1	M-NY044	06-30-14 *
Rhode Island	State Program	1	LAO00328	12-30-14

Ω

9

11

12

14

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A

TestAmerica Job ID: 480-60422-2

Method	Method Description		Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

4

J

8

11

12

14

Sample Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring Realty CO / 7131A TestAmerica Job ID: 480-60422-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-60422-31	Cistern Disposal	Solid	05/21/14 17:30	05/23/14 01:00

9

4

5

_

10

11

13

14

subcontract labs, without any additional notification made by us, as necessary to fulfill R - Sodium Thiosulfate THE LEADER IN ENVIRONMENTAL TESTING America to use certified **TestAmerico** N - No Preservative J - Deionized Water Special Instructions & Notes: P - Sodium Sulfate Q - Sodium Sulfite S - Sulfuric Acid CT RSR EDD Required 30054 Sample Disposal Requirements (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Apisposal By Lab Archive For Months ► NOTE!! ALL SAMPLES MUST BE TRANSPORTED ON ICE!! ◀ GW1/S1 Regulatory Programs: ては uctions to the contrary, or reservation Codes B - Sodium Hydroxide A - Hydrochloric Acid E - Sodium Bisulfite 0100 H - Ascorbic Acid C - Zinc Acetate D - Nitric Acid 妆 F - Methanol **PDEP Filing** DEP Form Archive For MCP RCP S Lotal Number of Containers (per line) 41777 Jate/Time: 4 ly Record Analyses Requested MOD , DOLL Cooler Temperature(s) °C and Other Remarks: 480-60422 Chain of Custody eceived by: <u>2001sm 2</u> 1 Perform MS/MSD on This Sample? (Y / N) Was the Sample Field Filtered? (Y / N) Matrix Type ** ompany urnaround Time (TAT) Requested (business days) Les. Phone: (781) 466-6900 Fax: (781) 466-65 Sample
Type:
C=Comp
G=Grab Radiological Sample Collector's Name (Please Print Neatly):

Emily Crowdilly? 600 S **Boston Service Center** x Coso-8ttlion 240 Bear Hill Road -- Suite 104 Time (24 Hr Clock) 1138 148 148 Sample Collection 133 9611 27 1134 ナンニ O=Oil X=Waste (non-water) Z=Other: 13 シニ 13 - 7131A-Possible Hazard Identification (please check off each that may apply); Waltham MA 02451 Smoop S128/14 (MM/DD/YY) WS ID Number: Sample Collection H/18/5 SSOW#: (UOL) TRG- 6K6 D
Jients Contact Email: Legardictur Prasoure control, com Ray pring Maine, Ramington, 7.1 71314 ** Matrix Types: A=Air S=Solid/Soil W=Water Phone: (413) 572-4000 Fax: (413) 572-3707 Sample Identification Custody Seal No. MALOUR GOKING EN Sou (bring Roothy CO / Respond Continuis 474 Binadulan Oles attall **TestAmerica Westfield** 0320 TOWN COCKET Nstody Seals Infact: Client Information: 53 Southampton Road とろい S- 200 せのやし Westfield MA 01085 6218 202-1 S-303 100 J 100 J 19 19 Δ Yes tate and Zip: Page

WI-QA-010-rev 7

structions to the contrary, or subcontract labs, without any specify which sub-contract additional nettification made by us, as necessary to fulfill R - Sodium Thiosulfate THE LEADER IN ENVIRONMENTAL TESTING America to use certified **TestAmerica** J - Deionized Water N - No Preservative Special Instructions & Notes: P - Sodium Sulfate Q - Sodium Sulfite S - Sulfuric Acid CT RSR EDD Required 30028 Sample Disposal Requirements (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Months GW1/S1 ► NOTE!! ALL SAMPLES MUST BE TRANSPORTED ON ICE!! ◀ Regulatory Programs: 4 reservation Codes B - Sodium Hydroxide A - Hydrochloric Acid are or are not to be E - Sodium Bisulfite Inless you provide in-H - Ascorbic Acid S F - Methanol DEP Filing DEP Form Archive For Chain of Custody Record Disposal By Lab Analyses Requested Steve Harthna <u>バ</u>メ <u>×</u> × X X メメ メメ X ab PM's E-Mail Perform MS/MSD on This Sample? (Y / V) Matrix Type ** 401-7×7-1001 Phone: (781) 466-6900 Fax: (781) 466-6901 urnaround Time (TAT) Requested (business days): Radiological Type: C=Comp G=Grab Sample Collector's Name (Please Print Neatly):

Charles Galector's Phone: J **Boston Service Center** 240 Bear Hill Road -- Suite 104 Time (24 Hr Clock) رو ع 1635 15551 5 P 5251 H1/18/5 162X Sample Collection O=Oil X=Waste (non-water) Z=Other: 1638 1702 8 Unknown Waltham MA 02451 Day 2 PO# TISIA. (MM/DD/YY) WS ID Number: Sample Collection Possible Hazard Identification (please check off each that may apply). :#MOS Poison B do 1451 asy Oracina Controle. Con-ents Phoject Name Musher: Pary Spiris All Bowington, Skin Irritant * Matrix Types: A=Air S=Solid/Soil W=Water Assison Fax: (413) 572-3707 Sample Identification [18-81) 12-107 (S-C) 15-H) SQ1-LL Monpared hen 12-106 14-51 PRIONE (Outage UC) - 72666 bient's Contact Email: (15-63 (2-31) Flammable **TestAmerica Westfield** (101) 901-EL 03880 (h) hol-dl HRI A Collection Site Name & Location: 1011 501-41 TP-103 (41) Parsel Phone: (413) 572-4000 4014 gomeso Client Information 53 Southampton Road Nestfield MA 01085 Non-Hazard State and Zip:

Page

of 19

Cooler Temperature(s) °C and Other Remarks:

Sompany

009,

LY CRIS

0000

Action Time:

WI-QA-010-rev 7

Custody Seal No.

Sustody Seals Intact:

additional notification made by us, as necessary to fulfill your work order. subcontract labs, without ar R - Sodium Thiosulfate THE LEADER IN ENVIRONMENTAL TESTING advance to permit Test-America to use certified, TestAmerica J - Deionized Water Special Instructions & Notes: N - No Preservative P - Sodium Sulfate Q - Sodium Sulfite S - Suffuric Acid **EDD** Required GW1/S1 Sample Disposal Requirements (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Months ► NOTE!! ALL SAMPLES MUST BE TRANSPORTED ON ICE!! ◀ 3005 か ろ Regulatory Programs: ructions to the contrary, or B - Sodium Hydroxide A - Hydrochloric Acid E - Sodium Bisulfite # 0100 C - Zinc Acetate D - Nitric Acid H - Ascorbic Acid sed, you agree in F - Methanol 5 DEP Filing DEP Form 86 STAN 14 Total Number of Containers (per line) Chain of Custody Record **Analyses Requested** Cooler Temperature(s) °C and Other Remarks: Steve Handing Perform MS/MSD on This Sample? (Y / N) Type ** S Company 401-774-6660 x 3-33 Phone: (781) 466-6900 Fax: (781) 466-6901 Sample Collector's Name (Please Print Neaty):

Thur Bur Charles Phone: Sample Collector's Phone: urnaround Time (TAT) Requested (business days): Radiological Sample
Type:
C=Comp
G=Grab 009 **Boston Service Center** 240 Bear Hill Road - Suite 104 Time (24 Hr Clock) 1730 S=Solid/Soil W=Water O=Oil X=Waste (non-water) Z=Other: Sample Collection Possible Hazard Identification (please check off each that may apply): Waltham MA 02451 Date (MM/DD/YY) 5/21/1H Sample Collection PWS ID Number: Quote #: SSOW#: do esti aentehacasta as destidos Q. Client's Phone; (401) 73K - (656 & Survelle Batting Phone: (413) 572-4000 Fax: (413) 572-3707 Johnson Hen Sample Identification Custody Seal No.: Josopail water Resistance Conflusions 2220 **TestAmerica Westfield** Particket * Matrix Types: A=Air Custody Seals Intact: Client Information: 53 Southampton Road Westfield MA 01085 State and Zip: Non-Hazard **eth**quished by Page

WI-QA-010-rev 7

Login Sample Receipt Checklist

Client: Resource Control Associates, Inc.

Job Number: 480-60422-2

Login Number: 60422 List Source: TestAmerica Buffalo

List Number: 1

Creator: Wienke, Robert K

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Ė

3

4

ا

46

13

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-60968-1

Client Project/Site: Bay Spring, Barrington

For:

Resource Control Associates, Inc. 474 Broadway Pawtucket, Rhode Island 02860

Attn: Ms. Danielle Eastman-Getsinger

Authorized for release by: 6/10/2014 10:35:32 PM

Steve Hartmann, Service Center Manager (413)572-4000

steve.hartmann@testamericainc.com

.....LINKS

Review your project results through **Total Access**

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
Surrogate Summary	17
QC Sample Results	18
QC Association Summary	24
Lab Chronicle	27
Certification Summary	30
Method Summary	31
Sample Summary	32
Chain of Custody	33
Receipt Checklists	34

5

7

9

10

12

14

Definitions/Glossary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Qualifier Description

Minimum Level (Dioxin)

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Not Calculated

Quality Control

Relative error ratio

RPD of the LCS and LCSD exceeds the control limits

TestAmerica Job ID: 480-60968-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
*	LCS or LCSD exceeds the control limits
*	RPD of the LCS and LCSD exceeds the control limits

GC/MS Semi VOA

Qualifier

J

ML

NC

ND

PQL

QC

RL RPD

TEF

TEQ

RER

J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals	
Qualifier	Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit

TestAmerica Buffalo

Case Narrative

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60968-1

Job ID: 480-60968-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-60968-1

Comments

No additional comments.

Receipt

The samples were received on 6/3/2014 1:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.6° C.

The following samples were preserved via freezing on 6/3/2014 at 04:00: S-301 (480-60968-1), S-302 (480-60968-2). This is outside the 48 hour time frame required by the method.

GC/MS VOA

Method(s) 8260C: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 185630 recovered outside control limits for the following analytes: Carbon disulfide.

Method(s) 8260C: The method blank for batch 185630 contained Trichlorofluoromethane above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 186540 recovered above the upper control limit for Benzo(b)fluoranthene. The samples associated with this CCV were non-detects for the affected analytes or hits below the reporting limit; therefore, the data have been reported. The following samples are impacted: (CCVIS 480-186540/3).

Method(s) 8270D: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 186540 recovered outside control limits for multiple analytes. The recoveries for these analytes were within quality control acceptance limits, therefore the data has been qualified and reported.

Method(s) 8270D: The following sample was diluted due to the nature of the sample matrix: S-302 (480-60968-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

9

4 4

12

TestAmerica Buffalo 6/10/2014

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Lab Sample ID: 480-60968-1

Client Sample	e ID: S-301
---------------	-------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	2.6	JH	5.3	0.39	ug/Kg	1	₩	8260C	Total/NA
1,1-Dichloroethane	2.7	J H	5.3	0.65	ug/Kg	1	₽	8260C	Total/NA
cis-1,2-Dichloroethene	2.0	JH	5.3	0.68	ug/Kg	1	₩	8260C	Total/NA
Trichloroethene	26	Н	5.3	1.2	ug/Kg	1	₽	8260C	Total/NA
Fluoranthene	5.4	J *	200	2.9	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	6.1	J *	200	4.2	ug/Kg	1	₩	8270D	Total/NA
Pyrene	4.5	J	200	1.3	ug/Kg	1	₽	8270D	Total/NA
Arsenic	0.76	J	1.9	0.38	mg/Kg	1		6010C	Total/NA
Barium	4.4		0.47	0.10	mg/Kg	1		6010C	Total/NA
Cadmium	0.049	J	0.19	0.028	mg/Kg	1		6010C	Total/NA
Chromium	16		0.47	0.19	mg/Kg	1		6010C	Total/NA
Lead	1.2		0.94	0.23	mg/Kg	1		6010C	Total/NA
Silver	0.44	J	0.56	0.19	mg/Kg	1		6010C	Total/NA
Hg	0.020		0.019	0.0076	mg/Kg	1		7471B	Total/NA

Client Sample ID: S-302

Lab Sample ID: 480-60968-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	31	Н	5.9	0.43	ug/Kg	1	₽	8260C	Total/NA
1,1-Dichloroethane	17	Н	5.9	0.72	ug/Kg	1	₽	8260C	Total/NA
1,1-Dichloroethene	1.9	JH	5.9	0.72	ug/Kg	1	₩	8260C	Total/NA
cis-1,2-Dichloroethene	13	Н	5.9	0.75	ug/Kg	1	₩	8260C	Total/NA
Ethylbenzene	2.5	JH	5.9	0.40	ug/Kg	1	₽	8260C	Total/NA
Toluene	8.5	Н	5.9	0.44	ug/Kg	1	₩	8260C	Total/NA
Trichloroethene	84	Н	5.9	1.3	ug/Kg	1	₽	8260C	Total/NA
Xylenes, Total	8.2	JH	12	0.99	ug/Kg	1	₽	8260C	Total/NA
Acenaphthene	45	J	1100	13	ug/Kg	5	₽	8270D	Total/NA
Anthracene	130	J*	1100	28	ug/Kg	5	₽	8270D	Total/NA
Benzo[a]pyrene	200	J *	1100	26	ug/Kg	5	₽	8270D	Total/NA
Benzo[b]fluoranthene	250	J *	1100	21	ug/Kg	5	₩	8270D	Total/NA
Benzo[k]fluoranthene	160	J	1100	12	ug/Kg	5	₽	8270D	Total/NA
Chrysene	290	J *	1100	11	ug/Kg	5	₽	8270D	Total/NA
Fluoranthene	590	J *	1100	16	ug/Kg	5	₽	8270D	Total/NA
Fluorene	66	J*	1100	25	ug/Kg	5	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	150	J	1100	30	ug/Kg	5	₽	8270D	Total/NA
Naphthalene	55	J *	1100	18	ug/Kg	5	₽	8270D	Total/NA
Phenanthrene	570	J*	1100	23	ug/Kg	5	₩	8270D	Total/NA
Pyrene	590	J	1100	7.0	ug/Kg	5	₩	8270D	Total/NA
Arsenic	0.84	J	1.8	0.37	mg/Kg	1		6010C	Total/NA
Barium	4.9		0.46	0.10	mg/Kg	1		6010C	Total/NA
Cadmium	0.050	J	0.18	0.028	mg/Kg	1		6010C	Total/NA
Chromium	7.0		0.46	0.18	mg/Kg	1		6010C	Total/NA
Lead	0.99		0.92	0.22	mg/Kg	1		6010C	Total/NA

Client Sample ID: S-303

_									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Meti	od	Prep Type
Benzo[a]pyrene	30	J *	180	4.4	ug/Kg		₹ 8270	D	Total/NA
Benzo[b]fluoranthene	20	J *	180	3.5	ug/Kg	1	₽ 8270	D	Total/NA
Benzo[k]fluoranthene	10	J	180	2.0	ug/Kg	1	₽ 8270	D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Lab Sample ID: 480-60968-3

Page 5 of 34

9

5

7

9

1

12

14

Lab Sample ID: 480-60968-3

Lab Sample ID: 480-60968-4

Lab Sample ID: 480-60968-5

Lab Sample ID: 480-60968-6

Lab Sample ID: 480-60968-7

6010C

6010C

6010C

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Client Sample ID: S-303 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chrysene	20	J *	180	1.8	ug/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	35	J	180	2.2	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	20	J *	180	2.6	ug/Kg	1	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	28	J	180	5.1	ug/Kg	1	₽	8270D	Total/NA
Naphthalene	3.6	J *	180	3.0	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	12	J *	180	3.8	ug/Kg	1	₽	8270D	Total/NA
Pyrene	22	J	180	1.2	ug/Kg	1	₽	8270D	Total/NA
Arsenic	4.5		1.8	0.36	mg/Kg	1		6010C	Total/NA
Barium	37		0.45	0.099	mg/Kg	1		6010C	Total/NA

0.18

0.45

0.90

0.027 mg/Kg

0.18 mg/Kg

0.22 mg/Kg

0.043 J

6.1

8.7

Client Sample ID: S-304

Cadmium

Chromium

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoranthene	2.8	J *	170	2.5	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	3.7	J *	170	3.6	ug/Kg	1	₽	8270D	Total/NA
Pyrene	2.8	J	170	1.1	ug/Kg	1	₽	8270D	Total/NA
Arsenic	1.6	J	2.2	0.44	mg/Kg	1		6010C	Total/NA
Barium	9.5		0.55	0.12	mg/Kg	1		6010C	Total/NA
Cadmium	0.14	J	0.22	0.033	mg/Kg	1		6010C	Total/NA
Chromium	2.4		0.55	0.22	mg/Kg	1		6010C	Total/NA
Lead	1.8		1.1	0.26	mg/Kg	1		6010C	Total/NA

Client Sample ID: S-305

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[b]fluoranthene	3.4	J *	170	3.4	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	3.4	J *	170	2.5	ug/Kg	1	₽	8270D	Total/NA
Pyrene	4.0	J	170	1.1	ug/Kg	1	₽	8270D	Total/NA
Arsenic	14		2.2	0.43	mg/Kg	1		6010C	Total/NA
Barium	7.5		0.54	0.12	mg/Kg	1		6010C	Total/NA
Cadmium	0.058	J	0.22	0.032	mg/Kg	1		6010C	Total/NA
Chromium	3.0		0.54	0.22	mg/Kg	1		6010C	Total/NA
Lead	2.3		1.1	0.26	mg/Kg	1		6010C	Total/NA
Silver	0.83		0.65	0.22	mg/Kg	1		6010C	Total/NA

Client Sample ID: S-306

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	4.5		1.8	0.37	mg/Kg	1	_	6010C	Total/NA
Barium	10		0.46	0.10	mg/Kg	1		6010C	Total/NA
Cadmium	0.032	J	0.18	0.028	mg/Kg	1		6010C	Total/NA
Chromium	1.3		0.46	0.18	mg/Kg	1		6010C	Total/NA
Lead	0.77	J	0.92	0.22	mg/Kg	1		6010C	Total/NA
Silver	2.0		0.55	0.18	mg/Kg	1		6010C	Total/NA

Client Sample ID: S-307

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 6 of 34

Total/NA

Total/NA

Total/NA

Detection Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Client Sample ID: S-307 (Continued)

TestAmerica Job ID: 480-60968-1

3

Lab Sample ID: 480-60968-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[b]fluoranthene	4.4	J *	180	3.4	ug/Kg	1	₩	8270D	Total/NA
Chrysene	7.8	J *	180	1.7	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	7.2	J *	180	2.5	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	7.2	J*	180	3.7	ug/Kg	1	₩.	8270D	Total/NA
Pyrene	8.6	J	180	1.1	ug/Kg	1	₽	8270D	Total/NA
Arsenic	7.2		2.1	0.41	mg/Kg	1		6010C	Total/NA
Barium	8.6		0.52	0.11	mg/Kg	1		6010C	Total/NA
Cadmium	0.075	J	0.21	0.031	mg/Kg	1		6010C	Total/NA
Chromium	2.2		0.52	0.21	mg/Kg	1		6010C	Total/NA
Lead	1.5		1.0	0.25	mg/Kg	1		6010C	Total/NA
Silver	0.62		0.62	0.21	mg/Kg	1		6010C	Total/NA
На	0.011	.1	0.019	0.0077	ma/Ka	1		7471R	Total/NA

8

9

10

12

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60968-1

Percent Solids: 84.0

Client Sample ID: S-301 Lab Sample ID: 480-60968-1 Date Collected: 05/28/14 14:40 Matrix: Solid Date Received: 06/03/14 01:00

Method: 8260C - Volatile Organic Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
<u> </u>			5.3	0.39		— ¤	06/04/14 11:40	06/04/14 21:35	— DII F
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	2.6 ND	J H H	5.3		ug/Kg ug/Kg	₩	06/04/14 11:40	06/04/14 21:35	
, , ,	ND ND		5.3		ug/Kg ug/Kg		06/04/14 11:40	06/04/14 21:35	
1,1,2-Trichloro-1,2,2-trifluoroethane									
1,1,2-Trichloroethane	ND		5.3		ug/Kg	₩	06/04/14 11:40	06/04/14 21:35	
1,1-Dichloroethane		J H	5.3		ug/Kg		06/04/14 11:40	06/04/14 21:35	
1,1-Dichloroethene	ND		5.3		ug/Kg	<u></u> .	06/04/14 11:40	06/04/14 21:35	
1,2,4-Trichlorobenzene	ND		5.3		ug/Kg	#	06/04/14 11:40	06/04/14 21:35	
1,2-Dibromo-3-Chloropropane	ND		5.3		ug/Kg	*	06/04/14 11:40	06/04/14 21:35	
1,2-Dibromoethane	ND		5.3		ug/Kg		06/04/14 11:40	06/04/14 21:35	
1,2-Dichlorobenzene	ND	Н	5.3	0.42	ug/Kg	₽	06/04/14 11:40	06/04/14 21:35	
1,2-Dichloroethane	ND	Н	5.3	0.27	ug/Kg	₽	06/04/14 11:40	06/04/14 21:35	
1,2-Dichloropropane	ND	Н	5.3	2.7	ug/Kg	₩	06/04/14 11:40	06/04/14 21:35	
1,3-Dichlorobenzene	ND	Н	5.3	0.27	ug/Kg	₽	06/04/14 11:40	06/04/14 21:35	
1,4-Dichlorobenzene	ND	Н	5.3	0.74	ug/Kg	₽	06/04/14 11:40	06/04/14 21:35	
2-Butanone (MEK)	ND	H *	27	1.9	ug/Kg	₩	06/04/14 11:40	06/04/14 21:35	
2-Hexanone	ND	Н	27	2.7	ug/Kg	₽	06/04/14 11:40	06/04/14 21:35	
4-Methyl-2-pentanone (MIBK)	ND	Н	27	1.7	ug/Kg	₽	06/04/14 11:40	06/04/14 21:35	
Acetone	ND	Н	27	4.5	ug/Kg	₩	06/04/14 11:40	06/04/14 21:35	
Benzene	ND	Н	5.3	0.26	ug/Kg		06/04/14 11:40	06/04/14 21:35	
Bromodichloromethane	ND	Н	5.3	0.71	ug/Kg	₽	06/04/14 11:40	06/04/14 21:35	
Bromoform	ND	Н	5.3	2.7	ug/Kg	₽	06/04/14 11:40	06/04/14 21:35	
Bromomethane	ND	Н	5.3		ug/Kg		06/04/14 11:40	06/04/14 21:35	
Carbon disulfide	ND	H*	5.3		ug/Kg	₽	06/04/14 11:40	06/04/14 21:35	
Carbon tetrachloride	ND	Н	5.3	0.51	ug/Kg	₽	06/04/14 11:40	06/04/14 21:35	
Chlorobenzene	ND	H	5.3	0.70	ug/Kg		06/04/14 11:40	06/04/14 21:35	
Chloroethane	ND	Н	5.3	1.2	ug/Kg	₩	06/04/14 11:40	06/04/14 21:35	
Chloroform	ND		5.3			₩	06/04/14 11:40	06/04/14 21:35	
Chloromethane	ND	. :: Н	5.3	0.32	ug/Kg		06/04/14 11:40	06/04/14 21:35	
	2.0	J H	5.3		ug/Kg ug/Kg		06/04/14 11:40	06/04/14 21:35	
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	ND		5.3		ug/Kg ug/Kg		06/04/14 11:40	06/04/14 21:35	
	ND		5.3		ug/Kg ug/Kg		06/04/14 11:40	06/04/14 21:35	
Cyclohexane	ND ND		5.3						
Dibromochloromethane					ug/Kg		06/04/14 11:40	06/04/14 21:35	
Dichlorodifluoromethane	ND		5.3		ug/Kg		06/04/14 11:40	06/04/14 21:35	
Ethylbenzene	ND		5.3		ug/Kg		06/04/14 11:40	06/04/14 21:35	
sopropylbenzene	ND		5.3		ug/Kg	<u>*</u>	06/04/14 11:40	06/04/14 21:35	
Methyl acetate	ND		5.3		ug/Kg		06/04/14 11:40	06/04/14 21:35	
Methyl tert-butyl ether	ND		5.3		ug/Kg	.	06/04/14 11:40	06/04/14 21:35	
Methylcyclohexane	ND		5.3		ug/Kg	₽.	06/04/14 11:40	06/04/14 21:35	
Methylene Chloride	ND	Н	5.3	2.4	ug/Kg		06/04/14 11:40	06/04/14 21:35	
Styrene	ND	Н	5.3	0.27	ug/Kg	₽	06/04/14 11:40	06/04/14 21:35	
Tetrachloroethene	ND	Н	5.3	0.71	ug/Kg	₽	06/04/14 11:40	06/04/14 21:35	
Гoluene	ND	Н	5.3	0.40	ug/Kg		06/04/14 11:40	06/04/14 21:35	
rans-1,2-Dichloroethene	ND	Н	5.3	0.55	ug/Kg	₩	06/04/14 11:40	06/04/14 21:35	
rans-1,3-Dichloropropene	ND	Н	5.3	2.3	ug/Kg	₩	06/04/14 11:40	06/04/14 21:35	
Trichloroethene	26	Н	5.3	1.2	ug/Kg	₽	06/04/14 11:40	06/04/14 21:35	
Trichlorofluoromethane	ND	Н	5.3	0.50	ug/Kg	₽	06/04/14 11:40	06/04/14 21:35	
Vinyl chloride	ND	Н	5.3	0.65	ug/Kg	₩	06/04/14 11:40	06/04/14 21:35	
Xylenes, Total	ND	Н	11	0.89	ug/Kg	₩	06/04/14 11:40	06/04/14 21:35	

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Client Sample ID: S-301

TestAmerica Job ID: 480-60968-1

Lab Sample ID: 480-60968-1

Matrix: Solid

Percent Solids: 84.0

Date Collected: 05/28/14 14:40					
Date Received: 06/03/14 01:00					Pe
Surrogate	%Recovery	Qualifier	l imite	Propared	,

Surrogate	%Recovery Qualific	er Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110	64 - 126	06/04/14 11:40	06/04/14 21:35	1
4-Bromofluorobenzene (Surr)	100	72 - 126	06/04/14 11:40	06/04/14 21:35	1
Toluene-d8 (Surr)	101	71 - 125	06/04/14 11:40	06/04/14 21:35	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND	*	200	2.4	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	
Acenaphthene	ND		200	2.3	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	•
Acenaphthylene	ND	*	200	1.6	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	•
Anthracene	ND	*	200	5.1	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	
Benzo[a]anthracene	ND	*	200	3.4	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	•
Benzo[a]pyrene	ND	*	200	4.8	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	
Benzo[b]fluoranthene	ND	*	200	3.8	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	
Benzo[g,h,i]perylene	ND		200	2.4	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	
Benzo[k]fluoranthene	ND		200	2.2	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	
Chrysene	ND	*	200	2.0	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	
Dibenz(a,h)anthracene	ND		200	2.3	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	
Fluoranthene	5.4	J *	200	2.9	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	
Fluorene	ND	*	200	4.6	ug/Kg	\$	06/04/14 08:03	06/09/14 15:54	
Indeno[1,2,3-cd]pyrene	ND		200	5.5	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	
Naphthalene	ND	*	200	3.3	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	•
Phenanthrene	6.1	J*	200	4.2	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	
Pyrene	4.5	J	200	1.3	ug/Kg	₽	06/04/14 08:03	06/09/14 15:54	

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	76	37 - 12	06/04/14 08:03	06/09/14 15:54	1
Nitrobenzene-d5 (Surr)	65	34 - 13	2 06/04/14 08:03	06/09/14 15:54	1
p-Terphenyl-d14 (Surr)	91	65 - 15	3 06/04/14 08:03	06/09/14 15:54	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.76	J	1.9	0.38	mg/Kg		06/03/14 12:00	06/05/14 21:43	1
Barium	4.4		0.47	0.10	mg/Kg		06/03/14 12:00	06/05/14 21:43	1
Cadmium	0.049	J	0.19	0.028	mg/Kg		06/03/14 12:00	06/05/14 21:43	1
Chromium	16		0.47	0.19	mg/Kg		06/03/14 12:00	06/05/14 21:43	1
Lead	1.2		0.94	0.23	mg/Kg		06/03/14 12:00	06/05/14 21:43	1
Selenium	ND		3.8	0.38	mg/Kg		06/03/14 12:00	06/05/14 21:43	1
Silver	0.44	J	0.56	0.19	mg/Kg		06/03/14 12:00	06/05/14 21:43	1

Method: 7471B - Mercury in Solid	or Semisolid	Waste (Ma	nual Cold Va	por Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	0.020		0.019	0.0076	mg/Kg		06/03/14 13:45	06/03/14 15:30	1

Lab Sample ID: 480-60968-2 Client Sample ID: S-302 Date Collected: 05/28/14 14:50 **Matrix: Solid** Date Received: 06/03/14 01:00 Percent Solids: 76.5

Method: 8260C - Volatile Organic C	ompounds b	y GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	31	Н	5.9	0.43	ug/Kg	₩	06/04/14 11:40	06/04/14 22:01	1
1,1,2,2-Tetrachloroethane	ND	Н	5.9	0.95	ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1

TestAmerica Buffalo

Page 9 of 34

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Client Sample ID: S-302

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Date Collected: 05/28/14 14:50 Date Received: 06/03/14 01:00 Lab Sample ID: 480-60968-2

Matrix: Solid

Percent Solids: 76.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	Н	5.9	1.3	ug/Kg	₩	06/04/14 11:40	06/04/14 22:01	
1,1,2-Trichloroethane	ND	Н	5.9	0.76	ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
1,1-Dichloroethane	17	H	5.9	0.72	ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	•
1,1-Dichloroethene	1.9	J H	5.9	0.72	ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
1,2,4-Trichlorobenzene	ND	Н	5.9	0.36	ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
1,2-Dibromo-3-Chloropropane	ND	Н	5.9	2.9	ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
1,2-Dibromoethane	ND	Н	5.9	0.75	ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
1,2-Dichlorobenzene	ND	Н	5.9	0.46	ug/Kg		06/04/14 11:40	06/04/14 22:01	1
1,2-Dichloroethane	ND	Н	5.9	0.29	ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
1,2-Dichloropropane	ND	Н	5.9	2.9	ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
1,3-Dichlorobenzene	ND	Н	5.9	0.30	ug/Kg		06/04/14 11:40	06/04/14 22:01	1
1,4-Dichlorobenzene	ND	Н	5.9	0.82	ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
2-Butanone (MEK)	ND	H *	29	2.1	ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
2-Hexanone	ND	Н	29	2.9	ug/Kg		06/04/14 11:40	06/04/14 22:01	1
4-Methyl-2-pentanone (MIBK)	ND	Н	29	1.9	ug/Kg	₩	06/04/14 11:40	06/04/14 22:01	1
Acetone	ND	Н	29	4.9	ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
Benzene	ND	Н	5.9	0.29	ug/Kg	ф.	06/04/14 11:40	06/04/14 22:01	1
Bromodichloromethane	ND	Н	5.9	0.79	ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
Bromoform	ND	Н	5.9	2.9	ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
Bromomethane	ND	Н	5.9	0.53	ug/Kg		06/04/14 11:40	06/04/14 22:01	1
Carbon disulfide	ND	H *	5.9	2.9	ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
Carbon tetrachloride	ND	Н	5.9		ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
Chlorobenzene	ND		5.9		ug/Kg		06/04/14 11:40	06/04/14 22:01	1
Chloroethane	ND		5.9	1.3	ug/Kg	₩	06/04/14 11:40	06/04/14 22:01	1
Chloroform	ND		5.9	0.36	ug/Kg	₩	06/04/14 11:40	06/04/14 22:01	1
Chloromethane	ND		5.9		ug/Kg		06/04/14 11:40	06/04/14 22:01	1
cis-1,2-Dichloroethene	13		5.9	0.75		₽	06/04/14 11:40	06/04/14 22:01	1
cis-1,3-Dichloropropene	ND		5.9		ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
Cyclohexane	ND		5.9		ug/Kg	 ф	06/04/14 11:40	06/04/14 22:01	
Dibromochloromethane	ND		5.9			₽	06/04/14 11:40	06/04/14 22:01	1
Dichlorodifluoromethane	ND		5.9		ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
Ethylbenzene		J H	5.9		ug/Kg	 ф	06/04/14 11:40	06/04/14 22:01	1
Isopropylbenzene	ND.		5.9		ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
Methyl acetate	ND		5.9		ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
Methyl tert-butyl ether	ND		5.9		ug/Kg		06/04/14 11:40	06/04/14 22:01	· · · · · · · · · · · · · · · · · · ·
Methylcyclohexane	ND		5.9		ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
Methylene Chloride	ND		5.9		ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
Styrene	ND		5.9		ug/Kg		06/04/14 11:40	06/04/14 22:01	· · · · · · · · · · · · · · · · · · ·
Tetrachloroethene	ND		5.9		ug/Kg	₽	06/04/14 11:40	06/04/14 22:01	1
Toluene	8.5		5.9		ug/Kg ug/Kg	₩	06/04/14 11:40	06/04/14 22:01	1
trans-1,2-Dichloroethene	ND		5.9		ug/Kg ug/Kg		06/04/14 11:40	06/04/14 22:01	
trans-1,3-Dichloropropene	ND		5.9		ug/Kg ug/Kg		06/04/14 11:40	06/04/14 22:01	1
	84		5.9		ug/Kg ug/Kg		06/04/14 11:40	06/04/14 22:01	1
Trichloroethene Trichlorofluoromethane	ND		5.9		ug/Kg ug/Kg		06/04/14 11:40	06/04/14 22:01	,
	ND ND		5.9		ug/Kg ug/Kg		06/04/14 11:40	06/04/14 22:01	
Vinyl chloride Xylenes, Total		П J H	5.9 12		ug/Kg ug/Kg	~ Ф	06/04/14 11:40	06/04/14 22:01	1
Ayionos, rotai	0.2	V 11	14	0.00	~g,1,g		55/5 // 17 11.70	30,0 ,, 14 22.01	'
Surrogate		Qualifier	Limits				Prepared	Analyzed	Dil Fac

TestAmerica Buffalo

06/04/14 22:01

06/04/14 22:01

06/04/14 11:40

06/04/14 11:40

64 - 126

72 - 126

108

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Client Sample ID: S-302

Date Collected: 05/28/14 14:50

Date Received: 06/03/14 01:00

Selenium

Silver

TestAmerica Job ID: 480-60968-1

Lab Sample ID: 480-60968-2

Matrix: Solid

Percent Solids: 76.5

Mothod: 9260C	Volatile	Organia	Compounds	by CC/MS	(Continued)	
Method: 8260C	- voiauie	Organic	Compounds	Dy GC/IVIS	(Continued)	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		71 - 125	06/04/14 11:40	06/04/14 22:01	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND	*	1100	13	ug/Kg	₩	06/04/14 08:03	06/09/14 16:18	5
Acenaphthene	45	J	1100	13	ug/Kg	₽	06/04/14 08:03	06/09/14 16:18	5
Acenaphthylene	ND	*	1100	8.8	ug/Kg	₽	06/04/14 08:03	06/09/14 16:18	5
Anthracene	130	J *	1100	28	ug/Kg	₽	06/04/14 08:03	06/09/14 16:18	5
Benzo[a]anthracene	ND	*	1100	19	ug/Kg	₽	06/04/14 08:03	06/09/14 16:18	5
Benzo[a]pyrene	200	J *	1100	26	ug/Kg	₽	06/04/14 08:03	06/09/14 16:18	5
Benzo[b]fluoranthene	250	J *	1100	21	ug/Kg	₽	06/04/14 08:03	06/09/14 16:18	5
Benzo[g,h,i]perylene	ND		1100	13	ug/Kg	₽	06/04/14 08:03	06/09/14 16:18	5
Benzo[k]fluoranthene	160	J	1100	12	ug/Kg	₽	06/04/14 08:03	06/09/14 16:18	5
Chrysene	290	J *	1100	11	ug/Kg	₽	06/04/14 08:03	06/09/14 16:18	5
Dibenz(a,h)anthracene	ND		1100	13	ug/Kg	₽	06/04/14 08:03	06/09/14 16:18	5
Fluoranthene	590	J *	1100	16	ug/Kg	₽	06/04/14 08:03	06/09/14 16:18	5
Fluorene	66	J *	1100	25	ug/Kg	₽	06/04/14 08:03	06/09/14 16:18	5
Indeno[1,2,3-cd]pyrene	150	J	1100	30	ug/Kg	₽	06/04/14 08:03	06/09/14 16:18	5
Naphthalene	55	J *	1100	18	ug/Kg	₽	06/04/14 08:03	06/09/14 16:18	5
Phenanthrene	570	J *	1100	23	ug/Kg	\$	06/04/14 08:03	06/09/14 16:18	5
Pyrene	590	J	1100	7.0	ug/Kg	₽	06/04/14 08:03	06/09/14 16:18	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	98		37 - 120	06/04/14 08:03	06/09/14 16:18	5
Nitrobenzene-d5 (Surr)	83		34 - 132	06/04/14 08:03	06/09/14 16:18	5
p-Terphenyl-d14 (Surr)	127		65 - 153	06/04/14 08:03	06/09/14 16:18	5

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.84	J	1.8	0.37	mg/Kg		06/03/14 12:00	06/05/14 21:45	1
Barium	4.9		0.46	0.10	mg/Kg		06/03/14 12:00	06/05/14 21:45	1
Cadmium	0.050	J	0.18	0.028	mg/Kg		06/03/14 12:00	06/05/14 21:45	1
Chromium	7.0		0.46	0.18	mg/Kg		06/03/14 12:00	06/05/14 21:45	1
Lead	0.99		0.92	0.22	mg/Kg		06/03/14 12:00	06/05/14 21:45	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	ND		0.020	0.0082	mg/Kg		06/03/14 13:45	06/03/14 15:32	1

3.7

0.55

ND

ND

0.37 mg/Kg

0.18 mg/Kg

06/03/14 12:00

06/03/14 12:00

06/05/14 21:45

06/05/14 21:45

Client Sample ID: S-303 Lab Sample ID: 480-60968-3

Date Collected: 05/30/14 13:30 Matrix: Solid Date Received: 06/03/14 01:00 Percent Solids: 90.5

Method: 8270D - Semivolatile Organic Compounds (GC/MS)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	2-Methylnaphthalene	ND	*	180	2.2	ug/Kg		06/04/14 08:03	06/09/14 16:42	1
	Acenaphthene	ND		180	2.1	ug/Kg	₩	06/04/14 08:03	06/09/14 16:42	1
	Acenaphthylene	ND	*	180	1.5	ug/Kg	₩	06/04/14 08:03	06/09/14 16:42	1

TestAmerica Buffalo

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Client Sample ID: S-303

Lab Sample ID: 480-60968-3

Date Collected: 05/30/14 13:30 Matrix: Solid Date Received: 06/03/14 01:00 Percent Solids: 90.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	ND	*	180	4.7	ug/Kg	<u></u>	06/04/14 08:03	06/09/14 16:42	1
Benzo[a]anthracene	ND	*	180	3.2	ug/Kg	₽	06/04/14 08:03	06/09/14 16:42	1
Benzo[a]pyrene	30	J *	180	4.4	ug/Kg	₽	06/04/14 08:03	06/09/14 16:42	1
Benzo[b]fluoranthene	20	J*	180	3.5	ug/Kg	₽	06/04/14 08:03	06/09/14 16:42	1
Benzo[g,h,i]perylene	ND		180	2.2	ug/Kg	₩	06/04/14 08:03	06/09/14 16:42	1
Benzo[k]fluoranthene	10	J	180	2.0	ug/Kg	₩	06/04/14 08:03	06/09/14 16:42	1
Chrysene	20	J *	180	1.8	ug/Kg	₽	06/04/14 08:03	06/09/14 16:42	1
Dibenz(a,h)anthracene	35	J	180	2.2	ug/Kg	₩	06/04/14 08:03	06/09/14 16:42	1
Fluoranthene	20	J *	180	2.6	ug/Kg	₽	06/04/14 08:03	06/09/14 16:42	1
Fluorene	ND	*	180	4.2	ug/Kg	₽	06/04/14 08:03	06/09/14 16:42	1
Indeno[1,2,3-cd]pyrene	28	J	180	5.1	ug/Kg	₽	06/04/14 08:03	06/09/14 16:42	1
Naphthalene	3.6	J *	180	3.0	ug/Kg	₽	06/04/14 08:03	06/09/14 16:42	1
Phenanthrene	12	J *	180	3.8	ug/Kg	₽	06/04/14 08:03	06/09/14 16:42	1
Pyrene	22	J	180	1.2	ug/Kg	₽	06/04/14 08:03	06/09/14 16:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	80		37 - 120				06/04/14 08:03	06/09/14 16:42	1
Nitrobenzene-d5 (Surr)	66		34 - 132				06/04/14 08:03	06/09/14 16:42	1
p-Terphenyl-d14 (Surr)	120		65 ₋ 153				06/04/14 08:03	06/09/14 16:42	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.5		1.8	0.36	mg/Kg		06/03/14 12:00	06/05/14 21:48	1
Barium	37		0.45	0.099	mg/Kg		06/03/14 12:00	06/05/14 21:48	1
Cadmium	0.043	J	0.18	0.027	mg/Kg		06/03/14 12:00	06/05/14 21:48	1
Chromium	6.1		0.45	0.18	mg/Kg		06/03/14 12:00	06/05/14 21:48	1
Lead	8.7		0.90	0.22	mg/Kg		06/03/14 12:00	06/05/14 21:48	1
Selenium	ND		3.6	0.36	mg/Kg		06/03/14 12:00	06/05/14 21:48	1
Silver	ND		0.54	0.18	mg/Kg		06/03/14 12:00	06/05/14 21:48	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	ND		0.020	0.0083	mg/Kg		06/03/14 13:45	06/03/14 15:34	1

Client Sample ID: S-304 Lab Sample ID: 480-60968-4

Date Collected: 05/30/14 13:35 Matrix: Solid Percent Solids: 95.1 Date Received: 06/03/14 01:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND	*	170	2.1	ug/Kg	*	06/04/14 08:03	06/09/14 17:05	1
Acenaphthene	ND		170	2.0	ug/Kg	₽	06/04/14 08:03	06/09/14 17:05	1
Acenaphthylene	ND	*	170	1.4	ug/Kg	₽	06/04/14 08:03	06/09/14 17:05	1
Anthracene	ND	*	170	4.4	ug/Kg	\$	06/04/14 08:03	06/09/14 17:05	1
Benzo[a]anthracene	ND	*	170	3.0	ug/Kg	₽	06/04/14 08:03	06/09/14 17:05	1
Benzo[a]pyrene	ND	*	170	4.2	ug/Kg	₽	06/04/14 08:03	06/09/14 17:05	1
Benzo[b]fluoranthene	ND	*	170	3.4	ug/Kg	₽	06/04/14 08:03	06/09/14 17:05	1
Benzo[g,h,i]perylene	ND		170	2.1	ug/Kg	₽	06/04/14 08:03	06/09/14 17:05	1
Benzo[k]fluoranthene	ND		170	1.9	ug/Kg	₽	06/04/14 08:03	06/09/14 17:05	1
Chrysene	ND	*	170	1.7	ug/Kg	₽	06/04/14 08:03	06/09/14 17:05	1

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60968-1

06/04/14 08:03 06/09/14 17:05

Lab Sample ID: 480-60968-4

Matrix: Solid Percent Solids: 95.1

Client	Samp	le ID:	S-304
--------	------	--------	-------

Nitrobenzene-d5 (Surr)

Date Collected: 05/30/14 13:35 Date Received: 06/03/14 01:00

Method: 8270D - Semivolati	le Organic Compou	nds (GC/M	S) (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND		170	2.0	ug/Kg	<u></u>	06/04/14 08:03	06/09/14 17:05	1
Fluoranthene	2.8	J *	170	2.5	ug/Kg	₽	06/04/14 08:03	06/09/14 17:05	1
Fluorene	ND	*	170	4.0	ug/Kg	₽	06/04/14 08:03	06/09/14 17:05	1
Indeno[1,2,3-cd]pyrene	ND		170	4.8	ug/Kg	₽	06/04/14 08:03	06/09/14 17:05	1
Naphthalene	ND	*	170	2.9	ug/Kg	₽	06/04/14 08:03	06/09/14 17:05	1
Phenanthrene	3.7	J *	170	3.6	ug/Kg	₽	06/04/14 08:03	06/09/14 17:05	1
Pyrene	2.8	J	170	1.1	ug/Kg	₽	06/04/14 08:03	06/09/14 17:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenvl	82		37 - 120				06/04/14 08:03	06/09/14 17:05	1

p-Terphenyl-d14 (Surr)	115		65 - 153				06/04/14 08:03	06/09/14 17:05	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.6	J	2.2	0.44	mg/Kg		06/03/14 12:00	06/09/14 14:35	1
Barium	9.5		0.55	0.12	mg/Kg		06/03/14 12:00	06/06/14 11:52	1
Cadmium	0.14	J	0.22	0.033	mg/Kg		06/03/14 12:00	06/06/14 11:52	1
<u> </u>			0.55	0.00			00/00/44 40:00	00/00/44 44:50	

34 - 132

70

Silver	ND	0.66	0.22 mg/Kg	06/03/14 12:00	06/06/14 11:52	1
Selenium	ND	4.4	0.44 mg/Kg	06/03/14 12:00	06/06/14 11:52	1
Lead	1.8	1.1	0.26 mg/Kg	06/03/14 12:00	06/06/14 11:52	1
Chromium	2.4	0.55	0.22 mg/Kg	06/03/14 12:00	06/06/14 11:52	1
Cadmium	0.14 J	0.22	0.033 mg/Kg	06/03/14 12:00	06/06/14 11:52	1
Barium	9.5	0.55	0.12 mg/Kg	06/03/14 12:00	06/06/14 11:52	1
Alsonio	1.0 0		0gg	00.00	30,00,111100	

Method: 7471B - Mercury in Solid of	or Semisolid	Waste (Mar	nual Cold Va	por Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
Hg	ND		0.021	0.0083	mg/Kg		06/03/14 13:45	06/03/14 15:39	1

Client Sample ID: S-305 Lab Sample ID: 480-60968-5

Date Collected: 05/30/14 13:45

Date Received: 06/03/14 01:00

Matrix: Solid
Percent Solids: 96.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND	*	170	2.1	ug/Kg	₩	06/04/14 08:03	06/09/14 17:29	1
Acenaphthene	ND		170	2.0	ug/Kg	₽	06/04/14 08:03	06/09/14 17:29	1
Acenaphthylene	ND	*	170	1.4	ug/Kg	₽	06/04/14 08:03	06/09/14 17:29	1
Anthracene	ND	*	170	4.4	ug/Kg	₽	06/04/14 08:03	06/09/14 17:29	1
Benzo[a]anthracene	ND	*	170	3.0	ug/Kg	₽	06/04/14 08:03	06/09/14 17:29	1
Benzo[a]pyrene	ND	*	170	4.2	ug/Kg	₽	06/04/14 08:03	06/09/14 17:29	1
Benzo[b]fluoranthene	3.4	J *	170	3.4	ug/Kg	₽	06/04/14 08:03	06/09/14 17:29	1
Benzo[g,h,i]perylene	ND		170	2.1	ug/Kg	☼	06/04/14 08:03	06/09/14 17:29	1
Benzo[k]fluoranthene	ND		170	1.9	ug/Kg	₽	06/04/14 08:03	06/09/14 17:29	1
Chrysene	ND	*	170	1.7	ug/Kg	\$	06/04/14 08:03	06/09/14 17:29	1
Dibenz(a,h)anthracene	ND		170	2.0	ug/Kg	₽	06/04/14 08:03	06/09/14 17:29	1
Fluoranthene	3.4	J *	170	2.5	ug/Kg	₽	06/04/14 08:03	06/09/14 17:29	1
Fluorene	ND	*	170	4.0	ug/Kg		06/04/14 08:03	06/09/14 17:29	1
Indeno[1,2,3-cd]pyrene	ND		170	4.8	ug/Kg	☼	06/04/14 08:03	06/09/14 17:29	1
Naphthalene	ND	*	170	2.9	ug/Kg	☼	06/04/14 08:03	06/09/14 17:29	1
Phenanthrene	ND	*	170	3.6	ug/Kg	φ.	06/04/14 08:03	06/09/14 17:29	1
Pyrene	4.0	J	170	1.1	ug/Kg	₽	06/04/14 08:03	06/09/14 17:29	1

TestAmerica Buffalo

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Client Sample ID: S-305

Date Collected: 05/30/14 13:45

Date Received: 06/03/14 01:00

TestAmerica Job ID: 480-60968-1

Lab Sample ID: 480-60968-5

Percent Solids: 96.8

Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	77		37 - 120	06/04/14 08	03 06/09/14 17:29	1
Nitrobenzene-d5 (Surr)	66		34 - 132	06/04/14 08	03 06/09/14 17:29	1
p-Terphenyl-d14 (Surr)	110		65 - 153	06/04/14 08	03 06/09/14 17:29	1

Method: 6010C - Metals (ICP)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	14	2.2	0.43	mg/Kg		06/03/14 12:00	06/09/14 14:38	1
Barium	7.5	0.54	0.12	mg/Kg		06/03/14 12:00	06/06/14 12:04	1
Cadmium	0.058 J	0.22	0.032	mg/Kg		06/03/14 12:00	06/06/14 12:04	1
Chromium	3.0	0.54	0.22	mg/Kg		06/03/14 12:00	06/06/14 12:04	1
Lead	2.3	1.1	0.26	mg/Kg		06/03/14 12:00	06/06/14 12:04	1
Selenium	ND	4.3	0.43	mg/Kg		06/03/14 12:00	06/06/14 12:04	1
Silver	0.83	0.65	0.22	mg/Kg		06/03/14 12:00	06/06/14 12:04	1

	Method: 7471B - Mercury in Solid of	or Semisolid	Waste (Man	ual Cold Vap	or Technic	que)				
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Hg	ND		0.020	0.0080	mg/Kg		06/03/14 13:45	06/03/14 15:41	1

Client Sample ID: S-306 Lab Sample ID: 480-60968-6

Date Collected: 05/30/14 13:50 **Matrix: Solid**

Pate Received: 06/03/14 01:00								Percent Soli	ds: 94.5
Method: 8270D - Semivolatile Orç Analyte	•	nds (GC/MS Qualifier	S) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Methylnaphthalene	ND	*	180	2.2	ug/Kg	<u></u>	06/04/14 08:03	06/09/14 17:53	
Acenaphthene	ND		180	2.1	ug/Kg	₽	06/04/14 08:03	06/09/14 17:53	
Acenaphthylene	ND	*	180	1.5	ug/Kg	₽	06/04/14 08:03	06/09/14 17:53	
Anthracene	ND	*	180	4.5	ug/Kg		06/04/14 08:03	06/09/14 17:53	
Benzo[a]anthracene	ND	*	180	3.1	ug/Kg	₽	06/04/14 08:03	06/09/14 17:53	
Benzo[a]pyrene	ND	*	180	4.3	ug/Kg	₩	06/04/14 08:03	06/09/14 17:53	
Benzo[b]fluoranthene	ND	*	180	3.4	ug/Kg		06/04/14 08:03	06/09/14 17:53	
Benzo[g,h,i]perylene	ND		180	2.1	ug/Kg	₽	06/04/14 08:03	06/09/14 17:53	
Benzo[k]fluoranthene	ND		180	2.0	ug/Kg	₽	06/04/14 08:03	06/09/14 17:53	
Chrysene	ND	*	180	1.8	ug/Kg		06/04/14 08:03	06/09/14 17:53	
Dibenz(a,h)anthracene	ND		180	2.1	ug/Kg	₩	06/04/14 08:03	06/09/14 17:53	
Fluoranthene	ND	*	180	2.6	ug/Kg	₽	06/04/14 08:03	06/09/14 17:53	
Fluorene	ND	*	180	4.1	ug/Kg		06/04/14 08:03	06/09/14 17:53	
Indeno[1,2,3-cd]pyrene	ND		180	4.9	ug/Kg	₽	06/04/14 08:03	06/09/14 17:53	
Naphthalene	ND	*	180	3.0	ug/Kg	₩	06/04/14 08:03	06/09/14 17:53	
Phenanthrene	ND	*	180	3.7	ug/Kg		06/04/14 08:03	06/09/14 17:53	
Pyrene	ND		180	1.1	ug/Kg	₽	06/04/14 08:03	06/09/14 17:53	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	75		37 - 120				06/04/14 08:03	06/09/14 17:53	
Nitrobenzene-d5 (Surr)	66		34 - 132				06/04/14 08:03	06/09/14 17:53	
p-Terphenyl-d14 (Surr)	110		65 - 153				06/04/14 08:03	06/09/14 17:53	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	4.5		1.8	0.37	mg/Kg		06/03/14 12:00	06/09/14 14:41	-
Barium	10		0.46	0.10	mg/Kg		06/03/14 12:00	06/06/14 12:07	

TestAmerica Buffalo

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60968-1

Lab Sample ID: 480-60968-6

Matrix: Solid

Client Sample ID: S-306 Date Collected: 05/30/14 13:50

Date Received: 06/03/14 01:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.032	J	0.18	0.028	mg/Kg		06/03/14 12:00	06/06/14 12:07	1
Chromium	1.3		0.46	0.18	mg/Kg		06/03/14 12:00	06/06/14 12:07	1
Lead	0.77	J	0.92	0.22	mg/Kg		06/03/14 12:00	06/06/14 12:07	1
Selenium	ND		3.7	0.37	mg/Kg		06/03/14 12:00	06/06/14 12:07	1
Silver	2.0		0.55	0.18	mg/Kg		06/03/14 12:00	06/06/14 12:07	1

Method: 7471B - Mercury in Solid of	or Semisolid	Waste (Man	ual Cold Vap	or Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND		0.018	0.0075	mg/Kg		06/03/14 13:45	06/03/14 15:42	1

Client Sample ID: S-307 Lab Sample ID: 480-60968-7

Date Collected: 05/30/14 13:55

Date Received: 06/03/14 01:00

Matrix: Solid
Percent Solids: 95.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND	*	180	2.1	ug/Kg	₩	06/04/14 08:54	06/09/14 18:17	1
Acenaphthene	ND		180	2.0	ug/Kg	₩	06/04/14 08:54	06/09/14 18:17	1
Acenaphthylene	ND	*	180	1.4	ug/Kg	₽	06/04/14 08:54	06/09/14 18:17	1
Anthracene	ND	*	180	4.5	ug/Kg	₽	06/04/14 08:54	06/09/14 18:17	1
Benzo[a]anthracene	ND	*	180	3.0	ug/Kg	₩	06/04/14 08:54	06/09/14 18:17	1
Benzo[a]pyrene	ND	*	180	4.2	ug/Kg	₩	06/04/14 08:54	06/09/14 18:17	1
Benzo[b]fluoranthene	4.4	J *	180	3.4	ug/Kg	\$	06/04/14 08:54	06/09/14 18:17	1
Benzo[g,h,i]perylene	ND		180	2.1	ug/Kg	₩	06/04/14 08:54	06/09/14 18:17	1
Benzo[k]fluoranthene	ND		180	1.9	ug/Kg	₽	06/04/14 08:54	06/09/14 18:17	1
Chrysene	7.8	J *	180	1.7	ug/Kg	\$	06/04/14 08:54	06/09/14 18:17	1
Dibenz(a,h)anthracene	ND		180	2.0	ug/Kg	₽	06/04/14 08:54	06/09/14 18:17	1
Fluoranthene	7.2	J *	180	2.5	ug/Kg	₽	06/04/14 08:54	06/09/14 18:17	1
Fluorene	ND	*	180	4.0	ug/Kg	₽	06/04/14 08:54	06/09/14 18:17	1
Indeno[1,2,3-cd]pyrene	ND		180	4.8	ug/Kg	₽	06/04/14 08:54	06/09/14 18:17	1
Naphthalene	ND	*	180	2.9	ug/Kg	₽	06/04/14 08:54	06/09/14 18:17	1
Phenanthrene	7.2	J *	180	3.7	ug/Kg	₽	06/04/14 08:54	06/09/14 18:17	1
Pyrene	8.6	J	180	1.1	ug/Kg	₽	06/04/14 08:54	06/09/14 18:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	81		37 - 120				06/04/14 08:54	06/09/14 18:17	1
Nitrobenzene-d5 (Surr)	69		34 - 132				06/04/14 08:54	06/09/14 18:17	1
p-Terphenyl-d14 (Surr)	116		65 - 153				06/04/14 08:54	06/09/14 18:17	1

Method: 6010C - Metals (ICP)									
Analyte	Result Qu	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	7.2		2.1	0.41	mg/Kg		06/03/14 12:00	06/09/14 14:44	1
Barium	8.6		0.52	0.11	mg/Kg		06/03/14 12:00	06/06/14 12:10	1
Cadmium	0.075 J		0.21	0.031	mg/Kg		06/03/14 12:00	06/06/14 12:10	1
Chromium	2.2		0.52	0.21	mg/Kg		06/03/14 12:00	06/06/14 12:10	1
Lead	1.5		1.0	0.25	mg/Kg		06/03/14 12:00	06/06/14 12:10	1
Selenium	ND		4.1	0.41	mg/Kg		06/03/14 12:00	06/06/14 12:10	1
Silver	0.62		0.62	0.21	mg/Kg		06/03/14 12:00	06/06/14 12:10	1

TestAmerica Buffalo

_

J

5

7

8

9

11

14

14

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60968-1

Client Sample ID: S-307 Lab Sample ID: 480-60968-7

Date Collected: 05/30/14 13:55

Date Received: 06/03/14 01:00

Matrix: Solid

Method: 7471B - Mercury in Solid	or Semisolid	Waste (Ma	nual Cold Va	por Technic	que)					
Analyte	Result	Qualifier	RL	MDL	Unit	0)	Prepared	Analyzed	Dil Fac
Hg	0.011	J	0.019	0.0077	mg/Kg			06/05/14 12:45	06/06/14 17:42	1

4

5

7

9

11

16

14

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

				Percent Su
		12DCE	BFB	TOL
Lab Sample ID	Client Sample ID	(64-126)	(72-126)	(71-125)
480-60968-1	S-301	110	100	101
480-60968-2	S-302	108	102	101
LCS 480-185630/5	Lab Control Sample	113	101	100
LCSD 480-185630/6	Lab Control Sample Dup	111	101	100
MB 480-185630/31	Method Blank	106	98	101

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Accept					
		FBP	NBZ	TPH				
Lab Sample ID	Client Sample ID	(37-120)	(34-132)	(65-153)				
180-60968-1	S-301	76	65	91				
180-60968-2	S-302	98	83	127				
180-60968-3	S-303	80	66	120				
80-60968-4	S-304	82	70	115				
180-60968-5	S-305	77	66	110				
80-60968-6	S-306	75	66	110				
180-60968-7	S-307	81	69	116				
.CS 480-185557/2-A	Lab Control Sample	85	72	93				
CSD 480-185557/3-A	Lab Control Sample Dup	66	52	78				
MB 480-185557/1-A	Method Blank	78	68	94				

Surrogate Legend

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPH = p-Terphenyl-d14 (Surr)

TestAmerica Buffalo

Page 17 of 34

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-185630/31

Matrix: Solid

Xylenes, Total

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		5.0	0.36	ug/Kg			06/04/14 15:50	
1,1,2,2-Tetrachloroethane	ND		5.0	0.81	ug/Kg			06/04/14 15:50	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	1.1	ug/Kg			06/04/14 15:50	
1,1,2-Trichloroethane	ND		5.0	0.65	ug/Kg			06/04/14 15:50	
1,1-Dichloroethane	ND		5.0	0.61	ug/Kg			06/04/14 15:50	
1,1-Dichloroethene	ND		5.0	0.61	ug/Kg			06/04/14 15:50	
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/Kg			06/04/14 15:50	
1,2-Dibromo-3-Chloropropane	ND		5.0	2.5	ug/Kg			06/04/14 15:50	
1,2-Dibromoethane	ND		5.0	0.64	ug/Kg			06/04/14 15:50	
1,2-Dichlorobenzene	ND		5.0	0.39	ug/Kg			06/04/14 15:50	
1,2-Dichloroethane	ND		5.0	0.25	ug/Kg			06/04/14 15:50	
1,2-Dichloropropane	ND		5.0	2.5	ug/Kg			06/04/14 15:50	
1,3-Dichlorobenzene	ND		5.0	0.26	ug/Kg			06/04/14 15:50	
1,4-Dichlorobenzene	ND		5.0	0.70	ug/Kg			06/04/14 15:50	
2-Butanone (MEK)	ND		25	1.8	ug/Kg			06/04/14 15:50	
2-Hexanone	ND		25	2.5	ug/Kg			06/04/14 15:50	
4-Methyl-2-pentanone (MIBK)	ND		25	1.6	ug/Kg			06/04/14 15:50	
Acetone	ND		25	4.2	ug/Kg			06/04/14 15:50	
Benzene	ND		5.0	0.25	ug/Kg			06/04/14 15:50	
Bromodichloromethane	ND		5.0	0.67	ug/Kg			06/04/14 15:50	
Bromoform	ND		5.0	2.5	ug/Kg			06/04/14 15:50	
Bromomethane	ND		5.0	0.45	ug/Kg			06/04/14 15:50	
Carbon disulfide	ND		5.0	2.5	ug/Kg			06/04/14 15:50	
Carbon tetrachloride	ND		5.0	0.48	ug/Kg			06/04/14 15:50	
Chlorobenzene	ND		5.0	0.66	ug/Kg			06/04/14 15:50	
Chloroethane	ND		5.0	1.1	ug/Kg			06/04/14 15:50	
Chloroform	ND		5.0	0.31	ug/Kg			06/04/14 15:50	
Chloromethane	ND		5.0	0.30	ug/Kg			06/04/14 15:50	
cis-1,2-Dichloroethene	ND		5.0	0.64	ug/Kg			06/04/14 15:50	
cis-1,3-Dichloropropene	ND		5.0	0.72	ug/Kg			06/04/14 15:50	
Cyclohexane	ND		5.0	0.70	ug/Kg			06/04/14 15:50	
Dibromochloromethane	ND		5.0	0.64	ug/Kg			06/04/14 15:50	
Dichlorodifluoromethane	ND		5.0	0.41	ug/Kg			06/04/14 15:50	
Ethylbenzene	ND		5.0	0.35	ug/Kg			06/04/14 15:50	
Isopropylbenzene	ND		5.0	0.75	ug/Kg			06/04/14 15:50	
Methyl acetate	ND		5.0	3.0	ug/Kg			06/04/14 15:50	
Methyl tert-butyl ether	ND		5.0	0.49	ug/Kg			06/04/14 15:50	
Methylcyclohexane	ND		5.0	0.76	ug/Kg			06/04/14 15:50	
Methylene Chloride	ND		5.0	2.3	ug/Kg			06/04/14 15:50	
Styrene	ND		5.0	0.25	ug/Kg			06/04/14 15:50	
Tetrachloroethene	ND		5.0	0.67	ug/Kg			06/04/14 15:50	
Toluene	ND		5.0	0.38	ug/Kg			06/04/14 15:50	
trans-1,2-Dichloroethene	ND		5.0	0.52	ug/Kg			06/04/14 15:50	
trans-1,3-Dichloropropene	ND		5.0	2.2	ug/Kg			06/04/14 15:50	
Trichloroethene	ND		5.0	1.1	ug/Kg			06/04/14 15:50	
Trichlorofluoromethane	1.37	J	5.0	0.47	ug/Kg			06/04/14 15:50	
Vinyl chloride	ND		5.0	0.61	ug/Kg			06/04/14 15:50	

TestAmerica Buffalo

06/04/14 15:50

Page 18 of 34

10

0.84 ug/Kg

ND

6/10/2014

3

6

8

9

11

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-185630/31

Lab Sample ID: LCS 480-185630/5

Matrix: Solid

Matrix: Solid

Analysis Batch: 185630

Client Sample ID: Method Blank

Prep Type: Total/NA

l		MB	MB				
	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	106		64 - 126		06/04/14 15:50	1
	4-Bromofluorobenzene (Surr)	98		72 - 126		06/04/14 15:50	1
	Toluene-d8 (Surr)	101		71 - 125		06/04/14 15:50	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 185630

Spike LCS LCS %Rec. Added Result Qualifier %Rec Limits Analyte Unit 1,1-Dichloroethane 50.0 49.4 ug/Kg 99 73 - 126 50.0 47.6 1,1-Dichloroethene ug/Kg 95 59 - 125 1,2-Dichlorobenzene 50.0 49.5 ug/Kg 99 75 - 120 1,2-Dichloroethane 50.0 50.1 ug/Kg 100 77 - 122 Benzene 50.0 48.6 ug/Kg 97 79 - 127 97 Chlorobenzene 50.0 48.3 ug/Kg 76 - 124 cis-1,2-Dichloroethene 50.0 49.2 98 81 - 117 ug/Kg Ethylbenzene 50.0 48.7 ug/Kg 97 80 - 120 Methyl tert-butyl ether 50.0 51.3 ug/Kg 103 63 - 125 Tetrachloroethene 50.0 50.8 ug/Kg 102 74 - 122 Toluene 50.0 48.5 ug/Kg 97 74 - 128 trans-1,2-Dichloroethene 50.0 47.8 ug/Kg 96 78 - 126 Trichloroethene 50.0 98 77 - 129 49.0 ug/Kg

LCS LCS

Surrogate	%Recovery Qualifie	r Limits
1,2-Dichloroethane-d4 (Surr)	113	64 - 126
4-Bromofluorobenzene (Surr)	101	72 - 126
Toluene-d8 (Surr)	100	71 - 125

Lab Sample ID: LCSD 480-185630/6

Matrix: Solid

Analysis Batch: 185630

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

7 maryolo Batom 100000									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	50.0	49.2		ug/Kg		98	73 - 126	0	20
1,1-Dichloroethene	50.0	46.9		ug/Kg		94	59 - 125	2	20
1,2-Dichlorobenzene	50.0	48.7		ug/Kg		97	75 - 120	1	20
1,2-Dichloroethane	50.0	49.3		ug/Kg		99	77 - 122	2	20
Benzene	50.0	48.0		ug/Kg		96	79 - 127	1	20
Chlorobenzene	50.0	47.8		ug/Kg		96	76 - 124	1	20
cis-1,2-Dichloroethene	50.0	49.0		ug/Kg		98	81 - 117	0	20
Ethylbenzene	50.0	47.5		ug/Kg		95	80 - 120	2	20
Methyl tert-butyl ether	50.0	51.6		ug/Kg		103	63 - 125	1	20
Tetrachloroethene	50.0	50.0		ug/Kg		100	74 - 122	2	20
Toluene	50.0	47.8		ug/Kg		96	74 - 128	2	20
trans-1,2-Dichloroethene	50.0	47.3		ug/Kg		95	78 - 126	1	20
Trichloroethene	50.0	48.4		ug/Kg		97	77 - 129	1	20

TestAmerica Buffalo

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

ICED ICED

Lab Sample ID: LCSD 480-185630/6

Matrix: Solid

Analysis Batch: 185630

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	LUSD LUSI	b .
Surrogate	%Recovery Qual	ifier Limits
1,2-Dichloroethane-d4 (Surr)	111	64 - 126
4-Bromofluorobenzene (Surr)	101	72 - 126
Toluene-d8 (Surr)	100	71 - 125

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-185557/1-A

Matrix: Solid

Analysis Batch: 186540

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 185557

мв мв Dil Fac Analyte Result Qualifier RLMDL Unit D Prepared Analyzed ND 170 06/04/14 08:03 2-Methylnaphthalene 2.0 ug/Kg 06/09/14 14:19 Acenaphthene ND 170 1.9 ug/Kg 06/04/14 08:03 06/09/14 14:19 Acenaphthylene ND 170 1.3 ug/Kg 06/04/14 08:03 06/09/14 14:19 ND Anthracene 170 4.2 ug/Kg 06/04/14 08:03 06/09/14 14:19 Benzo[a]anthracene ND 170 2.8 ug/Kg 06/04/14 08:03 06/09/14 14:19 ND 170 06/04/14 08:03 06/09/14 14:19 Benzo[a]pyrene 4.0 ug/Kg Benzo[b]fluoranthene ND 170 ug/Kg 06/04/14 08:03 06/09/14 14:19 Benzo[g,h,i]perylene ND 170 06/04/14 08:03 06/09/14 14:19 2.0 ug/Kg Benzo[k]fluoranthene ND 170 ug/Kg 06/04/14 08:03 06/09/14 14:19 Chrysene ND 170 1.6 ug/Kg 06/04/14 08:03 06/09/14 14:19 Dibenz(a,h)anthracene ND 170 1.9 ug/Kg 06/04/14 08:03 06/09/14 14:19 Fluoranthene ND 170 2.4 ug/Kg 06/04/14 08:03 06/09/14 14:19 ND 170 06/04/14 08:03 Fluorene 3.8 ug/Kg 06/09/14 14:19 Indeno[1,2,3-cd]pyrene ND 170 06/04/14 08:03 4.5 ug/Kg 06/09/14 14:19 ND 170 06/04/14 08:03 06/09/14 14:19 Naphthalene 2.7 ug/Kg Phenanthrene ND 170 ug/Kg 06/04/14 08:03 06/09/14 14:19 Pyrene ND 170 06/04/14 08:03 06/09/14 14:19 1.1 ug/Kg

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	78		37 - 120	06/04/14 08:0	06/09/14 14:19	1
Nitrobenzene-d5 (Surr)	68		34 - 132	06/04/14 08:0	03 06/09/14 14:19	1
p-Terphenyl-d14 (Surr)	94		65 - 153	06/04/14 08:0	03 06/09/14 14:19	1

Lab Sample ID: LCS 480-185557/2-A

Matrix: Solid

Analysis Batch: 186540

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 185557**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	1630	1400		ug/Kg		86	53 - 120	
Acenaphthylene	1630	1490		ug/Kg		91	58 - 121	
Anthracene	1630	1500		ug/Kg		92	62 - 129	
Benzo[a]anthracene	1630	1480		ug/Kg		90	65 - 133	
Benzo[a]pyrene	1630	1440		ug/Kg		88	64 - 127	
Benzo[b]fluoranthene	1630	1610		ug/Kg		99	64 - 135	
Benzo[g,h,i]perylene	1630	1370		ug/Kg		84	50 - 152	
Benzo[k]fluoranthene	1630	1440		ug/Kg		88	58 - 138	

TestAmerica Buffalo

Page 20 of 34

6/10/2014

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-185557/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 186540 **Prep Batch: 185557**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chrysene	1630	1490		ug/Kg		92	64 - 131	
Dibenz(a,h)anthracene	1630	1280		ug/Kg		78	54 - 148	
Fluoranthene	1630	1550		ug/Kg		95	62 - 131	
Fluorene	1630	1410		ug/Kg		86	63 - 126	
Indeno[1,2,3-cd]pyrene	1630	1490		ug/Kg		91	56 - 149	
Naphthalene	1630	1320		ug/Kg		81	46 - 120	
Phenanthrene	1630	1500		ug/Kg		92	60 - 130	
Pyrene	1630	1520		ug/Kg		93	51 ₋ 133	

LCS LCS Surrogate %Recovery Qualifier Limits 2-Fluorobiphenyl 85 37 - 120 Nitrobenzene-d5 (Surr) 72

34 - 132 p-Terphenyl-d14 (Surr) 93 65 - 153

Lab Sample ID: LCSD 480-185557/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 186540 **Prep Batch: 185557**

Analysis Batom 100040						Trop Daton: 100001					
	Spike	LCSD	LCSD				%Rec.		RPD		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
Acenaphthene	1650	1130		ug/Kg		69	53 - 120	21	35		
Acenaphthylene	1650	1200	*	ug/Kg		73	58 - 121	22	18		
Anthracene	1650	1250	*	ug/Kg		76	62 - 129	19	15		
Benzo[a]anthracene	1650	1230	*	ug/Kg		75	65 - 133	18	15		
Benzo[a]pyrene	1650	1210	*	ug/Kg		73	64 - 127	17	15		
Benzo[b]fluoranthene	1650	1200	*	ug/Kg		73	64 - 135	29	15		
Benzo[g,h,i]perylene	1650	1180		ug/Kg		71	50 - 152	15	15		
Benzo[k]fluoranthene	1650	1360		ug/Kg		83	58 - 138	6	22		
Chrysene	1650	1270	*	ug/Kg		77	64 - 131	17	15		
Dibenz(a,h)anthracene	1650	1130		ug/Kg		69	54 - 148	12	15		
Fluoranthene	1650	1320	*	ug/Kg		80	62 - 131	16	15		
Fluorene	1650	1160	*	ug/Kg		70	63 - 126	20	15		
Indeno[1,2,3-cd]pyrene	1650	1300		ug/Kg		79	56 - 149	14	15		
Naphthalene	1650	971	*	ug/Kg		59	46 - 120	31	29		
Phenanthrene	1650	1260	*	ug/Kg		76	60 - 130	18	15		
Pyrene	1650	1270		ug/Kg		77	51 - 133	18	35		

LCSD LCSD %Recovery Qualifier Surrogate Limits 2-Fluorobiphenyl 66 37 - 120 34 - 132 Nitrobenzene-d5 (Surr) 52 p-Terphenyl-d14 (Surr) 78 65 - 153

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-185394/1-A

Lab Sample ID: LCDSRM 480-185394/3-A

Matrix: Solid Analysis Batch: 186058 Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 185394

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.9	0.39	mg/Kg		06/03/14 12:00	06/05/14 20:34	1
Barium	ND		0.48	0.11	mg/Kg		06/03/14 12:00	06/05/14 20:34	1
Cadmium	ND		0.19	0.029	mg/Kg		06/03/14 12:00	06/05/14 20:34	1
Chromium	ND		0.48	0.19	mg/Kg		06/03/14 12:00	06/05/14 20:34	1
Lead	ND		0.97	0.23	mg/Kg		06/03/14 12:00	06/05/14 20:34	1
Selenium	ND		3.9	0.39	mg/Kg		06/03/14 12:00	06/05/14 20:34	1
Silver	ND		0.58	0.19	mg/Kg		06/03/14 12:00	06/05/14 20:34	1

MD MD

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 185394

Matrix: Solid Analysis Batch: 186058 Spike LCDSRM LCDSRM RPD Added Limit Analyte Result Qualifier Unit D %Rec **RPD** Limits 122 Arsenic 114 mg/Kg 93.5 70.0 - 145. 0 20 Barium 167 20 155 mg/Kg 92.9 73.1 - 126. Cadmium 88.1 82.7 93.9 73.3 - 127. 20 mg/Kg 69.4 - 130. Chromium 102 89.4 mg/Kg 87.6 20 mg/Kg Lead 94.6 93.2 98.5 70.5 - 129. 1 Selenium 157 150 mg/Kg 67.5 - 131. 20 8 Silver 34.2 33.3 97.3 65.5 - 134. 20 mg/Kg

Lab Sample ID: LCSSRM 480-185394/2-A

Matrix: Solid

Analysis Ratch: 196059

Client Sample ID: Lab Control Sample Prep Type: Total/NA

2

Prop Ratch: 195304

Analysis Batch: 186058							Prep Batc	n: 185394
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	122	115		mg/Kg		93.8	70.0 - 145.	
Barium	167	154		mg/Kg		91.9	73.1 - 126. 9	
Cadmium	88.1	82.0		mg/Kg		93.1	73.3 - 127. 3	
Chromium	102	89.3		mg/Kg		87.4		
Lead	94.6	97.1		mg/Kg		102.7	70.5 _{- 129.}	
Selenium	157	153		mg/Kg		97.2	67.5 _{- 131.} 8	
Silver	34.2	31.9		mg/Kg		93.2	65.5 ₋ 134.	

0

Prep Batch: 185902

Prep Batch: 185902

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Lab Sample ID: MB 480-185403/1-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 185551	Prep Batch: 185403

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
Hg	ND		0.020	0.0083	mg/Kg	_	06/03/14 13:45	06/03/14 14:55	1

Lab Sample ID: LCDSRM 480-185403/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 185551 **Prep Batch: 185403** LCDSRM LCDSRM Spike Analyte Added Result Qualifier Limit Unit %Rec Limits RPD Hg 3.98 4.60 mg/Kg 115.6 51.0 - 149. 20

Lab Sample ID: LCSSRM 480-185403/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA **Prep Batch: 185403**

Analysis Batch: 185551

	5	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	A	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hg		3.98	4.24		mg/Kg	_	106.6	51.0 - 149.	
_								0	

Lab Sample ID: MB 480-185902/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 186398

	IVID IVID						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND ND	0.020	0.0081 mg/k		06/05/14 12:45	06/06/14 16:53	1

Lab Sample ID: LCSSRM 480-185902/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 186398

	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hg	3.98	4.63		mg/Kg		116.4	51.0 - 149.	
							0	

TestAmerica Buffalo

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

GC/MS VOA

Analysis Batch: 185630

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60968-1	S-301	Total/NA	Solid	8260C	185637
480-60968-2	S-302	Total/NA	Solid	8260C	185637
LCS 480-185630/5	Lab Control Sample	Total/NA	Solid	8260C	
LCSD 480-185630/6	Lab Control Sample Dup	Total/NA	Solid	8260C	
MB 480-185630/31	Method Blank	Total/NA	Solid	8260C	

Prep Batch: 185637

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60968-1	S-301	Total/NA	Solid	5035A	
480-60968-2	S-302	Total/NA	Solid	5035A	

GC/MS Semi VOA

Prep Batch: 185557

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60968-1	S-301	Total/NA	Solid	3550C	
480-60968-2	S-302	Total/NA	Solid	3550C	
480-60968-3	S-303	Total/NA	Solid	3550C	
480-60968-4	S-304	Total/NA	Solid	3550C	
480-60968-5	S-305	Total/NA	Solid	3550C	
480-60968-6	S-306	Total/NA	Solid	3550C	
480-60968-7	S-307	Total/NA	Solid	3550C	
LCS 480-185557/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 480-185557/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
MB 480-185557/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 186540

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60968-1	S-301	Total/NA	Solid	8270D	185557
480-60968-2	S-302	Total/NA	Solid	8270D	185557
480-60968-3	S-303	Total/NA	Solid	8270D	185557
480-60968-4	S-304	Total/NA	Solid	8270D	185557
480-60968-5	S-305	Total/NA	Solid	8270D	185557
480-60968-6	S-306	Total/NA	Solid	8270D	185557
480-60968-7	S-307	Total/NA	Solid	8270D	185557
LCS 480-185557/2-A	Lab Control Sample	Total/NA	Solid	8270D	185557
LCSD 480-185557/3-A	Lab Control Sample Dup	Total/NA	Solid	8270D	185557
MB 480-185557/1-A	Method Blank	Total/NA	Solid	8270D	185557

Metals

Prep Batch: 185394

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60968-1	S-301	Total/NA	Solid	3050B	
480-60968-2	S-302	Total/NA	Solid	3050B	
480-60968-3	S-303	Total/NA	Solid	3050B	
480-60968-4	S-304	Total/NA	Solid	3050B	
480-60968-5	S-305	Total/NA	Solid	3050B	
480-60968-6	S-306	Total/NA	Solid	3050B	
480-60968-7	S-307	Total/NA	Solid	3050B	

TestAmerica Buffalo

Page 24 of 34

-

0

8

9

10

13

14

QC Association Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60968-1

Metals (Continued)

Prep Batch: 185394 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCDSRM 480-185394/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
LCSSRM 480-185394/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-185394/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 185403

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60968-1	S-301	Total/NA	Solid	7471B	
480-60968-2	S-302	Total/NA	Solid	7471B	
480-60968-3	S-303	Total/NA	Solid	7471B	
480-60968-4	S-304	Total/NA	Solid	7471B	
480-60968-5	S-305	Total/NA	Solid	7471B	
480-60968-6	S-306	Total/NA	Solid	7471B	
LCDSRM 480-185403/3-A	Lab Control Sample Dup	Total/NA	Solid	7471B	
LCSSRM 480-185403/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-185403/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 185551

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60968-1	S-301	Total/NA	Solid	7471B	185403
480-60968-2	S-302	Total/NA	Solid	7471B	185403
480-60968-3	S-303	Total/NA	Solid	7471B	185403
480-60968-4	S-304	Total/NA	Solid	7471B	185403
480-60968-5	S-305	Total/NA	Solid	7471B	185403
480-60968-6	S-306	Total/NA	Solid	7471B	185403
LCDSRM 480-185403/3-A	Lab Control Sample Dup	Total/NA	Solid	7471B	185403
LCSSRM 480-185403/2-A	Lab Control Sample	Total/NA	Solid	7471B	185403
MB 480-185403/1-A	Method Blank	Total/NA	Solid	7471B	185403

Prep Batch: 185902

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60968-7	S-307	Total/NA	Solid	7471B	
LCSSRM 480-185902/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-185902/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 186058

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60968-1	S-301	Total/NA	Solid	6010C	185394
480-60968-2	S-302	Total/NA	Solid	6010C	185394
480-60968-3	S-303	Total/NA	Solid	6010C	185394
LCDSRM 480-185394/3-A	Lab Control Sample Dup	Total/NA	Solid	6010C	185394
LCSSRM 480-185394/2-A	Lab Control Sample	Total/NA	Solid	6010C	185394
MB 480-185394/1-A	Method Blank	Total/NA	Solid	6010C	185394

Analysis Batch: 186398

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60968-7	S-307	Total/NA	Solid	7471B	185902
LCSSRM 480-185902/2-A	Lab Control Sample	Total/NA	Solid	7471B	185902
MB 480-185902/1-A	Method Blank	Total/NA	Solid	7471B	185902

Page 25 of 34

QC Association Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60968-1

Metals (Continued)

Analysis Batch: 186429

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60968-4	S-304	Total/NA	Solid	6010C	185394
480-60968-5	S-305	Total/NA	Solid	6010C	185394
480-60968-6	S-306	Total/NA	Solid	6010C	185394
480-60968-7	S-307	Total/NA	Solid	6010C	185394

Analysis Batch: 186678

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60968-4	S-304	Total/NA	Solid	6010C	185394
480-60968-5	S-305	Total/NA	Solid	6010C	185394
480-60968-6	S-306	Total/NA	Solid	6010C	185394
480-60968-7	S-307	Total/NA	Solid	6010C	185394

General Chemistry

Analysis Batch: 185436

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60968-1	S-301	Total/NA	Solid	Moisture	_
480-60968-2	S-302	Total/NA	Solid	Moisture	
480-60968-3	S-303	Total/NA	Solid	Moisture	
480-60968-4	S-304	Total/NA	Solid	Moisture	
480-60968-5	S-305	Total/NA	Solid	Moisture	
480-60968-6	S-306	Total/NA	Solid	Moisture	
480-60968-7	S-307	Total/NA	Solid	Moisture	

6

9

10

12

13

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Client Sample ID: S-301

Date Collected: 05/28/14 14:40 Date Received: 06/03/14 01:00

Lab Sample ID: 480-60968-1

Percent

Matrix: Solid	
t Solids: 84.0	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			185637	06/04/14 11:40	PJQ	TAL BUF
Total/NA	Analysis	8260C		1	185630	06/04/14 21:35	CDC	TAL BUF
Total/NA	Prep	3550C			185557	06/04/14 08:03	TRG	TAL BUF
Total/NA	Analysis	8270D		1	186540	06/09/14 15:54	DMR	TAL BUF
Total/NA	Prep	3050B			185394	06/03/14 12:00	SS1	TAL BUF
Total/NA	Analysis	6010C		1	186058	06/05/14 21:43	MTM2	TAL BUF
Total/NA	Prep	7471B			185403	06/03/14 13:45	LRK	TAL BUF
Total/NA	Analysis	7471B		1	185551	06/03/14 15:30	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	185436	06/03/14 13:44	CW	TAL BUF

Lab Sample ID: 480-60968-2

Client Sample ID: S-302 Date Collected: 05/28/14 14:50 **Matrix: Solid** Date Received: 06/03/14 01:00 Percent Solids: 76.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			185637	06/04/14 11:40	PJQ	TAL BUF
Total/NA	Analysis	8260C		1	185630	06/04/14 22:01	CDC	TAL BUF
Total/NA	Prep	3550C			185557	06/04/14 08:03	TRG	TAL BUF
Total/NA	Analysis	8270D		5	186540	06/09/14 16:18	DMR	TAL BUF
Total/NA	Prep	3050B			185394	06/03/14 12:00	SS1	TAL BUF
Total/NA	Analysis	6010C		1	186058	06/05/14 21:45	MTM2	TAL BUF
Total/NA	Prep	7471B			185403	06/03/14 13:45	LRK	TAL BUF
Total/NA	Analysis	7471B		1	185551	06/03/14 15:32	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	185436	06/03/14 13:44	CW	TAL BUF

Lab Sample ID: 480-60968-3 Client Sample ID: S-303 Date Collected: 05/30/14 13:30 **Matrix: Solid** Date Received: 06/03/14 01:00 Percent Solids: 90.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			185557	06/04/14 08:03	TRG	TAL BUF
Total/NA	Analysis	8270D		1	186540	06/09/14 16:42	DMR	TAL BUF
Total/NA	Prep	3050B			185394	06/03/14 12:00	SS1	TAL BUF
Total/NA	Analysis	6010C		1	186058	06/05/14 21:48	MTM2	TAL BUF
Total/NA	Prep	7471B			185403	06/03/14 13:45	LRK	TAL BUF
Total/NA	Analysis	7471B		1	185551	06/03/14 15:34	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	185436	06/03/14 13:44	CW	TAL BUF

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Client Sample ID: S-304

Lab Sample ID: 480-60968-4

Date Collected: 05/30/14 13:35 Date Received: 06/03/14 01:00 Matrix: Solid
Percent Solids: 95.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			185557	06/04/14 08:03	TRG	TAL BUF
Total/NA	Analysis	8270D		1	186540	06/09/14 17:05	DMR	TAL BUF
Total/NA	Prep	3050B			185394	06/03/14 12:00	SS1	TAL BUF
Total/NA	Analysis	6010C		1	186429	06/06/14 11:52	MTM2	TAL BUF
Total/NA	Prep	3050B			185394	06/03/14 12:00	SS1	TAL BUF
Total/NA	Analysis	6010C		1	186678	06/09/14 14:35	MTM2	TAL BUF
Total/NA	Prep	7471B			185403	06/03/14 13:45	LRK	TAL BUF
Total/NA	Analysis	7471B		1	185551	06/03/14 15:39	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	185436	06/03/14 13:44	CW	TAL BUF

Lab Sample ID: 480-60968-5

Date Collected: 05/30/14 13:45 Date Received: 06/03/14 01:00

Client Sample ID: S-305

Matrix: Solid Percent Solids: 96.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			185557	06/04/14 08:03	TRG	TAL BUF
Total/NA	Analysis	8270D		1	186540	06/09/14 17:29	DMR	TAL BUF
Total/NA	Prep	3050B			185394	06/03/14 12:00	SS1	TAL BUF
Total/NA	Analysis	6010C		1	186429	06/06/14 12:04	MTM2	TAL BUF
Total/NA	Prep	3050B			185394	06/03/14 12:00	SS1	TAL BUF
Total/NA	Analysis	6010C		1	186678	06/09/14 14:38	MTM2	TAL BUF
Total/NA	Prep	7471B			185403	06/03/14 13:45	LRK	TAL BUF
Total/NA	Analysis	7471B		1	185551	06/03/14 15:41	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	185436	06/03/14 13:44	CW	TAL BUF

Client Sample ID: S-306 Lab Sample ID: 480-60968-6

 Date Collected: 05/30/14 13:50
 Matrix: Solid

 Date Received: 06/03/14 01:00
 Percent Solids: 94.5

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			185557	06/04/14 08:03	TRG	TAL BUF
Total/NA	Analysis	8270D		1	186540	06/09/14 17:53	DMR	TAL BUF
Total/NA	Prep	3050B			185394	06/03/14 12:00	SS1	TAL BUF
Total/NA	Analysis	6010C		1	186429	06/06/14 12:07	MTM2	TAL BUF
Total/NA	Prep	3050B			185394	06/03/14 12:00	SS1	TAL BUF
Total/NA	Analysis	6010C		1	186678	06/09/14 14:41	MTM2	TAL BUF
Total/NA	Prep	7471B			185403	06/03/14 13:45	LRK	TAL BUF
Total/NA	Analysis	7471B		1	185551	06/03/14 15:42	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	185436	06/03/14 13:44	CW	TAL BUF

Lab Chronicle

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60968-1

Client Sample ID: S-307 Date Collected: 05/30/14 13:55

Date Received: 06/03/14 01:00

Lab Sample ID: 480-60968-7

. Matrix: Solid

Percent Solids: 95.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			185557	06/04/14 08:54	TRG	TAL BUF
Total/NA	Analysis	8270D		1	186540	06/09/14 18:17	DMR	TAL BUF
Total/NA	Prep	3050B			185394	06/03/14 12:00	SS1	TAL BUF
Total/NA	Analysis	6010C		1	186429	06/06/14 12:10	MTM2	TAL BUF
Total/NA	Prep	3050B			185394	06/03/14 12:00	SS1	TAL BUF
Total/NA	Analysis	6010C		1	186678	06/09/14 14:44	MTM2	TAL BUF
Total/NA	Prep	7471B			185902	06/05/14 12:45	LRK	TAL BUF
Total/NA	Analysis	7471B		1	186398	06/06/14 17:42	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	185436	06/03/14 13:44	CW	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

6

Q

9

10

12

14

Certification Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60968-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Massachusetts	State Program	1	M-NY044	06-30-14 *
Rhode Island	State Program	1	LAO00328	12-30-14

 $[\]ensuremath{^{\star}}$ Certification renewal pending - certification considered valid.

Method Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60968-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7471B	Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

Δ

5

6

7

8

9

10

12

Sample Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60968-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-60968-1	S-301	Solid	05/28/14 14:40	06/03/14 01:00
480-60968-2	S-302	Solid	05/28/14 14:50	06/03/14 01:00
480-60968-3	S-303	Solid	05/30/14 13:30	06/03/14 01:00
480-60968-4	S-304	Solid	05/30/14 13:35	06/03/14 01:00
480-60968-5	S-305	Solid	05/30/14 13:45	06/03/14 01:00
480-60968-6	S-306	Solid	05/30/14 13:50	06/03/14 01:00
480-60968-7	S-307	Solid	05/30/14 13:55	06/03/14 01:00

5

Special Instructions/ Conditions of Receipt **8**% 0011 (A fee may be assessed if samples are retained Months tonger than 1 month) chain of Custody Number 261981 ő 6 2 -19 Date 8-3-14 Date Page 3°6# RONMENTAL TESTING Date 3 3U IY more space is needed) Analysis (Attach list if しまし Lab Numbe XX 427 X estation 8 X X X X Archive For _ **छ ५७७**० メメイ 子又不 DHHZ SOON rements (Spęcify) 480-60968 Chain of Custody \bAnZ HOBN DDISPOSAL By Lab Containers & Preservatives HOEN 3. Received By 401-728-6860-8X IOH Telephone Number (Area Code)/Fax Manber EONH DSZH J. L X. Q X X × seudun X Time 10:55 ☐ Poison B ☑ Unknown ☐ Return To Client 1000/0/\square 1/0/\delta/\square 1 Time (502) Sample Disposa 1 * X X Х 义 Drinking Water? } 1105 Carrier/Waybill Number Matrix pes Project Manager 116 Sed 79 3 SHE 1381 35 1330 250 SS IS Time ☐ 21 Days 5/30/14 FIJOE/S 528 4 がで 7/38/V HICE S LISOLY Zip code Date Benington ☐ 14 Days (Containers for each sample may be combined on one line) Skin Imitant Address ACCOUNTY STATE Client Perior Sample I.D. No. and Description 区が区 | Flammable Contract Purchase Order Quote Joi Pauto (coto) Project Name and Location (State) **Custody Record** 7431A-008 24 Hours 1 48 Hours 307 Possible Hazard Identification 306 Tum Around Time Required 3-301 305 300 5-303 5-301 1. Relinguished By Non-Hazard 1 5 S 8. Relyaquist (2014) 9. Relyaq

Page 33 of 34

Jerico Jerico

Temperature on Re

Chain of

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Resource Control Associates, Inc.

Job Number: 480-60968-1

Login Number: 60968 List Source: TestAmerica Buffalo

List Number: 1

Creator: Wienke, Robert K

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	

_

4

6

R

10

12

13

4 6

15

Chlorine Residual checked.

N/A

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-60969-1

Client Project/Site: Bay Spring, Barrington

For:

Resource Control Associates, Inc. 474 Broadway
Pawtucket, Rhode Island 02860

Attn: Ms. Danielle Eastman-Getsinger

Authorized for release by: 6/18/2014 2:16:18 PM

Steve Hartmann, Service Center Manager

(413)572-4000

steve.hartmann@testamericainc.com

----- Links -----

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	7
Surrogate Summary	11
QC Sample Results	13
QC Association Summary	23
Lab Chronicle	26
Certification Summary	27
Method Summary	28
Sample Summary	29
Chain of Custody	30
Receipt Checklists	31

-5

4

8

10

12

13

Definitions/Glossary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60969-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description			
E	Result exceeded calibration range.			
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.			

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
*	LCS or LCSD exceeds the control limits
*	RPD of the LCS and LCSD exceeds the control limits
X	Surrogate is outside control limits
E	Result exceeded calibration range.

GC Semi VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
X	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals	

Qualifier	Qualifier Description
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Page 3 of 31

Case Narrative

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60969-1

Job ID: 480-60969-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-60969-1

Receipt

The sample was received on 6/3/2014 1:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.6° C.

GC/MS VOA

Method(s) 8260C: The large number of analytes included in the continuing calibration verification (CCV) in batch 185319 gives a high probability that one or more analytes will be outside acceptance criteria. As indicated in the reference method, analysis may proceed as long as no more than 20% of the analytes are outside the method-defined %D criteria.

Method(s) 8260C: The following sample(s) was diluted to bring the concentration of target analytes within the calibration range: Frac Tank (480-60969-1). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following analytes, 1,1,2-Trichloroethane, ,1-Dichloroethane, 1,2-Dichloroethane, 2-Butanone, Benzene, Carbon Tetrachloride, Chloroethane, Tetrachloroethene, and Vinyl chloride were detected in the sample Frac Tank (480-60969-1) at a concentration above the linear range of the initial calibration curve. Due to the high dilution dictated by other target compounds, these analytes were diluted out in the re-analysis of the sample. Therefore, the value being reported is from the original analysis and is qualified with an E flag.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: Surrogate recovery for the following samples was outside control limits: Frac Tank (480-60969-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 188158 recovered above the upper control limit for Atrazine and Indeno(1,2,3-cd)pyrene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: (CCV 480-188158/6), (CCVIS 480-188158/3).

Method(s) 8270D: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for batch 185534 recovered outside control limits for multiple analytes. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8270D: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 185534 recovered outside control limits for 4-chloroaniline

Method(s) 8270D: The following samples were diluted due to the nature of the sample matrix: Frac Tank (480-60969-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8082A: The following samples were diluted due to the nature of the sample matrix: Frac Tank (480-60969-1). As such, surrogate recoveries are not representative, and elevated reporting limits (RLs) are provided.

Method(s) 8082A: The laboratory control sample (LCS) for preparation batch 185762 recovered outside control limits for the surrogate, Decachlorobiphenyl indication a low bias. The individual spike recoveries met control criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The continuing calibration blank (CCB) for analytical batch 480-185788 contained total barium above the reporting limit (RL). All reported samples associated with this CCB were either ND for this analyte or contained this analyte at a concentration greater

3

4

5

6

a

10

12

4 E

Case Narrative

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60969-1

Job ID: 480-60969-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

than 10X the value found in the CCB; therefore, re-analysis of samples Frac Tank (480-60969-1) was not performed.

Method(s) 245.1, 7470A: The following samples were diluted to bring the concentration of the target analyte, total mercury, within the calibration range: (480-61129-2 MS), (480-61129-2 MSD), SP-K PURGE (480-61129-2). Elevated reporting limits (RLs) are provided.

Method(s) 245.1, 7470A: The following samples were diluted to bring the concentration of the target analyte, total mercury, within the calibration range: (480-61129-2 SD). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) 9040C, SM 4500 H+ B: The following sample(s) was received outside of holding time: Frac Tank (480-60969-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 185534 and 185799

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

1

5

6

7

8

9

10

12

13

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Lab Sample ID: 480-60969-1

Client Sample ID: Frac Tank

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
I,1,2-Trichloroethane	140	E	1.0	0.23	ug/L	1	_	8260C	Total/NA
1,1,2-Trichloro-1,2,2-trifluoroethane	7.9		1.0	0.31	ug/L	1		8260C	Total/NA
I,1-Dichloroethene	2900	E	1.0	0.29	ug/L	1		8260C	Total/NA
1,2-Dibromo-3-Chloropropane	1.1		1.0	0.39	ug/L	1		8260C	Total/NA
1,2-Dichloroethane	110	E	1.0	0.21	ug/L	1		8260C	Total/NA
2-Butanone (MEK)	820	E	10	1.3	ug/L	1		8260C	Total/NA
2-Hexanone	29		5.0	1.2	ug/L	1		8260C	Total/NA
I-Methyl-2-pentanone (MIBK)	130		5.0	2.1	ug/L	1		8260C	Total/NA
Acetone	290		10	3.0	ug/L	1		8260C	Total/NA
Benzene	120		1.0	0.41	ug/L			8260C	Total/NA
Carbon disulfide	1.6		1.0	0.19	=	1		8260C	Total/NA
Carbon tetrachloride	1400	E	1.0		ug/L	1		8260C	Total/NA
Chloroethane	170		1.0	0.32	.			8260C	Total/NA
Chloroform	16		1.0	0.34	_	1		8260C	Total/NA
sopropylbenzene	40		1.0	0.79	=	1		8260C	Total/NA
Methylene Chloride	80		1.0		ug/L			8260C	Total/NA
Fetrachloroethene	110	F	1.0	0.36	-	1		8260C	Total/NA
/inyl chloride	160		1.0	0.90	ug/L	1		8260C	Total/NA
I,1,1-Trichloroethane - DL	43000		1000	820	ug/L	1000		8260C	Total/NA
I,1-Dichloroethane - DL	25000		1000	380	ug/L	1000		8260C	Total/NA
sis-1,2-Dichloroethene - DL	830	1	1000		ug/L	1000		8260C	Total/NA
Ethylbenzene - DL	7800		1000	740	ug/L	1000		8260C	Total/NA
Foluene - DL	13000		1000	510	ug/L	1000		8260C	Total/NA
Frichloroethene - DL	77000		1000	460	-	1000		8260C	Total/NA
Kylenes, Total - DL	39000		2000	660	ug/L	1000		8260C	Total/NA
	61		100	10	ug/L	20		8270D	Total/NA
2,4-Dimethylphenol	37		100		ug/L			8270D	Total/NA
2-Methylphenol	85		100		ug/L	20		8270D	Total/NA
Acetophenone					ug/L	20			
Benzaldehyde	21		100		ug/L	20		8270D	Total/NA
Di-n-butyl phthalate	9.8		100		ug/L	20		8270D	Total/NA
Fluoranthene	15		100		ug/L	20		8270D	Total/NA
sophorone	20	J	100		ug/L	20		8270D	Total/NA
Nitrobenzene	110		100	5.8	ug/L	20		8270D	Total/NA
Phenanthrene	20		100	8.9	ug/L	20		8270D	Total/NA
Phenol	65		100	7.8	ug/L	20		8270D	Total/NA
Pyrene	9.6		100		ug/L	20		8270D	Total/NA
Diesel Range Organics [C10-C28]	8.0	В	0.50		mg/L	1		8015D	Total/NA
Arsenic	0.018		0.015	0.0056		1		6010C	Total/NA
Barium	0.72	^	0.0020	0.00070				6010C	Total/NA
Cadmium	0.0076		0.0020	0.00050		1		6010C	Total/NA
Chromium	0.16		0.0040	0.0010		1		6010C	Total/NA
ead	1.7		0.010	0.0030		1		6010C	Total/NA
Silver	0.0035	J	0.0060	0.0017		1		6010C	Total/NA
Mercury	0.0047		0.00020	0.00012	mg/L	1		7470A	Total/NA
Analyte	Result	Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Flashpoint	>176.0		50.0	50.0	Degrees F		_	1010A	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60969-1

Lab Sample ID: 480-60969-1

Matrix: Water

Client Sample ID: Frac Tank Date Collected: 05/30/14 07:30

Date Received: 06/03/14 01:00

Tetrachloroethene

trans-1,2-Dichloroethene

Trichlorofluoromethane

Vinyl chloride

trans-1,3-Dichloropropene

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			06/03/14 13:27	1
1,1,2-Trichloroethane	140	E	1.0	0.23	ug/L			06/03/14 13:27	1
1,1,2-Trichloro-1,2,2-trifluoroetha	7.9		1.0	0.31	ug/L			06/03/14 13:27	1
ne									
1,1-Dichloroethene	2900	E	1.0	0.29	_			06/03/14 13:27	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			06/03/14 13:27	1
1,2-Dibromo-3-Chloropropane	1.1		1.0	0.39	ug/L			06/03/14 13:27	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			06/03/14 13:27	1
1,2-Dichloroethane	110	E	1.0	0.21	ug/L			06/03/14 13:27	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			06/03/14 13:27	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			06/03/14 13:27	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			06/03/14 13:27	1
2-Butanone (MEK)	820	E	10	1.3	ug/L			06/03/14 13:27	1
2-Hexanone	29		5.0	1.2	ug/L			06/03/14 13:27	1
4-Methyl-2-pentanone (MIBK)	130		5.0	2.1	ug/L			06/03/14 13:27	1
Acetone	290		10	3.0	ug/L			06/03/14 13:27	1
Benzene	120	E	1.0	0.41	ug/L			06/03/14 13:27	1
Bromodichloromethane	ND		1.0	0.39	ug/L			06/03/14 13:27	1
Bromoform	ND		1.0	0.26	ug/L			06/03/14 13:27	1
Bromomethane	ND		1.0	0.69	ug/L			06/03/14 13:27	1
Carbon disulfide	1.6		1.0	0.19	ug/L			06/03/14 13:27	1
Carbon tetrachloride	1400	E	1.0	0.27	ug/L			06/03/14 13:27	1
Chlorobenzene	ND		1.0	0.75	ug/L			06/03/14 13:27	1
Dibromochloromethane	ND		1.0	0.32	ug/L			06/03/14 13:27	1
Chloroethane	170	E	1.0	0.32	ug/L			06/03/14 13:27	1
Chloroform	16		1.0	0.34	ug/L			06/03/14 13:27	1
Chloromethane	ND		1.0	0.35	ug/L			06/03/14 13:27	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			06/03/14 13:27	1
Cyclohexane	ND		1.0	0.18	ug/L			06/03/14 13:27	,
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			06/03/14 13:27	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			06/03/14 13:27	1
Isopropylbenzene	40		1.0	0.79	ug/L			06/03/14 13:27	1
Methyl acetate	ND		2.5	0.50	ug/L			06/03/14 13:27	1
Methyl tert-butyl ether	ND		1.0		ug/L			06/03/14 13:27	1
Methylcyclohexane	ND		1.0	0.16	ug/L			06/03/14 13:27	1
Methylene Chloride	80		1.0		ug/L			06/03/14 13:27	1
Styrene	ND		1.0	0.73	_			06/03/14 13:27	

Surrogate	%Recovery	Qualifier	Limits	Prepa	ared	Analyzed	Dil Fac
Toluene-d8 (Surr)	79		71 - 126			06/03/14 13:27	1
1,2-Dichloroethane-d4 (Surr)	84		66 - 137			06/03/14 13:27	1
4-Bromofluorobenzene (Surr)	81		73 - 120			06/03/14 13:27	1

1.0

1.0

1.0

1.0

1.0

0.36 ug/L

0.90 ug/L

0.37 ug/L

0.88 ug/L

0.90 ug/L

110 E

ND

ND

ND

160 E

TestAmerica Buffalo

06/03/14 13:27

06/03/14 13:27

06/03/14 13:27

06/03/14 13:27

06/03/14 13:27

2

6

8

10

11

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60969-1

Lab Sample ID: 480-60969-1

Matrix: Water

Client Sample ID: Frac Tank

Date Collected: 05/30/14 07:30 Date Received: 06/03/14 01:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	43000		1000	820	ug/L			06/05/14 05:04	1000
1,1-Dichloroethane	25000		1000	380	ug/L			06/05/14 05:04	1000
cis-1,2-Dichloroethene	830	J	1000	810	ug/L			06/05/14 05:04	1000
Ethylbenzene	7800		1000	740	ug/L			06/05/14 05:04	1000
Toluene	13000		1000	510	ug/L			06/05/14 05:04	1000
Trichloroethene	77000		1000	460	ug/L			06/05/14 05:04	1000
Xylenes, Total	39000		2000	660	ug/L			06/05/14 05:04	1000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		71 - 126			-		06/05/14 05:04	1000
1,2-Dichloroethane-d4 (Surr)	107		66 - 137					06/05/14 05:04	1000
4-Bromofluorobenzene (Surr)	106		73 - 120					06/05/14 05:04	1000

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	MD		100	13	ug/L		06/04/14 05:45	06/17/14 17:31	20
bis (2-chloroisopropyl) ether	ND		100	10	ug/L		06/04/14 05:45	06/17/14 17:31	20
2,4,5-Trichlorophenol	ND		100	9.7	ug/L		06/04/14 05:45	06/17/14 17:31	20
2,4,6-Trichlorophenol	ND		100	12	ug/L		06/04/14 05:45	06/17/14 17:31	20
2,4-Dichlorophenol	ND		100	10	ug/L		06/04/14 05:45	06/17/14 17:31	20
2,4-Dimethylphenol	61	J	100	10	ug/L		06/04/14 05:45	06/17/14 17:31	20
2,4-Dinitrophenol	ND		200	45	ug/L		06/04/14 05:45	06/17/14 17:31	20
2,4-Dinitrotoluene	ND		100	9.0	ug/L		06/04/14 05:45	06/17/14 17:31	20
2,6-Dinitrotoluene	ND		100	8.0	ug/L		06/04/14 05:45	06/17/14 17:31	20
2-Chloronaphthalene	ND		100	9.3	ug/L		06/04/14 05:45	06/17/14 17:31	20
2-Chlorophenol	ND		100	11	ug/L		06/04/14 05:45	06/17/14 17:31	20
2-Methylphenol	37	J	100	8.0	ug/L		06/04/14 05:45	06/17/14 17:31	20
2-Methylnaphthalene	ND		100	12	ug/L		06/04/14 05:45	06/17/14 17:31	20
2-Nitroaniline	ND		200	8.5	ug/L		06/04/14 05:45	06/17/14 17:31	20
2-Nitrophenol	ND		100	9.7	ug/L		06/04/14 05:45	06/17/14 17:31	20
3,3'-Dichlorobenzidine	ND		100	8.0	ug/L		06/04/14 05:45	06/17/14 17:31	20
3-Nitroaniline	ND	*	200	9.7	ug/L		06/04/14 05:45	06/17/14 17:31	20
4,6-Dinitro-2-methylphenol	ND		200	44	ug/L		06/04/14 05:45	06/17/14 17:31	20
4-Bromophenyl phenyl ether	ND		100	9.1	ug/L		06/04/14 05:45	06/17/14 17:31	20
4-Chloro-3-methylphenol	ND		100	9.1	ug/L		06/04/14 05:45	06/17/14 17:31	20
4-Chloroaniline	ND	*	100	12	ug/L		06/04/14 05:45	06/17/14 17:31	20
4-Chlorophenyl phenyl ether	ND		100	7.0	ug/L		06/04/14 05:45	06/17/14 17:31	20
4-Methylphenol	ND	*	200	7.2	ug/L		06/04/14 05:45	06/17/14 17:31	20
4-Nitroaniline	ND		200	5.0	ug/L		06/04/14 05:45	06/17/14 17:31	20
4-Nitrophenol	ND		200	31	ug/L		06/04/14 05:45	06/17/14 17:31	20
Acenaphthene	ND		100	8.2	ug/L		06/04/14 05:45	06/17/14 17:31	20
Acenaphthylene	ND		100	7.6	ug/L		06/04/14 05:45	06/17/14 17:31	20
Acetophenone	85	J	100	11	ug/L		06/04/14 05:45	06/17/14 17:31	20
Anthracene	ND		100	5.6	ug/L		06/04/14 05:45	06/17/14 17:31	20
Atrazine	ND		100	9.3	ug/L		06/04/14 05:45	06/17/14 17:31	20
Benzaldehyde	21	J	100	5.4	ug/L		06/04/14 05:45	06/17/14 17:31	20
Benzo[a]anthracene	ND		100	7.2	ug/L		06/04/14 05:45	06/17/14 17:31	20
Benzo[a]pyrene	ND		100	9.5	ug/L		06/04/14 05:45	06/17/14 17:31	20
Benzo[b]fluoranthene	ND		100	6.8	ug/L		06/04/14 05:45	06/17/14 17:31	20
Benzo[g,h,i]perylene	ND		100	7.0	ug/L		06/04/14 05:45	06/17/14 17:31	20

TestAmerica Buffalo

Page 8 of 31

6/18/2014

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Client Sample ID: Frac Tank

PCB-1221

TestAmerica Job ID: 480-60969-1

Lab Sample ID: 480-60969-1

inpic ib. 400 00000 i

Matrix: Water

Date Collected: 05/30/14 07:30 Date Received: 06/03/14 01:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[k]fluoranthene	ND		100	15	ug/L		06/04/14 05:45	06/17/14 17:31	20
Bis(2-chloroethoxy)methane	ND		100	7.0	ug/L		06/04/14 05:45	06/17/14 17:31	20
Bis(2-chloroethyl)ether	ND		100	8.0	ug/L		06/04/14 05:45	06/17/14 17:31	20
Bis(2-ethylhexyl) phthalate	ND		100	36	ug/L		06/04/14 05:45	06/17/14 17:31	20
Butyl benzyl phthalate	ND		100	8.5	ug/L		06/04/14 05:45	06/17/14 17:31	20
Caprolactam	ND		100	44	ug/L		06/04/14 05:45	06/17/14 17:31	20
Carbazole	ND		100	6.0	ug/L		06/04/14 05:45	06/17/14 17:31	20
Chrysene	ND		100		ug/L		06/04/14 05:45	06/17/14 17:31	20
Dibenz(a,h)anthracene	ND		100		ug/L		06/04/14 05:45	06/17/14 17:31	20
Di-n-butyl phthalate	9.8	J	100		ug/L		06/04/14 05:45	06/17/14 17:31	20
Di-n-octyl phthalate	ND		100		ug/L		06/04/14 05:45	06/17/14 17:31	20
Dibenzofuran	ND		200	10	ug/L		06/04/14 05:45	06/17/14 17:31	20
Diethyl phthalate	ND		100	4.4	=		06/04/14 05:45	06/17/14 17:31	20
Dimethyl phthalate	ND		100		ug/L ug/L		06/04/14 05:45	06/17/14 17:31	20
Fluoranthene	15	1	100	8.0	ug/L ug/L		06/04/14 05:45	06/17/14 17:31	20
Fluorantnene Fluorene	ND	•	100		ug/L ug/L		06/04/14 05:45	06/17/14 17:31	20
Hexachlorobenzene	ND	*					06/04/14 05:45		20
			100		ug/L			06/17/14 17:31	
Hexachlorobutadiene	ND		100		ug/L		06/04/14 05:45	06/17/14 17:31	20
Hexachlorocyclopentadiene	ND		100		ug/L		06/04/14 05:45	06/17/14 17:31	20
Hexachloroethane	ND		100		ug/L		06/04/14 05:45	06/17/14 17:31	20
Indeno[1,2,3-cd]pyrene	ND		100		ug/L		06/04/14 05:45	06/17/14 17:31	20
Isophorone	20	J	100		ug/L		06/04/14 05:45	06/17/14 17:31	20
N-Nitrosodi-n-propylamine	ND		100		ug/L		06/04/14 05:45	06/17/14 17:31	20
N-Nitrosodiphenylamine	ND		100		ug/L		06/04/14 05:45	06/17/14 17:31	20
Naphthalene	ND		100		ug/L		06/04/14 05:45	06/17/14 17:31	20
Nitrobenzene	110		100	5.8	ug/L		06/04/14 05:45	06/17/14 17:31	20
Pentachlorophenol	ND		200	44	ug/L		06/04/14 05:45	06/17/14 17:31	20
Phenanthrene	20	J	100	8.9	ug/L		06/04/14 05:45	06/17/14 17:31	20
Phenol	65	J	100	7.8	ug/L		06/04/14 05:45	06/17/14 17:31	20
Pyrene	9.6	J	100	6.8	ug/L		06/04/14 05:45	06/17/14 17:31	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	82		46 - 120				06/04/14 05:45	06/17/14 17:31	20
Phenol-d5 (Surr)	53		16 - 120				06/04/14 05:45	06/17/14 17:31	20
p-Terphenyl-d14 (Surr)	61	X	67 - 150				06/04/14 05:45	06/17/14 17:31	20
2,4,6-Tribromophenol (Surr)	97		52 - 132				06/04/14 05:45	06/17/14 17:31	20
2-Fluorobiphenyl	88		48 - 120				06/04/14 05:45	06/17/14 17:31	20
2-Fluorophenol (Surr)	73		20 - 120				06/04/14 05:45	06/17/14 17:31	20
Method: 8015D - Diesel Range O	rganics (DRO)	(GC)							
Analyte	• , ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	8.0	В	0.50	0.31	mg/L		06/05/14 07:59	06/05/14 16:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	93		29 - 136				06/05/14 07:59	06/05/14 16:49	1
Method: 8082A - Polychlorinated	Biphenyls (Po	CBs) by Gas	s Chromatograp	hy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

TestAmerica Buffalo

1000

06/07/14 07:25

06/05/14 07:22

490

170 ug/L

ND

4

6

8

10

12

1 A

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60969-1

Lab Sample ID: 480-60969-1

Matrix: Water

Date Collected: 05/30/14 07:30 Date Received: 06/03/14 01:00

Flashpoint

pН

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1232	ND		490	170	ug/L		06/05/14 07:22	06/07/14 07:25	1000
PCB-1242	ND		490	170	ug/L		06/05/14 07:22	06/07/14 07:25	1000
PCB-1248	ND		490	170	ug/L		06/05/14 07:22	06/07/14 07:25	1000
PCB-1254	ND		490	240	ug/L		06/05/14 07:22	06/07/14 07:25	1000
PCB-1260	ND		490	240	ug/L		06/05/14 07:22	06/07/14 07:25	1000
PCB-1262	ND		490	240	ug/L		06/05/14 07:22	06/07/14 07:25	1000
PCB-1268	ND		490	240	ug/L		06/05/14 07:22	06/07/14 07:25	1000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene		X	23 - 127				06/05/14 07:22	06/07/14 07:25	1000
DCB Decachlorobiphenyl	0	X	19 - 126				06/05/14 07:22	06/07/14 07:25	1000

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.018		0.015	0.0056	mg/L		06/03/14 09:05	06/04/14 14:04	1
Barium	0.72	A	0.0020	0.00070	mg/L		06/03/14 09:05	06/04/14 14:04	1
Cadmium	0.0076		0.0020	0.00050	mg/L		06/03/14 09:05	06/04/14 14:04	1
Chromium	0.16		0.0040	0.0010	mg/L		06/03/14 09:05	06/04/14 14:04	1
Lead	1.7		0.010	0.0030	mg/L		06/03/14 09:05	06/04/14 14:04	1
Selenium	ND		0.025	0.0087	mg/L		06/03/14 09:05	06/04/14 14:04	1
Silver	0.0035	J	0.0060	0.0017	mg/L		06/03/14 09:05	06/04/14 14:04	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0047		0.00020	0.00012	mg/L		06/05/14 09:35	06/05/14 16:40	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Reactive	ND		10	0.0030	mg/L		06/05/14 00:35	06/05/14 12:03	1
Sulfide, Reactive	ND		10	0.57	mg/L		06/05/14 00:35	06/05/14 12:20	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

50.0

0.100

50.0 Degrees F

0.100 SU

>176.0

5.13 H

TestAmerica Buffalo

06/04/14 08:21

06/03/14 19:30

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Surre	rogate Red
		TOL	12DCE	BFB	
Lab Sample ID	Client Sample ID	(71-126)	(66-137)	(73-120)	
480-60969-1	Frac Tank	79	84	81	
480-60969-1 - DL	Frac Tank	98	107	106	
LCS 480-185319/6	Lab Control Sample	105	113	107	
LCS 480-185707/6	Lab Control Sample	101	103	105	
MB 480-185319/8	Method Blank	106	110	98	
MB 480-185707/8	Method Blank	98	107	104	
Surrogate Legend					

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

_				Percent Sur	rogate Reco	very (Accept	ance Limits)
		NBZ	PHL	TPH	TBP	FBP	2FP
Lab Sample ID	Client Sample ID	(46-120)	(16-120)	(67-150)	(52-132)	(48-120)	(20-120)
480-60969-1	Frac Tank	82	53	61 X	97	88	73
LCS 480-185534/2-A	Lab Control Sample	82	59	106	119	94	78
LCSD 480-185534/3-A	Lab Control Sample Dup	78	55	101	116	92	73
MB 480-185534/1-A	Method Blank	72	40	109	100	75	57

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl

OTPH = o-Terphenyl

2FP = 2-Fluorophenol (Surr)

Method: 8015D - Diesel Range Organics (DRO) (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		ОТРН	
Lab Sample ID	Client Sample ID	(29-136)	
480-60969-1	Frac Tank	93	
LCS 480-185799/2-A	Lab Control Sample	55	
LCSD 480-185799/3-A	Lab Control Sample Dup	43	
MB 480-185799/1-A	Method Blank	97	

Surrogate Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

DCB = DCB Decachlorobiphenyl

TestAmerica Job ID: 480-60969-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(23-127)	(19-126)	
480-60969-1	Frac Tank	0 X	0 X	
LCS 480-185762/2-A	Lab Control Sample	87	18 X	
MB 480-185762/1-A	Method Blank	78	39	
Surrogate Legend				

C

11

13

14

RL

1.0

MDL Unit

0.82 ug/L

D

Prepared

TestAmerica Job ID: 480-60969-1

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB Result Qualifier

ND

Lab Sample ID: MB 480-185319/8

Matrix: Water

1,1,1-Trichloroethane

Chloromethane

Cyclohexane

Ethylbenzene

1,2-Dibromoethane

Isopropylbenzene

Methyl tert-butyl ether Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Methyl acetate

Styrene

Toluene

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorodifluoromethane

Analyte

Analysis Batch: 185319

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

06/03/14 11:15

De: Total/NA

Dil Fac

			•		
1,1,2,2-Tetrachloroethane	ND	1.0	0.21 ug/L	06/03/14 11:15	1
1,1,2-Trichloroethane	ND	1.0	0.23 ug/L	06/03/14 11:15	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31 ug/L	06/03/14 11:15	1
1,1-Dichloroethane	ND	1.0	0.38 ug/L	06/03/14 11:15	1
1,1-Dichloroethene	ND	1.0	0.29 ug/L	06/03/14 11:15	1
1,2,4-Trichlorobenzene	ND	1.0	0.41 ug/L	06/03/14 11:15	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39 ug/L	06/03/14 11:15	1
1,2-Dichlorobenzene	ND	1.0	0.79 ug/L	06/03/14 11:15	1
1,2-Dichloroethane	ND	1.0	0.21 ug/L	06/03/14 11:15	1
1,2-Dichloropropane	ND	1.0	0.72 ug/L	06/03/14 11:15	1
1,3-Dichlorobenzene	ND	1.0	0.78 ug/L	06/03/14 11:15	1
1,4-Dichlorobenzene	ND	1.0	0.84 ug/L	06/03/14 11:15	1
2-Butanone (MEK)	ND	10	1.3 ug/L	06/03/14 11:15	1
2-Hexanone	ND	5.0	1.2 ug/L	06/03/14 11:15	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1 ug/L	06/03/14 11:15	1
Acetone	ND	10	3.0 ug/L	06/03/14 11:15	1
Benzene	ND	1.0	0.41 ug/L	06/03/14 11:15	1
Bromodichloromethane	ND	1.0	0.39 ug/L	06/03/14 11:15	1
Bromoform	ND	1.0	0.26 ug/L	06/03/14 11:15	1
Bromomethane	ND	1.0	0.69 ug/L	06/03/14 11:15	1
Carbon disulfide	ND	1.0	0.19 ug/L	06/03/14 11:15	1
Carbon tetrachloride	ND	1.0	0.27 ug/L	06/03/14 11:15	1
Chlorobenzene	ND	1.0	0.75 ug/L	06/03/14 11:15	1
Dibromochloromethane	ND	1.0	0.32 ug/L	06/03/14 11:15	1
Chloroethane	ND	1.0	0.32 ug/L	06/03/14 11:15	1
Chloroform	ND	1.0	0.34 ug/L	06/03/14 11:15	1

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.5

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

0.35 ug/L

0.81 ug/L

0.36 ug/L

0.18 ug/L

0.68 ug/L

0.74 ug/L

0.73 ug/L

0.79 ug/L

0.50 ug/L

0.16 ug/L

0.16 ug/L

0.44 ug/L

0.73 ug/L

0.36 ug/L

0.37 ug/L

0.46 ug/L

0.88 ug/L

0.90 ug/L

0.66 ug/L

0.51 ug/L

0.90 ug/L

TestAmerica Buffalo

2

0

8

10

12

IJ

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-185319/8

Lab Sample ID: LCS 480-185319/6

Matrix: Water

Analysis Batch: 185319

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	d Analyzed	Dil Fac
Toluene-d8 (Surr)	106		71 - 126		06/03/14 11:15	1
1,2-Dichloroethane-d4 (Surr)	110		66 - 137		06/03/14 11:15	1
4-Bromofluorobenzene (Surr)	98		73 - 120		06/03/14 11:15	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 185319

Matrix: Water

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	25.0	26.7		ug/L		107	71 - 129	
1,1-Dichloroethene	25.0	27.2		ug/L		109	58 ₋ 121	
1,2-Dichlorobenzene	25.0	27.0		ug/L		108	80 _ 124	
1,2-Dichloroethane	25.0	27.2		ug/L		109	75 - 127	
Benzene	25.0	26.3		ug/L		105	71 - 124	
Chlorobenzene	25.0	25.6		ug/L		102	72 - 120	
cis-1,2-Dichloroethene	25.0	27.1		ug/L		108	74 - 124	
Ethylbenzene	25.0	26.1		ug/L		104	77 - 123	
Methyl tert-butyl ether	25.0	27.7		ug/L		111	64 - 127	
Tetrachloroethene	25.0	23.4		ug/L		94	74 - 122	
Toluene	25.0	25.2		ug/L		101	80 - 122	
trans-1,2-Dichloroethene	25.0	27.0		ug/L		108	73 _ 127	
Trichloroethene	25.0	26.6		ug/L		106	74 - 123	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	105		71 - 126
1,2-Dichloroethane-d4 (Surr)	113		66 - 137
4-Bromofluorobenzene (Surr)	107		73 - 120

Lab Sample ID: MB 480-185707/8

Matrix: Water

Analysis Batch: 185707

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			06/04/14 22:33	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			06/04/14 22:33	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			06/04/14 22:33	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			06/04/14 22:33	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			06/04/14 22:33	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			06/04/14 22:33	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			06/04/14 22:33	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			06/04/14 22:33	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			06/04/14 22:33	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			06/04/14 22:33	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			06/04/14 22:33	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			06/04/14 22:33	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			06/04/14 22:33	1
2-Butanone (MEK)	ND		10	1.3	ug/L			06/04/14 22:33	1
2-Hexanone	ND		5.0	1.2	ug/L			06/04/14 22:33	1

TestAmerica Buffalo

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-185707/8

Matrix: Water

Analysis Batch: 185707

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			06/04/14 22:33	1
Acetone	ND		10	3.0	ug/L			06/04/14 22:33	1
Benzene	ND		1.0	0.41	ug/L			06/04/14 22:33	1
Bromodichloromethane	ND		1.0	0.39	ug/L			06/04/14 22:33	1
Bromoform	ND		1.0	0.26	ug/L			06/04/14 22:33	1
Bromomethane	ND		1.0	0.69	ug/L			06/04/14 22:33	1
Carbon disulfide	ND		1.0	0.19	ug/L			06/04/14 22:33	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			06/04/14 22:33	1
Chlorobenzene	ND		1.0	0.75	ug/L			06/04/14 22:33	1
Dibromochloromethane	ND		1.0	0.32	ug/L			06/04/14 22:33	1
Chloroethane	ND		1.0	0.32	ug/L			06/04/14 22:33	1
Chloroform	ND		1.0	0.34	ug/L			06/04/14 22:33	1
Chloromethane	ND		1.0	0.35	ug/L			06/04/14 22:33	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			06/04/14 22:33	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			06/04/14 22:33	1
Cyclohexane	ND		1.0	0.18	ug/L			06/04/14 22:33	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			06/04/14 22:33	1
Ethylbenzene	ND		1.0	0.74	ug/L			06/04/14 22:33	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			06/04/14 22:33	1
Isopropylbenzene	ND		1.0	0.79	ug/L			06/04/14 22:33	1
Methyl acetate	ND		2.5	0.50	ug/L			06/04/14 22:33	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			06/04/14 22:33	1
Methylcyclohexane	ND		1.0	0.16	ug/L			06/04/14 22:33	1
Methylene Chloride	ND		1.0	0.44	ug/L			06/04/14 22:33	1
Styrene	ND		1.0	0.73	ug/L			06/04/14 22:33	1
Tetrachloroethene	ND		1.0	0.36	ug/L			06/04/14 22:33	1
Toluene	ND		1.0	0.51	ug/L			06/04/14 22:33	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			06/04/14 22:33	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			06/04/14 22:33	1
Trichloroethene	ND		1.0	0.46	ug/L			06/04/14 22:33	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			06/04/14 22:33	1
Vinyl chloride	ND		1.0	0.90	ug/L			06/04/14 22:33	1
Xylenes, Total	ND		2.0	0.66	ug/L			06/04/14 22:33	1

Lab Sample ID: LCS 480-185707/6

Matrix: Water

Toluene-d8 (Surr)

Surrogate

Analysis Batch: 185707

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Client Sample II): Lab Control Sample
	Prep Type: Total/NA

Analyzed

06/04/14 22:33

06/04/14 22:33

06/04/14 22:33

Dil Fac

Prepared

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	25.0	24.8		ug/L		99	71 - 129	
1,1-Dichloroethene	25.0	25.8		ug/L		103	58 - 121	
1,2-Dichlorobenzene	25.0	24.0		ug/L		96	80 - 124	
1,2-Dichloroethane	25.0	24.7		ug/L		99	75 - 127	

Limits

71 - 126

66 - 137

73 - 120

MB MB

%Recovery Qualifier

98

107

104

TestAmerica Buffalo

Page 15 of 31

5

6

0

11

12

4 4

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-185707/6

Matrix: Water

Analysis Batch: 185707

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	25.0	23.7		ug/L		95	71 - 124	
Chlorobenzene	25.0	23.5		ug/L		94	72 _ 120	
cis-1,2-Dichloroethene	25.0	23.8		ug/L		95	74 - 124	
Ethylbenzene	25.0	23.6		ug/L		94	77 - 123	
Methyl tert-butyl ether	25.0	22.7		ug/L		91	64 - 127	
Tetrachloroethene	25.0	25.4		ug/L		102	74 - 122	
Toluene	25.0	23.3		ug/L		93	80 _ 122	
trans-1,2-Dichloroethene	25.0	23.3		ug/L		93	73 _ 127	
Trichloroethene	25.0	24.6		ug/L		98	74 - 123	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		71 - 126
1,2-Dichloroethane-d4 (Surr)	103		66 - 137
4-Bromofluorobenzene (Surr)	105		73 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-185534/1-A

Matrix: Water

Analysis Batch: 188158

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 185534

Analysis Batch: 188158		•••						Prep Batch:	185534
Analyte	MB Result	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		5.0				06/04/14 05:45	06/17/14 15:06	1
bis (2-chloroisopropyl) ether	ND		5.0	0.52	ug/L		06/04/14 05:45	06/17/14 15:06	1
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		06/04/14 05:45	06/17/14 15:06	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		06/04/14 05:45	06/17/14 15:06	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		06/04/14 05:45	06/17/14 15:06	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		06/04/14 05:45	06/17/14 15:06	1
2,4-Dinitrophenol	ND		10	2.2	ug/L		06/04/14 05:45	06/17/14 15:06	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		06/04/14 05:45	06/17/14 15:06	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		06/04/14 05:45	06/17/14 15:06	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		06/04/14 05:45	06/17/14 15:06	1
2-Chlorophenol	ND		5.0	0.53	ug/L		06/04/14 05:45	06/17/14 15:06	1
2-Methylphenol	ND		5.0	0.40	ug/L		06/04/14 05:45	06/17/14 15:06	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		06/04/14 05:45	06/17/14 15:06	1
2-Nitroaniline	ND		10	0.42	ug/L		06/04/14 05:45	06/17/14 15:06	1
2-Nitrophenol	ND		5.0	0.48	ug/L		06/04/14 05:45	06/17/14 15:06	1
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		06/04/14 05:45	06/17/14 15:06	1
3-Nitroaniline	ND		10	0.48	ug/L		06/04/14 05:45	06/17/14 15:06	1
4,6-Dinitro-2-methylphenol	ND		10	2.2	ug/L		06/04/14 05:45	06/17/14 15:06	1
4-Bromophenyl phenyl ether	ND		5.0	0.45	ug/L		06/04/14 05:45	06/17/14 15:06	1
4-Chloro-3-methylphenol	ND		5.0	0.45	ug/L		06/04/14 05:45	06/17/14 15:06	1
4-Chloroaniline	ND		5.0	0.59	ug/L		06/04/14 05:45	06/17/14 15:06	1
4-Chlorophenyl phenyl ether	ND		5.0	0.35	ug/L		06/04/14 05:45	06/17/14 15:06	1
4-Methylphenol	ND		10	0.36	ug/L		06/04/14 05:45	06/17/14 15:06	1
4-Nitroaniline	ND		10	0.25	ug/L		06/04/14 05:45	06/17/14 15:06	1
4-Nitrophenol	ND		10	1.5	ug/L		06/04/14 05:45	06/17/14 15:06	1
Acenaphthene	ND		5.0	0.41	ug/L		06/04/14 05:45	06/17/14 15:06	1

TestAmerica Buffalo

Page 16 of 31

3

6

8

10

4.0

14

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 480-185534/1-A

Matrix: Water

Analysis Batch: 188158

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 185534

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	ND	5.0	0.38	ug/L		06/04/14 05:45	06/17/14 15:06	1
Acetophenone	ND	5.0	0.54	ug/L		06/04/14 05:45	06/17/14 15:06	1
Anthracene	ND	5.0	0.28	ug/L		06/04/14 05:45	06/17/14 15:06	1
Atrazine	ND	5.0	0.46	ug/L		06/04/14 05:45	06/17/14 15:06	1
Benzaldehyde	ND	5.0	0.27	ug/L		06/04/14 05:45	06/17/14 15:06	1
Benzo[a]anthracene	ND	5.0	0.36	ug/L		06/04/14 05:45	06/17/14 15:06	1
Benzo[a]pyrene	ND	5.0	0.47	ug/L		06/04/14 05:45	06/17/14 15:06	1
Benzo[b]fluoranthene	ND	5.0	0.34	ug/L		06/04/14 05:45	06/17/14 15:06	1
Benzo[g,h,i]perylene	ND	5.0	0.35	ug/L		06/04/14 05:45	06/17/14 15:06	1
Benzo[k]fluoranthene	ND	5.0	0.73	ug/L		06/04/14 05:45	06/17/14 15:06	1
Bis(2-chloroethoxy)methane	ND	5.0	0.35	ug/L		06/04/14 05:45	06/17/14 15:06	1
Bis(2-chloroethyl)ether	ND	5.0	0.40	ug/L		06/04/14 05:45	06/17/14 15:06	1
Bis(2-ethylhexyl) phthalate	ND	5.0	1.8	ug/L		06/04/14 05:45	06/17/14 15:06	1
Butyl benzyl phthalate	ND	5.0	0.42	ug/L		06/04/14 05:45	06/17/14 15:06	1
Caprolactam	ND	5.0	2.2	ug/L		06/04/14 05:45	06/17/14 15:06	1
Carbazole	ND	5.0	0.30	ug/L		06/04/14 05:45	06/17/14 15:06	1
Chrysene	ND	5.0	0.33	ug/L		06/04/14 05:45	06/17/14 15:06	1
Dibenz(a,h)anthracene	ND	5.0	0.42	ug/L		06/04/14 05:45	06/17/14 15:06	1
Di-n-butyl phthalate	ND	5.0	0.31	ug/L		06/04/14 05:45	06/17/14 15:06	1
Di-n-octyl phthalate	ND	5.0	0.47	ug/L		06/04/14 05:45	06/17/14 15:06	1
Dibenzofuran	ND	10	0.51	ug/L		06/04/14 05:45	06/17/14 15:06	1
Diethyl phthalate	ND	5.0	0.22	ug/L		06/04/14 05:45	06/17/14 15:06	1
Dimethyl phthalate	ND	5.0	0.36	ug/L		06/04/14 05:45	06/17/14 15:06	1
Fluoranthene	ND	5.0	0.40	ug/L		06/04/14 05:45	06/17/14 15:06	1
Fluorene	ND	5.0	0.36	ug/L		06/04/14 05:45	06/17/14 15:06	1
Hexachlorobenzene	ND	5.0	0.51	ug/L		06/04/14 05:45	06/17/14 15:06	1
Hexachlorobutadiene	ND	5.0	0.68	ug/L		06/04/14 05:45	06/17/14 15:06	1
Hexachlorocyclopentadiene	ND	5.0	0.59	ug/L		06/04/14 05:45	06/17/14 15:06	1
Hexachloroethane	ND	5.0	0.59	ug/L		06/04/14 05:45	06/17/14 15:06	1
Indeno[1,2,3-cd]pyrene	ND	5.0	0.47	ug/L		06/04/14 05:45	06/17/14 15:06	1
Isophorone	ND	5.0	0.43	ug/L		06/04/14 05:45	06/17/14 15:06	1
N-Nitrosodi-n-propylamine	ND	5.0	0.54	ug/L		06/04/14 05:45	06/17/14 15:06	1
N-Nitrosodiphenylamine	ND	5.0	0.51	ug/L		06/04/14 05:45	06/17/14 15:06	1
Naphthalene	ND	5.0	0.76	ug/L		06/04/14 05:45	06/17/14 15:06	1
Nitrobenzene	ND	5.0	0.29	ug/L		06/04/14 05:45	06/17/14 15:06	1
Pentachlorophenol	ND	10	2.2	ug/L		06/04/14 05:45	06/17/14 15:06	1
Phenanthrene	ND	5.0	0.44	ug/L		06/04/14 05:45	06/17/14 15:06	1
Phenol	ND	5.0	0.39	ug/L		06/04/14 05:45	06/17/14 15:06	1
Pyrene	ND	5.0	0.34	ug/L		06/04/14 05:45	06/17/14 15:06	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	72		46 - 120	06/04/14 05:45	06/17/14 15:06	1
Phenol-d5 (Surr)	40		16 - 120	06/04/14 05:45	06/17/14 15:06	1
p-Terphenyl-d14 (Surr)	109		67 - 150	06/04/14 05:45	06/17/14 15:06	1
2,4,6-Tribromophenol (Surr)	100		52 - 132	06/04/14 05:45	06/17/14 15:06	1
2-Fluorobiphenyl	75		48 - 120	06/04/14 05:45	06/17/14 15:06	1
2-Fluorophenol (Surr)	57		20 - 120	06/04/14 05:45	06/17/14 15:06	1

TestAmerica Buffalo

Page 17 of 31

6/18/2014

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-185534/2-A

Matrix: Water

Analysis Batch: 188158

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 185534**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-Dinitrotoluene	32.0	35.3		ug/L		110	65 _ 154	
2-Chlorophenol	32.0	32.4		ug/L		101	48 - 120	
4-Chloro-3-methylphenol	32.0	33.6		ug/L		105	64 - 120	
4-Nitrophenol	64.0	48.8		ug/L		76	16 - 120	
Acenaphthene	32.0	32.5		ug/L		102	60 - 120	
Atrazine	64.0	81.6	E	ug/L		127	56 ₋ 179	
Bis(2-ethylhexyl) phthalate	32.0	35.7		ug/L		111	53 - 158	
Fluorene	32.0	33.6		ug/L		105	55 ₋ 143	
Hexachloroethane	32.0	25.1		ug/L		78	14 - 101	
N-Nitrosodi-n-propylamine	32.0	30.4		ug/L		95	56 - 120	
Pentachlorophenol	64.0	67.1		ug/L		105	39 _ 136	
Phenol	32.0	20.8		ug/L		65	17 _ 120	
Pyrene	32.0	32.1		ug/L		100	58 ₋ 136	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	82		46 - 120
Phenol-d5 (Surr)	59		16 - 120
p-Terphenyl-d14 (Surr)	106		67 - 150
2,4,6-Tribromophenol (Surr)	119		52 - 132
2-Fluorobiphenyl	94		48 - 120
2-Fluorophenol (Surr)	78		20 - 120

Lab Sample ID: LCSD 480-185534/3-A

Matrix: Water

Analysis Batch: 188158

Client Sam	ple ID: Lab	Control	Sample Dup
-------------------	-------------	---------	------------

Prep Type: Total/NA **Prep Batch: 185534**

						op Datom .			
Spike	LCSD	LCSD				%Rec.		RPD	
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
32.0	33.2		ug/L		104	65 - 154	6	20	
32.0	29.6		ug/L		93	48 - 120	9	25	
32.0	31.7		ug/L		99	64 - 120	6	27	
64.0	44.7		ug/L		70	16 - 120	9	48	
32.0	31.9		ug/L		100	60 - 120	2	24	
64.0	77.4	E	ug/L		121	56 - 179	5	20	
32.0	32.9		ug/L		103	53 - 158	8	15	
32.0	31.9		ug/L		100	55 - 143	5	15	
32.0	23.9		ug/L		75	14 - 101	5	46	
32.0	28.3		ug/L		88	56 - 120	7	31	
64.0	63.9		ug/L		100	39 - 136	5	37	
32.0	18.8		ug/L		59	17 - 120	10	34	
32.0	30.0		ug/L		94	58 - 136	7	19	
	Added 32.0 32.0 32.0 64.0 32.0 64.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	Added Result 32.0 33.2 32.0 29.6 32.0 31.7 64.0 44.7 32.0 31.9 64.0 77.4 32.0 32.9 32.0 31.9 32.0 23.9 32.0 28.3 64.0 63.9 32.0 18.8	Added Result Qualifier 32.0 33.2 32.0 29.6 32.0 31.7 64.0 44.7 32.0 31.9 64.0 77.4 E 32.0 32.9 32.0 31.9 32.0 23.9 32.0 28.3 64.0 63.9 32.0 18.8	Added Result Qualifier Unit 32.0 33.2 ug/L 32.0 29.6 ug/L 32.0 31.7 ug/L 64.0 44.7 ug/L 32.0 31.9 ug/L 32.0 32.9 ug/L 32.0 31.9 ug/L 32.0 23.9 ug/L 32.0 28.3 ug/L 64.0 63.9 ug/L 32.0 18.8 ug/L	Added Result Qualifier Unit D 32.0 33.2 ug/L ug/L 32.0 29.6 ug/L ug/L 32.0 31.7 ug/L ug/L 64.0 44.7 ug/L ug/L 32.0 31.9 ug/L 32.0 32.9 ug/L 32.0 31.9 ug/L 32.0 23.9 ug/L 32.0 28.3 ug/L 64.0 63.9 ug/L 32.0 18.8 ug/L	Added Result Qualifier Unit D %Rec 32.0 33.2 ug/L 104 32.0 29.6 ug/L 93 32.0 31.7 ug/L 99 64.0 44.7 ug/L 70 32.0 31.9 ug/L 100 64.0 77.4 E ug/L 121 32.0 32.9 ug/L 103 32.0 31.9 ug/L 100 32.0 23.9 ug/L 75 32.0 28.3 ug/L 88 64.0 63.9 ug/L 100 32.0 18.8 ug/L 59	Spike LCSD LCSD Unit D %Rec. Limits 32.0 33.2 ug/L 104 65 - 154 32.0 29.6 ug/L 93 48 - 120 32.0 31.7 ug/L 99 64 - 120 64.0 44.7 ug/L 70 16 - 120 32.0 31.9 ug/L 100 60 - 120 64.0 77.4 E ug/L 121 56 - 179 32.0 32.9 ug/L 103 53 - 158 32.0 31.9 ug/L 100 55 - 143 32.0 23.9 ug/L 75 14 - 101 32.0 28.3 ug/L 88 56 - 120 64.0 63.9 ug/L 100 39 - 136 32.0 18.8 ug/L 59 17 - 120	Spike LCSD LCSD Unit D %Rec. Limits RPD 32.0 33.2 ug/L 104 65 - 154 6 32.0 29.6 ug/L 93 48 - 120 9 32.0 31.7 ug/L 99 64 - 120 6 64.0 44.7 ug/L 70 16 - 120 9 32.0 31.9 ug/L 100 60 - 120 2 64.0 77.4 E ug/L 121 56 - 179 5 32.0 32.9 ug/L 103 53 - 158 8 32.0 31.9 ug/L 100 55 - 143 5 32.0 23.9 ug/L 75 14 - 101 5 32.0 28.3 ug/L 88 56 - 120 7 64.0 63.9 ug/L 100 39 - 136 5 32.0 18.8 ug/L 59 17 - 120 10	

LCSD LCSD

	LOOD	LUUD	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	78		46 - 120
Phenol-d5 (Surr)	55		16 - 120
p-Terphenyl-d14 (Surr)	101		67 - 150
2,4,6-Tribromophenol (Surr)	116		52 - 132
2-Fluorobiphenyl	92		48 - 120

TestAmerica Buffalo

Client Sample ID: Lab Control Sample Dup

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-185534/3-A

Matrix: Water

Analysis Batch: 188158

Prep Type: Total/NA

06/05/14 07:59

Prep Batch: 185534

LCSD LCSD

Surrogate %Recovery Qualifier Limits 2-Fluorophenol (Surr) 73 20 - 120

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 480-185799/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 185760

Diesel Range Organics [C10-C28]

MB MB

Prep Batch: 185799

0.31 mg/L

LCS LCS

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.50

MB MB

0.350

%Recovery Qualifier Surrogate Limits Prepared Dil Fac Analyzed 06/05/14 07:59 o-Terphenyl 97 29 - 136 06/05/14 15:06

Lab Sample ID: LCS 480-185799/2-A Client Sample ID: Lab Control Sample

Matrix: Water

Prep Type: Total/NA Analysis Batch: 185760 **Prep Batch: 185799**

%Rec.

06/05/14 15:06

Spike Analyte Added Result Qualifier Limits Unit D %Rec 6.00 3.22 mg/L 54 42 - 120 Diesel Range Organics

[C10-C28]

LCS LCS

%Recovery Qualifier I imits Surrogate o-Terphenyl 55 29 - 136

Lab Sample ID: LCSD 480-185799/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 185760

Prep Type: Total/NA

Prep Batch: 185799 RPD %Rec.

Spike LCSD LCSD Added Limit Analyte Result Qualifier Unit %Rec Limits RPD 6.00 3.43 42 - 120 Diesel Range Organics mg/L

[C10-C28]

LCSD LCSD

%Recovery Qualifier Surrogate Limits o-Terphenyl 43 29 - 136

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-185762/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 186166

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		06/05/14 07:22	06/07/14 05:50	1
PCB-1221	ND		0.50	0.18	ug/L		06/05/14 07:22	06/07/14 05:50	1
PCB-1232	ND		0.50	0.18	ug/L		06/05/14 07:22	06/07/14 05:50	1
PCB-1242	ND		0.50	0.18	ua/L		06/05/14 07:22	06/07/14 05:50	1

TestAmerica Buffalo

Prep Batch: 185762

Page 19 of 31

6/18/2014

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 480-185762/1-A

Matrix: Water

Analysis Batch: 186166

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 185762

ı		MB	MB								
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	PCB-1248	ND		0.50	0.18	ug/L		06/05/14 07:22	06/07/14 05:50	1	
	PCB-1254	ND		0.50	0.25	ug/L		06/05/14 07:22	06/07/14 05:50	1	
١	PCB-1260	ND		0.50	0.25	ug/L		06/05/14 07:22	06/07/14 05:50	1	
	PCB-1262	ND		0.50	0.25	ug/L		06/05/14 07:22	06/07/14 05:50	1	
	PCB-1268	ND		0.50	0.25	ug/L		06/05/14 07:22	06/07/14 05:50	1	
ı											

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	78		23 - 127	06/05/14 07:22	06/07/14 05:50	1
DCB Decachlorobiphenyl	39		19 - 126	06/05/14 07:22	06/07/14 05:50	1

LCS LCS

Lab Sample ID: LCS 480-185762/2-A

Matrix: Water

Analysis Batch: 186166

Client Sample	e ID: I	Lab	Control	Sampl	е
			T	Tatal/NI	

Prep Type: Total/NA

Prep Batch: 185762

Analyte Added Result Qualifier Unit %Rec Limits PCB-1016 4.00 3.64 91 51 - 137 ug/L PCB-1260 4.00 2.75 45 - 139 ug/L

Spike

LCS LCS Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 23 - 127 87 DCB Decachlorobiphenyl 18 X 19 - 126

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-185333/1-A

Matrix: Water

Analysis Batch: 185788

Client Sample ID:	Method Blank
-------------------	--------------

Prep Type: Total/NA

Prep Batch: 185333

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		06/03/14 09:05	06/04/14 12:54	1
Barium	ND		0.0020	0.00070	mg/L		06/03/14 09:05	06/04/14 12:54	1
Cadmium	ND		0.0020	0.00050	mg/L		06/03/14 09:05	06/04/14 12:54	1
Chromium	ND		0.0040	0.0010	mg/L		06/03/14 09:05	06/04/14 12:54	1
Lead	ND		0.010	0.0030	mg/L		06/03/14 09:05	06/04/14 12:54	1
Selenium	ND		0.025	0.0087	mg/L		06/03/14 09:05	06/04/14 12:54	1
Silver	ND		0.0060	0.0017	mg/L		06/03/14 09:05	06/04/14 12:54	1

Lab Sample ID: LCS 480-185333/2-A

Matrix: Water

Analysis Batch: 185788

Client Sample II	D: Lab	Control	Sample
	_		

Prep Type: Total/NA **Prep Batch: 185333**

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.200	0.198		mg/L		99	80 - 120	
Barium	0.200	0.218		mg/L		109	80 - 120	
Cadmium	0.200	0.195		mg/L		98	80 - 120	
Chromium	0.200	0.200		mg/L		100	80 - 120	
Lead	0.200	0.193		mg/L		97	80 - 120	
Selenium	0.200	0.195		mg/L		98	80 - 120	

TestAmerica Buffalo

Page 20 of 31

6/18/2014

Silver

106

80 - 120

5

Method: 6010C - Metals	(ICP)	(Continued)
------------------------	-------	-------------

Lab Sample ID: LCS 480-185333/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 185788 Prep Batch: 185333** LCS LCS Spike Added Result Qualifier Analyte Unit %Rec Limits D

0.0530

ma/L

0.0500

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-185774/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 186056 Prep Batch: 185774

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Mercury ND 0.00020 0.00012 mg/L 06/05/14 09:35 06/05/14 16:07

Lab Sample ID: LCS 480-185774/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 186056 Prep Batch: 185774 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 0.00667 0.00568 Mercury mg/L 85 80 - 120

Method: 1010A - Ignitability, Pensky-Martens Closed Cup Method

Lab Sample ID: LCS 480-185699/1 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 185699 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Flashpoint 81.0 99 97.5 - 102. 80.00 Degrees F

Method: 9012 - Cyanide, Reactive

Lab Sample ID: MB 480-185947/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 185949 **Prep Batch: 185947**

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Cyanide, Reactive ND 10 0.0030 mg/L 06/05/14 00:35 06/05/14 12:03

Lab Sample ID: LCS 480-185947/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 185949 **Prep Batch: 185947** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits

Cyanide, Reactive 1000 295 30 10 - 100 mg/L

QC Sample Results

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60969-1

10 - 100

2

Method: 9012 - Cyanide, Reactive (Continued)

Lab Sample ID: 480-60969-1 DU

Client Sample ID: Frac Tank

Matrix: Water

Prep Type: Total/NA

Matrix: Water Prep Type: Total/NA
Analysis Batch: 185949 Prep Batch: 185947

Method: 9034 - Sulfide, Reactive

Sulfide, Reactive

Lab Sample ID: MB 480-185944/1-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA
Analysis Batch: 185952 Prep Batch: 185944

мв мв

 Analyte
 Result
 Qualifier
 RL
 MDL Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Sulfide, Reactive
 ND
 10
 0.57
 mg/L
 06/05/14 00:35
 06/05/14 12:20
 1

Lab Sample ID: LCS 480-185944/2-A

Client Sample ID: Lab Control Sample
Matrix: Water

Prep Type: Total/NA

Analysis Batch: 185952

Spike LCS LCS Frep Batch: 185944

Analyte Added Result Qualifier Unit D Frep Batch: 185944

1000

Lab Sample ID: 480-60969-1 DU Client Sample ID: Frac Tank

792

mg/L

Matrix: Water Prep Type: Total/NA
Analysis Batch: 185952 Prep Batch: 185944

Sample Sample DU DU RPD
Analyte Result Qualifier Result Qualifier Unit D RPD Limit

Sulfide, Reactive ND ND mg/L NC 20

QC Association Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60969-1

GC/MS VOA

Analysis Batch: 185319

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	8260C	
LCS 480-185319/6	Lab Control Sample	Total/NA	Water	8260C	
MB 480-185319/8	Method Blank	Total/NA	Water	8260C	

Analysis Batch: 185707

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1 - DL	Frac Tank	Total/NA	Water	8260C	
LCS 480-185707/6	Lab Control Sample	Total/NA	Water	8260C	
MB 480-185707/8	Method Blank	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 185534

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	3510C	
LCS 480-185534/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-185534/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 480-185534/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 188158

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	8270D	185534
LCS 480-185534/2-A	Lab Control Sample	Total/NA	Water	8270D	185534
LCSD 480-185534/3-A	Lab Control Sample Dup	Total/NA	Water	8270D	185534
MB 480-185534/1-A	Method Blank	Total/NA	Water	8270D	185534

GC Semi VOA

Analysis Batch: 185760

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	8015D	185799
LCS 480-185799/2-A	Lab Control Sample	Total/NA	Water	8015D	185799
LCSD 480-185799/3-A	Lab Control Sample Dup	Total/NA	Water	8015D	185799
MB 480-185799/1-A	Method Blank	Total/NA	Water	8015D	185799

Prep Batch: 185762

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	3510C	
LCS 480-185762/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-185762/1-A	Method Blank	Total/NA	Water	3510C	

Prep Batch: 185799

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	3510C	
LCS 480-185799/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-185799/3-A	A Lab Control Sample Dup	Total/NA	Water	3510C	
MB 480-185799/1-A	Method Blank	Total/NA	Water	3510C	

TestAmerica Buffalo

Page 23 of 31

G

2

4

6

7

0

10

4.0

13

14

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

GC Semi VOA (Continued)

Analysis Batch: 186166

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	8082A	185762
LCS 480-185762/2-A	Lab Control Sample	Total/NA	Water	8082A	185762
MB 480-185762/1-A	Method Blank	Total/NA	Water	8082A	185762

Metals

Prep Batch: 185333

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	3005A	
LCS 480-185333/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-185333/1-A	Method Blank	Total/NA	Water	3005A	

Prep Batch: 185774

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	7470A	
LCS 480-185774/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-185774/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 185788

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	6010C	185333
LCS 480-185333/2-A	Lab Control Sample	Total/NA	Water	6010C	185333
MB 480-185333/1-A	Method Blank	Total/NA	Water	6010C	185333

Analysis Batch: 186056

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	7470A	185774
LCS 480-185774/2-A	Lab Control Sample	Total/NA	Water	7470A	185774
MB 480-185774/1-A	Method Blank	Total/NA	Water	7470A	185774

General Chemistry

Analysis Batch: 185503

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	9040C	
LCS 480-185503/1	Lab Control Sample	Total/NA	Water	9040C	

Analysis Batch: 185699

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	1010A	
LCS 480-185699/1	Lab Control Sample	Total/NA	Water	1010A	

Prep Batch: 185944

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	7.3.4	<u> </u>
480-60969-1 DU	Frac Tank	Total/NA	Water	7.3.4	
LCS 480-185944/2-A	Lab Control Sample	Total/NA	Water	7.3.4	
MB 480-185944/1-A	Method Blank	Total/NA	Water	7.3.4	

TestAmerica Buffalo

6/18/2014

Page 24 of 31

9

9

4

6

7

9

10

12

13

14

QC Association Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60969-1

General Chemistry (Continued)

Prep Batch: 185947

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	7.3.3	
480-60969-1 DU	Frac Tank	Total/NA	Water	7.3.3	
LCS 480-185947/2-A	Lab Control Sample	Total/NA	Water	7.3.3	
MB 480-185947/1-A	Method Blank	Total/NA	Water	7.3.3	

Analysis Batch: 185949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	9012	185947
480-60969-1 DU	Frac Tank	Total/NA	Water	9012	185947
LCS 480-185947/2-A	Lab Control Sample	Total/NA	Water	9012	185947
MB 480-185947/1-A	Method Blank	Total/NA	Water	9012	185947

Analysis Batch: 185952

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-60969-1	Frac Tank	Total/NA	Water	9034	185944
480-60969-1 DU	Frac Tank	Total/NA	Water	9034	185944
LCS 480-185944/2-A	Lab Control Sample	Total/NA	Water	9034	185944
MB 480-185944/1-A	Method Blank	Total/NA	Water	9034	185944

Lab Chronicle

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60969-1

Lab Sample ID: 480-60969-1

Matrix: Water

Client Sample ID: Frac Tank

Date Collected: 05/30/14 07:30 Date Received: 06/03/14 01:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	185319	06/03/14 13:27	GTG	TAL BUF
Total/NA	Analysis	8260C	DL	1000	185707	06/05/14 05:04	NQN	TAL BUF
Total/NA	Prep	3510C			185534	06/04/14 05:45	MCZ	TAL BUF
Total/NA	Analysis	8270D		20	188158	06/17/14 17:31	KAC	TAL BUF
Total/NA	Prep	3510C			185799	06/05/14 07:59	MCZ	TAL BUF
Total/NA	Analysis	8015D		1	185760	06/05/14 16:49	DLE	TAL BUF
Total/NA	Prep	3510C			185762	06/05/14 07:22	MCZ	TAL BUF
Total/NA	Analysis	8082A		1000	186166	06/07/14 07:25	JMM	TAL BUF
Total/NA	Prep	3005A			185333	06/03/14 09:05	SS1	TAL BUF
Total/NA	Analysis	6010C		1	185788	06/04/14 14:04	MTM2	TAL BUF
Total/NA	Prep	7470A			185774	06/05/14 09:35	LRK	TAL BUF
Total/NA	Analysis	7470A		1	186056	06/05/14 16:40	LRK	TAL BUF
Total/NA	Analysis	1010A		1	185699	06/04/14 08:21	RP	TAL BUF
Total/NA	Prep	7.3.3			185947	06/05/14 00:35	LAW	TAL BUF
Total/NA	Analysis	9012		1	185949	06/05/14 12:03	LAW	TAL BUF
Total/NA	Prep	7.3.4			185944	06/05/14 00:35	LAW	TAL BUF
Total/NA	Analysis	9034		1	185952	06/05/14 12:20	LAW	TAL BUF
Total/NA	Analysis	9040C		1	185503	06/03/14 19:30	KS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

Ŀ

6

8

4.6

11

12

4 1

Certification Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60969-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Massachusetts	State Program	1	M-NY044	06-30-14 *
Rhode Island	State Program	1	LAO00328	12-30-14

4

- -

4

5

7

9

11

-

13

14

 $[\]ensuremath{^{\star}}$ Certification renewal pending - certification considered valid.

Method Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60969-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8015D	Diesel Range Organics (DRO) (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
1010A	Ignitability, Pensky-Martens Closed Cup Method	SW846	TAL BUF
9012	Cyanide, Reactive	SW846	TAL BUF
9034	Sulfide, Reactive	SW846	TAL BUF
9040C	pH	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

6

4

5

7

8

9

4 1

12

Sample Summary

Client: Resource Control Associates, Inc. Project/Site: Bay Spring, Barrington

TestAmerica Job ID: 480-60969-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-60969-1	Frac Tank	Water	05/30/14 07:30	06/03/14 01:00

9

Λ

5

6

8

4.0

11

4.0

14

DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Resource Control Associates, Inc.

Job Number: 480-60969-1

Login Number: 60969 List Source: TestAmerica Buffalo

List Number: 1

Creator: Wienke, Robert K

oronton months, modern		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

ی

4

_

3

11

13

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-61440-1

Client Project/Site: 90 Bay Spring Ave, Barrington, RI

For:

Resource Control Associates, Inc. 474 Broadway
Pawtucket, Rhode Island 02860

Attn: Ms. Danielle Eastman-Getsinger

Riv

Authorized for release by: 6/13/2014 10:01:44 AM Rich Emerich, Analyst V rich.emerich@testamericainc.com

Designee for

Steve Hartmann, Service Center Manager (413)572-4000

steve.hartmann@testamericainc.com

----- LINKS -----

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	7
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

3

4

Q

40

11

13

14

Definitions/Glossary

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI TestAmerica Job ID: 480-61440-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD exceeds the control limits
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

GC Semi VOA

Qualifier	Qualifier Description
X	Surrogate is outside control limits

Glossary

RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

Case Narrative

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI TestAmerica Job ID: 480-61440-1

Job ID: 480-61440-1

Laboratory: TestAmerica Buffalo

Narrative

Receipt

The samples were received on 6/7/2014 at 1:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.1° C.

Receipt Notes Exceptions

The following samples were preserved via freezing on 6/7/2014 at 05:30: MW-104 (5-8') (480-61440-4), MW-106 (6-6.5') (480-61440-6). This is outside the 48 hour time frame required by the method.

GC/MS VOA

Method 8260C: The method blank for prep batch 186868 contained Methylene Chloride above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8260C: The laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) for batch186888 recovered outside control limits for the following analytes: Chloroethane and Trichlorofluoromethane. These were not requested spike compounds; therefore, the data have been qualified and reported.

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for batch 186888 recovered outside control limits for the following analytes: Chloromethane, cis-1,3-Dichloropropene and Vinyl Chloride. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260C: The continuing calibration verification (CCV) associated with batch 186888 recovered above the upper control limit for 1,1,1-Trichloroethane, Chloroethane and Vinyl Chloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: (CCVIS 480-186888/4).

Method 8260C: The continuing calibration verification (CCV) associated with batch 186888 recovered outside acceptance criteria, low biased, for 1,2-Dibromo-3-chloropropene and Methyl Acetate. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Method 8260C: The following sample was diluted due to the abundance of non-target analytes: MW-104 (5-8') (480-61440-4). Elevated reporting limits (RLs) are provided.

Method 8260C: The large number of analytes included in the continuing calibration verification (CCV) in batch 187006 gives a high probability that one or more analytes will be outside acceptance criteria. As indicated in the reference method, analysis may proceed as long as no more than 20% of the analytes are outside the method-defined %D criteria.

Method 8260C: The continuing calibration verification (CCV) associated with batch 187006 recovered above the upper control limit for several analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8260C: The continuing calibration verification (CCV) associated with batch 187006 recovered outside acceptance criteria, low biased, for several analytes. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8015D: The following sample was diluted due to an abundance of target analytes: MW-104 (5-8') (480-61440-4). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3550C: The following sample: MW-106 (6-6.5') (480-61440-6) was decanted prior to preparation.

4

5

7

0

10

12

10

Case Narrative

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI TestAmerica Job ID: 480-61440-1

Job ID: 480-61440-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

 $No \ additional \ analytical \ or \ quality \ issues \ were \ noted, \ other \ than \ those \ described \ above \ or \ in \ the \ Definitions/Glossary \ page.$

1

4

5

7

Ō

10

11

13

14

Detection Summary

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI TestAmerica Job ID: 480-61440-1

3

Client Sample ID: MW-104 (5-8')

Lak	S	am	ple	ID):	48	0-6	14	40)-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Ethylbenzene	5300		3400	980	ug/Kg	40	#	8260C	Total/NA
Isopropylbenzene	5500		3400	500	ug/Kg	40	₽	8260C	Total/NA
Methylene Chloride	2600	JB	3400	660	ug/Kg	40	₩	8260C	Total/NA
Xylenes, Total	52000		6700	560	ug/Kg	40	₽	8260C	Total/NA
Diesel Range Organics [C10-C28]	3100		440	130	mg/Kg	20	₽	8015D	Total/NA

5

Client Sample ID: MW-106 (6-6.5')

Lab Sample ID: 480-61440-6	ab Sam	ole ID:	480-61	440-6
----------------------------	--------	---------	--------	-------

		_							
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
4-Methyl-2-pentanone (MIBK)	45	J	380	24	ug/Kg	1	₩	8260C	Total/NA
Methyl acetate	83		75	36	ug/Kg	1	₽	8260C	Total/NA
Methylene Chloride	84	В	75	15	ug/Kg	1	₽	8260C	Total/NA
Xylenes, Total	16	J	150	13	ug/Kg	1	₩	8260C	Total/NA
Diesel Range Organics [C10-C28]	29		22	6.5	mg/Kg	1	₽	8015D	Total/NA

9

11

12

13

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI

Client Sample ID: MW-104 (5-8')

Date Collected: 06/04/14 17:00 Date Received: 06/07/14 01:30 TestAmerica Job ID: 480-61440-1

Lab Sample ID: 480-61440-4

Eas campio isi 100 ci 110 1
Matrice Callal
Matrix: Solid
Percent Solids: 74.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		3400	930	ug/Kg	<u> </u>	06/10/14 15:39	06/11/14 02:19	
1,1,2,2-Tetrachloroethane	ND		3400	540	ug/Kg	₩	06/10/14 15:39	06/11/14 02:19	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		3400	1700	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	4
1,1,2-Trichloroethane	ND		3400	700	ug/Kg	ф.	06/10/14 15:39	06/11/14 02:19	
1,1-Dichloroethane	ND		3400	1000	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	4
1,1-Dichloroethene	ND		3400	1200	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	4
1,2,4-Trichlorobenzene	ND		3400	1300	ug/Kg		06/10/14 15:39	06/11/14 02:19	
1,2-Dibromo-3-Chloropropane	ND		3400	1700	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	4
1,2-Dibromoethane	ND		3400	590	ug/Kg	₩	06/10/14 15:39	06/11/14 02:19	2
1,2-Dichlorobenzene	ND		3400	860	ug/Kg		06/10/14 15:39	06/11/14 02:19	
1,2-Dichloroethane	ND		3400	1400	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	4
1,2-Dichloropropane	ND		3400	540	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	2
1,3-Dichlorobenzene	ND		3400	900	ug/Kg		06/10/14 15:39	06/11/14 02:19	
1,4-Dichlorobenzene	ND		3400	470	ug/Kg ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	_
2-Butanone (MEK)	ND		17000	10000	ug/Kg ug/Kg	₩	06/10/14 15:39	06/11/14 02:19	_
2-Hexanone	ND		17000	6900	ug/Kg ug/Kg		06/10/14 15:39	06/11/14 02:19	<u>.</u> 2
4-Methyl-2-pentanone (MIBK)	ND		17000	1100	ug/Kg ug/Kg	₩	06/10/14 15:39	06/11/14 02:19	_
Acetone	ND		17000	14000	ug/Kg ug/Kg	₩	06/10/14 15:39	06/11/14 02:19	_
Benzene	ND		3400	640	ug/Kg ug/Kg		06/10/14 15:39	06/11/14 02:19	<u>.</u> 2
Bromodichloromethane	ND ND		3400					06/11/14 02:19	2
				670	ug/Kg		06/10/14 15:39		
Bromoform	ND		3400	1700	ug/Kg		06/10/14 15:39	06/11/14 02:19	۷
Bromomethane	ND		3400	740	ug/Kg	₩	06/10/14 15:39	06/11/14 02:19	4
Carbon disulfide	ND		3400	1500	ug/Kg		06/10/14 15:39	06/11/14 02:19	4
Carbon tetrachloride	ND		3400	860	ug/Kg	<u>"</u> .	06/10/14 15:39	06/11/14 02:19	
Chlorobenzene	ND		3400	440	ug/Kg	<u>*</u>	06/10/14 15:39	06/11/14 02:19	4
Chloroethane	ND	*	3400	700	ug/Kg	<u>*</u>	06/10/14 15:39	06/11/14 02:19	2
Chloroform	ND		3400	2300	ug/Kg	<u>.</u> .	06/10/14 15:39	06/11/14 02:19	
Chloromethane	ND	*	3400	800	ug/Kg		06/10/14 15:39	06/11/14 02:19	4
cis-1,2-Dichloroethene	ND		3400	930	ug/Kg	*	06/10/14 15:39	06/11/14 02:19	4
cis-1,3-Dichloropropene	ND	*	3400	800	ug/Kg	<u>.</u>	06/10/14 15:39	06/11/14 02:19	
Cyclohexane	ND		3400	740	ug/Kg	₽.	06/10/14 15:39	06/11/14 02:19	4
Dibromochloromethane	ND		3400	1600	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	4
Dichlorodifluoromethane	ND		3400	1500	ug/Kg		06/10/14 15:39	06/11/14 02:19	
Ethylbenzene	5300		3400	980	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	4
Isopropylbenzene	5500		3400	500	ug/Kg	₩	06/10/14 15:39	06/11/14 02:19	4
Methyl acetate	ND		3400	1600	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	4
Methyl tert-butyl ether	ND		3400	1300	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	4
Methylcyclohexane	ND		3400	1600	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	4
Methylene Chloride	2600	JB	3400	660	ug/Kg	₩	06/10/14 15:39	06/11/14 02:19	4
Styrene	ND		3400	810	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	4
Tetrachloroethene	ND		3400	450	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	4
Toluene	ND		3400	900	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	4
rans-1,2-Dichloroethene	ND		3400	790	ug/Kg	₩	06/10/14 15:39	06/11/14 02:19	4
trans-1,3-Dichloropropene	ND		3400	330	ug/Kg	₩	06/10/14 15:39	06/11/14 02:19	4
Trichloroethene	ND		3400	930	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	4
Trichlorofluoromethane	ND	*	3400	1600	ug/Kg		06/10/14 15:39	06/11/14 02:19	
Vinyl chloride	ND	*	3400	1100	ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	2
Xylenes, Total	52000		6700		ug/Kg	₽	06/10/14 15:39	06/11/14 02:19	2

TestAmerica Buffalo

Page 7 of 20

6/13/2014

2

6

8

10

12

A A

4 E

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI TestAmerica Job ID: 480-61440-1

Client Sample ID: MW-104 (5-8')

Date Collected: 06/04/14 17:00 Date Received: 06/07/14 01:30 Lab Sample ID: 480-61440-4

Matrix: Solid
Percent Solids: 74.7

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		53 - 146	06/10/14 15:39	06/11/14 02:19	40
4-Bromofluorobenzene (Surr)	111		49 - 148	06/10/14 15:39	06/11/14 02:19	40
Toluene-d8 (Surr)	102		50 - 149	06/10/14 15:39	06/11/14 02:19	40

L	7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6							00, 10, 11, 10,00	00	
Γ	Method: 8015D - Diesel Range Org	ganics (DRO)	(GC)							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Diesel Range Organics [C10-C28]	3100		440	130	mg/Kg	₩	06/09/14 14:29	06/11/14 06:53	20
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	o-Terphenyl	155	X	48 - 125				06/09/14 14:29	06/11/14 06:53	20

Client Sample ID: MW-106 (6-6.5')

Lab Sample ID: 480-61440-6

 Date Collected: 06/04/14 19:00
 Matrix: Solid

 Date Received: 06/07/14 01:30
 Percent Solids: 75.8

Method: 8260C - Volatile Organic (Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		75	21	ug/Kg		06/10/14 15:39	06/11/14 13:29	1
1,1,2,2-Tetrachloroethane	ND		75	12	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		75	38	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
1,1,2-Trichloroethane	ND		75	16	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
1,1-Dichloroethane	ND		75	23	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
1,1-Dichloroethene	ND		75	26	ug/Kg	₩	06/10/14 15:39	06/11/14 13:29	1
1,2,4-Trichlorobenzene	ND		75	28	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
1,2-Dibromo-3-Chloropropane	ND		75	38	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
1,2-Dibromoethane	ND		75	13	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
1,2-Dichlorobenzene	ND		75	19	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
1,2-Dichloroethane	ND		75	31	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
1,2-Dichloropropane	ND		75	12	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
1,3-Dichlorobenzene	ND		75	20	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
1,4-Dichlorobenzene	ND		75	11	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
2-Butanone (MEK)	ND		380	220	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
2-Hexanone	ND		380	150	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
4-Methyl-2-pentanone (MIBK)	45	J	380	24	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Acetone	ND		380	310	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Benzene	ND		75	14	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Bromodichloromethane	ND		75	15	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Bromoform	ND		75	38	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Bromomethane	ND		75	17	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Carbon disulfide	ND		75	34	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Carbon tetrachloride	ND		75	19	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Chlorobenzene	ND		75	9.9	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Chloroethane	ND		75	16	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Chloroform	ND		75	52	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Chloromethane	ND	*	75	18	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
cis-1,2-Dichloroethene	ND		75	21	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
cis-1,3-Dichloropropene	ND	*	75	18	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Cyclohexane	ND		75	17	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Dibromochloromethane	ND		75	36	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Dichlorodifluoromethane	ND		75	33	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Ethylbenzene	ND		75	22	ug/Kg	\$	06/10/14 15:39	06/11/14 13:29	1

TestAmerica Buffalo

Page 8 of 20

3

<u>+</u>

6

8

4.0

12

13

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI

Date Received: 06/07/14 01:30

TestAmerica Job ID: 480-61440-1

Lab Sample ID: 480-61440-6

Matrix: Solid

Percent Solids: 75.8

Client Sample ID: MW-106 (6-6.5')	
Date Collected: 06/04/14 19:00	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		75	11	ug/Kg	<u> </u>	06/10/14 15:39	06/11/14 13:29	1
Methyl acetate	83		75	36	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Methyl tert-butyl ether	ND		75	28	ug/Kg		06/10/14 15:39	06/11/14 13:29	1
Methylcyclohexane	ND		75	35	ug/Kg	☼	06/10/14 15:39	06/11/14 13:29	1
Methylene Chloride	84	В	75	15	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Styrene	ND		75	18	ug/Kg		06/10/14 15:39	06/11/14 13:29	1
Tetrachloroethene	ND		75	10	ug/Kg	☼	06/10/14 15:39	06/11/14 13:29	1
Toluene	ND		75	20	ug/Kg	₩	06/10/14 15:39	06/11/14 13:29	1
trans-1,2-Dichloroethene	ND		75	18	ug/Kg		06/10/14 15:39	06/11/14 13:29	1
trans-1,3-Dichloropropene	ND		75	7.4	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Trichloroethene	ND		75	21	ug/Kg	₩	06/10/14 15:39	06/11/14 13:29	1
Trichlorofluoromethane	ND		75	35	ug/Kg		06/10/14 15:39	06/11/14 13:29	1
Vinyl chloride	ND	*	75	25	ug/Kg	☼	06/10/14 15:39	06/11/14 13:29	1
Xylenes, Total	16	J	150	13	ug/Kg	₽	06/10/14 15:39	06/11/14 13:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		53 - 146				06/10/14 15:39	06/11/14 13:29	1
4-Bromofluorobenzene (Surr)	114		49 - 148				06/10/14 15:39	06/11/14 13:29	1
Toluene-d8 (Surr)	109		50 - 149				06/10/14 15:39	06/11/14 13:29	1
- Method: 8015D - Diesel Range O	rganics (DRO)	(GC)							
Analyte	• , ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Discal Banga Organica (C40 C20)				6.5	malka	<u>7</u>	06/00/14 14:20	06/11/14 07:27	

Diesel Range Organics [C10-C28]	29		22	6.5 mg/Kg	.⇔	06/09/14 14:29	06/11/14 07:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	89		48 - 125			06/09/14 14:29	06/11/14 07:27	1

Surrogate Summary

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI TestAmerica Job ID: 480-61440-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)				
		12DCE	BFB	TOL		
Lab Sample ID	Client Sample ID	(53-146)	(49-148)	(50-149)		
480-61440-4	MW-104 (5-8')	111	111	102		
480-61440-6	MW-106 (6-6.5')	109	114	109		
LCS 480-186868/1-A	Lab Control Sample	110	118	107		
MB 480-186868/2-A	Method Blank	108	109	104		

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 8015D - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		ОТРН	
Lab Sample ID	Client Sample ID	(48-125)	
480-61440-4	MW-104 (5-8')	155 X	
480-61440-6	MW-106 (6-6.5')	89	
LCS 480-186580/2-A	Lab Control Sample	100	
LCSD 480-186580/3-A	Lab Control Sample Dup	98	
MB 480-186580/1-A	Method Blank	91	

OTPH = o-Terphenyl

TestAmerica Buffalo

TestAmerica Job ID: 480-61440-1

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-186868/2-A

Matrix: Solid

Analysis Batch: 186888

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 186868

Analysis Batch: 186888	МВ	МВ						Prep Batch:	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		100	28	ug/Kg		06/10/14 15:39	06/11/14 01:57	
1,1,2,2-Tetrachloroethane	ND		100	16	ug/Kg		06/10/14 15:39	06/11/14 01:57	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		100	50	ug/Kg		06/10/14 15:39	06/11/14 01:57	
1,1,2-Trichloroethane	ND		100	21	ug/Kg		06/10/14 15:39	06/11/14 01:57	
1,1-Dichloroethane	ND		100	31	ug/Kg		06/10/14 15:39	06/11/14 01:57	
1,1-Dichloroethene	ND		100	35	ug/Kg		06/10/14 15:39	06/11/14 01:57	
1,2,4-Trichlorobenzene	ND		100	38	ug/Kg		06/10/14 15:39	06/11/14 01:57	
1,2-Dibromo-3-Chloropropane	ND		100	50	ug/Kg		06/10/14 15:39	06/11/14 01:57	
1,2-Dibromoethane	ND		100	17	ug/Kg		06/10/14 15:39	06/11/14 01:57	
1,2-Dichlorobenzene	ND		100	25	ug/Kg		06/10/14 15:39	06/11/14 01:57	
1,2-Dichloroethane	ND		100	41	ug/Kg		06/10/14 15:39	06/11/14 01:57	
1,2-Dichloropropane	ND		100	16	ug/Kg		06/10/14 15:39	06/11/14 01:57	
1,3-Dichlorobenzene	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
1,4-Dichlorobenzene	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
2-Butanone (MEK)	ND		500	300	ug/Kg		06/10/14 15:39	06/11/14 01:57	
2-Hexanone	ND		500	200	ug/Kg		06/10/14 15:39	06/11/14 01:57	
4-Methyl-2-pentanone (MIBK)	ND		500		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Acetone	ND		500	410			06/10/14 15:39	06/11/14 01:57	
Benzene	ND		100	19	ug/Kg		06/10/14 15:39	06/11/14 01:57	
Bromodichloromethane	ND		100	20	ug/Kg		06/10/14 15:39	06/11/14 01:57	
Bromoform	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Bromomethane	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Carbon disulfide	ND		100		ug/Kg ug/Kg		06/10/14 15:39	06/11/14 01:57	
Carbon tetrachloride	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Chlorobenzene	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Chloroethane	ND		100		ug/Kg ug/Kg		06/10/14 15:39	06/11/14 01:57	
Chloroform	ND		100				06/10/14 15:39	06/11/14 01:57	
Chloromethane	ND		100				06/10/14 15:39	06/11/14 01:57	
cis-1,2-Dichloroethene	ND ND		100	28	ug/Kg		06/10/14 15:39	06/11/14 01:57	
	ND ND				ug/Kg				
cis-1,3-Dichloropropene			100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Cyclohexane	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Dibromochloromethane	ND		100	48	ug/Kg		06/10/14 15:39	06/11/14 01:57	
Dichlorodifluoromethane	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Ethylbenzene	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Isopropylbenzene	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Methyl acetate	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Methyl tert-butyl ether	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Methylcyclohexane	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Methylene Chloride	98.6	J	100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Styrene	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Tetrachloroethene	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Toluene	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
trans-1,2-Dichloroethene	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
trans-1,3-Dichloropropene	ND		100		ug/Kg		06/10/14 15:39	06/11/14 01:57	
Trichloroethene	ND		100	28	ug/Kg		06/10/14 15:39	06/11/14 01:57	
Trichlorofluoromethane	ND		100	47	ug/Kg		06/10/14 15:39	06/11/14 01:57	
Vinyl chloride	ND		100	33	ug/Kg		06/10/14 15:39	06/11/14 01:57	
Xylenes, Total	ND		200	17	ug/Kg		06/10/14 15:39	06/11/14 01:57	

TestAmerica Buffalo

6/13/2014

Page 11 of 20

TestAmerica Job ID: 480-61440-1

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MD MD

Lab Sample ID: MB 480-186868/2-A

Lab Sample ID: LCS 480-186868/1-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 186888

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 186868

	IVID	MID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		53 - 146	06/10/14 15:39	06/11/14 01:57	1
4-Bromofluorobenzene (Surr)	109		49 - 148	06/10/14 15:39	06/11/14 01:57	1
Toluene-d8 (Surr)	104		50 ₋ 149	06/10/14 15:39	06/11/14 01:57	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 186868**

Analysis Batch: 186888	Spike	LCS	LCS				Prep Batch: 18686 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethane	2470	2160		ug/Kg		87	78 - 121
1,1-Dichloroethene	2470	2460		ug/Kg		100	48 - 133
1,2-Dichlorobenzene	2470	2640		ug/Kg		107	78 ₋ 125
1,2-Dichloroethane	2470	2700		ug/Kg		109	74 - 127
Benzene	2470	2560		ug/Kg		104	77 - 125
Chlorobenzene	2470	2620		ug/Kg		106	76 ₋ 126
cis-1,2-Dichloroethene	2470	2580		ug/Kg		105	79 ₋ 124
Ethylbenzene	2470	2620		ug/Kg		106	78 ₋ 124
Methyl tert-butyl ether	2470	2670		ug/Kg		108	67 - 137
Tetrachloroethene	2470	2460		ug/Kg		100	73 - 133
Toluene	2470	2570		ug/Kg		104	75 ₋ 124
trans-1,2-Dichloroethene	2470	2580		ug/Kg		105	74 - 129
Trichloroethene	2470	2930		ug/Kg		119	75 _ 131

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	110		53 - 146
4-Bromofluorobenzene (Surr)	118		49 - 148
Toluene-d8 (Surr)	107		50 - 149

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 480-186580/1-A

Matrix: Solid

Analysis Batch: 186664

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 186580

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Diesel Range Organics [C10-C28] ND 16 4.9 mg/Kg 06/09/14 14:29 06/10/14 10:40

MB MB Qualifier Surrogate %Recovery Limits Prepared Analyzed Dil Fac o-Terphenyl 91 48 - 125 06/09/14 14:29 06/10/14 10:40

Lab Sample ID: LCS 480-186580/2-A Client Sample ID: Lab Control Sample

мв мв

Matrix: Solid

Analysis Batch: 186664

Prep Batch: 186580 Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 48.8 49.7 mg/Kg 102 63 - 127

[C10-C28]

Diesel Range Organics

TestAmerica Buffalo

Prep Type: Total/NA

Page 12 of 20

6/13/2014

QC Sample Results

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI

o-Terphenyl

[C10-C28]

TestAmerica Job ID: 480-61440-1

4

Method: 8015D - Diesel Range Organics (DRO) (GC) (Continued)

100

Lab Sample ID: LCS 480-186580/2-A

Matrix: Solid

Analysis Batch: 186664

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 186580

LCS LCS
Surrogate %Recovery Qualifier Limits

Lab Sample ID: LCSD 480-186580/3-A

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 186664

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 186580

48 - 125

AnalyteAddedResultQualifierUnitD%RecLimitsRPDLimitDiesel Range Organics49.648.7mg/Kg9863 - 127235

 Surrogate
 %Recovery or Terphenyl
 Qualifier or A8 - 125
 Limits or A8 - 125

TestAmerica Buffalo

QC Association Summary

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI TestAmerica Job ID: 480-61440-1

GC/MS VOA

Prep Batch: 186868

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61440-4	MW-104 (5-8')	Total/NA	Solid	5035A	
480-61440-6	MW-106 (6-6.5')	Total/NA	Solid	5035A	
LCS 480-186868/1-A	Lab Control Sample	Total/NA	Solid	5035A	
MB 480-186868/2-A	Method Blank	Total/NA	Solid	5035A	

Analysis Batch: 186888

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61440-4	MW-104 (5-8')	Total/NA	Solid	8260C	186868
LCS 480-186868/1-A	Lab Control Sample	Total/NA	Solid	8260C	186868
MB 480-186868/2-A	Method Blank	Total/NA	Solid	8260C	186868

Analysis Batch: 187006

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61440-6	MW-106 (6-6.5')	Total/NA	Solid	8260C	186868

GC Semi VOA

Prep Batch: 186580

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61440-4	MW-104 (5-8')	Total/NA	Solid	3550C	<u> </u>
480-61440-6	MW-106 (6-6.5')	Total/NA	Solid	3550C	
LCS 480-186580/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 480-186580/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
MB 480-186580/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 186664

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61440-4	MW-104 (5-8')	Total/NA	Solid	8015D	186580
480-61440-6	MW-106 (6-6.5')	Total/NA	Solid	8015D	186580
LCS 480-186580/2-A	Lab Control Sample	Total/NA	Solid	8015D	186580
LCSD 480-186580/3-A	Lab Control Sample Dup	Total/NA	Solid	8015D	186580
MB 480-186580/1-A	Method Blank	Total/NA	Solid	8015D	186580

General Chemistry

Analysis Batch: 186357

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61440-4	MW-104 (5-8')	Total/NA	Solid	Moisture	
480-61440-6	MW-106 (6-6.5')	Total/NA	Solid	Moisture	

TestAmerica Buffalo

6/13/2014

2

-0

6

8

9

11

12

14

15

Lab Chronicle

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI

Client Sample ID: MW-104 (5-8')

TestAmerica Job ID: 480-61440-1

Lab Sample ID: 480-61440-4

Matrix: Solid

Date Collected: 06/04/14 17:00 Date Received: 06/07/14 01:30 Percent Solids: 74.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			186868	06/10/14 15:39	RAS	TAL BUF
Total/NA	Analysis	8260C		40	186888	06/11/14 02:19	NQN	TAL BUF
Total/NA	Prep	3550C			186580	06/09/14 14:29	JLS	TAL BUF
Total/NA	Analysis	8015D		20	186664	06/11/14 06:53	JRL	TAL BUF
Total/NA	Analysis	Moisture		1	186357	06/07/14 16:15	CMK	TAL BUF

Client Sample ID: MW-106 (6-6.5') Lab Sample ID: 480-61440-6

Date Collected: 06/04/14 19:00 **Matrix: Solid** Date Received: 06/07/14 01:30 Percent Solids: 75.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			186868	06/10/14 15:39	RAS	TAL BUF
Total/NA	Analysis	8260C		1	187006	06/11/14 13:29	GTG	TAL BUF
Total/NA	Prep	3550C			186580	06/09/14 14:29	JLS	TAL BUF
Total/NA	Analysis	8015D		1	186664	06/11/14 07:27	JRL	TAL BUF
Total/NA	Analysis	Moisture		1	186357	06/07/14 16:15	CMK	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI TestAmerica Job ID: 480-61440-1

e

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Rhode Island	State Program	1	LAO00328	12-30-14

Δ

O

9

11

12

14

Method Summary

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI TestAmerica Job ID: 480-61440-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8015D	Diesel Range Organics (DRO) (GC)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

Δ

6

0

10

11

12

14

Sample Summary

Client: Resource Control Associates, Inc. Project/Site: 90 Bay Spring Ave, Barrington, RI TestAmerica Job ID: 480-61440-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-61440-4	MW-104 (5-8')	Solid	06/04/14 17:00	06/07/14 01:30
480-61440-6	MW-106 (6-6.5')	Solid	06/04/14 19:00	06/07/14 01:30

Λ

6

8

9

4 4

12

13

Login Sample Receipt Checklist

Client: Resource Control Associates, Inc.

Job Number: 480-61440-1

Login Number: 61440 List Source: TestAmerica Buffalo

List Number: 1

Creator: Wienke, Robert K

Creator. Wienke, Robert K		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

_

3

4

6

7

9

4 4

12

10

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Danielle Eastman Getsinger Resource Controls 474 Broadway Pawtucket, RI 02860-1377

RE: Barrington (7131A)

ESS Laboratory Work Order Number: 1406156

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director **REVIEWED**

By ESS Laboratory at 4:46 pm, Jun 13, 2014

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1406156

SAMPLE RECEIPT

The following samples were received on June 06, 2014 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	Sample Name	Matrix	Analysis
1406156-01	MW-1	Ground Water	6010B, 6020A, 7470A
1406156-02	MW-2	Ground Water	6010B, 6020A, 7470A, 8260B
1406156-03	MW-3	Ground Water	6010B, 6020A, 7470A, 8260B
1406156-04	MW-5	Ground Water	6010B, 6020A, 7470A, 8260B
1406156-05	MW-101	Ground Water	6010B, 6020A, 7470A
1406156-06	MW-102	Ground Water	6010B, 6020A, 7470A
1406156-07	MW-103	Ground Water	6010B, 6020A, 7470A
1406156-08	MW-104	Ground Water	6010B, 6020A, 7470A, 8260B
1406156-09	MW-105	Ground Water	6010B, 6020A, 7470A, 8260B
1406156-10	MW-106	Ground Water	6010B, 6020A, 7470A, 8260B
1406156-11	Trip Blank	Aqueous	8260B

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1406156

PROJECT NARRATIVE

8260B Volatile Organic Compounds

CF40938-BS1 Blank Spike recovery is above upper control limit (B+).

Acetone (139% @ 70-130%)

CF40938-BSD1 Blank Spike recovery is above upper control limit (B+).

Acetone (159% @ 70-130%)

CF40938-BSD1 Blank Spike recovery is below lower control limit (B-).

Chloroethane (61% @ 70-130%)

CF40938-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Chloroethane (30%)

Dissolved Metals Aqueous

CF41003-BS1 Blank Spike recovery is above upper control limit (B+).

Selenium (121% @ 80-120%)

CF41003-BSD1 <u>Blank Spike recovery is above upper control limit (B+).</u>

Lead (126% @ 80-120%), Selenium (124% @ 80-120%)

Total Metals Aqueous

CF41003-BS1 Blank Spike recovery is above upper control limit (B+).

Selenium (121% @ 80-120%)

CF41003-BSD1 Blank Spike recovery is above upper control limit (B+).

Lead (126% @ 80-120%), Selenium (124% @ 80-120%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1406156

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015D - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

Dependability

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-1 Date Sampled: 06/06/14 13:30

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-01

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Dissolved Metals Aqueous

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>I/V</u>	F/V	Batch
Arsenic	ND (0.0010)		6020A		10	NAR	06/12/14 11:49	50	25	CF41003
Barium	ND (0.025)		6010B		1	KJK	06/11/14 14:11	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	KJK	06/11/14 14:11	50	25	CF40902
Chromium	ND (0.010)		6010B		1	KJK	06/11/14 14:11	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 11:49	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	NAR	06/13/14 2:12	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 11:49	50	25	CF41003
Silver	ND (0.005)		6010B		1	KJK	06/11/14 14:11	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-1 Date Sampled: 06/06/14 13:30

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-01

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Total Metals Aqueous

Analyte Arsenic	Results (MRL) ND (0.0010)	MDL	Method 6020A	<u>Limit</u>	<u>DF</u> 10	Analyst NAR	Analyzed 06/12/14 9:55	<u>I/V</u> 50	<u>F/V</u> 25	Batch CF41003
Barium	ND (0.025)		6010B		1	NAR	06/13/14 2:12	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	NAR	06/13/14 2:12	50	25	CF40902
Chromium	ND (0.010)		6010B		1	NAR	06/13/14 2:12	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 9:55	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	BJV	06/10/14 12:44	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 9:55	50	25	CF41003
Silver	ND (0.005)		6010B		1	NAR	06/13/14 2:12	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-2 Date Sampled: 06/06/14 08:30

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-02

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Dissolved Metals Aqueous

Analyte Arsenic	Results (MRL) ND (0.0010)	MDL	Method 6020A	<u>Limit</u>	$\frac{\mathbf{DF}}{10}$	Analysi NAR	<u>Analyzed</u> 06/12/14 11:55	<u>I/V</u> 50	<u>F/V</u> 25	Batch CF41003
Barium	0.028 (0.025)		6010B		1	KJK	06/11/14 14:32	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	KJK	06/11/14 14:32	50	25	CF40902
Chromium	ND (0.010)		6010B		1	KJK	06/11/14 14:32	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 11:55	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	NAR	06/13/14 2:16	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 11:55	50	25	CF41003
Silver	ND (0.005)		6010B		1	KJK	06/11/14 14:32	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-2 Date Sampled: 06/06/14 08:30

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-02

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Total Metals Aqueous

Analyte Arsenic	Results (MRL) ND (0.0010)	<u>MDL</u>	Method 6020A	<u>Limit</u>	$\frac{\mathbf{DF}}{10}$	Analyst NAR	Analyzed 06/12/14 10:37	<u>I/V</u> 50	<u>F/V</u> 25	Batch CF41003
Barium	0.035 (0.025)		6010B		1	NAR	06/13/14 2:16	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	NAR	06/13/14 2:16	50	25	CF40902
Chromium	ND (0.010)		6010B		1	NAR	06/13/14 2:16	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 10:37	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	BJV	06/10/14 12:47	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 10:37	50	25	CF41003
Silver	ND (0.005)		6010B		1	NAR	06/13/14 2:16	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-2 Date Sampled: 06/06/14 08:30

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-02

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/09/14 20:02	Sequence CXF0124	Batch CF40938
1,1,1-Trichloroethane	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,1,2,2-Tetrachloroethane	ND (0.0005)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,1,2-Trichloroethane	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,1-Dichloroethane	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,1-Dichloroethene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,1-Dichloropropene	ND (0.0020)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,2,3-Trichlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,2,3-Trichloropropane	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,2,4-Trichlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,2,4-Trimethylbenzene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,2-Dibromo-3-Chloropropane	ND (0.0050)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,2-Dibromoethane	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,2-Dichlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,2-Dichloroethane	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,2-Dichloropropane	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,3,5-Trimethylbenzene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,3-Dichlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,3-Dichloropropane	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,4-Dichlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1,4-Dioxane - Screen	ND (0.500)		8260B		1	06/09/14 20:02	CXF0124	CF40938
1-Chlorohexane	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
2,2-Dichloropropane	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
2-Butanone	ND (0.0100)		8260B		1	06/09/14 20:02	CXF0124	CF40938
2-Chlorotoluene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
2-Hexanone	ND (0.0100)		8260B		1	06/09/14 20:02	CXF0124	CF40938
4-Chlorotoluene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
4-Isopropyltoluene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
4-Methyl-2-Pentanone	ND (0.0250)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Acetone	ND (0.0100)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Benzene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Bromobenzene	ND (0.0020)		8260B		1	06/09/14 20:02	CXF0124	CF40938

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-2 Date Sampled: 06/06/14 08:30

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-02

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Bromodichloromethane ND (0.006) \$260B 1 06/09/14 20:02 CXF0124 CF40938 Bromoferm ND (0.0010) \$260B 1 06/09/14 20:02 CXF0124 CF40938 Bromomethane ND (0.0020) \$250B 1 06/09/14 20:02 CXF0124 CF40938 Carbon Distlifide ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 Carbon Distlifide ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CArbon Tetrachloride ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CArbon Tetrachloride ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0020) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0020) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0020) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0020) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0020) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0010) \$250B 1 06/09/14 20:02 CXF0124 CF40938 CR10-rocelhane ND (0.0010)	Analyte Bromochloromethane	Results (MRL) ND (0.0010)	MDL	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/09/14 20:02	Sequence CXF0124	Batch CF40938
Parameform ND (0 0010) S260B 1 06/09/14 20.02 CXF0124 CF40938 Bromomethane ND (0.0020) S260B 1 06/09/14 20.02 CXF0124 CF40938 Carbon Disulfide ND (0.0010) S260B 1 06/09/14 20.02 CXF0124 CF40938 Carbon Tetrachloride ND (0.0010) S260B 1 06/09/14 20.02 CXF0124 CF40938 CArbon Tetrachloride ND (0.0010) S260B 1 06/09/14 20.02 CXF0124 CF40938 CArbon Tetrachloride ND (0.0010) S260B 1 06/09/14 20.02 CXF0124 CF40938 CArbon Tetrachloride ND (0.0020) S260B 1 06/09/14 20.02 CXF0124 CF40938 Chlorocthane ND (0.0010) S260B 1 06/09/14 20.02 CXF0124 CF40938 Chlorocthane ND (0.0010) S260B 1 06/09/14 20.02 CXF0124 CF40938 Cis-1,2-Dichlorocthene ND (0.0010) S260B 1 06/09/14 20.02 CXF0124 CF40938 Cis-1,3-Dichloroptopene ND (0.0010) S260B 1 06/09/14 20.02 CXF0124 CF40938 Cis-1,3-Dichloroptopene ND (0.0010) S260B 1 06/09/14 20.02 CXF0124 CF40938 CF		,				_			
Bromomethane		` /				_			
Carbon Disulfide ND (0.0010) \$260B 1 06/09/14 20:02 CXF0124 CP40938 Carbon Tetrachloride ND (0.0010) \$260B 1 06/09/14 20:02 CXF0124 CP40938 Chlorodenzene ND (0.0010) \$260B 1 06/09/14 20:02 CXF0124 CF40938 Chlorodenae ND (0.0020) \$260B 1 06/09/14 20:02 CXF0124 CF40938 Chloromethane ND (0.0020) \$260B 1 06/09/14 20:02 CXF0124 CF40938 Chloromethane ND (0.0020) \$260B 1 06/09/14 20:02 CXF0124 CF40938 Cis-1,3-Dichlorodrhene ND (0.0010) \$260B 1 06/09/14 20:02 CXF0124 CF40938 Dibromoethlane ND (0.0010) \$260B 1 06/09/14 20:02 CXF0124 CF40938 Dibromoethlane ND (0.0010) \$260B 1 06/09/14 20:02 CXF0124 CF40938 Dibromoethlane ND (0.0010) \$260B 1 06/09/14 20:02 CXF0124 CF40938		` /							
Carbon Tetrachloride ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CP40938 Chlorobenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Chlorochane ND (0.0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Chloromethane ND (0.0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Cis-1,2-Dichlorothene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 cis-1,2-Dichlorothene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 cis-1,3-Dichlorothene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dibromomethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dibromomethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dibromomethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF409	Carbon Disulfide	,				1			
Chlorobenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Chlorocthane ND (0.0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Chlorocfram ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Chloromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 cis-1,2-Dichlorocthene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 cis-1,3-Dichloropropene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dibromochloromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010 8260B 1 06/09/14 20:02 CXF0124 <td>Carbon Tetrachloride</td> <td>` /</td> <td></td> <td></td> <td></td> <td>1</td> <td>06/09/14 20:02</td> <td></td> <td></td>	Carbon Tetrachloride	` /				1	06/09/14 20:02		
Chloroethane ND (0.0020) 8260B 1 06/09/14 20-02 CXF0124 CF40938 Chloroform ND (0.0010) 8260B 1 06/09/14 20-02 CXF0124 CF40938 Chloromethane ND (0.0020) 8260B 1 06/09/14 20-02 CXF0124 CF40938 cis-1,2-Dichloroethene ND (0.0010) 8260B 1 06/09/14 20-02 CXF0124 CF40938 cis-1,3-Dichloropropene ND (0.0004) 8260B 1 06/09/14 20-02 CXF0124 CF40938 Dibromomethane ND (0.0010) 8260B 1 06/09/14 20-02 CXF0124 CF40938 Dibromomethane ND (0.0010) 8260B 1 06/09/14 20-02 CXF0124 CF40938 Dibromomethane ND (0.0010) 8260B 1 06/09/14 20-02 CXF0124 CF40938 Dibromomethane ND (0.0010) 8260B 1 06/09/14 20-02 CXF0124 CF40938 Dibromomethane ND (0.0010) 8260B 1 06/09/14 20-02 CXF0124 CF40938		, ,				1			
Chloroform ND (0.0010) 8260B 1 06/09/14 20.02 CXF0124 CF40938 Chloromethane ND (0.0020) 8260B 1 06/09/14 20.02 CXF0124 CF40938 cis-1,2-Dichloroethene ND (0.0010) 8260B 1 06/09/14 20.02 CXF0124 CF40938 cis-1,3-Dichloropropene ND (0.0010) 8260B 1 06/09/14 20.02 CXF0124 CF40938 Dibromoethane ND (0.0010) 8260B 1 06/09/14 20.02 CXF0124 CF40938 Dibromoethane ND (0.0010) 8260B 1 06/09/14 20.02 CXF0124 CF40938 Dibromoethane ND (0.0020) 8260B 1 06/09/14 20.02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20.02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20.02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20.02 CXF0124	Chloroethane	,		8260B		1	06/09/14 20:02	CXF0124	CF40938
Chloromethane ND (0.0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 cis-1,2-Dichloroethene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 cis-1,3-Dichloropropene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dibromochloromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlyl Ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethyl tertiary-butyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethyl tertiary-butyl ether ND (0.0010) 8260B 1 06/09/14 20:	Chloroform	` /				1	06/09/14 20:02		
cis-1,2-Dichloroethene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 cis-1,3-Dichloropropene ND (0.0004) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dibromoethloromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Eibyl terriary-butyl ether ND (0.0010) 8260B 1	Chloromethane	, ,		8260B		1	06/09/14 20:02	CXF0124	CF40938
cis-1,3-Dichloropropene ND (0.0004) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dibromochloromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dibromomethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Bibyle Ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethyl tertiary-butyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethyl tertiary-butyl ether ND (0.0010) 8260B 1 06/09/14 20	cis-1,2-Dichloroethene	· · · · · · · · · · · · · · · · · · ·				1			
Dibromochloromethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dibromomethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Diethyl Ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethyl tertiary-butyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethyl tertiary-butyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethyl tertiary-butyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Hexachlorobthane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Isopropylbenzene ND (0.0010) 8260B 1 06/09/14 20:02		, ,				1			
Dibromomethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Dichlorodifluoromethane ND (0.0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Diethyl Ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Di-isopropyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethyl tertiary-butyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Hexachlorobtadiene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Isopropylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Isopropylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Methyl tert-Butyl Ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124	Dibromochloromethane	,		8260B		1	06/09/14 20:02	CXF0124	CF40938
Dichlorodifluoromethane ND (0,0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Diethyl Ether ND (0,0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Di-isopropyl ether ND (0,0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethyl tertiary-butyl ether ND (0,0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethylbenzene ND (0,0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Hexachlorobutadiene ND (0,0006) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Hexachloroethane ND (0,0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Isopropylbenzene ND (0,0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Methyl tert-Butyl Ether ND (0,0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Naphthalene ND (0,0010) 8260B 1 06/09/14 20:02 CXF0124	Dibromomethane	` /		8260B		1	06/09/14 20:02	CXF0124	CF40938
Di-isopropyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethyl tertiary-butyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Hexachlorobutadiene ND (0.0006) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Hexachloroethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Isopropylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Methyl tert-Butyl Ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Methylene Chloride ND (0.0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Naphthalene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 n-Propylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124	Dichlorodifluoromethane	, ,		8260B		1	06/09/14 20:02	CXF0124	CF40938
Di-isopropyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethyl tertiary-butyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Ethylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Hexachlorobutadiene ND (0.0006) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Hexachloroethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Isopropylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Methyl tert-Butyl Ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Methylene Chloride ND (0.0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Naphthalene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 n-Propylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124	Diethyl Ether	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Ethylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Hexachlorobutadiene ND (0.0006) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Hexachlorobutadiene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Isopropylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Methyl tert-Butyl Ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Methylene Chloride ND (0.0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Naphthalene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 n-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 n-Propylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 sec-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40	•	, ,		8260B		1	06/09/14 20:02	CXF0124	CF40938
Ethylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Hexachlorobutadiene ND (0.0006) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Hexachloroethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Isopropylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Methyl tetr-Butyl Ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Methylene Chloride ND (0.0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Naphthalene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 n-Propylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 sec-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Styrene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938	Ethyl tertiary-butyl ether	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Hexachloroethane ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Isopropylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Methyl tert-Butyl Ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Methylene Chloride ND (0.0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Naphthalene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 n-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 n-Propylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 sec-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 sec-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Styrene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF	Ethylbenzene			8260B		1	06/09/14 20:02	CXF0124	CF40938
Isopropylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938	Hexachlorobutadiene	ND (0.0006)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Methyl tert-Butyl Ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Methylene Chloride ND (0.0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Naphthalene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 n-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 n-Propylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 sec-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Styrene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Tertiary-amyl methyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938	Hexachloroethane	,		8260B		1	06/09/14 20:02	CXF0124	CF40938
Methylene Chloride ND (0.0020) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Naphthalene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 n-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 n-Propylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 sec-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Styrene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Tertiary-amyl methyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938	Isopropylbenzene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Naphthalene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 n-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 n-Propylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 sec-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Styrene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Tertiary-amyl methyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938	Methyl tert-Butyl Ether	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
n-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 n-Propylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 sec-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Styrene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Tertiary-amyl methyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938	Methylene Chloride	ND (0.0020)		8260B		1	06/09/14 20:02	CXF0124	CF40938
n-Propylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 sec-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Styrene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Tertiary-amyl methyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938	Naphthalene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
sec-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Styrene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Tertiary-amyl methyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938	n-Butylbenzene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Styrene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Tertiary-amyl methyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938	n-Propylbenzene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
tert-Butylbenzene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938 Tertiary-amyl methyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938	sec-Butylbenzene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Tertiary-amyl methyl ether ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938	Styrene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
	tert-Butylbenzene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Tetrachloroethene ND (0.0010) 8260B 1 06/09/14 20:02 CXF0124 CF40938	Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
	Tetrachloroethene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-2 Date Sampled: 06/06/14 08:30

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-02

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
Tetrahydrofuran	ND (0.0050)	·	8260B		1	06/09/14 20:02	CXF0124	CF40938
Toluene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Trichloroethene	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Trichlorofluoromethane	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Vinyl Acetate	ND (0.0050)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Vinyl Chloride	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Xylene O	ND (0.0010)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Xylene P,M	ND (0.0020)		8260B		1	06/09/14 20:02	CXF0124	CF40938
Xylenes (Total)	ND (0.0020)		8260B		1	06/09/14 20:02		[CALC]
Trihalomethanes (Total)	ND (0.0036)		8260B			06/09/14 20:02		[CALC]
	9	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		87 %		70-130				

Surrogate: 1,2-Dichloroethane-d4	87 %	70-130
Surrogate: 4-Bromofluorobenzene	77 %	70-130
Surrogate: Dibromofluoromethane	92 %	70-130
Surrogate: Toluene-d8	94 %	70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-3 Date Sampled: 06/06/14 10:20

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-03

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Dissolved Metals Aqueous

Analyte Arsenic	Results (MRL) 0.0036 (0.0010)	MDL	Method 6020A	<u>Limit</u>	<u>DF</u> 10	Analyst NAR	Analyzed 06/12/14 12:01	<u>I/V</u> 50	<u>F/V</u> 25	Batch CF41003
Barium	0.052 (0.025)		6010B		1	KJK	06/11/14 14:36	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	KJK	06/11/14 14:36	50	25	CF40902
Chromium	ND (0.010)		6010B		1	KJK	06/11/14 14:36	50	25	CF40902
Lead	0.0117 (0.0100)		6020A		10	NAR	06/12/14 12:01	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	NAR	06/13/14 2:21	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 12:01	50	25	CF41003
Silver	ND (0.005)		6010B		1	KJK	06/11/14 14:36	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-3 Date Sampled: 06/06/14 10:20

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-03

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Total Metals Aqueous

Analyte Arsenic	Results (MRL) 0.0042 (0.0010)	MDL	Method 6020A	Limit	<u>DF</u> 10	Analyst NAR	Analyzed 06/12/14 10:43	<u>I/V</u> 50	<u>F/V</u> 25	Batch CF41003
Barium	0.061 (0.025)		6010B		1	NAR	06/13/14 2:21	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	NAR	06/13/14 2:21	50	25	CF40902
Chromium	ND (0.010)		6010B		1	NAR	06/13/14 2:21	50	25	CF40902
Lead	0.0198 (0.0100)		6020A		10	NAR	06/12/14 10:43	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	BJV	06/10/14 12:49	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 10:43	50	25	CF41003
Silver	ND (0.005)		6010B		1	NAR	06/13/14 2:21	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-3 Date Sampled: 06/06/14 10:20

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-03

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	MDL	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/09/14 20:27	Sequence CXF0124	Batch CF40938
1,1,1-Trichloroethane	ND (0.0010) ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938 CF40938
1,1,2,2-Tetrachloroethane	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,1,2-Trichloroethane	ND (0.0003)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,1-Dichloroethane	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,1-Dichloroethene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,1-Dichloropropene	ND (0.0020)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,2,3-Trichlorobenzene	ND (0.0020)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,2,3-Trichloropropane	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,2,4-Trichlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,2,4-Trimethylbenzene	0.0041 (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,2-Dibromo-3-Chloropropane	ND (0.0050)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,2-Dibromoethane	ND (0.0030)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,2-Dichlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,2-Dichloroethane	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,2-Dichloropropane	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,3,5-Trimethylbenzene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,3-Dichlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,3-Dichloropropane	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,4-Dichlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1,4-Dioxane - Screen	ND (0.500)		8260B		1	06/09/14 20:27	CXF0124	CF40938
1-Chlorohexane	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
2,2-Dichloropropane	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
2-Butanone	ND (0.0100)		8260B		1	06/09/14 20:27	CXF0124	CF40938
2-Chlorotoluene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
2-Hexanone	ND (0.0100)		8260B		1	06/09/14 20:27	CXF0124	CF40938
4-Chlorotoluene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
4-Isopropyltoluene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
4-Methyl-2-Pentanone	ND (0.0250)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Acetone	ND (0.0100)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Benzene	0.0034 (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Bromobenzene	ND (0.0020)		8260B		1	06/09/14 20:27	CXF0124	CF40938
2. om o o onzono	14D (0.0020)		02000			00/05/11 20.27	0211 012	21 10750

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-3 Date Sampled: 06/06/14 10:20

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-03

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	Results (MRL) ND (0.0010)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/09/14 20:27	Sequence CXF0124	Batch CF40938
Bromodichloromethane	ND (0.0006)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Bromoform	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Bromomethane	ND (0.0020)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Carbon Disulfide	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Carbon Tetrachloride	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Chlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Chloroethane	ND (0.0020)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Chloroform	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Chloromethane	ND (0.0020)		8260B		1	06/09/14 20:27	CXF0124	CF40938
cis-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
cis-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Dibromochloromethane	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Dibromomethane	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Dichlorodifluoromethane	ND (0.0020)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Diethyl Ether	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Di-isopropyl ether	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Ethyl tertiary-butyl ether	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Ethylbenzene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Hexachlorobutadiene	ND (0.0006)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Hexachloroethane	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Isopropylbenzene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Methyl tert-Butyl Ether	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Methylene Chloride	ND (0.0020)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Naphthalene	0.0016 (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
n-Butylbenzene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
n-Propylbenzene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
sec-Butylbenzene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Styrene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
tert-Butylbenzene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Tetrachloroethene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-3 Date Sampled: 06/06/14 10:20

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-03

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrahydrofuran	ND (0.0050)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Toluene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Trichloroethene	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Trichlorofluoromethane	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Vinyl Acetate	ND (0.0050)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Vinyl Chloride	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Xylene O	ND (0.0010)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Xylene P,M	ND (0.0020)		8260B		1	06/09/14 20:27	CXF0124	CF40938
Xylenes (Total)	ND (0.0020)		8260B		1	06/09/14 20:27		[CALC]
Trihalomethanes (Total)	ND (0.0036)		8260B			06/09/14 20:27		[CALC]
	9	6Recovery	Qualifier	Limits				
Currogatos 1.2 Dichloroothana da								

		· · · · · · · · · · · · · · · · · · ·	
Surrogate: 1,2-Dichloroethane-d4	90 %		70-130
Surrogate: 4-Bromofluorobenzene	80 %		70-130
Surrogate: Dibromofluoromethane	94 %		70-130
Surrogate: Toluene-d8	95 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-5 Date Sampled: 06/06/14 11:15

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-04

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Dissolved Metals Aqueous

Analyte Arsenic	Results (MRL) ND (0.0010)	MDL	Method 6020A	<u>Limit</u>	$\frac{\mathbf{DF}}{10}$	Analyst NAR	Analyzed 06/12/14 12:07	<u>I/V</u> 50	<u>F/V</u> 25	Batch CF41003
Barium	ND (0.025)		6010B		1	KJK	06/11/14 14:40	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	KJK	06/11/14 14:40	50	25	CF40902
Chromium	ND (0.010)		6010B		1	KJK	06/11/14 14:40	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 12:07	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	NAR	06/13/14 2:38	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 12:07	50	25	CF41003
Silver	ND (0.005)		6010B		1	KJK	06/11/14 14:40	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-5 Date Sampled: 06/06/14 11:15

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-04 Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Total Metals Aqueous

Analyte Arsenic	Results (MRL) ND (0.0010)	<u>MDL</u>	Method 6020A	<u>Limit</u>	<u>DF</u> 10	Analyst NAR	Analyzed 06/12/14 10:49	<u>I/V</u> 50	<u>F/V</u> 25	Batch CF41003
Barium	ND (0.025)		6010B		1	NAR	06/13/14 2:38	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	NAR	06/13/14 2:38	50	25	CF40902
Chromium	ND (0.010)		6010B		1	NAR	06/13/14 2:38	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 10:49	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	BJV	06/10/14 12:51	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 10:49	50	25	CF41003
Silver	ND (0.005)		6010B		1	NAR	06/13/14 2:38	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-5 Date Sampled: 06/06/14 11:15

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-04

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/09/14 20:53	Sequence CXF0124	Batch CF40938
1,1,1-Trichloroethane	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,1,2,2-Tetrachloroethane	ND (0.0005)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,1,2-Trichloroethane	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,1-Dichloroethane	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,1-Dichloroethene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,1-Dichloropropene	ND (0.0020)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,2,3-Trichlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,2,3-Trichloropropane	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,2,4-Trichlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,2,4-Trimethylbenzene	0.0032 (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,2-Dibromo-3-Chloropropane	ND (0.0050)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,2-Dibromoethane	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,2-Dichlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,2-Dichloroethane	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,2-Dichloropropane	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,3,5-Trimethylbenzene	0.0795 (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,3-Dichlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,3-Dichloropropane	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,4-Dichlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1,4-Dioxane - Screen	ND (0.500)		8260B		1	06/09/14 20:53	CXF0124	CF40938
1-Chlorohexane	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
2,2-Dichloropropane	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
2-Butanone	ND (0.0100)		8260B		1	06/09/14 20:53	CXF0124	CF40938
2-Chlorotoluene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
2-Hexanone	ND (0.0100)		8260B		1	06/09/14 20:53	CXF0124	CF40938
4-Chlorotoluene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
4-Isopropyltoluene	0.0089 (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
4-Methyl-2-Pentanone	ND (0.0250)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Acetone	ND (0.0100)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Benzene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Bromobenzene	ND (0.0020)		8260B		1	06/09/14 20:53	CXF0124	CF40938

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-5 Date Sampled: 06/06/14 11:15

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-04

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	Results (MRL) ND (0.0010)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/09/14 20:53	Sequence CXF0124	Batch CF40938
Bromodichloromethane	ND (0.0006)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Bromoform	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Bromomethane	ND (0.0020)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Carbon Disulfide	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Carbon Tetrachloride	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Chlorobenzene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Chloroethane	ND (0.0020)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Chloroform	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Chloromethane	ND (0.0020)		8260B		1	06/09/14 20:53	CXF0124	CF40938
cis-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
cis-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Dibromochloromethane	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Dibromomethane	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Dichlorodifluoromethane	ND (0.0020)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Diethyl Ether	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Di-isopropyl ether	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Ethyl tertiary-butyl ether	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Ethylbenzene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Hexachlorobutadiene	ND (0.0006)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Hexachloroethane	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Isopropylbenzene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Methyl tert-Butyl Ether	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Methylene Chloride	ND (0.0020)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Naphthalene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
n-Butylbenzene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
n-Propylbenzene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
sec-Butylbenzene	0.0010 (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Styrene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
tert-Butylbenzene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Tetrachloroethene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-5 Date Sampled: 06/06/14 11:15

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-04

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrahydrofuran	ND (0.0050)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Toluene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Trichloroethene	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Trichlorofluoromethane	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Vinyl Acetate	ND (0.0050)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Vinyl Chloride	ND (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Xylene O	0.0012 (0.0010)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Xylene P,M	ND (0.0020)		8260B		1	06/09/14 20:53	CXF0124	CF40938
Xylenes (Total)	ND (0.0020)		8260B		1	06/09/14 20:53		[CALC]
Trihalomethanes (Total)	ND (0.0036)		8260B			06/09/14 20:53		[CALC]
	9/	6Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		<i>85 %</i>		70-130				

 Surrogate: 1,2-Dichloroethane-d4
 85 %
 70-130

 Surrogate: 4-Bromofluorobenzene
 77 %
 70-130

 Surrogate: Dibromofluoromethane
 90 %
 70-130

 Surrogate: Toluene-d8
 94 %
 70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-101 Date Sampled: 06/06/14 12:30

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-05

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Dissolved Metals Aqueous

Analyte Arsenic	Results (MRL) 0.0402 (0.0010)	MDL	Method 6020A	Limit	<u>DF</u> 10	Analyst NAR	Analyzed 06/12/14 12:13	<u>I/V</u> 50	<u>F/V</u> 25	Batch CF41003
Barium	ND (0.025)		6010B		1	ICP	06/11/14 14:58	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	ICP	06/11/14 14:58	50	25	CF40902
Chromium	ND (0.010)		6010B		1	ICP	06/11/14 14:58	50	25	CF40902
Lead	0.0177 (0.0100)		6020A		10	NAR	06/12/14 12:13	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	NAR	06/13/14 2:42	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 12:13	50	25	CF41003
Silver	ND (0.005)		6010B		1	ICP	06/11/14 14:58	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-101 Date Sampled: 06/06/14 12:30

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-05

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Total Metals Aqueous

Analyte Arsenic	Results (MRL) 0.0807 (0.0010)	MDL	Method 6020A	<u>Limit</u>	<u>DF</u> 10	Analyst NAR	Analyzed 06/12/14 10:55	<u>I/V</u> 50	<u>F/V</u> 25	Batch CF41003
Barium	0.039 (0.025)		6010B		1	NAR	06/13/14 2:42	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	NAR	06/13/14 2:42	50	25	CF40902
Chromium	ND (0.010)		6010B		1	NAR	06/13/14 2:42	50	25	CF40902
Lead	0.0222 (0.0100)		6020A		10	NAR	06/12/14 10:55	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	BJV	06/10/14 12:54	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 10:55	50	25	CF41003
Silver	ND (0.005)		6010B		1	NAR	06/13/14 2:42	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-102 Date Sampled: 06/06/14 12:20

Percent Solids: N/A

06/06/14 12:20 : N/A ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-06

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Dissolved Metals Aqueous

Analyte Arsenic	Results (MRL) 0.0018 (0.0010)	MDL	Method 6020A	<u>Limit</u>	<u>DF</u> 10	Analyst NAR	Analyzed 06/12/14 12:19	<u>I/V</u> 50	<u>F/V</u> 25	Batch CF41003
Barium	ND (0.025)		6010B		1	ICP	06/11/14 15:02	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	ICP	06/11/14 15:02	50	25	CF40902
Chromium	ND (0.010)		6010B		1	ICP	06/11/14 15:02	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 12:19	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	NAR	06/13/14 2:46	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 12:19	50	25	CF41003
Silver	ND (0.005)		6010B		1	ICP	06/11/14 15:02	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-102 Date Sampled: 06/06/14 12:20

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-06

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Total Metals Aqueous

Analyte Arsenic	Results (MRL) 0.0029 (0.0010)	MDL	Method 6020A	Limit	<u>DF</u> 10	Analyst NAR	Analyzed 06/12/14 11:01	<u>I/V</u> 50	<u>F/V</u> 25	Batch CF41003
Barium	0.025 (0.025)		6010B		1	NAR	06/13/14 2:46	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	NAR	06/13/14 2:46	50	25	CF40902
Chromium	ND (0.010)		6010B		1	NAR	06/13/14 2:46	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 11:01	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	BJV	06/10/14 12:56	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 11:01	50	25	CF41003
Silver	ND (0.005)		6010B		1	NAR	06/13/14 2:46	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-103 Date Sampled: 06/06/14 13:00

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-07

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Dissolved Metals Aqueous

Analyte Arsenic	Results (MRL) ND (0.0010)	<u>MDL</u>	Method 6020A	<u>Limit</u>	$\frac{\mathbf{DF}}{10}$	Analyst NAR	Analyzed 06/12/14 12:37	$\frac{\mathbf{I/V}}{50}$	$\frac{\mathbf{F/V}}{25}$	Batch CF41003
Barium	0.028 (0.025)		6010B		1	ICP	06/11/14 15:06	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	ICP	06/11/14 15:06	50	25	CF40902
Chromium	ND (0.010)		6010B		1	ICP	06/11/14 15:06	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 12:37	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	NAR	06/13/14 2:50	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 12:37	50	25	CF41003
Silver	ND (0.005)		6010B		1	ICP	06/11/14 15:06	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-103 Date Sampled: 06/06/14 13:00

Percent Solids: N/A

ington ESS Laboratory Work Order: 1406156 (-103 ESS Laboratory Sample ID: 1406156-07

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Total Metals Aqueous

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	ND (0.0010)		6020A		10	NAR	06/12/14 11:07	50	25	CF41003
Barium	0.034 (0.025)		6010B		1	NAR	06/13/14 2:50	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	NAR	06/13/14 2:50	50	25	CF40902
Chromium	ND (0.010)		6010B		1	NAR	06/13/14 2:50	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 11:07	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	BJV	06/10/14 13:03	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 11:07	50	25	CF41003
Silver	ND (0.005)		6010B		1	NAR	06/13/14 2:50	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-104 Date Sampled: 06/06/14 14:05

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-08

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Dissolved Metals Aqueous

Analyte Arsenic	Results (MRL) ND (0.0010)	MDL	Method 6020A	<u>Limit</u>	<u>DF</u> 10	Analysi NAR	<u>Analyzed</u> 06/12/14 12:43	<u>I/V</u> 50	<u>F/V</u> 25	Batch CF41003
Barium	ND (0.0010) ND (0.025)		6010B		1	ICP	06/11/14 15:11	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	ICP	06/11/14 15:11	50	25	CF40902
Chromium	ND (0.010)		6010B		1	ICP	06/11/14 15:11	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 12:43	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	NAR	06/13/14 2:54	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 12:43	50	25	CF41003
Silver	ND (0.005)		6010B		1	ICP	06/11/14 15:11	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-104 Date Sampled: 06/06/14 14:05

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-08

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Total Metals Aqueous

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	ND (0.0010)	· <u></u>	6020A		10	NAR	06/12/14 11:25	50	25	CF41003
Barium	ND (0.025)		6010B		1	NAR	06/13/14 2:54	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	NAR	06/13/14 2:54	50	25	CF40902
Chromium	ND (0.010)		6010B		1	NAR	06/13/14 2:54	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 11:25	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	BJV	06/10/14 13:05	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 11:25	50	25	CF41003
Silver	ND (0.005)		6010B		1	NAR	06/13/14 2:54	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-104 Date Sampled: 06/06/14 14:05

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-08

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	MDL Me	thod Limit	<u>DF</u>	<u>Analyzed</u> 06/09/14 21:43	Sequence CXF0124	Batch CF40938
1,1,1-Trichloroethane	0.0027 (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,1,2,2-Tetrachloroethane	ND (0.0005)	826		1	06/09/14 21:43	CXF0124	CF40938
1,1,2-Trichloroethane	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,1-Dichloroethane	0.0012 (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,1-Dichloroethene	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,1-Dichloropropene	ND (0.0020)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,2,3-Trichlorobenzene	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,2,3-Trichloropropane	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,2,4-Trichlorobenzene	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,2,4-Trimethylbenzene	0.0627 (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,2-Dibromo-3-Chloropropane	ND (0.0050)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,2-Dibromoethane	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,2-Dichlorobenzene	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,2-Dichloroethane	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,2-Dichloropropane	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,3,5-Trimethylbenzene	0.285 (0.0100)	826	0B	10	06/10/14 21:36	CXF0124	CF40938
1,3-Dichlorobenzene	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,3-Dichloropropane	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,4-Dichlorobenzene	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1,4-Dioxane - Screen	ND (0.500)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
1-Chlorohexane	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
2,2-Dichloropropane	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
2-Butanone	ND (0.0100)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
2-Chlorotoluene	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
2-Hexanone	ND (0.0100)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
4-Chlorotoluene	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
4-Isopropyltoluene	0.0080 (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
4-Methyl-2-Pentanone	ND (0.0250)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
Acetone	ND (0.0100)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
Benzene	ND (0.0010)	826	0B	1	06/09/14 21:43	CXF0124	CF40938
Bromobenzene	ND (0.0020)	826	0B	1	06/09/14 21:43	CXF0124	CF40938

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-104 Date Sampled: 06/06/14 14:05

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-08

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	Limit	DF	<u>Analyzed</u>	Sequence	Batch
Bromochloromethane	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Bromodichloromethane	ND (0.0006)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Bromoform	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Bromomethane	ND (0.0020)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Carbon Disulfide	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Carbon Tetrachloride	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Chlorobenzene	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Chloroethane	ND (0.0020)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Chloroform	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Chloromethane	ND (0.0020)		8260B		1	06/09/14 21:43	CXF0124	CF40938
cis-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
cis-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Dibromochloromethane	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Dibromomethane	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Dichlorodifluoromethane	ND (0.0020)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Diethyl Ether	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Di-isopropyl ether	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Ethyl tertiary-butyl ether	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Ethylbenzene	0.0044 (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Hexachlorobutadiene	ND (0.0006)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Hexachloroethane	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Isopropylbenzene	0.0034 (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Methyl tert-Butyl Ether	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Methylene Chloride	ND (0.0020)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Naphthalene	0.0026 (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
n-Butylbenzene	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
n-Propylbenzene	0.0032 (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
sec-Butylbenzene	0.0018 (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Styrene	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
tert-Butylbenzene	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Tetrachloroethene	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-104 Date Sampled: 06/06/14 14:05

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-08

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrahydrofuran	ND (0.0050)	· ·	8260B	· <u> </u>	1	06/09/14 21:43	CXF0124	CF40938
Toluene	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Trichloroethene	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Trichlorofluoromethane	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Vinyl Acetate	ND (0.0050)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Vinyl Chloride	ND (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Xylene O	0.0052 (0.0010)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Xylene P,M	0.0279 (0.0020)		8260B		1	06/09/14 21:43	CXF0124	CF40938
Xylenes (Total)	0.0330 (0.0020)		8260B		1	06/09/14 21:43		[CALC]
Trihalomethanes (Total)	ND (0.0036)		8260B			06/09/14 21:43		[CALC]

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	85 %		70-130
Surrogate: 4-Bromofluorobenzene	78 %		70-130
Surrogate: Dibromofluoromethane	92 %		70-130
Surrogate: Toluene-d8	95 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-105 Date Sampled: 06/06/14 15:00

Percent Solids: N/A

Extraction Method: 3005A

ID: MW-105 : 06/06/14 15:00

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-09

Sample Matrix: Ground Water

Units: mg/L

Dissolved Metals Aqueous

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	<u>Analyzed</u>	<u>I/V</u>	F/V	Batch
Arsenic	ND (0.0010)		6020A		10	NAR	06/12/14 12:49	50	25	CF41003
Barium	ND (0.025)		6010B		1	ICP	06/11/14 15:15	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	ICP	06/11/14 15:15	50	25	CF40902
Chromium	ND (0.010)		6010B		1	ICP	06/11/14 15:15	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 12:49	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	NAR	06/13/14 2:59	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 12:49	50	25	CF41003
Silver	ND (0.005)		6010B		1	ICP	06/11/14 15:15	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-105 Date Sampled: 06/06/14 15:00

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-09

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Total Metals Aqueous

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	<u>Analyzed</u>	I/V	F/V	Batch
Arsenic	ND (0.0010)		6020A		10	NAR	06/12/14 11:31	50	25	CF41003
Barium	ND (0.025)		6010B		1	NAR	06/13/14 2:59	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	NAR	06/13/14 2:59	50	25	CF40902
Chromium	ND (0.010)		6010B		1	NAR	06/13/14 2:59	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 11:31	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	BJV	06/10/14 13:07	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 11:31	50	25	CF41003
Silver	ND (0.005)		6010B		1	NAR	06/13/14 2:59	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-105 Date Sampled: 06/06/14 15:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-09

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	MDL Method 8260B	Limit DF	Analyzed 06/10/14 20:21	Sequence CXF0144	Batch CF41136
1,1,1-Trichloroethane	0.0029 (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,1,2-Trichloroethane	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,1-Dichloroethane	0.0143 (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,1-Dichloroethene	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,1-Dichloropropene	ND (0.0020)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,2,3-Trichlorobenzene	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,2,3-Trichloropropane	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,2,4-Trichlorobenzene	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,2,4-Trimethylbenzene	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,2-Dibromoethane	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,2-Dichlorobenzene	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,2-Dichloroethane	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,2-Dichloropropane	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,3,5-Trimethylbenzene	0.0031 (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,3-Dichlorobenzene	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,3-Dichloropropane	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,4-Dichlorobenzene	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1,4-Dioxane - Screen	ND (0.500)	8260B	1	06/10/14 20:21	CXF0144	CF41136
1-Chlorohexane	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
2,2-Dichloropropane	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
2-Butanone	ND (0.0100)	8260B	1	06/10/14 20:21	CXF0144	CF41136
2-Chlorotoluene	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
2-Hexanone	ND (0.0100)	8260B	1	06/10/14 20:21	CXF0144	CF41136
4-Chlorotoluene	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
4-Isopropyltoluene	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
4-Methyl-2-Pentanone	ND (0.0250)	8260B	1	06/10/14 20:21	CXF0144	CF41136
Acetone	ND (0.0100)	8260B	1	06/10/14 20:21	CXF0144	CF41136
Benzene	ND (0.0010)	8260B	1	06/10/14 20:21	CXF0144	CF41136
Bromobenzene	ND (0.0020)	8260B	1	06/10/14 20:21	CXF0144	CF41136

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-105 Date Sampled: 06/06/14 15:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-09

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	Results (MRL) ND (0.0010)	MDL	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/10/14 20:21	Sequence CXF0144	Batch CF41136
Bromodichloromethane	,		8260B		1	06/10/14 20:21	CXF0144 CXF0144	CF41136 CF41136
	ND (0.0006)							
Bromoform Bromomethane	ND (0.0010)		8260B 8260B		1	06/10/14 20:21	CXF0144 CXF0144	CF41136 CF41136
	ND (0.0020)					06/10/14 20:21		
Carbon Disulfide	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Carbon Tetrachloride	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Chlorobenzene	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Chloroethane	ND (0.0020)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Chloroform	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Chloromethane	ND (0.0020)		8260B		1	06/10/14 20:21	CXF0144	CF41136
cis-1,2-Dichloroethene	0.0038 (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
cis-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Dibromochloromethane	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Dibromomethane	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Dichlorodifluoromethane	ND (0.0020)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Diethyl Ether	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Di-isopropyl ether	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Ethyl tertiary-butyl ether	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Ethylbenzene	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Hexachlorobutadiene	ND (0.0006)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Hexachloroethane	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Isopropylbenzene	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Methyl tert-Butyl Ether	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Methylene Chloride	ND (0.0020)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Naphthalene	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
n-Butylbenzene	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
n-Propylbenzene	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
sec-Butylbenzene	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Styrene	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
tert-Butylbenzene	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Tetrachloroethene	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
	* /							

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-105 Date Sampled: 06/06/14 15:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-09

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrahydrofuran	ND (0.0050)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Toluene	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Trichloroethene	0.0016 (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Trichlorofluoromethane	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Vinyl Acetate	ND (0.0050)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Vinyl Chloride	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Xylene O	ND (0.0010)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Xylene P,M	ND (0.0020)		8260B		1	06/10/14 20:21	CXF0144	CF41136
Xylenes (Total)	ND (0.0020)		8260B		1	06/10/14 20:21		[CALC]
Trihalomethanes (Total)	ND (0.0036)		8260B			06/10/14 20:21		[CALC]
	%	Recovery	Qualifier	Limits				

	,	
Surrogate: 1,2-Dichloroethane-d4	106 %	70-130
Surrogate: 4-Bromofluorobenzene	79 %	70-130
Surrogate: Dibromofluoromethane	105 %	70-130
Surrogate: Toluene-d8	91 %	70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-106 Date Sampled: 06/06/14 14:10

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-10

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Dissolved Metals Aqueous

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>I/V</u>	F/V	Batch
Arsenic	ND (0.0010)		6020A		10	NAR	06/12/14 12:55	50	25	CF41003
Barium	ND (0.025)		6010B		1	ICP	06/11/14 15:19	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	ICP	06/11/14 15:19	50	25	CF40902
Chromium	ND (0.010)		6010B		1	ICP	06/11/14 15:19	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 12:55	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	NAR	06/13/14 3:03	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 12:55	50	25	CF41003
Silver	ND (0.005)		6010B		1	ICP	06/11/14 15:19	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-106 Date Sampled: 06/06/14 14:10

Percent Solids: N/A

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-10

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A

Total Metals Aqueous

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	<u>Analyzed</u>	<u>I/V</u>	F/V	Batch
Arsenic	ND (0.0010)		6020A		10	NAR	06/12/14 11:37	50	25	CF41003
Barium	ND (0.025)		6010B		1	NAR	06/13/14 3:03	50	25	CF40902
Cadmium	ND (0.0025)		6010B		1	NAR	06/13/14 3:03	50	25	CF40902
Chromium	ND (0.010)		6010B		1	NAR	06/13/14 3:03	50	25	CF40902
Lead	ND (0.0100)		6020A		10	NAR	06/12/14 11:37	50	25	CF41003
Mercury	ND (0.00020)		7470A		1	BJV	06/10/14 13:10	20	40	CF40904
Selenium	ND (0.0250)		6020A		10	NAR	06/12/14 11:37	50	25	CF41003
Silver	ND (0.005)		6010B		1	NAR	06/13/14 3:03	50	25	CF40902

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-106 Date Sampled: 06/06/14 14:10

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-10

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	MDL	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/10/14 20:46	Sequence CXF0144	Batch CF41136
1,1,1-Trichloroethane	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,1,2,2-Tetrachloroethane	ND (0.0010) ND (0.0005)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,1,2-Trichloroethane	ND (0.0003) ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,1-Dichloroethane	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,1-Dichloroethene	ND (0.0010) ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,1-Dichloropropene	ND (0.0020)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,2,3-Trichlorobenzene	, ,		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,2,3-Trichloropropane	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144 CXF0144	CF41136 CF41136
1,2,4-Trichlorobenzene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144 CXF0144	CF41136 CF41136
, ,	ND (0.0010)							
1,2,4-Trimethylbenzene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,2-Dibromo-3-Chloropropane	ND (0.0050)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,2-Dibromoethane	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,2-Dichlorobenzene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,2-Dichloroethane	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,2-Dichloropropane	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,3,5-Trimethylbenzene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,3-Dichlorobenzene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,3-Dichloropropane	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,4-Dichlorobenzene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1,4-Dioxane - Screen	ND (0.500)		8260B		1	06/10/14 20:46	CXF0144	CF41136
1-Chlorohexane	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
2,2-Dichloropropane	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
2-Butanone	ND (0.0100)		8260B		1	06/10/14 20:46	CXF0144	CF41136
2-Chlorotoluene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
2-Hexanone	ND (0.0100)		8260B		1	06/10/14 20:46	CXF0144	CF41136
4-Chlorotoluene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
4-Isopropyltoluene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
4-Methyl-2-Pentanone	ND (0.0250)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Acetone	ND (0.0100)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Benzene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Bromobenzene	ND (0.0020)		8260B		1	06/10/14 20:46	CXF0144	CF41136

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-106 Date Sampled: 06/06/14 14:10

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-10

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	Results (MRL)	MDL	Method 8260B	Limit	<u>DF</u>	<u>Analyzed</u> 06/10/14 20:46	Sequence CXF0144	Batch CF41136
Bromodichloromethane	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144 CXF0144	CF41136 CF41136
	ND (0.0006)							
Bromoform	ND (0.0010)		8260B 8260B		1 1	06/10/14 20:46	CXF0144 CXF0144	CF41136 CF41136
Bromomethane	ND (0.0020)					06/10/14 20:46		
Carbon Disulfide	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Carbon Tetrachloride	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Chlorobenzene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Chloroethane	ND (0.0020)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Chloroform	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Chloromethane	ND (0.0020)		8260B		1	06/10/14 20:46	CXF0144	CF41136
cis-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
cis-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Dibromochloromethane	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Dibromomethane	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Dichlorodifluoromethane	ND (0.0020)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Diethyl Ether	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Di-isopropyl ether	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Ethyl tertiary-butyl ether	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Ethylbenzene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Hexachlorobutadiene	ND (0.0006)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Hexachloroethane	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Isopropylbenzene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Methyl tert-Butyl Ether	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Methylene Chloride	ND (0.0020)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Naphthalene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
n-Butylbenzene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
n-Propylbenzene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
sec-Butylbenzene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Styrene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
tert-Butylbenzene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Tetrachloroethene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
	* /							

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: MW-106 Date Sampled: 06/06/14 14:10

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-10

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrahydrofuran	ND (0.0050)		8260B	·	1	06/10/14 20:46	CXF0144	CF41136
Toluene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Trichloroethene	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Trichlorofluoromethane	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Vinyl Acetate	ND (0.0050)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Vinyl Chloride	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Xylene O	ND (0.0010)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Xylene P,M	ND (0.0020)		8260B		1	06/10/14 20:46	CXF0144	CF41136
Xylenes (Total)	ND (0.0020)		8260B		1	06/10/14 20:46		[CALC]
Trihalomethanes (Total)	ND (0.0036)		8260B			06/10/14 20:46		[CALC]
		%Recovery	Qualifier	Limits				
Currogatos 1.3 Dichloroothana da								

	, , , ,	•	
Surrogate: 1,2-Dichloroethane-d4	105 %		70-130
Surrogate: 4-Bromofluorobenzene	81 %		70-130
Surrogate: Dibromofluoromethane	106 %		70-130
Surrogate: Toluene-d8	92 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: Trip Blank Date Sampled: 06/06/14 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-11

Sample Matrix: Aqueous

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	MDL Method 8260B	Limit DF	<u>Analyzed</u> 06/09/14 17:05	Sequence CXF0124	Batch CF40938
1,1,1-Trichloroethane	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,1,2-Trichloroethane	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,1-Dichloroethane	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,1-Dichloroethene	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,1-Dichloropropene	ND (0.0020)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,2,3-Trichlorobenzene	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,2,3-Trichloropropane	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,2,4-Trichlorobenzene	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,2,4-Trimethylbenzene	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,2-Dibromoethane	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,2-Dichlorobenzene	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,2-Dichloroethane	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,2-Dichloropropane	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,3,5-Trimethylbenzene	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,3-Dichlorobenzene	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,3-Dichloropropane	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,4-Dichlorobenzene	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1,4-Dioxane - Screen	ND (0.500)	8260B	1	06/09/14 17:05	CXF0124	CF40938
1-Chlorohexane	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
2,2-Dichloropropane	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
2-Butanone	ND (0.0100)	8260B	1	06/09/14 17:05	CXF0124	CF40938
2-Chlorotoluene	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
2-Hexanone	ND (0.0100)	8260B	1	06/09/14 17:05	CXF0124	CF40938
4-Chlorotoluene	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
4-Isopropyltoluene	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
4-Methyl-2-Pentanone	ND (0.0250)	8260B	1	06/09/14 17:05	CXF0124	CF40938
Acetone	ND (0.0100)	8260B	1	06/09/14 17:05	CXF0124	CF40938
Benzene	ND (0.0010)	8260B	1	06/09/14 17:05	CXF0124	CF40938
Bromobenzene	ND (0.0020)	8260B	1	06/09/14 17:05	CXF0124	CF40938

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: Trip Blank Date Sampled: 06/06/14 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-11

Sample Matrix: Aqueous

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	Results (MRL) ND (0.0010)	<u>MDL</u>	Method 8260B	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	<u>Analyzed</u> 06/09/14 17:05	Sequence CXF0124	Batch CF40938
Bromodichloromethane	,		8260B		1	06/09/14 17:05	CXF0124 CXF0124	CF40938 CF40938
Bromoform	ND (0.0006)		8260B		1	06/09/14 17:05	CXF0124 CXF0124	CF40938
Bromomethane	ND (0.0010) ND (0.0020)		8260B		1	06/09/14 17:05	CXF0124 CXF0124	CF40938
Carbon Disulfide	, ,		8260B		1	06/09/14 17:05	CXF0124 CXF0124	CF40938
Carbon Tetrachloride	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124 CXF0124	CF40938 CF40938
Chlorobenzene	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124 CXF0124	CF40938 CF40938
	ND (0.0010)				_			
Chloroethane	ND (0.0020)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Chloroform	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Chloromethane	ND (0.0020)		8260B		1	06/09/14 17:05	CXF0124	CF40938
cis-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
cis-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Dibromochloromethane	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Dibromomethane	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Dichlorodifluoromethane	ND (0.0020)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Diethyl Ether	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Di-isopropyl ether	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Ethyl tertiary-butyl ether	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Ethylbenzene	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Hexachlorobutadiene	ND (0.0006)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Hexachloroethane	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Isopropylbenzene	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Methyl tert-Butyl Ether	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Methylene Chloride	ND (0.0020)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Naphthalene	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
n-Butylbenzene	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
n-Propylbenzene	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
sec-Butylbenzene	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Styrene	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
tert-Butylbenzene	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Tetrachloroethene	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington Client Sample ID: Trip Blank Date Sampled: 06/06/14 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Surrogate: Toluene-d8

Extraction Method: 5030B

ESS Laboratory Work Order: 1406156 ESS Laboratory Sample ID: 1406156-11

Sample Matrix: Aqueous

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
Tetrahydrofuran	ND (0.0050)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Toluene	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Trichloroethene	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Trichlorofluoromethane	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Vinyl Acetate	ND (0.0050)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Vinyl Chloride	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Xylene O	ND (0.0010)		8260B		1	06/09/14 17:05	CXF0124	CF40938
Xylene P,M	ND (0.0020)		8260B		1	06/09/14 17:05	CXF0124	CF40938
	9	6Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		102 %		70-130				
Surrogate: 4-Bromofluorobenzene		<i>75 %</i>		70-130				
Surrogate: Dibromofluoromethane		100 %		70-130				

91 %

185 Frances Avenue, Cranston, RI 02910-2211

1 Tel: 401-461-7181

Fax: 401-461-4486

70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1406156

Quality Control Data

	5			Spike	Source	0/ 855	%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		Disso	ved Metals	s Aqueous						
Batch CF40902 - 3005A										
Blank										
Barium	ND	0.025	mg/L							
Cadmium	ND	0.0025	mg/L							
Chromium	ND	0.010	mg/L							
Silver	ND	0.005	mg/L							
LCS										
Barium	0.246	0.025	mg/L	0.2500		99	80-120			
Cadmium	0.127	0.0025	mg/L	0.1250		102	80-120			
Chromium	0.246	0.010	mg/L	0.2500		98	80-120			
Silver	0.133	0.005	mg/L	0.1250		106	80-120			
LCS Dup										
Barium	0.254	0.025	mg/L	0.2500		101	80-120	3	20	
Cadmium	0.127	0.0025	mg/L	0.1250		101	80-120	0.3	20	
Chromium	0.255	0.010	mg/L	0.2500		102	80-120	4	20	
Silver	0.137	0.005	mg/L	0.1250		109	80-120	3	20	
Batch CF40904 - 245.1/7470A										
Blank										
Mercury	ND	0.00020	mg/L							
LCS										
Mercury	0.00535	0.00020	mg/L	0.006000		89	80-120			
LCS Dup										
Mercury	0.00532	0.00020	mg/L	0.006000		89	80-120	0.5	20	
Batch CF41003 - 3005A										
Blank										
Arsenic	ND	0.0010	mg/L							
Selenium	ND	0.0250	mg/L							
Blank										
Arsenic	ND	0.0010	mg/L							
Lead	ND	0.0100	mg/L							
Selenium	ND	0.0250	mg/L							
LCS										
Arsenic	0.0285	0.0010	mg/L	0.02500		114	80-120			
Lead	0.0300	0.0100	mg/L	0.02500		120	80-120			
Selenium	0.0301	0.0250	mg/L	0.02500		121	80-120			B+
LCS Dup										
	0.0268	0.0010	mg/L	0.02500		107	80-120	6	20	
Arsenic										
Arsenic Lead	0.0314	0.0100	mg/L	0.02500		126	80-120	5	20	B+

Batch CF40902 - 3005A

Blank

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1406156

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		Tot	al Metals A	queous						
atch CF40902 - 3005A										
Barium	ND	0.025	mg/L							
Cadmium	ND	0.0025	mg/L							
Chromium	ND	0.010	mg/L							
ilver	ND	0.005	mg/L							
.cs			3/ =							
arium	0.257	0.025	mg/L	0.2500		103	80-120			
admium	0.127	0.025		0.1250		101	80-120			
hromium	0.267	0.0023	mg/L mg/L	0.2500		107	80-120			
ilver	0.135	0.010		0.1250		107	80-120			
	0.133	0.005	mg/L	0.1250		100	00-120			
.CS Dup		0.000		0.000			00 :00			
arium	0.249	0.025	mg/L	0.2500		100	80-120	3	20	
admium	0.123	0.0025	mg/L	0.1250		98	80-120	3	20	
hromium 	0.259	0.010	mg/L	0.2500		104	80-120	3	20	
lver	0.131	0.005	mg/L	0.1250		105	80-120	3	20	
atch CF40904 - 245.1/7470A										
lank										
lercury	ND	0.00020	mg/L							
cs										
1ercury	0.00535	0.00020	mg/L	0.006000		89	80-120			
CS Dup										
1ercury	0.00532	0.00020	mg/L	0.006000		89	80-120	0.5	20	
Batch CF41003 - 3005A										
Blank										
rsenic	ND	0.0010	mg/L							
ead	ND	0.0100	mg/L							
elenium	ND	0.0250	mg/L							
cs										
rsenic	0.0285	0.0010	mg/L	0.02500		114	80-120			
ead	0.0300	0.0100	mg/L	0.02500		120	80-120			
elenium	0.0301	0.0250	mg/L	0.02500		121	80-120			B+
.CS Dup										
rsenic	0.0268	0.0010	mg/L	0.02500		107	80-120	6	20	
ead	0.0314	0.0100	mg/L	0.02500		126	80-120	5	20	B+
ielenium	0.0309	0.0250	mg/L	0.02500		124	80-120	3	20	B+
	0.0002	8260B Vol			unds		00 120	J	20	5.
Batch CF40938 - 5030B										
Jank ,1,1,2-Tetrachloroethane	ND	0.0010	ma/l							
		0.0010	mg/L							
I,1,1-Trichloroethane	ND ND		mg/L							
,1,2,2-Tetrachloroethane	ND	0.0005	mg/L							

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1406156

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compounds

Batch CF40938 - 5030B			
1,1-Dichloroethane	ND	0.0010	mg/L
1,1-Dichloroethene	ND	0.0010	mg/L
1,1-Dichloropropene	ND	0.0020	mg/L
1,2,3-Trichlorobenzene	ND	0.0010	mg/L
1,2,3-Trichloropropane	ND	0.0010	mg/L
1,2,4-Trichlorobenzene	ND	0.0010	mg/L
1,2,4-Trimethylbenzene	ND	0.0010	mg/L
1,2-Dibromo-3-Chloropropane	ND	0.0050	mg/L
1,2-Dibromoethane	ND	0.0010	mg/L
1,2-Dichlorobenzene	ND	0.0010	mg/L
1,2-Dichloroethane	ND	0.0010	mg/L
1,2-Dichloropropane	ND	0.0010	mg/L
1,3,5-Trimethylbenzene	ND	0.0010	mg/L
1,3-Dichlorobenzene	ND	0.0010	mg/L
1,3-Dichloropropane	ND	0.0010	mg/L
1,4-Dichlorobenzene	ND	0.0010	mg/L
1,4-Dioxane - Screen	ND	0.500	mg/L
1-Chlorohexane	ND	0.0010	mg/L
2,2-Dichloropropane	ND	0.0010	mg/L
2-Butanone	ND	0.0100	mg/L
2-Chlorotoluene	ND	0.0010	mg/L
2-Hexanone	ND	0.0100	mg/L
1-Chlorotoluene	ND	0.0010	mg/L
1-Isopropyltoluene	ND	0.0010	mg/L
1-Methyl-2-Pentanone	ND	0.0250	mg/L
Acetone	ND	0.0100	mg/L
Benzene	ND	0.0010	mg/L
Bromobenzene	ND	0.0020	mg/L
Bromochloromethane	ND	0.0010	mg/L
Bromodichloromethane	ND	0.0006	mg/L
Bromoform	ND	0.0010	mg/L
Bromomethane	ND	0.0020	mg/L
Carbon Disulfide	ND	0.0010	mg/L
Carbon Tetrachloride	ND	0.0010	mg/L
Chlorobenzene	ND	0.0010	mg/L
Chloroethane	ND	0.0020	mg/L
Chloroform	ND	0.0010	mg/L
Chloromethane	ND	0.0020	mg/L
cis-1,2-Dichloroethene	ND	0.0010	mg/L
cis-1,3-Dichloropropene	ND	0.0004	mg/L
Dibromochloromethane	ND	0.0010	mg/L
Dibromomethane	ND	0.0010	mg/L
Dichlorodifluoromethane	ND	0.0020	mg/L
Diethyl Ether	ND	0.0010	mg/L
Di-isopropyl ether	ND	0.0010	mg/L

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

Batch CF40938 - 5030B

ESS Laboratory Work Order: 1406156

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Batch CF40938 - 5030B							
Ethyl tertiary-butyl ether	ND	0.0010	mg/L				
Ethylbenzene	ND	0.0010	mg/L				
Hexachlorobutadiene	ND	0.0006	mg/L				
lexachloroethane	ND	0.0010	mg/L				
sopropylbenzene	ND	0.0010	mg/L				
1ethyl tert-Butyl Ether	ND	0.0010	mg/L				
1ethylene Chloride	ND	0.0020	mg/L				
Naphthalene	ND	0.0010	mg/L				
n-Butylbenzene	ND	0.0010	mg/L				
n-Propylbenzene	ND	0.0010	mg/L				
sec-Butylbenzene	ND	0.0010	mg/L				
Styrene	ND	0.0010	mg/L				
ert-Butylbenzene	ND	0.0010	mg/L				
Fertiary-amyl methyl ether	ND	0.0010	mg/L				
Fetrachloroethene	ND	0.0010	mg/L				
Fetrahydrofuran	ND	0.0050	mg/L				
Foluene	ND	0.0010	mg/L				
rans-1,2-Dichloroethene	ND	0.0010	mg/L				
rans-1,3-Dichloropropene	ND	0.0004	mg/L				
richloroethene	ND	0.0010	mg/L				
richlorofluoromethane	ND	0.0010	mg/L				
inyl Acetate	ND	0.0050	mg/L				
/inyl Chloride	ND	0.0010	mg/L				
ýlene O	ND	0.0010	mg/L				
ylene P,M	ND	0.0020	mg/L				
Surrogate: 1,2-Dichloroethane-d4	0.0251		mg/L	0.02500	100	70-130	
Surrogate: 4-Bromofluorobenzene	0.0190		mg/L	0.02500	76	70-130	
Surrogate: Dibromofluoromethane	0.0251		mg/L	0.02500	100	70-130	
Surrogate: Toluene-d8	0.0226		mg/L	0.02500	91	70-130	
.cs							
,1,1,2-Tetrachloroethane	8.66		ug/L	10.00	87	70-130	
,1,1-Trichloroethane	8.74		ug/L	10.00	87	70-130	
,1,2,2-Tetrachloroethane	8.30		ug/L	10.00	83	70-130	
,1,2-Trichloroethane	8.41		ug/L	10.00	84	70-130	
,1-Dichloroethane	8.50		ug/L	10.00	85	70-130	
,1-Dichloroethene	8.57		ug/L	10.00	86	70-130	
,1-Dichloropropene	9.56		ug/L	10.00	96	70-130	
,2,3-Trichlorobenzene	8.33		ug/L	10.00	83	70-130	
,2,3-Trichloropropane	7.83		ug/L	10.00	78	70-130	
,2,4-Trichlorobenzene	7.99		ug/L	10.00	80	70-130	
,2,4-Trimethylbenzene	8.78		ug/L	10.00	88	70-130	
L,2-Dibromo-3-Chloropropane	7.72		ug/L	10.00	77	70-130	
,,2-Dibromoethane	8.58		ug/L	10.00	86	70-130	
1,2-Dichlorobenzene	8.73		ug/L	10.00	87	70-130	
1,2-Dichloroethane	8.59		ug/L	10.00	86	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1406156

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compou	nd	S
-------------------------------	----	---

Batch CF40938 - 5030B						
1,2-Dichloropropane	8.38	ug/L	10.00	84	70-130	
,3,5-Trimethylbenzene	9.43	ug/L	10.00	94	70-130	
,3-Dichlorobenzene	8.64	ug/L	10.00	86	70-130	
,3-Dichloropropane	8.60	ug/L	10.00	86	70-130	
,4-Dichlorobenzene	8.46	ug/L	10.00	85	70-130	
,4-Dioxane - Screen	145	ug/L	200.0	73	0-332	
-Chlorohexane	8.33	ug/L	10.00	83	70-130	
,2-Dichloropropane	8.27	ug/L	10.00	83	70-130	
-Butanone	43.0	ug/L	50.00	86	70-130	
-Chlorotoluene	9.20	ug/L	10.00	92	70-130	
-Hexanone	43.4	ug/L	50.00	87	70-130	
-Chlorotoluene	9.24	ug/L	10.00	92	70-130	
-Isopropyltoluene	8.56	ug/L	10.00	86	70-130	
-Methyl-2-Pentanone	42.6	ug/L	50.00	85	70-130	
Acetone	69.6	ug/L	50.00	139	70-130	B+
Benzene	8.81	ug/L	10.00	88	70-130	
Bromobenzene	8.64	ug/L	10.00	86	70-130	
romochloromethane	8.97	ug/L	10.00	90	70-130	
romodichloromethane	8.78	ug/L	10.00	88	70-130	
romoform	8.65	ug/L	10.00	86	70-130	
romomethane	10.4	ug/L	10.00	104	70-130	
arbon Disulfide	8.37	ug/L	10.00	84	70-130	
arbon Tetrachloride	8.89	ug/L	10.00	89	70-130	
hlorobenzene	8.69	ug/L	10.00	87	70-130	
thloroethane	8.16	ug/L	10.00	82	70-130	
hloroform	8.96	ug/L	10.00	90	70-130	
hloromethane	8.71	ug/L	10.00	87	70-130	
is-1,2-Dichloroethene	9.08	ug/L	10.00	91	70-130	
is-1,3-Dichloropropene	8.56	ug/L	10.00	86	70-130	
bibromochloromethane	8.92	ug/L	10.00	89	70-130	
Dibromomethane	8.63	ug/L	10.00	86	70-130	
oichlorodifluoromethane	8.10	ug/L	10.00	81	70-130	
eliethyl Ether	8.50	ug/L	10.00	85	70-130	
Di-isopropyl ether	8.37	ug/L	10.00	84	70-130	
thyl tertiary-butyl ether	8.09	ug/L	10.00	81	70-130	
thylbenzene	8.75	ug/L	10.00	88	70-130	
lexachlorobutadiene	7.97	ug/L	10.00	80	70-130	
exachloroethane	7.90	ug/L	10.00	79	70-130	
sopropylbenzene	9.04	ug/L	10.00	90	70-130	
lethyl tert-Butyl Ether	8.15	ug/L	10.00	82	70-130	
1ethylene Chloride	8.65	ug/L	10.00	86	70-130	
laphthalene	7.55	ug/L	10.00	76	70-130	
-Butylbenzene	8.26	ug/L	10.00	83	70-130	
-Propylbenzene	9.03	ug/L	10.00	90	70-130	
ec-Butylbenzene	9.39	ug/L	10.00	94	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1406156

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
· /			latile Organi							
		02002 10								
Batch CF40938 - 5030B										
Styrene	8.08		ug/L	10.00		81	70-130			
tert-Butylbenzene	9.01		ug/L	10.00		90	70-130			
Tertiary-amyl methyl ether	7.67		ug/L	10.00		77	70-130			
Tetrachloroethene	8.39		ug/L	10.00		84	70-130			
Tetrahydrofuran	8.41		ug/L	10.00		84	70-130			
Toluene	9.31		ug/L	10.00		93	70-130			
trans-1,2-Dichloroethene	8.76		ug/L	10.00		88	70-130			
trans-1,3-Dichloropropene	7.99		ug/L	10.00		80	70-130			
Trichloroethene	8.44		ug/L	10.00		84	70-130			
Trichlorofluoromethane	8.09		ug/L	10.00		81	70-130			
Vinyl Acetate	9.14		ug/L	10.00		91	70-130			
Vinyl Chloride	9.00		ug/L	10.00		90	70-130			
Xylene O	9.61		ug/L	10.00		96	70-130			
Xylene P,M	18.6		ug/L	20.00		93	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.0214		mg/L	0.02500		86	70-130			
Surrogate: 4-Bromofluorobenzene	0.0198		mg/L	0.02500		<i>79</i>	70-130			
Surrogate: Dibromofluoromethane	0.0229		mg/L	0.02500		92	70-130			
Surrogate: Toluene-d8	0.0224		mg/L	0.02500		90	70-130			
			9/ =							
LCS Dup 1,1,1,2-Tetrachloroethane	9.39		ug/l	10.00		94	70-130	8	25	
			ug/L							
1,1,1-Trichloroethane	9.26		ug/L	10.00		93	70-130	6	25	
1,1,2,2-Tetrachloroethane	8.93		ug/L	10.00		89	70-130	7	25	
1,1,2-Trichloroethane	9.16		ug/L	10.00		92	70-130	9	25	
1,1-Dichloroethane	8.95		ug/L	10.00		90	70-130	5	25	
1,1-Dichloroethene	8.94		ug/L	10.00		89	70-130	4	25	
1,1-Dichloropropene	9.97		ug/L	10.00		100	70-130	4	25	
1,2,3-Trichlorobenzene	9.28		ug/L	10.00		93	70-130	11	25	
1,2,3-Trichloropropane	8.71		ug/L	10.00		87	70-130	11	25	
1,2,4-Trichlorobenzene	8.78		ug/L	10.00		88	70-130	9	25	
1,2,4-Trimethylbenzene	9.46		ug/L	10.00		95	70-130	7	25	
1,2-Dibromo-3-Chloropropane	8.50		ug/L	10.00		85	70-130	10	25	
1,2-Dibromoethane	9.32		ug/L	10.00		93	70-130	8	25	
1,2-Dichlorobenzene	9.27		ug/L	10.00		93	70-130	6	25	
1,2-Dichloroethane	9.45		ug/L	10.00		94	70-130	10	25	
1,2-Dichloropropane	8.98		ug/L	10.00		90	70-130	7	25	
1,3,5-Trimethylbenzene	10.1		ug/L	10.00		101	70-130	7	25	
1,3-Dichlorobenzene	9.27		ug/L	10.00		93	70-130	7	25	
1,3-Dichloropropane	9.53		ug/L	10.00		95	70-130	10	25	
1,4-Dichlorobenzene	9.13		ug/L	10.00		91	70-130	8	25	
1,4-Dioxane - Screen	183		ug/L	200.0		92	0-332	23	200	
1-Chlorohexane	8.97		ug/L	10.00		90	70-130	7	25	
2,2-Dichloropropane	8.80		ug/L	10.00		88	70-130	6	25	
2-Butanone	47.9		ug/L	50.00		96	70-130	11	25	
2-Chlorotoluene	9.85		ug/L	10.00		98	70-130	7	25	
2-Hexanone	52.1		ug/L	50.00		104	70-130	18	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1406156

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8260B Vol	atile Organi	c Compo	unds					
Batch CF40938 - 5030B										
1-Chlorotoluene	9.79		ug/L	10.00		98	70-130	6	25	
1-Isopropyltoluene	9.04		ug/L	10.00		90	70-130	5	25	
4-Methyl-2-Pentanone	48.7		ug/L	50.00		97	70-130	13	25	
Acetone	79.4		ug/L	50.00		159	70-130	13	25	B+
Benzene	9.29		ug/L	10.00		93	70-130	5	25	
Bromobenzene	9.25		ug/L	10.00		92	70-130	7	25	
Bromochloromethane	9.44		ug/L	10.00		94	70-130	5	25	
Bromodichloromethane	9.28		ug/L	10.00		93	70-130	6	25	
Bromoform	9.35		ug/L	10.00		94	70-130	8	25	
Bromomethane	11.0		ug/L	10.00		110	70-130	5	25	
Carbon Disulfide	8.71		ug/L	10.00		87	70-130	4	25	
Carbon Tetrachloride	9.13		ug/L	10.00		91	70-130	3	25	
Chlorobenzene	9.56		ug/L	10.00		96	70-130	10	25	
Chloroethane	6.06		ug/L	10.00		61	70-130	30	25	B-, D+
Chloroform	9.49		ug/L	10.00		95	70-130	6	25	
Chloromethane	9.49		ug/L	10.00		95	70-130	9	25	
is-1,2-Dichloroethene	9.69		ug/L	10.00		97	70-130	6	25	
is-1,3-Dichloropropene	9.26		ug/L	10.00		93	70-130	8	25	
ibromochloromethane	9.77		ug/L	10.00		98	70-130	9	25	
Dibromomethane	9.49		ug/L	10.00		95	70-130	9	25	
oichlorodifluoromethane	8.33		ug/L	10.00		83	70-130	3	25	
piethyl Ether	9.52		ug/L	10.00		95	70-130	11	25	
oi-isopropyl ether	9.14		ug/L	10.00		91	70-130	9	25	
thyl tertiary-butyl ether	8.64		ug/L	10.00		86	70-130	7	25	
thylbenzene	9.34		ug/L	10.00		93	70-130	7	25	
lexachlorobutadiene	8.65		ug/L	10.00		86	70-130	8	25	
dexachloroethane			ug/L	10.00		88	70-130	10	25	
	8.75									
Sopropylbenzene	9.48		ug/L	10.00		95	70-130	5	25	
Methyl tert-Butyl Ether	9.11		ug/L	10.00		91	70-130	11	25	
1ethylene Chloride	9.25		ug/L	10.00		92	70-130	7	25	
laphthalene	9.08		ug/L	10.00		91	70-130	18	25	
n-Butylbenzene	8.93		ug/L	10.00		89	70-130	8	25	
-Propylbenzene	9.57		ug/L	10.00		96	70-130	6	25	
ec-Butylbenzene	9.92		ug/L	10.00		99	70-130	5	25	
tyrene	8.75		ug/L	10.00		88	70-130	8	25	
ert-Butylbenzene	9.54		ug/L	10.00		95	70-130	6	25	
ertiary-amyl methyl ether	7.94		ug/L	10.00		79	70-130	3	25	
etrachloroethene	9.09		ug/L	10.00		91	70-130	8	25	
etrahydrofuran	9.55		ug/L	10.00		96	70-130	13	25	
oluene	9.84		ug/L	10.00		98	70-130	6	25	
rans-1,2-Dichloroethene	9.35		ug/L	10.00		94	70-130	7	25	
rans-1,3-Dichloropropene	8.44		ug/L	10.00		84	70-130	5	25	
richloroethene	9.14		ug/L	10.00		91	70-130	8	25	
richlorofluoromethane	8.32		ug/L	10.00		83	70-130	3	25	
/inyl Acetate	9.86		ug/L	10.00		99	70-130	8	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1406156

Quality Control Data

	5			Spike	Source	0/550	%REC	D.C.	RPD	0 "5
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
		8260B Vola	atile Organ	ic Compou	ınds					
latch CF40938 - 5030B										
inyl Chloride	9.44		ug/L	10.00		94	70-130	5	25	
ylene O	10.2		ug/L	10.00		102	70-130	6	25	
ylene P,M	20.0		ug/L	20.00		100	70-130	7	25	
urrogate: 1,2-Dichloroethane-d4	0.0222		mg/L	0.02500		89	70-130			
urrogate: 4-Bromofluorobenzene	0.0206		mg/L	0.02500		82	70-130			
urrogate: Dibromofluoromethane	0.0234		mg/L	0.02500		94	70-130			
urrogate: Toluene-d8	0.0231		mg/L	0.02500		92	70-130			
atch CF41136 - 5030B										
lank										
1,1,2-Tetrachloroethane	ND	0.0010	mg/L							
,1,1-Trichloroethane	ND	0.0010	mg/L							
,1,2,2-Tetrachloroethane	ND	0.0005	mg/L							
1,2-Trichloroethane	ND	0.0010	mg/L							
1-Dichloroethane	ND	0.0010	mg/L							
1-Dichloroethene	ND	0.0010	mg/L							
1-Dichloropropene	ND	0.0020	mg/L							
2,3-Trichlorobenzene	ND	0.0010	mg/L							
2,3-Trichloropropane	ND	0.0010	mg/L							
2,4-Trichlorobenzene	ND	0.0010	mg/L							
2,4-Trimethylbenzene	ND	0.0010	mg/L							
2-Dibromo-3-Chloropropane	ND	0.0050	mg/L							
2-Dibromoethane	ND	0.0010	mg/L							
2-Dichlorobenzene	ND	0.0010	mg/L							
,2-Dichloroethane	ND	0.0010	mg/L							
2-Dichloropropane	ND	0.0010	mg/L							
,3,5-Trimethylbenzene	ND	0.0010	mg/L							
,3-Dichlorobenzene	ND	0.0010	mg/L							
3-Dichloropropane	ND	0.0010	mg/L							
,4-Dichlorobenzene	ND	0.0010	mg/L							
4-Dioxane - Screen	ND	0.500	mg/L							
-Chlorohexane	ND	0.0010	mg/L							
2-Dichloropropane	ND	0.0010	mg/L							
Butanone	ND	0.0100	mg/L							
-Chlorotoluene	ND	0.0010	mg/L							
Hexanone	ND	0.0100	mg/L							
Chlorotoluene	ND	0.0010	mg/L							
Isopropyltoluene	ND	0.0010	mg/L							
Methyl-2-Pentanone	ND	0.0250	mg/L							
cetone	ND	0.0100	mg/L							
enzene	ND	0.0010	mg/L							
romobenzene	ND	0.0020	mg/L							
romochloromethane	ND	0.0010	mg/L							
romodichloromethane	ND	0.0006	mg/L							
	ND	0.0010	mg/L							

185 Frances Avenue, Cranston, RI 02910-2211

ND

Bromomethane

Tel: 401-461-7181

mg/L

Fax: 401-461-4486

http://www.ESSLaboratory.com

0.0020

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1406156

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compou	nd	S
-------------------------------	----	---

Batch CF41136 - 5030B							
Carbon Disulfide	ND	0.0010	mg/L				
Carbon Tetrachloride	ND	0.0010	mg/L				
Chlorobenzene	ND	0.0010	mg/L				
Chloroethane	ND	0.0020	mg/L				
Chloroform	ND	0.0010	mg/L				
Chloromethane	ND	0.0020	mg/L				
cis-1,2-Dichloroethene	ND	0.0010	mg/L				
cis-1,3-Dichloropropene	ND	0.0004	mg/L				
Dibromochloromethane	ND	0.0010	mg/L				
Dibromomethane	ND	0.0010	mg/L				
Dichlorodifluoromethane	ND	0.0020	mg/L				
Diethyl Ether	ND	0.0010	mg/L				
Di-isopropyl ether	ND	0.0010	mg/L				
Ethyl tertiary-butyl ether	ND	0.0010	mg/L				
Ethylbenzene	ND	0.0010	mg/L				
Hexachlorobutadiene	ND	0.0006	mg/L				
Hexachloroethane	ND	0.0010	mg/L				
Isopropylbenzene	ND	0.0010	mg/L				
Methyl tert-Butyl Ether	ND	0.0010	mg/L				
Methylene Chloride	ND	0.0020	mg/L				
Naphthalene	ND	0.0010	mg/L				
n-Butylbenzene	ND	0.0010	mg/L				
n-Propylbenzene	ND	0.0010	mg/L				
sec-Butylbenzene	ND	0.0010	mg/L				
Styrene	ND	0.0010	mg/L				
tert-Butylbenzene	ND	0.0010	mg/L				
Tertiary-amyl methyl ether	ND	0.0010	mg/L				
Tetrachloroethene	ND	0.0010	mg/L				
Tetrahydrofuran	ND	0.0050	mg/L				
Toluene	ND	0.0010	mg/L				
trans-1,2-Dichloroethene	ND	0.0010	mg/L				
trans-1,3-Dichloropropene	ND	0.0004	mg/L				
Trichloroethene	ND	0.0010	mg/L				
Trichlorofluoromethane	ND	0.0010	mg/L				
Vinyl Acetate	ND	0.0050	mg/L				
Vinyl Chloride	ND	0.0010	mg/L				
Xylene O	ND	0.0010	mg/L				
Xylene P,M	ND	0.0020	mg/L				
Surrogate: 1,2-Dichloroethane-d4	0.0256		mg/L	0.02500	102	70-130	
Surrogate: 4-Bromofluorobenzene	0.0190		mg/L	0.02500	76	70-130	
Surrogate: Dibromofluoromethane	0.0255		mg/L	0.02500	102	70-130	
Surrogate: Toluene-d8	0.0226		mg/L	0.02500	90	70-130	
LCS							
1,1,1,2-Tetrachloroethane	9.28		ug/L	10.00	93	70-130	
1,1,1-Trichloroethane	9.61		ug/L	10.00	96	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1406156

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compounds

atch CF41136 - 5030B					
,1,2,2-Tetrachloroethane	8.97	ug/L 10.	00 90	70-130	
2-Trichloroethane	9.29	ug/L 10.	00 93	70-130	
Dichloroethane	9.28	ug/L 10.	00 93	70-130	
pichloroethene	9.17	ug/L 10.	00 92	70-130	
ichloropropene	10.4	ug/L 10.	00 104	70-130	
Trichlorobenzene	9.24	ug/L 10.	00 92	70-130	
Trichloropropane	8.79	ug/L 10.	00 88	70-130	
-Trichlorobenzene	8.89	ug/L 10.	00 89	70-130	
-Trimethylbenzene	9.58	ug/L 10.	00 96	70-130	
Dibromo-3-Chloropropane	8.45	ug/L 10.	00 84	70-130	
ibromoethane	9.24	ug/L 10.	00 92	70-130	
pichlorobenzene	9.53	ug/L 10.	00 95	70-130	
ichloroethane	9.57	ug/L 10.	00 96	70-130	
chloropropane	9.13	ug/L 10.	00 91	70-130	
Trimethylbenzene	10.3	ug/L 10.	00 103	70-130	
ichlorobenzene	9.70	ug/L 10.		70-130	
chloropropane	9.27	ug/L 10.	00 93	70-130	
Dichlorobenzene	9.12	ug/L 10.	00 91	70-130	
Dioxane - Screen	158	ug/L 200		0-332	
prohexane	8.72	ug/L 10.	00 87	70-130	
chloropropane	8.62	ug/L 10.		70-130	
anone	47.4	ug/L 50.		70-130	
rotoluene	10.4	ug/L 10.		70-130	
none	47.6	ug/L 50.		70-130	
rotoluene	10.0	ug/L 10.		70-130	
ropyltoluene	9.25	ug/L 10.		70-130	
nyl-2-Pentanone	47.6	ug/L 50.		70-130	
e	47.4	ug/L 50.		70-130	
ne	9.56	ug/L 10.		70-130	
benzene	9.66	ug/L 10.		70-130	
ochloromethane	9.66	ug/L 10.		70-130	
odichloromethane	9.54	ug/L 10.		70-130	
oform	9.12	ug/L 10.		70-130	
omethane	11.3	ug/L 10.		70-130	
on Disulfide	8.93	ug/L 10.		70-130	
on Tetrachloride	9.63	ug/L 10.		70-130	
benzene	9.41	ug/L 10.		70-130	
oethane	8.92	ug/L 10.		70-130	
oform	9.71	ug/L 10.		70-130	
methane	10.1	ug/L 10.		70-130	
2-Dichloroethene	9.88	ug/L 10.		70-130	
3-Dichloropropene	9.21	ug/L 10.		70-130	
• •		-		70-130	
mochloromethane	9 44				
mochloromethane momethane	9.44 9.53	ug/L 10.			
ochloromethane omethane odifluoromethane	9.44 9.53 8.52	ug/L 10. ug/L 10. ug/L 10.	00 95	70-130 70-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1406156

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8260B Vo	latile Organi	c Compo	unds					
Batch CF41136 - 5030B										
Diethyl Ether	9.36		ug/L	10.00		94	70-130			
Di-isopropyl ether	9.45		ug/L	10.00		94	70-130			
Ethyl tertiary-butyl ether	9.42		ug/L	10.00		94	70-130			
Ethylbenzene	9.51		ug/L	10.00		95	70-130			
Hexachlorobutadiene	8.68		ug/L	10.00		87	70-130			
Hexachloroethane	8.21		ug/L	10.00		82	70-130			
Isopropylbenzene	9.98		ug/L	10.00		100	70-130			
Methyl tert-Butyl Ether	9.16		ug/L	10.00		92	70-130			
Methylene Chloride	9.23		ug/L	10.00		92	70-130			
Naphthalene	8.76		ug/L	10.00		88	70-130			
n-Butylbenzene	9.05		ug/L	10.00		90	70-130			
n-Propylbenzene	9.92		ug/L	10.00		99	70-130			
sec-Butylbenzene	10.1		ug/L	10.00		101	70-130			
Styrene	8.70		ug/L	10.00		87	70-130			
ert-Butylbenzene	9.91		ug/L	10.00		99	70-130			
Fertiary-amyl methyl ether	9.12		ug/L	10.00		91	70-130			
Fetrachloroethene	9.11		ug/L	10.00		91	70-130			
Fetrahydrofuran	8.74		ug/L	10.00		87	70-130			
Foluene	10.2		ug/L	10.00		102	70-130			
rans-1,2-Dichloroethene	9.57		ug/L	10.00		96	70-130			
rans-1,3-Dichloropropene	8.46		ug/L	10.00		85	70-130			
richloroethene	9.34		ug/L	10.00		93	70-130			
Trichlorofluoromethane	8.84		ug/L	10.00		88	70-130			
/inyl Acetate	9.31		ug/L	10.00		93	70-130			
/inyl Chloride	10.2		ug/L	10.00		102	70-130			
Kylene O	10.3		ug/L	10.00		103	70-130			
Kylene P,M	20.2		ug/L	20.00		101	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.0227		mg/L	0.02500		91	70-130			
Surrogate: 4-Bromofluorobenzene	0.0198		mg/L	0.02500		<i>79</i>	70-130			
Surrogate: Dibromofluoromethane	0.0242		mg/L	0.02500		97	70-130			
Surrogate: Toluene-d8	0.0225		mg/L	0.02500		90	70-130			
LCS Dup										
,1,1,2-Tetrachloroethane	8.64		ug/L	10.00		86	70-130	7	25	
1,1,1-Trichloroethane	8.67		ug/L	10.00		87	70-130	10	25	
1,1,2,2-Tetrachloroethane	7.90		ug/L	10.00		79	70-130	13	25	
1,1,2-Trichloroethane	8.47		ug/L	10.00		85	70-130	9	25	
.,1-Dichloroethane	8.54		ug/L	10.00		85	70-130	8	25	
,1-Dichloroethene	8.59		ug/L	10.00		86	70-130	7	25	
.,1-Dichloropropene	9.50		ug/L	10.00		95	70-130	9	25	
1,2,3-Trichlorobenzene	8.53		ug/L	10.00		85	70-130	8	25	
1,2,3-Trichloropropane	7.73		ug/L	10.00		77	70-130	13	25	
1,2,4-Trichlorobenzene	8.05		ug/L	10.00		80	70-130	10	25	
,2,4-Trimethylbenzene	8.61		ug/L	10.00		86	70-130	11	25	
,2-Dibromo-3-Chloropropane	7.85		ug/L	10.00		78	70-130	7	25	
,2-Dibromoethane	8.44		ug/L	10.00		84	70-130	9	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1406156

Quality Control Data

Analyte	Result	MRL Uni	Spike ts Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
*		8260B Volatile O						-	
Batch CF41136 - 5030B 1,2-Dichlorobenzene	8.47	ug,	L 10.00		85	70-130	12	25	
1,2-Dichloroethane	8.73	ug,			87	70-130	9	25	
1,2-Dichloropropane	8.41	ug,			84	70-130	8	25	
.,3,5-Trimethylbenzene	9.31	ug,			93	70-130	10	25	
,3-Dichlorobenzene	8.64	ug,			86	70-130	12	25	
,3-Dichloropropane	8.63	ug,			86	70-130	7	25	
,4-Dichlorobenzene	7.95	ug,			80	70-130	14	25	
,4-Dioxane - Screen	7.93 147				74	0-332	7	200	
-Chlorohexane	8.40	ug,			84	70-130	4	25	
2,2-Dichloropropane	7.85	ug, ug,			78	70-130 70-130	9	25 25	
-Butanone	7.85 43.5				87	70-130	8	25 25	
-Butanone -Chlorotoluene	9.30	ug,			93	70-130 70-130	8 11	25 25	
		ug,					7		
-Hexanone Chlorataluana	44.3	ug,			89	70-130		25 25	
-Chlorotoluene	8.88	ug,			89	70-130	12		
-Isopropyltoluene	8.23	ug,			82	70-130	12	25	
-Methyl-2-Pentanone	43.4	ug,			87	70-130	9	25	
cetone	43.2	ug,			86	70-130	9	25	
enzene	8.84	ug,			88	70-130	8	25	
romobenzene	8.42	ug,			84	70-130	14	25	
romochloromethane	8.74	ug,			87	70-130	10	25	
romodichloromethane	8.69	ug,			87	70-130	9	25	
romoform	8.40	ug,			84	70-130	8	25	
romomethane	10.3	ug,			103	70-130	9	25	
arbon Disulfide	8.17	ug,			82	70-130	9	25	
arbon Tetrachloride	8.61	ug,			86	70-130	11	25	
hlorobenzene	8.66	ug,			87	70-130	8	25	
hloroethane	7.99	ug,			80	70-130	11	25	
hloroform	8.85	ug			88	70-130	9	25	
hloromethane	9.01	ug			90	70-130	11	25	
s-1,2-Dichloroethene	9.16	ug,			92	70-130	8	25	
s-1,3-Dichloropropene	8.44	ug			84	70-130	9	25	
ibromochloromethane	8.75	ug	L 10.00		88	70-130	8	25	
ibromomethane	8.81	ug,			88	70-130	8	25	
ichlorodifluoromethane	7.87	ug,			79	70-130	8	25	
iethyl Ether	8.67	ug,			87	70-130	8	25	
-isopropyl ether	8.71	ug,			87	70-130	8	25	
hyl tertiary-butyl ether	8.65	ug,	L 10.00		86	70-130	9	25	
thylbenzene	8.65	ug	L 10.00		86	70-130	9	25	
exachlorobutadiene	7.87	ug	L 10.00		79	70-130	10	25	
exachloroethane	7.48	ug	L 10.00		75	70-130	9	25	
sopropylbenzene	8.90	ug,	L 10.00		89	70-130	11	25	
ethyl tert-Butyl Ether	8.47	ug,	L 10.00		85	70-130	8	25	
lethylene Chloride	8.54	ug	'L 10.00		85	70-130	8	25	

185 Frances Avenue, Cranston, RI 02910-2211

8.21

8.10

Naphthalene

n-Butylbenzene

Tel: 401-461-7181

ug/L

ug/L

Fax: 401-461-4486

11 http://www.ESSLaboratory.com

6

25

10.00

10.00

82

70-130

70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

Surrogate: Toluene-d8

ESS Laboratory Work Order: 1406156

70-130

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Analyte	Result					70REC	LIIIIIG	RPD	LIIIIL	Qualifier
		8260B Vol	atile Organ	ic Compou	unds					
Batch CF41136 - 5030B										
n-Propylbenzene	8.79		ug/L	10.00		88	70-130	12	25	
sec-Butylbenzene	9.09		ug/L	10.00		91	70-130	10	25	
Styrene	8.01		ug/L	10.00		80	70-130	8	25	
tert-Butylbenzene	8.85		ug/L	10.00		88	70-130	11	25	
Tertiary-amyl methyl ether	8.38		ug/L	10.00		84	70-130	8	25	
Tetrachloroethene	8.34		ug/L	10.00		83	70-130	9	25	
Tetrahydrofuran	8.20		ug/L	10.00		82	70-130	6	25	
Toluene	9.33		ug/L	10.00		93	70-130	9	25	
trans-1,2-Dichloroethene	8.96		ug/L	10.00		90	70-130	7	25	
trans-1,3-Dichloropropene	7.94		ug/L	10.00		79	70-130	6	25	
Trichloroethene	8.60		ug/L	10.00		86	70-130	8	25	
Trichlorofluoromethane	8.00		ug/L	10.00		80	70-130	10	25	
Vinyl Acetate	8.78		ug/L	10.00		88	70-130	6	25	
Vinyl Chloride	9.42		ug/L	10.00		94	70-130	8	25	
Xylene O	9.30		ug/L	10.00		93	70-130	11	25	
Xylene P,M	18.4		ug/L	20.00		92	70-130	9	25	
Surrogate: 1,2-Dichloroethane-d4	0.0223		mg/L	0.02500		89	70-130			
Surrogate: 4-Bromofluorobenzene	0.0202		mg/L	0.02500		81	70-130			
Surrogate: Dibromofluoromethane	0.0238		mg/L	0.02500		95	70-130			

mg/L

0.02500

0.0226

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS Laboratory Work Order: 1406156

	Notes and Definitions
U	Analyte included in the analysis, but not detected
D+	Relative percent difference for duplicate is outside of criteria (D+).
D	Diluted.
B+	Blank Spike recovery is above upper control limit (B+).
B-	Blank Spike recovery is below lower control limit (B-).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume

Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range. 1

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Results reported as a mathematical average. Avg

NR No Recovery [CALC] Calculated Analyte

Subcontracted analysis; see attached report **SUB**

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1406156

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Barrington

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP)

A2LA Accredited: Testing Cert# 2864.01

http://www.a2la.org/scopepdf/2864-01.pdf

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI0002 http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory_accreditation_program/590095

CHEMISTRY

A2LA Accredited: Testing Cert # 2864.01
Lead in Paint, Phthalates, Lead in Children's Metals Products (Including Jewelry)
http://www.A2LA.org/dirsearchnew/newsearch.cfm

CPSC ID# 1141 Lead Paint, Lead in Children's Metals Jewelry http://www.cpsc.gov/cgi-bin/labapplist.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Sample and Cooler Receipt Checklist

Client: Resource Controls

Client Project ID: _

Shipped/Delivered Via: ESS Courier

Who was called?:_____

ESS Project ID: 14060156
Date Project Due: 6/13/14
Days For Project: 5 Day

By whom? _____

Items to be checked upon receipt:

1. Air Bill Manifest Present?	* No	10. Are the samples properly preserved?	Yes
Air No.:		11. Proper sample containers used?	Yes
2. Were Custody Seals Present?	No	12. Any air bubbles in the VOA vials?	No
3. Were Custody Seals Intact?	N/A	13. Holding times exceeded?	No
4. Is Radiation count < 100 CPM?	Yes	14. Sufficient sample volumes?	Yes
5. Is a cooler present?	Yes	15. Any Subcontracting needed?	No
Cooler Temp: 3.7		16. Are ESS labels on correct containers?	Yes No
Iced With: Ice		17. Were samples received intact?	Yês No
6. Was COC included with samples?	Yes	ESS Sample IDs:	<u>U</u>
7. Was COC signed and dated by client?	Yes	Sub Lab:	
8. Does the COC match the sample	Yes	Analysis:	<u></u>
9. Is COC complete and correct?	Yes	TAT:	
	vet lle	ss status? If yes, please explaint huls Sample doesn't much	woulkelly time on cluin

Sample Number	Properly Preserved	Container Type	# of Containers	Preservative
1			# Of Containers	
1	Yes Yes	250 ml Plastic	1	HNO3
2		250 ml Plastic	1	NP
2	Yes	250 ml Plastic	1	HNO3
=	Yes	250 ml Plastic	1	NP
2	Yes	40 ml - VOA	3	HCL
3	Yes	250 ml Plastic	1	HNO3
3	Yes	250 ml Plastic	1	NP
3	Yes	40 ml - VOA	3	HCL
4	Yes	250 ml Plastic	1	HNO3
4	Yes	250 ml Plastic	1	NP
4	Yes	40 ml - VOA	3	HCL
5	Yes	250 mt Plastic	1	HNO3
5	Yes	250 ml Plastic	1	NP
6	Yes	250 ml Plastic	i	HNO3
6	Yes	250 ml Plastic	i	NP
7	Yes	250 ml Plastic	i	HNO3
7	Yes	250 ml Plastic	1	NP
8	Yes	250 ml Plastic	4	HNO3
8	Yes	250 ml Plastic	1	NP
8	Yes	40 ml - VOA	1	
9	Yes	250 ml Plastic	3	HCL
9	Yes	· · · · · · · · · · · · · · · · · · ·	1	НИОЗ
9		250 mi Plastic	1	NP
10	Yes	40 ml - VOA	3	HCL
	Yes	250 ml Plastic	1	HNO3
10	Yes	250 ml Plastic	1	NP

Sample and Cooler Receipt Checklist

Client: Resource Controls

10 Yes Yes

Completed By: Reviewed By:__ Mr. 07 ESS Project ID: $\frac{14060156}{3}$

40 ml - VOA

HCL

HCL

Date/Time: Date/Time:_

	CHAIN OF CUST	XQC	Page of
2211	ry is required #	Reporting Limits	140 (a) 5C
Tel. (401) 461-7181 Fax (401) 461-4486	MA(RI)CT NH NJ NY ME Other	Electronic Deliverable	Yes X No
www.esslaboratory.com	Is this project for any of the following: MA-MCP Navy USACE Other	Format: Excel X Access PDFX Other	PDFX Other

	•			MA-MCP Navy USACE Other Troiling: Exect A	Exten Corress TDI County
Co. Name					Write Required Analysis
<u>Ž</u>	Regard Controls	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		7/3/A Kay Spring Kealth Co.	
Contact Person	ontact Person			<u>,</u> 	
Ç.	City Parstrucket	State R1	<u>آ</u> ھ	DOJ DOJ	
Telephone (401)	Telephone # (401) 736-(580)	Fax #	3 ±	OD TO T	
ESS LAB Sample #	Date	Collection Time	COMP	Sample Identification (20 Char. or less) A C O D D D D D D D D D D D D D D D D D D	
~	M/2/9	1330	mb /∠	XX 4 6 6 11 1-MH M	
ત્લ		6830	7	XXX 8 2 X X X	
3		020	X	1	
7		1.15	7	XXXX 2 2 2 1 2 2 XXX	
<i>\</i>		1330		1 + + d & r. 1 101-MM	
ی		OL RI	1	XX + 48 1:1	
7		1300	*	MW-103	
∞	-	1405	\\ \\ \	XXXX 0 12 12 12 12 12 12 12 12 12 12 12 12 12	
0	-	(200	7	0	
0,7	>	1419	↑ ×	01-MW	
Cohrainer	Continer Type: P-Poly G-Glass S-Sterile V-VOA	ass S-Sterile V	VVOA Mati	Matrix: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water SW-Surfat SWater DW-Drinking Water	DW-Drinking Water O-Oil W-Wipes F-Filters
Cooler Present	esent (Ves	°Z \	Internal	Internal Use Only Preservation Code 1-NP, 2-HC1, 3-HsOs, 4-HNOs, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9-	I, 7- Asorbic Acid, 8- ZnAct, 9-
Seals Intact	:t Yes	No NA:	No NA: (4) Tickup	Sampled by: Ervilly Gardings + Been	Caswell
_	()				7 6 10 H

*By circling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A

Please fax all changes to Chain of Custody in writing.

10/26/04 A

1 (White) Lab Copy 2 (Yellow) Client Receipt

UN Pare/Time

Date/Time

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

Date/Time

Relinquished by: (Signature)

M. March

Date/Time

Received by: (Signature)

Date/Time

Date/Time

Relinquished by: (Signature)

Received by: (Signature)

Comments:

[] Technicians_

Cooler Temp: 3.7 (@ M

Relinquished by: (Signature)

Date/Time

Regeiged by; (Signature)

atted the Blank A46

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Mark House Resource Controls 474 Broadway Pawtucket, RI 02860-1377

RE: Bay Spring Realty (7131A)

ESS Laboratory Work Order Number: 1410254

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard
Laboratory Director

REVIEWED

By ESS Laboratory at 12:39 pm, Oct 17, 2014

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1410254

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

SAMPLE RECEIPT

The following samples were received on October 09, 2014 for the analyses specified on the enclosed Chain of Custody Record.

The cooler temperature was not within the acceptance limit of <6°C, however, samples were delivered on ice.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
1410254-01	MW-104	Ground Water	6010C, 7010, 7470A
1410254-02	MW-101	Ground Water	6010C, 7010, 7470A
1410254-03	MW-3	Ground Water	6010C, 7010, 7470A, 8260B
1410254-04	MW-105	Ground Water	8260B
1410254-05	MW-5	Ground Water	8260B
1410254-06	MW-106	Ground Water	6010C, 7010, 7470A

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

ESS Laboratory Work Order: 1410254

PROJECT NARRATIVE

8260B Volatile Organic Compounds

CXJ0136-CCV1 Continuing Calibration recovery is below lower control limit (C-).

Bromomethane (61% @, 70-130%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1410254

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015D - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP and Graphite Furnace Digestion

3020A - Aqueous ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

Dependability

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

Client Sample ID: MW-104 Date Sampled: 10/09/14 10:02

Percent Solids: N/A

Extraction Method: 3005A/200.7

ESS Laboratory Work Order: 1410254 ESS Laboratory Sample ID: 1410254-01

Sample Matrix: Ground Water

Units: mg/L

Analyte Arsenic	Results (MRL) ND (0.0025)	MDL	<u>Method</u> 7010	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/15/14 23:54	<u>I/V</u> 50	<u>F/V</u> 25	Batch CJ41428
Barium	ND (0.025)		6010C		1	KJK	10/14/14 17:42	50	25	CJ41428
Cadmium	ND (0.0025)		6010C		1	KJK	10/14/14 17:42	50	25	CJ41428
Chromium	ND (0.010)		6010C		1	KJK	10/14/14 17:42	50	25	CJ41428
Lead	ND (0.010)		6010C		1	KJK	10/14/14 17:42	50	25	CJ41428
Mercury	ND (0.00020)		7470A		1	BJV	10/10/14 15:13	20	40	CJ41001
Selenium	ND (0.025)		6010C		1	KJK	10/14/14 17:42	50	25	CJ41428
Silver	ND (0.005)		6010C		1	KJK	10/14/14 17:42	50	25	CJ41428

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

Client Sample ID: MW-101 Date Sampled: 10/09/14 10:25

Percent Solids: N/A

Extraction Method: 3005A/200.7

ESS Laboratory Work Order: 1410254 ESS Laboratory Sample ID: 1410254-02

Sample Matrix: Ground Water

Units: mg/L

Analyte Arsenic	Results (MRL) 0.0342 (0.0125)	MDL	Method 7010	<u>Limit</u>	<u>DF</u> 5	Analyst KJK	Analyzed 10/16/14 0:05	<u>I/V</u> 50	F/V 25	Batch CJ41428
Barium	0.026 (0.025)		6010C		1	KJK	10/14/14 17:46	50	25	CJ41428
Cadmium	ND (0.0025)		6010C		1	KJK	10/14/14 17:46	50	25	CJ41428
Chromium	ND (0.010)		6010C		1	KJK	10/14/14 17:46	50	25	CJ41428
Lead	ND (0.010)		6010C		1	KJK	10/14/14 17:46	50	25	CJ41428
Mercury	ND (0.00020)		7470A		1	BJV	10/10/14 15:15	20	40	CJ41001
Selenium	ND (0.025)		6010C		1	KJK	10/14/14 17:46	50	25	CJ41428
Silver	ND (0.005)		6010C		1	KJK	10/14/14 17:46	50	25	CJ41428

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

Client Sample ID: MW-3 Date Sampled: 10/09/14 10:38

Percent Solids: N/A

ESS Laboratory Work Order: 1410254 ESS Laboratory Sample ID: 1410254-03

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A/200.7

Analyte Arsenic	Results (MRL) 0.0052 (0.0025)	MDL	Method 7010	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/16/14 0:23	<u>I/V</u> 100	F/V 50	Batch CJ41428
Barium	0.028 (0.025)		6010C		1	KJK	10/14/14 17:50	100	50	CJ41428
Cadmium	ND (0.0025)		6010C		1	KJK	10/14/14 17:50	100	50	CJ41428
Chromium	ND (0.010)		6010C		1	KJK	10/14/14 17:50	100	50	CJ41428
Lead	ND (0.010)		6010C		1	KJK	10/14/14 17:50	100	50	CJ41428
Mercury	ND (0.00020)		7470A		1	BJV	10/10/14 15:17	20	40	CJ41001
Selenium	ND (0.025)		6010C		1	KJK	10/14/14 17:50	100	50	CJ41428
Silver	ND (0.005)		6010C		1	KJK	10/14/14 17:50	100	50	CJ41428

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

Client Sample ID: MW-3 Date Sampled: 10/09/14 10:38

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1410254 ESS Laboratory Sample ID: 1410254-03

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 10/09/14 19:07	Sequence CXJ0136	Batch CJ40941
1,1,1-Trichloroethane	0.0021 (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,1,2,2-Tetrachloroethane	ND (0.0005)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,1,2-Trichloroethane	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,1-Dichloroethane	0.0018 (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,1-Dichloroethene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,1-Dichloropropene	ND (0.0020)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,2,3-Trichlorobenzene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,2,3-Trichloropropane	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,2,4-Trichlorobenzene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,2,4-Trimethylbenzene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,2-Dibromo-3-Chloropropane	ND (0.0050)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,2-Dibromoethane	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,2-Dichlorobenzene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,2-Dichloroethane	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,2-Dichloropropane	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,3,5-Trimethylbenzene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,3-Dichlorobenzene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,3-Dichloropropane	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,4-Dichlorobenzene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1,4-Dioxane - Screen	ND (0.500)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
1-Chlorohexane	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
2,2-Dichloropropane	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
2-Butanone	ND (0.0100)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
2-Chlorotoluene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
2-Hexanone	ND (0.0100)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
4-Chlorotoluene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
4-Isopropyltoluene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
4-Methyl-2-Pentanone	ND (0.0250)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Acetone	ND (0.0100)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Benzene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Bromobenzene	ND (0.0020)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

Client Sample ID: MW-3 Date Sampled: 10/09/14 10:38

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1410254 ESS Laboratory Sample ID: 1410254-03

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	Results (MRL) ND (0.0010)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/09/14 19:07	Sequence CXJ0136	Batch CJ40941
Bromodichloromethane	ND (0.0006)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Bromoform	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Bromomethane	ND (0.0020)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Carbon Disulfide	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Carbon Tetrachloride	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Chlorobenzene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Chloroethane	ND (0.0020)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Chloroform	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Chloromethane	ND (0.0020)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
cis-1,2-Dichloroethene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
cis-1,3-Dichloropropene	ND (0.0004)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Dibromochloromethane	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Dibromomethane	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Dichlorodifluoromethane	ND (0.0020)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Diethyl Ether	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Di-isopropyl ether	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Ethyl tertiary-butyl ether	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Ethylbenzene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Hexachlorobutadiene	ND (0.0006)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Hexachloroethane	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Isopropylbenzene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Methyl tert-Butyl Ether	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Methylene Chloride	ND (0.0020)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Naphthalene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
n-Butylbenzene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
n-Propylbenzene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
sec-Butylbenzene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Styrene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
tert-Butylbenzene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Tetrachloroethene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

Client Sample ID: MW-3 Date Sampled: 10/09/14 10:38

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1410254 ESS Laboratory Sample ID: 1410254-03

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrahydrofuran	ND (0.0050)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Toluene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Trichloroethene	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Trichlorofluoromethane	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Vinyl Acetate	ND (0.0050)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Vinyl Chloride	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Xylene O	ND (0.0010)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Xylene P,M	ND (0.0020)		8260B		1	10/09/14 19:07	CXJ0136	CJ40941
Xylenes (Total)	ND (0.0020)		8260B		1	10/09/14 19:07		[CALC]
Trihalomethanes (Total)	ND (0.0010)		8260B			10/09/14 19:07		[CALC]
	9	6Recovery	Oualifier	Limits				

	, , , ,	• • • • • • • • • • • • • • • • • • • •	
Surrogate: 1,2-Dichloroethane-d4	87 %		70-130
Surrogate: 4-Bromofluorobenzene	88 %		70-130
Surrogate: Dibromofluoromethane	90 %		70-130
Surrogate: Toluene-d8	82 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

Client Sample ID: MW-105 Date Sampled: 10/09/14 11:10

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1410254 ESS Laboratory Sample ID: 1410254-04

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	MDL	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 10/09/14 19:33	Sequence CXJ0136	Batch CJ40941
1,1,1-Trichloroethane	0.0333 (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,1,2,2-Tetrachloroethane	ND (0.0005)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,1,2-Trichloroethane	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,1-Dichloroethane	0.0261 (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,1-Dichloroethene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,1-Dichloropropene	ND (0.0020)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,2,3-Trichlorobenzene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,2,3-Trichloropropane	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,2,4-Trichlorobenzene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,2,4-Trimethylbenzene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,2-Dibromo-3-Chloropropane	ND (0.0050)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,2-Dibromoethane	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,2-Dichlorobenzene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,2-Dichloroethane	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,2-Dichloropropane	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,3,5-Trimethylbenzene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,3-Dichlorobenzene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,3-Dichloropropane	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,4-Dichlorobenzene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1,4-Dioxane - Screen	ND (0.500)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
1-Chlorohexane	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
2,2-Dichloropropane	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
2-Butanone	ND (0.0100)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
2-Chlorotoluene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
2-Hexanone	ND (0.0100)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
4-Chlorotoluene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
4-Isopropyltoluene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
4-Methyl-2-Pentanone	ND (0.0250)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Acetone	ND (0.0100)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Benzene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Bromobenzene	ND (0.0020)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

Client Sample ID: MW-105 Date Sampled: 10/09/14 11:10

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1410254 ESS Laboratory Sample ID: 1410254-04

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	Results (MRL) ND (0.0010)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/09/14 19:33	Sequence CXJ0136	Batch CJ40941
Bromodichloromethane	ND (0.0006)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Bromoform	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Bromomethane	ND (0.0020)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Carbon Disulfide	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Carbon Tetrachloride	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Chlorobenzene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Chloroethane	ND (0.0020)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Chloroform	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Chloromethane	ND (0.0020)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
cis-1,2-Dichloroethene	0.0010 (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
cis-1,3-Dichloropropene	ND (0.0004)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Dibromochloromethane	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Dibromomethane	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Dichlorodifluoromethane	ND (0.0020)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Diethyl Ether	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Di-isopropyl ether	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Ethyl tertiary-butyl ether	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Ethylbenzene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Hexachlorobutadiene	ND (0.0006)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Hexachloroethane	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Isopropylbenzene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Methyl tert-Butyl Ether	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Methylene Chloride	ND (0.0020)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Naphthalene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
n-Butylbenzene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
n-Propylbenzene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
sec-Butylbenzene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Styrene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
tert-Butylbenzene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Tetrachloroethene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

Client Sample ID: MW-105 Date Sampled: 10/09/14 11:10

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1410254 ESS Laboratory Sample ID: 1410254-04

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrahydrofuran	ND (0.0050)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Toluene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Trichloroethene	0.0026 (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Trichlorofluoromethane	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Vinyl Acetate	ND (0.0050)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Vinyl Chloride	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Xylene O	ND (0.0010)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Xylene P,M	ND (0.0020)		8260B		1	10/09/14 19:33	CXJ0136	CJ40941
Xylenes (Total)	ND (0.0020)		8260B		1	10/09/14 19:33		[CALC]
Trihalomethanes (Total)	ND (0.0010)		8260B			10/09/14 19:33		[CALC]
	%	6Recovery	Qualifier	Limits				

	•	
Surrogate: 1,2-Dichloroethane-d4	85 %	70-130
Surrogate: 4-Bromofluorobenzene	80 %	70-130
Surrogate: Dibromofluoromethane	88 %	70-130
Surrogate: Toluene-d8	81 %	70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

Client Sample ID: MW-5 Date Sampled: 10/09/14 11:30

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1410254 ESS Laboratory Sample ID: 1410254-05

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 10/09/14 20:00	Sequence CXJ0136	Batch CJ40941
1,1,1-Trichloroethane	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,1,2,2-Tetrachloroethane	ND (0.0005)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,1,2-Trichloroethane	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,1-Dichloroethane	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,1-Dichloroethene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,1-Dichloropropene	ND (0.0020)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,2,3-Trichlorobenzene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,2,3-Trichloropropane	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,2,4-Trichlorobenzene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,2,4-Trimethylbenzene	0.0011 (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,2-Dibromo-3-Chloropropane	ND (0.0050)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,2-Dibromoethane	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,2-Dichlorobenzene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,2-Dichloroethane	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,2-Dichloropropane	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,3,5-Trimethylbenzene	0.0084 (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,3-Dichlorobenzene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,3-Dichloropropane	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,4-Dichlorobenzene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1,4-Dioxane - Screen	ND (0.500)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
1-Chlorohexane	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
2,2-Dichloropropane	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
2-Butanone	ND (0.0100)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
2-Chlorotoluene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
2-Hexanone	ND (0.0100)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
4-Chlorotoluene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
4-Isopropyltoluene	0.0058 (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
4-Methyl-2-Pentanone	ND (0.0250)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Acetone	ND (0.0100)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Benzene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Bromobenzene	ND (0.0020)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

Client Sample ID: MW-5 Date Sampled: 10/09/14 11:30

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1410254 ESS Laboratory Sample ID: 1410254-05

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	Results (MRL) ND (0.0010)	MDL	Method 8260B	Limit	<u>DF</u>	<u>Analyzed</u> 10/09/14 20:00	Sequence CXJ0136	Batch CJ40941
Bromodichloromethane	ND (0.0006)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Bromoform	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Bromomethane	ND (0.0020)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Carbon Disulfide	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Carbon Tetrachloride	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Chlorobenzene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Chloroethane	ND (0.0020)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Chloroform	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Chloromethane	ND (0.0020)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
cis-1,2-Dichloroethene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
cis-1,3-Dichloropropene	ND (0.0004)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Dibromochloromethane	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Dibromomethane	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Dichlorodifluoromethane	ND (0.0020)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Diethyl Ether	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Di-isopropyl ether	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Ethyl tertiary-butyl ether	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Ethylbenzene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Hexachlorobutadiene	ND (0.0006)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Hexachloroethane	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Isopropylbenzene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Methyl tert-Butyl Ether	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Methylene Chloride	ND (0.0020)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Naphthalene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
n-Butylbenzene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
n-Propylbenzene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
sec-Butylbenzene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Styrene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
tert-Butylbenzene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Tetrachloroethene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

Client Sample ID: MW-5 Date Sampled: 10/09/14 11:30

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1410254 ESS Laboratory Sample ID: 1410254-05

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrahydrofuran	ND (0.0050)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Toluene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Trichloroethene	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Trichlorofluoromethane	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Vinyl Acetate	ND (0.0050)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Vinyl Chloride	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Xylene O	ND (0.0010)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Xylene P,M	ND (0.0020)		8260B		1	10/09/14 20:00	CXJ0136	CJ40941
Xylenes (Total)	ND (0.0020)		8260B		1	10/09/14 20:00		[CALC]
Trihalomethanes (Total)	ND (0.0010)		8260B			10/09/14 20:00		[CALC]
-	,	%Recovery	Qualifier	Limits				

	,	• • • • • • • • • • • • • • • • • • • •	
Surrogate: 1,2-Dichloroethane-d4	84 %		70-130
Surrogate: 4-Bromofluorobenzene	92 %		70-130
Surrogate: Dibromofluoromethane	89 %		70-130
Surrogate: Toluene-d8	<i>79 %</i>		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

Client Sample ID: MW-106 Date Sampled: 10/09/14 11:40

Percent Solids: N/A

ESS Laboratory Work Order: 1410254 ESS Laboratory Sample ID: 1410254-06

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: 3005A/200.7

Analyte Arsenic	Results (MRL) ND (0.0025)	<u>MDL</u>	Method 7010	<u>Limit</u>	<u>DF</u>	Analyst KJK	<u>Analyzed</u> 10/16/14 0:52	$\frac{\mathbf{I/V}}{50}$	$\frac{\mathbf{F/V}}{25}$	Batch CJ41428
Barium	0.036 (0.025)		6010C		1	KJK	10/14/14 18:24	50	25	CJ41428
Cadmium	ND (0.0025)		6010C		1	KJK	10/14/14 18:24	50	25	CJ41428
Chromium	ND (0.010)		6010C		1	KJK	10/14/14 18:24	50	25	CJ41428
Lead	ND (0.010)		6010C		1	KJK	10/14/14 18:24	50	25	CJ41428
Mercury	ND (0.00020)		7470A		1	BJV	10/10/14 15:20	20	40	CJ41001
Selenium	ND (0.025)		6010C		1	KJK	10/14/14 18:24	50	25	CJ41428
Silver	ND (0.005)		6010C		1	KJK	10/14/14 18:24	50	25	CJ41428

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

ESS Laboratory Work Order: 1410254

Quality Control Data

	5 "	145	11. "	Spike	Source	0/550	%REC	D.C.2	RPD	0 "0
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		D	issolved M	ietais						
Batch CJ41001 - 245.1/7470A										
Blank										
1ercury	ND	0.00020	mg/L							
.cs										
lercury	0.00588	0.00020	mg/L	0.006000		98	80-120			
atch CJ41428 - 3005A/200.7										
lank										
Arsenic	ND	0.0025	mg/L							
Barium	ND	0.025	mg/L							
Cadmium	ND	0.0025	mg/L							
Chromium	ND	0.010	mg/L							
Lead	ND	0.010	mg/L							
Selenium	ND	0.025	mg/L							
Silver	ND	0.005	mg/L							
cs										
rsenic	0.248	0.0500	mg/L	0.2500		99	80-120			
arium	0.250	0.025	mg/L	0.2500		100	80-120			
admium	0.120	0.0025	mg/L	0.1250		96	80-120			
hromium	0.249	0.010	mg/L	0.2500		100	80-120			
ead	0.249	0.010	mg/L	0.2500		99	80-120			
elenium	0.493	0.025	mg/L	0.5000		99	80-120			
ilver	0.124	0.005	mg/L	0.1250		99	80-120			
CS Dup										
rsenic	0.250	0.0500	mg/L	0.2500		100	80-120	0.8	20	
arium	0.253	0.025	mg/L	0.2500		101	80-120	1	20	
admium	0.123	0.0025	mg/L	0.1250		98	80-120	2	20	
hromium	0.252	0.010	mg/L	0.2500		101	80-120	1	20	
ead	0.253	0.010	mg/L	0.2500		101	80-120	2	20	
elenium	0.507	0.025	mg/L	0.5000		101	80-120	3	20	
ilver	0.126	0.005	mg/L	0.1250		101	80-120	2	20	
		8260B Vol	atile Organ	ic Compou	nds					
Batch CJ40941 - 5030B										
Blank										
.,1,1,2-Tetrachloroethane	ND	0.0010	mg/L							
,1,1-Trichloroethane	ND	0.0010	mg/L							
,1,2,2-Tetrachloroethane	ND	0.0005	mg/L							
,1,2-Trichloroethane	ND	0.0010	mg/L							
,1-Dichloroethane	ND	0.0010	mg/L							
,1-Dichloroethene	ND	0.0010	mg/L							
,1-Dichloropropene	ND	0.0020	mg/L							
,2,3-Trichlorobenzene	ND	0.0010	mg/L							
,2,3-Trichloropropane	ND	0.0010	mg/L							
,2,4-Trichlorobenzene	ND	0.0010	mg/L							

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

ESS Laboratory Work Order: 1410254

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compounds

Batch CJ40941 - 5030B			
1,2,4-Trimethylbenzene	ND	0.0010	mg/L
1,2-Dibromo-3-Chloropropane	ND	0.0050	mg/L
1,2-Dibromoethane	ND	0.0010	mg/L
1,2-Dichlorobenzene	ND	0.0010	mg/L
1,2-Dichloroethane	ND	0.0010	mg/L
1,2-Dichloropropane	ND	0.0010	mg/L
1,3,5-Trimethylbenzene	ND	0.0010	mg/L
1,3-Dichlorobenzene	ND	0.0010	mg/L
1,3-Dichloropropane	ND	0.0010	mg/L
1,4-Dichlorobenzene	ND	0.0010	mg/L
1,4-Dioxane - Screen	ND	0.500	mg/L
1-Chlorohexane	ND	0.0010	mg/L
2,2-Dichloropropane	ND	0.0010	mg/L
2-Butanone	ND	0.0100	mg/L
2-Chlorotoluene	ND	0.0010	mg/L
2-Hexanone	ND	0.0100	mg/L
4-Chlorotoluene	ND	0.0010	mg/L
4-Isopropyltoluene	ND	0.0010	mg/L
4-Methyl-2-Pentanone	ND	0.0250	mg/L
Acetone	ND	0.0100	mg/L
Benzene	ND	0.0010	mg/L
Bromobenzene	ND	0.0020	mg/L
Bromochloromethane	ND	0.0010	mg/L
Bromodichloromethane	ND	0.0006	mg/L
Bromoform	ND	0.0010	mg/L
Bromomethane	ND	0.0020	mg/L
Carbon Disulfide	ND	0.0010	mg/L
Carbon Tetrachloride	ND	0.0010	mg/L
Chlorobenzene	ND	0.0010	mg/L
Chloroethane	ND	0.0020	mg/L
Chloroform	ND	0.0010	mg/L
Chloromethane	ND	0.0020	mg/L
cis-1,2-Dichloroethene	ND	0.0020	mg/L
cis-1,2-Dichloropropene	ND ND	0.0010	mg/L
Dibromochloromethane		0.0004	
	ND ND		mg/L
Dibromomethane	ND	0.0010	mg/L
Dichlorodifluoromethane	ND	0.0020	mg/L
Diethyl Ether	ND	0.0010	mg/L
Di-isopropyl ether	ND	0.0010	mg/L
Ethyl tertiary-butyl ether	ND	0.0010	mg/L
Ethylbenzene	ND	0.0010	mg/L
Hexachlorobutadiene	ND	0.0006	mg/L
Hexachloroethane	ND	0.0010	mg/L
Isopropylbenzene	ND	0.0010	mg/L
Methyl tert-Butyl Ether	ND	0.0010	mg/L

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

ESS Laboratory Work Order: 1410254

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Batch CJ40941 - 5030B							
Methylene Chloride	ND	0.0020	mg/L				
Naphthalene	ND	0.0010	mg/L				
n-Butylbenzene	ND	0.0010	mg/L				
n-Propylbenzene	ND	0.0010	mg/L				
sec-Butylbenzene	ND	0.0010	mg/L				
Styrene	ND	0.0010	mg/L				
tert-Butylbenzene	ND	0.0010	mg/L				
Tertiary-amyl methyl ether	ND	0.0010	mg/L				
Tetrachloroethene	ND	0.0010	mg/L				
Tetrahydrofuran	ND	0.0050	mg/L				
Toluene	ND	0.0010	mg/L				
trans-1,2-Dichloroethene	ND	0.0010	mg/L				
trans-1,3-Dichloropropene	ND	0.0004	mg/L				
Trichloroethene	ND	0.0010	mg/L				
Trichlorofluoromethane	ND	0.0010	mg/L				
Vinyl Acetate	ND	0.0050	mg/L				
Vinyl Chloride	ND	0.0010	mg/L				
Xylene O	ND	0.0010	mg/L				
Xylene P,M	ND	0.0020	mg/L				
Surrogate: 1,2-Dichloroethane-d4	0.0220		mg/L	0.02500	88	70-130	
Surrogate: 4-Bromofluorobenzene	0.0196		mg/L	0.02500	<i>79</i>	70-130	
Surrogate: Dibromofluoromethane	0.0222		mg/L	0.02500	89	70-130	
Surrogate: Toluene-d8	0.0202		mg/L	0.02500	81	70-130	
LCS							
1,1,1,2-Tetrachloroethane	9.70		ug/L	10.00	97	70-130	
1,1,1-Trichloroethane	10.1		ug/L	10.00	101	70-130	
1,1,2,2-Tetrachloroethane	9.79		ug/L	10.00	98	70-130	
1,1,2-Trichloroethane	9.84		ug/L	10.00	98	70-130	
1,1-Dichloroethane	9.91		ug/L	10.00	99	70-130	
1,1-Dichloroethene	10.8		ug/L	10.00	108	70-130	
1,1-Dichloropropene	10.6		ug/L	10.00	106	70-130	
1,2,3-Trichlorobenzene	10.7		ug/L	10.00	107	70-130	
1,2,3-Trichloropropane	9.82		ug/L	10.00	98	70-130	
1,2,4-Trichlorobenzene	11.5		ug/L	10.00	115	70-130	
1,2,4-Trimethylbenzene	10.0		ug/L	10.00	100	70-130	
1,2-Dibromo-3-Chloropropane	11.9		ug/L	10.00	119	70-130	
1,2-Dibromoethane	9.92		ug/L	10.00	99	70-130	
1,2-Dichlorobenzene	9.88		ug/L	10.00	99	70-130	
1,2-Dichloroethane	10.3		ug/L	10.00	103	70-130	
1,2-Dichloropropane	10.0		ug/L	10.00	100	70-130	
1,3,5-Trimethylbenzene	11.3		ug/L	10.00	113	70-130	
1,3-Dichlorobenzene	9.84		ug/L	10.00	98	70-130	
1,3-Dichloropropane	9.78		ug/L	10.00	98	70-130	
1,4-Dichlorobenzene	10.2		ug/L	10.00	102	70-130	
1,4-Dioxane - Screen	474		ug/L	200.0	237	0-332	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

ESS Laboratory Work Order: 1410254

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compounds

Batch CJ40941 - 5030B					
-Chlorohexane	8.83	ug/L	10.00	88	70-130
,2-Dichloropropane	10.9	ug/L	10.00	109	70-130
-Butanone	53.0	ug/L	50.00	106	70-130
-Chlorotoluene	10.1	ug/L	10.00	101	70-130
-Hexanone	53.7	ug/L	50.00	107	70-130
-Chlorotoluene	10.2	ug/L	10.00	102	70-130
-Isopropyltoluene	11.2	ug/L	10.00	112	70-130
-Methyl-2-Pentanone	52.1	ug/L	50.00	104	70-130
cetone	52.3	ug/L	50.00	105	70-130
enzene	10.1	ug/L	10.00	101	70-130
romobenzene	10.3	ug/L	10.00	103	70-130
omochloromethane	10.5	ug/L	10.00	105	70-130
omodichloromethane	10.2	ug/L	10.00	102	70-130
omoform	10.5	ug/L	10.00	105	70-130
omomethane	7.21	ug/L	10.00	72	70-130
arbon Disulfide	11.4	ug/L	10.00	114	70-130
arbon Tetrachloride	11.0	ug/L	10.00	110	70-130
nlorobenzene	9.37	ug/L	10.00	94	70-130
nloroethane	9.14	ug/L	10.00	91	70-130
lloroform	10.1	ug/L	10.00	101	70-130
loromethane	8.27	ug/L	10.00	83	70-130
-1,2-Dichloroethene	9.81	ug/L	10.00	98	70-130
-1,3-Dichloropropene	9.14	ug/L	10.00	91	70-130
promochloromethane	9.24	ug/L	10.00	92	70-130
promomethane	10.3	ug/L	10.00	103	70-130
chlorodifluoromethane	9.99	ug/L	10.00	100	70-130
ethyl Ether	9.41	ug/L	10.00	94	70-130
-isopropyl ether	10.7	ug/L	10.00	107	70-130
hyl tertiary-butyl ether	10.0	ug/L	10.00	100	70-130
hylbenzene	9.61	ug/L	10.00	96	70-130
exachlorobutadiene	11.5	ug/L	10.00	115	70-130
exachloroethane	12.0	ug/L	10.00	120	70-130
opropylbenzene	10.1	ug/L	10.00	101	70-130
ethyl tert-Butyl Ether	9.50	ug/L	10.00	95	70-130
ethylene Chloride	9.92	ug/L	10.00	99	70-130
aphthalene	9.58	ug/L	10.00	96	70-130
Butylbenzene	12.2	ug/L	10.00	122	70-130
Propylbenzene	10.3	ug/L	10.00	103	70-130
c-Butylbenzene	11.2	ug/L	10.00	112	70-130
yrene	9.37	ug/L	10.00	94	70-130
rt-Butylbenzene	10.4	ug/L	10.00	104	70-130
ertiary-amyl methyl ether	9.52	ug/L	10.00	95	70-130
etrachloroethene	8.71	ug/L	10.00	87	70-130
etrahydrofuran	11.9	ug/L	10.00	119	70-130
oluene	10.4	ug/L	10.00	104	70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

ESS Laboratory Work Order: 1410254

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		8260B Vo	latile Organi	c Compou	ınds					
Batch CJ40941 - 5030B										
trans-1,2-Dichloroethene	10.3		ug/L	10.00		103	70-130			
trans-1,3-Dichloropropene	8.37		ug/L	10.00		84	70-130			
Trichloroethene	9.55		ug/L	10.00		96	70-130			
Trichlorofluoromethane	9.30		ug/L	10.00		93	70-130			
Vinyl Acetate	10.3		ug/L	10.00		103	70-130			
Vinyl Chloride	10.9		ug/L	10.00		109	70-130			
Xylene O	10.1		ug/L	10.00		101	70-130			
Kylene P,M	19.9		ug/L	20.00		100	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.0254		mg/L	0.02500		102	70-130			
Surrogate: 4-Bromofluorobenzene	0.0223		mg/L	0.02500		89	70-130			
Surrogate: Dibromofluoromethane	0.0257		mg/L	0.02500		103	70-130			
Surrogate: Toluene-d8	0.0219		mg/L	0.02500		88	70-130			
LCS Dup										
1,1,1,2-Tetrachloroethane	10.0		ug/L	10.00		100	70-130	3	25	
1,1,1-Trichloroethane	10.8		ug/L	10.00		108	70-130	7	25	
1,1,2,2-Tetrachloroethane	9.65		ug/L	10.00		96	70-130	1	25	
1,1,2-Trichloroethane	9.90		ug/L	10.00		99	70-130	0.6	25	
,1-Dichloroethane	10.1		ug/L	10.00		101	70-130	2	25	
1,1-Dichloroethene	10.8		ug/L	10.00		108	70-130	0.6	25	
.,1-Dichloropropene	10.8		ug/L	10.00		108	70-130	1	25	
1,2,3-Trichlorobenzene	9.29		ug/L	10.00		93	70-130	14	25	
1,2,3-Trichloropropane	9.32		ug/L	10.00		93	70-130	5	25	
1,2,4-Trichlorobenzene	9.71		ug/L	10.00		97	70-130	17	25	
1,2,4-Trimethylbenzene	9.39		ug/L	10.00		94	70-130	6	25	
1,2-Dibromo-3-Chloropropane	10.8		ug/L	10.00		108	70-130	9	25	
1,2-Dibromoethane	9.62		ug/L	10.00		96	70-130	3	25	
1,2-Dichlorobenzene	9.18		ug/L	10.00		92	70-130	7	25	
1,2-Dichloroethane	9.76		ug/L	10.00		98	70-130	5	25	
1,2-Dichloropropane	9.64		ug/L	10.00		96	70-130	4	25	
1,3,5-Trimethylbenzene	10.6		ug/L	10.00		106	70-130	6	25	
1,3-Dichlorobenzene	9.39		ug/L	10.00		94	70-130	5	25	
1,3-Dichloropropane	10.1		ug/L	10.00		101	70-130	4	25	
1,4-Dichlorobenzene	9.68		ug/L	10.00		97	70-130	5	25	
1,4-Dioxane - Screen	342		ug/L	200.0		171	0-332	32	200	
L-Chlorohexane	9.06		ug/L	10.00		91	70-130	3	25	
2,2-Dichloropropane	10.3		ug/L	10.00		103	70-130	5	25	
2-Butanone	51.6		ug/L	50.00		103	70-130	3	25	
2-Chlorotoluene	9.53		ug/L	10.00		95	70-130	6	25	
!-Hexanone	55.7		ug/L	50.00		111	70-130	4	25	
1-Chlorotoluene	9.37		ug/L	10.00		94	70-130	8	25	
4-Isopropyltoluene	10.3		ug/L	10.00		103	70-130	8	25	
1-Methyl-2-Pentanone	50.4		ug/L	50.00		101	70-130	3	25	
Acetone	56.8		ug/L	50.00		114	70-130	8	25	
Benzene	10.2		ug/L	10.00		102	70-130	0.9	25	
Bromobenzene	9.92		ug/L	10.00		99	70-130	4	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

RPD

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

Tetrahydrofuran

Trichloroethene

Vinyl Acetate

Vinyl Chloride

Xylene O

Xylene P,M

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Surrogate: 1,2-Dichloroethane-d4

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Toluene

ESS Laboratory Work Order: 1410254

%REC

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
		8260B Vol	atile Organi	ic Compo	unds					
atch CJ40941 - 5030B										
Bromochloromethane	10.3		ug/L	10.00		103	70-130	2	25	
Bromodichloromethane	10.3		ug/L	10.00		103	70-130	1	25	
Bromoform	10.6		ug/L	10.00		106	70-130	2	25	
romomethane	7.76		ug/L	10.00		78	70-130	7	25	
arbon Disulfide	11.0		ug/L	10.00		110	70-130	3	25	
arbon Tetrachloride	11.2		ug/L	10.00		112	70-130	2	25	
hlorobenzene	9.26		ug/L	10.00		93	70-130	1	25	
hloroethane	10.1		ug/L	10.00		101	70-130	10	25	
hloroform	10.2		ug/L	10.00		102	70-130	1	25	
hloromethane	9.48		ug/L	10.00		95	70-130	14	25	
s-1,2-Dichloroethene	10.4		ug/L	10.00		104	70-130	6	25	
s-1,3-Dichloropropene	9.19		ug/L	10.00		92	70-130	0.5	25	
ibromochloromethane	9.48		ug/L	10.00		95	70-130	3	25	
bromomethane	10.5		ug/L	10.00		105	70-130	2	25	
ichlorodifluoromethane	9.51		ug/L	10.00		95	70-130	5	25	
ethyl Ether	8.93		ug/L	10.00		89	70-130	5	25	
i-isopropyl ether	10.3		ug/L	10.00		103	70-130	3	25	
thyl tertiary-butyl ether	10.2		ug/L	10.00		102	70-130	2	25	
thylbenzene	9.30		ug/L	10.00		93	70-130	3	25	
exachlorobutadiene	11.4		ug/L	10.00		114	70-130	1	25	
exachloroethane	11.4		ug/L	10.00		114	70-130	5	25	
sopropylbenzene	9.50		ug/L	10.00		95	70-130	6	25	
ethyl tert-Butyl Ether	10.3		ug/L	10.00		103	70-130	8	25	
ethylene Chloride	10.5		ug/L	10.00		105	70-130	6	25	
aphthalene	8.30		ug/L	10.00		83	70-130	14	25	
Butylbenzene	10.6		ug/L	10.00		106	70-130	14	25	
Propylbenzene	9.31		ug/L	10.00		93	70-130	10	25	
c-Butylbenzene	10.1		ug/L	10.00		101	70-130	11	25	
yrene	9.27		ug/L	10.00		93	70-130	1	25	
rt-Butylbenzene	9.21		ug/L	10.00		92	70-130	12	25	
ertiary-amyl methyl ether	9.44		ug/L	10.00		94	70-130	0.8	25	
etrachloroethene	8.95		ug/L	10.00		90	70-130	3	25	

185 Frances Avenue, Cranston, RI 02910-2211

12.1

10.3

10.6

8.54

9.49

9.45

9.64

10.0

9.86

19.1

0.0255

0.0216

0.0259

Tel: 401-461-7181

ug/L

mg/L

mg/L

mg/L

10.00

10.00

10.00

10.00

10.00

10.00

10.00

10.00

10.00

20.00

0.02500

0.02500

0.02500

Fax: 401-461-4486

http://www.ESSLaboratory.com

1

3

2

2

9

3

25

25

25

25

25

25

25

25 25

25

121

103

106

85

95

94

96

100

99

96

102

86

104

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

ESS Laboratory Work Order: 1410254

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8260B Vol	atile Organi	c Compoi	unds					

Batch CJ40941 - 5030B

 Surrogate: Toluene-d8
 0.0222
 mg/L
 0.02500
 89
 70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

ESS Laboratory Work Order: 1410254

Notes and Definitions

U Analyte included in the analysis, but not detected	ut not detected
--	-----------------

D Diluted.

C- Continuing Calibration recovery is below lower control limit (C-).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
LV Initial Volume

I/V Initial Volume
F/V Final Volume

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1410254

CERTIFICATE OF ANALYSIS

Client Name: Resource Controls Client Project ID: Bay Spring Realty

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP)

A2LA Accredited: Testing Cert# 2864.01

http://www.a2la.org/scopepdf/2864-01.pdf

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI0002 http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory_accreditation_program/590095

CHEMISTRY

A2LA Accredited: Testing Cert # 2864.01
Lead in Paint, Phthalates, Lead in Children's Metals Products (Including Jewelry)
http://www.A2LA.org/dirsearchnew/newsearch.cfm

CPSC ID# 1141 Lead Paint, Lead in Children's Metals Jewelry http://www.cpsc.gov/cgi-bin/labapplist.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Sample	and	Cooler	Receipt	Checklist
Sample	4114		cco.pc	OII COILIIGE

Client:	Resource C	<u>Controls</u>	
Cliant D	roject ID:		

Shipped/Delivered Via: Client

ESS Project ID: 14100254 Date Project Due: 10/16/2014 Days For Project: 5 Day

Items to be checked upon receipt:

1. Air Bill Manifest Present?	* No	10. Are the samples properly preserved?	Yes
Air No.:		11. Proper sample containers used?	Yes
2. Were Custody Seals Present?	No	12. Any air bubbles in the VOA vials?	(No)
3. Were Custody Seals Intact?	N/A	13. Holding times exceeded?	No
4. Is Radiation count < 100 CPM?	Yes	14. Sufficient sample volumes?	Yes
5. Is a cooler present?	Yes	15. Any Subcontracting needed?	No
Cooler Temp: 7.5		16. Are ESS labels on correct containers?	Yes] No
Iced With: <u>Ice</u>		17. Were samples received intact?	Xes No
6. Was COC included with samples?	Yes	ESS Sample IDs:	\supseteq
7. Was COC signed and dated by client?	Yes	Sub Lab:	
8. Does the COC match the sample	Yes	Analysis:	
9. Is COC complete and correct?	Yes	TAT:	
18. Was there need to call project manage	er to discu	ss status? If yes, please explain.	

<u>w</u>	0 105	on	any	of VOC	Vials	- <i>Used</i>	sample ti	ne
(ror	C1)	nu 1	10/9/14			•	

Sample Number	Properly Preserved	Container Type	# of Containers	Preservative
1	Yes	250 ml Plastic	1	NP
2 ·	Yes	250 ml Plastic	1	NP
3	Yes	250 ml Plastic	1	NP
3	Yes	40 ml - VOA	3	HCL
4	Yes	40 ml - VOA	3	HCL
5	Yes	40 ml - VOA	3	HCL
6 , 1	Yes	250 ml Plastic	1	NP

Completed By: Date/Time: 10/9/14 1/02

Reviewed By: Date/Time: 0/9/14 1/05

Who was called?:_____

By whom? _____

ESS Laboratory

Division of Thieksch Engineering, Inc. 185 Frances Avenue, Cranston, RI 02910-2211 Tel. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com

CHAIN OF CUSTODY	DDY	Page of
Turn Time Standard Other	Reporting Limits	ESS LAB PROJECT II
If faster than 5 days, prior approval by laboratory is required #		ころとと
		こうして
MA (RI CT NH NJ NY ME Other	Electronic Deliverable	Yes X
Is this project for any of the following:)	ppe X O.t.
MA-MCP Navy USACE Other	Format: Excel / viccess —	rpr/

Container Type: P-Poly G-Glass S-Sterile V-VOA | Matrix: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filters Circle and/orWrite Required Analysis Preservation Code 1- NP, 2- HC1, 3- H2SO4, 4- HNO4, 5- NaOH, 6- McOH, 7- Asorbic Acid, 8- ZnAct, 9-WELVT? (13) WCb-8H/m WCĿ-WĒĹVT? (13) ZD8N LCTP-RCRA8 (CRA8) **KCRAS** PAH 9728 8270 8008 579 ьсв 608 1808 Perticides 808 Pesticides PCB 8082 mo byHs EbH 4 Dissel EbH ™\bVH EbH DBO 8012 0018 H9T СКО 801⊋ 8021 ΜďΛ Emily F. Gardwer 3|>|+ 2.4≤2 ₽79 Type of Containers Δ. 1 Number of Sontainers *रु* |-Email Address Mhouse of resource control þ egardinar Pracouracountes. com ሎ Pres Bay Spring Rosalty Project Name (20 Char. or less) Sample Identification (20 Char. or less) Address 474 Broadway Sampled by: Comments: OPLODIC 901 JSZ 101-32 07-3M 2737 NW-3 432 Co. Name Resource Control ASSOCIOPER TIBLE Project # Internal Use Only [] Technicians_ _ Yes ____ No NA: \(\) | Pickup MATRIX GRAB State D COMP Cooler Temp: 7,5, Chilip VIGILY 4001 138 とサミ Collection 188 1038 Time Contact Person May House Telephone #(401) 78 - OSCOD Farstocket Z Yes h/b/0/ Cooler Present Seals Intact ESS LAB Sample # 3 フ

By circling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A

Please fax all changes to Chain of Custody in writing.

1 (White) Lab Copy 2 (Yellow) Client Receipt

Date/Time

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

Date/Time

Received by: (Signature)

Date/Time

Selinquished by: (Signature)

Date/Time

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

Jate/Time

eceived by: (Signature)

Date/Time

Relinquished by: (Signature)

APPENDIX F

Drilling Logs

Resource Controls

DRILLING LOG

LOCATION ID.: MW-101 TOTAL DEPTH (FT.): 11

PROJECT INFORMATION

PROJECT: PROJECT NO.: LOCATION: LOGGED BY:

Bay Spring Realty Co. 7131A Barrington, RI

DATE STARTED: 6/4/2014

DRILLING INFORMATION

DRILLING CO.: **New England Geotech**

DRILLER: Mayner² **RIG TYPE:** Track mounted METHOD OF DRILLING: Geoprobe

SAMPLING METHOD: 5' Macrosampler

Emily Gardiner 6/4/2014 DATE FINISHED: Well PID Description of **Graphic Soil Description** Const. Log (ppmV) **Well Materials** 0.0 - 0.5 ORGANIC MATTER with fine to coarse sand 2" PVC riser 0.5 - 2.5 Light brown fine to medium SAND with fill material (brick, concrete) Bentonite 0.0 2.5 - 3.0 Brown fine to medium saturated SAND 0.0 with some silt and trace gravel 2" Slotted PVC screen 5.0 - 7.5 Gray saturated SAND AND SILT with some coarse sand and rock fragments No. 2 Sand 0.0 10 10.0 - 10.6 Gray saturated medium to coarse SAND with some silt 10.6 - 10.9 Orange-brown saturated SILT with

Apparent water level during drilling

DRILLING LOG

LOCATION ID.: **MW-101** TOTAL DEPTH (FT.): 11

PROJECT INFORMATION

PROJECT: PROJECT NO.: Bay Spring Realty Co. 7131A

Barrington, RI LOCATION: LOGGED BY: Emily Gardiner DATE STARTED: 6/4/2014 LOGGED BY:

DRILLING INFORMATION

DRILLING CO.: **New England Geotech**

DRILLER: Mayner[°] **RIG TYPE:** Track mounted

METHOD OF DRILLING: Geoprobe SAMPLING METHOD: 5' Macrosampler

Ceptit (ft.) Rec. Cog Sog	il Description PID (ppmV)	Well Const.	Description of Well Materials
---------------------------	---------------------------	----------------	----------------------------------

DATE FINISHED: 6/4/2014 some sand and rock fragments **▼** Apparent water level during drilling Laboratory analytical sample

Resource Controls

DRILLING LOG

LOCATION ID.: **MW-102** TOTAL DEPTH (FT.): 12

PROJECT INFORMATION

PROJECT: PROJECT NO.: Bay Spring Realty Co. 7131A

LOCATION: Barrington, RI LOGGED BY: Emily Gardiner DATE STARTED: 6/4/2014

DRILLING INFORMATION

DRILLING CO.: **New England Geotech**

DRILLER: Mayner[°]

RIG TYPE: Track mounted Geoprobe METHOD OF DRILLING: Direct push

SAMPLING METHOD: 5' Macrosampler

Rec.	Graphic Log	Soil Description		PID (ppmV)	Well Const.	Description of Well Materials
	TT TT T	0.0 - 0.5 ORGANIC MATTER with coarse sand	fine to			2" PVC riser
-		0.5 - 1.5 Orange-brown, dark brow yellow-brown dry fine to medium S	n, and AND	0.0	<u></u>	Bentonite
-		1.5 - 1.8 Black COAL/ASH-like ma				
%02	T	1.8 - 2.4 Dark brown moist fine to r SAND with asphalt-like odor	medium	0.0		
-		2.4 - 3.5 Orange-brown saturated f	fine to coarse			
-						
_		5.0 - 5.5 Saturated CONCRETE fra	agments			2" Slotted PVC screen
-		5.5 - 7.0 Gray saturated CLAY AN	D SAND			No. 2 Sand
				0.0		No. 2 Gana
62%		7.0 - 8.1 Light gray-brown saturate AND SILT with some clay	d SAND			
-		AND OILT WITH Some day				
_						
_		400,4000				
9		10.0 - 12.0 Gray-brown saturated f medium SAND with some coarse s				
100%						
		pparent water level during drill			analytica	

Resource Controls Proven Environmental & Engineering Solutions

DRILLING LOG

LOCATION ID.: MW-103
TOTAL DEPTH (FT.): 15

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT:
PROJECT NO.:

Bay Spring Realty Co. 7131A

LOCATION: Barrington, RI
LOGGED BY: Emily Gardiner
DATE STARTED: 6/4/2014

rington, RI
RIG TYPE:
METHOD OF DRILLING:
SAMPLING METHOD:

DRILLING CO.:

DRILLER:

New England Geotech Mayner Track mounted Geoprobe

Direct push 5' Macrosampler

DATE FINISHED: 6/4/2014 Well PID Description of **Graphic Soil Description** Const. Log (ppmV) **Well Materials** 0.0 - 0.3 ORGANIC MATTER with fine to medium sand 2" PVC riser 0.3 - 3.0 Brown to light brown dry fine to medium SAND 0.0 Bentonite 5.0 - 8.0 CONCRETE fragments with some sand; saturated at approximately 6' 0.0 2" Slotted PVC screen 10 -No. 2 Sand 10.0 - 12.0 Saturated CONCRETE fragments with some sand 0.0 12.0 - 12.5 Gray saturated medium to coarse SAND 15

Apparent water level during drilling

Resource Controls

PROJECT INFORMATION

DRILLING LOG

LOCATION ID.: MW-104

TOTAL DEPTH (FT.): 12

DRILLING INFORMATION

PROJECT: **Bay Spring Realty Co.** PROJECT NO.: 7131A

DRILLER: Mayner²

LOCATION: Barrington, RI Emily Gardiner 6/4/2014 LOGGED BY: DATE STARTED:

RIG TYPE: METHOD OF DRILLING:

DRILLING CO.:

Track mounted Geoprobe

New England Geotech

SAMPLING METHOD:

Direct push 5' Macrosampler

DATE FINISHED: 6/4/2014 PID Well Description of **Graphic Soil Description** Const. Log (ppmV) **Well Materials** 0.0 - 0.5 ORGANIC MATTER with fine to coarse sand 2" PVC riser 0.5 - 1.7 Orange-brown fine to medium dry Bentonite SAND with trace gravel 0.0 1.7 - 2.4 Gray-brown moist CLAY with some sand 2.4 - 2.6 Black COAL/ASH-like material 2.6 - 3.0 Gray fine to medium wet to saturated SAND; saturated at 4.5' 2" Slotted PVC screen 5.0 - 6.0 Black-brown saturated CLAY AND SAND with petroleum odor 76.1 No. 2 Sand 6.0 - 7.0 Gray-brown fine to coarse saturated SAND with slight petroleum odor 7.0 - 7.8 Gray-brown fine to medium saturated **%**0% SAND with petroleum odor 212 7.8 - 8.0 Black fine to medium saturated SAND 97.1 with strong petroleum odor 17.8 8.0 - 9.0 Gray-brown fine to medium saturated SAND with petroleum odor 10 -10.0 - 12.0 Gray-brown fine to medium saturated SAND with petroleum odor 11.2

Apparent water level during drilling

Laboratory analytical sample

NOTES: Sampled collected at 5-8' for TPH and VOCs

Resource Controls

DRILLING LOG

LOCATION ID.: **MW-105** TOTAL DEPTH (FT.): 12

PROJECT INFORMATION

LOCATION: LOGGED BY: DATE STARTED:

PROJECT:

PROJECT NO.:

Bay Spring Realty Co. 7131A Barrington, RI

Emily Gardiner 6/4/2014 6/4/2014

DRILLING INFORMATION

DRILLING CO.: **New England Geotech**

DRILLER: Mayner²

RIG TYPE: Track mounted Geoprobe METHOD OF DRILLING: Direct push

Laboratory analytical sample

SAMPLING METHOD: 5' Macrosampler

DATE FINISHED: Well Description of PID **Graphic Soil Description** Const. Log (ppmV) **Well Materials** 0.0 - 0.5 ORGANIC MATTER with fine to coarse sand 2" PVC riser 0.5 - 3.8 Orange-brown to yellow-brown fine to medium SAND; wet at approximately 5' Bentonite 0.0 2" Slotted PVC screen 5.0 - 9.6 Yellow-brown to gray saturated fine to medium SAND No. 2 Sand 0.0 9.6 - 9.8 Gray saturated CLAY with some sand 10 -10.0 - 12.0 NO RECOVERY

NOTES: No sample was collected.

Apparent water level during drilling

Resource Controls

DRILLING LOG

LOCATION ID.: **MW-106**

TOTAL DEPTH (FT.): 12

PROJECT INFORMATION

PROJECT: PROJECT NO.:

Bay Spring Realty Co. 7131A LOCATION: Barrington, RI Emily Gardiner 6/4/2014 LOGGED BY: DATE STARTED:

6/4/2014

DRILLING INFORMATION

DRILLING CO.: **New England Geotech**

DRILLER: Mayner²

RIG TYPE: Track mounted Geoprobe METHOD OF DRILLING: Direct push

SAMPLING METHOD: 5' Macrosampler

DATE FINISHED: PID Well Description of **Graphic Soil Description** Const. Log (ppmV) **Well Materials** 0.0 - 0.1 ORGANIC MATTER 2" PVC riser 0.1 - 3.2 Orange-brown fine to medium SAND with trace coarse sand Bentonite 0.0 3.2 - 4.0 Light brown moist medium to coarse SAND 2" Slotted PVC screen 5.0 - 6.0 Light brown moist medium to coarse SAND No. 2 Sand 6.0 - 6.5 Black saturated fine to medium SAND 0.5 with strong petroleum odor 6.5 - 8.5 Gray saturated fine to medium SAND with slight petroleum odor; some intermittent **%0**2 black soils 0.3 10 -10.0 - 12.0 NO RECOVERY

NOTES: Sampled collected at 6-6.5' for TPH and VOCs

Apparent water level during drilling

Laboratory analytical sample

APPENDIX G

Waste Management Records

	DI	404 Front 3098 Refor 520			
		UNIFORM HAZARDOUS 1. Generator ID Number R P 0 0 0 0 3 5 7 4 8 2. Page 1 of 3.1	Emergency Response Phone (800) 899-1038	1 010	Form Approved. OMB No. 2050-0
			erator's Site Address (if differen Bay Spring Reality 10 Bay Spring Avenu Jarrington RI 02806	than malling address)	3376602 JJK
		6. Transporter 1 Company Name Cyn Oil Corporation	32300	U.S. EPA ID Nun	nber 0 8 2 3 0 3 7 7 7
		Transporter 2 Company Name B. Designaled Facility Name and Sile Address Tradebe Treatment and Recycling Northeast, LLC 136 Crances Ave.		U.S. EPA ID Nun:	
		Meriden CT 06451 Facility's Phone: 203 238-6751		U.S. EPA ID Num	
		9a. U.S. DOT Description (including Proper Shipping Name, Hezard Class, ID Number, and Packing Group (if any)) 1. RQ NA3082, Hazardous waste, liquid, n.o.s. (Carbon Tetrachloride Trichloroethylene)	10. Containers	11. Total 12	0 2 1 8 1 6 8 8 9
ILLE BY	GENERALOR	Trichloroethylene) 9, PGIII	001 TT	3618	D019' D029 D04
	35	3.			
		4,			
	1	, Special Handling Instructions and Additional Information (E,T) Solvent-Impacted water, F	04631030 500	474	
		ė, "			
	1	GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable inte Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgmen I certify that the waste minimization statement Identified in 40 CFR 262.27(a) (if I am a large quantity generator) or negator's/Offeror's Printed/Typed Name	and accurately described above mational and national government of Consent.	by the proper shipping antal regulations. If exp	name, ard are dassified, packaged, ort shipment and I am the Primary
INTIL	16	BAY SPAY KEWY BY JACK CUT! MGR. X	My Cluty	erator) is dub.	Month Day Year
ER	17	Insporter signature (for exports only): Transporter Acknowledgment of Receipt of Materials sporter 1 Printed/Typed Name Signature Signature	Port of entry/exit: Date leaving U.S:	1	
IRANSPORT	Tre	Sporter 2 Printed/Typed Name Signature Signature	33	50-	Month Day Year 8 28 14 Month Day Year
		Discrepancy Indication Space Quantity			
	18b	,	Residue	Partial Rejection	Full Rejection
TACIL.	Fac	ily's Phone:		U.S. EPA ID Number	
5		Signature of Allemate Facility (or Generator) azardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recyc			Month Day Year
1	+	25		4.	
1	T. San	asignated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except. Signature 8700-22 (Rev. 3-05) Previous editions are obsolete.	n. 07		Month Day Year
		经证据	Arm From Vio	BESTHATIO	H STATE (IF REQUESED)

JOB NO. 208046 DAY & DATE 8 28 19 CONTACT PERSON JAC	-57	Ciin	1	5	DA	ILY W	ORKSHEE	T			
DAY & DATE 8 28 19	/	ENVIONN	m c n r	n i	STOUG	SHTON	781-341-1777				
CONTACT PERSON_JAC	K	SERVICE	S	<u> </u>	MAINE		781-341-5108				
PHONE NO. 41:26 5	1830						207-872-9699 P.C 603-749-4969				
CLIENT BAY SPA	2100	REA!	it	,			PR	EVAILIN	G WAGE	YES	S INC
CLIENT BAY SPA BILLING ADDRESS 909 PROV	N M.	AIN.	57		JOB I	_OCATIO	N ADA	ms	57		
PROV	RI	00	90	94		75	BARRINA		4 1	0+17	
ALI:							1116/6/10	010	<i>\(\)</i>	121	
Depart From Shop 6 AM Arr	ived Back /	At Shop	130	PM	FOLU	PMENT					
LABOR	Time			7	QTY.	T	TYPE		F1 555 11	T	Г
NAME TITLE	ARRIVE DEPAR	REG. O	T D	г	1				FLEET#	HRS.	INITIALS
	G	7	1			PIC	ckup	7.1	195	Day	my
IN MUCEIACCIO F	//	'			1	KAC	TRAILER SSUREWAS	201	404.	7	RL
M MUCCIACCIO F B LIGNOWSKI B J HEFNER P/O		7			/	Pne	SSUNEWAS	Herz	987	Day	my
1 HEENER PLA		7			-					/	
STIPTIVE TO	1/	-	-	-							
	V										
	 			-							
OFF SITE / TRAVEL TIME											
			-	-	MAT	ERIAL					
					QTY.				RIPTION		
					1	3	SETS P	PE			
TOTAL LABOR HOURS			-	-							
				_							
DISPOSAL				_							
LIQUID											
MANIFEST NO. 6/33	7660	22 0	1.)K	7							
SOLID										•	
MANIFEST NO.				┥.	OTHER						
IOB DESCRIPTION				J		SPORTA	ATION				
Duma AND C	10011			7				110	15 =		
FULLY MUSS CI	27710			1	SUBC	ONTRAC		NO	UR		
PUMP AND CO	1			-							
C) THE THIN	Δ			-				_			
				4	JOB CO	MPLETE	ED VET	YES		0	
					REMA	RKS					
				0							
				Rud							
				BUR							
			•	2	CUSTO	MER SENTATIV	VE _				
		<u> </u>						1 7	- An	,	
					REPRES	SENTATIN	VE THE	_ <	Mu	1000	100
	1			ı	DATE_				-		

JOB NO. 208046-5T		l'III	R	, 1	DAI	ILY W	URKSH	EET			
DAY & DATE 8-28-7014		oğlı			STOUG	HTON	781-341-1777				
CONTACT PERSON TOOK	:=1:0	rr n n i i i	<u>nmenta</u> Fs	_			781-341-5108		NIK	1	
PHONE NO. 401-265-18 CLIENT BAY Spring	35	<u> </u>		- 11		CTICUT AMPSHIRE	860-286-0825 603-749-4969				
CLIENT BAY SOTING	Realty							PREVAILI	NG WAGE	YES	∠ NO
BILLING ADDRESS 909	NORTH	n MAL	1/ 57		JOBI	-OCATIO	ıNı				
Providence	RI	0290	4	_				Bian C	24	N	
ATT:						Rac	SIAG TO	My Sp	Dring.	HVE.	
Depart From Shop 8 Arri	ved Back A	At Shop	112	30 m	FOU	PMENT	1104 103	9 10	ul O	1806	
LABOR	Time			_,	QTY.	PIVICIVI	TYPE		FLEET#	LIDO	T 45 45 45 45 45
NAME TITLE	ARRIVE DEPAR	REG.	та то			12/-	Truck			HRS.	INITIALS
J. HENRIQUES &		3/2				ISIO	IVVCIC		826	31/2	JA
,	-										
					-						
OFF SITE / TRAVEL TIME	*							***************************************			L
		+ +-	_	+		ERIAL	-				
				_	QTY.			DES	CRIPTION		
					-						
TOTAL LABOR HOURS		3/		1	-						
DISPOSAL	<u> </u>	14									
LIQUID .				7	-				$\overline{}$		
				-						\rightarrow	
MANIFEST NO.	+ //				-						
SOLID RIO. PSC	(6	-57	7025	2							
MANIFEST. NO. 130]	OTHE	R					
JOB DESCRIPTION					TRA	NSPORT	TATION				
WENT DISITE & MET	Crew	# CO	NTACT								
PICKED UP Plo CAN F			sc"		SUB	CONTRA	ACTOR				
& HANVIED TO BrockTUM		For	ı								
Disposal. Chapion.	city R	rovem	·		100.0						
THEN STAGED Empty	CAN	7	R6			OMPLE ARKS	TED	HYES		10	
VIARI FOR laten	Return	70 PS			7120	Anno					
TOURE			<u></u>		-						
and it				- 0							
				Bur	CUSTO	OMER	T1) (F				
				12,1	1.	ESENTA	W	Inn		-	
				The		NVIRON		///	5/	>	
]	DATE	8-28	2014			/	

STRAIGHT BILL OF LADING

ORIGINAL - NOT NEGOTIABLE

CARRIER: Cyn Environmental Services 100 Tosca Drive Stoughton, MA 02072 Mr. Richard R. LaMothe, LSP P781.341.1777 x155

SHIPPER NO. 208046 - 57 CARRIER NO. 85251 mm 4 DATE: 8-28-7014

Champion City Recovery 138 Wilder Street Extension Brockton, MA 02301 Mr. Steven Wenzel, Manager P508.941.6700

Cyn Job Cyn PO

Invoice through Brighter Horizons Environmental Corp. P.O. Box 219

Chelmsford, MA 01824 Mr. Jason Squeglia P978.970.0500

FROM: SHIPPER

Bay Spring Realty 90 Bay Spring Avenue Barrington, RI 02806

Same as above,

EMERGENCY 800.899.1038 VEHICLE NUMBER

NO. SHIPPING UNITS	HŅZ*	KIND OF PACKAGING, DESCRIPTION OF ARTICLES, SPECIAL MARKS AND EXCEPTIONS	WEIGHT (subject to correction)	RATE	CHARGES
1 cm		Non-RCRA, Non-DOT Regulated Material (waste soils/debris, primarily metal)	10 yands	n/a	n/a
		»·			
		\$			
•					

with appropriate UN or NA number as defined in US (ICT Fetorgordy Communication Standard (HM-128C)

REMIT C.O.D. TO ADDRESS: n/a !	COD AMT: \$	C.O.D. FEE; \$ n/aCOLLECT
NOTE — Where the rate is degendent on value, ehippens are required to state applicably in writing the agreed or declared value of the properly. The Agreed or declared value of the property is hereby applicable regulators of the Department of Transportation.	delivered to the constrant without montes on the sentiment	TOTAL n/a CHARGES: \$
n/a	(Signature of Consignor)	FREIGHT CHARGES ——PREPAID ——COLLECT

Consigned, and destined as individual above which said calculate (the leave of this field of Leafing, the appeary essentials above in expensive good order, escept as moted (contents and conditions of contents of packages unknown), marked, deathstilling it on its route, otherwise to deliver to another cando on the new to sent the beginning through the content as meaning any person or composition in possession of property under the content of another cando on the new to said destination. It is multiply agreed, as to such carrier of all or any of said property, over all of any portion of said route to said said said and the said of said property, which are performed hereunder shall be subject to all the Birl of Leafing same and conditions in the governing classification in the date of sitternent.

NOTICE: Freight moving under this Rift of Leafing is subject to the destinations and texture the said strend and conditions are hereby agreed to by the shipper and accepted for kinnell and he stripe. NOTICE: Freight moving under this Rift of Leafing is subject to the destinations and texture that the said and the strend and conditions are hereby agreed to by the shipper and accepted for kinnell and he stripe.

NOTICE: Freight moving under this Rift of Leafing is subject to the destinations and texture that and conditions are hereby agreed to by the shipper and accepted for kinnell and he stripe.

REPERS.

REPERS.

BAY SRING BEALLY	CARRIER OIL CORPORATION	DATE 8-28-7014
X My Godly	PER MADZ	
* HAZARDOUS MOTERIALS YARIK WITH "X" TO OFSIGNATE HAFARDOUS MATERIAL AS HEFEE	RENGED IN 48/CF9 § 172 707.	হ্য

	Champion City Stoughton Recy 508-941-6700/7	cling		01 DATE	159635		CMORC	PEHAIOH		ORIGIN RhodeIsland
	PO Box 2	19	ons Environmental	8/28/:		8/28/		TIME 11:00 a	155.00	TIME OUT 11:30 am
	Chelmsfo GROSS W TARE W NET W	VEIGHT	49,780.00 36,640.00 13,140.00	CYN		INVO		HERRO		
	GTY. 6.57 1.00	UNIT	DESCRIPTION Bulky Waste Environmental Fee		RA		EXTENS	ION	FEE	447266 TOTAL
1.888.254.8784	,		The state of the s							
Re-order from BFI Print & Promotion Solutions 1.882.254,3784										
from SFI Print &	Hours of Ope	eration		-						NET AMOUNT
aser Re-order	Monday-Frida Saturday 7am Closed Sunda	y 7am-	Apm							TENDERED

SIGNATURE X

WARNING: Transporting any unauthorized hazardous waste to this focility for disposal is prohibited by law. Persons violating this prohibition are subject to civil and criminal prosecutions.

CHANGE

CHECK NO.

Sunny Farms Landfill, LLC.

Waste Profile

12500 West County Road 18 Fostoria, OH 44830

419-436-0505 - Phone 419-436-0555 - Fax

rev. 1/30/10

Waste Profile

for SFL use only

A. General Info	rmation						
Generator: Bay Spring	g Realty	55000.845	Transporter	Cyn Oil Corpora	tion		
Facility Address: 90 Bay Spi						e: (781) 341 - 177	7
	unty: Bristol State RI	Zip_02806		100 Tosca Drive			
Mailing Address (if different): 909			City:			tate MA Zip 02072	
City: Providence Cou		Zip_02904					
B. Waste Information			<u>.</u>				
Common Name for Waste:	Non-RCRA, Non-DOT Reg	gulated Waste (was	ste soils)				
Detailed Description of Proce	ess Generating Waste (De. Underground masonry struc	scribe each step in cture removal as pa	art of planned	property maintenan	ice.		
LIST TAW MATERIAIS USCO.	n/a					- 0 7	
Is waste Dioxin bearing?	Yes 🔼 No	Infectious?	☐ Yes	☑ No	Radioactiv	re? ☐ Yes 🗵	No No
Anticipated Volume: 40 cubi	ic yards F	requency: one time	me	Current Volume of	on site: 40	cubic yards	
	aracteristics of Wa	ste					
C. Physical Cha	IGNITABILITY:	CORROSI	(Ha) YTIV	REACTIVI	TY:	PAINT FILTER TI	EST:
Brown, varies ODOR:	Results Units Flash Point >176 °F	pH 7.6	Dhits pH Units	Cyanide	mg/1(ppm)	PASS	
	Flash Point ℃					Yes No No	
None Mild Mil	Limits >140°F	Limits	2≤ pH ≤ 12.5	Limits Cyanide 3 Sulfide 5		1 100	
☐ Strong	> 60 ℃						
Describe:	NOT DETERMINED	NOT DETER	RMINED 🗆	NOT DETERMI	INED 🗆	NOT DETERMINE	ט ט
	m Composition:						
(Must add up to soil	100%)	75%					%
debris, primarily metal	50-2						_ %
n/a	0-0	%					_%
n/a	0-0	%					_ %
Is waste a commercial che	emical product?			☐ Yes 💆 No		If yes, attach MSD	S
Is waste a spill residue fro	om a virgin commercial che	emical product?		☐ Yes 💆 No	0	If yes, attach MSD	3
What industry is waste ge Was a representative sam	nple provided which match	es the description	on this form?	☐ Yes 💆 N	lo		
E. RCRA Chara	acteristics						
1. Is this a US EPA Haza	rdous waste?	Yes 🖄 No	3. Does v	vaste contain solve	ents?	☐ Yes 🍇	
 Is this a US EPA Haza Is waste an EPA <u>Listed</u> 	d hazardous waste?	Yes 🚨 No	4 Does v	vaste contain PCB	's greater th	nan 50 ppm or PCB's 50 ppm? 🗆 Yes 🏻 🌣	3
			derive	u nom a source gr	eater than 5	oppiii: La les La	

F. TCLP N	ot applicable, please see attach	ed laboratory results	G. TCLP Organics	S	
TCLP Metals	Results	Regulatory Level	TCLP Semi-volatiles	Results mg/l (ppm)	Regulatory Level
A	<u>mg/l (ppm)</u>	mg/l (ppm)	2 Methylphenol o-Cresol -	mgn (ppm)	mg/l (ppm) 200.0
Arsenic _ Barium _		5.0 100.0	3 Methylphenol m-Cresol		200.0
Cadmium		1.0	2, 4 -Dinitrotoluene		0.13
Lead _		5.0	Hexachlorobenzene .		0.13
Mercury		0.2 1.0			3.0
Silver _		5.0			2.0 100.0
1	Results	Regulatory	Pyridine		5.0
	mg/l (ppm)	Level mg/l (ppm)			400.0 2.0
PCB's		50.0	TCLP Volatile Compounds	₽ ∞	
Pesticides & Her		Regulatory		Results mg/l (ppm)	Regulatory Level
20000000000000000000000000000000000000	Results mg/l (ppm)	Regulatory Level	Dearra		mg/l (ppm) 0.5
TCLP Pesticides		mg/l (ppm)	Benzene Carbon Tetrachloride		0.5
		0.00	Chlorobenzene		100.5 6.5
Endrin Lindane (gBHC)		0.02 0.4	Chloroform 1, 4 – Dichlorobenzene		7.5
Methoxychlor _		10.0 0.5	1, 2 - Dichloroethane 1, 1 - Dichloroethylene		0.5
		0.03	Methyl ethyl kelone		200.0
Heptachlor		0.008	Tetrachloroethylene Trichloroethylene		0.5
TCLP Pesticides	Results	Regulatory	Vinyl Chloride		0.2
	mg/l (ppm)	Level mg/l (ppm)			
0.4.5		10.0			
2, 4 -D 2, 4, 5, TP (Silvex)		1.0			
1. Is waste subject Restricted to Effective until I. Hazardo Corrosive T.D. Toxic Ignitable Reactive TSCA Regulated US EPA Hazardot State of Ohio Haz CERCLA Hazardot Can waste legall	Dus Characteristics Toxic Acutely Toxic Pelloson Water Reactive Waste?	idizer roxide rophoric ine of the above No No No No	J. Shipping Info Is waste a DOT Hazardo Proper DOT Shipping Nam- Non-RCRA, Non-DOT DOT Hazard Class: Reportable Quantity (RQ): Method of Shipment: Vac Tank Dump Tank Truck Roll-C Can waste legally be dispo	Drmation Dus Material? Yes e: Regulated Waste n/a	e)
☑ Yes ☐ No)	,	n/a		
A representative s	Certification sample of the waste stream was of sove and attached description is of suspected hazards have been dis	emplete and accurate and the	hat no deliberate or willful ornis	ssions of compositions of prope	rites exists, and
(Signature) (Print Name)	JACK Cutlip		Date Real Es	Tote Maring	en

Generator Certification

I certify the following:

- 1. A representative sample of the waste stream was obtained using an EPA approved method and corresponds to the information on this profile.
- 2. This waste is non-hazardous in accordance with U.S. EPA and Ohio EPA regulations and laws and does not contain PCBs at a concentration greater than or equal to 50 ppm nor PCBs derived from a source greater than or equal to 50 ppm in concentration.
- 3. The above and attached description is complete and accurate and no deliberate or willful omission of compositions or properties exists and all known or suspected hazards have been disclosed.

nave b	een disclosed.		
	Den Cutty	7-31-14	_
Signature	JACK Cutlip	Reul ESTATE Mauage,	n
Print Name		Title	

Transporter Certification

I certify the following:

- 1. This waste is non-hazardous in accordance with U.S. EPA and Ohio EPA regulations and laws and does not contain PCBs at a concentration greater than or equal to 50 ppm nor PCBs derived from a source greater than or equal to 50 ppm in concentration.
- 2. The above and attached description is complete and accurate and no deliberate or willful omission of compositions or properties exists and all known or suspected hazards have been disclosed.
- 3. This waste will have the above described characteristics upon arrival at Sunny Farms Landfill, LLC, and the waste will not be altered or amended during transport.

Signature	Date	
Print Name	Title	

P.O. Box 0119, 100 Tosca Drive, Stoughton, MA

ENVIRONMENTAL Phone 781-341-1777 Fax 781- 781-297-7936

Visit our new website : www.cynenv.com

Quotation For Services

Attn: Mr. Jack Cutlip Bay Spring Realty 909 N. Main St Providence, RI 02904

Molinien	
*	

pHONE: jackc1026@gmail.com	RE: T&D Servi	ce		DATE:	8/5/2014	
100000000000000000000000000000000000000						
	DESCRIPTI					
Cyn Environmental Services will pro 1. Soil transportation & disposal (lo 2. Frac tank cleaning & rinseate dis 3. Rolloff container - non RCRA em	pading of the soil will be	prov	ided by oth	ners onsite	e)	
Location for services: 90 Bay Spri	ing Ave, Barrington, RI	0280 ce	06 II #			
Pricing: Cistern soil disposal - est. 60 tons (Rolloff container transportation (Noi Frac tank cleaning Vac truck for rinseate disposal (frac Disposal: gas/water/rinseate Disposal: sediment	n-RCRA empty cans)		600.00 2,500.00 800.00 1.50	fixed fee fixed fee		
Generator: Generator/Responsible Party: Mailing Address: City, State & Zip Code: Landline Phone #:						
Notes: A 10% fuel/insurance surcharge A representative for the generator m If waste is off spec and requires out	ust be onsite to sign all	asso	ciated ship	ping/disp	osal documentation.	
Thank you for allowing Cyn the oppneeds. If you have any questions, p	ortunity to submit this quease feel free to contact	uotai ct me	tion to serve at 781-88	vice your e 36-1241.	environmental	
If you would like us to schedule the Terms and Conditions, and fax back	to me at 781-297-7936 f	w, as or pr	well as the ocessing.	e following	3	
Terms: C.O.D. \$16,500.00 pr This quotation is valid for thirty day attached Standard Terms and Con	s. The quotation and as:	socia	ated work s	shall be su	bject to Cyn's	
Accepted: By: Title: P.O. No.:	Quotati	R	Prepared au a, Account	M	uella	
Please fax hard copy, if possible.					<u> </u>	

Cyn Environmental Services' Standard Terms and Conditions

1. Waste Characterization: Except to the extent that Cyn characterizes customer's waste based upon analysis of samples provided by customer, customer shall fully inform Cyn of the chemical, physical, and hazardons characteristics of any waste to be managed pursuant to

Scheduling: Services shall be scheduled as indicated on the face hereof or by mutual agreement of the parties as expressed in writing. In the event performance of services by Cyn hercunder is delayed for more than two hours due to customer's action or inaction. Cyn shall be entitled to reasonable demurrage charges based upon number and type of vehicles and personnel provided.

3. Compensation: Customer shall compensate Cya for services provided at the rates set forth on the face hereof. Unless otherwise provided, customer shall pay or reimburse Cyn for all state and local sales, use or excise taxes of any kind assessed on the services provided hereunder. If any charge provided for herein is not paid within 30 days of its invoice date, customer agrees to pay a finance charge of 1.5% per month, or the highest amount permitted by law, whichever is less, until paid. Customer also agrees, if its account is referred to an attorney for collection, to pay court costs plus reasonable attorney's fees. 4. Customer's Warranty: Customer represents and warrants to Cyn that:

(a) the physical and chemical composition of the waste transferred to Cyn hereunder shall conform within reasonable ranges to that of the

(b) except to the extent that Cyn takes responsibility for or directs customer in the packaging, marketing, and labeling of waste, customer shall package, mark and label waste in accordance with all applicable governmental laws, regulations and orders

(c) customer shall provide appropriate access to the work site and any equipment requiring servicing and shall provide the requisite qualified personnel to enable the timely performance by Cyn of the services contemplated hereunder.

(

(a) Disposal Warranty: Cyn represents and warrants to the customer that:

(1) Cyn understands the risks presented to persons, property, and the environment in the handling, transportation, storage, treatment,

(2) Cyn is qualified to perform the services hereunder and will do so in a safe and workmanlike manner and in compliance with all

(3) Cyn and any subcontractors employed by Cyn possess and will maintain for the duration of services hereunder all permits, licenses, certificates, and approvals necessary for the performance of services hereunder.

(b) Service Warranty: Cyn warrants that any service done by Cyn on the customer's equipment shall be free of defects in workmanship Shall correct any failure to conform to the foregoing warranty of which it is notified in writing within 90 days of completion of the services. Such correction shall be limited to the performance of the services and/or replacement of any equipment damages due to the negligence of Cyr. It is understood and agreed that, unless otherwise agreed to in writing by Cyn. Cyn assumes no responsibility with respect to the suitability of the customer's equipment or with respect to any latent defects in the same.

6. Customer Indemnification: Customer shall indemnify, save harmless and defend Cyn and its employees and subcontractors from and against all liabilities, claims, penaltics, demands, fixes forfeitures, causes of action, and the costs and expenses incident thereto (including, without limitation, costs of defense, settlement and reasonable attorney's fees) which they may incur, become responsible for or pay out as a result of death or bodily injury to any person, damage to any tangible property, adverse effects on the environment, or any violation of law arising directly or indirectly out of or in connection with customer's breach of any term or provision of this agreement or any negligent

7. Cyn Indemnification: Cyn shall indomnify and save customer (including its employees) harmless from and against any expense, loss or liability caused by or resulting from the failure of Cyn (or its subcontractors) to fully comply with applicable federal, state or local laws, statutes regulations, or governmental directives which regulate the handling, transportation, storage or disposal of the waste hereunder and from all claims, suits and liability for loss of or damage to any tangible property or persons (including death) caused by any negligent or willful act of Cyn or its subcontractors during the handling, collection, transportation, storage, or disposal of the waste hereunder. Following the loading of waste shall pass from customer to Cyn, and Cyn shall defend, indemnify and hold customer harmless for any subsequent damage, expense, loss, fines or other liability connected with the waste, including but not limited to adverse effects on the environment. Cyn and customer shall, in the event of liability arising out of their joint negligence or willful acts, be liable to the other and

Liability: Cyn, its contractors and suppliers of any tier, shall not be liable for loss of profits or revenue, loss of use of equipment or power system, cost of capital, cost of purchased or replacement power or temporary equipment (including additional expenses incurred in using existing facilities), claims of customers of the customer, or for any special indirect, incidental or consequential damages, excluding

damages for adverse effects on the environment, whether based in contract or in tort, including negligence or strict liability characterization or sample provided to Cyn by customer. Cyn may reject waste at any time prior to accepting possession, non-conforming waste in which case customer shall pay, an applicable. (i) the cost of transportation from Cyn's facility to customer.'s premises: and (iii) other unless customer and Cyn agree on alternat	onform to the
ALINE SIZERY	Pov.1001
I agree and understand the above terms & conditions	
APPROVAL SIGNATURE	
DATE	
	1

- 10. Force Majeure: Delay or failure of either party in the performance of its obligations hereunder shall be excused if caused by circumstances beyond the control of the party affected, including, without limitation, acts of God, strikes, fire, flood, windstorm, action or request of governmental authority, and inability to obtain material, equipment or services, provided that a prompt notice of such delay or failure is given and the affected party diligently attempts to remove the cause.
- 11. Subcontracts: Cyn may at any time, upon written notice to customer, delegate orally or in writing the performance of the services hereunder, or any portion thereof; provided, however, that Cyn may not without the prior written consent of the customer, cause the disposal of waste materials at any facility other than that specified. Any such delegation shall not operate to relieve Cyn of its responsibilities hereunder, and notwithstanding any such delegation, Cyn shall remain obligated to customer in these undertakings. Except for the right to payment, neither party may at any time assign its rights under this agreement.

12. Inconsistent Provisions: In the event the customer submits purchase order for the services described on the face hereof and said purchase order contains terms and conditions inconsistent with the terms and conditions of this Quotation, the terms and conditions of this Quotation

13. Billing and Due Dates: Payment by the customer of the total contract price to Cyn shall be due in one of the following manners: (i)

14. Disputed Bills: All bills submitted pursuant to this agreement shall be deemed correct unless customer objects, in writing, within 5 days

15. Notices: All notices pertaining to this agreement shall be in writing and shall be transmitted either by hand or through the United States Postal Service. The addresses set forth on the face hereof for the respective parties shall be the place where notices shall be sent, unless

16. Controlling Law: The validity, interpretation, and performance of this agreement shall be controlled by and construed under the laws of

- 17. Waiver: The failure of Cyn to object to or take affirmative action with respect to the conduct of the customer which is in violation of the terms of this agreement shall not be construed as a waiver of the violation or breach or wrongful conduct.
- 18. Modification: This writing contains the entire agreement of the undersigned parties. No representatives were made or relied upon by either party, other than those expressly set forth. No agent, employee, or other representative of either party is empowered to alter any of the above items unless done in writing and signed by an authorized representative of the respective parties.

Revised \$22.9 I agree and understand the above terms & conditions		
APPROVAL SIGNATURE	DATE	

Mid-City Scrap Iron & Salvage

P.O. Box 157 548 State Road Westport, MA 02790 (508) 675-7831 / (508) 675-2900

Purchase Ticket

Purchase Ticket #

32226

Purchase Date

06/04/14

Customer:

SHU1010-SHUSTER REALTY

909 NORTH MAIN STREET PROVIDENCE, RI 02904

Account Rep JOE

Terms

NET 30

Payment Due

7/10/14

Item Name	0	rder#	Gross	Tare	Net	Price	Total
Rec: 6/4/14	WT Ticket #S	88840		Cus	st Ref # ABC 188153		
SHEARING	External Detail ID:	TRK 35	49,360.000	33,320.000	16,040.000 LB	\$230.000000 GT	\$1,646.96
		Totals:	49,360.000	33,320.000	16 040.000	and the second s	\$1,646.96
TRUCKING Note	CHARGE	TRUCKING CH	HARGE 1 @ 150	.00			-\$150.00
							\$1,496.96

BAy Shing Site

Prepared By

BRUCE

6/10/2014 4:04:50PM

RHODE ISLAND RESOURCE RECOVERY CORPORATION

CENTRAL LANDFILL 65 SHUN PIKE JOHNSTON, RI 02919 OFFICE 401.942.1430 FAX 401.946.5174

102221377
RECEIPT DOCUMENT NUMBER

B L L T O

CALS127200 CALSON CORPORATION 34 OAKDALE AVENUE JOHNSTON, RI02919HAULER

CALS127200 CALSON CORPORATION 34 OAKDALE AVENUE JOHNSTON, RI02919-

DATE		ENTRY TIME	OPER.	EXIT TIME	OPER.	MEASUREMENT	POUNDS		TONS	SCALE
5/30/14		08:24:28	LM	08:52:56	EF	GROSS:	88280		44.14	Scale 2
VEHICLE N	NUMBER	VEHICLE	ETYPE	PLATE NUMBER	TRANSACTION TYPE	TARE:	37480		18.74	Scale 3
C56		Dump Tru	ick	CALSON	Inbound	NET:	50800		25.40	
CODE				DESCRIPTION			QUANTITY	UNITS	UNIT PRICE	AMOUNT
358		ALT CVR- N	ON HAZE	PROCESSED S	OIL		25.40	Ton		
			-		CALSO	29 2014 DN COMP.				
and on the	e date 20% red	declares, under above was, wa cyclable materia	the penalty s generated	of perjury that 100% I and collected in R as defined by DEM	DING WASTE DEI of the solid waste del hode Island, is not Ha regulation, and complie	ivered to the Central Lazardous Waste and	does not contain in		AL AMOUNT	

RHODE ISLAND RESOURCE RECOVERY CORPORATION

CENTRAL LANDFILL 65 SHUN PIKE JOHNSTON, RI 02919

excess of 20% recyclable material by weight, as defined by DEM regulation, and complies with all applicable laws and regulations.

OFFICE 401.942.1430 FAX 401.946.5174

102221552
RECEIPT DOCUMENT NUMBER

BILL TO

CALS127200 CALSON CORPORATION 34 OAKDALE AVENUE JOHNSTON, RI02919CALS127200
CALSON CORPORATION
34 OAKDALE AVENUE
JOHNSTON, RI02919-

/30/14 VEHICLE NUM	10:38:46			OPER.	MEASUREMENT	POUNDS		TONS	SCALE
VEHICLE NUI		LM	10:39:00	LM	GROSS:	91980		45.99	Scale 2
	MBER VEHICLE	ETYPE P	LATE NUMBER	TRANSACTION TYPE	TARE:	37480		18.74	P.T.
C56	Dump Truc	k C	ALSON	Inbound	NET:	54500		27.25	
CODE			DESCRIPTION			QUANTITY	UNITS	UNIT PRICE	AMOUNT
358	ALT CVR- NC	N HAZD PR	OCESSED SO	DIL		27.25	Ton		
			MAY 29	IVED					
11			MANY O -						
			MAY 29	2014					
		(ALSIN						
			-COOM	CORP.	6				
				OING WASTE DEL				L AMOUNT	

Driver Signature: (WAMI) 17

Driver Signature:

Fri May 2014 05/30/14 13:28:39

RHODE ISLAND RESOURCE RECOVERY CORPORATION

CENTRAL LANDFILL 65 SHUN PIKE JOHNSTON, RI 02919

excess of 20% recyclable material by weight, as defined by DEM regulation, and complies with all applicable laws and regulations.

OFFICE 401.942.1430 FAX 401.946.5174

102221897
RECEIPT DOCUMENT NUMBER

BILLL

CALS127200 CALSON CORPORATION 34 OAKDALE AVENUE JOHNSTON, RI02919CALS127200
CALSON CORPORATION
34 OAKDALE AVENUE
JOHNSTON, RI02919-

						The second secon				
DATE		ENTRY TIME	OPER	EXIT TIME	OPER.	MEASUREMENT	POUNDS		TONS	SCALE
5/30/14		13:28:35	LM	13:28:46	LM	GROSS:	82600		41.30	Scale 2
VEHICLE N	NUMBE	R VEHICL	E TYPE	PLATE NUMBER	TRANSACTION TYPE	TARE:	37480		18.74	P.T.
C56		Dump Tru	ck	CALSON	Inbound	NET:	45120		22.56	
CODE				DESCRIPTIO	N		QUANTITY	UNITS	UNIT PRICE	AMOUNT
358	A	LT CVR- NO	N HAZD F	ROCESSED SO	IL		22.56	Ton		/ directive
				MAY 29 CALSON (2014 CORP.					
and on the	date	declares, under above was, wa	the penalty of generated	of perjury that 100% and collected in F	DING WASTE DEL of the solid waste deli- should Island, is not Ha	vered to the Central La	ndfill in the vehicle	ТОТА	L AMOUNT	

RHODE ISLAND RESOURCE RECOVERY CORPORATION

CENTRAL LANDFILL 65 SHUN PIKE JOHNSTON, RI 02919 OFFICE 401.942.1430 FAX 401.946.5174

102222837
RECEIPT DOCUMENT NUMBER

BILL TO

CALSON CORPORATION 34 OAKDALE AVENUE JOHNSTON, RI02919CALS127200 CALSON CORPORATION 34 OAKDALE AVENUE JOHNSTON, RI02919-

DATE	f	ENTRY TIME	OPER.	EXIT TIME	OPER.	MEASUREMENT	POUNDS		TONS	SCALE
6/2/14	06	6:58:50	LM	06:59:03	LM	GROSS:	81180		40.59	Scale 2
VEHICLE N	UMBER	VEHICLE	ETYPE	PLATE NUMBER	TRANSACTION TYPE	TARE:	37480		18.74	P.T.
C56		Dump True	ck	CALSON	Inbound	NET:	43700		21.85	
CODE				DESCRIPTION			QUANTITY	UNITS	UNIT PRICE	AMOUNT
358	ALT	CVR- NO	N HAZD F	PROCESSED SO	IL		21.85	Ion		
						li li				
						i)		= 1		
			2501 454	TION DECLE						
The unders	igned de	clares, under	the penalty	of periury that 100%	OING WASTE DEL of the solid waste deli	vered to the Central I a	andfill in the vehicle	IOIA	L AMOUNT	
and on the	uate at	ove was, wa	s denerated	and collected in R	hode Island, is not Ha egulation, and complie	azardous Waste and d	lone not contain in			
			by woight,	1 1	agulation, and compile	s with all applicable lav	vs and regulations.			
Driver Sig	nature:	Mon Jun 201	4 06/02/14 06:5							
0	William Control			· · · · · · · · · · · · · · · · · · ·						

Ple		or type. (Form desig	ned for use on elite (12-pitch 1. Generator ID Number		afrië	Emergency Response	Phone	14. Manifest		n Approved.	OMB No.	2050-003
		STE MANIFEST	RIPOOO	0 3 5 7 4 8	1	(800) 899-103	38	01	337	660	2 J.	JK
	5. Gene	erator's Name and Mailin	ng Address	Att. Mr.	Jack CLAMPGe	nerator's Site Address	(if different t	han mailing addres	ss)	med state	Community of	N Breits
	. 9	i09 North Main	St.		. 1	30 Bay Spring	Avenue					
		rovidence Ri		838		Barrington RI	02806					
	6. Trans	tor's Phone: sporter 1 Company Nam	e	0.00			-	U.S. EPA ID N	Number			
	(2006	Cyn Oil Corpoi	ation		Att. Mil. Jack Cullii, Generators Ste Address (if different than mailing address) Att. Mil. Jack Cullii, Generators Ste Address (if different than mailing address) Bay Spring Average Barrington Ri 02306 U.S. EPAID Number U.S. EPAID Number U.S. EPAID Number U.S. EPAID Number II. Total Quantity Wt.No. Type Quantity Wt.No. Type Journal of this consignment are fully and accurately described above by the proper shipping ner condition for transport according to applicable international and national governmental regulations. If export no to the terms of the attached EPA Acknowledgment of Consent. Signature Signature Type Residue Partial Rejection		2 3 0	3 7	7 7			
1	7. Trans	sporter 2 Company Nam	e	2-pitch) typewriter.) 2. Page 1 of 3 Att. Mil. Jack Culling. Att. Mil. Jack Culling. Att. Mil. Jack Culling. Ding Name, Hazard Class, ID Number, Sile, liquid. In 0 s. (Carbon Tetrachloric latest in proper condition for transport according to applicable and conform to the terms of the attached EPA Acknowled filed in 40 CFR 262.27(a) (if I am a large quantity general Signation of the strength of the strengt	and the same	CASE WHEET		U.S. EPA ID N	A PROPERTY.	nebri II.		
	0.0	1.15 11.11	1011 111								of supers	
360	8. Desig	gnated Facility Name an	ent and Recycling N	ortheast, LLC	that the contents of this consignment are fully and accurately described above by the proper shipping name, didition for transport according to applications. If export ship heterems of the attached EPA Acknowledgment of Consent. Signature Signature Signature 10. Page 1 of 3. Emergency Response Phone 4. Manifest Tracking Nu 4. Manifest Tracking Nu 5. Signature 4. Manifest Tracking Nu 5. Signature 4. Manifest Tracking Nu 6. Signature 4. Manifest Tracking Nu 7. Signature 4. Manifest Tra							
0		36 Gracey Ave Aeriden CT 06		pss recoycling Northeast LLC FICATION: I hereby declare that the contents of this consignment are fully and accre in all respects in proper condition for transport according to applicable internation attement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I Signature Import to U.S.								
96	uma di		238-6751					CTI	002	181	6.8	8 9
	9a.	9b. U.S. DOT Description	on (including Proper Shipping Na	ime, Hazard Class, ID Number,		10. Contai	ners	11. Total	12. Unit	40.		Au
	HM	and Packing Group (if a	***		144		Туре	Quantity		13.1	Waste Code:	3
SR.	X	Trichloroethy		iquid. n.o.s. (Carbor	Letrachion	16)		III de la company	1.0520	D019	D029	D040
ξ¥		9 POIII				0.01	TT	3/18	G	F002	1.71	amil En
GENERATOR	2	2.				C TIMET ROT		267 0				0.5
5							10000	and Mark The		,	194	
			Antoni obliga en parte.		M ₂ H	arra a service	Gr.	7,500,00		VIII-II-100		bas ac
ı		3,				Market Market	K BYOLD TO	M.A IL 1 201	1 Com	arres & to	salda a	
1	s bedy					Declare our cake	A PERSONAL PROPERTY.	10 m 15	-400	1000000	and the second	S Fence
1	4	L. gorg sea N. William				The state of the state of	, -	and the second				AN OLDER
						any late and only of	100	luco sermons	15" 01		an elam	89/10/
				1400 C	The many	rasi in mi 4 mi un	en dodo	a demondre	1000	a summer	i prograd	
	ma Ex	arked and labeled/placar porter, I certify that the c	rded, and are in all respects in procontents of this consignment con	oper condition for transport acc form to the terms of the attache	cording to applicable ed EPA Acknowledge	international and nati ment of Consent.	onal governi	mental regulations.	ipping name If export sh	e, and are clas ipment and I a	sified, packa am the Prima	iged, ary
	Generat	tor's/Offeror's Printed/Ty	ped Name	Action of the second				e rag inti ben	restorm an	Mon	,	Year
1	XD	mational Shipments	Cally Ru JACK	Could Mis	11. X	MIC	Lell		14 J. Adl	17	120	14
N	To make first	orter signature (for expo	Import to U.S.	and the action of the second	Export from U.S.				64- SC	* 15 - 1 m		II BOVOTO
_		sporter Acknowledgmen		Serie rator s	-184	Date leavi	ng U.S.:	- 1	7			3 1 1 1 1
TRANSPORTER	Transpo	rter 1 Printed/Typed Nar	me		Signatu	re)	7	.//		Mon	th Day	Year
ISPO	1(0	bust C	Languel!	man men en en gran de se	hand	43%	and a second	2	*	1	138	14
RAN	Transpo	orter 2 Printed/Typed Nar	me		Signatu I	re	Y	No. and of the last		Mon	th Day	Year
<u>⊢</u>	18. Disc	repancy		The second second second		1038/E L 108/F					SIX ALL TO	e ings
		screpancy Indication Spa	ace O		0.77				DECEMP.	9 (99)	7 10 00	il etima
t di	ei wil	emadina lippia kili k	Quantity	Пуре		Residue		Partial Rej	ection	OR OF THE	Full Reje	ction
_	101 111			or hoggana, benefitti		Manifest Reference	Number:			100000	1401100	erii telih
	18b. Alte	ernate Facility (or Gener	ator)					U.S. EPA ID N	lumber			
FAC	Facility's	s Phone:	er de position de la computer. Velo XIII estes para colonidare.									
		nature of Alternate Facil	ity (or Generator)	of containing the state of the		Alternative Contract	l. da		N / 1	Mor	nth Day	Year
MA	MINITED IN	ent of the surface of the control of	Notice and Different and Con-		U S	conficiently and				SECOND VI	neg negli	distant
DESIGNATED FACILITY	19. Haza	ardous Waste Report Ma	anagement Method Codes (i.e.,	codes for hazardous waste trea		d recycling systems)	12	mal map to the		S 100 3 1	Substant 2	All worth
0	T.		2.		3.			4.				
	20. Desi	ignated Facility Owner o	r Operator: Certification of receip	ot of hazardous materials cover	ed by the manifest	except as noted in Item	n 18a	Stored Carbidas An Englishment	W M seb	of a South	161 1	Note
		Typed Name	,	200	Signatu		1 0011 17	a standard	112	Mon	nth Day	Year
1					961					1.	L	Consiliar of

TRADEBE TREATMENT AND RECYCLING, LLC

GENERATOR WASTE STREAM PROFILE SHEET

Profile #		
Process Code	1 621	14
Process Code		

Fax or email completed profile sheet to:

TTR Fax: 219-397-6411

UIS Fax: 203-238-6744

usa.approvals@tradebe.com

A. GENERATOR INFORMATION:	
MAILING OR SITE ADDRESS	CUSTOMED INFORMATION.
	CUSTOMER INFORMATION:
USE CONTINUATION IF SITE & MAILING ADDRESSES ARE DIFFERENT	0 1 "
Generator #:	Customer #:
Generator Name: Bay Spring Realty	Customer Name: Cyn Oil Corporation
Generator Address: 909 North Main St.	Customer Address: PO Box 0119
City: Providence State: RI Zip: 02904	City: Stoughton State: MA Zip: 02072
Contact Name: Mr. Jack Cutlip	Contact Name: Mike Mazzeo
Generator Phone: (401) 265-1835	Customer Phone: (781) 341-1777 ext. 160
Generator Fax:	Customer Fax: (781) 341-8867
Generator Email: Jack (1026 @gmail.com	Customer Email: mmazzeo@cynenv.com
Generator USEPA/Federal ID #: RIP00bd35748	Customer Service/Sales Rep: Lisa Massaro/Bob Cleary
If no ID number is the Generator a "Conditionally Exempt Small Conditionally Exempt Small Conditional Con	
	or State ID # (If applicable):
Please check if generator has "No Canada Disposal" policy	Yes No
Please check if generator has "No Landfill" policy	Yes No
B. WASTE STREAM INFORMATION:	
Generator's Waste Name: Solvent-impacted water	×
Original Process Generating Waste: Dewatering of a cistern structure	
Original Process Serierating Waste.	
Is this waste exempt from RCRA regulation?	OV ON-
If "yes" explain or cite regulation on continuation (Example HH	Yes O No
Current method of disposal: None	vv, CESQG).
Is this waste from a CERCLA cleanup site?	OV OU-
Waste determination was made by: Testing Generator	Yes O No
(Attach analytical, MSDS, or other supporting documentation u	Knowledge MSDS Sample Other
Does the Waste have any of the following characteristics?	
	Yes (if yes check all that apply) No
	Chelating Agent Lachrymator
Explosive Shock Sensitive Polymerizer	Pyrophoric Inhalation Hazard, Zone
C. GENERAL CHARACTERISTICS:	
Color: Clear Physical state @ 70 F Phase	es BTU/lb pH
Odor: 100 % liquid aerosol osingle	
None % solid powder O double	
O Mild	
Strong % debris how m	
	39 F <u>O</u> 140 to 200 F <u>O</u> >200 F <u>O</u> None
Boiling Point N/A Specific Gravity: N/A Total Halogens: <1	
D. CHEMICAL COMPOSITION: Total of Maximum concentra	ation must be Sor = to 4009/
0 "" 1	
PRODUCT CONTROL CONTRO	Constituents Min% Max% ppm
See attached analysis for constituents	
Does the Waste contain any of the following?	
Metal Pieces: Yes No If yes, Describe Metal	
Nitrocellulose: Yes No Metal Powder or Flak	<u> </u>
Isocyanates: Yes • No Asbestos: (If yes, must	
	be double bagged and wetted) Yes O No
Reactive cyanide: (If yes, indicate level in ppm) Yes	
Reactive cyanide: (If yes, indicate level in ppm) Reactive sulfide: (If yes, indicate level in ppm) Yes Yes	No Range of reactive cyanide Range of reactive sulfide
Reactive cyanide: (If yes, indicate level in ppm) Reactive sulfide: (If yes, indicate level in ppm) PCBs: None 0-49 ppm 50-499 ppm 500+ ppi	No Range of reactive cyanide
Reactive cyanide: (If yes, indicate level in ppm) Reactive sulfide: (If yes, indicate level in ppm) Yes Yes	No Range of reactive cyanide Range of reactive sulfide
Reactive cyanide: (If yes, indicate level in ppm) Reactive sulfide: (If yes, indicate level in ppm) PCBs: None 0-49 ppm 50-499 ppm 500+ ppi	No Range of reactive cyanide No Range of reactive sulfide m (If waste contains PCBs, certification form is required) Yes No
Reactive cyanide: (If yes, indicate level in ppm) Reactive sulfide: (If yes, indicate level in ppm) PCBs: None 0-49 ppm 50-499 ppm 500+ ppl Does the waste contain Benzene? If yes, check all SIC codes that cover operations at your facility	No Range of reactive cyanide No Range of reactive sulfide m (If waste contains PCBs, certification form is required) Yes No Yes No
Reactive cyanide: (If yes, indicate level in ppm) Reactive sulfide: (If yes, indicate level in ppm) PCBs: None 0-49 ppm 50-499 ppm 500+ ppi Does the waste contain Benzene?	No Range of reactive cyanide No Range of reactive sulfide m (If waste contains PCBs, certification form is required) Yes ○ No Yes ○ No 2835 2836 2836 2841 2842 2843 2844 2851 2861

	eams being r	nanaged throu	igh United's was	stewater treatm	ent operations	s only:	ofile #	
Phases: Oil		Water	% Interfa			% DNAI	PL %	
Petroleum	Suspected	Actual	Aqueous	Suspected	Actual	Aqueous	Suspected	Actual
Phase	Level	Level	Phase	Level	Level	Phase	Level	Level
РСВ			Copper			Cobalt		
Halogens			Cadmium	The state of the s		Mercury		
Solvents			Chromium			Arsenic		
Arsenic			Lead			Barium		
Cadmium			Nickel	*****		Sulfides		
Chromium			Silver			Cyanides		
_ead			Zinc			Phenols	***************************************	
		3,000	COD			Glycols		
-			Iron			Selenium	11.4	
ist Specific So	lvents:	See at	tached as	alinis	79- 3887			
OTHERN	MOTE OFF	EAN INFORM						
		EAM INFORM						0
		per 40CFR PA		•			\mathcal{L}^{Y}	es 风 No
			exceed 1,000 p				\mathcal{L}^{Y}	es 💢 No
			ated Constituen				\mathcal{Q}_{Y}	es 💢 No
			mption that this					es 💟 No
s the Waste s	subject to RC	RA 40 CFR S	Subpart CC cont	rols (Are Volati	le Organic Coi	mpounds >500pp		es 💽 No
			Class II ozone-de					es 💽 No
			als identified in		5?		<u>O</u> Y	es 💽 No
			Continuation Pag					
			of Interest listed					_
of Homelan	d Security)?	If yes please	list in Additional	Information or	Continuation	Page.	<u>O</u> Y	es 🧿 No
F. RCRA CH	APACTEDI	ZATION:						
			efined in 40 CFF	2 261 22			O v	- O N
Is this a USEr				(201.3?				es V No
)1-D043): D019,	D000 D010			Q Y	es O No
r lease list all	Characteris	iic codes (Doc	71-D043). D019,	D029, D040				
Does the wast	e contain I II	Cs above tre	atment standard	te lovole? (40 C	ED 260 40 20	20.7\	A V	No O No
			endix I - Underlyi			00.7)	\mathcal{Q}^{n}	es O No
Please list any				ing mazardous	Constituents			
Please list any								
Please list any								
r rougo not arr	otato regule	ated codes. N						1000
G. SHIPPING	S VOLUME	& FREQUENC	CY:	9,000				
Bulk Liqui		William Committee Committe	rovimataly have	manu anllana?		ulk Solids(roll off		721.2
	d (tanker)	-/- 3,000 gal. App	roximately now	many gallons?		dik Solids(1011-011	box, vacuum bo	ox, etc)
Cubic Yar	d Boxes	Totes	size in	gallons		lastic	box, vacuum bo	ox, etc)
Cubic Yar	d Boxes		size in				box, vacuum bo	ox, etc)
Cubic Yar	d Boxes Other If o	Totes	size in describe:	gallons			d	
Cubic Yar Skid Drums (d Boxes Other <i>If c</i> Specify size)	Totes other , please c 8555 [size in describe: 30 15	gallons 5 Metal	Metal F	Plastic Fiberboard	d	
Cubic Yar Skid Drums (3) Is waste a cor	d Boxes Other If of Specify size) onbination page	Totes_ other, please of 8555 [okage (e.g. Dr	size in describe: 30 15 15 um with inner co	gallons 5 Metal	Metal F	Plastic Fiberboard f consumer produ	d	es O No
Cubic Yar Skid Drums (3 Is waste a cor Shipping Freq	d Boxes Other If of Specify size) onbination pacuency: Nu	Totes_other, please of the ple	size in describe: 30 15 15 um with inner co	gallons 5 Metal ontainers or ski	Metal F	Plastic Fiberboard f consumer produ	d ucts) OY	
Cubic Yar Skid Drums (3) Is waste a cor Shipping Freq H. DOT SHIP	of Boxes Other If of Specify size) orbination pacuency: Nu	Totes_ other, please of8555 [ckage (e.g. Dr mber of Units	size in describe: 30 15 1 um with inner co	gallons 5 Metal ontainers or ski Month	Metal F Plastic d with cases o Quarter	Plastic Fiberboard f consumer produ	d octs) One time	es O No
Cubic Yar Skid Drums (Subject of the Company of the	of Boxes Other If of Specify size) orbination pacturency: Nu PING INFOR Department of	Totes_ other, please of the pl	size in describe: 30 15 1 um with inner co	gallons 5 Metal ontainers or ski Month azardous Mater	Metal F Plastic d with cases o Quarter ial?	Elastic Fiberboard f consumer produ Year	d octs) One time	
Cubic Yar Skid Drums (Subject of the Company of the	of Boxes Other If of Specify size) orbination pacturency: Nu PING INFOR Department of	Totes_ other, please of the pl	size in describe: 30 15 1 um with inner co	gallons 5 Metal ontainers or ski Month azardous Mater	Metal F Plastic d with cases o Quarter ial?	Elastic Fiberboard f consumer produ Year	d octs) One time	es O No
Cubic Yar Skid Drums (Shipping Freq H. DOT SHIP Is this a U.S. I Shipping Nam	of Boxes Other If of Specify size) Inbination page uency: Nu PING INFOR Department of e per 49 CF	Totes_ other, please of the pl	size in describe: 30 15 0 um with inner co Per 1 ion (USDOT) Hazardous Materia	gallons	Metal F Plastic d with cases o Quarter ial? dous waste liquid, n.o	Fiberboan f consumer produ Year	d ucts) One time Other One time	es O No
Cubic Yar Skid Drums (Standard Shipping Frequent H. DOT SHIP) Is this a U.S. If Shipping Name Hazard Class	of Boxes Other If of Specify size) Inbination particular particular properties of the period of Division: Other If of Specify size) Inbination particular properties of Specify size of the period of Specify size of Specify	Totes_ other, please of the pl	size in describe: 30 15 1 um with inner co	gallons 5 Metal ontainers or ski Month azardous Mater	Metal F Plastic d with cases o Quarter ial? dous waste liquid, n.o	Fiberboan f consumer produ	d yets) One time	es O No
Cubic Yar Skid Drums (Shipping Freq H. DOT SHIP Is this a U.S. I Shipping Nam Hazard Class Technical des	of Boxes Other If of Specify size) Inbination particular of Specify size) Inbination particular of Specify size PING INFOR Department of e per 49 CFI or Division: criptors if recommendation	Totes_other, please of the please of Units Common of Units Commo	size in describe: 30 15 1 um with inner co Per don (USDOT) Hazardous Materia	gallons	Metal F Plastic d with cases o Quarter ial? dous waste liquid, n.o	Fiberboard Fiberboard Foonsumer produced Figure 1.5. Solution Plastic Fiberboard	other One time Other One time Ye	es No
Cubic Yar Skid Drums (Shipping Freq H. DOT SHIP Is this a U.S. I Shipping Nam Hazard Class Technical des	of Boxes Other If of Specify size) Inbination particular of Specify size) Inbination particular of Specify size PING INFOR Department of e per 49 CFI or Division: criptors if recommendation	Totes_other, please of the please of Units Common of Units Commo	size in describe: 30 15 0 um with inner co Per 1 ion (USDOT) Hazardous Materia	gallons	Metal F Plastic d with cases o Quarter ial? dous waste liquid, n.o	Fiberboard Fiberboard Foonsumer produced Figure 1.5. Solution Plastic Fiberboard	d yets) One time	es No
Cubic Yar Skid Drums (Shipping Freq H. DOT SHIP Is this a U.S. I Shipping Nam Hazard Class Technical des DOT Special I	of Boxes Other If of Specify size) Inbination parauency: Nu PING INFOR Department of e per 49 CFI or Division: criptors if recovering that me	Totes_other, please of8555ckage (e.g. Dr mber of Units	size in describe: 30 15 1 um with inner co Per don (USDOT) Hazardous Materia	gallons	Metal F Plastic d with cases o Quarter ial? dous waste liquid, n.o	Fiberboard Fiberboard Foonsumer produced Figure 1.5. Solution Plastic Fiberboard	other One time Other One time Ye	es No
Cubic Yar Skid Drums (Shipping Freq H. DOT SHIP Is this a U.S. I Shipping Nam Hazard Class Technical des DOT Special I	of Boxes Other If of Specify size) Inbination parameters: Nu PING INFOR Department of the per 49 CFI or Division: criptors if recovering that more of the per 49 CFI OR CERTIF	Totes_other, please of the ple	size in describe: 30 15 15 um with inner continuous Material (NA #: 3082 ude copy of periodescribe)	gallons	Metal F Plastic d with cases o Quarter ial? dous waste liquid, n.c	Fiberboand Fiberboand	other One time Other One time Ye required: D040 - 10 on Hazard: Zone	es No
Cubic Yar Skid Drums (Standard Class Technical des DOT Special F GENERAT Lagree by affixing m properties exist and	other If of Specify size) Inbination page uency: Nu PING INFOR Department of e per 49 CFI or Division: criptors if recovermit that many authorized signation of signating that all known or signatin	Totes_ other, please of the pl	size in describe: 30 15 15 um with inner continue with inner cont	gallons	Metal F Plastic d with cases o Quarter ial? dous waste liquid, n.o	Fiberboand Fiberboand Footsumer production of the Pear Fiberboand	other One time Other One time Ye required: D040 - 11 on Hazard: Zone	es No
Cubic Yar Skid Drums (Shipping Freq H. DOT SHIP Is this a U.S. I Shipping Nam Hazard Class Technical des DOT Special I I GENERAT I agree by affixing m properties exist and above and give Trace	other If of Specify size) Inbination page uency: Nu PING INFOR Department of e per 49 CFI or Division: criptors if recovermit that many authorized signation of signating that all known or signatin	Totes_ other, please of the pl	size in describe: 30 15 15 um with inner continue with inner continue per size in describe. 1 Per size in describe.	gallons	Metal F Plastic d with cases o Quarter ial? dous waste liquid, n.d up: I II is complete and accomple provided to T an authorized agent of	Fiberboard Fiberboard Footsumer production Fiberboard Footsumer production Footsumer production Footsumer Footsumer Footsumer Footsumer Fiberboard Footsumer Fiberboard Footsumer Fiberboard Fiberboar	other One time Other One time Ye required: D040 - 11 on Hazard: Zone	es No
Cubic Yar Skid Drums (Standard Shipping Frequency Shipping Frequency Shipping Shipping Name Shipping	other If of Specify size) Inbination page uency: Nu PING INFOR Department of e per 49 CFI or Division: criptors if recovermit that many authorized signation of signating that all known or signatin	Totes_ other, please of the pl	size in describe: 30 15 15 um with inner continue with inner cont	gallons	Metal F Plastic d with cases o Quarter ial? dous waste liquid, n.o	Fiberboand Fiberboand For State Fiberboand For State Fiberboand For State Fiberboand Fib	other One time Other One time Ye required: D040 - 11 on Hazard: Zone	es No
Cubic Yar Skid Drums (Shipping Freq H. DOT SHIP Is this a U.S. IS Shipping Nam Hazard Class Technical des DOT Special IS I. GENERAT I agree by affixing m properties exist and above and give Trace Name(print):	other If of Specify size) Inbination page uency: Nu PING INFOR Department of e per 49 CFI or Division: criptors if recovermit that many authorized signation of signating that all known or signatin	Totes_ other, please of the pl	size in describe: 30 15 15 um with inner continue with inner cont	gallons	Metal F Plastic d with cases o Quarter ial? dous waste liquid, n.d up: I II is complete and accomple provided to T an authorized agent of	Fiberboand Fiberboand For State Plastic Fiberboand For State For S	other One time Other One time Ye required: D040 - 10 on Hazard: Zone ons of characteristics, of the waste material of	es No
Cubic Yar Skid Drums (Second Programs of Shipping Frequency Shipping Frequency Shipping Name (Second Programs of Second Properties exist and S	of Boxes Other If of Specify size) Inbination parameters Other If of Specify size) Inbination parameters Other If of Specify size) Inbination parameters Other Info Info Info Info Info Info Info Info	Totes_other, please of ther, please of the p	size in describe: 30 15 15 um with inner continue with inner cont	gallons	Metal F Plastic d with cases o Quarter ial? dous waste liquid, n.d up: I II is complete and accomple provided to Tan authorized agent of Tit Date	Fiberboand Fiberboand Foonsumer production of the Generator. Figure 1	other One time Other One time Ye required: D040 - 10 on Hazard: Zone ons of characteristics, of the waste material of	es No
Cubic Yar Skid Drums (Second Programs of Shipping Frequency of Shipping Frequency of Shipping Name of Shipping Name of Shipping Name of Shipping Name of Special Formation of Spe	of Boxes Other If of Specify size) Inbination parameters Other If of Specify size) Inbination parameters Other If of Specify size) Inbination parameters Other Info Info Info Info Info Info Info Info	Totes_other, please of ther, please of the p	size in describe: 30 15 15 um with inner continue with inner cont	gallons	Metal F Plastic d with cases o Quarter ial? dous waste liquid, n.d up: I II is complete and accomple provided to Tan authorized agent of Tit Date	Fiberboand Fiberboand Foonsumer production of the Generator. Figure 1	other One time Other One time Ye required: D040 - 10 on Hazard: Zone ons of characteristics, of the waste material of	es No
Cubic Yar Skid Drums (Second Shipping Frequency Shipping Frequency Shipping Frequency Shipping Name Hazard Class Technical destruction DOT Special Form Special F	of Boxes Other If of Specify size) Inbination parameters Other If of Specify size) Inbination parameters Other If of Specify size) Inbination parameters Other Info Info Info Info Info Info Info Info	Totes_other, please of the please indicate of the please o	size in describe: 30 15 1 1	gallons	Metal Plastic d with cases of Quarter ial? dous waste liquid, n.c. is complete and accomplete provided to Tan authorized agent authorized agent being utilized	Fiberboand Fiberboand Foonsumer production of the Generator. Figure 1	other One time Other One time Yes required: D040 - 10 on Hazard: Zone ons of characteristics, of the waste material of the state o	es No
Cubic Yar Skid Drums (Shid Drums (Shid Drums (Shid Drums (Shid Drums (Shid Double of Shid Double of Shid Double of Shid Double of Shid Double of Special Formation of Shid Double of Special Formation of Shid Double of	Other If of Specify size) Inbination pacturency: Nu PING INFOR Department of the per 49 CFI or Division: criptors if recovering that all known or a sebe permission as season CFI cast Chicago, IN	Totes_other, please of the please indicate of the please o	size in describe: 30 15 1 1	gallons	Metal Plastic d with cases of Quarter ial? dous waste liquid, n.o. I I I I I I I I I I I I I I I I I I	Fiberboand For this Profile	other One time Other One time Yes required: D040 - 10 on Hazard: Zone ons of characteristics, of the waste material of the waste waste material of the waste waste waste wa	es No

TRADEBE TREATMENT AND RECYCLING, LLC

|--|

Environmental Services, LLC

GENERATOR WASTE STREAM PROFILE ADDITIONAL INFORMATION SHEET PLEASE PRINT IN INK OR TYPE

O' Address (if different from cons		ASETMINI	INK OK TIPE	* * * * * * * * * * * * * * * * * * * *	
Site Address (if different from gener					
Site Name (if different from generator):					
Pick-up Address: 90 Bay Spring Avenue					
Additional Location Identification:					
City: Barrington State: RI	Zip: 02806				
Contact Name:					
Contact Phone:					
Contact Fax:					
Generator USEPA/Federal ID # (if diffe	erent than genera	ators):			
Facility Restrictions (if any):				_	
D WASTE STREAM INCOMMENS					
B. WASTE STREAM INFORMATION					
Exemption: The waste described on the	his profile sheet	is exempt/e	xcluded from RCRA	regulation under:	
(Cite regulation exempting waste from	n RCRA)				
D. CHEMICAL COMPOSITION COM	T - MOITALIAIT	otal of May	imum concentratio	n must be be as a	- 4000/
Constituents	Min% Max%		Constituents	n must be > or = 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ppm	Constituents		Min% Max% ppm
See attached anelys					
		8 3			
			Tau-		
G. R.C.R.A. CHARACTERIZATION	CONTINUATION	N.	***		
G. N.C.N.A. CHARACTERIZATION	CONTINUATIO	N:			
Additional abarractaristic and a (DOO4	D040)-16				
Additional characteristic codes (D001-	-D043): If waste	carries a ch	aracteristic code, ple	ease check all appl	icable Underlying
Hazardous Constituents in Appendix I	: <u>NH</u>				
	e nem			***	
List additional F or K codes:	M				
			_		
List additional U or P codes:					
NA					

A LEW LOCAL DESIGNATION OF THE PROPERTY OF THE	0.10				
Additional State codes if required:	NA				
ADDITIONAL INCORMATION					
ADDITIONAL INFORMATION					
(Use this space to include any other in	nformation about	t this waste)			
- MA		9.1	X (1)		

	TER ANALY						ofile #	
			ugh United's wa				21	
Phases: O		Water	% Interfa		Sediments	% DNAI		
Petroleum	Suspected	Actual	Aqueous	Suspected	Actual	Aqueous	Suspected	Actual
Phase PCB	Level	Level	Phase	Level	Level	Phase	Level	Level
			Copper			Cobalt		
Halogens Solvents			Cadmium Chromium			Mercury		
						Arsenic	· · · · · · · · · · · · · · · · · · ·	
Arsenic Cadmium			Lead Nickel			Barium		
Chromium			Silver	**··		Sulfides		
Lead	- 2.300	HK III	Zinc			Cyanides Phenols		
Leau	_		COD			Glycols		
		**-	Iron			Selenium	TWO CONTROL OF THE PARTY OF THE	
List Specific S	Solvents:	See a-		nalinis		Selenium		
ziot opositio c		Jee a	Maine a.	Tay A				
E. OTHER	WASTE STR	EAM INFORM	MATION:					
Is this waste	a USED OIL	per 40CFR Pa	ART 279?				QY	es 💽 No
If Yes, do	es the total h	alogen conten	t exceed 1,000	ppm?			TO _Y	es O No
			nated Constituer		e oil?		TO _Y	es O No
			imption that this			te?	TO Y	es O No
						mpounds >500pp		es No
			Class II ozone-d					es No
		5	cals identified in					es No
If yes list in	n Additional II	nformation on	Continuation Pa	ige.				
			of Interest listed		27 Appendix A	(Department		
			list in Additiona				OY	es 💽 No
	HARACTER							
			efined in 40 CFF	R 261.3?			<u>⊚</u>	es No
		per 40 CFR pa					\mathbf{Q}^{Y}	es 💽 No
Please list a	ny characteris	stic codes (D0	01-D043): D019,	, D029, D040				
					- water			
			eatment standard			68.7)	\mathbf{Q}^{Y}	es 💽 No
			endix I - Underly	ring Hazardous	Constituents			
		"F" or "K" cod)III 200
		"U" or "P" cod						
Please list a	ny state regul	ated codes: N	I/A		~~~			
G SHIPPI	IG VOLUME	& FREQUEN	CV.					
			proximately how	many gallone?		fulk Solido/roll off	hov vocuum h	ov ota)
		Totes		gallons		Bulk Solids(roll-off Plastic	box, vacuum b	ox, etc)
		other, please		i galloris	ivietaiF	lastic		
				5 Metal	Plastic	Fiberboar	d	
						f consumer produ		es 💽 No
Shipping Fre		umber of Units		Month	Quarter		Other One time	es O No
Cpping 1 10	equolity: 110	arribor of office	- 101	Worter	Quarter	T real [1]	Other one line	
H. DOT SHI	PPING INFO	RMATION	24.5.5				***************************************	
Is this a U.S.	. Department	of Transportat	tion (USDOT) Ha	azardous Mate	rial?		⊙ Y	es O No
Shipping Na	me per 49 CF	R 172.101 Ha	zardous Materia	als Table: Haza	rdous waste liquid, n.	o.s.		
				-			****	
Hazard Clas	s or Division:	9 UN	/NA #: 3082	Packing Gro	up:O I O I	I III ERG#:		
Technical de	escriptors if re		, i	,	1 4	~	required: D040 - 1	00 lbs.
		STATE OF THE PARTY	lude copy of per	rmit): N/A			on Hazard: Zon	
	TOR CERTIF							
I agree by affixing	my authorized sign	ature that I hereby o	ertify that the above an	d attached description	n is complete and acc	curate and that no omission	ons of characteristics,	composition or
above and give Tr	adebe permission :	suspected hazards l and consent to make	have been disclosed. I amendments and corr	also certify that each ections and that I am	sample provided to an authorized agent	radebe is representative of the Generator.	of the waste material	described
Name(print):		TACH	Cutli	1	Tit	1/1	nalles	21
3.4. Topic - 2.4.		AGO	1			- (ndugge	/_
Signature:		- DEA	cutt		Da	te: + K/119		
INTERNAL I	JSE ONLY:	Pléase indicat	te which Tradeb	e Facility(s) are	being utilized	for this Profile		
					- Aug			
	, East Chicago, I		LI TIR of TN	I, LLC, Millington,		ed Oil Recovery, Inc I		
	•	g Bridgeport, CT	- 7 N	thhora 844		ed Oil Recovery, Inc I	newington, NH	
TT ECC STOU	ghton, MA		LL Zecco Nor	thboro, MA	Nor	ite Corp Cohoes, NY		

APPENDIX H

Photo Documentation

1) AOC-1: UST Area. View of UST and associated parts.

3) AOC-2: RCA-1 Excavation.

2) AOC-1: UST Area. View of final extent of UST excavation.

4) AOC-3: RCA-3 Excavation.

5) AOC-4: Waste Disposal Area No. 1. View of debris observed in Waste Disposal Area No. 1.

7) AOC-5: Cistern.

6) AOC-4: Waste Disposal Area No. 1. View of debris observed in Waste Disposal Area No. 1.

8) AOC-5: Cistern. View of Cistern excavation in progress.

9) AOC-6: Drum Storage Area/Benzol House. View of debris in AOC-6 during excavation activities.

11) AOC-7: Waste Disposal Area No. 2. View of piping running through Waste Disposal Area No. 2.

10) AOC-6: Drum Storage Area/Benzol House. View of AOC-6 excavation in progress.

12) AOC-7: Waste Disposal Area No. 2. View of debris observed inWaste Disposal Area No.2.

13) AOC-8: Acid Storage Tanks. View of concrete tank cradles in AOC-8.

15) AOC-9: Solvent Storage Tanks. View of concrete tank cradles in AOC-9.

14) AOC-8: Acid Storage Tanks. View of test pitting activities in the vicinity of the Acid Storage Tanks.

16) AOC-9: Solvent Storage Tanks. View of test pitting activities in the vicinity of the Acid Storage Tanks.

17) AOC-10: Coating Room. View of concrete tank cradles in the vicinity of the Coating Room.

19) AOC-11: Acetone Tank. View of test pitting activities in AOC-11.

18) AOC-10: Coating Room. View of test pitting activities in AOC-10.

20) AOC-11: Acetone Tank. View of test pitting activities in AOC-11.

APPENDIX I

Additional Limitations

ADDITIONAL LIMITATIONS

- 1. The observations described in this Report were made under the conditions stated herein. The conclusions presented in the Report are based solely upon the services described therein and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by Client. The work described in the Report was carried out in accordance with our Proposal and Associated Statement of Standard Terms and Conditions.
- 2. In preparing the Report, Resource Controls has relied on certain information provided by state and local officials and other parties referenced therein and on information contained in the files of state and/or local agencies available to Resource Controls at the time of the site evaluation. Although there may have been some degree of overlap in the information provided by the various sources, Resource Controls did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this site assessment.
- 3. Observations and explorations were made of the site as indicated within the Report. Where access to portions of the site were unavailable or limited, Resource Controls renders no opinion as to the presence of hazardous materials, asbestos, lead paint or oil, or to the presence of indirect evidence relating to the same, in that portion of the site or structure. In addition, Resource Controls renders no opinion as to the presence of hazardous materials, lead paint, oil or asbestos or to the presence of indirect evidence relating to hazardous materials, oil, lead paint or asbestos, where direct observation of the interior walls, floor, or ceiling of a structure on a site was obstructed by objects or coverings on or over these structures.
- 4. The purpose of this Report was to assess the physical and chemical characteristics of the subject site with respect to the presence in the environment of hazardous materials, lead paint, asbestos or oil. No specific attempt was made to check the regulatory compliance of present or past owners or operators of the site with federal, state or local laws and regulations, environmental or otherwise.
- 5. Except as noted within the text of this Report, no quantitative laboratory testing was performed as part of this evaluation. Where such analyses have been conducted by an outside laboratory, Resource Controls has relied upon the data provided and has not conducted an independent third party evaluation of the reliability of this data.
- 6. Chemical analyses performed for specific parameters during the course of studies have been used, in part, as a basis for determining the areas of environmental concern. Additional chemical constituents not searched for may be present at the site. Defined areas of environmental concern do not cover the potential additional constituents.
- 7. Governmental agencies' interpretations, requirements and enforcement policies may impact the type and scope of any site remediation required for a site. In addition, statutes, rules and regulations may be legislatively changed and inter-agency and intra-agency policies may be changed from present practice. If such changes occur, it may be necessary to re-evaluate their impact on the scope of any site remediation required.
- 8. Any water level readings made in the test pits, borings and/or wells and were made under the conditions stated on the logs. This data may have been reviewed and interpretations have been made in the text of this Report. However, it must be noted that fluctuations in the level of groundwater may occur due to variations in rainfall, temperature and other factors different from those prevailing at the time measurements were made.
- 9. Any and all cost estimates or opinions presented are based on Resource Controls opinion of most probable costs and are based on information available at the time of the estimate. Such estimates may vary from actual contract values based on many market and engineering variables beyond the control of Resource Controls. No warranty or guarantee is offered on the accuracy or validity of the estimates provided.