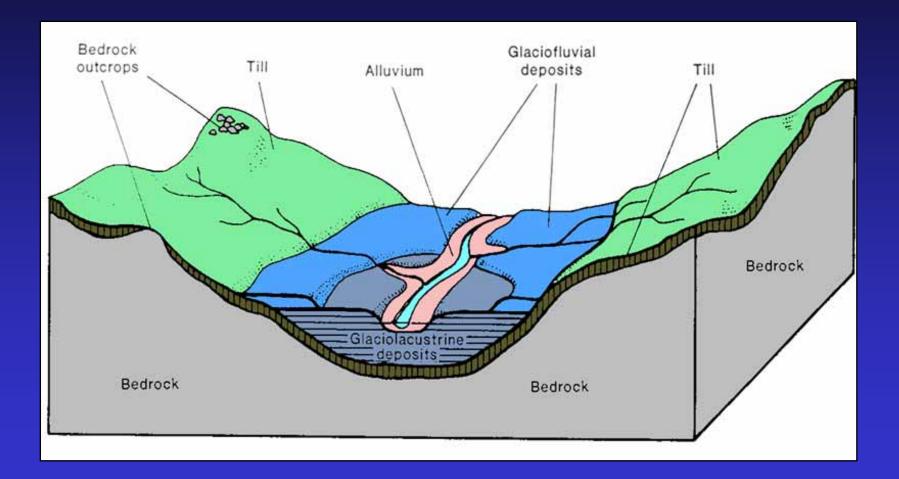
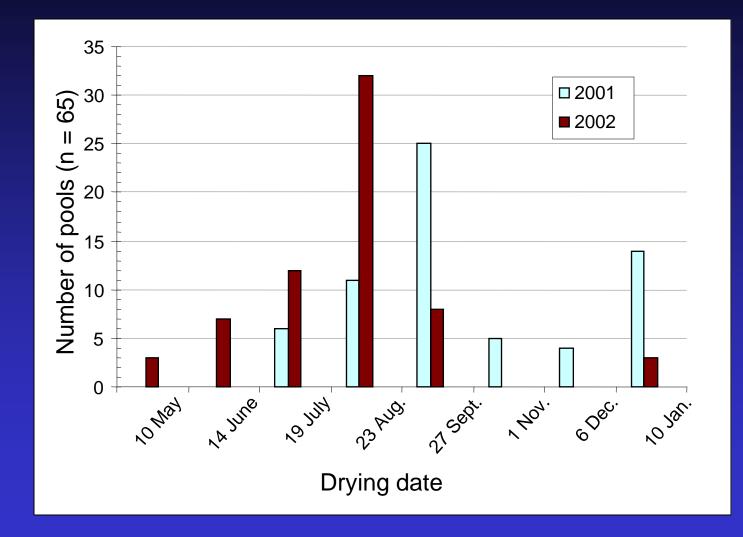
Introduction to Vernal Pools and Pool-Breeding Amphibians

Frank Golet University of Rhode Island Department of Natural Resources Science

Vernal Pools: What are they?

- Depressions in the land
- Surface water for part of the year
- Fill between late fall and spring
- Dry up during summer or early fall
- Located in upland or wetland
- Sometimes referred to as "seasonal ponds"


Vernal Pools: Size and depth


Most $< \frac{1}{2}$ -acre, < 4 feet deep at high water

Vernal Pools: Topographic and geologic setting

Vernal Pools: Hydroperiod

Vernal Pools: Vegetation

Shrubs

Litter or moss

Vernal Pools: Wildlife

Aquatic invertebrates

Amphibians

Waterfowl

Songbirds

Reptiles

Mammals

Seasonal drying excludes fish

Vernal Pool Amphibians in RI

Wood frog

Spotted salamander

Marbled salamander

Spring peeper

Gray treefrog

Pickerel frog

American toad

Green frog

American bullfrog

Red-spotted newt

Pool-breeding Amphibian Life Cycle (e.g., Wood Frog)

(forest)

Adults

Metamorphs

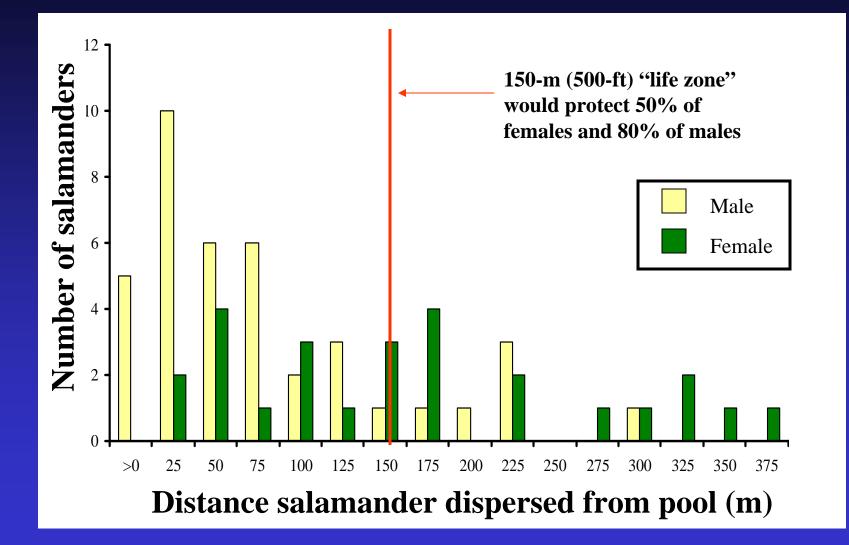
Conservation of Pool-breeding Amphibians

Vernal pool

Forested upland

Vulnerability of Vernal Pools and their Fauna

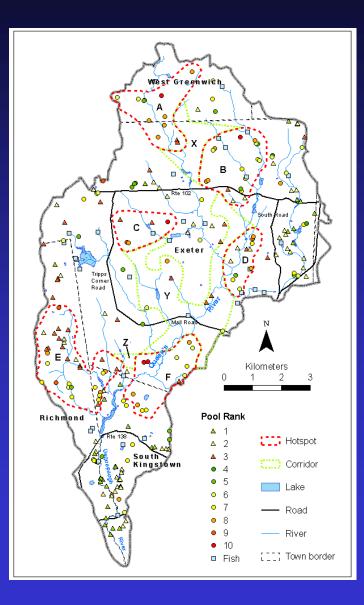
- Worldwide amphibian declines
- Main reason: habitat loss and fragmentation
- Vulnerability of pools due to:
 - small size
 - inconspicuous when dry
- Loss of pools and upland habitats critical
- Urban sprawl prime threat in RI



Limitations of Wetland Regulations

- Laws pertain to wetlands, upland edge
- RI regulations protect vernal pools as "ponds," "vegetated wetlands," or "special aquatic sites"
- Protection of upland habitat minimal
- Amphibians need extensive forest
- Regulations not designed to meet that need

An Example: Spotted Salamander Dispersal



Ē

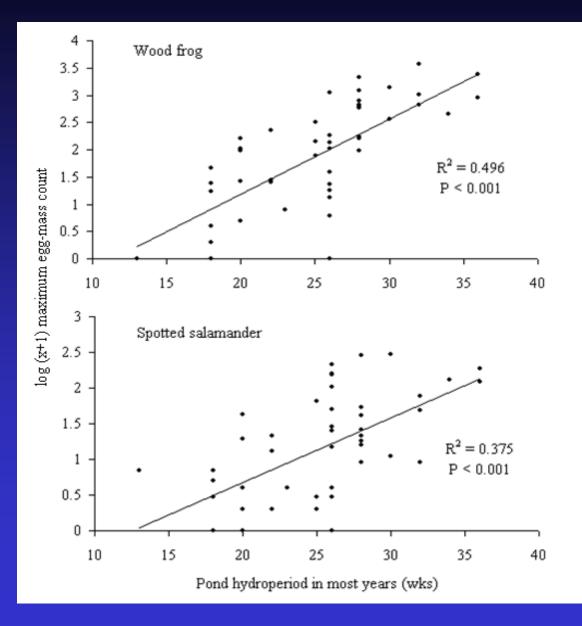
A Non-regulatory Approach

• One alternative solution:

- identify and rank all pools in watershed for amphibian diversity and productivity
- target areas with high-ranking pools and extensive forests for acquisition, easements
- Approach used in Queen's watershed
- Questions:
 - How to assess individual pools?
 - What key characteristics to look for?

Research on Key Habitat Features

- Last 10 years NRS identified features influencing presence, abundance, diversity of amphibians in vernal pools
- Key features:
 - internal characteristics of pool
 - characteristics of surrounding landscape


Central Role of Hydroperiod (Hp)

- Hp: length of time pool holds water (no. weeks after 1 March)
- Hp determines which amphibians can breed successfully; each species has minimum required Hp
- Paton & Crouch (2002): 95% of metamorphs out of pool by:

mid-July	21 wks
mid-Aug	24 wks
early Sept	27 wks
mid-Sept	29 wks
late Sept	30 wks
early Oct	31 wks
	mid-Aug early Sept mid-Sept late Sept

- Premature drying \rightarrow death of larvae
- Pools with longer hydroperiods can support more species

Hydroperiod and Amphibian Productivity

Creation of Hydroperiod Classes

- So Hp affects amphibian diversity and productivity, but it may vary widely among years
- To simplify habitat assessment, we used Pawcatuck Hp and egg mass data to develop 4 Hp classes that described a pool's Hp *in most years* and reflected its habitat value for amphibians:

<u>Class</u>	<u>Hp</u>	Pool drying
1	< 20 wks	by mid-July
2	20-27 wks	mid-July – early Sept
3	28-36 wks	early Sept – early Nov
4	37-44 wks	after early Nov

- Hp class useful for predicting pool's potential amphibian diversity and productivity; for example:
 - Class 3 pools have most species, most egg masses
 - Class 1 pools have fewest species, fewest egg masses

Rapid Assessment of Hydroperiod Class

- Hp time-consuming to monitor; is there any way to estimate Hp class quickly?
- Using Pawcatuck data, we created two methods for estimating Hp class based on 1-2 visits
- *Skidds method:* used measurements of pool depth, tree canopy cover, water chemistry, geology, soils
- *Mitchell method:* based on types of plants in deepest zone
- Methods allowed rapid assessment of habitat suitability, based on Hp

Other Key Habitat Features

- Wood frog and spotted salamander egg mass counts positively associated with:
 - pool size
 - pool depth
 - area of upland forest within 1 km (0.6 mi)
- Counts for both species negatively associated with location on alluvium
- Wood frog counts negatively associated with residential development within 1 km

Applying Research Results in the Queen's

- Goal of NRS research
 - to understand vernal pools and their fauna better
 - to contribute to more effective conservation
- Queen's project: watershed-scale planning for vernal pool conservation
- Funding: RIDEM Office of Water Resources via EPA Non-regulatory Wetland Pilot Demonstration Grant
- Project team:
 - Jon Mitchell, Research Associate
 - Mike Narcisi, Field/Lab Assistant
 - Peter Paton, Professor
 - Dennis Skidds, NPS Data Manager
 - Frank Golet, Professor

Photography Credits

This presentation features photos by:

- Frank Golet,
- Scott Egan,
- Mike Narcissi, and
- Bob Deegan.

