Design Example Residential Subdivision

Rhode Island Stormwater Design and Installation Standards Manual - December 2010 Public Training March 22, 2010

Richard Claytor, P.E. Horsley Witten Group, Inc. 508-833-6600

Horsley Witten Group, Inc.

Appendix D: Site Specific Design Examples

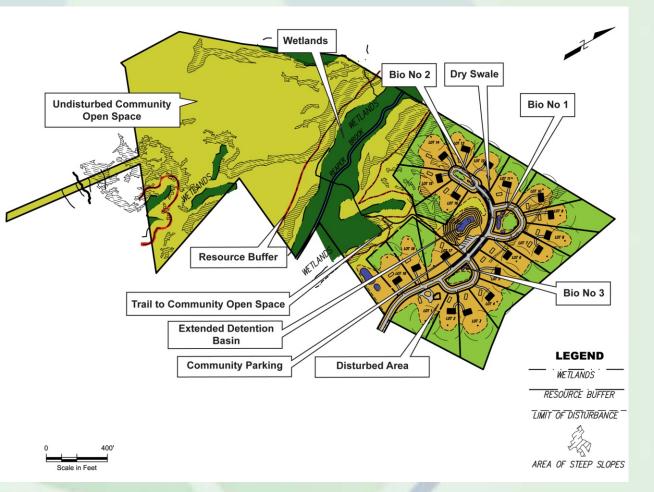
Design Example #1 Reaper Brook Estates

- Hypothetical Location: Smithfield, RI, discharge to Reaper Brook (1st-order stream) near the Stillwater River, a Warm Water fishery;
- Total site area, (A) = 80.5 acres; two study points at two outfalls;
- Site Soils Type: 100% HSG "B"; Recharge Factor, F = 0.35. Loamy-sand soils with average depth to groundwater ~ 10.0 feet.

Original Design Plan

The Original Plan results:
19 single-family lots (min lot size = 2.75 ac, avg. lot size = 3.32 ac);
28.0 acres of disturbed area;

- 15.38 acres of open space (outside of lot areas);
- 3,200 linear feet of street;
- 5.51 acres of
- impervious cover (roads, houses, and driveways).


LID Site Planning and Design

Avoid Impacts

- Maximize undisturbed open space;
- Maximize protection of waterways and wetlands;
- Minimize clearing and grading/soil compaction;
- Reduce Impacts
 - Provide low maintenance vegetation;
 - Minimize impervious surfaces;
 - Maximize runoff time of travel (t_c);

Conservation Subdivision Design Plan

- 19 single family lots (min lot size = 1.1 ac and avg lot size =1.37 acres);
- 20.3 acres of disturbed area;
- 51.7 acres of open space (outside of lot areas);
- 2,500 linear feet of street;
- 3.83 acres of impervious cover (road, houses,

driveways, and community parking lot).

	1. Strategies to Avoid the Impacts							
	A.	. Preservation of Undisturbed Areas						
		Not Applied or N/A. Use space below to explain why:						
l		Select from the following list:						
l		Limits of disturbance clearly marked on all construction plans.						
		 Mapped soils by Hydrologic Soil Group (HSG). Building envelopes avoid steep slopes, forest stands, riparian corridors, HSG D soils, and floodplains. New lots, to the extent practicable, have been kept out of freshwater and coastal wetland jurisdictional 						
		areas. Important natural areas (i.e., undisturbed forest, riparian corridors, and wetlands) identified and protected with permanent conservation easement.						
		 Percent of natural open space calculation is provided. Other (describe): 						
l		Explain constraints when a strategy is applied and/or proposed alternatives in space below:						
l		Design completely preserves one whole side of the project. Open space is accessed by a						
l		community trail system, steep slopes are avoided except in a few isolated locations, natural						
l		vegetation is preserved in cul-de-sac and evebrow islands.						
┠	В.	Preservation of Buffers and Floodplains						
l		Not Applied or N/A. Use space below to explain why:						
l		Select from the following:						
l		Applicable vegetated buffers of coastal and freshwater wetlands and perennial and intermittent atreams have been preserved, where peecilies						
l		streams have been preserved, where possible. Limits of disturbance included on all construction plans that protect applicable buffers						
l		□ Other (describe):						
l		Explain constraints and/or proposed alternatives in space below:						
l		All lots are located out of wetland and riverbank buffers; limits of disturbance are clearly						
l		marked on all plans.						
┠	C.	Minimized Clearing and Grading						
l		Not Applied or N/A. Use space below to explain why:						
l		Select from the following list:						
		 Site fingerprinting to extent needed for building footprints, construction access and safety (i.e., clearing and grading limited to 15 feet beyond building pad or 5 feet beyond road bed/shoulder). Other (describe): 						
		Explain constraints and/or proposed alternatives in space below:						
		Clearing extends beyond houses to construct OWTS, wells, and grade a minimum yard						
		area for each lot.						
L								

D.	Locating Sites in Less Sensitive Areas Not Applied or N/A. Use space below to explain why:
	 Select from the following list: A site design process, such as conservation development, used to avoid or minimize impacts to sensitive resources such as floodplains, steep slopes, erodible soils, wetlands, hydric soils, surface waters, and their riparian buffers.
	 Development located in areas with least hydrologic value (e.g., soil groups A and B) Development on steep slopes, grading and flattening of ridges has been avoided to the maximum extent practicable. Other (describe):
	Explain constraints and/or proposed alternatives in space below: The project was developed as a CDS. Sensitive areas have been avoided to the maximum extent practicable. Site soils are uniformly HSG B, thus hydrologic value is not a specific
	factor. Site itself consists of very steep slopes, and thus, will require significant grading, but the steepest slopes have been avoided.
E.	Compact Development Not Applied or N/A. Use space below to explain why:
	 Select from the following list: A site design technique (e.g., conservation development) used to concentrate development to preserve as much undisturbed open space as practicable and reduce impervious cover. Reduced setbacks, frontages, and right- of- way widths have been used where practicable. Other (describe):
	Explain constraints and/or proposed alternatives in space below: See response to item D, above. Setbacks all reduced. R/W remains at 50 feet per town requirements.
F.	Work with the Natural Landscape Conditions, Hydrology, and Soils Not Applied or N/A. Use space below to explain why:
	 Select from the following list: Stormwater management system mimics pre-development hydrology to retain and attenuate runoff in upland areas (e.g., cuts and fills limited and BMPs distributed throughout site; trees used for interception and uptake).
	 The post-development time of concentration (t_e) should approximate pre-development t_e. Flow velocity in graded areas as low as practicable to avoid soil erosion (i.e., slope grade and/or length minimized). Velocities shall not exceed velocities in Appendix B, Table B-2. Plans show measures to prevent soil compaction in areas designated for Qualified Pervious Areas
	 (QPAs) for better infiltration. Site designed to locate buildings, roadways and parking to minimize grading (cut and fill quantities) Other (describe):
	Explain constraints and/or proposed alternatives in space below: For the most part, the site has been designed to retain natural features. Flow velocities are as low as possible for graded swales, and t _c as long as possible by draining through bioretention facilities and dry swales. QPAs for disconnected rooftop runoff undisturbed were possible in rear yards. Building and driveways located to avoid steep slopes, and
	street designed to minimize cuts and fills.

. Strategies to Reduce the Impacts								
. Reduce Impervious Cover								
Not Applied or N/A. Use space below to explain why:								
Select from the following list:								
Reduced roadway widths								
Reduced sidewalk area Reduced cul-de-sacs Reduced parking lot area Other (describe):								
Explain constraints and/or proposed alternatives in space below:								
Roads designed with 20 foot paving width; 3-foot shoulders; and swales with 2 foot bottom								
width, 2.5:1 side slopes and 1 foot depth. Cul-de-sacs are looping lanes or eyebrows with								
<u>open islands, sidewalks are not proposed, but pedestrian wood-chip trail connects project to</u>								
undisturbed community open space.								

Stormwater Design Components

• Required Design Criteria;

- Recharge (Re_v);
- Water Quality (WQ_v);
- Channel Protection (Cp_v);
- Overbank Control (Q_p) 10 and 100 Yr Storms;
- Warm water fishery, no downstream hazards;
- Downstream analysis not required (20.3 acres and < 50% impervious)

LID Site Planning and Design

Manage Impacts

- Infiltrate precipitation near the source;
- Disconnect impervious cover; and
- Source controls to minimize or prevent exposure of pollutants

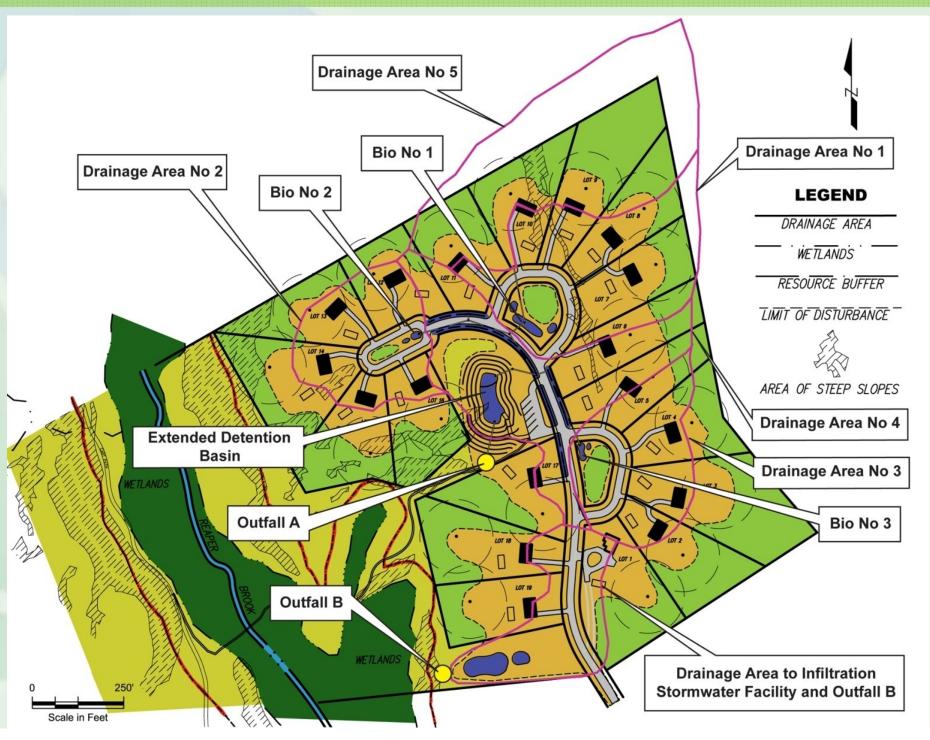
BMP Selection Criteria

- Recharge: (infiltration, filtering, open channels);
- Water Quality: (WVTS, infiltration, filtering, open channels, green roofs);
- Conveyance, Channel Protection and Overbank Flood Protection (WVTS, detention basins, vaults)

Selected BMPs

Recharge:

- Bioretention facilities and dry swale;
- (could have used QPAs for rooftop runoff or dry wells).
- Water Quality:
 - Bioretention facilities and dry swale;
 - (could have used infiltration trenches, WVTS, porous pavement, maybe a sand filter).



Selected BMPs

- Channel Protection and Overbank Flood Protection:
 - Dry Extended Detention Basin (for both Cp_v and Q_P);
 - (could have potentially used a wet basin, WVTS);
 - DA too large for infiltration basin, underground storage not appropriate for residential subdivision.

Drainage Area Map

Base Data Summary

Location: Smithfield, RI, discharging to Reaper Brook (1 st -order stream) near the					
Stillwater River, a Warm Water fishery.					
Total parcel site area, (A) = 80.5 acres; two study points at two outfalls ¹ . Outfall A has a					
post-development drainage area of 20.83 acres, Outfall B has a post-development					
drainage area of 2.33 acres.					
- · · ·	Measured Impervious Area, I = 3.83 acres (3.36 acres at Outfall A; 0.47 acres at Outfall				
B).					
	acto	r E = 0.35 Loamy-sand soils with average			
depth to groundwater ~ 10.0 feet.	Site Soils Type: 100% "B"; Recharge Factor, $F = 0.35$. Loamy-sand soils with average depth to groundwater ~ 10.0 feet				
Summary	/ of H	lydrologic Data ²			
Rainfall Depths					
1-year, 24-hour, Type III	=	3.1 inches			
10-year, 24-hour, Type III	=	5.0 inches			
100-year, 24-hour, Type III	=	8.9 inches			
Post-development Conditions:					
Drainage Area:	=	20.83 acres ¹			
1-year, 24-hour peak discharge	=	10.3 cfs			
1-year, 24-hour runoff volume 10-year, 24-hour peak discharge		0.68" = 1.173 ac-ft = 51,096 ft ³			
		39.4 cfs			
100-year, 24-hour peak discharge	=	105.4 cfs			
Pre-development Conditions:					
Drainage Area	15.3 acres ³				
10-year, 24-hour peak discharge	=	11.1 cfs			
100-year, 24-hour peak discharge	=	44.9 cfs			

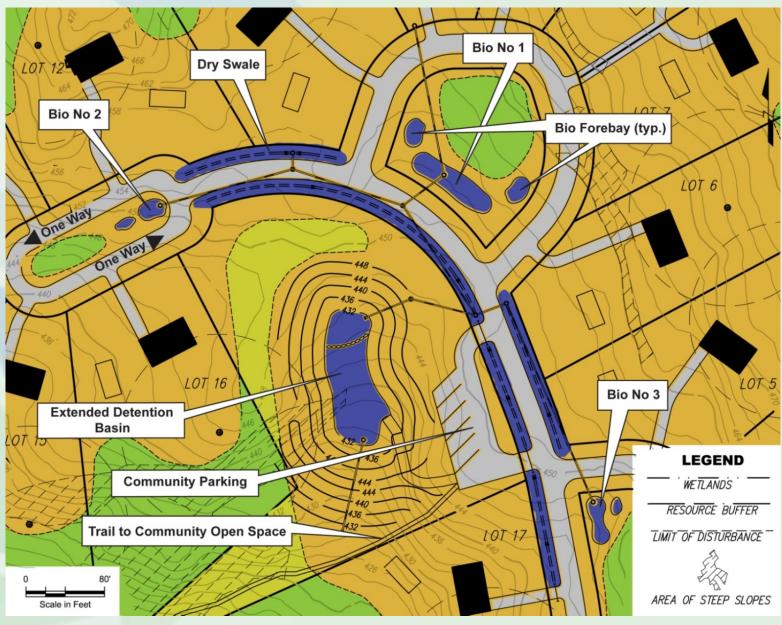
Required Storage Volumes (for Re_v and WQ_v)

Given Base Data in Table D-1 (for Outfall A):

The <u>Recharge Volume</u> (Re_v) is calculated using the equation from Section 3.3.2: For HSG B soils, F = 0.35 and I = 3.36 ac:

• $\text{Re}_v = (1^{"})(F)(I)/12 = (1^{"})(0.35)(3.36 \text{ ac})/12 = .098 \text{ ac-ft} (= 4,269 \text{ ft}^3)$

The <u>Water Quality Volume</u> (WQ_v) is calculated using the equation from Section 3.3.3: For I = 3.36 ac:


• WQ_v = (1.0")(I)/12 = 1.0" (3.36 ac)/12 = 0.28 ac-ft (12,197 ft³)

Check WQ_v > minimum req'd 0.2" for disturbed area (14.4 acres) draining to Outfall A:

 WQ_v min = 0.2"(14.4 ac)/12 = 0.24 ac-ft; which is less than the computed value, so use 0.28 ac-ft

Bioretention, Dry Swales and Detention Basin

Horsley Witten Group, Inc.

Residential bioretention

Size Bioretention Required Surface Area (ft²)

Bioretention facilities are sized in accordance with the treatment requirements in Section 5.5.4 according to the following equation:

 $A_{f} = (WQ_{v}) (d_{f}) / [(k) (h_{f} + d_{f}) (t_{f})]$

Where:

- A_f = Surface area of filter bed (ft²)
- d_f = Filter bed depth (ft)
- k = Coefficient of permeability of filter media (ft/day)
- h_f = Average height of water above filter bed (ft)
- t_f = Design filter bed drain time (days) (2 days is the maximum t_f for bioretention)

Using Bioretention Area No. 2 (Bio 2) as an example, where the Drainage Area = 2.42 acres, and the impervious area = 0.51 acres:

Compute WQv = (1") 0.51 ac/12"/ft = 0.0425 ac-ft = 1,851.1 ft³

For a filter bed depth of 2.5 feet, a k of 1 ft/day, and maximum head of 9" (average head of 4.5") and a 2-day drain time:

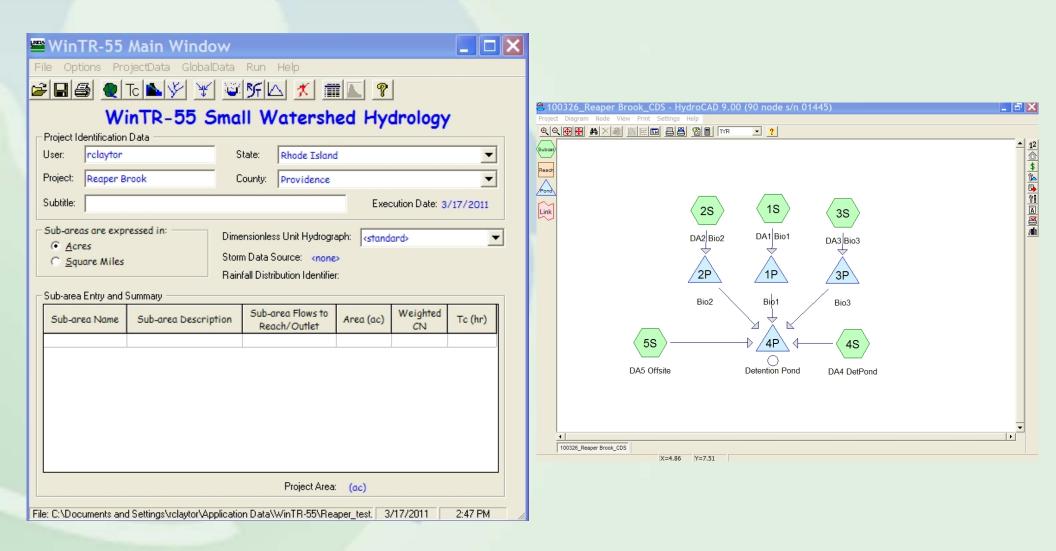
 $A_f = 1,851.1 \text{ ft}^3(2.5 \text{ ft})/[(1.0 \text{ ft/day})(0.375 \text{ ft} + 2.5 \text{ ft})(2 \text{ days})] = 805 \text{ ft}^2$

Set overflow inlet elevation 0.75 ft above bioretention bottom elevation, round-up surface area to 850 ft².

Size Sediment Forebay

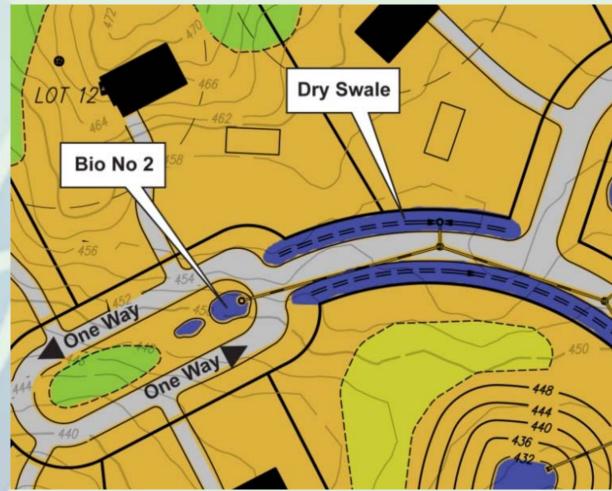
 $\frac{\text{Min Volume} = 25\% \text{ of WQ}_{y}}{= 0.25 (1,851 \text{ ft}^{3}) = 462.8 \text{ ft}^{3}}$ $\frac{\text{Min Surface Area}(A_{s}) = 5,750 (Q)}{\text{Where Q} = \text{discharge from DA} = \%WQ_{y}/86,400 \text{ sec}}$ $= 462.8 \text{ ft}^{3}/86,400 \text{ sec}$ = 0.0054 cfs

 $A_s = 5,750 (.0054) = 30.8 \text{ ft}^2$


Hydrology/Hydraulics (Models and Such)

- NRCS Methods are required for estimating volumes/rates of runoff for treatment and attenuation (rational method ok for conveyance systems).
- Representative variables include:
 - Drainage area
 - Hydrologic soils group
 - Curve Number (CN)
 - Rainfall amount (P)
 - Antecedent Moisture Cond.
 - Orifice equation & coeff.

- Land Use
- Time of concentration (t_c)
- Runoff Coefficient (C)
- Return frequency (Year)
- Rainfall Distribution (Type)
- Weir equation & coeff.


Models and Such

Horsley Witten Group, Inc. 🖠

Model Bioretention Hydraulics (Example for Bio2)

- 1. Compute WQ_f
- Adjust the CN to generate runoff equal to WQ_v:
- $CN = 1000 / [10 + 5P + 10Q 10(Q^2 + 1.25 QP)^{\frac{1}{2}}]$
- 2. Calculate DA runoff volume in
 (inches): Q = (0.0425 ac-ft/2.42
 ac)(12"/ft) = 0.211 inches
- 3. Run HydroCAD with the exfiltration outlet structure with constant velocity = 2.41"/hour. This is the recommended rate for loamy-sand soils

HydroCAD Output (WQ,)

Type III 24-hr WQv Rainfall=1.20" Reaper Brook WQv Prepared by Horsley Witten Group, Inc. HydroCAD® 9.00 s/n 02800 © 2009 HydroCAD Software Solutions LLC

Summary for Pond 2P: Bio2

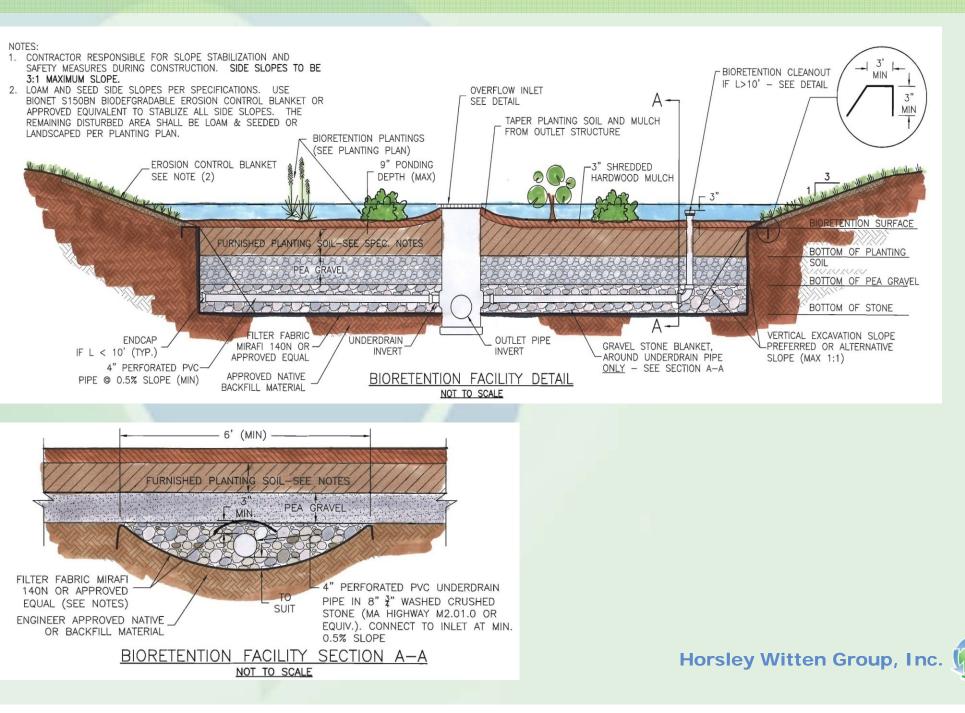
Inflow Area =	2.420 ac,	0.00% Impervious, Inflow D	epth = 0.22" for WQv event
Inflow =	0.50 cfs @	12.10 hrs, Volume=	0.044 af
Outflow =	0.06 cfs @	13.83 hrs, Volume=	0.044 af, Atten= 88%, Lag= 103.9 min
Discarded =	0.06 cfs @	13.83 hrs, Volume=	0.044 af
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 447.63' @ 13.83 hrs Surf.Area= 1,090 sf Storage= 612 cf

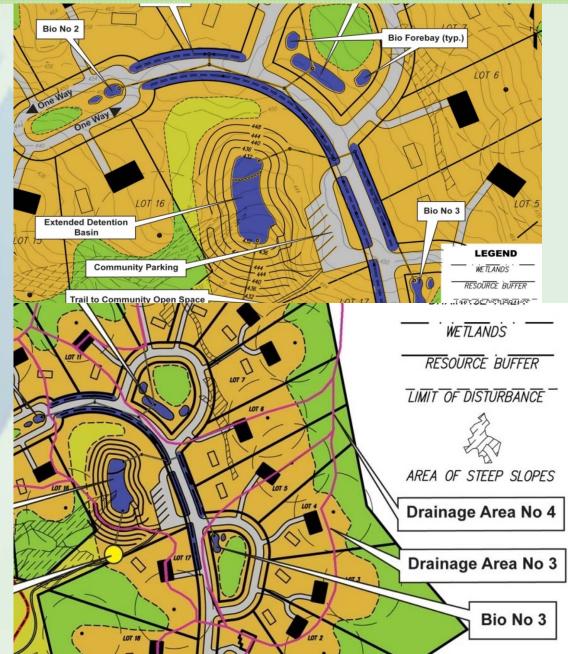
Plug-Flow detention time= 105.0 min calculated for 0.044 af (100% of inflow) Center-of-Mass det. time= 104.9 min (1,000.8 - 895.9)

Volume	Invert	Avail.Storage	e Storage Description		
#1	447.00'	2,516 c	f Custon	n Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio (fee 447.0 447.0 449.0 Device	et) 00 75	(sq-ft) (cu 850 1,135 1,700	nc.Store <u>bic-feet)</u> 744 1,772 ıtlet Device	Cum.Store (cubic-feet) 0 744 2,516	
#1 Discarded 447.00'		447.75' 24 Lir 443.00' 18 L= Ot	.0" x 24.0" nited to we .0" Round 260.0' R itlet Invert=	CP, square edge	Grate C= 0.600 ads e headwall, Ke= 0.500 0154 '/' Cc= 0.900

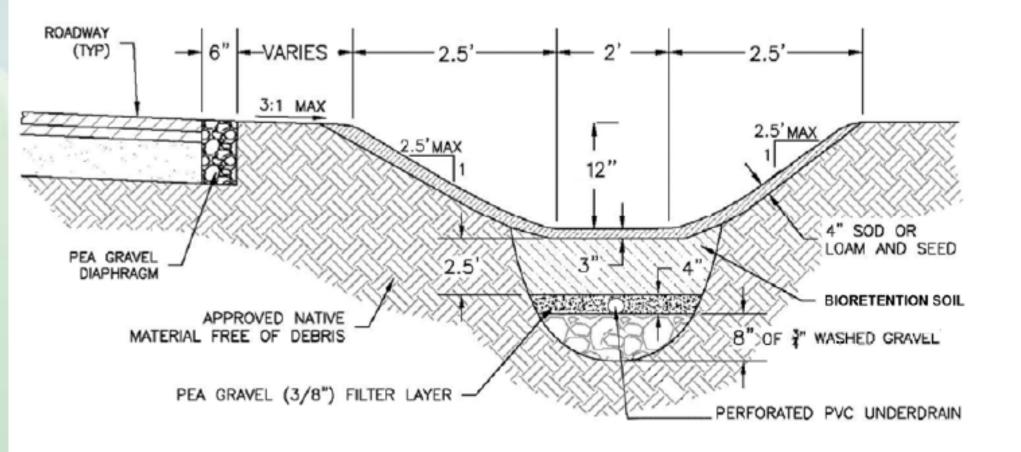
Discarded OutFlow Max=0.06 cfs @ 13.83 hrs HW=447.63' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.06 cfs)


Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=447.00' (Free Discharge) -3=Culvert (Passes 0.00 cfs of 14.46 cfs potential flow) 2=Orifice/Grate (Controls 0.00 cfs)

Printed 1/23/2010


Page 5

Bioretention: Typical Details



Size Dry Swales for Water Quality Treatment

- 1. Compute WQ_v for DA #4
- 2. $WQ_v = (1'')(1.1 \text{ ac})/12''/\text{ft} = 0.093$ ac-ft = 3,993 ft³
- 3. $A_f = WQ_v(d_f) / [k(h_f + d_f)(t)]$
- = 3,993 ft³ (2.5')/[1.0'/day(0.25' + 2.5')(2 days)] = 1,815 ft²
- For Dry Swales with 2 ft bottom width; Length = 1,815 ft²/2 ft = 907.5 ft
- 5. 950 feet are provided > 907.5 OK
- 6. Set Minimum slope = 1.0%
- 7. Set drainage inlets 6" above swale bottom.
- 8. Provide underdrain system
- 9. Check erosive velocities & capacity

Dry Swale Typical Section

Check Swale Flow Capacity

- For erosive velocity during 1-year storm
 Q_{1-yr} = 5.3 cfs
- For flow capacity during 10-year storm
 Q_{10-yr} = 13.7 cfs

Note: flow rates from HydroCAD Results for DA #4

Confirm Re_v has been achieved

% Volume Method:

Required $Re_v = 0.098 \text{ ac-ft} (= 4,269 \text{ ft}^3)$

Confirm infiltrating bioretention facilities combined volume > 4,269 ft³

Provided $Re_v = 0.179 \text{ ac-ft} (= 7,798 \text{ ft}^3)$

% Area Method:

Required Re_a = (F)(I) = (0.35)(3.83 ac) = 1.34 ac Confirm area draining to infiltrating bioretention facilities > 1.34 ac

Provided Re_a = 1.96 impervious acres

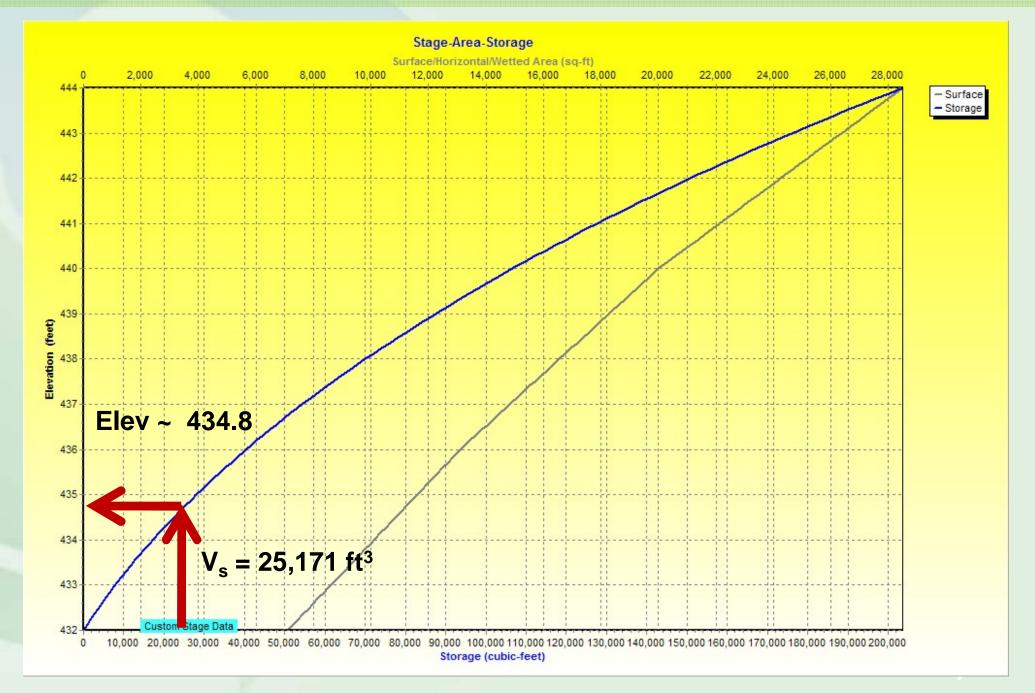
Horsley Witten Group, Inc.

Extended Detention Basin For Cp_v and Q_p Controls

Req'd $Cp_v = 0.65 (V_r) = 0.65 (38,725 \text{ ft}^3) = 25,171 \text{ ft}^3$ (short-cut method)

- For 24 hour Extended Detention (ED); average outlet release of the 1-year <u>INFLOW VOLUME</u>
- = 38,725/24 hr(3600 sec/hr) = 0.45 cfs

ED Basin Grading


Typical ED Basin (with Micro-pool)

Horsley Witten Group, Inc.

ED Basin Volume

Size Outlet Devise for Cp_v

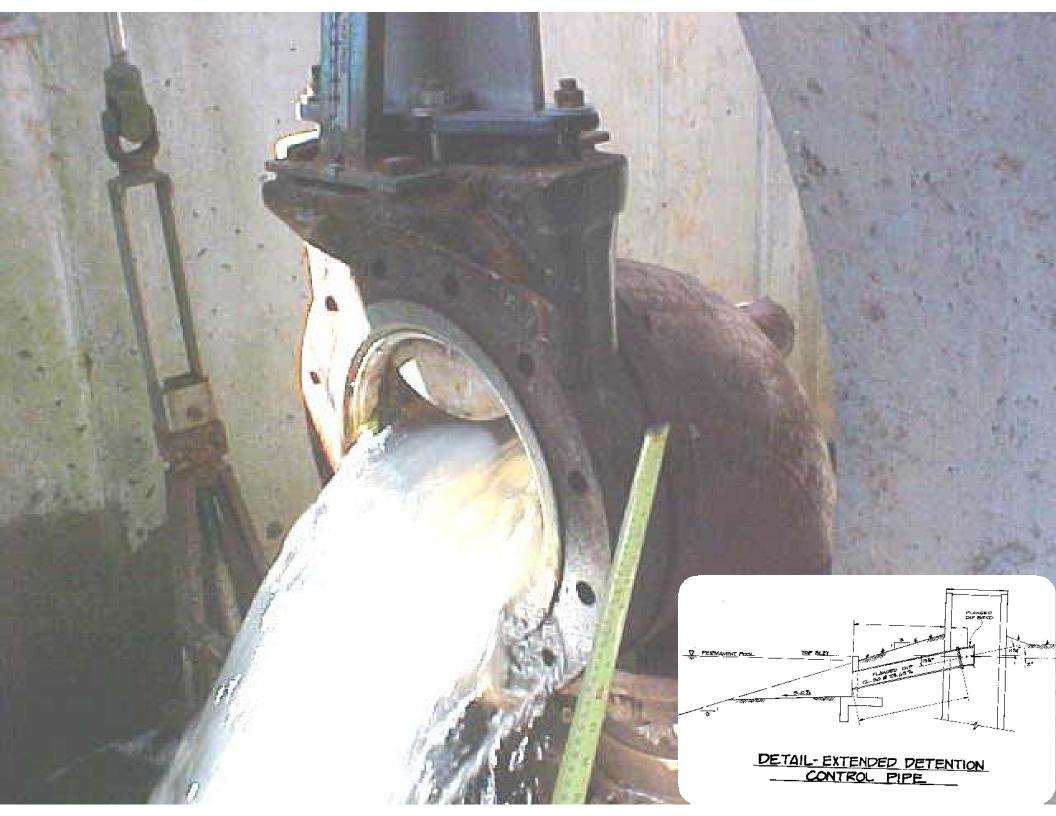
Size Orifice for 24 ED Approx. Average Head (ft) $h_{avg} = (434.8 - 432.0)/2 = 1.4 \text{ ft}$ Orifice Equation: $Q_{CPv} = C(A)(2g^*h_{avg})^{1/2}$ 0.45 cfs = $0.6(A)(64.4*1.4)^{1/2}$ A = 0.08 ft² = $\pi D^2/4$: D = 0.32' = 3.84" Use D = 3.0" (will provide conservative detention time)

HydroCAD Output (Cp_v)

100326_Reaper Brook_CDS Prepared by Horsley Witten Group Type III 24-hr 1YR Rainfall=3.10" Printed 3/26/2010 HydroCAD® 9.00 s/n 02800 @ 2009 HydroCAD Software Solutions LLC

Summary for Pond 4P: Detention Pond

Inflow Area =	20.830 ac, 19.18% Impervious, Inflow D	epth = 0.51" for 1YR event
Inflow =	9.51 cfs @ 12.16 hrs, Volume=	0.889 af
Outflow =	0.39 cfs @ 17.39 hrs, Volume=	0.534 af, Atten= 96%, Lag= 313.8 min
Primary =	0.39 cfs @ 17.39 hrs, Volume=	0.534 af


Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 434.86' @ 17.39 hrs Surf.Area= 11,396 sf Storage= 26,486 cf

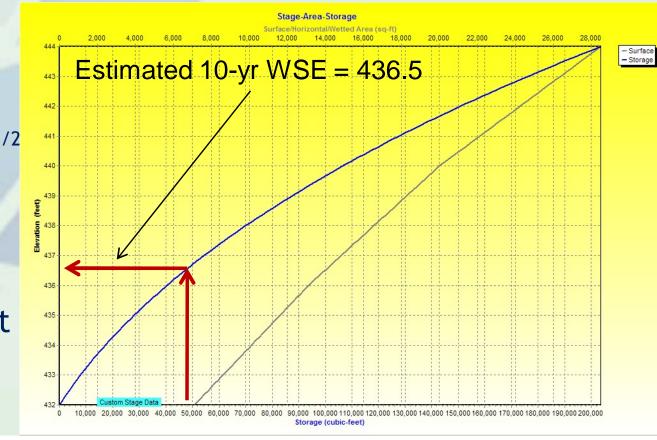
Plug-Flow detention time= 503.2 min calculated for 0.534 af (60% of inflow) Center-of-Mass det. time= 396.9 min (1,254.6 - 857.7)

Volume	Inver	t Avail.Sto	rage Stora	ge Description		
#1	432.00	203,6	00 cf Cust	om Stage Data (Prismatic)Listed below (Recal	c)	
Elevatio		urf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
432.0	00	7,100	0	0		
436.0	00	13,100	40,400	40,400		
440.0	00	20,000	66,200			
444.0		28,500	97,000	203,600		
	-		,			
Device	Routing	Invert	Outlet Dev	ices		
#1	Device 4	432.00'	3.0" Vert.	Orifice/Grate C= 0.600		
#2	Device 4	434.90'	24.0" W x	12.0" H Vert. Orifice/Grate C= 0.600		
#3	Device 4	437.00'	36.0" W x	12.0" H Vert. Orifice/Grate C= 0.600		
#4	Primary	428.00'				
L= 110.0' RCP, square edge headwall, Ke= 0.500						
				rt= 426.00' S= 0.0182 '/ Cc= 0.900		
				Concrete pipe, straight & clean		
			11-0.010	or o		
Primary OutFlow Max=0.39 cfs @ 17.39 hrs HW=434.86' (Free Discharge)						
←4=Culvert (Passes 0.39 cfs of 28.34 cfs potential flow)						
1 =	-1=Orifice/Grate (Orifice Controls 0.39 cfs @ 7.97 fps)					
-2=	-2=Orifice/Grate (Controls 0.00 cfs)					
L_3=	-3=Orifice/Grate (Controls 0.00 cfs)					

Page 12

Extended Detention Basin For Q_p Controls

- Size outlets for Q_p controls (10 and 100-year storms)
- Criteria requires attenuation of postdevelopment flows to the predevelopment flow:
 - Q_{10-pre} = 11.1 cfs
 - Q_{100-pre} = 44.9 cfs
- 1. Calculate 10-year release rate and req'd storage


Q_p (10-year) Outlet and Storage

- Q_{10-out} = 11.1 cfs 0.5 cfs = 10.6 cfs
 (the 0.5 cfs is the flow out of the 3" Cp_v orifice at the estimated 10-year elevation)
- Size Orifice

Estimated Head (ft): h = (436.5 - (434.9 + .05) = 1.1 ft

Orifice Equation

 $Q_{10-out} = C(A)(2g^*h)^{1/2}$ 10.6 cfs = 0.6(A)(64.4*1.1)^{1/2} A = 2.1 ft²: for 12" high slot l = 2.1' = 25.2" Use <u>24.0" x 12"</u> vert. slot Elevation = 434.9

HydroCAD Output (Q_{p-10})

Summary for Pond 4P: Detention Pond

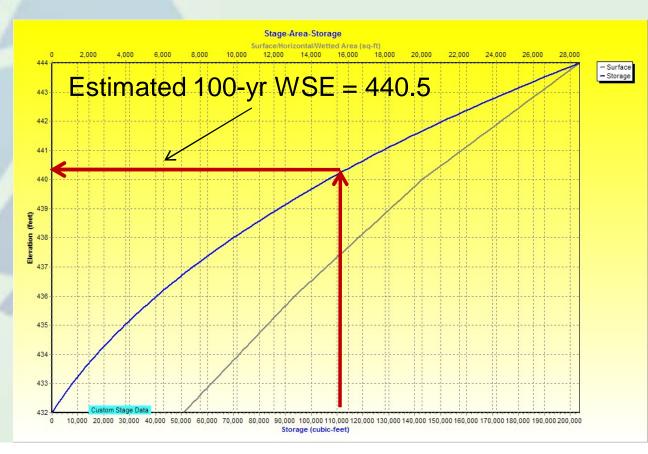
Inflow Area	=	20.830 ac, 19.18% Impervious, Inflow Depth = 1.67" for 10YR event
Inflow :	=	39.44 cfs @ 12.10 hrs, Volume= 2.906 af
Outflow =	=	10.74 cfs @ 12.55 hrs, Volume= 2.457 af, Atten= 73%, Lag= 27.0 min
Primary :	=	10.74 cfs @ 12.55 hrs, Volume= 2.457 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 436.55' @ 12.55 hrs Surf.Area= 14,050 sf Storage= 47,876 cf

Plug-Flow detention time= 179.1 min calculated for 2.455 af (84% of inflow) Center-of-Mass det. time= 116.9 min (957.7 - 840.7)

Volume	Inve	rt Avail.Sto	rage	Storage [Description	
#1	#1 432.00' 203,60		00 cf	Custom	Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)		:.Store c-feet)	Cum.Store (cubic-feet)	
432.0 436.0	00	7,100 13,100		0 10,400	0 40,400	
440.0 444.0		20,000 28,500		56,200 97,000	106,600 203,600	
Device	Routing	Invert	Outle	et Devices		
#1	Device 4	432.00'	3.0"	Vert. Orifi	ice/Grate C=	0.600
#2	Device 4	434.90'	24.0	" W x 12.0	" H Vert. Orifi	ce/Grate C= 0.600
#3	Device 4	437.00'	36.0	" W x 12.0)" H Vert. Orifi	ce/Grate C= 0.600
#4	Primary	428.00'	21.0	" Round	Culvert	
			L= 1	10.0' RCI	P, square edge	headwall, Ke= 0.500
			Outle	et Invert= 4	426.00' S= 0.0)182 '/' Cc= 0.900
			n= 0	.013 Cond	crete pipe, strai	ight & clean
		Max=10.74 cfs ses 10.74 cfs o			N=436.55' (Fr	ee Discharge)
	· ·	ate (Orifice Co			· ·	
		ate (Orifice Co			· · ·	
		ate (Controls)			@ 0.12 ip3)	

Extended Detention Basin For Q_p Controls


- Size outlets for Q_p controls (10 and 100-year storms)
- Criteria requires attenuation of postdevelopment flows to the predevelopment flow:
 - Q_{10-pre} = 11.1 cfs
 - Q_{100-pre} = 44.9 cfs
- 2. Calculate 100-year release rate and req'd storage

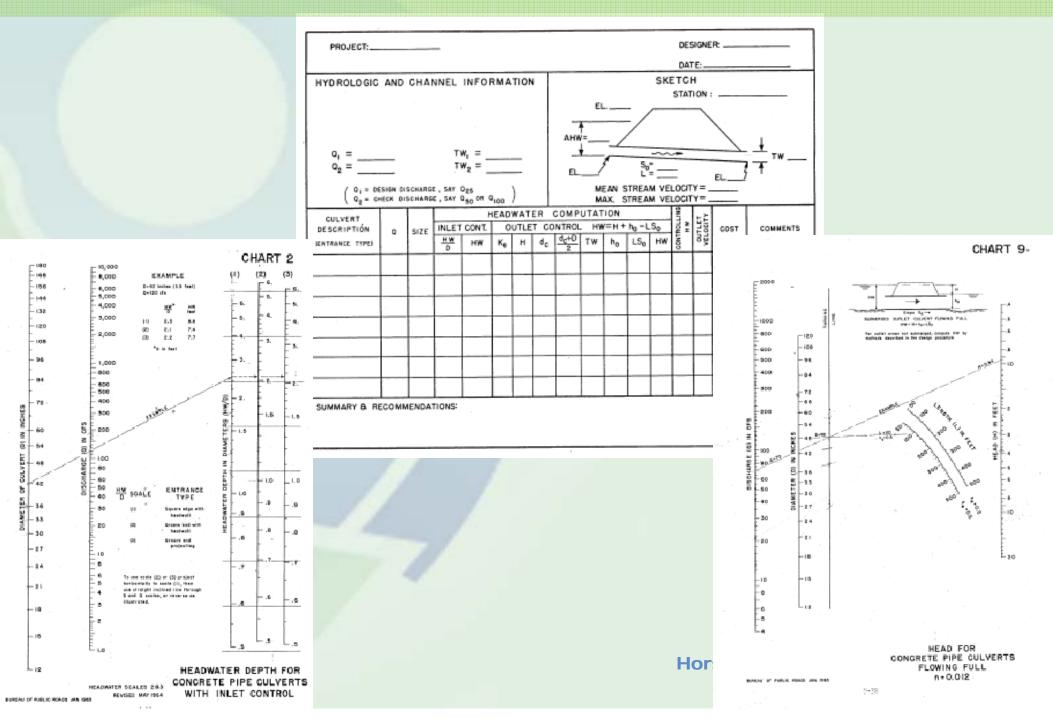
Q_p (100-year) Outlets and Storage

- Q_{100-out} = 44.9 cfs (subtract lower structure releases)
 <u>Set Top of Weir of Outlet Control Structure</u>
 Set top above 10-year elev, say 437.0
 Estimated Head (ft): h = (440.5 (437.0 + 0.5) = 3.0 ft
- Size Outlet Pipe to Control 100-year release rate
- Orifice Equation: OCS Q = 44.9 - (18.5 + 0.7) = 25.7 cfs

 $Q_{100-out} = C(A)(2g^*h)^{1/2}$ 25.7 cfs = 0.6(A)(64.4*3.0)^{1/2} A = 3.08 ft²: for 12" slot l = 3.08' = 37" Use 36.0" x 12" vert. slot Elevation = 437.9

Q_P (100-year) Outlets Continued

- Q_{100-out} = 44.9 cfs; size outlet pipe
- Trial and error in HydroCAD (or other generally accepted TR-55/TR-20 H/H software);
- Culvert Software;
- "Old School" Culvert Nomographs.



Culvert Software

🗆 Culver	t Calculator - Reaper Bi	rook Barrel	×
Solve For: [Size 🗾		1
Culvert	Discharge: 44.90 cfs	Inverts Invert Upstream: 428.00	ft
Maximum A	llowable HW: 440.50 ft	Invert Downstream: 426.00	ft
Tailwa	ter Elevation: 428.00 ft	Length: 110.00	ft
Section		Slope: 0.018182	ft/ft
Shape:	Circular 🗾	Headwater Elevations	
Material:	Concrete 🗾	Maximum Allowable: 440.50	ft
Size:	24 inch	Computed Headwater: 437.45	ft
Number:	1	Inlet Control: 437.45	ft
Mannings:	0.013	Outlet Control: 437.10	ft
- Inlet		Exit Results	
Entrance:	Square edge w/headwall 📃	Discharge: 44.90	cfs
Ke:	0.50	Velocity: 14.29	ft/s
		Depth: 2.00	ft
	OK Cancel <u>O</u> u	tput <u>S</u> olve <u>H</u> elp	<u></u>

Horsley Witten Group, Inc.

Old School

HydroCAD Output (Q_{p-100})

100326_Reaper Brook_CDSType III 24-hr 100YR Rainfall=8.90"Prepared by Horsley Witten GroupPrinted 3/26/2010HydroCAD® 9.00 s/n 02800 © 2009 HydroCAD Software Solutions LLCPage 12

Summary for Pond 4P: Detention Pond

Inflow Area	=	20.830 ac, 19.18% Impervious, Inflow Depth = 4.75" for 100YR event
Inflow :	=	105.40 cfs @ 12.11 hrs, Volume= 8.240 af
Outflow :	=	38.96 cfs @ 12.44 hrs, Volume= 7.766 af, Atten= 63%, Lag= 20.3 min
Primary :	=	38.96 cfs @ 12.44 hrs, Volume= 7.766 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.03 hrs Peak Elev= 440.53' @ 12.44 hrs Surf.Area= 21,134 sf Storage= 117,575 cf

Plug-Flow detention time= 91.8 min calculated for 7.759 af (94% of inflow) Center-of-Mass det. time= 61.9 min (884.2 - 822.3)

Volume	Inver	t Avail.Sto	rage	Storage	Description	
#1	432.00	203,6	00 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee		urf.Area (sq-ft)		c.Store c-feet)	Cum.Store (cubic-feet)	
432.0 436.0)0)0	7,100 13,100		0 40,400	0 40,400	
440.0 444.0		20,000 28,500		56,200 97,000	106,600 203,600	
Device	Routing	Invert	Outl	et Devices	5	
#1	Device 4	432.00'	3.0"	Vert. Ori	fice/Grate C=	0.600
#2	Device 4	434.90'	24.0	" W x 12.	0" H Vert. Orifi	ce/Grate C= 0.600
#3	Device 4	437.00'	36.0	" W x 12.	0" H Vert. Orifi	ce/Grate C= 0.600
#4	Primary	428.00'	21.0	" Round	Culvert	
			L= 1	10.0' RC	P, square edge	headwall, Ke= 0.500
			Outl	et Invert=	426.00' S= 0.0	0182 '/' Cc= 0.900
			n= 0	.013 Con	icrete pipe, stra	ight & clean
					W=440.53' (Fi	ree Discharge)
		el Controls 38.				
		nte (Passes <				
		ate (Passes <			,	
<u> </u>	Orifice/Gra	└─3=Orifice/Grate (Passes < 25.12 cfs potential flow)				

Summary of Results

Table D-3 Design Example Summary of Results

Criteria	Required	Provided	Practice Notes
Recharge Volume (Re _v)	0.098 ac-ft	0.178 ac-ft	3 exfiltrating bioretention facilities
Water Quality Volume (WQ _v)	0.28 ac-ft	> 0.28 ac-ft ¹	3 bioretention facilities and dry swale system
Channel Protection volume (CP _v)	0.58 ac-ft	0.61 ac-ft peak release rate= 0.4 cfs	Dry extended detention basin peak elev. = 434.9 ft
Overbank Protection (Q _p)	Pre-development peak: Q _{p-10} = 11.1 cfs Q _{p-100} = 44.9 cfs	Post-development basin peak release rate: Q _{p-10} = 10.7 cfs Q _{p-100} = 39.0 cfs	Detention storage 10-yr peak elev.= 436.6 ft 100-yr peak elev.= 440.5 ft

¹ Because bioretention is a flow-through device the storage volume of these facilities must be at least ³/₄ of the computed WQ_v, yet total volume of infiltration plus dry swale volume exceeds 0.28 ac-ft.

3.	Strategies to Manage the Impacts
Α.	Disconnecting Impervious Area
	Not Applied or N/A. Use space below to explain why:
	Select from the following list:
	 Impervious surfaces have been disconnected to QPAs to the extent possible. Other (describe):
	Explain constraints and/or proposed alternatives in space below:
	Rooftops from several lots will drain to QPAs but no specific credit has been calculated.
	Roonops from several lots will drain to QPAs but no specific credit has been calculated.
_	
В.	Mitigation of Runoff at the point of generation
	■Not Applied or N/A. Use space below to explain why:
	Select from the following list:
	Roof runoff has been directed to a QPA, such as a yard or vegetated area.
	Roof runoff has been directed to a lower impact practice such as a rain barrel or cistern.
	A green roof has been designed to reduce runoff.
	Small-scale BMPs applied at source.
	Other (describe):
	Explain constraints and/or proposed alternatives in space below:
	Open section road provided instead of closed section with dry swale.

C. Stream/Wetland Restoration
⊠Not Applied or N/A. Use space below to explain why:
Select from the following list:
Historic drainage patterns have been restored by removing closed drainage systems and/or restoring
degraded stream channels and/or wetlands.
Removal of invasive species.
Other (describe):
Explain constraints and/or proposed alternatives in space below:
Stream is currently in stable condition, and wetlands are pristine.
D. Reforestation
Not Applied or N/A. Use space below to explain why:
Select from the following list:
Low maintenance landscaping and native vegetation has been proposed.
Trees are proposed to be planted or conserved to reduce runoff volume, increase nutrient uptake, and
provide shading and habitat.
Other (describe):
Explain constraints and/or proposed alternatives in space below:
E. Source Control
Not Applied or N/A. Use space below to explain why:
Select from the following list:
Source control techniques such as street sweeping or pet waste management have been proposed.
Other (describe):
Explain constraints and/or proposed alternatives in space below:
Aggressive pet waste management will be implemented, and enforced in neighborhood
association rules to increase effectiveness of stormwater treatment system.

Other Design Features

- Some rooftops drain to Qualified Pervious Areas (QPAs);
- Open space is commonly owned (i.e., community open space);
- Retained native vegetation where possible (note cul-de-sac islands);
- Meets well and septic separation distances.

