Rhode Island Stormwater Design and Installation Standards Manual

Public Workshop Infiltration (Including Permeable Paving) March 24, 2011

Infiltration Section 5.3: Appendix F.3 & H.1

Infiltration - Design Notes

- Field verification of soil permeability/texture essential
- Pretreatment essential minimum 25% of WQv
- Bottom of infiltration facility cannot be located in fill*, must have 3' separation from gw and bedrock*
- Size based on design infiltration rates (Table 5-3)
- Guidance: Keep drainage areas to each practice small, may reduce some potential problems
- * Reduced requirements for residential areas (2')

 Table 5-3 Design Infiltration Rates for Different Soil Textures (Rawls et al., 1982)

	Design Infiltration	Design Infiltration
USDA Soil Texture	Rate (f _c) (in/hr)	Rate (f _c) (ft/min)
Sand	8.27	0.0115
Loamy Sand	2.41	0.0033
Sandy Loam	1.02	0.0014
Loam	0.52	0.0007
Silt Loam	0.27	0.0004

Design Notes (cont'd)

- Cannot be used if contributing drainage is a LUHPPL
- Higher maintenance burden

Approved WQ BMPs

- Stabilize site prior to installation
- Must meet variety of setbacks* (Table 5-2)
- May be used for larger storm events if infiltration rate
 > 8.3 in/hr**, mounding analysis may be required

* Reduced requirements for small-scale BMPs in res. areas

** 100% WQv treatment required by separate BMP in these areas

Soil Testing Requirements

- Appendix H
- Required?
 - Infiltration Practice
 - Filter Practice*
 - Dry Swale*
- What does it tell us?

- Feasibility of proposed BMP (too high or too low inf rate, depth to SHGT)
- Design infiltration rate for sizing and models
- Who can do the soil testing?
 - DEM-licensed Class IV soil evaluator or RI-registered
 P.E.

Table H-1 Infiltration Testing Summary

Type of Facility	Design Testing
Infiltration Practice*/Infiltrating Permeable Pavement Practices	1 infiltration test and 1 test pit per 5,000 ft ²
Filter Practice**	1 infiltration test and 1 test pit per 5,000 ft ² (no underdrains required if infiltration rate > 0.5 in/hr***)
Dry Swale**	1 infiltration test and 1 test pit per 1,000 ft of dry swale (no underdrains required if infiltration rate > 0.5 in/hr ***)

*For use with residential rooftop runoff, testing requirements are reduced to 1 infiltration test and 1 test pit per 5 lots assuming consistent terrain and NRCS soil series. If terrain and soil series are not consistent, then requirements increase to 1 infiltration test and 1 test pit per 1 lot.

**When proposed as a treatment/infiltration system. If proposed as strictly a filtration practice, infiltration testing analysis not strictly required but a test pit or boring is required to verify depth to seasonal high groundwater or bedrock.

***Underdrain installation still strongly suggested.

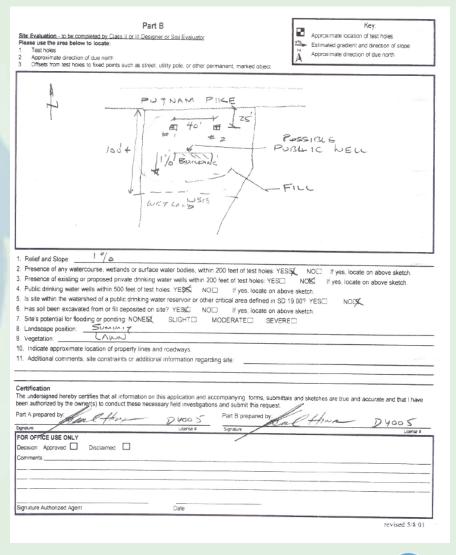
Test Pit/Boring Requirements

- Excavate a test pit or dig a standard soil boring to a depth of 4 ft below the proposed facility bottom.
- Determine depth to SHGT. May establish in test pits based on redoximorphic features.
- Soil borings: conduct Standard Penetration Testing (SPT) every 2 ft to a depth of 4 ft below facility bottom.
- Determine USDA textures at the proposed bottom and 4 ft below the bottom of the proposed BMP.
- Determine depth to bedrock.
- The soil description should include all soil horizons.
- The location of the test pit or boring shall correspond to the BMP location.

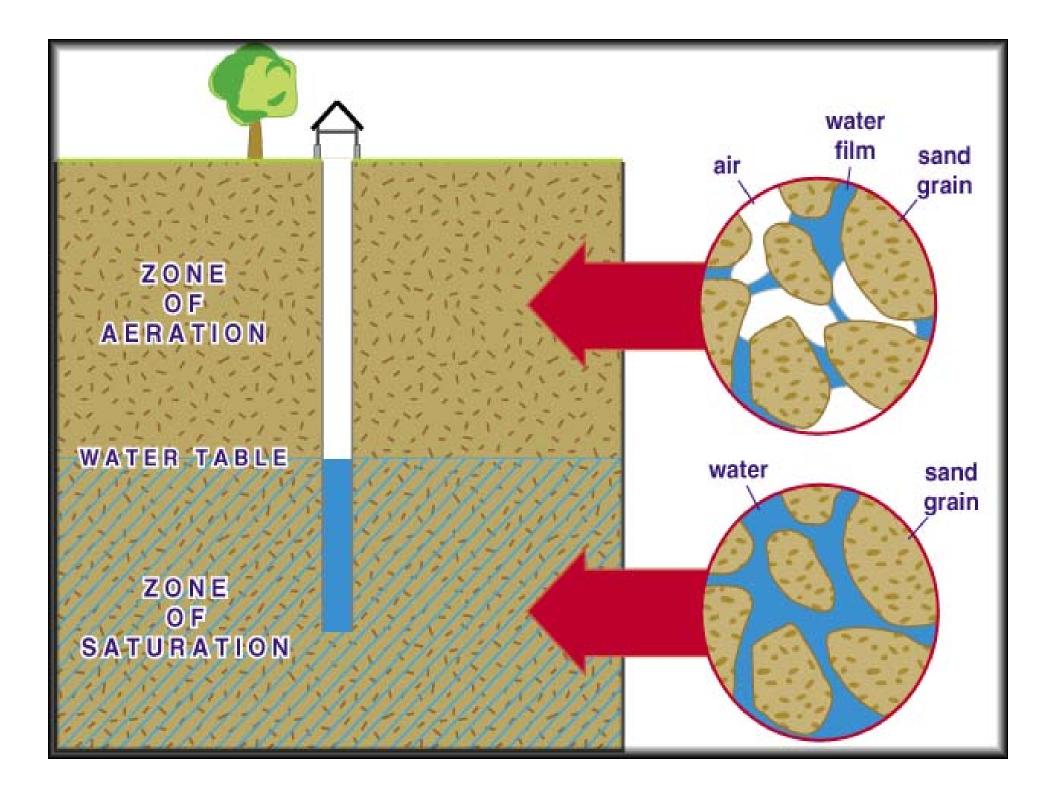
Field Infiltration Testing

Acceptable field test methods to assess saturated hydraulic conductivity

- Guelph permeameter ASTM D5126-90 Method
- Falling head permeameter ASTM D5126-90 Method
- Double ring permeameter/infiltrometer ASTM D3385-033, D5093-024, D5126-90 Methods
- Amoozemeter or Amoozegar permeameter -Amoozegar 1992
- * Apply Safety Factor=2 to field-derived value
 ** Use of lab test to establish infiltration rates is prohibited


Soil Evaluation Form

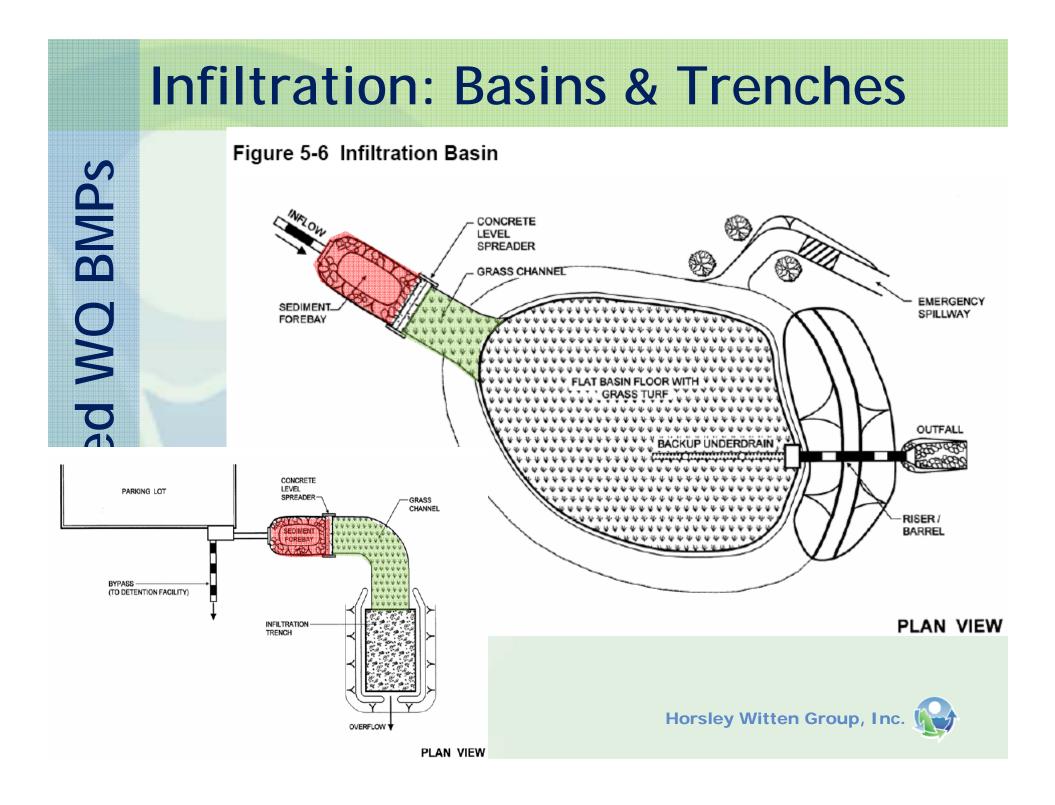
STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS Department of Environmental Management Office of Water Resources



Site Evaluation Form Part A - Soil Profile Description Application Number 0813-1568 TOWN OF GLOCESTER Property Owner: Property Location: 1116 PUTNAM PIER, GLOCESTER PLAT 10D LOT 9 01/06/2009 Date of Test Hole: K. HINGORANY Soil Evaluator: License Number: D4005 CLOUDY Weather Shaded: Yes No No Time: 100 P.M. TH_1 Re-Dox Description Horizon Boundaries Soil Colors Horizon Dis Depth Topo Matri Texture Structure Consistence Category Features 0 FILL C 5 78 -~ 78 5Y C 10YR -CMD SI @-M VFr 120 7/4 516 3 TH Z Soil Colors Re-Dox Horizon Boundaries Re-Dox Description Horizon Depth Soil Dist Topo Matrix Ab. Con. Texture Structure Consistence Category Features 0 C FILL free of 5 -60 60 54 OYR C 5 CMO SI 0 120 714 516 B-MA UFr 3 Soil Class: A BLATION TILL CL. R Total Depth of eachTest Hole: 1 = 2 120' Depth to Groundwater Seepage. 1. 78' 2. 60 Beth to Groundwater Wayses ______ AUCS _____ C - C Estimated Seasonal High Water Table: _____ AUCS ____ C - C FRS MI CRCG GROUND Depth to Impervious or Limiting Layer: 1 2 120 Comments SITEA 080182

Horsley Witten Group, Inc.

Permeability Testing (double ring infiltrometer)

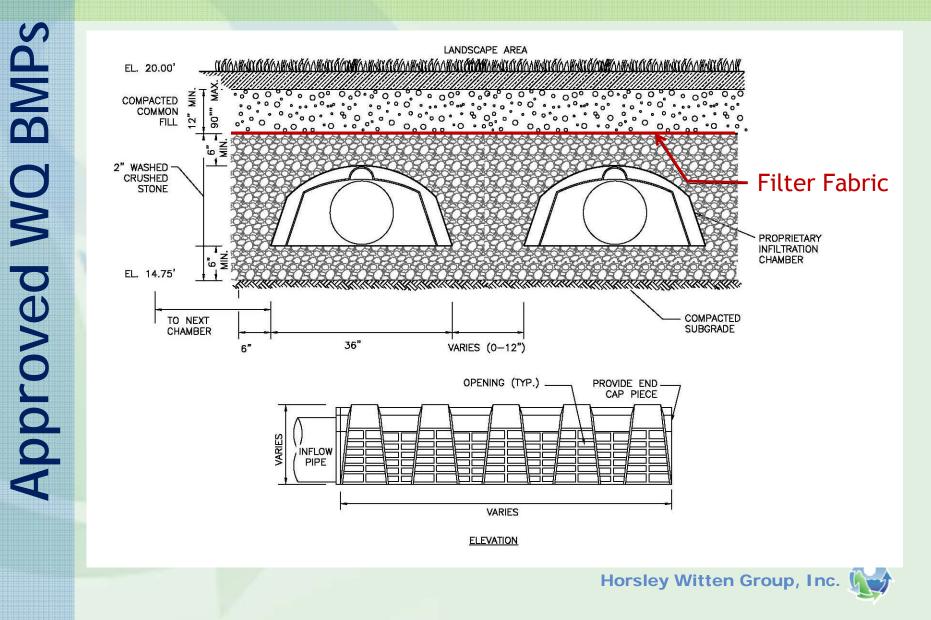


Sample Calculation

$V_{IR} = \Delta V_{IR} / (A_{IR} \Delta t)$	Inner ring incrementa	I infiltration velocity (cm/h)	
ΔV _{IR}	Volume of liquid used head in the inner ring	d during time interval to maintain constant (cm3)	
A _{IR}	Internal area of inner ring (cm2)		
Δt	Time interval (h)		
	1)	
$V_A = \Delta V_A / (A_A^* \Delta t)$	Annular space increm	nent infiltration velocity (cm/h)	
ΔV _A	Volume of liquid used during time interval to maintain constant head in the annular space between the ring I(cm3)		
A _A	Area of annular space	20	
		00 1700 33.9351 24.03000 13.307 3.400330 00 3100 25.4648 43.85603 10.026 17.26615 00 1900 36.0751 26.8795 14.203 10.58248 00 2100 23.7671 23.76714 9.3571 9.357141	
	• • VIF	00 4300 30.5577 48.66604 12.031 19.15986 00 2100 25.4648 19.80595 10.026 7.797618	
		00 1700 30.5577 19.24006 12.031 7.574828	
5		00140019.098619.805957.51917.79761800190019.805911.946457.79764.703325	
0.00 10.00 20.00	30.00 40.00	Average 28.464 26.78309 11.206 10.54452	


BMP Pretreatment Requirements

BMP Group	Required %WQ _v	Notes	
WVTS	10%	 Provided at each inlet, unless inlet provides <10% of inflow 	
Infiltration	25%	 Grass channel, filter strip, sediment forebay, proprietary device Deep sump catch basin <u>combined with</u> one_of the following: Upper sand layer; or Washed pea gravel (1/8" to 3/8") Not required for permeable pavements (unless there is "run-on") or drywells 	
Filtering Practices	25%	 Deep sump catch basins may not be used as sole pretreatment. 	
Green Roofs	Not Applicable. No pretreatment required for direct rainfall.		
Open Channels	10%	 forebays/checkdams at pipe inlets and/or driveway crossings. filter strip 	



Cross-section Views of Chambers

Infiltration Chambers

Horsley Witten Group, Inc. 👔

Filter Fabric

- Non-woven geotextile fabric with a flow rate of > 110 gal./min./sf.
- For use over the underdrain (where applicable) and along the side walls

Horsley Witten Group, Inc.

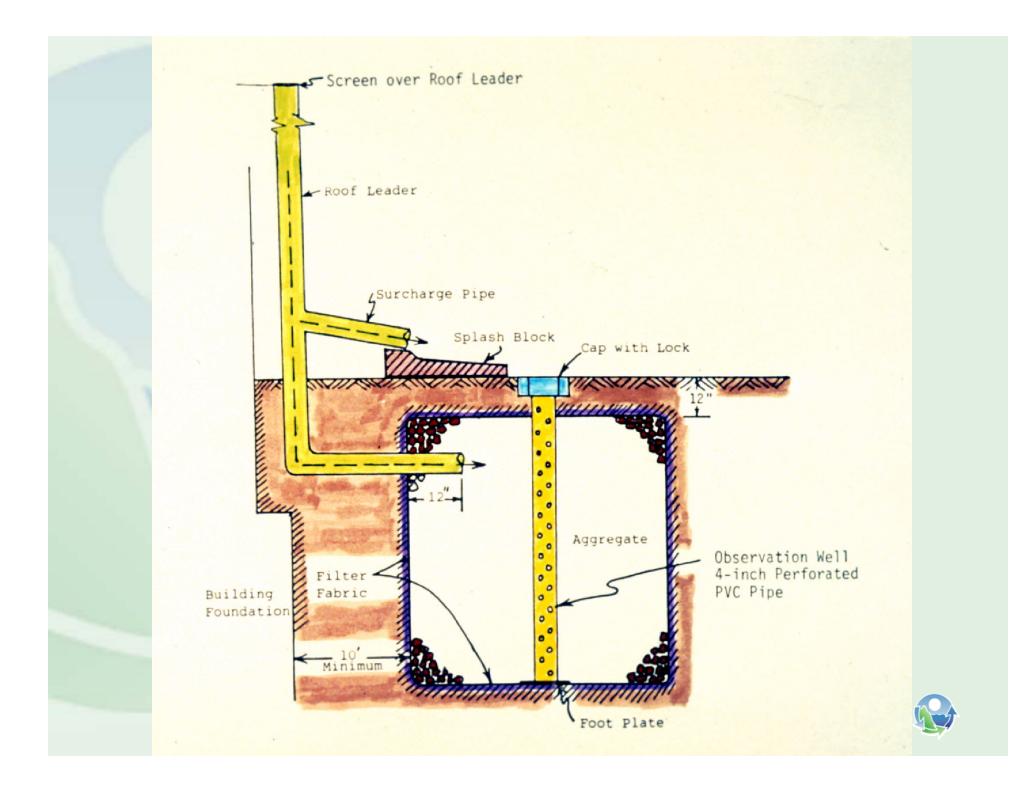
Gravel (Underdrains and Storage)

- Porosity = 33%
- AASHTO M-43 standard
- Washed, clean and open graded
- Size Varies;
 - ASTM # 2 or 3 Stone (<2 to2 ½")
 - ASTM #57 Stone (<11/2")
 - ASTM #8 (1-2")

Storage Chambers

- Injection molded from virgin polypropylene resin;
 - Rows shall provide continuous, unobstructed internal space with no internal support panels;
- Chambers shall be openbottomed.
- Shall incorporate an overlapping corrugation joint system.

Horsley Witten Group, Inc.

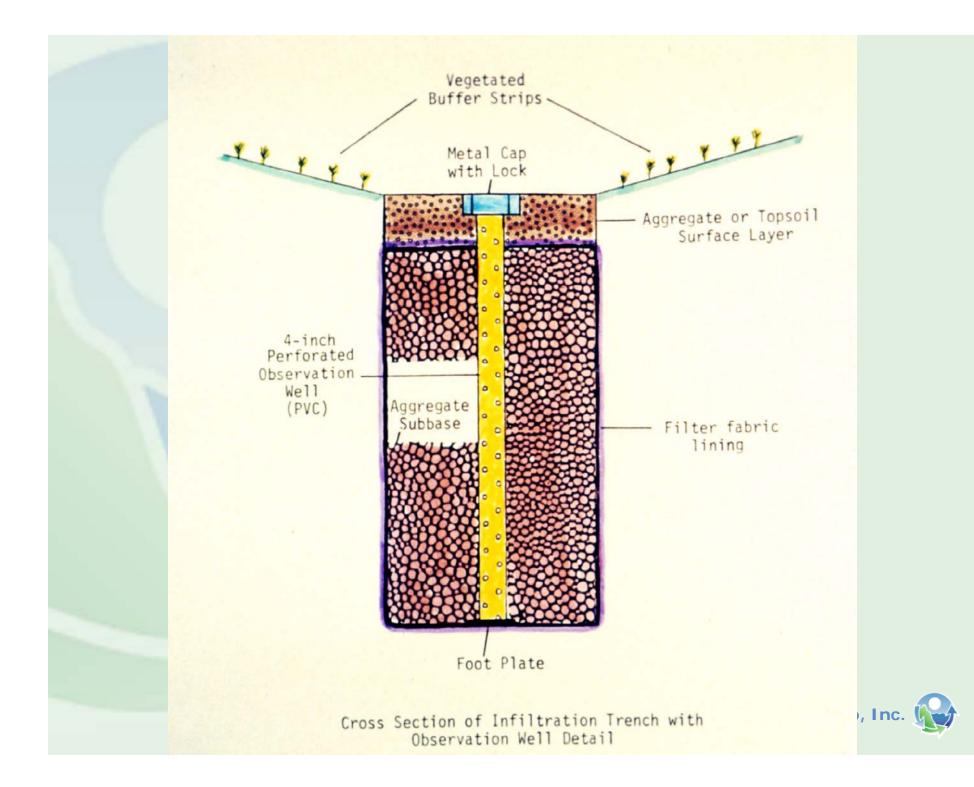

When Fill is Required

- Medium Concrete Sand (AASHTO M-6 or ASTM C-33)
- Clean
- No substitutions such as Diabase, rock dust, etc.
- Compaction (Standard Proctor) -AASHTO Method T-99

Horsley Witten Group, Inc.

Infiltration Practices Landscaping Requirements

- Drainage area completely stabilized prior to bringing infiltration facility on-line. A dense and vigorous vegetative cover is needed over pervious areas.
- Routine mowing of facility and adjacent areas



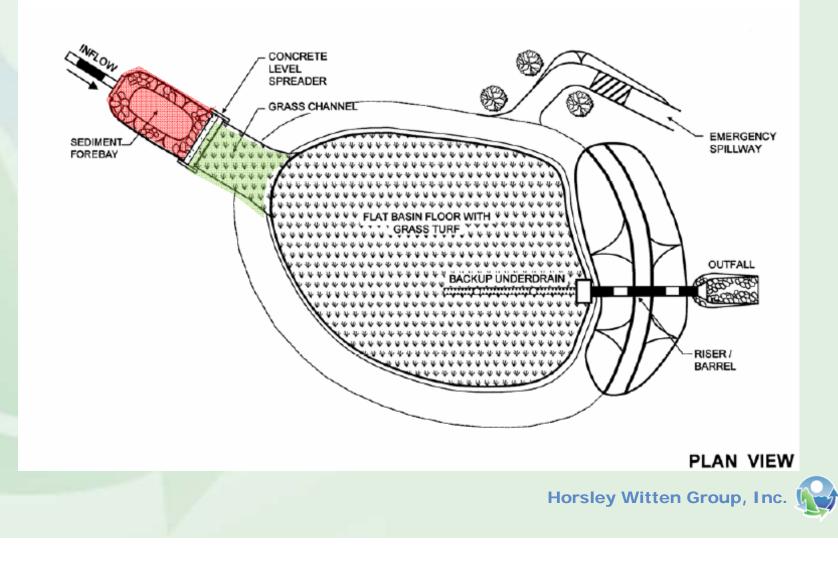
Infiltration Practices Maintenance Requirements

- Never use basin or area as temporary E&SC facility
- Provide observation well in all trenches
- Provide direct access for maintenance/rehab
- Follow OSHA standards for excavation
- Designs should consider dewatering alternatives should failure occur

Observation Wells

- Rigid schedule 40 PVC pipe with 5/8" perforations @ 6" O.C. meeting ASTM D 1785 (burrs removed)
- Lockable Cap (should coordinate method with maintenance authority.

Maintaining a Permeable Basin Surface


- Large surface area of practice
- Avoid compaction
- Apply/retain organic material in basin floor
- Incorporate micro topography

Infiltration Basin with back-up Underdrain

Figure 5-6 Infiltration Basin

Construction

- Good erosion & sediment control
- Sequence of construction
- Stabilized drainage area
- Protect infiltration site

Infiltration Maintenance Requirements/Guidelines

- Basin: Routine sediment cleanout, mowing (2x/yr), re-vegetate bare areas, litter & debris removal, & rejuvenation (roto-till surface soils).
- Trench: Pretreatment and trench sediment cleanout, & mowing. Check 2 days after storm.
- Drywell: Pretreatment cleanout. Gutter / downspout system cleaning if needed.

Section 5.3: Permeable Paving

Two main categories:

Porous asphalt and pervious concrete

Pavers

- 1. Permeable solid blocks (min. void ratio
 - 15%) or reinforced turf
- Solid blocks with open-cell joints>15% of surface
- 3. Solid blocks with open-cell joints<15% of surface with 1" surface storage

Permeable Pavements - Design Notes

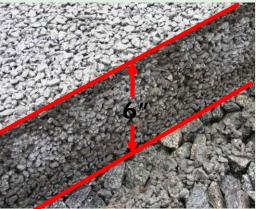
- May be used as infiltration and/or detention system
- For infiltrating practices:
 - Field verification of soil permeability/texture essential
 - Bottom of facility cannot be located in fill* and must have 3' separation from gw and bedrock*
 - Size based on design infiltration rates (Table 5-3)
 - Cannot be used if contributing drainage is a LUHPPL
 - Must meet variety of setbacks* (Table 5-4)
- Frequent maintenance necessary to retain permeability (vacuum)
- Use on low traffic/speed areas with gentle slopes (<5%)
- Generally not designed to accept runoff from other areas
- * Reduced requirements for resid. areas witten Group, Inc.

BMPS Approved WO

Porous Pavements

Porous Pavements (General)

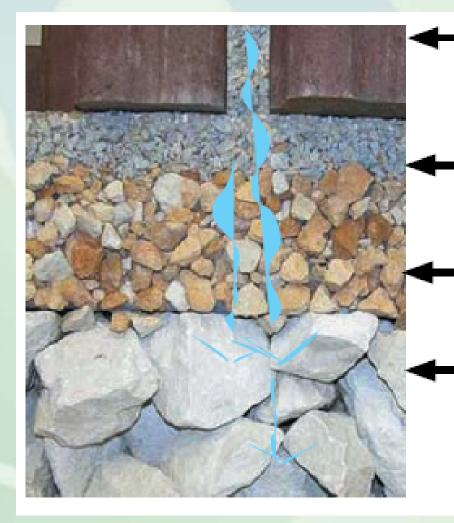
- Aggregate gradation: No fines added to mix
- Air voids: 18-20%
- Cold climate and WQ functionality dependent on sub base design

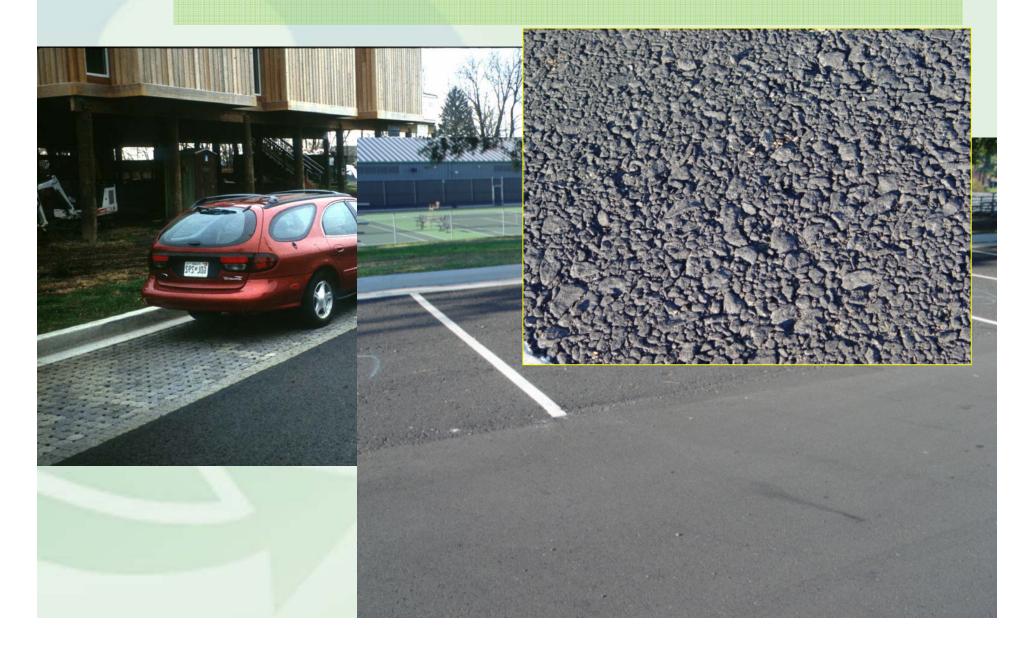

Pervious Concrete

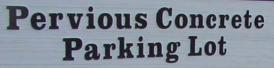
- Placement is challenging and requires certified installers
- Compressive strength: 3000 psi at 7 days
- Concrete is very resistant to aging

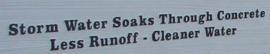
Porous Asphalt

- Modification of Open Grade Friction Course (OGFC)
- Asphalt binder often modified (polymers, fibers) but not necessary
- QC production at plant is crucial, install is simple




Permeable Pavers


- 3 1/8 in. (80 mm) thick pavers with permeable joints
- Open-graded bedding course
- Open-graded base course (OGB)
- Open-graded subbase on non-compacted soil subgrade

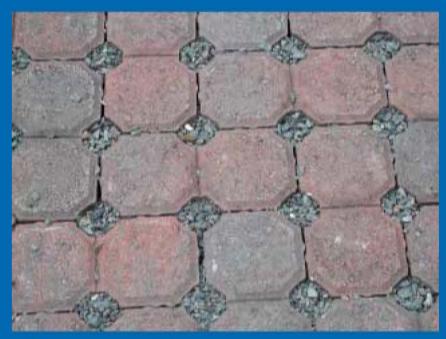


Typical Applications

Typical Applications

Horsley Witten Group, Inc.


Typical Applications



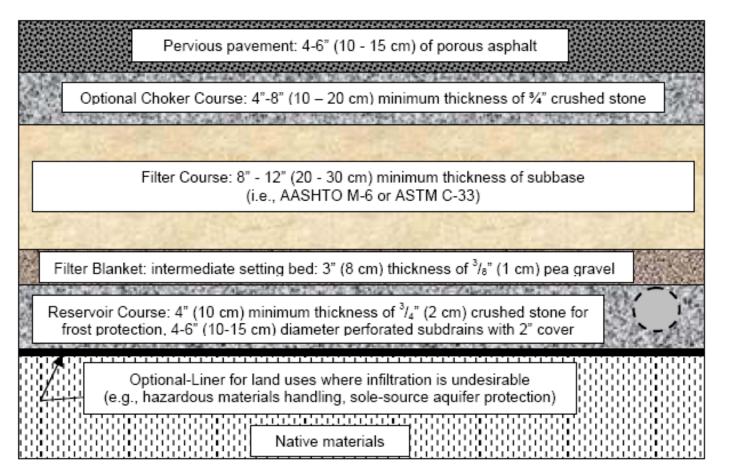
Pre-Construction Conditions

LID Technologies Demonstrated

Porous Pavers

GravelPave

FlexiPave



Typical Section: Porous Asphalt

- 4-6 inch surface asphalt course (no fines)
- 4-8 inch granular filter layer (No. 57 Stone)
- 24 inch upper reservoir (bank run gravel, sand mix)
- Up to 24 inch crushed gravel layer with 6 inch optional underdrain (underdrain raised 12 inches above bottom)

Typical Porous Pavement Parking Lot System Cross-Section

Figure F-2 Typical Parking Area Cross-Section for Pervious Pavement System

Design Steps

- 1. Assess site and soil conditions
- 2. Compute increased runoff depth from area contributing to the permeable pavement
- 3. Compute the depth of the base for storage

Design (continued)

- 5. Determine the base thickness for traffic
 - Provide sufficient pavement thickness to protect the sub-grade from being over-stressed by traffic loads
 - Provide quality base and subbase materials that can support the applied loads
- 6. Compare to base thickness for water storage:
 - Always use thicker base
- 7. Check clearance from bottom of base to seasonal high water table
- 8. Check geotextile filter criteria

Horsley Witten Group, Inc.

Soil Design Strength

Design assumptions

Subgrade strength for vehicular traffic: Min. 96-hour soaked CBR = 5% (Min. R-value = 24)

What if < 5%CBR? Capping layer of geotextile and aggregate base Stabilize soil with cement

Stone Gradation by Course

Table F-7 Gradations and compaction of choker, filter, an	d reservoir course
materials.	

US	Percent Passing (%)			
Standard Sieve Size (inches/mm)	Choker Course (AASHTO No. 57)	Filter Course (AASHTO No. M-6)	Reservoir Course (AASHTO No.3)	Reservoir Course Alternative* (AASHTO No.5)
6/150	-		-	
21⁄2/63	-		100	-
2 /50	-		90 - 100	-
11⁄2/37.5	100		35 – 70	100
1/25	95 - 100		0 – 15	90 - 100
³⁄₄/19	-		-	20 - 55
1⁄2/12.5	25 - 60		0 - 5	0 - 10
3/8/9.5	-	100	-	0 - 5
#4/4.75	0 - 10	70-100	-	
#8/2.36	0 - 5		-	
#200/0.075		0 – 6**		
% Compaction ASTM D698 / AASHTO T99	95	95	95	95

* Alternate gradations (e.g. AASHTO No. 5) may be accepted upon Engineer's approval.

** Preferably less than 4% fines

Porous Asphalt Mix

- Pages F-44 through F-48 for Material Specs;
 - Mix Materials;
 - Performance Graded Asphalt Binder (PGAB);
 - Anti-Stripping Mix Additives;
 - Course Aggregate;
 - Fine Aggregate;

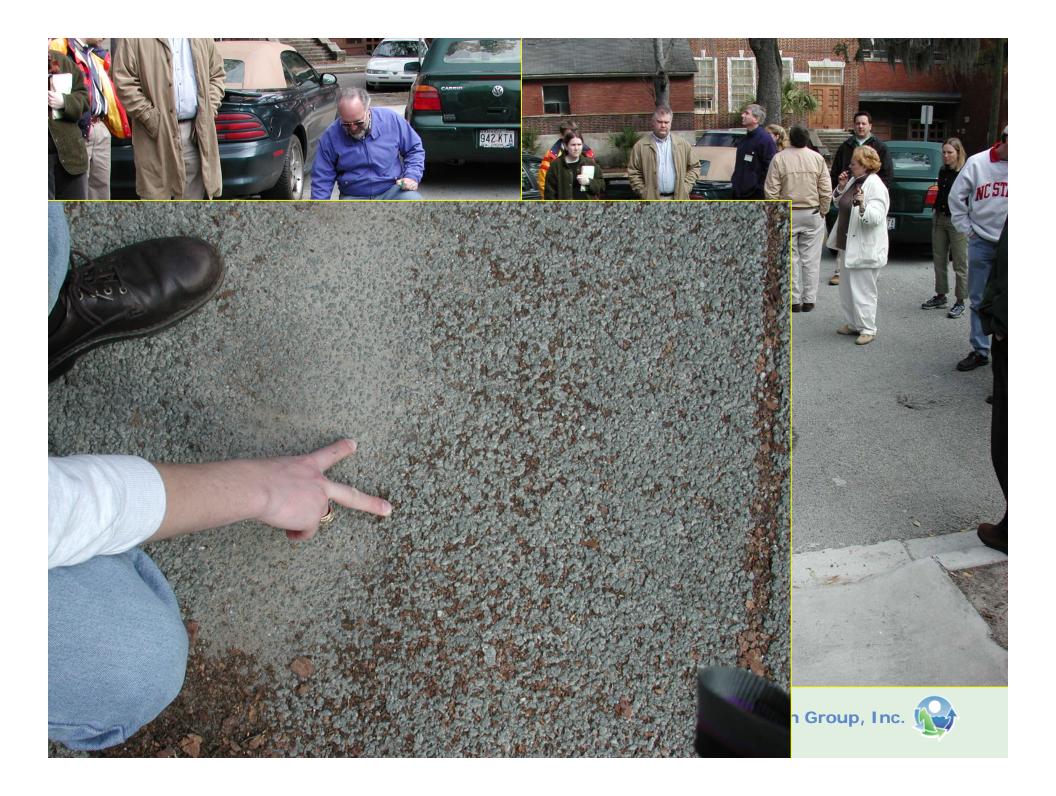
Pervious Concrete Surfaces

- Pages F-62 through F-69
 - Suppliers
 - General (ASTM References, QC, Testing, etc);
 - Materials; and
 - Execution;

Maintenance

- Areas shall not to be used for temporary ESC;
- Minimize use of sand and salt
- Keep adjacent landscape areas well maintained and stabilized
- Clean surface with vacuum sweepers
- Post signs identifying permeable pavement
- Do not repave with impermeable materials
- Grass pavers need mowing and often need reseeding of bare areas.

Reinforced turf



Application and location important

Limitations

- Not appropriate for high traffic/high speed areas - load bearing limitations and clogging potential
- Stormwater LUHPPLs and any area with a modest to high spill potential
- Areas with heavy winter sanding
- Expansive and fill soils
- Periodic maintenance a must (vacuum sweeper, mowing, paver block repair)
- To avoid frost heave: base designed to drain quickly (depth > 24 inches)

