WASTEWATER FORMULA SHEET

 π (pi) = 3.1416

Circumference of a Circle = (π) (Diameter)

SURFACE AREA:

Circle = (π) (Radius)² OR (1/4) (π) (Diameter)² OR 0.785 (Diameter) (Diameter)

Rectangle = (Length) (Width)

Triangle = (1/2) (Base) (Height)

VOLUME:

Circular Tank = (π) (Radius)² (Height) OR (1/4) (π) (Diameter)² (Height) OR 0.785 (Diameter) (Diameter) (Height)

Rectangular Tank = (Length) (Width) (Height)

Cone = (1/3) (π) (Radius)² (Height)

TEMPERATURE CONVERSIONS:

 $F^{\circ} = (C^{\circ} + 17.78)(1.8)$

 $C^{\circ} = (F^{\circ} - 32) (0.555)$

ELECTRICAL:

Watts = (VOLTS) (AMPS)

Volts = (AMPS) (RESISTANCE)

1Kw - hr = 2.93 X 10^{-4} BTU's

MISCELLANEOUS CONVERSIONS:

 $1 \text{ Acre} = 43,560 \text{ Feet}^2$

1 Feet³ = 7.48 Gallons

1 Gallon $(H_2O) = 8.34$ Pounds

 $1 \text{ Meter}^3 = 35.3 \text{ Feet}^3$

1 Gallon = 3.78 Liters

1 Pound = 0.45 Kilograms

Pounds (Lbs.)	= (flow MGD) (mg/l) (8.34 Lbs/Gal)
Detention Time (hrs)	$= (\underline{\text{Tank Vol. ft}^3}) (7.48 \text{ gal/ft}^3) (24 \text{ hrs/day})$ Flow (gal/day)
Sludge Age (days)	= (MLSS mg/l) (Aeration Tank Vol. MG) (8.34 lb/gal) (Prim. Eff. SS mg/l) (Flow MGD) (8.34 lb/gal)
Sludge Volume Index (ml/g)	= <u>(30 min. sett. solids in ml/l) (1000)</u> MLSS (mg/l)
Wasting Rate (MGD)	= <u>Solids to be wasted in Lbs/day</u> (RAS Conc. mg/l) (8.34 lb/gal)
Wasting Rate (pounds)	= <u>(Vol. of Aera. Tank in MG + Clarifiers in MG)</u> (Present MLSS – Desired MLSS) (8.34 lb/gal)
MCRT (days)	= <u>(Vol. of Aera. Tank + Clarifiers in MG) (MLVSS)</u> [(Flow in MGD) (Effluent VSS)] + [(WAS Flow) (Was VSS)]
RAS Rate (% of Flow)	= <u>30 min settleability in ml.</u> (1000 ml. – 30 min. settleability in ml.)
RAS Rate (MGD)	= <u>(RAS Settleable Solids in ml/l) (Flow in MGD)</u> (1000 ml/l – RAS Settleable Solids in ml/L)
Surface	
Loading Rate (gpd/ft ²)	$= \frac{\text{Flow in gpd}}{\text{Area in (ft.}^2)}$
Weir Overflow Rate (gpd/ft)	= <u>Flow in gpd</u> Weir Length in ft.
B.O.D. (mg/l)	= <u>(Initial D.O. – Final D.O.) (300)</u> Sample in ml.
B.O.D. (mg/l)	= <u>(Initial D.O. – Final D.O.) (100)</u> % Sample
Suspended Solids (mg/l)	$= \frac{(Wt_{.2} - Wt_{.1}) (1,000,000)}{Sample Size in ml.}$
Efficiency (%)	= <u>(Value IN – Value OUT) (100)</u> Value IN
Reduction of Volatile Matter (%)	= <u>(Value IN – Value OUT) (100)</u> (Value IN – [(Value IN)(Value OUT)]
$\frac{FOOD}{MASS} = \frac{LBS \text{ of Incoming "food"}}{LBS \text{ of Available Biomass}}$	= <u>(Flow MGD)</u> (Aera. Tank Influent BOD in mg/l)(8.34lb/gal) (MLVSS) (Aera. Tank Volume in MG) (8.34 lb.gal)
Geometric Mean	= (all the <u>individual</u> results multiplied together) ^{$1/total no. of samples$}