

SITE INVESTIGATION REPORT ADDENDUM FORMER TIDEWATER FACILITY PAWTUCKET, RHODE ISLAND

PREPARED FOR:

RIDEM Providence, Rhode Island

PREPARED BY:

GZA GeoEnvironmental, Inc. Providence, Rhode Island

September 2012 File No. 43654.00 GZA GeoEnvironmental, Inc.

Engineers and Scientists

September 11, 2012 GZA File No. 05.0043654.00-C

Mr. Joseph Martella Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street Providence, Rhode Island 02908

Re: Site Investigation Report Addendum

Former Tidewater MGP and Power Plant Site

Pawtucket, Rhode Island RIDEM Case No. 95-022

Dear Mr. Martella:

530 Broadway

401-421-4140 Fax: 401-751-8613

http://www.gza.com

Providence Rhode Island 02909

On behalf of our client, The Narragansett Electric Company d/b/a National Grid (National Grid), GZA GeoEnvironmental Inc. (GZA) is pleased to provide the attached *Site Investigation Report* (SIR) *Addendum* for the property located at the Former Tidewater MGP and Power Plant Site located in Pawtucket, Rhode Island (the Site).

The activities described herein were performed in general accordance with the RIDEM-approved August 2011 *Supplemental Site Investigation Work Plan* (SSIWP). This SIR Addendum presents the results of additional investigation activities performed along the western boundary of the South Fill Area (SFA) of the former Tidewater facility to address the applicable requirements of Section 7.00 of the <u>Rules and Regulations</u> for the <u>Investigation and Remediation of Hazardous Material Releases</u> (Remediation Regulations).

We look forward to continue to work cooperatively with RIDEM to advance this Site to compliance with the applicable regulations. Should you have any questions or comments regarding the information presented herein, please do not hesitate to contact the undersigned or Michele Leone at 781-907-3651.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Margaret S. Kilpatrick Senior Project Manager

401-421-4140 – margaret.kilpatrick@gza.com

John P. Hartley Principal

401-421-4140-john.hartley@gza.com

James J. Clark, P.E., LEP

Principal

860-858-3134 - james.clark@gza.com

CC: Ms. Michele Leone, National Grid

Attachment: Site Investigation Report Addendum

TABLE OF CONTENTS

			Page
1.00	INTR	ODUCTION	1
	1.10	PROJECT OBJECTIVE	1
	1.20	SCOPE OF WORK	2
	1.30	REPORT ORGANIZATION	2
2.00	SUPP	LEMENTAL SITE INVESTIGATION PROGRAM	3
	2.10	ABUTTER NOTIFICATION	3
	2.20	CRMC PERMITTING	3
	2.30	SOIL EXPLORATION PROGRAM	3
3.00	INVE	STIGATION RESULTS	6
4.00	SUM	MARY AND CONCLUSIONS	7
FIGU	IRES		
		1 LOCUS PLAN 2 SITE PLAN	
APPI	ENDICI	ES	
APPE APPE APPE APPE	ENDIX A Endix (Endix (Endix I Endix I	ABUTTERS NOTIFICATION CRMC PERMIT AND APPLICATION PACKAGE BORING LOGS DISPOSAL MANIFEST	
APPF	ENDIX F	LABORATORY DATA REPORT	

1.00 INTRODUCTION

On behalf of The Narragansett Electric Company, d/b/a National Grid (National Grid), GZA GeoEnvironmental Inc. (GZA) has prepared this *Site Investigation Report Addendum* describing additional investigation activities performed along the western boundary of the South Fill Area (SFA) of the former Tidewater facility in Pawtucket, Rhode Island (refer to Figure 1 for the Site *Locus Plan*). The former Tidewater facility encompasses approximately 23 acres and was the location of the former Tidewater Manufactured Gas Plant (MGP) and the Pawtucket No. 1 Power Station. The Site is also defined as Pawtucket Tax Assessors Plat (A.P.) 54B Lot 826, A.P. 65B Lots 662, 645, 647, 649 and portions of 648, and portions of A.P. 67B Lot 11. These properties are collectively referred to herein as the "Site."

This addendum describes the investigation that was performed consistent with the August 2011 Supplemental Site Investigation Work Plan (SSIWP), which was prepared by GZA and submitted to the Department. The SSIWP was prepared to describe the tasks necessary to further evaluate the extent of former MGP related materials present along the western boundary of the SFA. In 2010, investigations were performed consistent with the November 2009 and October 2010 SSIWPs submitted to the Department. The results of these investigations were combined with previous studies to develop a Site Investigation Data Report (SIDR), which was submitted to the Department in January of 2011. A Remedial Alternative Evaluation was also prepared and submitted to the Department on July 29, 2011. This evaluation, combined with the January 2011 SIDR, served to fulfill the requirements of Sections 7.03, 7.04, and 7.05 of the Remediation Regulations for a SIR. This report serves as an addendum to the SIR. For further information related to Site background and investigation activities, please refer to the SIR.

This report and its conclusions are subject to the Limitations presented in Appendix A and are subject to modification if subsequent information is developed by GZA or any other party.

1.10 PROJECT OBJECTIVE

The Site is located on the west side of the Seekonk River and is bound to the west by residential properties, to the south and southwest by the Francis J. Varieur School and Max Read Athletic Field, and to the north by undeveloped property owned by the City of Pawtucket. The Site is currently largely vacant with the exception of an active natural gas regulating station, an active switching station and electric substation, and two transmission towers all owned and operated by National Grid.

As presented in previous reports, the Site has been subdivided into four areas based on their geographic location, past use and/or past occupants. This report presents the results of investigations performed proximate to the western boundary of the South Fill Area (SFA). Figure 2, *Exploration Location Plan* presents the location and configuration of the area and depicts exploration locations.

Evidence of former MGP related materials was described on the log for test boring TB-18, which is located adjacent to the western limit of the SFA on A.P. 65B Lot 648 within the eastern boundary of the Max Read Field (see Figure 2). No other borings performed along the western limit of the SFA indicated the presence of former MGP related residuals. The MGP related materials at TB-18¹ included observations of purifier/tar/naphthalene-like odors and the presence of woodchips, ash and tar-like materials at approximately 2 to 27 feet below ground surface (bgs) and urban fill extending to approximately 32 feet bgs. The primary objective of the investigations described herein was to further evaluate the nature and extent of these materials along the western boundary of the SFA.

1.20 SCOPE OF WORK

The following summarizes the scope of these supplemental investigations which was performed consistent with our August 2011 SSIWP Addendum. Any deviations from the work plan were relatively minor and did not affect the generated data or the conclusions of this report.

- Performance of nine (9) additional soil borings along the western limit of the SFA to further characterize the nature and extent of previously identified MGP related materials. Soil samples were collected continuously during the performance of the borings. The samples were collected for soil classification, observation for the presence of environmental impacts, and field-screening. As described in the SSIWP, the extent of former MGP residuals was evaluated based on field observations. Analytical testing was limited to one composite sample of certain observed MGP residual material encountered during these explorations.
- Preparation of this SIR Addendum.

1.30 REPORT ORGANIZATION

This SIR Addendum is organized as follows:

- Section 1.00 provides an introduction to the project and presents the primary objective;
- Section 2.00 describes the supplemental investigations performed;
- Section 3.00 provides an evaluation of conditions encountered during the performance of these supplemental investigations; and Section 4.00 presents a summary of the addendum investigation results and our conclusions.

¹ Test borings performed by Atlantic Environmental Solutions (AES) in 1996

_

2.00 SUPPLEMENTAL SITE INVESTIGATION PROGRAM

Consistent with our August 2011 SSIWP Addendum and/or information subsequently requested by RIDEM, the scope of work for the supplemental investigation consisted of the following tasks:

- Abutter notification;
- Preparation of a Coastal Resource Management Council (CRMC) Assent modification request;
- Performance of soil borings; and
- Preparation of this SIR Addendum.

The following sections describe the scope of these activities.

2.10 ABUTTER NOTIFICATION

In accordance with Section 7.07A of the Remediation Regulations, GZA identified and subsequently provided notifications to the abutting property owners and tenants that environmental investigations were being performed at the Site. The abutter notifications were documented in a letter dated October 21, 2011, which was subsequently provided to the Department. A list of Site and abutting Site property owners and a copy of the notification is provided in Appendix B.

2.20 CRMC PERMITTING

As indicated on Figure 2, portions of the Site are within 200-feet of a coastal feature (the Seekonk River), and as such, these activities were subject to the jurisdiction of the CRMC. On August 10, 2011, a subsequent modification request to the existing CRMC "Finding of No Significant Impact" (FONSI, F2009-12-034) was submitted to CRMC to address the additional investigation activities presented in the August 2011 SSIWP Addendum. CRMC granted the request by issuing a CRMC Maintenance Assent No. A2010-10-051 dated August 11, 2011.

Copies of the FONSI modification request and the CRMC permits (F2009-12-034 and A2010-10-051 and F2009-12-034 [modified 8/11/2011]) are provided in Appendix C.

2.30 SOIL EXPLORATION PROGRAM

The following sections describe the exploration program completed in December 2011. Soil exploration locations are shown on Figure 2.

Soil Borings and Field Screening

Between December 19 and December 20, 2011, GZA observed the performance of nine (9) test borings (TB-342, TB-343, TB-344, TB-345, TB-346, TB-348, TB-349, TB-3

350 and TB-351) by Geologic Drilling of Norfolk, Massachusetts. All of the borings were advanced utilizing a Geoprobe TM rig. The borings were extended to depths ranging from 12 to 32 feet bgs. Soil samples were collected continuously during the advancement of the borings at approximately 4-foot intervals with a 2-inch acetate sampler for the primary purposes of visual and olfactory classifications.

A GZA field engineer was present during all exploration activities to coordinate and document subsurface conditions, classify soils, prepare boring logs, and field-screen soil samples. Visual observations of impacted soils were noted on the boring logs in accordance with the following soil classification key, which was used consistently by our field staff.

Sheen - Iridescent petroleum-like sheen.

Stained - Used with color (*i.e.*, black or brown stained) to indicate that the soil matrix is stained a color other than the natural (non-impacted) color.

Coated - Soil grains are coated with free product however there is not sufficient free phase material present to saturate the pore spaces.

Blebs - Discrete sphericals of free product were observed but for the most part the soil matrix was not visibly contaminated or saturated. Typically this is residual product.

Saturated - The entirety of the pore space of a sample occupied by free product (rather than groundwater). Depending on viscosity, free phase saturated materials may freely drain from a soil sample.

Petroleum or Oil - Used to characterize free and/or residual product that exhibits a distinct fuel oil or diesel fuel-like odor.

Tar - Used to describe free and/or residual product that exhibits a distinct "coal tar" type odor (*e.g.*, naphthalene-like odor). Weathered tars may not exhibit an odor and are identified on a visual basis. Colors of product can be brown, black, reddishbrown, or gold.

Solid Tar - Used to describe product that is solid or semi-solid phase. The magnitude of the observed solid tar is described (*e.g.*, discrete granules or a solid layer) in the boring logs.

Purifier Material- Purifier materials are commonly identified by their distinctive blue/green color. Other colors may be present including indigo (deep blue) or brown/rust. Typically purifier materials contain wood chips, oyster or clam shells or granular material. The material may have a distinctive sulfur-like odor when freshly exposed to air.

Coal Ash /Clinker - Odorless, grey or black in color. Clinker may exhibit glazing.

GZA personnel photo-documented the soil within each interval during the advancement of the borings. Copies of the photos have not been included as an appendix to this report, but can be provided upon request. Please refer to the boring logs attached in Appendix D for a description of subsurface conditions and the results of field screening.

Fill material was classified on the boring logs by GZA personnel according to the following stratum categories: urban fill or fill. "Urban fill" is defined as soils with evidence of anthropogenic impacts (coal, brick, ash, slag, concrete or other similar material) or as soils

with evidence of material that is not native, but with no MGP-like residuals or visual or olfactory impacts. "Fill" is defined as soil with evidence of MGP residuals (i.e., coal tar odors/staining, purifier box-like odors, blue staining and/or presence of wood chips).

All soil samples recovered during the program were screened in the field for Total Volatile Organic Compounds (TVOCs) with a MiniRAE® PID equipped with a 10.6 eV lamp and hydrogen cyanide (HCN) with a GasBadge Pro® equipped with a HCN sensor and jar-head space technique. The MiniRAE® PID measures relative levels of TVOCs referenced to a benzene in-air-standard. Although the PID screening cannot be directly used to quantify TVOC concentrations or to identify individual compounds, the results can serve as a relative indicator of TVOC levels. The GasBadge Pro® measures HCN concentrations in air above background levels as compared to a set standard. The TVOC and HCN screening results are provided on the boring logs in Appendix D.

Upon achieving the desired depth, each boring was backfilled with drill cuttings to a depth approximately 2 feet below grade and backfilled with clean sand provided in bags by the drilling subcontractor to a depth coincident with the existing ground surface. Wash water (*i.e.*, decontamination water) and spent personal protective equipment (PPE) generated during the drilling program were placed in 55-gallon drums for subsequent off-Site disposal. All investigation derived wastes (IDWs) were transported off-Site by Clean Harbors Environmental Services, Inc. (CHES) of East Providence, Rhode Island. Wash water and PPE drums were transported by CHES to their facility in Braintree, Massachusetts. Copies of shipping records for the IDWs are included in Appendix E.

Analytical Testing

As described in the SSIWP, visual observations of subsurface materials encountered were used to evaluate nature and extent of former MGP residuals. One composite sample was analyzed from TB-349 (0 to 6 feet bgs). This interval contained evidence of MGP-like residuals, including woodchips, coal tar-like coating, purifier box-like odors and blue staining. A sample of this material was analyzed for the purpose of providing data that would aid in the development of plans (soil management, health and safety) associated with potential future construction activities associated with Max Read Field. This sample was analyzed for VOCs via EPA Method 8260B, semi-volatile organic compounds (SVOCs) via EPA Method 8270C, RCRA-8 Total Metals via EPA Methods 3050B/6000/7000, total petroleum hydrocarbons (TPH) via EPA Method 8100 Modified, polychlorinated biphenyls (PCBs) via EPA Method 8082, Sulfur Content via ASTM D-4239, total cyanide via EPA Method 9012B and corrosivity (pH) via EPA Method 9045. The sample was packed in an ice chest and transported under chain-of-custody protocol to ESS Laboratory in Cranston, Rhode Island. A copy of the analytical results and chain-of-custody forms are presented in Appendix F.

Health and Safety/Air Monitoring

This investigation activity was conducted in accordance with the Site-specific Health and Safety Plan prepared by GZA. Prior to drilling operations, an exclusion zone

was set-up around the rig to limit public access to the work area. This exclusion zone was maintained and modified as needed during the work activities. Consistent with the SSIWP, during intrusive drilling operations, GZA personnel also collected periodic TVOC readings of the worker breathing zone and work zone perimeter (*i.e.*, 50 feet from the drill rig). For worker breathing zone, the TVOC action limit was set at 20 ppmv. The work zone perimeter action limit was set at 1 ppmv TVOC. Neither of these levels were triggered during the work.

3.00 INVESTIGATION RESULTS

Investigations performed during this December 2011 drilling program included the advancement of nine (9) borings along the western boundary of the SFA (TB-342, TB-343, TB-344, TB-345, TB-346, TB-348, TB-349, TB-350 and TB-351). These borings ranged in depth from 12 to 32 feet bgs. In general, the soil was identified as fills underlain by native sands. The fill thicknesses observed ranged from 5 to 28 feet, with more significant thicknesses occurring closest to the boundary of the former Tidewater facility. The fill in this area are characterized by brick fragments, slag, ash and coal fragments.

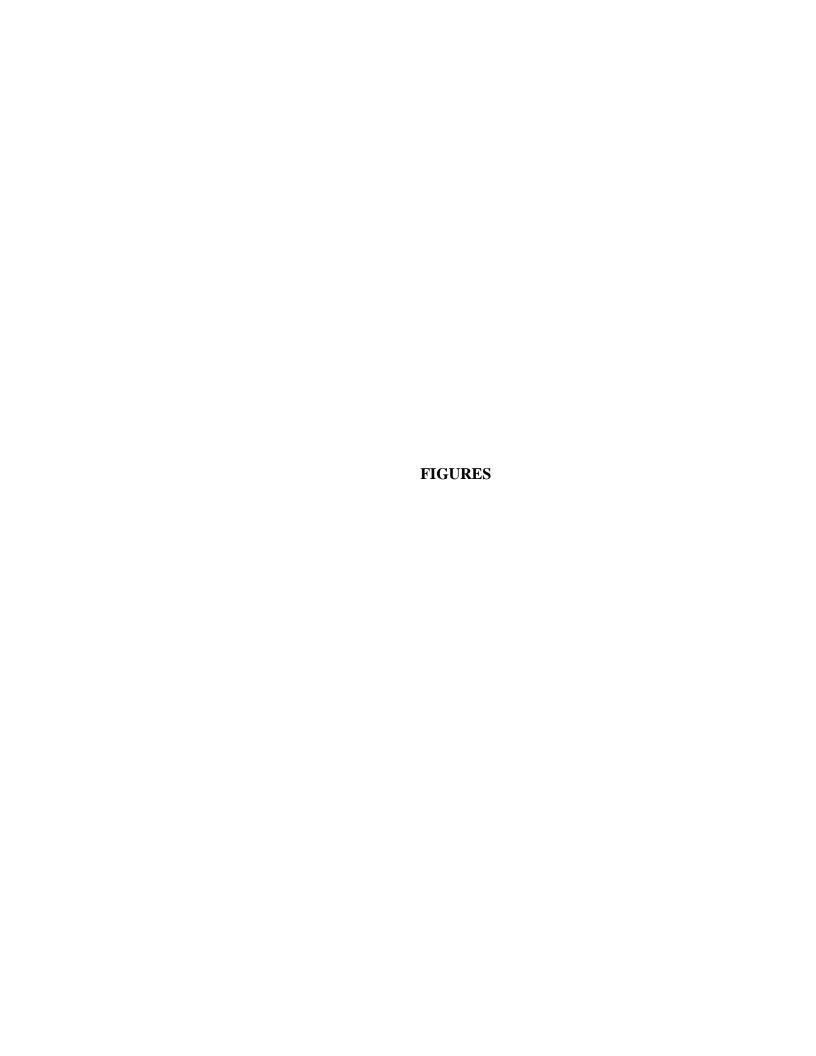
Observations of former MGP related residuals (*i.e.*, coal tar odors/staining, purifier box-like odors, blue staining and/or presence of wood chips) were noted only in explorations proximate to TB-18; specifically borings TB-345, TB-348, TB-349 and TB-351. These former MGP residuals were observed at depths ranging from 2 to 22 feet bgs. TVOC concentrations were noted in headspace screening samples from the following locations/depth intervals: TB-349 from 2 to 4 feet bgs at 25.7 ppmv and in TB-351 from 8 to 10 feet bgs at 12.5 ppmv and 10 to 12 feet bgs at 26 ppmv. TVOCs were not detected at any other depths/locations. No HCN concentrations were detected. In general, observed impacts were limited to the fill unit, however, in TB-349, slight purifier box-like odors continued into the native outwash (at approximately 6 feet bgs), and in TB-345, slight petroleum-like odors and blue staining was present (at approximately 13 feet bgs) within the native sand layer directly below the fill unit.

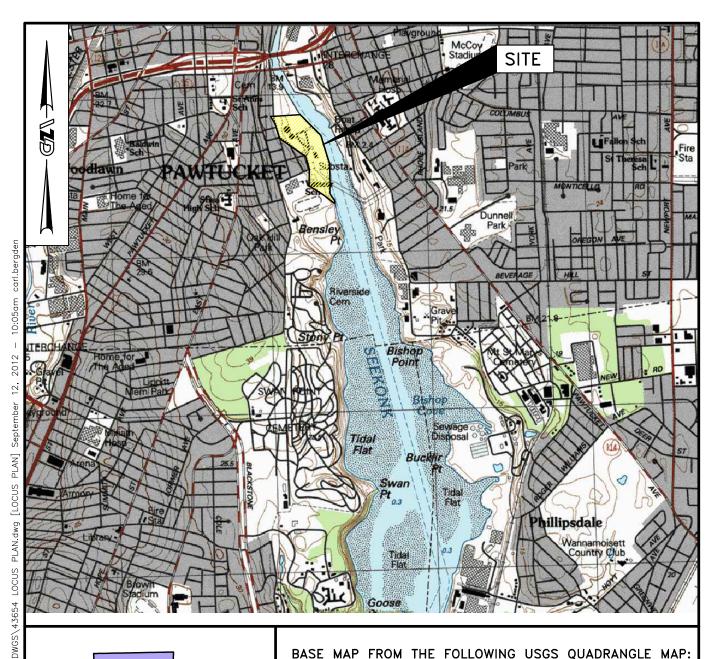
The limited observation of MGP related residuals in this area is consistent with previous investigations performed between 1986 and 1996² in this area of the Max Read Field. Historic explorations in this particular area included surface soil samples RIDEM SS-3, SS-16, and SS-18 and test borings TB-1, TB-18, and TB-19. These explorations locations are shown on Figure 2. Evidence of MGP residuals were only noted in TB-18.

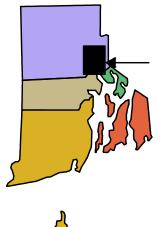
As presented in Appendix F, results of the composite sample collected from TB-349 during the December 2011 investigation indicated the presence of elevated TPH (3,150 mg/kg), arsenic (30.7 mg/kg) and SVOCs (total SVOCs = 283.7 mg/kg). The detected

² Surface soil samples (RIDEM SS-3 and RIDEM SS-9) collected by RIDEM were collected in 1986 and all other surface soil samples and borings were performed by AES in 1996.

concentrations were indicative of the presence of MGP residuals and observations made during performance of this boring.


4.00 SUMMARY AND CONCLUSIONS




A total of nine soil borings were completed along the western limit of the SFA for the purpose of further evaluating the nature and extent of MGP residuals observed in TB-18 (test boring located proximate to the western limit of the SFA). Materials encountered during advancement of the borings were screened for visual and olfactory indicators of impact. Subsurface materials were generally identified as fill underlain by native sands. In four of the seven borings, the fill contained evidence of MGP residuals (coal tar odors/staining, purifier box-like odors, blue staining and/or presence of wood chips). Based on a review of the borings performed during this program and those completed previously, observations of MGP residuals east of the fence line between the SFA and Max Read Field are limited to an approximately 60 to 70 foot radius from TB-18 and are located at depths of greater than 2 feet below ground surface. No evidence of MGP residuals were observed in surface soils (0 to 2 feet bgs).

The observations made during this supplemental investigation program do not alter the conclusions presented in the July 2011 *Remedial Alternative Evaluation*. As described previously, the information presented herein will be of use in the development of plans associated with any future activities in this portion of Max Read Field that involve disturbance of subsurface materials.

J:\ENV\43654.msk\Reports\Addendum to SI\43654 SI Addendum 9-10-12 final.docx

BASE MAP FROM THE FOLLOWING USGS QUADRANGLE MAP: PROVIDENCE, RI (2001)

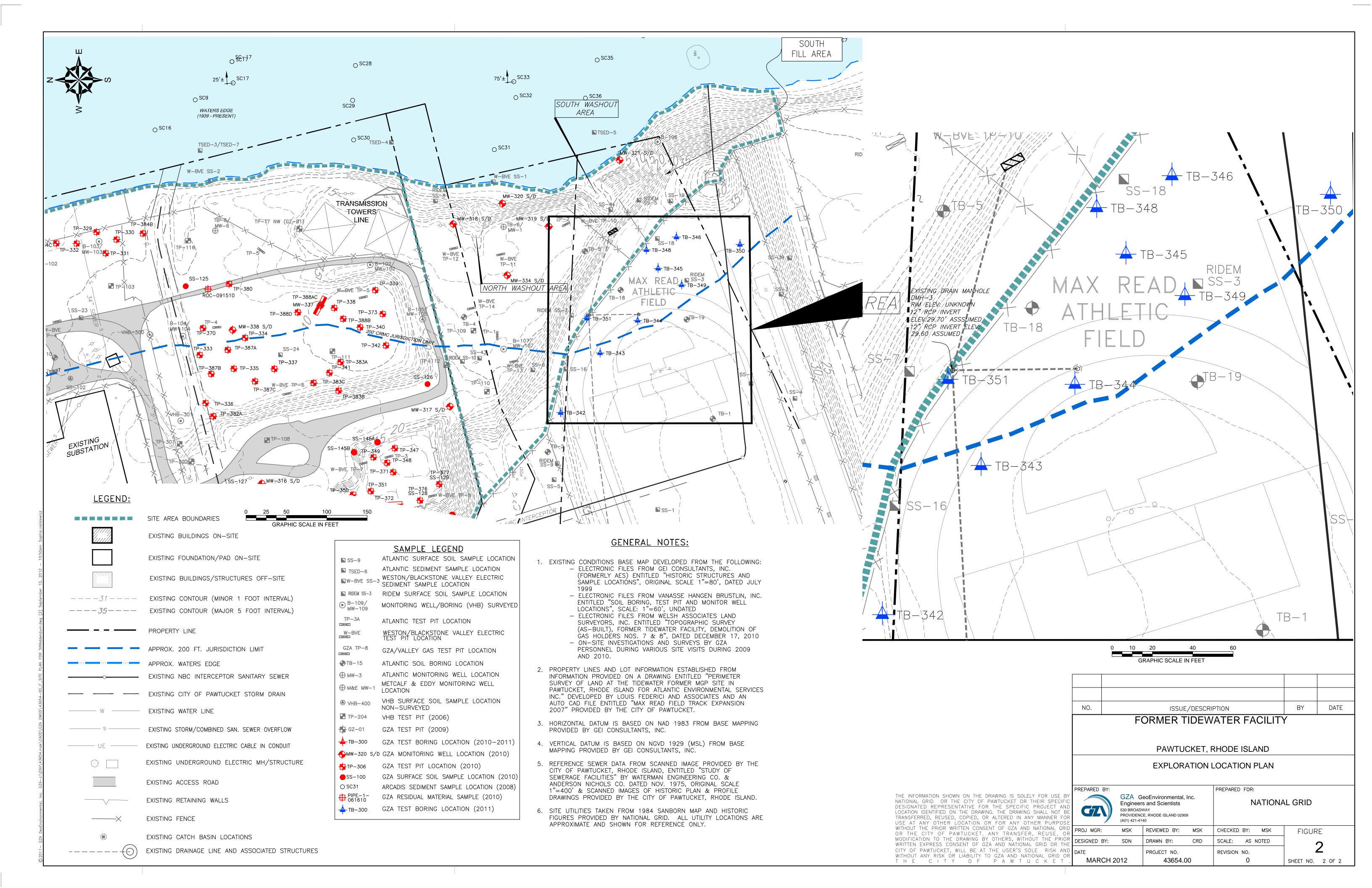
DIGITAL TOPOGRAPHIC MAPS PROVIDED BY MAPTECH. INC.

CONTOUR ELEVATIONS REFERENCE NGVD 29,
CONTOURS ARE SHOWN IN METERS ABOVE NVGD AT 3 METER INTERVALS

APPROXIMATE SCALE IN FEET

' 500' 1000' 2000'

TIDEWATER FACILITY


PAWTUCKET, RHODE ISLAND

LOCUS PLAN

SEPTEMBER 2012

FIGURE NO. 1

© 2010 - GZA GeoEnvironmental, Inc. GZA-J:\ENV\43654.msk\CADD\GZA

APPENDIX A

LIMITATIONS

LIMITATIONS

- 1. This Site Investigation Report Addendum has been prepared on behalf of and for the exclusive use of The Narragansett Electric Company d/b/a National Grid (National Grid) and the City of Pawtucket (City of Pawtucket), solely for use in documenting the work completed as described herein at the Former Tidewater MGP and Power Plant Site ("Site") under the applicable provisions of the State of Rhode Island Department of Environmental Management Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Remediation Regulations). This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, nor used by any other party in whole or in part, without the prior written consent of GZA GeoEnvironmental, Inc.(GZA) or National Grid or City of Pawtucket.
- 2. GZA's work was performed in accordance with generally accepted practices of other consultants undertaking similar studies at the same time and in the same geographical area, and GZA observed that degree of care and skill generally exercised by other consultants under similar circumstances and conditions. GZA's findings and conclusions must be considered not as scientific certainties, but rather as our professional opinion concerning the significance of the limited data gathered during the course of the study. No other warranty, express or implied is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during the work described herein.
- 3. The observations described in this report were made under the conditions stated therein. The conclusions presented in the report were based upon services performed and observations made by GZA.
- 4. In the event that National Grid, City of Pawtucket or others authorized to use this report obtain information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.
- 5. The conclusions and recommendations contained in this report are based in part upon the data obtained from environmental samples obtained from relatively widely spread subsurface explorations. The nature and extent of variations between these explorations may not become evident until further exploration. If variations or other latent conditions then appear evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. The generalized soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and have been developed by interpretations of widely spaced explorations and samples; actual soil transitions are probably more gradual. For specific information, refer to the boring logs.

- 7. In the event this work included the collection of water level data, these readings have been made in the test pits, borings and/or observation wells at times and under conditions stated on the exploration logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall and other factors different from those prevailing at the time measurements were made.
- 8. The conclusions contained in this report are based in part upon various types of chemical data and are contingent upon their validity. These data have been reviewed and interpretations made in the report. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time, and other factors. Should additional chemical data become available in the future, these data should be reviewed by GZA and the conclusions and recommendations presented herein modified accordingly.

APPENDIX B

ABUTTER NOTIFICATION

GZA GeoEnvironmental, Inc.

Engineers and Scientists

This is an important notice. Please have it translated.

Este é um aviso importante. Queira mandá-lo traduzir. Este es un aviso importante. Sírvase mandarlo traducir. Avis important. Veuillez traduire immediatement. ĐÂY LÀ MỘT BẮN THÔNG CÁO QUAN TRỌNG XIN VUI LÔNG CHO DỊCH LẠI THÔNG CÁO ÂY Questa è un' informazione importante, si preqa di tradurla. Это очень важное сообщение. Пожалуйста, попросите чтобы вам его перевели.

530 Broadway Providence Rhode Island 02909 401-421-4140 Fax: 401-751-8613 http://www.gza.com October 21, 2011 File No. 05.0043654.00-C

City of Pawtucket 137 Roosevelt Avenue Pawtucket, Rhode Island 02860

Re: Notice to Abutter

Supplemental Site Investigation Work Plan Addendum – Max Read Field

Former Tidewater Facility Pawtucket, Rhode Island RIDEM Case No. 95-022

Dear Abutter:

The purpose of this letter is to notify you that The Narragansett Electric Company d/b/a National Grid (National Grid) will be conducting additional environmental investigation activities associated with the former Tidewater Manufactured Gas Plant (MGP) and the former Pawtucket No. 1 Power Station Site located at the ends of Tidewater and Merry Streets in Pawtucket, Rhode Island. This notice is being provided to abutting property owners and tenants in accordance with requirements established in the Rhode Island Department of Environmental Management's (RIDEM) <u>Rules and Regulation for the Investigation and Remediation of Hazardous Materials</u> (Remediation Regulations). Should you be an owner of property that is leased, we request that you provide a copy of this letter to your tenants.

The purpose of the upcoming additional subsurface investigation is to further investigate certain data gaps identified following completion of recent Site investigation activities at the Site. Specifically, the proposed investigation is being completed to address the visual observations of fill materials proximate to the eastern boundary of the Max Read Field. The investigation will include advancement of up to 5 test boring locations using a direct-push Geoprobe® rig. The field activities are scheduled to commence on or about November 7, 2011, and will occur over an approximate 2 to 3 day period.

The proposed activities are further detailed in a *Supplemental Site Investigation Work Plan* (SSIWP) *Addendum* submitted to the Rhode Island Department of Environmental Management (RIDEM) in August 2011. There is a 14-day comment period, commencing with the date of delivery of this notice, during which the public may review RIDEM records pertaining to this property and submit written comments regarding the proposed investigation activities described herein. Copies of the submittal referenced above can be obtained on RIDEM's website (http://www.dem.ri.gov/programs/benviron/waste/tide.htm). These investigation activities will be conducted in accordance with RIDEM's Remediation Regulations and will be performed by GZA GeoEnvironmental, Inc. (GZA) on behalf of National Grid.

If you would like more information or have any questions, please contact Michele Leone of National Grid at 781-907-3651.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Margaret S. Kilpatrick, P.E. Senior Project Manager

James J. Clark, P.E. Principal

Jones J. Clark

MSK/JJC:tja

cc: Joe Martella, RIDEM

Michele Leone, National Grid

J:\ENV\43654.msk\Corresp\Abutter Ltr Max Read Field\43654 00 Max Read Field Drilling abutter notification.docx

Abutters List-Site Investigation Former Tidewater MGP Site Pawtucket, Rhode Island

Plat	Lot	Owner(s)	Property Address	Mailing Address
65B	646	N/F City of Pawtucket	486 Pleasant Street	137 Roosevelt Avenue Pawtucket, RI 02860
65B	649	N/F National Grid	Pleasant Street	c/o Properties Dept. 40 Sylvan Road Waltham, MA 02451
65B	594	N/F City of Pawtucket	486 Pleasant Street	137 Roosevelt Avenue Pawtucket, RI 02860
67B	11	N/F City of Pawtucket	Pleasant Street	137 Roosevelt Avenue Pawtucket, RI 02860

NF = Now or formerly of

Abutters' information (names and property addresses) obtained on July 11, 2011 from "Appraisal Vision Assessor's Online Database for Pawtucket, Rhode Island," last updated June 17, 2011.

J:\ENV\43654.msk\Corresp\Abutter Ltr Max Read Field\Abutters SI FONSI Updated 7-11.doc

APPENDIX C

CRMC PERMIT AND APPLICATION PACKAGE

COASTAL RESOURCES MANAGEMENT COUNCIL

Oliver H. Stedman Government Center 4808 Tower Hill Road, Suite 3 Wakefield, R.I. 02879-1900

FINDING OF NO SIGNIFICANT IMPACT *Modified 08/11/2011*

August 11, 2011

(401) 783-3370

FAX: (401) 783-3767

Narragansett Electric Co. d/b/a National Grid Att: Amy McKinnon 40 Sylvan Road, E3716 Waltham, MA 02451

RE: CRMC Assent No. F2009-12-034

Site: Taft Street, Pawtucket

Plat: 54|65B Lot: 826|645,647,648,649

Project Description: Perform test borings, test pits, surficial soil sampling and to install groundwater monitering wells, at the former Tidewater Facility as show on the plans submitted to CRMC on December 11, 2009. Modified 8/11/2011, To allow (3) additional test borings at same location.

The Coastal Resources Management Council has reviewed your project proposal and has determined the findings of no significant impact on coastal resources. This project will expire July 1, 2016. IF this project involves excess excavated materials, excess soils, excess construction materials, and debris (including any destructed materials) these materials shall be removed from the site and disposed of at an inland landfill or a suitable and legal upland location. If the project involves earthwork, appropriate erosion controls shall be utilized. All applicable policies, prohibitions, and standards of the RICRMP shall be upheld.

<u>CAUTION</u>: The limits of authorized work shall be only for that which was approved by the CRMC. Any activities or alterations which deviate from the approved plans will require a separate application and review. If the information provided to the CRMC for this review is inaccurate or did not reveal all necessary information or data, then this permit may be found to be null and void. Plans for any future alteration of the shoreline or construction or alteration within the 200' zone of CRMC jurisdiction or in coastal waters must be submitted for review to the CRMC prior to commencing such activity. Under no circumstances will this permit authorize any work which is considered prohibited under any of the sections of the Rhode Island Coastal Resources Management Program.

Permits, licenses or easements issued by the Council are valid only with the conditions and stipulation under which they are granted and imply no guarantee of renewal. The initial application or an application for renewal may be subject to denial or modification. If an application is granted, said permit, license and easement may be subject to revocation and/or modification for failure to comply with the conditions and stipulations under which the same was issued or for other good cause.

Applicant agrees that as a condition to the granting of this assent, members of the Coastal Resources Management Council or its staff shall have access to applicant's property to make on-site inspections to insure compliance with the assent.

A copy of this authorization to perform construction related activities shall be kept on site and available for inspection. NOTE: Failure to have this letter on site or work in excess of your proposal constitutes a violation under this program.

Sincerely,

Thomas A. Medeiros
CRMC Engineer

Coastal Resources Management Council

/rcm

COASTAL RESOURCES MANAGEMENT COUNCIL

Oliver H. Stedman Government Center 4808 Tower Hill Road, Suite 3 Wakefield, R.I. 02879-1900

(401) 783-3370 FAX: (401) 783-3767

FINDING OF NO SIGNIFICANT IMPACT

December 11, 2009

Narragansett Electric Co. d/b/a National Grid Att: Amy McKinnon 40 Sylvan Road, E3716 Waltham, MA 02451

RE:

CRMC Assent No. F2009-12-034 Site: Taft Street, Pawtucket

Plat: 54|65B Lot: 826|645,647,648,649

Project Description: Preform test borings, test pits, surfical soil sampling and to install groundwater monitoring wells, at the former Tidewater Facility as show on the plans submitted to CRMC on December 11, 2009.

The Coastal Resources Management Council has reviewed your project proposal and has determined the findings of no significant impact on coastal resources. This project must be completed within three (3) years of the date of this notification. If this project involves excess excavated materials, excess soils, excess construction materials, and debris (including any destructed materials) these materials shall be removed from the site and disposed of at an inland landfill or a suitable and legal upland location. If the project involves earthwork, appropriate erosion controls shall be utilized. All applicable policies, prohibitions, and standards of the RICRMP shall be upheld.

<u>CAUTION</u>: The limits of authorized work shall be only for that which was approved by the CRMC. Any activities or alterations which deviate from the approved plans will require a separate application and review. If the information provided to the CRMC for this review is inaccurate or did not reveal all necessary information or data, then this permit may be found to be null and void. Plans for any future alteration of the shoreline or construction or alteration within the 200' zone of CRMC jurisdiction or in coastal waters must be submitted for review to the CRMC prior to commencing such activity. Under no circumstances will this permit authorize any work which is considered prohibited under any of the sections of the Rhode Island Coastal Resources Management Program.

Permits, licenses or easements issued by the Council are valid only with the conditions and stipulation under which they are granted and imply no guarantee of renewal. The initial application or an application for renewal may be subject to denial or modification. If an application is granted, said permit, license and easement may be subject to revocation and/or modification for failure to comply with the conditions and stipulations under which the same was issued or for other good cause.

Applicant agrees that as a condition to the granting of this assent, members of the Coastal Resources Management Council or its staff shall have access to applicant's property to make on-site inspections to insure compliance with the assent.

A copy of this authorization to perform construction related activities shall be kept on site and available for inspection. NOTE: Failure to have this letter on site or work in excess of your proposal constitutes a violation under this program.

Sincerely,

Thomas A. Medeiros

CRMC Engineer

Coastal Resources Management Council

State of Khode Island and Providence Plantations

COASTAL RESOURCES MANAGEMENT COUNCIL NOTICE OF

ASSENT

City/Town of Pawtucket	Said construction operations to be done in accordance with an approved assent on file in the Offices of the Coastal Resources Management Council and subject further to all the provisions of the building ordinances of the:	Plat No. 54 65B Lot No. 826 645,647,648,649	situated at Taft Street		Pacility as show on the plans submitted to CRMC on December 11, 2009.	n te	This certifies that Narragansett Flectric Co. d/b/a National Grid	CRMC Assent No.: A2009-12-034 Date: December 11, 2009
	S					lewater		

Official Designee
Coastal Resources Management Council

and to all the applicable State, Local and Federal provisions. This assent shall expire three (3) years from date of issuance.

FAILURE TO DISPLAY WILL RESULT IN LEGAL ACTION. THIS CARD MUST BE DISPLAYED IN A CONSPICUOUS PLACE ON THE PREMISES. APPENDIX D

BORING LOGS

TEST BORING LOG National Grid EXPLORATION NO.: **GZA Former Tidewater Facility** SHEET: 1 of 2 GeoEnvironmental, Inc. PROJECT NO: 43654.00 **Pawtucket** Engineers and Scientists Rhode Island **REVIEWED BY: SDN/MSK** Logged By: SDN/WF Type of Rig: GeoProbe H. Datum: Boring Location: See Plan NAD 1983 Drilling Co.: Geologic Drilling Ground Surface Elev. (ft.): Rig Model: Foreman: D. Jacobs Final Boring Depth (ft.): 16 V. Datum: Drilling Method Direct Push Date Start - Finish: 12/19/2011 - 12/19/2011 **NGVD 1929** Groundwater Depth (ft.) Hammer Type: None Sampler Type: SS Date Water Depth Time Stab. Time Hammer Weight (lb.): Sampler O.D. (in.): 2.0 Hammer Fall (in.): Sampler Length (in.): Auger or Casing O.D./I.D Dia (in.): **Rock Core Size:** Sample Stratum Field Remarl ⊕ Description & ± Depth Sample Description Depth Pen. Rec. Blows **Equipment Installed** Test (ft) No. Modified Burmister (ft.) (in) (in) (per 6 in.) Data S-1 48 13 No Equipment Installed 0 - 4S-1: (0 - 2.5") Brown topsoil ND 0.75 TOPSOIL (2.5 - 4"') Light brown (10YR, 5/6) fine to coarse SAND, little Gravel, trace Silt, Moist ND 1 (4 - 13") Black (10 YR, 2/1) fine to coarse SAND, trace(+) Silt, trace Gravel, trace Brick, trace Slag, S-2 4-8 48 11 S-2: Black (10YR, 2/1) fine to coarse SAND, trace ND Silt, trace Gravel, trace Slag, trace Asphalt, Moist 5 ND Urban Fill S-3 8-12 48 12 S-3: (0 - 11.75") - Black (10 YR, 2/1) fine to coarse SAND, trace Silt, trace Gravel, trace Coal, trace brick, trace porcelain, moist ND (11.75 - 12") Gray (10 YR, 4/1) fine SAND, trace Silt, stratified, moist 10 11.75 S-4 12-16 48 34 S-4: (0-34") Gray (10 YR, 4/1) fine SAND, trace Silt, ND stratified, moist ND Native Sand 15

1 - Soil samples screened with a 10.6eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million/volume air (ppmv) relative to benzene in air and above background readings. Soil samples are screened with a Gasbadge Pro equipped with a hydrogen cyanide sensor. The values represent meter response in parts per million/volume air (ppmv) relative to hydrogen cyanide in air and above background readings. Field data is reported as PID readings followed by HCN readings. All samples are photo documented. ND=Not Detected above background. NR=No Readings.

2 - No groundwater encountered.

TEMPLATE TEST BORING W/EQUIP 300; 4/5/2012; 2:01:14 PM

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

	TEST BORING LOG													
	(GZA GeoEr Enginee	viro	nm l Scie	ental, Inc	:.	National (Former Tidewat Pawtuck Rhode Isl	er Facility et		SI	KPLORATIO HEET: ROJECT NO EVIEWED B'	2 of 2 : 43654.0	00	
Drilli	ged By ing Co man:	r: SDN/ :: Geold D. Jac	gic D	rilling)		Type of Rig: GeoProbe Rig Model: Drilling MethodDirect Push	Boring Lo Ground S Final Bor Date Star	Surface ing Dep	Elev. oth (ft.	(ft.):	2/19/2011	V. Da	NAD 1983
Ham Ham	mer W	ype: No /eight (l all (in.): asing C	b.):	D Dia	ı (in.):		Sampler Type: SS Sampler O.D. (in.): 2.0 Sampler Length (in.): Rock Core Size:			е	Groundw Time	vater Dep Water I		Stab. Time
Depth (ft)	No.	Depth (ft.)	Pen. (in)	Rec.	Blows (per 6 in.)		Sample Description Modified Burmister	,	N Remark	Field Test Data	Stratu E Descrip	otion S. (ft.)	Eq	uipment Installed
20						End of e	xploration at 16 feet.		2		Native S	Sand		
- 25 _ -														
REMARKS 000														

GZA TEMPLATE TEST BORING W/EQUIP 300; 4/5/2012; 2:01:14 PM

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

TEST BORING LOG National Grid EXPLORATION NO.: **GZA Former Tidewater Facility** SHEET: 1 of 2 GeoEnvironmental, Inc. PROJECT NO: 43654.00 **Pawtucket** Engineers and Scientists Rhode Island **REVIEWED BY: SDN/MSK** Logged By: SDN/WF H. Datum: Type of Rig: GeoProbe Boring Location: See Plan NAD 1983 Drilling Co.: Geologic Drilling Ground Surface Elev. (ft.): Rig Model: Foreman: D. Jacobs Final Boring Depth (ft.): 16 V. Datum: Drilling Method Direct Push Date Start - Finish: 12/19/2011 - 12/19/2011 **NGVD 1929** Groundwater Depth (ft.) Hammer Type: None Sampler Type: SS Date Water Depth Time Stab. Time Hammer Weight (lb.): Sampler O.D. (in.): 2.0 Hammer Fall (in.): Sampler Length (in.): Auger or Casing O.D./I.D Dia (in.): **Rock Core Size:** Sample Stratum Remark Field Description & # Depth Sample Description Depth Pen. Rec. Blows **Equipment Installed** Test (ft) No. Modified Burmister (ft.) (in) (in) (per 6 in.) Data S-1 48 14 No Equipment Installed 0-4 S-1: (0 1.75") Brown topsoil, dry ND 0.5 TOPSOIL (1.75 - 14") Brown (10 YR, 5/6) fine to coarse SAND, some (-) Silt, trace Gravel, moist ND 1 S-2 4-8 48 13 S-2: (0-6.5") Brown (10 YR, 5/6) fine to coarse ND SAND, trace (+) Gravel, trace (+) Silt, trace clinker, Urban Fill 5 trace Brick, trace Slag, moist (6.25-13") Black (10 YR, 2/1) fine to medium SAND, trace Gravel, trace Silt, trace Slag, moist S-3 8-12 48 25 S-3: (0-5") Black (10 YR, 2/1) fine to medium SAND, ND trace Gravel, trace Silt, trace Slag, moist 8.75 (5-25") Gray (10 YR, 4/1) fine SAND, trace Silt, ND moist 10 Native Sand 32 S-4 12-16 48 S-4: Gray (10 YR, 4/1) fine SAND, trace Silt, moist ND ND 15

1 - Soil samples screened with a 10.6eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million/volume air (ppmv) relative to benzene in air and above background readings. Soil samples are screened with a Gasbadge Pro equipped with a hydrogen cyanide sensor. The values represent meter response in parts per million/volume air (ppmv) relative to hydrogen cyanide in air and above background readings. Field data is reported as PID readings followed by HCN readings. All samples are photo documented. ND=Not Detected above background. NR=No Readings.

2 - No groundwater encountered.

TEMPLATE TEST BORING W/EQUIP 300; 4/5/2012; 2:01:16 PM

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

	TEST BORING LOG													
		GZA GeoEt Enginee	iviro	nm l Scie	ental, Inc	:.	National (Former Tidewat Pawtuck Rhode Isl	er Facility et		SI	KPLORATIO HEET: ROJECT NO EVIEWED B'	2 of 2 : 43654.0	00	
Dril	ged By ling Co eman:	r: SDN/ b.: Geolo D. Jac	gic D	rilling)		Type of Rig: GeoProbe Rig Model: Drilling MethodDirect Push	Boring Lo Ground S Final Bor Date Star	Surface ing Dep	Elev. oth (ft.	(ft.):	2/19/2011	V. Da	NAD 1983
Han Han	nmer W	ype: No /eight (l all (in.): asing C	b.):	D Dia	ı (in.):		Sampler Type: SS Sampler O.D. (in.): 2.0 Sampler Length (in.): Rock Core Size:			е	Groundwater Dept			Stab. Time
Dept (ft)	h No.	Depth (ft.)	Samp Pen. (in)	Rec.	Blows (per 6 in.)		Sample Description Modified Burmister		N Remark	Field Test Data	Stratu Stratu Descrip	otion Š. (f.)	Eq	uipment Installed
20 _	-					End of e	xploration at 16 feet.		2		Native S	Sand		
25 __	-													
REMARKS 05	-													

GZA TEMPLATE TEST BORING W/EQUIP 300; 4/5/2012; 2:01:16 PM

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

TEST BORING LOG National Grid EXPLORATION NO.: **GZA Former Tidewater Facility** SHEET: 1 of 2 GeoEnvironmental, Inc. PROJECT NO: 43654.00 **Pawtucket** Engineers and Scientists Rhode Island **REVIEWED BY: SDN/MSK** Logged By: SDN/WF Type of Rig: GeoProbe H. Datum: Boring Location: See Plan NAD 1983 Drilling Co.: Geologic Drilling Ground Surface Elev. (ft.): Rig Model: Foreman: D. Jacobs Final Boring Depth (ft.): 28 V. Datum: Drilling Method Direct Push Date Start - Finish: 12/19/2011 - 12/19/2011 **NGVD 1929** Groundwater Depth (ft.) Hammer Type: None Sampler Type: SS Water Depth Date Time Stab. Time Hammer Weight (lb.): Sampler O.D. (in.): 2.0 Hammer Fall (in.): Sampler Length (in.): Auger or Casing O.D./I.D Dia (in.): **Rock Core Size:** Sample Stratum Field Description & # Remar Depth Sample Description Depth Pen. Rec. Blows **Equipment Installed** Test (ft) No. Modified Burmister (ft.) (in) (in) (per 6 in.) Data S-1 48 24 No Equipment Installed 0 - 4S-1: (0-1") Brown Topsoil Q.16 TOPSOIL ND (1-8") Brown (10 YR, 4/4) fine to coarse SAND, little (-) Gravel, trace Silt, dry ND 1 (8-16") Dark brown (10 YR, 3/1) fine to coarse SAND, trace (+) Gravel, trace Silt, moist (16-24") Yellowish brown (7.5 YR, 5/8) fine to coarse SAND, little Gravel, trace Silt, moist Urban Fill S-2 4-8 48 40 S-2: (0-13") Yellowish brown (7.5 YR, 5/8) fine to ND coarse SAND, little Gravel, trace Silt, moist 5 (13-40") Gray (10 YR, 4/1) fine SAND, little Silt, ND 5.3 stratified, moist S-3 8-12 48 17 S-3: Gray (10 YR, 4/1) fine SAND, little Silt, ND stratified, moist ND 10 Native Sand S-4 12-16 48 34 S-4: (0-13") Brown (10 YR, 4/4) fine SAND, little ND Silt, stratified, moist (13-34") Gray (10 YR, 5/1) fine SAND, little Silt, ND stratified, moist 15

REMARKS

1 - Soil samples screened with a 10.6eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million/volume air (ppmv) relative to benzene in air and above background readings. Soil samples are screened with a Gasbadge Pro equipped with a hydrogen cyanide sensor. The values represent meter response in parts per million/volume air (ppmv) relative to hydrogen cyanide in air and above background readings. Field data is reported as PID readings followed by HCN readings. All samples are photo documented. ND=Not Detected above background. NR=No Readings.

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

TEST BORING LOG National Grid EXPLORATION NO.: TB-344 **GZA Former Tidewater Facility** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 43654.00 **Pawtucket** Engineers and Scientists Rhode Island **REVIEWED BY: SDN/MSK** Logged By: SDN/WF H. Datum: Type of Rig: GeoProbe Boring Location: See Plan NAD 1983 Drilling Co.: Geologic Drilling Ground Surface Elev. (ft.): Rig Model: Final Boring Depth (ft.): 28 Foreman: D. Jacobs V. Datum: Drilling Method Direct Push Date Start - Finish: 12/19/2011 - 12/19/2011 NGVD 1929 Groundwater Depth (ft.) Hammer Type: None Sampler Type: SS Date Time Water Depth Stab. Time Hammer Weight (lb.): Sampler O.D. (in.): 2.0 Hammer Fall (in.): Sampler Length (in.): Auger or Casing O.D./I.D Dia (in.): **Rock Core Size:** Sample Stratum Field Description (#) Remarl Depth Sample Description Depth Pen. Rec. Blows **Equipment Installed** Test (ft) No. Modified Burmister (ft.) (in) | (in) | (per 6 in.) Data 16-20 48 23 S-5 S-5: Gray (10 YR, 5/1) fine SAND, little Silt, ND stratified, moist ND 20 S-6 20-24 48 30 ND S-6: Gray (10 YR 5/1) f SAND, little silt, stratified, wet ND Native Sand S-7 24-28 48 38 S-7: (0-29") Gray (10 YR, 5/1) fine SAND, little Silt, ND stratified, wet 25 (29-38") Gray (10 YR, 5/1) SILT, some fine Sand, ND wet 2 28 End of exploration at 28 feet. 30 2 - Groundwater encountered at 27'. REMARKS

ZA TEMPLATE TEST BORING W/EQUIP 300; 4/5/2012; 2:01:17 PM

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

TEST BORING LOG National Grid EXPLORATION NO.: **GZA Former Tidewater Facility** SHEET: 1 of 2 GeoEnvironmental, Inc. PROJECT NO: 43654.00 **Pawtucket** Engineers and Scientists Rhode Island **REVIEWED BY: SDN/MSK** Logged By: SDN/WF Type of Rig: GeoProbe H. Datum: Boring Location: See Plan NAD 1983 Drilling Co.: Geologic Drilling Ground Surface Elev. (ft.): Rig Model: Foreman: D. Jacobs Final Boring Depth (ft.): 24 V. Datum: Drilling Method Direct Push Date Start - Finish: 12/19/2011 - 12/19/2011 **NGVD 1929** Groundwater Depth (ft.) Hammer Type: None Sampler Type: SS Water Depth Date Time Stab. Time Hammer Weight (lb.): Sampler O.D. (in.): 2.0 Hammer Fall (in.): Sampler Length (in.): Auger or Casing O.D./I.D Dia (in.): **Rock Core Size:** Sample Stratum Field Description > ± Remar Depth Sample Description Depth Pen. Rec. Blows **Equipment Installed** Test (ft) No. Modified Burmister (ft.) (in) (in) (per 6 in.) Data S-1 48 21 No Equipment Installed 0 - 4S-1: (0-1.5") Brown Topsoil ND **TOPSOIL** (1.5-7") Gray (10 YR, 4/1) fine to coarse SAND, little (+) Gravel, trace Silt, dry ND 1 (7-21") Black (10 YR, 2/1) fine to medium SAND, trace Gravel, trace Brick, trace (-) Silt, moist S-2 4-8 48 17 S-2: Black (10 YR, 2/1) fine to medium SAND, trace ND Urban Fill Gravel, trace Brick, trace Slag, trace (-) Silt, moist 5 NΠ S-3 8-12 48 15 S-3: (0-2") Brown (10 YR, 4/4) fine to coarse SAND, ND little (+) Gravel, trace Silt, slight Petroleum-like odor, moist ND (2-13") Brown(10YR, 4/4) fine to coarse SAND, trace 10 Silt, trace Coal, trace Brick, band of slight blue **FILL** staining at 11.5', slight petroleum-like odor, moist (13-15") Gray (10YR, 4/1) fine SAND, little Silt, trace Gravel, moist 11.5 S-4 12-16 48 42 S-4: (0-14") Greenish gray (GLEY 5/5) fine SAND, ND little Silt, blue staining, slight petroleum-odor, moist (14-42") Gray (10 YR, 4/1) fine SAND, little Silt, ND Native Sand stratified, moist 15

REMARKS

1 - Soil samples screened with a 10.6eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million/volume air (ppmv) relative to benzene in air and above background readings. Soil samples are screened with a Gasbadge Pro equipped with a hydrogen cyanide sensor. The values represent meter response in parts per million/volume air (ppmv) relative to hydrogen cyanide in air and above background readings. Field data is reported as PID readings followed by HCN readings. All samples are photo documented. ND=Not Detected above background. NR=No Readings.

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

	TEST BORING LOG													
		GZA GeoEr Enginee	vire	onm d Scie	ental, Inc	:.	National G Former Tidewat Pawtuck Rhode Isla	er Facility et		S	XPLORATIO HEET: ROJECT NO EVIEWED B'	2 of 2 : 43654.	00	5
Drill		r: SDN/\ .: Geolo D. Jac	gic D	rilling	9		Type of Rig: GeoProbe Rig Model: Drilling MethodDirect Push	Boring Lo Ground S Final Bori Date Star	urface ing Dep	Elev. oth (ft.	(ft.):	2/19/201 ⁻	V. Da	atum: NAD 1983 atum: NGVD 1929
Ham	mer T	ype: No	ne				Sampler Type: SS				Groundwater Depth (ft.)			
Hammer Weight (lb.): Hammer Fall (in.): Auger or Casing O.D./l.D Dia (in.):							Sampler O.D. (in.): 2.0 Sampler Length (in.): Rock Core Size:		Dat	е	Time Water		Depth	Stab. Time
Depth (ft)	No.	Depth (ft.)	Pen. (in)	Rec.			Sample Description Modified Burmister		Remark	Field Test Data	ge_eDescrip	m (#) (min) (#)	Ed	quipment Installed
	S-5	16-20	48	33	,	little Silt,	.21") Yellow brown (10YR, 5/1) , stratified, moist Gray (10YR, 4/1) fine SAND, li d, moist			ND / ND				
20 _	S-6	20-24	48	42		S-6 : Grastratified	ay (10 YR, 4/1) fine SAND, little t, moist	e Silt,		ND / ND	Native S	Sand		
-						End of e	exploration at 24 feet.		2		24			
25 _						End of e	exploration at 24 feet.							
30														
REMARKS	2 - No	groundv	vater	enco	ountered.									

GZA TEMPLATE TEST BORING W/EQUIP 300; 4/5/2012; 2:01:18 PM

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

TEST BORING LOG National Grid EXPLORATION NO.: **GZA Former Tidewater Facility** SHEET: 1 of 2 GeoEnvironmental, Inc. PROJECT NO: 43654.00 **Pawtucket** Engineers and Scientists Rhode Island **REVIEWED BY: SDN/MSK** Logged By: SDN/WF H. Datum: Type of Rig: GeoProbe Boring Location: See Plan NAD 1983 Drilling Co.: Geologic Drilling Ground Surface Elev. (ft.): Rig Model: Foreman: D. Jacobs Final Boring Depth (ft.): 16 V. Datum: Drilling Method Direct Push Date Start - Finish: 12/19/2011 - 12/19/2011 **NGVD 1929** Groundwater Depth (ft.) Hammer Type: None Sampler Type: SS Water Depth Date Time Stab. Time Hammer Weight (lb.): Sampler O.D. (in.): 2.0 Hammer Fall (in.): Sampler Length (in.): Auger or Casing O.D./I.D Dia (in.): **Rock Core Size:** Sample Stratum Field Remar Depth Sample Description Depth Pen. Rec. ⊕ Description > ± Blows **Equipment Installed** Test (ft) No. Modified Burmister (ft.) (in) (in) (per 6 in.) Data S-1 48 No Equipment Installed 0 - 415 S-1: (0-2") Brown Topsoil, dry ND 0.5 TOPSOIL (2-7.5") Brown (10 YR, 4/4) fine to coarse SAND, little (+) Gravel, trace Silt, moist ND 1 (7.5-15") Brown gray (10 YR, 4/1) fine to coarse SAND, little (+) gravel, trace silt, trace brick, moist S-2 4-8 48 15 S-2: Dark brown (10 YR, 3/2) fine to coarse SAND, ND Urban Fill little Gravel, trace (+) silt, trace Brick, trace 5 Concrete, moist ND S-3 8-12 48 30 S-3: (0-22") Yellow brown (10 YR 5/4) fine SAND, ND little Silt, stratified, moist (22"-30") Gray (10 YR, 5/1) SILT, some fine Sand, ND stratified, moist 10 Native Sand S-4 12-16 48 31 S-4: Gray (10 YR, 5/1) fine SAND, some Silt, ND stratified, moist ND 15

REMARKS

1 - Soil samples screened with a 10.6eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million/volume air (ppmv) relative to benzene in air and above background readings. Soil samples are screened with a Gasbadge Pro equipped with a hydrogen cyanide sensor. The values represent meter response in parts per million/volume air (ppmv) relative to hydrogen cyanide in air and above background readings. Field data is reported as PID readings followed by HCN readings. All samples are photo documented. ND=Not Detected above background. NR=No Readings.

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

	TEST BORING LOG														
		GZA GeoEn Enginee	nvir(onm d Scie	ental, Inc	:.	National (Former Tidewat Pawtuck Rhode Isl	er Facility et		S	XPLORATIO HEET: ROJECT NO EVIEWED B	2 of 2 : 43654.0	00	3	
Logged By: SDN/WF Drilling Co.: Geologic Drilling Foreman: D. Jacobs							Type of Rig: GeoProbe Rig Model: Drilling MethodDirect Push	Boring Lo Ground S Final Bor Date Star	Surface	Elev. oth (ft.	(ft.):	2/19/2011	H. Datum: NAD 1983 V. Datum: NGVD 1929		
Han	mer T	ype: No	ne				Sampler Type: SS				Groundw				
Han Han	nmer V nmer F	Veight (lial): Casing (lb.): D.D./I.		a (in.):		Sampler O.D. (in.): 2.0 Sampler Length (in.): Rock Core Size:		Dat	e	Time	Water I	Depth	Stab. Time	
Deptl (ft)	No.	Depth (ft.)	Samp Pen. (in)		Blows (per 6 in.)		Sample Description Modified Burmister		Remark	Field Test Data	⊕ ∉ Descrip	ım otion ≽ (±) m	Eq	uipment Installed	
											Native S	Sand			
20 _ 25 _	2 - No	ground	water	encc	ountered.	End of e	exploration at 16 feet.		2						
REMA															

GZA TEMPLATE TEST BORING W/EQUIP 300; 4/5/2012; 2:01:19 PM

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

							TEST BORING	G LOG						
	(GZA GeoEr Enginee			ental, Inc	.	National G Former Tidewate Pawtuck Rhode Isla	er Facility et		S	EXPLORATION NO.: TB-348 SHEET: 1 of 3 PROJECT NO: 43654.00 REVIEWED BY: SDN/MSK			
Drilli		y: SDN o.: Geolo D. Jac		rilling	3		Type of Rig: GeoProbe Rig Model: Drilling MethodDirect Push Boring Location: Ground Surface E Final Boring Depi Date Start - Finisl				(ft.): .): 32	V. Da	H. Datum: NAD 1983 V. Datum: NGVD 1929	
Ham	mer T	ype: No	ne			Sampler Type: SS					Groundw		<u> </u>	
Hammer Weight (lb.): Hammer Fall (in.): Auger or Casing O.D./l.D Dia (in.):							Sampler O.D. (in.): 2.0 Sampler Length (in.): Rock Core Size:			e	Time Water		Deptn	Stab. Time
Depth (ft)							Sample Description Modified Burmister				eld Stratum est Description			quipment Installed
	S-1	0-4	48	24	per o III.)	(2-9") B Gravel, t (9-24") D	2") Topsoil, dry Frown (10 YR, 4/4) fine to coarse trace Silt, dry Dark brown (10 YR, 3/1) fine to trace Brick, trace Gravel, trace Soist	coarse	e Semark	ND / ND	0.33 TOPS		No E	equipment Installed
5 _ - -	S-2	4-8	48	14		SAND, li tar-like o (12-14")	-2: 0-12") Dark brown (10 YR, 3/1) fine to coarse AND, little Gravel, trace Silt, trace Slag, slight coal r-like odor, moist 2-14") Light brown (10 YR, 5/6) fine to coarse AND, little Gravel, trace Silt, moist							
- 10 _	S-3	8-12	48	22		SAND, li (8-11") E trace Gra (11-16.5 SAND, li (16.5-22 SAND, li	8") Light brown (10 YR, 5/6) fine ittle Gravel, trace Silt, trace Black (10 YR, 2/1) fine to mediuravel, trace Silt, trace Ash, trace S'') Light brown (10 YR, 5/6) fine ittle Gravel, trace Silt, moist 2") Dark brown (10 YR, 3/1) fine ittle (-) Silt, little (-) Gravel, band at 11.5' bgs, slight coal tar-like	m SAND, Coal, mois to coarse to coarse	st	ND / ND	FILL	-		
- - 15	S-4	12-20	96	20		_	ght brown (10 YR, 5/6) fine to co Gravel, trace Silt, moist	oarse SANE), 2	ND / ND	Urban	Fill		

1 - Soil samples screened with a 10.6eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million/volume air (ppmv) relative to benzene in air and above background readings. Soil samples are screened with a Gasbadge Pro equipped with a hydrogen cyanide sensor. The values represent meter response in parts per million/volume air (ppmv) relative to hydrogen cyanide in air and above background readings. Field data is reported as PID readings followed by HCN readings. All samples are photo documented. ND=Not Detected above background. NR=No Readings.

2 - Soft material 12-20 feet.

GZA TEMPLATE TEST BORING W/EQUIP 300, 4/5/2012; 3:22:35 PM 芸品数 REMARKS は

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

									TEST	BORIN	G LOG							
	GZA GeoEnvironmental, Inc. Engineers and Scientists					:.		Forme	National or Tidewat Pawtuck Rhode Is	ter Facility ket	,		S	XPLORATIO HEET: ROJECT NO EVIEWED B	2 of 3 : 43654.0	00	3	
Dr		Co.	: SDN :: Geold D. Ja		rilling)	·	Rig Mod	Rig: Geo del: Method:Di		Boring L Ground S Final Bor Date Sta	Surfac	e El	lev. h (ft.	(ft.):	2/20/201 ⁻	V. Da	atum: NAD 1983 atum: NGVD 1929
На	mme	er Tv	/pe: No	ne				Sample	er Type: S	 S					Groundy		_ , ,	
Hammer Fall (in.): Auger or Casing O.D./I.D Dia (in.): Sampler O.D. (in.): Sampler U.D. (in.): Rock Core Size:				ate		Time	Water I	Depth	Stab. Time									
Dep (ft		10.	Depth (ft.)		Rec.	Blows (per 6 in.)			ample Des Modified Bu				Ĕ T	Field Fest Data	ஓ∉Descrip	otion S (:)	Ed	quipment Installed
25	S	\$-5 \$-6	20-24	48	25		SAND, I (3-6") BI trace GI moist (6-15") I SAND, 1 Brick, m (15-18") little Silt (18-24") SAND, I moist S-6: (0- SAND, I moist (3-13") I some SI Brick, m	Light brown trace (+) Consist Black (10 Yes are the consist of th	brown (10) ravel, trace 'R, 2/1) fine e Silt, slight vn (10 YR, 5 Gravel, trace D YR, 2/1) fi avel, moist wn (10 YR, el, trace Silt YR, 2/1) fin Gravel, trace v brown (10 race Gravel, YR, 5/1) fine brown (7.5 y	Silt, mois: to medium to medium to petroleur 5/6) fine to e Silt, trace silt, trace Slave to coars ce Silt, trace Silt, se SAND, s	thm SAND, n-like odor, o coarse e Slag, trace dium SAND to coarse ag, trace Co ne SAND, co Ash, trace fine to ag, trace Co ne to coarse ag, trace Co	ee,, pal, ean, ce	33	ND	20	L		
REMARKS 05		In ti	p: yellov	w bro	 wn (1	0YR, 5/6) f		d, very mo		ravel, trac	e Silt				30			

GZA TEMPLATE TEST BORING W/EQUIP 300; 4/5/2012; 3:22:35 PM

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

							TEST BORIN	G LOG						
		GZA GeoE Engine	nvir e	onm d Scie	ental, Inc	c.	National Former Tidewa Pawtuc Rhode Is	ter Facility ket		S	XPLORATIO HEET: ROJECT NO EVIEWED B'	3 of 3 : 43654.0	00	}
Dril	ged E ling C eman	By: SDN o.: Geol D. Ja	ogic E acobs	rillinç	3		Type of Rig: GeoProbe Rig Model: Drilling MethodDirect Push	Boring Lo Ground S Final Bor Date Star	Surface	Elev. oth (ft.	(ft.):	2/20/2011	V. Da	atum: NAD 1983 atum: NGVD 1929
Har	nmer	Type: No	one				Sampler Type: SS			-	Groundw			
Han Han	nmer nmer	Weight (Fall (in.) Casing	lb.): : O.D./I.		a (in.):		Sampler O.D. (in.): 2.0 Sampler Length (in.): Rock Core Size:		Dat		Time	Water I	Depth	Stab. Time
Dept (ft)	h No	Depth (ft.)	Samp Pen. (in)		Blows (per 6 in.)	-	Sample Description Modified Burmister		Remark	Field Test Data	Stratu deg (E) Descrip	m (#) otion > (-)	Eq	quipment Installed
	4 - N	o ground	water	enco	ountered.	End of e	exploration at 32 feet.		4					
REMARKS														

GZA TEMPLATE TEST BORING W/EQUIP 300; 4/5/2012; 3:22:35 PM

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

							TEST BORIN	G LOG							
	GZA GeoEnvironmental, Inc. Engineers and Scientists					:.	National Grid Former Tidewater Facility Pawtucket Rhode Island				EXPLORATION NO.: TB-349 SHEET: 1 of 2 PROJECT NO: 43654.00 REVIEWED BY: SDN/MSK				1
Drilli	ng Co	r: SDN .: Geolo D. Jac		Prilling	g	·	Type of Rig: GeoProbe Rig Model: Drilling MethodDirect Push	Boring L Ground S Final Bor Date Star	Surfa	ace Dep	Elev. th (ft.	(ft.):	2/20/201	V. Da	ntum: NAD 1983 ntum: NGVD 1929
Ham	mer T	vpe: No	ne				Sampler Type: SS					Groundwater De		<u> </u>	
Ham Ham	mer W	leight (II all (in.): asing C	b.):	D Dia	a (in.):		Sampler O.D. (in.): 2.0 Sampler Length (in.): Rock Core Size:			Dat	e	Time Water		Depth	Stab. Time
D 41-			Samp	ole					<u>'</u>	¥	Field	_ Stratι	im		
Depth (ft)	No.	Depth (ft.)	Pen. (in)	(in)			Sample Description Modified Burmister			Remark	Test Data	Stratu Descrip	E C noite		uipment Installed
	S-1	0-4	48	26		,	-3") Brown Topsoil, dry				ND	0.5 TOPS	OIL	No E	quipment Installe
						, ,	21") Brown (10 YR, 4/4) fine to medium SAND,				/				
_							e Gravel, trace silt, trace slag, trace Coal, moist I-26") Black-blue (10 B, 2.5/1) fine to medium				ND /	Urban	Fill		
						1 -	ittle Silt, trace (+) Gravel, trace				25.7				
-							like coating, moderate purifier				/				
						moist	, , , , , , , , , , , , , , , ,		,		ND				
-															
												FILL			
_												1 12	_		
	S-2	4-8	48	24		,	-6") Black blue (10 B, 2.5/1) fin		- 1		ND				
5							trace Gravel, trace Silt, heavy b	-	- 1		/	5			
_							like coating, band of blue stair				ND	Ĕ			
							5' bgs, moderate purifier box-li		- 1						
-							Gray (10 YR, 4/1) fine to coars trace Silt, very slight purifier bo		- 1						
						moist	trace ont, very siight purifier be	A-IING OGOI,				Outwa	ish		
_							Orange (5 YR, 4/6) fine to coa	rse SAND.							
							avel, trace (+) Silt, moist	,							
							5") Light brown (10 YR 4/1) fine	to medium	1			8			
_	S-3	8-12	48	34		SAND, I	ittle Silt, little Gravel, moist				ND				
						(19.5-24	1") Dark grayish brown (10 YR,	4/2) fine			1				
-							trace Silt, moist				ND				
							ark grayish brown (10 YR, 4/2)	fine SAND,							
10 _						trace (+)) Silt, moist								
_															
												Native S	Sand		
-	S-4	12-16	48	30		S-4 : Gra	ay (10 YR, 5/1) fine SAND, sor	ne Silt, moi	st		ND				
											/				
-											ND				
_															
15															

1 - Soil samples screened with a 10.6eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million/volume air (ppmv) relative to benzene in air and above background readings. Soil samples are screened with a Gasbadge Pro equipped with a hydrogen cyanide sensor. The values represent meter response in parts per million/volume air (ppmv) relative to hydrogen cyanide in air and above background readings. Field data is reported as PID readings followed by HCN readings. All samples are photo documented. ND=Not Detected above background. NR=No Readings.

2 - No groundwater encountered.

GZA TEMPLATE TEST BORING W/EQUIP 300, 4/5/2012; 2:23:54 PM 芸品数 REMARKS に

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

							TEST BORING	G LOG						
		GZA GeoEr Enginee	viro	nm l Scie	ental, Inc	:.	National C Former Tidewat Pawtuck Rhode Isla	er Facility et		SI	KPLORATIO HEET: ROJECT NO EVIEWED B'	2 of 2 : 43654.0	00	
Drilli	ged By ing Co man:	r: SDN .: Geold D. Jac		rilling)		Type of Rig: GeoProbe Rig Model: Drilling MethodDirect Push	Boring Lo Ground S Final Bori Date Start	urface ing Dep	Elev. oth (ft.	(ft.):	2/20/2011	V. Da	NAD 1983
Ham Ham	mer W	ype: No /eight (l all (in.): asing C	b.):	D Dia	ı (in.):		Sampler Type: SS Sampler O.D. (in.): 2.0 Sampler Length (in.): Rock Core Size:	-	Dat	е	Groundw Time	Water I		Stab. Time
Depth (ft)	No.	Depth (ft.)	Pen. (in)	Rec.	Blows (per 6 in.)		Sample Description Modified Burmister		N Remark	Field Test Data	Stratu de (±) Descrip	otion S. (:)	Eq	uipment Installed
- - - 20 _ -						End of e	exploration at 16 feet.				Native S	Sand		
- 25 _ -														
REMARKS 00														

GZA TEMPLATE TEST BORING W/EQUIP 300; 4/5/2012; 2:23:55 PM

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

TEST BORING LOG National Grid EXPLORATION NO.: **GZA Former Tidewater Facility** SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 43654.00 **Pawtucket** Engineers and Scientists Rhode Island **REVIEWED BY: SDN/MSK** Logged By: SDN Type of Rig: GeoProbe H. Datum: Boring Location: See Plan NAD 1983 Drilling Co.: Geologic Drilling Ground Surface Elev. (ft.): Rig Model: Foreman: D. Jacobs Final Boring Depth (ft.): 12 V. Datum: Drilling Method Direct Push Date Start - Finish: 12/20/2011 - 12/20/2011 **NGVD 1929** Groundwater Depth (ft.) Hammer Type: None Sampler Type: SS Date Water Depth Time Stab. Time Hammer Weight (lb.): Sampler O.D. (in.): 2.0 Hammer Fall (in.): Sampler Length (in.): Auger or Casing O.D./I.D Dia (in.): **Rock Core Size:** Sample Stratum Field Remar Depth Sample Description Description & £ Depth Pen. Rec. Blows **Equipment Installed** Test (ft) No. Modified Burmister (ft.) (in) (in) (per 6 in.) Data S-1 48 28 No Equipment Installed 0-4S-1: (0-3.5") Brown Topsoil, dry ND 0.5 TOPSOIL (3.5-10.5") Brown (10 YR, 4/4) fine to coarse SAND, little (-) Silt, trace (+) Gravel, dry ND 1 (10.5-14") Dark brown (10 YR, 3/2) fine to coarse SAND, little Silt, trace (+) Gravel, dry (14-23") Light brown (10 YR, 5/6) fine to coarse SAND, little Silt, trace (+) Gravel, dry S-2 4-8 48 28 S-2: (0-3.5") Light brown (10 YR, 5/6) fine to coarse ND SAND, little Silt, trace (+) Gravel, dry 5 ND (3.5-7") Black (10 YR, 2/1) fine to coarse SAND, trace (+) Gravel, trace Silt, trace Slag, dry (7-23") Light brown (10 YR, 5/6) fine to coarse SAND, little Gravel, trace Silt, dry Urban Fill S-3 8-12 48 22 S-3: Brown (10 YR, 5/3) fine to coarse SAND, little (+) Gravel, trace Silt, moist ND 10 2 12 End of exploration at 12 feet. 15

1 - Soil samples screened with a 10.6eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million/volume air (ppmv) relative to benzene in air and above background readings. Soil samples are screened with a Gasbadge Pro equipped with a hydrogen cyanide sensor. The values represent meter response in parts per million/volume air (ppmv) relative to hydrogen cyanide in air and above background readings. Field data is reported as PID readings followed by HCN readings. All samples are photo documented. ND=Not Detected above background. NR=No Readings. 2 - No groundwater encountered.

TEST BORING W/EQUIP

TEMPLATE

300; 4/5/2012; 2:01:22 PM

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

TEST BORING LOG National Grid EXPLORATION NO.: **GZA Former Tidewater Facility** SHEET: 1 of 2 GeoEnvironmental, Inc. PROJECT NO: 43654.00 **Pawtucket** Engineers and Scientists Rhode Island **REVIEWED BY: SDN/MSK** Logged By: SDN H. Datum: Type of Rig: GeoProbe Boring Location: See Plan NAD 1983 Drilling Co.: Geologic Drilling Ground Surface Elev. (ft.): Rig Model: Foreman: D. Jacobs Final Boring Depth (ft.): 16 V. Datum: Drilling Method Direct Push Date Start - Finish: 12/20/2011 - 12/20/2011 **NGVD 1929** Groundwater Depth (ft.) Hammer Type: None Sampler Type: SS Date Water Depth Time Stab. Time Hammer Weight (lb.): Sampler O.D. (in.): 2.0 Hammer Fall (in.): Sampler Length (in.): Auger or Casing O.D./I.D Dia (in.): **Rock Core Size:** Sample Stratum Field Remarl Description & # Depth Sample Description Depth Pen. Rec. Blows **Equipment Installed** Test (ft) No. Modified Burmister (ft.) (in) (in) (per 6 in.) Data S-1 48 17 No Equipment Installed 0-4 S-1: (0-1") Brown Topsoil, dry Q.25 TOPSOIL ND (1-17") Dark brown (10 YR, 3/2) fine to coarse SAND, little Gravel, trace Silt, trace Slag, Brick ND 1 Fragments, dry Urban Fill S-2 4-8 48 8 S-2: (0-4") Dark brown (10 YR, 3/2) fine to coarse ND SAND, little Gravel, trace Silt, trace Slag, Brick 5 Fragment, dry ND (4-6") Black (10 YR, 2/1) fine to coarse SAND, little Gravel, trace Silt, trace woodchips, coal tar-like staining, slight coal tar-like odor, moist (6-8") Rock in tip, no recovery S-3 8-12 48 20 S-3: Black (10 YR, 2/1) fine to coarse SAND, little 12.5 Gravel, trace Silt, trace Brick, trace Slag, trace Coal, coal tar-like staining, slight coal tar-like odor, moist ND **FILL** 10 26.0 ND 20 S-4 12-16 48 S-4: Black (10 YR, 2/1) fine to coarse SAND, little ND Gravel, trace Silt, trace Brick, trace Slag, trace Coal, ND coal tar-like staining, slight coal tar-like odor, moist 15

1 - Soil samples screened with a 10.6eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million/volume air (ppmv) relative to benzene in air and above background readings. Soil samples are screened with a Gasbadge Pro equipped with a hydrogen cyanide sensor. The values represent meter response in parts per million/volume air (ppmv) relative to hydrogen cyanide in air and above background readings. Field data is reported as PID readings followed by HCN readings. All samples are photo documented. ND=Not Detected above background. NR=No Readings.

2 - No groundwater encountered.

TEST BORING W/EQUIP TEMPLATE

300; 4/5/2012; 2:01:23 PM

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

							TEST BORIN	G LOG						
	(GZA GeoEr Enginee	viro	nm l Scie	ental, Inc	2.	National (Former Tidewat Pawtuck Rhode Isl	er Facility et		SI	EXPLORATION NO.: TB-351 SHEET: 2 of 2 PROJECT NO: 43654.00 REVIEWED BY: SDN/MSK			
Drilli		: SDN .: Geolo D. Jac		rilling	I	·	Type of Rig: GeoProbe Rig Model: Drilling MethodDirect Push	Boring Lo Ground S Final Bor Date Star	Surface ing Dep	Elev. oth (ft.	ft.):	2/20/2011	V. Da	atum: NAD 1983 atum: NGVD 1929
Ham	mer Ty	ype: No	ne				Sampler Type: SS				Groundw			
Ham	mer Fa	eight (II all (in.): asing C	.D./I.I		(in.):		Sampler O.D. (in.): 2.0 Sampler Length (in.): Rock Core Size:		Dat	e	Time	Water I	Deptn	Stab. Time
Depth (ft)	No.	Depth (ft.)	Pen.	Rec.	Blows (per 6 in.)		Sample Description Modified Burmister		Remark	Field Test Data	Stratu Descrip	m tion ≱ (÷	Eq	uipment Installed
		(- /	,	,	<u>(1-2-2-7</u>				2	Data	FILL			
-						End of e	exploration at 16 feet.				16			
-														
-														
-														
20 _														
-														
-														
-														
-														
25 _														
_														
-														
-														
-														
30														
(
REMARKS														
REA														

GZA TEMPLATE TEST BORING W/EQUIP 300; 4/5/2012; 2:01:23 PM

See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

APPENDIX E

DISPOSAL MANIFEST

Tak IFS117

R44095069-001* SCPPW 3/3/2011, Please print or type. (Form designed for use on elite (12-pitch) typewriter.) Form Approved, OMB No. 2050-0039 UNIFORM HAZARDOUS 1. Garjerator ID Number 2. Page 1 of 3. Emergency Response Phone 4. Manifest Tracking Number WASTE MANIFEST (800) 463-3718 5. Generator's Name and Malling Add Generator's Site Address (if different than mailing address) Narragansett Electric company 40 Svivan Road 200 Tan Street Waltham, MA 02451 Pawiurket Ali 02662 Generator's Phone. (781) 907-3647 6. Transporter 1 Company Name ATTN:Susan Brocku U.S. EPA ID Number Clean Harbors Environmental Services Inc MAD039322250 7. Transporter 2 Company Name U.S. EPAID Number 8. Designated Facility Name and Site Address U.S. EPA ID Number Glean Harbors of Braintree Inc. 1 Hill Avenue MAD053452637 Braintree, MA 02164 Facility's Phone: (781) 366-7100 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Tota 12. Unit 13. Waste Codes and Packing Group (if any)) НМ Quantity Wt Ale Type NA3682 HAZARDOUS WASTE LIQUID N.O.S. (BENZENE) 5 ROIS 0018 Phillip X NON DOTREGULATED MATERIAL (OILY DEBRIS) ON SE MARINA NON DOTREGULATED MATERIAL, (PURGEWATER) MADI **R015** 14. Special Handling Instructions and Additional Information I CHOTSESSN TY EF 64171 2 Papingeth We s O TESTOLETE IXSS 15. GENERATOR'S/OFFEROR'S CERTIFICATION: Thereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true Generator's/Offeror's Printed/Typed Name 🛮 🖊 😋 🐼 🖊 International Shipments Export from U.S. Port of entry/exit: Transporter signature (for exports only) Date leaving U.S. 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Signature Transporter 2 Printed/Typed Name 18. Discrepancy NのT ロ レト FYFMIM. 18a. Discrepancy Indication Space Quantity Partial Rejection Full Rejection Manifest Reference Number 18b. Alternate Facility (or Generator) U.S. EPA ID Number 18c. Signature of Alternate Facility (or Generator) Month Day 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) HIGI 4141 M141 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete **DESIGNATED FACILITY**

APPENDIX F

LABORATORY DATA REPORT

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Sophia Narkiewicz GZA GeoEnvironmental, Inc. 530 Broadway Providence, RI 02909

RE: Tidewater GH (03.0043654.13)

ESS Laboratory Work Order Number: 1112428

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director **REVIEWED**

By SMorrell at 3:19 pm, Jan 06, 2012

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

ESS Laboratory certifies that the test results meet the requirements of NELAC and A2LA, except where noted within this project narrative.

Subcontracted Analyses

GDF Suez Energy of North America - West Springfield, MA

Sulfur Content

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

SAMPLE RECEIPT

The following samples were received on December 23, 2011 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the Guidelines Establishing Test Procedures for the Analysis of Pollutants, 40 CFR Part 136, as amended.

 Lab Number
 SampleName
 Matrix
 Analysis

 1112428-01
 TB-349 0-6ft
 Soil
 \$, 6010B, 7471A, 8082, 8100M, 8260B, 8270C, 9014, 9045

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

PROJECT NARRATIVE

3050B/6000/7000 Total Metals

CL12317-BS1 Blank Spike recovery is below lower control limit (B-).

Selenium (77% @ 80-120%)

CL12317-MS2 <u>Matrix Spike recovery is above upper control limit (M+).</u>

Barium (159% @ 75-125%), Lead (168% @ 75-125%)

CL12317-MS2 <u>Matrix Spike recovery is below lower control limit (M-).</u>

Arsenic (36% @ 75-125%), Chromium (72% @ 75-125%), Selenium (63% @ 75-125%)

CL12914-MS1 Matrix Spike recovery is below lower control limit (M-).

Mercury (0.3% @ 75-125%)

5035/8260B Volatile Organic Compounds / Methanol

1112428-01 **Voa sample was preserved in house.**

8270C Semi-Volatile Organic Compounds

1112428-01 <u>Internal Standard(s) outside of criteria due to matrix (UCM/coelution is present) (IM).</u>

Perylene-d12 (38% @ 50-200%)

1112428-01 <u>Surrogate recovery(ies) above upper control limit (S+).</u>

p-Terphenyl-d14 (165% @ 30-130%)

CL12710-BLK1 Surrogate recovery(ies) above upper control limit (S+).

p-Terphenyl-d14 (161% @ 30-130%)

CL12710-BS1 Blank Spike recovery is above upper control limit (B+).

4-Nitrophenol (134% @ 30-130%)

CL12710-BSD1 Blank Spike recovery is above upper control limit (B+).

4-Nitrophenol (137% @ 30-130%)

CUL0189-CCV1 Calibration required quadratic regression (Q).

 $2,\!4,\!6\text{-Tribromophenol}\ (109\%\ @\ 70\text{-}130\%),\ Dibenzo(a,\!h) Anthracene\ (92\%\ @\ 70\text{-}130\%),$

Indeno(1,2,3-cd)Pyrene (96% @ 70-130%), Pentachlorophenol (106% @ 80-120%)

CUL0194-CCV1 <u>Calibration required quadratic regression (Q).</u>

2,4,6-Tribromophenol (103% @ 70-130%), Dibenzo(a,h)Anthracene (89% @ 70-130%),

Indeno(1,2,3-cd)Pyrene (91% @ 70-130%), Pentachlorophenol (103% @ 80-120%)

Classical Chemistry

CL12917-MS1 Matrix Spike recovery is above upper control limit (M+).

Total Cyanide (776% @ 75-125%)

No other observations noted.

End of Project Narrative.

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH Client Sample ID: TB-349 0-6ft Date Sampled: 12/20/11 13:00

Percent Solids: 86

/20/11

ESS Laboratory Work Order: 1112428 ESS Laboratory Sample ID: 1112428-01

Sample Matrix: Soil Units: mg/kg dry

All methods used are in accordance with 40 CFR 136.

3050B/6000/7000 Total Metals

Analyte Arsenic	Results (MRL) 30.7 (2.8)	Method 6010B	<u>Limit</u>	<u>DF</u>	Analyst JP	Analyzed 12/28/11 19:56	<u>I/V</u> 2.07	<u>F/V</u> 100	Batch CL12317
Barium	73.6 (2.8)	6010B		1	JP	12/28/11 19:56	2.07	100	CL12317
Cadmium	ND (0.56)	6010B		1	JP	12/28/11 19:56	2.07	100	CL12317
Chromium	16.3 (1.1)	6010B		1	JP	12/28/11 19:56	2.07	100	CL12317
Lead	147 (5.6)	6010B		1	JP	12/28/11 19:56	2.07	100	CL12317
Mercury	1.42 (0.135)	7471A		4	KJK	12/30/11 17:23	0.68	40	CL12914
Selenium	ND (5.6)	6010B		1	JP	12/28/11 19:56	2.07	100	CL12317
Silver	ND (0.56)	6010B		1	JP	12/28/11 19:56	2.07	100	CL12317

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428 Client Sample ID: TB-349 0-6ft ESS Laboratory Sample ID: 1112428-01

Date Sampled: 12/20/11 13:00 Sample Matrix: Soil
Percent Solids: 86 Units: mg/kg dry
Initial Volume: 15 Analyst: MD

Final Volume: 15 Extraction Method: 5035

All methods used are in accordance with 40 CFR 136.

5035/8260B Volatile Organic Compounds / Methanol

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.133)	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 12/27/11 16:18	Sequence CUL0173	Batch CL12707
1,1,1-Trichloroethane	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,1,2,2-Tetrachloroethane	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,1,2-Trichloroethane	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,1-Dichloroethane	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,1-Dichloroethene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,1-Dichloropropene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,2,3-Trichlorobenzene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,2,3-Trichloropropane	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,2,4-Trichlorobenzene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,2,4-Trimethylbenzene	1.38 (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,2-Dibromo-3-Chloropropane	ND (0.398)		1	12/27/11 16:18	CUL0173	CL12707
1,2-Dibromoethane	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,2-Dichlorobenzene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,2-Dichloroethane	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,2-Dichloropropane	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,3,5-Trimethylbenzene	0.358 (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,3-Dichlorobenzene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,3-Dichloropropane	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,4-Dichlorobenzene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
1,4-Dioxane - Screen	ND (6.63)		1	12/27/11 16:18	CUL0173	CL12707
1-Chlorohexane	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
2,2-Dichloropropane	ND (0.133)		1	12/27/11 16:18	CUL0173	CL12707
2-Butanone	ND (1.66)		1	12/27/11 16:18	CUL0173	CL12707
2-Chlorotoluene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
2-Hexanone	ND (0.663)		1	12/27/11 16:18	CUL0173	CL12707
4-Chlorotoluene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
4-Isopropyltoluene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
4-Methyl-2-Pentanone	ND (0.663)		1	12/27/11 16:18	CUL0173	CL12707
Acetone	ND (1.66)		1	12/27/11 16:18	CUL0173	CL12707
Benzene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428 Client Sample ID: TB-349 0-6ft ESS Laboratory Sample ID: 1112428-01

Date Sampled: 12/20/11 13:00 Sample Matrix: Soil
Percent Solids: 86 Units: mg/kg dry
Initial Volume: 15 Analyst: MD

Final Volume: 15 Extraction Method: 5035

All methods used are in accordance with 40 CFR 136.

5035/8260B Volatile Organic Compounds / Methanol

Analyte Bromobenzene	Results (MRL) ND (0.0663)	<u>Limit</u>	<u>DF</u>	Analyzed 12/27/11 16:18	Sequence CUL0173	Batch CL12707
Bromochloromethane	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Bromodichloromethane	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Bromoform	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Bromomethane	ND (0.133)		1	12/27/11 16:18	CUL0173	CL12707
Carbon Disulfide	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Carbon Tetrachloride	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Chlorobenzene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Chloroethane	ND (0.133)		1	12/27/11 16:18	CUL0173	CL12707
Chloroform	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Chloromethane	ND (0.133)		1	12/27/11 16:18	CUL0173	CL12707
cis-1,2-Dichloroethene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
cis-1,3-Dichloropropene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Dibromochloromethane	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Dibromomethane			1	12/27/11 16:18	CUL0173	CL12707
Dichlorodifluoromethane	ND (0.0663) ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Diethyl Ether			1	12/27/11 16:18	CUL0173	CL12707 CL12707
Di-isopropyl ether	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707 CL12707
Ethyl tertiary-butyl ether	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707 CL12707
, ,	ND (0.0663)		-			
Ethylbenzene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Hexachlorobutadiene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Isopropylbenzene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Methyl tert-Butyl Ether	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Methylene Chloride	ND (0.331)		1	12/27/11 16:18	CUL0173	CL12707
Naphthalene	386 (6.63)		100	12/27/11 19:16	CUL0173	CL12707
n-Butylbenzene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
n-Propylbenzene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
sec-Butylbenzene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Styrene	0.274 (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
tert-Butylbenzene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Tertiary-amyl methyl ether	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428 Client Sample ID: TB-349 0-6ft ESS Laboratory Sample ID: 1112428-01

Date Sampled: 12/20/11 13:00

Percent Solids: 86

Units: mg/kg dry

Initial Volume: 15

Analyst: MD

Final Volume: 15

Extraction Method: 5035

All methods used are in accordance with 40 CFR 136.

5035/8260B Volatile Organic Compounds / Methanol

Analyte	Results (MRL)	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrachloroethene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Tetrahydrofuran	ND (0.663)		1	12/27/11 16:18	CUL0173	CL12707
Toluene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
trans-1,2-Dichloroethene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
trans-1,3-Dichloropropene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Trichloroethene	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Trichlorofluoromethane	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Vinyl Acetate	ND (0.331)		1	12/27/11 16:18	CUL0173	CL12707
Vinyl Chloride	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Xylene O	ND (0.0663)		1	12/27/11 16:18	CUL0173	CL12707
Xylene P,M	ND (0.133)		1	12/27/11 16:18	CUL0173	CL12707
Xylenes (Total)	ND (0.199)		1	12/27/11 16:18		[CALC]
Xylene O Xylene P,M	ND (0.0663) ND (0.133)		1 1 1	12/27/11 16:18 12/27/11 16:18	CUL0173	CL12707 CL12707

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	89 %		70-130
Surrogate: 4-Bromofluorobenzene	89 %		70-130
Surrogate: Dibromofluoromethane	87 %		70-130
Surrogate: Toluene-d8	87 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428 Client Sample ID: TB-349 0-6ft ESS Laboratory Sample ID: 1112428-01

Date Sampled: 12/20/11 13:00 Sample Matrix: Soil Percent Solids: 86 Units: mg/kg dry
Initial Volume: 20.8 Analyst: SEP

Final Volume: 10 Prepared: 12/28/11 13:00

Extraction Method: 3540

All methods used are in accordance with 40 CFR 136.

8082 Polychlorinated Biphenyls (PCB)

Analyte Aroclor 1016	Results (MRL) ND (0.0559)		<u>Limit</u>	<u>DF</u>	Analyzed Sequence 01/03/12 18:30	Batch CA20407
Aroclor 1221	ND (0.0559)			1	01/03/12 18:30	CA20407
Aroclor 1232	ND (0.0559)			1	01/03/12 18:30	CA20407
Aroclor 1242	ND (0.0559)			1	01/03/12 18:30	CA20407
Aroclor 1248	ND (0.0559)			1	01/03/12 18:30	CA20407
Aroclor 1254	ND (0.0559)			1	01/03/12 18:30	CA20407
Aroclor 1260	ND (0.0559)			1	01/03/12 18:30	CA20407
Aroclor 1262	ND (0.0559)			1	01/03/12 18:30	CA20407
Aroclor 1268	ND (0.0559)			1	01/03/12 18:30	CA20407
	%Recovery	Qualifier	Limits			
Surrogate: Decachlorobiphenyl	41 %		30-150			

	,	
Surrogate: Decachlorobiphenyl	41 %	30-150
Surrogate: Decachlorobiphenyl [2C]	47 %	30-150
Surrogate: Tetrachloro-m-xylene	34 %	30-150
Surrogate: Tetrachloro-m-xylene [2C]	62 %	30-150

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Page 9 of 37

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

All methods used are in accordance with 40 CFR 136.

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH Client Sample ID: TB-349 0-6ft Date Sampled: 12/20/11 13:00

Percent Solids: 86 Initial Volume: 20 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1112428 ESS Laboratory Sample ID: 1112428-01

Sample Matrix: Soil Units: mg/kg dry Analyst: SEP

Prepared: 12/29/11 15:00

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 3150 (43.6)		<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> <u>Seque</u> 12/30/11 7:42	nce Batch CL12924
	%Recovery	Qualifier	Limits			
Surrogate: O-Terphenyl	69 %		40-140			

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428 Client Sample ID: TB-349 0-6ft ESS Laboratory Sample ID: 1112428-01

Date Sampled: 12/20/11 13:00

Percent Solids: 86

Units: mg/kg dry

Initial Volume: 15

Sample Matrix: Soil

Units: mg/kg dry

Analyst: CMT

Final Volume: 0.5 Prepared: 12/27/11 13:30

Extraction Method: 3546

All methods used are in accordance with 40 CFR 136.

8270C Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) 1.87 (0.387)	<u>Limit</u>	<u>DF</u>	Analyzed 12/30/11 2:25	Sequence CUL0189	Batch CL12710
1,2,4-Trichlorobenzene	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
1,2-Dichlorobenzene	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
1,3-Dichlorobenzene	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
1,4-Dichlorobenzene	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
2,3,4,6-Tetrachlorophenol	ND (1.94)		1	12/30/11 2:25	CUL0189	CL12710
2,4,5-Trichlorophenol	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
2,4,6-Trichlorophenol	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
2,4-Dichlorophenol	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
2,4-Dimethylphenol	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
2,4-Dinitrophenol	ND (1.94)		1	12/30/11 2:25	CUL0189	CL12710
2,4-Dinitrotoluene	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
2,6-Dinitrotoluene	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
2-Chloronaphthalene	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
2-Chlorophenol	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
2-Methylnaphthalene	32.8 (3.87)		10	12/30/11 17:46	CUL0189	CL12710
2-Methylphenol	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
2-Nitroaniline	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
2-Nitrophenol	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
3,3'-Dichlorobenzidine	ND (0.776)		1	12/30/11 2:25	CUL0189	CL12710
3+4-Methylphenol	ND (0.776)		1	12/30/11 2:25	CUL0189	CL12710
3-Nitroaniline	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
4,6-Dinitro-2-Methylphenol	ND (1.94)		1	12/30/11 2:25	CUL0189	CL12710
4-Bromophenyl-phenylether	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
4-Chloro-3-Methylphenol	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
4-Chloroaniline	ND (0.776)		1	12/30/11 2:25	CUL0189	CL12710
4-Chloro-phenyl-phenyl ether	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
4-Nitroaniline	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
4-Nitrophenol	ND (1.94)		1	12/30/11 2:25	CUL0189	CL12710
Acenaphthene	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Acenaphthylene	1.51 (0.387)		1	12/30/11 2:25	CUL0189	CL12710

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428 Client Sample ID: TB-349 0-6ft ESS Laboratory Sample ID: 1112428-01

Date Sampled: 12/20/11 13:00

Percent Solids: 86

Units: mg/kg dry

Initial Volume: 15

Sample Matrix: Soil

Units: mg/kg dry

Analyst: CMT

Final Volume: 0.5 Prepared: 12/27/11 13:30

Extraction Method: 3546

All methods used are in accordance with 40 CFR 136.

8270C Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) 8.23 (0.776)	<u>Limit</u>	<u>DF</u>	Analyzed 12/30/11 2:25	Sequence CUL0189	Batch CL12710
Aniline	ND (0.776)		1	12/30/11 2:25	CUL0189	CL12710
Anthracene	0.761 (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Azobenzene	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Benzo(a)anthracene	3.68 (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Benzo(a)pyrene	1.30 (0.194)		1	12/30/11 2:25	CUL0189	CL12710
Benzo(b)fluoranthene	4.26 (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Benzo(g,h,i)perylene	0.980 (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Benzo(k)fluoranthene	1.81 (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Benzoic Acid	ND (1.94)		1	12/30/11 2:25	CUL0189	CL12710
Benzyl Alcohol	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
bis(2-Chloroethoxy)methane	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
bis(2-Chloroethyl)ether	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
bis(2-chloroisopropyl)Ether	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
bis(2-Ethylhexyl)phthalate	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Butylbenzylphthalate	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Carbazole	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Chrysene	4.75 (0.194)		1	12/30/11 2:25	CUL0189	CL12710
Dibenzo(a,h)Anthracene	0.549 (0.194)		1	12/30/11 2:25	CUL0189	CL12710
Dibenzofuran	0.610 (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Diethylphthalate	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Dimethylphthalate	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Di-n-butylphthalate	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Di-n-octylphthalate	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Fluoranthene	4.07 (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Fluorene	0.795 (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Hexachlorobenzene	ND (0.194)		1	12/30/11 2:25	CUL0189	CL12710
Hexachlorobutadiene	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Hexachlorocyclopentadiene	ND (1.94)		1	12/30/11 2:25	CUL0189	CL12710
Hexachloroethane	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Indeno(1,2,3-cd)Pyrene	1.07 (0.387)		1	12/30/11 2:25	CUL0189	CL12710

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428 Client Sample ID: TB-349 0-6ft ESS Laboratory Sample ID: 1112428-01

Date Sampled: 12/20/11 13:00 Sample Matrix: Soil Percent Solids: Units: mg/kg dry 86 Initial Volume: 15 Analyst: CMT

Final Volume: 0.5 Prepared: 12/27/11 13:30

Extraction Method: 3546

All methods used are in accordance with 40 CFR 136.

8270C Semi-Volatile Organic Compounds

Analyte Isophorone	Results (MRL) ND (0.387)	<u>Limit</u>	<u>DF</u>	Analyzed 12/30/11 2:25	Sequence CUL0189	Batch CL12710
Naphthalene	198 (38.7)		100	12/30/11 17:13	CUL0189	CL12710
Nitrobenzene	0.891 (0.387)		1	12/30/11 2:25	CUL0189	CL12710
N-Nitrosodimethylamine	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
N-Nitroso-Di-n-Propylamine	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
N-nitrosodiphenylamine	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Pentachlorophenol	ND (1.94)		1	12/30/11 2:25	CUL0189	CL12710
Phenanthrene	6.37 (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Phenol	ND (0.387)		1	12/30/11 2:25	CUL0189	CL12710
Pyrene	7.43 (3.87)		10	12/30/11 17:46	CUL0189	CL12710
Pyridine	ND (1.94)		1	12/30/11 2:25	CUL0189	CL12710

Qualifier

Limits

	,	•	
Surrogate: 1,2-Dichlorobenzene-d4	45 %		30-130
Surrogate: 2,4,6-Tribromophenol	83 %		30-130
Surrogate: 2-Chlorophenol-d4	59 %		30-130
Surrogate: 2-Fluorobiphenyl	66 %		30-130
Surrogate: 2-Fluorophenol	54 %		30-130
Surrogate: Nitrobenzene-d5	124 %		30-130
Surrogate: Phenol-d6	59 %		30-130
Surrogate: p-Terphenyl-d14	165 %	<i>S+</i>	30-130

%Recovery

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH Client Sample ID: TB-349 0-6ft Date Sampled: 12/20/11 13:00

Percent Solids: 86

ESS Laboratory Work Order: 1112428 ESS Laboratory Sample ID: 1112428-01

Sample Matrix: Soil

All methods used are in accordance with 40 CFR 136.

Classical Chemistry

<u>Analyte</u>	Results (MRL)	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	Units	Batch
Corrosivity (pH)	2.60 (N/A)	9045		1	DPS	12/23/11 14:45	S.U.	CL12321
Corrosivity (pH) Sample Temp	Soil pH measured in water	er at 19.6 °C.						
Sulfur, Total, WT PCT	See Attached (N/A)							
Total Cyanide	90.5 (11.3)	9014		10	DPS	12/29/11 13:15	mg/kg dry	CL12917

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

%REC

RPD

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

ESS Laboratory Work Order: 1112428 Client Project ID: Tidewater GH

Quality Control Data

Spike

Source

Analyte		Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifi
			3050B/	6000/7000 T	otal Meta	als					
atch CL12317 - 30	050B										
lank											
rsenic		ND	2.5	mg/kg wet							
Barium		ND	2.5	mg/kg wet							
Cadmium		ND	0.50	mg/kg wet							
Chromium		ND	1.0	mg/kg wet							
ead		ND	5.0	mg/kg wet							
Selenium		ND	5.0	mg/kg wet							
ilver		ND	0.50	mg/kg wet							
cs											
rsenic		106	8.6	mg/kg wet	124.0		85	80-120			
arium		273	8.6	mg/kg wet	316.0		87	80-120			
admium		99.7	1.73	mg/kg wet	116.0		86	80-120			
Chromium		81.9	3.4	mg/kg wet	95.90		85	80-120			
ead		123	17.2	mg/kg wet	137.0		90	80-120			
Selenium		156	17.2	mg/kg wet	202.0		77	80-120			B-
ilver		44.8	1.73	mg/kg wet	53.50		84	80-120			
CS Dup											
rsenic		108	9.1	mg/kg wet	124.0		87	80-120	2	20	
arium		285	9.1	mg/kg wet	316.0		90	80-120	4	20	
Cadmium		102	1.83	mg/kg wet	116.0		88	80-120	3	20	
Chromium		84.7	3.6	mg/kg wet	95.90		88	80-120	3	20	
ead		127	18.2	mg/kg wet	137.0		92	80-120	3	20	
Selenium		166	18.2	mg/kg wet	202.0		82	80-120	6	20	
ilver		46.3	1.83	mg/kg wet	53.50		87	80-120	3	20	
uplicate	Source: 1112428-01										
rsenic		24.3	2.7	mg/kg dry		30.7			23	35	
arium		72.7	2.7	mg/kg dry		73.6			1	35	
admium		0.101	0.55	mg/kg dry		0.127			23	35	
hromium		15.5	1.1	mg/kg dry		16.3			5	35	
ead		184	5.5	mg/kg dry		147			22	35	
Selenium		ND	5.5	mg/kg dry		ND				35	
ilver		ND	0.55	mg/kg dry		ND				35	
latrix Spike	Source: 1112428-01										
rsenic		40.7	2.8	mg/kg dry	27.69	30.7	36	75-125			M-
Barium		118	2.8	mg/kg dry	27.69	73.6	159	75-125			M+
Cadmium		12.2	0.56	mg/kg dry	13.84	0.127	87	75-125			
Chromium		36.2	1.1	mg/kg dry	27.69	16.3	72	75-125			M-
ead		194	5.5	mg/kg dry	27.69	147	168	75-125			M+
elenium		34.7	5.5	mg/kg dry	55.37	ND	63	75-125			M-
ilver		11.6	0.56	mg/kg dry	13.84	ND	84	75-125			
Batch CL12914 - 74											
	···										
Mercury		ND	0.033	mg/kg wet							
ici cui y		שוו	0.033	mg/kg wei							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

Quality Control Data

Analyte		Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			3050B/	6000/7000 T	otal Meta	als					
Batch CL12914 - 74	71A										
Mercury		17.3	1.60	mg/kg wet	15.20		114	80-120			
LCS Dup											
Mercury		15.5	1.55	mg/kg wet	15.20		102	80-120	11	20	
Duplicate	Source: 1112428-01										
Mercury		1.77	0.137	mg/kg dry		1.42			22	35	
Matrix Spike	Source: 1112428-01										
Mercury		1.42	0.144	mg/kg dry	0.2180	1.42	0.3	75-125			M-

Matrix Spike	Source: 1112428-01								
Mercury		1.42	0.144	mg/kg dry	0.2180	1.42	0.3	75-125	M-
		5035/	8260B Volat	ile Organic C	Compound	ls / Meth	anol		
Batch CL12707 - 5035									
Blank									
1,1,1,2-Tetrachloroethane		ND	0.100	mg/kg wet					
1,1,1-Trichloroethane		ND	0.0500	mg/kg wet					
1,1,2,2-Tetrachloroethane		ND	0.0500	mg/kg wet					
1,1,2-Trichloroethane		ND	0.0500	mg/kg wet					
1,1-Dichloroethane		ND	0.0500	mg/kg wet					
1,1-Dichloroethene		ND	0.0500	mg/kg wet					
1,1-Dichloropropene		ND	0.0500	mg/kg wet					
1,2,3-Trichlorobenzene		ND	0.0500	mg/kg wet					
1,2,3-Trichloropropane		ND	0.0500	mg/kg wet					
1,2,4-Trichlorobenzene		ND	0.0500	mg/kg wet					
1,2,4-Trimethylbenzene		ND	0.0500	mg/kg wet					
,2-Dibromo-3-Chloropropan	ne	ND	0.300	mg/kg wet					
1,2-Dibromoethane		ND	0.0500	mg/kg wet					
1,2-Dichlorobenzene		ND	0.0500	mg/kg wet					
,2-Dichloroethane		ND	0.0500	mg/kg wet					
1,2-Dichloropropane		ND	0.0500	mg/kg wet					
1,3,5-Trimethylbenzene		ND	0.0500	mg/kg wet					
1,3-Dichlorobenzene		ND	0.0500	mg/kg wet					
1,3-Dichloropropane		ND	0.0500	mg/kg wet					
1,4-Dichlorobenzene		ND	0.0500	mg/kg wet					
1,4-Dioxane - Screen		ND	5.00	mg/kg wet					
L-Chlorohexane		ND	0.0500	mg/kg wet					
2,2-Dichloropropane		ND	0.100	mg/kg wet					
2-Butanone		ND	1.25	mg/kg wet					
2-Chlorotoluene		ND	0.0500	mg/kg wet					
2-Hexanone		ND	0.500	mg/kg wet					
I-Chlorotoluene		ND	0.0500	mg/kg wet					
l-Isopropyltoluene		ND	0.0500	mg/kg wet					
I-Methyl-2-Pentanone		ND	0.500	mg/kg wet					
Acetone		ND	1.25	mg/kg wet					
Benzene		ND	0.0500	mg/kg wet					
Bromobenzene		ND	0.0500	mg/kg wet					
Bromochloromethane		ND	0.0500	mg/kg wet					

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ◆ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

Quality Control Data

				Spike	Source		%REC		RPD		1
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier	

5035/8260B Volatile Organic Compounds / Methanol

Batch CL12707 - 5035							
Bromodichloromethane	ND	0.0500	mg/kg wet				
Bromoform	ND	0.0500	mg/kg wet				
Bromomethane	ND	0.100	mg/kg wet				
Carbon Disulfide	ND	0.0500	mg/kg wet				
Carbon Tetrachloride	ND	0.0500	mg/kg wet				
Chlorobenzene	ND	0.0500	mg/kg wet				
Chloroethane	ND	0.100	mg/kg wet				
Chloroform	ND	0.0500	mg/kg wet				
Chloromethane	ND	0.100	mg/kg wet				
cis-1,2-Dichloroethene	ND	0.0500	mg/kg wet				
cis-1,3-Dichloropropene	ND	0.0500	mg/kg wet				
Dibromochloromethane	ND	0.0500	mg/kg wet				
Dibromomethane	ND	0.0500	mg/kg wet				
Dichlorodifluoromethane	ND	0.0500	mg/kg wet				
Diethyl Ether	ND	0.0500	mg/kg wet				
Di-isopropyl ether	ND	0.0500	mg/kg wet				
Ethyl tertiary-butyl ether	ND	0.0500	mg/kg wet				
Ethylbenzene	ND	0.0500	mg/kg wet				
Hexachlorobutadiene	ND	0.0500	mg/kg wet				
Isopropylbenzene	ND	0.0500	mg/kg wet				
Methyl tert-Butyl Ether	ND	0.0500	mg/kg wet				
Methylene Chloride	ND	0.250	mg/kg wet				
Naphthalene	ND	0.0500	mg/kg wet				
n-Butylbenzene	ND	0.0500	mg/kg wet				
n-Propylbenzene	ND	0.0500	mg/kg wet				
sec-Butylbenzene	ND	0.0500	mg/kg wet				
Styrene	ND	0.0500	mg/kg wet				
tert-Butylbenzene	ND	0.0500	mg/kg wet				
Tertiary-amyl methyl ether	ND	0.0500	mg/kg wet				
Tetrachloroethene	ND	0.0500	mg/kg wet				
Tetrahydrofuran	ND	0.500	mg/kg wet				
Toluene	ND	0.0500	mg/kg wet				
trans-1,2-Dichloroethene	ND	0.0500	mg/kg wet				
trans-1,3-Dichloropropene	ND	0.0500	mg/kg wet				
Trichloroethene	ND	0.0500	mg/kg wet				
Vinyl Acetate	ND	0.250	mg/kg wet				
Vinyl Chloride	ND	0.0500	mg/kg wet				
Xylene O	ND	0.0500	mg/kg wet				
Xylene P,M	ND	0.100	mg/kg wet				
Surrogate: 1,2-Dichloroethane-d4	2.09		mg/kg wet	2.500	84	70-130	
Surrogate: 4-Bromofluorobenzene	2.02		mg/kg wet	2.500	81	70-130	
Surrogate: Dibromofluoromethane	2.01		mg/kg wet	2.500	80	70-130	
Surrogate: Toluene-d8	2.03		mg/kg wet	2.500	81	70-130	
LCS							
1,1,1,2-Tetrachloroethane	2.30	0.100	mg/kg wet	2.500	92	70-130	
	=		3, 3		-		

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Batch CL12707 - 5035

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B	Volatile	Organic	Compounds	: / N	1ethano
------------	----------	---------	-----------	-------	---------

Batch CL12/0/ - 5035						
1,1,1-Trichloroethane	2.29	0.0500	mg/kg wet	2.500	91	70-130
1,1,2,2-Tetrachloroethane	2.40	0.0500	mg/kg wet	2.500	96	70-130
1,1,2-Trichloroethane	2.23	0.0500	mg/kg wet	2.500	89	70-130
,1-Dichloroethane	2.13	0.0500	mg/kg wet	2.500	85	70-130
,1-Dichloroethene	2.30	0.0500	mg/kg wet	2.500	92	70-130
,1-Dichloropropene	2.43	0.0500	mg/kg wet	2.500	97	70-130
1,2,3-Trichlorobenzene	2.32	0.0500	mg/kg wet	2.500	93	70-130
1,2,3-Trichloropropane	2.44	0.0500	mg/kg wet	2.500	97	70-130
,2,4-Trichlorobenzene	2.30	0.0500	mg/kg wet	2.500	92	70-130
,2,4-Trimethylbenzene	2.19	0.0500	mg/kg wet	2.500	87	70-130
,2-Dibromo-3-Chloropropane	2.58	0.300	mg/kg wet	2.500	103	70-130
,2-Dibromoethane	2.37	0.0500	mg/kg wet	2.500	95	70-130
,2-Dichlorobenzene	2.16	0.0500	mg/kg wet	2.500	86	70-130
,2-Dichloroethane	2.44	0.0500	mg/kg wet	2.500	98	70-130
,2-Dichloropropane	2.24	0.0500	mg/kg wet	2.500	90	70-130
,3,5-Trimethylbenzene	2.22	0.0500	mg/kg wet	2.500	89	70-130
,3-Dichlorobenzene	2.20	0.0500	mg/kg wet	2.500	88	70-130
,3-Dichloropropane	2.27	0.0500	mg/kg wet	2.500	91	70-130
,4-Dichlorobenzene	2.13	0.0500	mg/kg wet	2.500	85	70-130
,4-Dioxane - Screen	61.1	5.00	mg/kg wet	50.00	122	44-241
-Chlorohexane	2.46	0.0500	mg/kg wet	2.500	99	70-130
,2-Dichloropropane	2.36	0.100	mg/kg wet	2.500	95	70-130
-Butanone	13.5	1.25	mg/kg wet	12.50	108	70-130
-Chlorotoluene	2.21	0.0500	mg/kg wet	2.500	89	70-130
-Hexanone	11.4	0.500	mg/kg wet	12.50	91	70-130
-Chlorotoluene	2.12	0.0500	mg/kg wet	2.500	85	70-130
-Isopropyltoluene	2.08	0.0500	mg/kg wet	2.500	83	70-130
-Methyl-2-Pentanone	11.5	0.500	mg/kg wet	12.50	92	70-130
cetone	11.5	1.25	mg/kg wet	12.50	92	70-130
enzene	2.24	0.0500	mg/kg wet	2.500	90	70-130
romobenzene	2.27	0.0500	mg/kg wet	2.500	91	70-130
romochloromethane	1.99	0.0500	mg/kg wet	2.500	80	70-130
romodichloromethane	2.34	0.0500	mg/kg wet	2.500	94	70-130
romoform	2.45	0.0500	mg/kg wet	2.500	98	70-130
romomethane	2.74	0.100	mg/kg wet	2.500	110	70-130
arbon Disulfide	2.25	0.0500	mg/kg wet	2.500	90	70-130
Carbon Tetrachloride	2.40	0.0500	mg/kg wet	2.500	96	70-130
Chlorobenzene	2.22	0.0500	mg/kg wet	2.500	89	70-130
Chloroethane	2.44	0.100	mg/kg wet	2.500	98	70-130
hloroform	2.20	0.0500	mg/kg wet	2.500	88	70-130
		0.100	mg/kg wet	2.500	76	70-130
hloromethane	1.90					
	1.90 2.37	0.0500	mg/kg wet	2.500	95	70-130
Chloromethane is-1,2-Dichloroethene is-1.3-Dichloropropene	2.37	0.0500				
			mg/kg wet mg/kg wet mg/kg wet	2.500 2.500 2.500	95 98 97	70-130 70-130 70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
	5035/	8260B Volati	ile Organic C	ompound	ds / Metha	anol				
Batch CL12707 - 5035										
Dichlorodifluoromethane	1.81	0.0500	mg/kg wet	2.500		72	70-130			
Diethyl Ether	2.54	0.0500	mg/kg wet	2.500		101	70-130			
Di-isopropyl ether	2.36	0.0500	mg/kg wet	2.500		94	70-130			
thyl tertiary-butyl ether	2.37	0.0500	mg/kg wet	2.500		95	70-130			
thylbenzene	2.22	0.0500	mg/kg wet	2.500		89	70-130			
lexachlorobutadiene	2.57	0.0500	mg/kg wet	2.500		103	70-130			
sopropylbenzene	1.92	0.0500	mg/kg wet	2.500		77	70-130			
Methyl tert-Butyl Ether	2.52	0.0500	mg/kg wet	2.500		101	70-130			
Methylene Chloride	2.37	0.250	mg/kg wet	2.500		95	70-130			
laphthalene	2.92	0.0500	mg/kg wet	2.500		117	70-130			
ı-Butylbenzene	2.28	0.0500	mg/kg wet	2.500		91	70-130			
i-Propylbenzene	2.22	0.0500	mg/kg wet	2.500		89	70-130			
ec-Butylbenzene	2.21	0.0500	mg/kg wet	2.500		88	70-130			
Styrene	2.22	0.0500	mg/kg wet	2.500		89	70-130			
ert-Butylbenzene	2.28	0.0500	mg/kg wet	2.500		91	70-130			
ertiary-amyl methyl ether	2.37	0.0500	mg/kg wet	2.500		95	70-130			
etrachloroethene	2.02	0.0500	mg/kg wet	2.500		81	70-130			
etrahydrofuran	2.58	0.500	mg/kg wet	2.500		103	70-130			
oluene	2.30	0.0500	mg/kg wet	2.500		92	70-130			
rans-1,2-Dichloroethene	2.41	0.0500	mg/kg wet	2.500		96	70-130			
rans-1,3-Dichloropropene	2.30	0.0500	mg/kg wet	2.500		92	70-130			
richloroethene	2.19	0.0500	mg/kg wet	2.500		88	70-130			
inyl Acetate	2.60	0.250	mg/kg wet	2.500		104	70-130			
inyl Chloride	2.28	0.0500	mg/kg wet	2.500		91	70-130			
ylene O	2.21	0.0500	mg/kg wet	2.500		88	70-130			
ylene P,M	4.45	0.100	mg/kg wet	5.000		89	70-130			
,	2.12	0.100	mg/kg wet	2.500		<i>85</i>	70-130			
Surrogate: 1,2-Dichloroethane-d4	2.01		mg/kg wet	2.500		80	70-130			
Surrogate: 4-Bromofluorobenzene	1.94		mg/kg wet	2.500		<i>77</i>	70-130			
Surrogate: Dibromofluoromethane	2.01		mg/kg wet	2.500		80	70-130			
Surrogate: Toluene-d8			9,119 1101	2,500			70 130			
.CS Dup	2.27	0.100		2.500		0.5	70.120	2	25	
,1,1,2-Tetrachloroethane	2.37	0.100	mg/kg wet	2.500		95	70-130	3	25	
,1,1-Trichloroethane	2.35	0.0500	mg/kg wet	2.500		94	70-130	3	25	
.,1,2,2-Tetrachloroethane	2.41	0.0500	mg/kg wet	2.500		96	70-130	0.2	25	
,1,2-Trichloroethane	2.28	0.0500	mg/kg wet	2.500		91	70-130	2	25	
,1-Dichloroethane	2.20	0.0500	mg/kg wet	2.500		88	70-130	3	25	
,1-Dichloroethene	2.38	0.0500	mg/kg wet	2.500		95	70-130	3	25	
,1-Dichloropropene	2.40	0.0500	mg/kg wet	2.500		96	70-130	1	25	
,2,3-Trichlorobenzene	2.36	0.0500	mg/kg wet	2.500		95	70-130	2	25	
,2,3-Trichloropropane	2.32	0.0500	mg/kg wet	2.500		93	70-130	5	25	
,2,4-Trichlorobenzene	2.35	0.0500	mg/kg wet	2.500		94	70-130	2	25	
,2,4-Trimethylbenzene	2.24	0.0500	mg/kg wet	2.500		90	70-130	3	25	
,2-Dibromo-3-Chloropropane	2.38	0.300	mg/kg wet	2.500		95	70-130	8	25	
,2-Dibromoethane	2.42	0.0500	mg/kg wet	2.500		97	70-130	2	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B	Volatile	Organic	Compounds	: / N	1ethano
------------	----------	---------	-----------	-------	---------

Batch CL12707 - 5035									
1,2-Dichloroethane	2.50	0.0500	mg/kg wet	2.500	100	70-130	3	25	
1,2-Dichloropropane	2.31	0.0500	mg/kg wet	2.500	92	70-130	3	25	
1,3,5-Trimethylbenzene	2.29	0.0500	mg/kg wet	2.500	92	70-130	3	25	
1,3-Dichlorobenzene	2.25	0.0500	mg/kg wet	2.500	90	70-130	2	25	
1,3-Dichloropropane	2.32	0.0500	mg/kg wet	2.500	93	70-130	2	25	
1,4-Dichlorobenzene	2.20	0.0500	mg/kg wet	2.500	88	70-130	4	25	
1,4-Dioxane - Screen	59.8	5.00	mg/kg wet	50.00	120	44-241	2	200	
1-Chlorohexane	2.55	0.0500	mg/kg wet	2.500	102	70-130	4	25	
2,2-Dichloropropane	2.44	0.100	mg/kg wet	2.500	97	70-130	3	25	
2-Butanone	13.3	1.25	mg/kg wet	12.50	106	70-130	2	25	
2-Chlorotoluene	2.32	0.0500	mg/kg wet	2.500	93	70-130	5	25	
2-Hexanone	11.4	0.500	mg/kg wet	12.50	91	70-130	0.02	25	
4-Chlorotoluene	2.15	0.0500	mg/kg wet	2.500	86	70-130	2	25	
4-Isopropyltoluene	2.15	0.0500	mg/kg wet	2.500	86	70-130	3	25	
4-Methyl-2-Pentanone	11.5	0.500	mg/kg wet	12.50	92	70-130	0.1	25	
Acetone	11.9	1.25	mg/kg wet	12.50	96	70-130	4	25	
Benzene	2.33	0.0500	mg/kg wet	2.500	93	70-130	4	25	
Bromobenzene	2.36	0.0500	mg/kg wet	2.500	95	70-130	4	25	
Bromochloromethane	2.04	0.0500	mg/kg wet	2.500	82	70-130	2	25	
Bromodichloromethane	2.40	0.0500	mg/kg wet	2.500	96	70-130	2	25	
Bromoform	2.51	0.0500	mg/kg wet	2.500	100	70-130	2	25	
Bromomethane	3.02	0.100	mg/kg wet	2.500	121	70-130	10	25	
Carbon Disulfide	2.32	0.0500	mg/kg wet	2.500	93	70-130	3	25	
Carbon Tetrachloride	2.49	0.0500	mg/kg wet	2.500	99	70-130	4	25	
Chlorobenzene	2.30	0.0500	mg/kg wet	2.500	92	70-130	4	25	
Chloroethane	2.53	0.100	mg/kg wet	2.500	101	70-130	4	25	
Chloroform	2.24	0.0500	mg/kg wet	2.500	89	70-130	2	25	
Chloromethane	1.92	0.100	mg/kg wet	2.500	77	70-130	0.9	25	
cis-1,2-Dichloroethene	2.44	0.0500	mg/kg wet	2.500	97	70-130	3	25	
cis-1,3-Dichloropropene	2.46	0.0500	mg/kg wet	2.500	98	70-130	0.4	25	
Dibromochloromethane	2.48	0.0500	mg/kg wet	2.500	99	70-130	2	25	
Dibromomethane	2.24	0.0500	mg/kg wet	2.500	90	70-130	1	25	
Dichlorodifluoromethane	1.90	0.0500	mg/kg wet	2.500	76	70-130	5	25	
Diethyl Ether	2.63	0.0500	mg/kg wet	2.500	105	70-130	3	25	
Di-isopropyl ether	2.40	0.0500	mg/kg wet	2.500	96	70-130	2	25	
Ethyl tertiary-butyl ether	2.43	0.0500	mg/kg wet	2.500	97	70-130	2	25	
Ethylbenzene	2.29	0.0500	mg/kg wet	2.500	92	70-130	3	25	
Hexachlorobutadiene	2.70	0.0500	mg/kg wet	2.500	108	70-130	5	25	
Isopropylbenzene	1.98	0.0500	mg/kg wet	2.500	79	70-130	3	25	
Methyl tert-Butyl Ether	2.56	0.0500	mg/kg wet	2.500	102	70-130	1	25	
Methylene Chloride	2.42	0.250	mg/kg wet	2.500	97	70-130	2	25	
Naphthalene	2.90	0.0500	mg/kg wet	2.500	116	70-130	0.9	25	
n-Butylbenzene	2.32	0.0500	mg/kg wet	2.500	93	70-130	2	25	
n-Propylbenzene	2.25	0.0500	mg/kg wet	2.500	90	70-130	2	25	
sec-Butylbenzene	2.27	0.0500	mg/kg wet	2.500	91	70-130	3	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

%REC

 RPD

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

Quality Control Data

Spike

Source

art Bulghessese 2,37	Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Promether 2.00		5035/	8260B Volat	ile Organic C	compound	ds / Meth	anol				
art Bulghessese 2,37	atch CL12707 - 5035										
entary-and metaryl ether exposed metaryl ether exposed metaryl and metaryl ether exposed exposed metaryl ether exposed	Styrene	2.30	0.0500	mg/kg wet	2.500		92	70-130	3	25	
March Control Contro	ert-Butylbenzene	2.37	0.0500	mg/kg wet	2.500		95	70-130	4	25	
Part	Fertiary-amyl methyl ether	2.38	0.0500	mg/kg wet	2.500		95	70-130	0.4	25	
Second Column Col	etrachloroethene	2.11	0.0500	mg/kg wet	2.500		85	70-130	4	25	
ame 1,2 Dichloroethene	Fetrahydrofuran	2.52	0.500	mg/kg wet	2.500		101	70-130	2	25	
Control Cont	oluene	2.36	0.0500	mg/kg wet	2.500		94	70-130	3	25	
reduce celebrate 2.18	rans-1,2-Dichloroethene	2.46	0.0500	mg/kg wet	2.500		98	70-130	2	25	
Impl Ancetate	rans-1,3-Dichloropropene	2.34	0.0500	mg/kg wet	2.500		93	70-130	1	25	
Inyl Chloride 2.38 0.0500 mg/kg wet 2.500 95 70-130 5 25 where O 2.30 0.0500 mg/kg wet 2.500 92 70-130 4 25 where O 2.30 0.0500 mg/kg wet 2.500 92 70-130 4 25 where O 2.30 0.0500 mg/kg wet 5.000 93 70-130 4 25 where O 2.15 mg/kg wet 2.500 86 70-130 4 25 where O 2.15 mg/kg wet 2.500 86 70-130 70-	Frichloroethene	2.18	0.0500	mg/kg wet	2.500		87	70-130	0.4	25	
Velene P M	/inyl Acetate	2.63	0.250	mg/kg wet	2.500		105	70-130	1	25	
Verticon P.M. 4.63 0.100 mg/kg wet 5.000 93 70-130 4 25	/inyl Chloride	2.38	0.0500	mg/kg wet	2.500		95	70-130	5	25	
Part	Kylene O	2.30	0.0500	mg/kg wet	2.500		92	70-130	4	25	
biother control (125) 12500 83 70-130 burgagete: A formofluorobenzene burgagete: Discramofluoromethane 2.00 mg/kg wet 2.500 80 70-130 burgagete: Toluene-d8 2.00 mg/kg wet 2.500 80 70-130 BO82 Polychlorinated Biphenyls (PCB) Bo82 Polychlorinated Biphenyls (PCB) Bo82 Polychlorinated Biphenyls (PCB) Bo	(ylene P,M	4.63	0.100	mg/kg wet	5.000		93	70-130	4	25	
2,07	Surrogate: 1.2-Dichloroethane-d4	2.15		mg/kg wet	2.500		86	70-130			
2.00 mg/kg wet 2.500 80 70-130		2.07		mg/kg wet	2.500		83	70-130			
Substitution Subs		2.00		mg/kg wet	2.500		80	70-130			
Substitute Sub	-	2.10		mg/kg wet	2.500		84	70-130			
roclor 1221 ND 0.0500 mg/kg wet roclor 1232 ND 0.0500 mg/kg wet roclor 1232 ND 0.0500 mg/kg wet roclor 1242 ND 0.0500 mg/kg wet roclor 1248 ND 0.0500 mg/kg wet roclor 1254 ND 0.0500 mg/kg wet roclor 1254 ND 0.0500 mg/kg wet roclor 1250 ND 0.0500 mg/kg wet roclor 1260 ND 0.0500 mg/kg wet roclor 1260 ND 0.0500 mg/kg wet roclor 1262 ND 0.0500 mg/kg wet roclor 1268 ND 0.0500 mg/kg wet 0.02500 86 30-150 roclor 1268 ND 0.0216 mg/kg wet 0.02500 83 30-150 roclor 1268 ND 0.0219 mg/kg wet 0.02500 88 30-150 roclor 1260 ND 0.0500 mg/kg wet 0.0500 88 30-150 roclor 1260 ND 0.0500 mg/kg wet 0.0500 86 40-140 roclor 1260 ND 0.429 0.0500 mg/kg wet 0.5000 86 40-140 roclor 1260 ND 0.0201 mg/kg wet 0.02500 80 30-150 roclor 1260 ND 0.0216 mg/kg wet 0.02500 80 30-150	Blank										
roclor 1232 ND 0.0500 mg/kg wet roclor 1242 ND 0.0500 mg/kg wet roclor 1248 ND 0.0500 mg/kg wet roclor 1248 ND 0.0500 mg/kg wet roclor 1254 ND 0.0500 mg/kg wet roclor 1260 ND 0.0500 mg/kg wet roclor 1260 ND 0.0500 mg/kg wet roclor 1262 ND 0.0500 mg/kg wet roclor 1268 ND 0.0216 mg/kg wet 0.02500 86 30-150 ND 0.0500 mg/kg wet 0.02500 83 30-150 ND 0.0500 mg/kg wet 0.02500 88 30-150 ND 0.0500 mg/kg wet 0.02500 88 30-150 ND 0.0500 mg/kg wet 0.02500 88 30-150 ND 0.0500 mg/kg wet 0.0500 86 40-140 ND 0.0500 mg/kg wet 0.0500 86 40-140 ND 0.0500 mg/kg wet 0.0500 80 30-150 ND 0.0500 MD 0.0500 mg/kg wet 0.0500 80 30-150 ND 0.0500 MD 0.0500 mg/kg wet 0.0500 80 30-150 ND 0.0500 MD	Aroclor 1016	ND	0.0500	mg/kg wet							
ND 0.0500 mg/kg wet roctor 1242 ND 0.0500 mg/kg wet roctor 1248 ND 0.0500 mg/kg wet roctor 1254 ND 0.0500 mg/kg wet roctor 1254 ND 0.0500 mg/kg wet roctor 1260 ND 0.0500 mg/kg wet roctor 1262 ND 0.0500 mg/kg wet roctor 1268 ND 0.0500 mg/kg wet 0.02500 86 30-150 roctor 1269 roctor 1269 roctor 1269 roctor 1269 roctor 1269 roctor 1269 roctor 1260 roctor 1260 0.0219 roctor 1260 roctor 1260 0.460 0.0500 mg/kg wet 0.0500 86 40-140 roctor 1260 roctor 1260 0.429 0.0500 mg/kg wet 0.0500 80 30-150 roctor 1260 roc	Aroclor 1221	ND	0.0500	mg/kg wet							
roclor 1248	Aroclor 1232	ND	0.0500	mg/kg wet							
ND 0.0500 mg/kg wet	Aroclor 1242	ND	0.0500	mg/kg wet							
roclor 1260 ND 0.0500 mg/kg wet roclor 1262 ND 0.0500 mg/kg wet roclor 1262 ND 0.0500 mg/kg wet roclor 1268 ND 0.0216 mg/kg wet 0.02500 86 30-150 ND 0.0500 mg/kg wet 0.02500 76 30-150 ND 0.0500 mg/kg wet 0.02500 88 30-150 ND 0.0500 mg/kg wet 0.02500 88 30-150 ND 0.0500 mg/kg wet 0.02500 88 30-150 ND 0.0500 mg/kg wet 0.0500 88 30-150 ND 0.0500 mg/kg wet 0.0500 86 40-140 ND 0.0500 mg/kg wet 0.0500 86 40-140 ND 0.0500 mg/kg wet 0.0500 86 40-140 ND 0.0500 mg/kg wet 0.02500 80 30-150 ND 0.0500 ND 0.0500 mg/kg wet 0.02500 80 30-150 ND 0.0500 ND 0.0500 mg/kg wet 0.02500 80 30-150 ND 0.0500 ND 0.0500 Mg/kg wet 0.02500 80 30-150 ND 0.0500 ND 0.0500 Mg/kg wet 0.02500 80 30-150 ND 0.0500 ND 0.0500 Mg/kg wet 0.02500 80 30-150 ND 0.0500 ND 0.0500 Mg/kg wet 0.02500 80 30-150 ND 0.0500 ND 0.0500 Mg/kg wet 0.02500 80 30-150 ND 0.0500 ND 0.0500 Mg/kg wet 0.02500 80 30-150 ND 0.0500 ND 0.0500 Mg/kg wet 0.02500 80 30-150 ND 0.0500 ND 0.050	Aroclor 1248	ND	0.0500	mg/kg wet							
ND 0.0500 mg/kg wet ND 0.02500 86 30-150 Murrogate: Decachlorobiphenyl [2C] 0.0206 mg/kg wet 0.02500 83 30-150 Murrogate: Tetrachloro-m-xylene 0.0190 mg/kg wet 0.02500 76 30-150 Murrogate: Tetrachloro-m-xylene [2C] 0.0219 mg/kg wet 0.02500 88 30-150 Murrogate: Tetrachloro-m-xylene [2C] 0.0500 mg/kg wet 0.0500 92 40-140 Murrogate: Decachlorobiphenyl 0.429 0.0500 mg/kg wet 0.5000 86 40-140 Murrogate: Decachlorobiphenyl 0.0204 mg/kg wet 0.02500 82 30-150 Murrogate: Decachlorobiphenyl [2C] 0.0199 mg/kg wet 0.02500 80 30-150 Murrogate: Tetrachloro-m-xylene 0.0201 mg/kg wet 0.02500 86 30-150 Murrogate: Tetrachloro-m-xylene 0.0201 mg/kg wet 0.02500 86 30-150 Murrogate: Tetrachloro-m-xylene 2C] 0.0216 mg/kg wet 0.02500 86 30-150 Murrogate: Tetrachloro-m-xylene 2C] 0.0216 mg/kg wet 0.02500 86 30-150 Murrogate: Tetrachloro-m-xylene 2C] 0.0216 mg/kg wet 0.02500 86 30-150 Murrogate: Tetrachloro-m-xylene 2C] 0.0216 mg/kg wet 0.02500 86 30-150 Murrogate: Tetrachloro-m-xylene 2C] 0.0216 mg/kg wet 0.02500 86 30-150 Murrogate: Tetrachloro-m-xylene 2C] 0.0216 mg/kg wet 0.02500 86 30-150 Murrogate: Tetrachloro-m-xylene 2C] 0.0216 mg/kg wet 0.02500 86 30-150 Murrogate: Tetrachloro-m-xylene 2C] 0.0216 mg/kg wet 0.02500 86 30-150 Murrogate: Tetrachloro-m-xylene 2C] 0.0216 mg/kg wet 0.02500 86 30-150 Murrogate: Tetrachloro-m-xylene 2C] 0.0216 mg/kg wet 0.02500 86 30-150 Murrogate: Tetrachloro-m-xylene 2C] 0.0216 mg/kg wet 0.02500 86 30-150 Murrogate: Tetrachloro-m-xylene 2C] 0.0216 mg/kg wet 0.02500 86 30-150 Murrogate: Tetrachloro-m-xylene 2C] 0.0216 mg/kg wet 0.02500 86 Murrogat	Aroclor 1254	ND	0.0500	mg/kg wet							
ND 0.0500 mg/kg wet 0.02500 mg/kg wet 0.0500 mg/kg wet 0.02500 mg/kg w	Aroclor 1260	ND	0.0500	mg/kg wet							
Courrogate: Decachlorobiphenyl 0.0216 mg/kg wet 0.02500 86 30-150	Aroclor 1262	ND	0.0500	mg/kg wet							
Surrogate: Decachlorobiphenyl [2C] 0.0206 mg/kg wet 0.02500 83 30-150 Surrogate: Tetrachloro-m-xylene 0.0190 mg/kg wet 0.02500 76 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.0219 mg/kg wet 0.02500 88 30-150 CS	Aroclor 1268	ND	0.0500	mg/kg wet							
### Surrogate: Decachlorobiphenyl [2C]	Surrogate: Decachlorobiphenyl	0.0216		mg/kg wet	0.02500		86	30-150			
### Surrogate: Tetrachloro-m-xylene [2C]	Surrogate: Decachlorobiphenyl [2C]	0.0206		mg/kg wet	0.02500		83	30-150			
CS roclor 1016	Surrogate: Tetrachloro-m-xylene	0.0190		mg/kg wet	0.02500		76	30-150			
roclor 1016 0.460 0.0500 mg/kg wet 0.5000 92 40-140 roclor 1260 0.429 0.0500 mg/kg wet 0.5000 86 40-140 roclor 1260 0.429 0.0500 mg/kg wet 0.02500 82 30-150 roclor 1260 0.0199 mg/kg wet 0.02500 80 30-150 rourrogate: Decachlorobiphenyl [2C] 0.0199 mg/kg wet 0.02500 80 30-150 rourrogate: Tetrachloro-m-xylene 0.0201 mg/kg wet 0.02500 80 30-150 rourrogate: Tetrachloro-m-xylene [2C] 0.0216 mg/kg wet 0.02500 86 30-150	Surrogate: Tetrachloro-m-xylene [2C]	0.0219		mg/kg wet	0.02500		88	30-150			
roclor 1260 0.429 0.0500 mg/kg wet 0.5000 86 40-140 Fourrogate: Decachlorobiphenyl 0.0204 mg/kg wet 0.02500 82 30-150 Fourrogate: Decachlorobiphenyl [2C] 0.0199 mg/kg wet 0.02500 80 30-150 Fourrogate: Tetrachloro-m-xylene 0.0201 mg/kg wet 0.02500 80 30-150 Fourrogate: Tetrachloro-m-xylene [2C] 0.0216 mg/kg wet 0.02500 86 30-150	LCS										
Fourrogate: Decachlorobiphenyl 0.0204 mg/kg wet 0.02500 82 30-150 Fourrogate: Decachlorobiphenyl [2C] 0.0199 mg/kg wet 0.02500 80 30-150 Fourrogate: Tetrachloro-m-xylene 0.0201 mg/kg wet 0.02500 80 30-150 Fourrogate: Tetrachloro-m-xylene [2C] 0.0216 mg/kg wet 0.02500 86 30-150	Aroclor 1016	0.460	0.0500	mg/kg wet	0.5000		92	40-140			
Surrogate: Decachlorobiphenyl [2C] 0.0199 mg/kg wet 0.02500 80 30-150 Surrogate: Tetrachloro-m-xylene 0.0201 mg/kg wet 0.02500 80 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.0216 mg/kg wet 0.02500 86 30-150	Aroclor 1260	0.429	0.0500	mg/kg wet	0.5000		86	40-140			
Surrogate: Decachlorobiphenyl [2C] 0.0199 mg/kg wet 0.02500 80 30-150 Surrogate: Tetrachloro-m-xylene 0.0201 mg/kg wet 0.02500 80 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.0216 mg/kg wet 0.02500 86 30-150	Surrogate: Decachlorobiphenyl	0.0204		mg/kg wet	0.02500		82	30-150			
Surrogate: Tetrachloro-m-xylene 0.0201 mg/kg wet 0.02500 80 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.0216 mg/kg wet 0.02500 86 30-150	Surrogate: Decachlorobiphenyl [2C]	0.0199		mg/kg wet	0.02500		80	30-150			
Fourrogate: Tetrachloro-m-xylene [2C] 0.0216 mg/kg wet 0.02500 86 30-150	Surrogate: Tetrachloro-m-xylene	0.0201		mg/kg wet	0.02500		80	30-150			
	,	0.0216		mg/kg wet	0.02500		86				
	LCS Dup										

0.354

Aroclor 1016

mg/kg wet

0.5000

0.0500

40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		8082 Polyc	hlorinated B	iphenyls	(PCB)					
Batch CA20407 - 3540										
Aroclor 1260	0.334	0.0500	mg/kg wet	0.5000		67	40-140	25	50	
Surrogate: Decachlorobiphenyl	0.0176		mg/kg wet	0.02500		70	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0169		mg/kg wet	0.02500		68	30-150			
Surrogate: Tetrachloro-m-xylene	0.0152		mg/kg wet	0.02500		61	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0162		mg/kg wet	0.02500		65	30-150			
Matrix Spike Source: 1112428-01										
Aroclor 1016	0.434	0.0573	mg/kg dry	0.5728	ND	76	40-140			
Aroclor 1260	0.327	0.0573	mg/kg dry	0.5728	ND	57	40-140			
Surrogate: Decachlorobiphenyl	0.0161		mg/kg dry	0.02864		56	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0188		mg/kg dry	0.02864		66	30-150			
Surrogate: Tetrachloro-m-xylene	0.0194		mg/kg dry	0.02864		68	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0209		mg/kg dry	0.02864		73	30-150			
Matrix Spike Dup Source: 1112428-01										
Aroclor 1016	0.483	0.0559	mg/kg dry	0.5590	ND	86	40-140	11	50	
Aroclor 1260	0.383	0.0559	mg/kg dry	0.5590	ND	68	40-140	16	50	
	0.0188		mg/kg dry	0.02795		67	30-150			
Surrogate: Decachlorobiphenyl	0.0199		mg/kg dry	0.02795		71	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0221		mg/kg dry	0.02795		<i>79</i>	30-150			
Surrogate: Tetrachloro-m-xylene	0.0252		mg/kg dry	0.02795		90	30-150			
Surrogate: Tetrachloro-m-xylene [2C]		8100M Tot	al Petroleum	Hydroca	rbons					
Batch CL12924 - 3546										
Blank										
Decane (C10)	ND	0.2	mg/kg wet							
Docosane (C22)	ND	0.2	mg/kg wet							
Dodecane (C12)	ND	0.2	mg/kg wet							
Eicosane (C20)	ND	0.2	mg/kg wet							
Hexacosane (C26)	ND	0.2	mg/kg wet							
Hexadecane (C16)	ND	0.2	mg/kg wet							
Nonadecane (C19)	ND	0.2	mg/kg wet							
Nonane (C9)	ND	0.2	mg/kg wet							
Octacosane (C28)	ND	0.2	mg/kg wet							
Octadecane (C18)	ND	0.2	mg/kg wet							
Tetracosane (C24)	ND	0.2	mg/kg wet							
Tetradecane (C14)	ND	0.2	mg/kg wet							
Total Petroleum Hydrocarbons	ND	37.5	mg/kg wet							
Triacontane (C30)	ND	0.2	mg/kg wet							
Surrogate: O-Terphenyl	4.36		mg/kg wet	5.000		87	40-140			
LCS										
		0.2		2.500		67	40.140			
Decane (C10)	1.7	0.2	mg/kg wet	2.500		0/	40-140			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		8100M Tot	al Petroleum	Hydroca	rbons					
Batch CL12924 - 3546										
Dodecane (C12)	1.9	0.2	mg/kg wet	2.500		77	40-140			
cicosane (C20)	1.9	0.2	mg/kg wet	2.500		78	40-140			
Hexacosane (C26)	2.0	0.2	mg/kg wet	2.500		78	40-140			
lexadecane (C16)	1.9	0.2	mg/kg wet	2.500		78	40-140			
onadecane (C19)	2.0	0.2	mg/kg wet	2.500		78	40-140			
lonane (C9)	1.4	0.2	mg/kg wet	2.500		55	30-140			
Octacosane (C28)	2.0	0.2	mg/kg wet	2.500		78	40-140			
Octadecane (C18)	2.0	0.2	mg/kg wet	2.500		78	40-140			
etracosane (C24)	2.0	0.2	mg/kg wet	2.500		78	40-140			
etradecane (C14)	1.9	0.2	mg/kg wet	2.500		77	40-140			
Fotal Petroleum Hydrocarbons	25.4	37.5	mg/kg wet	35.00		73	40-140			
riacontane (C30)	2.0	0.2	mg/kg wet	2.500		79	40-140			
Surrogate: O-Terphenyl	3.80		mg/kg wet	5.000		76	40-140			
.CS Dup										
ecane (C10)	1.7	0.2	mg/kg wet	2.500		67	40-140	0.2	50	
Oocosane (C22)	2.0	0.2	mg/kg wet	2.500		80	40-140	3	50	
odecane (C12)	2.0	0.2	mg/kg wet	2.500		79	40-140	3	50	
icosane (C20)	2.0	0.2	mg/kg wet	2.500		80	40-140	3	50	
lexacosane (C26)	2.0	0.2	mg/kg wet	2.500		80	40-140	3	50	
exadecane (C16)	2.0	0.2	mg/kg wet	2.500		80	40-140	3	50	
onadecane (C19)	2.0	0.2	mg/kg wet	2.500		80	40-140	3	50	
onane (C9)	1.4	0.2	mg/kg wet	2.500		54	30-140	3	50	
Octacosane (C28)	2.0	0.2	mg/kg wet	2.500		81	40-140	3	50	
Octadecane (C18)	2.0	0.2	mg/kg wet	2.500		80	40-140	3	50	
etracosane (C24)	2.0	0.2	mg/kg wet	2.500		81	40-140	3	50	
etradecane (C14)	2.0	0.2	mg/kg wet	2.500		79	40-140	2	50	
otal Petroleum Hydrocarbons	26.0	37.5	mg/kg wet	35.00		74	40-140	2	50	
riacontane (C30)	2.0	0.2	mg/kg wet	2.500		81	40-140	3	50	
Surrogate: O-Terphenyl	3.86		mg/kg wet	5.000		<i>77</i>	40-140			
	8	3270C Semi-	-Volatile Orga	anic Com	pounds					
Batch CL12710 - 3546										
Blank										
,1-Biphenyl	ND	0.333	mg/kg wet							
,2,4-Trichlorobenzene	ND	0.333	mg/kg wet							
,2-Dichlorobenzene	ND	0.333	mg/kg wet							
,3-Dichlorobenzene	ND	0.333	mg/kg wet							
,4-Dichlorobenzene	ND	0.333	mg/kg wet							
,3,4,6-Tetrachlorophenol	ND	1.67	mg/kg wet							
,4,5-Trichlorophenol	ND	0.333	mg/kg wet							
,4,6-Trichlorophenol	ND	0.333	mg/kg wet							
,4-Dichlorophenol	ND	0.333	mg/kg wet							
,4-Dimethylphenol	ND	0.333	mg/kg wet							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270C Semi-Volatile Organic Compounds

Batch CL12710 - 3546			
2,4-Dinitrophenol	ND	1.67	mg/kg wet
2,4-Dinitrotoluene	ND	0.333	mg/kg wet
2,6-Dinitrotoluene	ND	0.333	mg/kg wet
2-Chloronaphthalene	ND	0.333	mg/kg wet
2-Chlorophenol	ND	0.333	mg/kg wet
2-Methylnaphthalene	ND	0.333	mg/kg wet
2-Methylphenol	ND	0.333	mg/kg wet
2-Nitroaniline	ND	0.333	mg/kg wet
2-Nitrophenol	ND	0.333	mg/kg wet
3,3´-Dichlorobenzidine	ND	0.667	mg/kg wet
3+4-Methylphenol	ND	0.667	mg/kg wet
3-Nitroaniline	ND	0.333	mg/kg wet
1,6-Dinitro-2-Methylphenol	ND	1.67	mg/kg wet
1-Bromophenyl-phenylether	ND	0.333	mg/kg wet
1-Chloro-3-Methylphenol	ND	0.333	mg/kg wet
1-Chloroaniline	ND	0.667	mg/kg wet
1-Chloro-phenyl-phenyl ether	ND	0.333	mg/kg wet
1-Nitroaniline	ND	0.333	mg/kg wet
1-Nitrophenol	ND	1.67	mg/kg wet
Acenaphthene	ND	0.333	mg/kg wet
Acenaphthylene	ND	0.333	mg/kg wet
Acetophenone	ND	0.667	mg/kg wet
Aniline	ND	0.667	mg/kg wet
Anthracene	ND	0.333	mg/kg wet
Azobenzene	ND	0.333	mg/kg wet
Benzo(a)anthracene	ND	0.333	mg/kg wet
Benzo(a)pyrene	ND	0.167	mg/kg wet
Benzo(b)fluoranthene	ND	0.333	mg/kg wet
Benzo(g,h,i)perylene	ND	0.333	mg/kg wet
Benzo(k)fluoranthene	ND	0.333	mg/kg wet
Benzoic Acid	ND	1.67	mg/kg wet
Benzyl Alcohol	ND	0.333	mg/kg wet
ois(2-Chloroethoxy)methane	ND	0.333	mg/kg wet
ois(2-Chloroethyl)ether	ND	0.333	mg/kg wet
pis(2-chloroisopropyl)Ether	ND	0.333	mg/kg wet
bis(2-Ethylhexyl)phthalate	ND	0.333	mg/kg wet
Butylbenzylphthalate	ND	0.333	mg/kg wet
Carbazole	ND	0.333	mg/kg wet
Chrysene	ND	0.167	mg/kg wet
Dibenzo(a,h)Anthracene	ND	0.167	mg/kg wet
Dibenzofuran	ND	0.333	mg/kg wet
Diethylphthalate	ND	0.333	mg/kg wet
Dimethylphthalate	ND	0.333	mg/kg wet
Di-n-butylphthalate	ND	0.333	mg/kg wet
Di-n-octylphthalate	ND	0.333	mg/kg wet

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

Quality Control Data

											1
				Spike	Source		%REC		RPD		l
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier	l

Batch CL12710 - 3546							
Fluoranthene	ND	0.333	mg/kg wet				
Fluorene	ND	0.333	mg/kg wet				
Hexachlorobenzene	ND	0.167	mg/kg wet				
Hexachlorobutadiene	ND	0.333	mg/kg wet				
Hexachlorocyclopentadiene	ND	1.67	mg/kg wet				
Hexachloroethane	ND	0.333	mg/kg wet				
Indeno(1,2,3-cd)Pyrene	ND	0.333	mg/kg wet				
Isophorone	ND	0.333	mg/kg wet				
Naphthalene	ND	0.333	mg/kg wet				
Nitrobenzene	ND	0.333	mg/kg wet				
N-Nitrosodimethylamine	ND	0.333	mg/kg wet				
N-Nitroso-Di-n-Propylamine	ND	0.333	mg/kg wet				
N-nitrosodiphenylamine	ND	0.333	mg/kg wet				
Pentachlorophenol	ND	1.67	mg/kg wet				
Phenanthrene	ND	0.333	mg/kg wet				
Phenol	ND	0.333	mg/kg wet				
Pyrene	ND	0.333	mg/kg wet				
Pyridine	ND	1.67	mg/kg wet				
Surrogate: 1,2-Dichlorobenzene-d4	2.92		mg/kg wet	3.333	88	30-130	
Surrogate: 2,4,6-Tribromophenol	4.82		mg/kg wet	5.000	96	30-130	
Surrogate: 2-Chlorophenol-d4	4.60		mg/kg wet	5.000	92	30-130	
Surrogate: 2-Fluorobiphenyl	3.39		mg/kg wet	3.333	102	30-130	
Surrogate: 2-Fluorophenol	4.62		mg/kg wet	5.000	92	30-130	
Surrogate: Nitrobenzene-d5	3.03		mg/kg wet	3.333	91	30-130	
Surrogate: Phenol-d6	4.46		mg/kg wet	5.000	89	30-130	
Surrogate: p-Terphenyl-d14	5.36		mg/kg wet	3.333	161	30-130	S+
LCS							
1,1-Biphenyl	2.80	0.333	mg/kg wet	3.333	84	40-140	
1,2,4-Trichlorobenzene	2.50	0.333	mg/kg wet	3.333	75	40-140	
1,2-Dichlorobenzene	2.60	0.333	mg/kg wet	3.333	78	40-140	
1,3-Dichlorobenzene	2.54	0.333	mg/kg wet	3.333	76	40-140	
1,4-Dichlorobenzene	2.59	0.333	mg/kg wet	3.333	78	40-140	
2,3,4,6-Tetrachlorophenol	2.95	1.67	mg/kg wet	3.333	88	30-130	
2,4,5-Trichlorophenol	3.25	0.333	mg/kg wet	3.333	97	30-130	
2,4,6-Trichlorophenol	3.07	0.333	mg/kg wet	3.333	92	30-130	
2,4-Dichlorophenol	3.19	0.333	mg/kg wet	3.333	96	30-130	
2,4-Dimethylphenol	2.99	0.333	mg/kg wet	3.333	90	30-130	
2,4-Dinitrophenol	3.08	1.67	mg/kg wet	3.333	92	30-130	
2,4-Dinitrotoluene	3.27	0.333	mg/kg wet	3.333	98	40-140	
2,6-Dinitrotoluene	3.15	0.333	mg/kg wet	3.333	95	40-140	
2-Chloronaphthalene	2.38	0.333	mg/kg wet	3.333	71	40-140	
2-Chlorophenol	2.89	0.333	mg/kg wet	3.333	87	30-130	
2-Methylnaphthalene	2.92	0.333	mg/kg wet	3.333	88	40-140	
2-Methylphenol	2.95	0.333	mg/kg wet	3.333	89	30-130	
2-Nitroaniline	2.30	0.333	mg/kg wet	3.333	69	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

Quality Control Data

١					Spike	Source		%REC		RPD	
	Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

C	(((((•	•	•	ı	ı	ĺ	ĺ	١	ì	١	١	1	١	١	١	١	1	1	1	١	١	١	1	1	1	1	1	١	١	١	1	١	١	١	١	1	1	1	1	1	1	•	1	1	1	1	•	•	•	•	•	í	ľ	ľ	ľ	Ì	ı	ı	l	Į))	-	()	١	۱	•	ľ	١	Ì	ı))		(Ì	_		(((1		2	С	C	İ	İ	١	1	r	I	3	ĉ	l	J	(1	r	ľ	۱)	٥	C	(,	3	E	6	ı	I	İ	t	t	ı,	Э	ē	į	ı))	C	(
	ı	ı	ı	١										ı	١	١	1	١	١	١	١	1	1	1	١	١	١	1	1	1	1	1	١	١	١	١	١	١	١	١	1	1	1	1	1	1	•	1	1	1	1	•	•	•	•	•	í	ľ	ľ	ľ	Ì	ı	ı	l	Į))	-	()	١	۱	•	ľ	١	Ì	ı))		(Ì	_		(((1		2	С	C	İ	İ	١	1	r	I	3	ĉ	l	J	(1	r	ľ	۱)	٥	C	(,	3	E	6	ı	I	İ	t	t	ı,	Э	ē	į	ı))	C	(

Batch CL12710 - 3546							
2-Nitrophenol	3.01	0.333	mg/kg wet	3.333	90	30-130	
3,3´-Dichlorobenzidine	2.53	0.667	mg/kg wet	3.333	76	40-140	
3+4-Methylphenol	6.06	0.667	mg/kg wet	6.667	91	30-130	
3-Nitroaniline	2.94	0.333	mg/kg wet	3.333	88	40-140	
4,6-Dinitro-2-Methylphenol	3.39	1.67	mg/kg wet	3.333	102	30-130	
4-Bromophenyl-phenylether	3.26	0.333	mg/kg wet	3.333	98	40-140	
4-Chloro-3-Methylphenol	3.26	0.333	mg/kg wet	3.333	98	30-130	
4-Chloroaniline	2.26	0.667	mg/kg wet	3.333	68	40-140	
4-Chloro-phenyl-phenyl ether	2.82	0.333	mg/kg wet	3.333	85	40-140	
4-Nitroaniline	3.15	0.333	mg/kg wet	3.333	95	40-140	
4-Nitrophenol	4.46	1.67	mg/kg wet	3.333	134	30-130	B+
Acenaphthene	2.72	0.333	mg/kg wet	3.333	81	40-140	
Acenaphthylene	2.69	0.333	mg/kg wet	3.333	81	40-140	
Acetophenone	2.74	0.667	mg/kg wet	3.333	82	40-140	
Aniline	2.22	0.667	mg/kg wet	3.333	67	40-140	
Anthracene	3.20	0.333	mg/kg wet	3.333	96	40-140	
Azobenzene	2.82	0.333	mg/kg wet	3.333	85	40-140	
Benzo(a)anthracene	2.81	0.333	mg/kg wet	3.333	84	40-140	
Benzo(a)pyrene	3.11	0.167	mg/kg wet	3.333	93	40-140	
Benzo(b)fluoranthene	3.38	0.333	mg/kg wet	3.333	101	40-140	
Benzo(g,h,i)perylene	3.10	0.333	mg/kg wet	3.333	93	40-140	
Benzo(k)fluoranthene	3.02	0.333	mg/kg wet	3.333	91	40-140	
Benzoic Acid	2.35	1.67	mg/kg wet	3.333	70	40-140	
Benzyl Alcohol	1.94	0.333	mg/kg wet	3.333	58	40-140	
bis(2-Chloroethoxy)methane	2.91	0.333	mg/kg wet	3.333	87	40-140	
	2.70	0.333	mg/kg wet	3.333	81	40-140	
bis(2-chloroethyl)ether	2.65	0.333	mg/kg wet	3.333	80	40-140	
bis(2-chloroisopropyl)Ether					87		
bis(2-Ethylhexyl)phthalate	2.89 2.70	0.333	mg/kg wet	3.333		40-140	
Butylbenzylphthalate		0.333	mg/kg wet	3.333	81	40-140	
Character	3.51	0.333	mg/kg wet	3.333	105	40-140	
Chrysene	2.65	0.167	mg/kg wet	3.333	79	40-140	
Dibenzo(a,h)Anthracene	3.01	0.167	mg/kg wet	3.333	90	40-140	
Dibenzofuran	3.04	0.333	mg/kg wet	3.333	91	40-140	
Diethylphthalate	2.94	0.333	mg/kg wet	3.333	88	40-140	
Dimethylphthalate	2.86	0.333	mg/kg wet	3.333	86	40-140	
Di-n-butylphthalate	3.14	0.333	mg/kg wet	3.333	94	40-140	
Di-n-octylphthalate	2.89	0.333	mg/kg wet	3.333	87	40-140	
Fluoranthene	3.73	0.333	mg/kg wet	3.333	112	40-140	
Fluorene	2.90	0.333	mg/kg wet	3.333	87	40-140	
Hexachlorobenzene	3.47	0.167	mg/kg wet	3.333	104	40-140	
Hexachlorobutadiene	2.69	0.333	mg/kg wet	3.333	81	40-140	
Hexachlorocyclopentadiene	2.09	1.67	mg/kg wet	3.333	63	40-140	
Hexachloroethane	2.76	0.333	mg/kg wet	3.333	83	40-140	
Indeno(1,2,3-cd)Pyrene	2.95	0.333	mg/kg wet	3.333	89	40-140	
Isophorone	2.33	0.333	mg/kg wet	3.333	70	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
<u> </u>		8270C Semi	-Volatile Orga	anic Com	pounds					
Batch CL12710 - 3546										
Naphthalene	2.71	0.333	mg/kg wet	3.333		81	40-140			
Nitrobenzene	2.84	0.333	mg/kg wet	3.333		85	40-140			
N-Nitrosodimethylamine	2.14	0.333	mg/kg wet	3.333		64	40-140			
N-Nitroso-Di-n-Propylamine	2.72	0.333	mg/kg wet	3.333		82	40-140			
N-nitrosodiphenylamine	3.13	0.333	mg/kg wet	3.333		94	40-140			
Pentachlorophenol	3.94	1.67	mg/kg wet	3.333		118	30-130			
Phenanthrene	3.10	0.333	mg/kg wet	3.333		93	40-140			
Phenol	2.38	0.333	mg/kg wet	3.333		72	30-130			
Pyrene	2.72	0.333	mg/kg wet	3.333		82	40-140			
Pyridine	1.71	1.67	mg/kg wet	3.333		51	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	2.74		mg/kg wet	3.333		82	30-130			
Surrogate: 2,4,6-Tribromophenol	5.79		mg/kg wet	5.000		116	30-130			
Surrogate: 2-Chlorophenol-d4	4.39		mg/kg wet	5.000		88	30-130			
Surrogate: 2-Fluorobiphenyl	2.91		mg/kg wet	3.333		87	30-130			
Surrogate: 2-Fluorophenol	4.22		mg/kg wet	5.000		84	30-130			
Surrogate: Nitrobenzene-d5	2.85		mg/kg wet	3.333		85	30-130			
Surrogate: Phenol-d6	4.40		mg/kg wet	5.000		88	30-130			
Surrogate: p-Terphenyl-d14	3.38		mg/kg wet	3.333		101	30-130			
LCS Dup										
1,1-Biphenyl	3.02	0.333	mg/kg wet	3.333		91	40-140	7	30	
1,2,4-Trichlorobenzene	2.56	0.333	mg/kg wet	3.333		77	40-140	3	30	
1,2-Dichlorobenzene	2.62	0.333	mg/kg wet	3.333		79	40-140	0.6	30	
1,3-Dichlorobenzene	2.61	0.333	mg/kg wet	3.333		78	40-140	3	30	
1,4-Dichlorobenzene	2.61	0.333	mg/kg wet	3.333		78	40-140	0.9	30	
2,3,4,6-Tetrachlorophenol	3.02	1.67	mg/kg wet	3.333		91	30-130	2	30	
2,4,5-Trichlorophenol	3.44	0.333	mg/kg wet	3.333		103	30-130	6	30	
2,4,6-Trichlorophenol	3.24	0.333	mg/kg wet	3.333		97	30-130	5	30	
2,4-Dichlorophenol	3.18	0.333	mg/kg wet	3.333		96	30-130	0.3	30	
2,4-Dimethylphenol	3.11	0.333	mg/kg wet	3.333		93	30-130	4	30	
2,4-Dinitrophenol	3.05	1.67	mg/kg wet	3.333		92	30-130	0.8	30	
2,4-Dinitrotoluene	3.37	0.333	mg/kg wet	3.333		101	40-140	3	30	
2,6-Dinitrotoluene	3.39	0.333	mg/kg wet	3.333		102	40-140	7	30	
2-Chloronaphthalene	2.63	0.333	mg/kg wet	3.333		79	40-140	10	30	
2-Chlorophenol	2.93	0.333	mg/kg wet	3.333		88	30-130	1	30	
2-Methylnaphthalene	2.95	0.333	mg/kg wet	3.333		89	40-140	1	30	
2-Methylphenol	2.95	0.333	mg/kg wet	3.333		89	30-130	0.02	30	
2-Nitroaniline	2.46	0.333	mg/kg wet	3.333		74	40-140	7	30	
2-Nitrophenol	3.10	0.333	mg/kg wet	3.333		93	30-130	3	30	
3,3´-Dichlorobenzidine	2.76	0.667	mg/kg wet	3.333		83	40-140	9	30	
3+4-Methylphenol	6.00	0.667	mg/kg wet	6.667		90	30-130	1	30	
3-Nitroaniline	3.09	0.333	mg/kg wet	3.333		93	40-140	5	30	
4,6-Dinitro-2-Methylphenol	3.61	1.67	mg/kg wet	3.333		108	30-130	6	30	
4-Bromophenyl-phenylether	3.57	0.333		3.333		107	40-140	9	30	
4-Chloro-3-Methylphenol		0.333	mg/kg wet	3.333		96	30-130	2	30	
, ,	3.19		mg/kg wet							
4-Chloroaniline	2.32	0.667	mg/kg wet	3.333		70	40-140	3	30	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ♦ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	8	3270C Semi-	-Volatile Orga	anic Com	pounds					
Batch CL12710 - 3546										
4-Chloro-phenyl-phenyl ether	2.99	0.333	mg/kg wet	3.333		90	40-140	6	30	
1-Nitroaniline	3.53	0.333	mg/kg wet	3.333		106	40-140	11	30	
4-Nitrophenol	4.57	1.67	mg/kg wet	3.333		137	30-130	3	30	B+
Acenaphthene	2.88	0.333	mg/kg wet	3.333		87	40-140	6	30	
Acenaphthylene	2.90	0.333	mg/kg wet	3.333		87	40-140	8	30	
Acetophenone	2.79	0.667	mg/kg wet	3.333		84	40-140	2	30	
Aniline	1.99	0.667	mg/kg wet	3.333		60	40-140	11	30	
Anthracene	3.52	0.333	mg/kg wet	3.333		105	40-140	9	30	
Azobenzene	3.27	0.333	mg/kg wet	3.333		98	40-140	15	30	
Benzo(a)anthracene	3.31	0.333	mg/kg wet	3.333		99	40-140	16	30	
Benzo(a)pyrene	3.46	0.167	mg/kg wet	3.333		104	40-140	11	30	
Benzo(b)fluoranthene	3.41	0.333	mg/kg wet	3.333		102	40-140	0.9	30	
Benzo(g,h,i)perylene	3.19	0.333	mg/kg wet	3.333		96	40-140	3	30	
Benzo(k)fluoranthene	3.77	0.333	mg/kg wet	3.333		113	40-140	22	30	
Benzoic Acid	2.37	1.67	mg/kg wet	3.333		71	40-140	0.8	30	
Benzyl Alcohol	1.93	0.333	mg/kg wet	3.333		58	40-140	0.3	30	
ois(2-Chloroethoxy)methane	2.95	0.333	mg/kg wet	3.333		89	40-140	2	30	
ois(2-Chloroethyl)ether	2.82	0.333	mg/kg wet	3.333		85	40-140	4	30	
is(2-chloroisopropyl)Ether	2.70	0.333	mg/kg wet	3.333		81	40-140	2	30	
ois(2-Ethylhexyl)phthalate	3.43	0.333	mg/kg wet	3.333		103	40-140	17	30	
Butylbenzylphthalate	3.25	0.333	mg/kg wet	3.333		97	40-140	19	30	
arbazole	3.71	0.333	mg/kg wet	3.333		111	40-140	5	30	
Chrysene	3.06	0.167	mg/kg wet	3.333		92	40-140	14	30	
Dibenzo(a,h)Anthracene	3.07	0.167	mg/kg wet	3.333		92	40-140	2	30	
Dibenzofuran	3.20	0.333	mg/kg wet	3.333		96	40-140	5	30	
Diethylphthalate	3.15	0.333	mg/kg wet	3.333		94	40-140	7	30	
Dimethylphthalate	2.92	0.333	mg/kg wet	3.333		88	40-140	2	30	
Di-n-butylphthalate	3.41	0.333	mg/kg wet	3.333		102	40-140	8	30	
Di-n-octylphthalate	3.23	0.333	mg/kg wet	3.333		97	40-140	11	30	
Fluoranthene	3.70	0.333	mg/kg wet	3.333		111	40-140	0.8	30	
Fluorene	2.99	0.333	mg/kg wet	3.333		90	40-140	3	30	
Hexachlorobenzene	3.91	0.167	mg/kg wet	3.333		117	40-140	12	30	
Hexachlorobutadiene	2.81	0.333	mg/kg wet	3.333		84	40-140	4	30	
Hexachlorocyclopentadiene	1.97	1.67	mg/kg wet	3.333		59	40-140	6	30	
Hexachloroethane	2.86	0.333	mg/kg wet	3.333		86	40-140	3	30	
indeno(1,2,3-cd)Pyrene	3.05	0.333	mg/kg wet	3.333		92	40-140	3	30	
sophorone	2.40	0.333	mg/kg wet	3.333		72	40-140	3	30	
iaphthalene	2.71	0.333	mg/kg wet	3.333		81	40-140	0.1	30	
litrobenzene	2.95	0.333	mg/kg wet	3.333		88	40-140	4	30	
N-Nitrosodimethylamine	2.90	0.333	mg/kg wet	3.333		87	40-140	30	30	
- I-Nitroso-Di-n-Propylamine	2.66	0.333	mg/kg wet	3.333		80	40-140	2	30	
N-nitrosodiphenylamine	3.49	0.333	mg/kg wet	3.333		105	40-140	11	30	
Pentachlorophenol	4.00	1.67	mg/kg wet	3.333		120	30-130	2	30	
Phenanthrene	3.32	0.333	mg/kg wet	3.333		100	40-140	7	30	
Phenol	2.42	0.333	mg/kg wet	3.333		72	30-130	1	30	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Total Cyanide

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

Quality Control Data

Analyte		Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			3270C Semi	-Volatile Orga	anic Com	pounds					
Batch CL12710 - 3	546										
Pyrene		3.28	0.333	mg/kg wet	3.333		98	40-140	19	30	
Pyridine		2.30	1.67	mg/kg wet	3.333		69	40-140	29	30	
Surrogate: 1,2-Dichlo	nrobenzene-d4	2.78		mg/kg wet	3.333		84	30-130			
Surrogate: 2,4,6-Trib		6.00		mg/kg wet	5.000		120	30-130			
Surrogate: 2-Chlorop	•	4.46		mg/kg wet	5.000		89	30-130			
Surrogate: 2-Fluorobi		3.13		mg/kg wet	3.333		94	30-130			
Surrogate: 2-Fluoropi		4.18		mg/kg wet	5.000		84	30-130			
Surrogate: Nitrobenzo	ene-d5	2.93		mg/kg wet	3.333		88	30-130			
Surrogate: Phenol-d6	;	4.37		mg/kg wet	5.000		87	30-130			
Surrogate: p-Terpher	nyl-d14	3.86		mg/kg wet	3.333		116	30-130			
			C	Classical Chen	nistry						
Batch CL12321 - G	eneral Preparation										
Duplicate	Source: 1112428-01										
Corrosivity (pH)		2.59		S.U.		2.60			0.4	200	
Batch CL12917 - To	CN Prep										
Blank											
Total Cyanide		ND	1.00	mg/kg wet							
LCS											
Total Cyanide		5.05	1.00	mg/kg wet	5.015		101	90-110			
LCS											
Total Cyanide		19.6	1.00	mg/kg wet	20.06		98	90-110			
LCS Dup											
Total Cyanide		19.6	1.00	mg/kg wet	20.06		98	90-110	0.2	20	
Duplicate	Source: 1112428-01										
Total Cyanide		85.7	10.9	mg/kg dry		90.5			5	20	
Matrix Spike	Source: 1112428-01										

177

11.1

mg/kg dry

75-125

11.16

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

[CALC] Calculated Analyte

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

Notes and Definitions

	Notes and Definitions
Z-10	Soil pH measured in water at 19.6 °C.
Z-08	See Attached
U	Analyte included in the analysis, but not detected
S+	Surrogate recovery(ies) above upper control limit (S+).
Q	Calibration required quadratic regression (Q).
M+	Matrix Spike recovery is above upper control limit (M+).
M-	Matrix Spike recovery is below lower control limit (M-).
IM	Internal Standard(s) outside of criteria due to matrix (UCM/coelution is present) (IM).
D	Diluted.
B+	Blank Spike recovery is above upper control limit (B+).
B-	Blank Spike recovery is below lower control limit (B-).
4	Voa sample was preserved in house.
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD LOQ	Limit of Detection Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.
NR	No Recovery

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Tidewater GH ESS Laboratory Work Order: 1112428

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP)

A2LA Accredited: Testing Cert# 2864.01

http://www.a2la.org/scopepdf/2864-01.pdf

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/labs/waterlabs-instate.php

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/out state.pdf

Maine Potable and Non Potable Water: RI0002 http://www.maine.gov/dep/blwq/topic/vessel/lab-list.pdf

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/labcert/labcert.aspx

New Hampshire (NELAP accredited) Potable and Non PotableWater, Solid and Hazardous Waste: 2424 http://www4.egov.nh.gov/des/nhelap/namesearch.asp

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

United States Department of Agriculture Soil Permit: S-54210

Maryland Potable Water: 301 http://www.mde.state.md.us/assets/document/WSP_labs-2009apr20.pdf

CHEMISTRY

A2LA Accredited: Testing Cert # 2864.01
Lead in Paint, Phthalates, Lead in Children's Metals Products (Including Jewelry)
http://www.A2LA.org/dirsearchnew/newsearch.cfm

CPSC ID# 1141 Lead Paint, Lead in Children's Metals Jewelry http://www.cpsc.gov/cgi-bin/labapplist.aspx

Mt.Tom Generating Co. LLC Analytical Laboratory

15 Agawam Avenue West Springfield, MA 01089 Phone (413) 214-6541 Fax (413) 214-6842 email-madhu.shah@gdfsuezna.com

Mass Certification - MA-00071 Conn Certification - PH-0520

Report Date January 4, 2012

Samples Analyzed

Customer	Contact	Laboratory Supervisor	eMail
ESS Laboratory	E. Ouk	Madhu Shah	madhu.shah@gdfsuezna.com
Sample Description Analysis of Soil Sample	<u> </u>		
Analysis of Soil Sample			

Enclosed are Report No(s)	: 31944			
		,		
			·	
				!
	·			

Thank you for your business

Madhu Shah, Laboratory Supervisor

Date

ALL the information contained in this report has been reviewed for accuracy and checked against all quality control requirements outlined in each applicable method.

This report may not be reproduced, except in full, without written approval from Mt.Tom Generating Co.LLC Analytical Laboratory.

Sample Analysis

Work Order

Sample Description 31944 1112428-01	Source ESS Laboratory	Taken/Time 12/20/11	Received 12/28/11	
Parameter	Results	MDL Method	Analyzed/Time Tech	-
Sulfur %	2.37	0.10 ASTM D-4239	01/03/12 sjr	

Sample and Cooler Receipt Checklist

Client: GZA GeoEnvironmental, Inc.
Client Project ID: ______
Shipped/Delivered Via: ESS Courier

ESS Project ID: 11120428
Date Project Due: 12/30/11
Days For Project: 5 Day

Items to be checked upon receipt:

			7
1. Air Bill Manifest Present?	* No	10. Are the samples properly preserved? Yes	
Air No.:		11. Proper sample containers used? Yes	<u>]</u>
2. Were Custody Seals Present?	No	12. Any air bubbles in the VOA vials? N/A]
3. Were Custody Seals Intact?	N/A	13. Holding times exceeded? No	╛
4. Is Radiation count < 100 CPM?	Yes	14. Sufficient sample volumes? Yes	
5. Is a cooler present?	Yes	15. Any Subcontracting needed?	} ye
Cooler Temp: 3.6		16. Are ESS labels on correct containers? Yes N	lo 13
Iced With: Icepacks		17. Were samples received intact? Yes N	lo الم
6. Was COC included with samples?	Yes	ESS Sample IDs: 01	
7. Was COC signed and dated by client?	Yes	Sub Lab: 60F	
8. Does the COC match the sample	Yes	Analysis: Total Sulfur	
9. Is COC complete and correct?	Yes	TAT:	
	au ta dinau.	co etatue? If year please explain	
18. Was there need to call project manag	er to discus	ss status? If yes, please explain.	
	•		
		D	
Who was called?:		By whom?	
Sample Number Properly Preserv	ved Conta	iner Type # of Containers Preservative	
1 Yes	8 oz \$	Soil Jar 12 NP	
Completed By:	Date/Tim		
Reviewed By:	Date/Tim	ne: 1 3 183 1/1	

F-Filters ESS LAB PROJECT ID Date/Time P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes ž Other Preservation Code 1-NP, 2- HC1, 3- H2SO4, 4- HNO3, 5- NAOH, 6- MeOH, 7- Asorbic Acid, 8- ZnAct, 9-PDF_ Page_ Write Required Analysis Received by: (Signature) Format: Excel __ Access __ Electronic Deliverable Date/Time CHAIN OF CUST ľS ٥ Turn Time Standard Cures Life Standard Standard Stays, prior approval by laboratory is required # Type of Containers Relinquished by: (Signature) Other Number of Containers Code Pres Is this project for any of the following: MA-MCP Navy USACE State where samples were collected from: Project Name (20 Char. or less) Sample Identification (20 Char. or less) 0 1112428-Email Address Date/Time PO# Sampled by: Comments: Turn Time Received by: (Signature) Zip Project # Address Internal Use Only [] Technicians _ Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston, RI 02910-2211 [] Pickup $\sqrt{}$ MATRIX Tel. (401) 461-7181 Fax (401) 461-4486 CKYB COMP Fax# Date/Tiphe // マ ろ Collection 1300 No NA: ESS Laboratory ESS Lubs Time ž www.esslaboratory.com IN ORAN ___ Yes Yes ___ Relinguished by: (Signature) Date Container Type: Contact Person Cooler Present Cooler Temp: Telephone # Seals Intact Co. Name ESS LAB Sample # ٥ City

Date/Time

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

Date/Time

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

10/26/04 A

^{*}By circling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A

ESS Laboratory
Division of Thielsch Engineering, Inc.
185 Frances Avenue, Cranston, RI 02910-2 Tel. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com

	CHAIN OF CUSTODY	Ado	Pagel_ofl
211	Turn Time Standard Other If faster than 5 days, prior approval by laboratory is required #	Reporting Limits	ESSLAB PROJECT ID
	State where samples were collected from:		,
	MA CEL INFI IN ME Other	Electronic Deliverable	Yes \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Is this project for any of the following: MA-MCP Navy TISACE Other	Format: Excel \(\frac{1}{2} \) Access \(\text{PDF} \) \(\text{Other} \)	PDF \(\sqrt{Other} \)
	C		

Co. Name	une CAR			Project # P	Project Name (20 Char. or less)	<u> </u>			Write Required Analysis	
	200			7505	1100 - 100WKI 200	-	_			-
Contac	CONTACT PERSON SOPHILA NACKIEWICE	[ACKIEW IC	رب	Address 550 B	MADWITY	S.				
City	City PROVIDENCE	State	_	Zip 0	Zip PO#	ieju ieju	JGL2			
Telepho 40	Telephone # 401-4140	Fax #	#		Email Address Sophia, nat Liewie 6	3920.cs/26	urejuo	0		
ESS LAB Sample #	AB Date	Collection Time	COMP	XIATAM San	Sample Identification (20 Chat. or less) Pres Number	Pres Code Number	Type of			
0	12/20/11	(3:00		S TB-349	19-0-61	NP 12	12 46	X		
•		,								
_										
		,								
Contain	Container Type: P-Poly G-Glass	-Glass S-Sterile V	VVOA M	S-Sterile V-VOA Matrix: S-Soil SD-	SD-Solid D-Sludge WW-Waste Water	GW-Ground	Water	3W-Surface Wate	WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filters	W-Wipes F-Filters
Cooler Present	Present Yes	No	Interna	Internal Use Only	Preservation Code 1- NP, 2- HC1, 3- H2SO4, 4- HNO3, 5- NaOH, 6- McOH, 7- Asorbic Acid, 8- ZnAct, 9-	3- H ₂ SO ₄ , 4- F	HNO3,	5- NaOH, 6- Me	OH, 7- Asorbic Acid, 8- ZnAct,	-6
Seals Intact	tact Yes	No NA:	— [] Pickup	ckup	Sampled by: Soys - PROJECT MANAGER. MEG LILD FIREIC E	ed MAN	1196	weg b	HOPFIRIC K	
Cooler Temp	Temp		_] Technicians	PAN WILL CONTACT ABOUT ANALYSIS TOMOPRON, MAY BE HIGHLY INAKTED	2007 本	シュせ	12 TOMB	phon, why be HI	samples GHLV [WAKTE
	Relinquished by (Signature) Date/Time	Date/Time	Acciv	Received by: (Signarfire)	Date/Time Relinquished by: (Signature)	hed by: (Signati	ure)	Date/Time	Received by: (Signature)	Date/Time

*By circling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A

Please fax all changes to Chain of Custody in writing.

1 (White) Lab Copy 2 (Yellow) Client Receipt

12 Date/Time

Date/Time

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

Date/Time

Keceived by: (Signatufe)/

120011 1930 / Date/Time

7

Relinquished by 9 Relinquished by: (Signature)