GZA GeoEnvironmental, Inc. Engineers and Scientists

October 26, 2010 File No. 05.0043654.00

530 Broadway Providence Rhode Island 02909 401-421-4140 Fax: 401-751-8613 http://www.gza.com Mr. Joseph Martella Rhode Island Department of Environmental Management 235 Promenade Street Providence, Rhode Island 02903

Re: Former Gas Holder Dismantling Project Status Update Former Tidewater MGP and Power Plant Site 200 Taft Street Pawtucket, Rhode Island

Dear Mr. Martella,

Per our recent discussions, we have prepared this letter to summarize the status of the former gas holder dismantling project currently being completed at the above referenced Tidewater site (herein referred to as the "Site"). The holder dismantling work is being performed consistent with all applicable Rhode Island Department of Environmental Management (RIDEM), City of Pawtucket, and Occupational Safety and Health Administration (OSHA) requirements. This project is being conducted on behalf of The Narragansett Electric Company d/b/a/ National Grid (National Grid) by the TFord Company under the supervision of GZA GeoEnvironmental, Inc. The holder dismantling project was initiated in August 2010 and is currently anticipated to be completed in early November 2010. Site restoration activities, involving the placement of clean¹, imported fill materials will follow the dismantling project. We currently anticipate these site restoration activities will be completed in December 2010.

This status update includes air quality monitoring data which is being collected and analyzed as an integral part of our environmental protection and monitoring program associated with this effort. The data are attached and discussed herein.

Project Status

The Tidewater Manufactured Gas Plant (MGP) used industrial processes to produce gas from coal and oil from the late 1880s through the late 1960s. The gas was used primarily for the same purposes that natural gas is used today. This manufactured gas was stored in the two large steel holders on-Site for subsequent distribution to the neighboring community. Prior to the start of the dismantling project, these holders contained a relatively small amount of sludge which was a by-product of the former gas storage operations, as well as accumulated rainwater. The two former gas holders associated with the historic MGP located on the northwest side of the Site adjacent to Tidewater Street are currently being dismantled and removed by National Grid's contractor. These former

¹ All imported fill materials will be compliant with RIDEM Method 1 Residential Direct Exposure Criteria (RDEC).

holders are referred to as Nos. 7 and 8. A figure depicting the location of these former holders is attached. The dismantling portion of this project was initiated in August 2010 and is expected to be complete in early November 2010. The following summarizes the primary activities performed to date:

- Prior to cleaning and dismantling the holders, rainwater that had accumulated was removed, treated and discharged to the Seekonk River. This treatment and discharge was performed consistent with a Rhode Island Pollutant Elimination System (RIPDES) permit issued by RIDEM. This preliminary activity was initiated in April 2010 and completed in July 2010.
- Loose/flaking paint and asbestos containing materials were removed from the exterior of each holder in preparation for dismantling.
- Sludge by-products, which accumulated in the bottom of the holders were removed, processed and treated on-Site for subsequent off-Site disposal. This work was also initiated in August 2010. To date, all sludge has been removed, processed and transferred into sealed containers for off-Site shipment. We currently anticipate that these wastes will be shipped off-Site by November 8, 2010. These sludges contain certain volatile and semi-volatile organic compounds and exhibit a "moth-ball like" odor due primarily to naphthalene. Due to the presence of these constituents and the potential odors associated with them, certain environmental controls and monitoring measures were employed throughout this project. These measures and air monitoring results are discussed further below.
- Dismantling and off-Site recycling of the steel tank structures. The steel holders are carefully cut into small pieces, loaded and trucked off-Site for recycling. Holder No. 7 was dismantled and removed between September 13, 2010 and September 22, 2010. Holder No. 8 is currently being removed and we expect it will be completed by November 12, 2010.
- Once Holder 8 is removed, the footprint of both holders will be backfilled with clean, imported fill materials and grassed.

Environmental Protection and Monitoring

As described above, the presence of volatile and semi-volatile constituents within the sludges removed from the tanks and the dismantling activities require that environmental control and monitoring measures be employed during this type of project. These measures, which are listed below, were implemented and monitored for the purpose of protecting the health and safety of both on-Site workers and the neighboring community and mitigating any odors:

• A real-time, state of the art perimeter air monitoring system (AirLogics System) which detects both particulates and volatile organic compounds at the project boundaries has been used. In the event certain air quality levels are detected, the system alerts on-Site personnel and either work is stopped or other air quality safeguards are implemented. This perimeter monitoring system operates 24 hours per day, 7 days a week. Further details related to the AirLogics system and other

air quality monitoring performed during this effort are presented below. On October 22, 2010, we provided you AirLogics data collected through October 18, 2010 along with an explanatory letter.

- To supplement the AirLogics system, air quality samples for laboratory analysis from up and downwind locations have been collected on an approximately biweekly schedule during this work. Air quality samples included collection of VOC, SVOC, lead and total suspended particulate samples. This laboratory data are discussed further below.
- Potential odors associated with the presence of naphthalene in the sludge materials were monitored using a zNose[™] Model 4200. As described previously, the presence of naphthalene results in a moth-ball like odor. Naphthalene also has a relatively low odor threshold. The zNose is a portable Gas Chromatograph (GC) and was used on this project during the time period when sludge removal and handling were primarily being done (September 20, 2010 to October 8, 2010). The real time data from the zNose (typically 15-minute averages) were used primarily for the purpose of "calibrating" odors to the levels detected by the zNose and making adjustments to work practices and the use of odor suppressant measures as necessary. This supplemental field screening data are attached to this letter.
- Noise has been routinely monitored at the work zone perimeter to ensure that it is consistent with acceptable levels.
- Specifically designed foams and mister units are in-place to mitigate any odors which, as described above, were primarily related to the handling of the sludges containing naphthalene. On-site personnel routinely evaluated these odors (both on and off-Site) and made adjustments to these odor control measures as necessary. As indicated above, the sludge removal and handling operations are now complete; therefore any odors have been significantly reduced.
- Water is routinely added to the surface of the work area to control dust migration.
- 24 hour, 7 days a week on-Site security during the work.
- Truck traffic continues to be coordinated such as not to interfere with the neighboring school/community.

Environmental Monitoring Results

This section presents a summary of the air quality environmental monitoring performed to date. As described above, anAirLogics real time monitoring system has been in place since initiation of the sludge removal and dismantling portion of the project to monitor air quality at the work zone perimeter. The continuous AirLogics data have also been supplemented with periodic up and downwind air quality sampling events. In addition, during the most significant sludge handling period, we employed a zNose instrument specifically calibrated for the detection of naphthalene. The screening level obtained from the zNose were used primarily to quantify/calibrate observed odors and make adjustments to work practices and odor suppressant techniques. The zNose field screening data represent short duration (approximately 15 minute) samples and are therefore not considered comparable to the laboratory data described below which are based on 8 hour sampling durations.

AirLogics Data

As described in the letter to you from Michele Leone of National Grid dated October 22, 2010, the Air Logics system operating at the Tidewater Site is an automated real-time perimeter air monitoring system which continuously analyzes Total Volatile Organic Compounds (TVOCS) and Particulate Matter (PM10) concentrations at each monitoring location. The Air Logics stations for the Tidewater demolition work were mobilized and set-up prior to initiation of any demolition activities and have been in operation 24 hours a day, seven days a week. The attached Plan identifies the locations of Air Logics stations 1 through 6 operating on Site.

The Air Logics system evaluates real time perimeter TVOC and particulate concentrations continuously. In addition to the continuous logging of data, the system compares the collected data to Site action levels for TVOCs and particulate so that any adjustments to work activities can be made if necessary. Specifically, the Site action levels are set as a two tier system consisting of a "Warning Level" and a "Stop Work" level. The "Warning Levels" are used to alert Site personnel of activities or operations on-Site that may be contributing to elevated TVOC and particulate concentrations thus triggering the alteration of Site activities and/or the implementation of additional Site engineering controls (e.g., application of odor suppressant foams or mists, wetting of surfaces, etc.). The "Stop Work" levels are used to notify personnel that activities must be immediately stopped and evaluated to determine the cause of the elevated TVOC or particulate concentration. Notification of "Warning" or "Stop Work" levels are communicated to Site personnel via immediate text message with specific information regarding time, concentrations observed, and station location. The Air Logics monitoring stations are also complemented by a real time on-Site weather station which records wind direction, speed, and temperature. The real-time TVOC and particulate data collected by each Air Logics station are also accompanied by the wind speed and direction data. The Air Logics stations continuously collect and log raw TVOC, particulate, and weather data once every minute. The raw data are used to produce a 15-minute average of TVOCs and particulate. The 15-minute average data is a rolling 15-minute average in which each TVOC and particulate reading obtained every minute is averaged with the readings from the previous 14-minutes. This averaging takes place continuously.

TVOC data at each Air Logics unit are obtained by a photoionization detector (PID) which is calibrated daily (on work days) located within each unit. The "Warning Level" for TVOCs at the Tidewater Site is >0.5 parts per million (ppm) to <5.0ppm, 15-minute average concentration with a "Stop Work" level of >5.0 ppm, 15-minute average concentration. The particulate data at each location are obtained by a particulate meter which is calibrated daily (on work days) located within each unit. The particulate "Warning Level" is >100 ug/m3 to <150ug/m3, 15 minute average concentration with a "Stop Work" level of >5 consecutive minutes. These TVOC and particulate "Warning" and "Stop Work" Levels have been conservatively set relative to industry standards due to the Site surroundings.

Daily Air Logics data for each station are provided within monthly station reports which were provided to you on October 22, 2010. The monthly summary reports include all the raw data collected each day for TVOC and particulate, the rolling 15-minute averages each day, wind direction and speed, summary of warning levels, and a graphical presentation of the days data. Attached to this letter is a graphical summary of all daily average TVOC data collected by the AirLogics system to date.

As indicated in the daily reports provided to you last week and the attached graphical summary, TVOC data collected by the system were rarely above background levels (typically defined as 0.1 to 0.2 ppm). Primarily as a result of how low the warning level for TVOC was set for this project (0.5 ppm), the operator was alerted on several occasions. This low threshold warning was put in place in consideration of the Site setting and surroundings and allowed us to closely monitor perimeter air quality. Note the attached graphical summary of the AirLogics data represents daily averages and therefore does not show these periodic warning levels. For further details, please refer to the daily summaries included on the CD provided to you on October 22, 2010. To date, no TVOC "Stop Work" levels (>5ppm) have been observed at the Air Logics stations. Given the frequency of the monitoring performed by the AirLogics system, this data set indicates no significant TVOC levels have been detected at the work zone perimeters to date. Particulate "Stop Work" levels have been observed at stations 4, 5, and 6 over the past several weeks. These conditions were typically associated with either dust generation during the demolition process or interference from the mist associated with the perimeter odor suppression fogger units. Dust conditions have been routinely addressed via the application of water.

Supplemental Confirmatory Sampling

Supplemental air quality samples were collected and analyzed during the demolition project for the purpose of confirming the real time data generated by the AirLogics system. The supplemental confirmatory sampling was performed for VOCs using USEPA Method TO-15 SUMMA canisters, USEPA Method TO-13 for polycyclic aromatic hydrocarbons (PAHs) using high volume PUF samplers, and Reference Method 40CFR50 App G for lead. There have been a total of seven sampling events performed to date during the project. Each of these samples was collected over an 8-hour period during the workday. The results of the confirmatory sampling are presented in the attached summary table. As indicated in the attached table, sampling locations for each event are labeled either upwind or downwind and the actual locations are shown on the attached sketch. For all seven sampling events, the downwind locations were located to the north/northwest of the holders (locations C, D, and F). These wind directions were generally consistent throughout the project and indicate that potential receptors along Taft Street were generally crosswind from the demolition activities.

As indicated in the attached summary table, detected concentrations of lead were higher in the downwind samples (locations A or B) which ranged from 0.076 ug/m3 to 1.84 ug/m3. These measured concentrations were conservatively compared to the National Ambient Air Quality Standard (NAAQS) for lead. The NAAQS applies to regional ambient air quality for protection of potential health effects to the general population, and in the case of lead represents a quarterly 3 month average. Applying the NAAQS to residents adjacent to a construction activity such as this is not what the standard is intended for, but is commonly used as a conservative comparison value. The NAAQS for lead over a fixed 3 month period is 1.5 ug/m3. The highest measured concentration, which represents an 8 hour measurement period, was 1.84 ug/m3. Given the vastly different averaging times, it is unlikely that the measured concentrations would exceed the quarterly NAAQS.

As indicated in the attached summary table, 18 VOCs were detected in the samples out of an analyte list of 62 VOCs, and 6 PAHs were detected out of an analyte list of 18 PAHs. The downwind sampling locations contained more frequent detections at higher levels when compared to the upwind data. As described previously, on each sampling day, locations A or B positioned on the south/southeast side of the former tanks were identified as the downwind locations. No sensitive receptors are located in close proximity to these downwind locations.

As indicated previously, the compound associated with odors (moth ball-like) is naphthalene. In order to aid in the interpretation of the naphthalene results presented in the attached summary table, the measured concentrations were compared directly to a very conservative risk-based screening level of 3 ug/m3. This screening level is based on the subchronic inhalation reference concentration (RfC) obtained from the USEPA Integrated Risk Information System (IRIS) which is developed based on a 24 hour exposure at this level. There were three naphthalene results obtained from downwind locations A or B which are above this conservative 3 ug/m3 screening level: August 31, 2010 (25.7 ug/m3), September 16, 2010 (10.6 ug/m3), and October 5 (5.39 ug/m3). One of the upwind samples (October 13, 2010 at Station C) also exhibited a naphthalene result above 3 ug/m3 (4.86 ug/m3). All other results were below the RfC. While these samples results can be put in context by direct comparison to the RfC, this comparison should be considered very conservative and does not take into account adjustment for dispersion from the sampling location to the location of a potential receptor, dilution via infiltration into an indoor air environment, actual exposure duration, and wind direction. While not directly applicable to non-occupational exposures, to provide further context for these relatively low detects of naphthalene, the Permissible Exposure Limit (PEL) as defined by the Occupational Health and Safety Administration (OSHA) is 50,000 ug/m3 based on an 8-hour time weighted average.

Closing

As discussed on-Site with you last week, Holder No. 7 has been removed and removal of Holder No. 8 is nearing completion. We expect to complete the removal of Holder No. 8 by November 12, 2010. All of the odorous sludges have been removed from the holders,

processed and are currently staged on-Site in sealed roll-off containers. We expect these roll-offs will be shipped off-Site by November 8, 2010. We trust that the information provided herein and in the attached meets your current needs. We believe the environmental controls and monitoring employed for this project provided an appropriate level of protection for both on-site workers and the surrounding community. Please feel free to contact either of the undersigned or Michele Leone at National Grid should you have any questions.

Very Truly Yours,

GZA GeoEnvironmental, Inc.

for

James J. Clark, P.E. Principal

Senior Project Manager

Margaret S. Kilpatrick, P.E.

Adam M. Fasano, CIH Associate Principal

JJC/MSK:tja

Attachments: Site Overview Plan Showing Perimeter Air Sampling Locations AirLogics System Daily Average Graph Confirmatory Air Sampling Results zNose Field Screening Data

Cc: Michele Leone, National Grid

J:\ENV\43654.msk\Corresp\Air Quality Ltr to RIDEM\Tidewater Letter Final.docx

SITE OVERVIEW PLAN SHOWING PERIMETER AIR SAMPLING LOCATIONS

AIRLOGICS SYSTEM DAILY AVERAGE GRAPH

CONFIRMATORY AIR SAMPLING RESULTS

CONFIRMATORY AIR SAMPLING RESULTS Tidewater Demolition Project Pawtucket, RI

		Unito	0/12	/2010			8/16/2010	8/16/2010 8/31/2010 9/16/2010		9/20/2010		10/5/2010				10/13/2010												
		Units	8/1: DAWWOC 54-1 U 100912	2010 DAWNOC 54-1 F	100912 DAM	WOC Stal	8/16/2010	VOC 54-1 D 10091		8/31	1/2010	4-1 D 100921	DAWYOC S4	9/10	DAWYOC S	4-1 D 100016	DAWNOC Stal	9/20/.	2010 DAWYOC Ste	1 D 100020	DAWNOC SA	-1 U 101005	2010	1 D 101005 1	NWVOC 54-1	10/13	2010	1 D 101017
			PAWVOC-Stat-U-10081	PAWVOC-Star-D	0-100815 PAW	VOC-Star-	-U-100810 PAW	Lendin A	PAWVUC-S	iai-U-100851	I PAWVOC-S	5ta1-D-100851	PAWVUC-St	iai-U-100910	PAWVUC-S	star-D-100916	PAWVOC-Star	-U-100920	PAWVOC-Sta	1-D-100920	PAWVUC-SI	a1-U-10100:	PAWVOC-Sta	1-D-101005 1	Awvoc-star	-U-101015	PAWVOC-Sta	1-D-101013
			Location F Unwind	Downwing		Location	r	Location A Downwind	Local	ion D vind	Loca	nwind	Locat	ion D vind	Loca	nwind	Location	d	Downy	ind a	Locau	ind	Downy	ind D	Location	n C d	Downw	n A sind
			Result RL	Result	RI. R	esult	RI RA	sult RL	Result	RL	Result	RI	Result	RL	Result	RL	Result	RI.	Result	RI.	Result	RI.	Result	RL	Result	RL	Result	RL.
TO 15	VOLATILE ORGANIC COMPOUNT	NS (VOCa)	Ktout KL	Result	KE K	court	AL M	suit RE	Result	RL .	Result	KL	Result	RL .	Result	KL	Result	R L	Result	RL	Result	<u>RL</u>	Result	RE	Result	RE	Result	
10-15	1.1.1 Tricklangethene	u_a/m^3	NIA	NA		ND	27	D 49	NID	4.4	ND	4.4	ND	4.4	ND	4	ND	4.4	NID	4.4	ND	4.2	NID	4.4	ND		ND	_
	1,1,1-1 richloroethane	µg/m	NA -	NA	-	ND	3./ F	D 4.8	ND	4.4	ND	4.4	ND	4.4	ND	4	ND	4.4	ND	4.4	ND	4.2	ND	4.4	NR	-	NR	
	1,1,2,2-Tetrachloroethane	µg/m	NA -	NA	- 1	ND	4.6 P	D 6	ND	5.6	ND	5.5	ND	5.5	ND	5	ND	5.6	ND	5.5	ND	5.3	ND	5.5	NR	-	NK	
	1,1,2-Trichloroethane	µg/m [°]	NA -	NA	- 1	ND	3.7 N	D 4.8	ND	4.4	ND	4.4	ND	4.4	ND	4	ND	4.4	ND	4.4	ND	4.2	ND	4.4	NR	-	NR	-
	1,1-Dichloroethane	µg/m°	NA -	NA	- 1	ND	2.7 1	D 3.5	ND	3.3	ND	3.2	ND	3.2	ND	2.9	ND	3.3	ND	3.2	ND	3.1	ND	3.2	NR	-	NR	-
	1,1-Dichloroethene	μg/m ³	NA -	NA	- 1	ND	2.7	D 3.5	ND	3.2	ND	3.2	ND	3.2	ND	2.9	ND	3.2	ND	3.2	ND	3.1	ND	3.2	NR	-	NR	
	1,2,4-Trichlorobenzene	$\mu g/m^3$	NA -	NA	- 1	ND	20 1	D 26	ND	24	ND	24	ND	24	ND	22	ND	24	ND	24	ND	23	ND	24	NR	-	NR	-
	1,2,4-Trimethylbenzene	μg/m ³	NA -	NA	- 1	ND	3.3 N	D 4.3	ND	4	81	3.9	5.6	3.9	ND	3.6	ND	4	9.2	3.9	ND	3.8	ND	4	NR	-	NR	-
	1.2-Dibromoethane (EDB)	$\mu g/m^3$	NA -	NA	- 1	ND	5.2 N	D 6.7	ND	6.3	ND	6.1	ND	6.1	ND	5.6	ND	6.2	ND	6.1	ND	6	ND	6.2	NR	-	NR	-
	1.2-Dichlorobenzene	ug/m ³	NA -	NA	- 1	ND	4 N	D 5.3	ND	4.9	ND	4.8	ND	4.8	ND	4.4	ND	4.9	ND	4.8	ND	4.6	ND	4.8	NR	-	NR	-
	1.2-Dichloroethane	1.0/m ³	NA -	NΔ		ND	27	D 35	ND	3.3	ND	3.2	ND	3.2	ND	2.9	ND	3.3	ND	3.2	ND	3.1	ND	3.2	NR		NR	
	1.2 Dichloropropage	µg/m ³	NA	NA		ND	2.1	D 4	ND	2.9	ND	3.2	ND	27	ND	2./	ND	27	ND	27	ND	2.6	ND	3.2	NR		NIR	
		μ _g /m ³	11/4 -	NA			3.1 1	D 4	ND	5.8	110	3.7	ND	3.7	ND	3.4	ND	5.7	ND	2.0	ND	3.0	ND	3.7	NR		NR	
	1,3,5-1 rimetnylbenzene	µg/m	NA -	NA	-	ND	3.3 r	D 4.3	ND	4	30	3.9	ND	3.9	ND	3.6	ND	4	ND	3.9	ND	3.8	ND	4	NR	-	NR	
	1,3-Butadiene	µg/m	NA -	NA	- 1	ND	1.5 P	D 1.9	ND	1.8	ND	1.8	ND	1.8	ND	1.6	ND	1.8	ND	1.8	ND	1.7	ND	1.8	NK	-	NK	-
	1,3-Dichlorobenzene	µg/m [°]	NA -	NA	- 1	ND	4 N	D 5.3	ND	4.9	ND	4.8	ND	4.8	ND	4.4	ND	4.9	ND	4.8	ND	4.6	ND	4.8	NR	-	NR	-
	1,4-Dichlorobenzene	μg/m [°]	NA -	NA	- 1	ND	4 N	D 5.3	ND	4.9	ND	4.8	ND	4.8	ND	4.4	ND	4.9	ND	4.8	ND	4.6	ND	4.8	NR	-	NR	-
	1,4-Dioxane	μg/m ³	NA -	NA	- 1	ND	9.7 N	D 13	ND	12	ND	12	ND	12	ND	10	ND	12	ND	12	ND	11	ND	12	NR	-	NR	-
	2,2,4-Trimethylpentane	$\mu g/m^3$	NA -	NA	- 1	ND	3.2 1	D 4.1	ND	3.8	ND	3.7	ND	3.7	ND	3.4	ND	3.8	ND	3.7	ND	3.6	ND	3.8	NR	-	NR	-
	2-Butanone (Methyl Ethyl Ketone)	$\mu g/m^3$	NA -	NA	- 1	ND	2 3	.8 2.6	14	2.4	3.1	2.4	4.1	2.4	2.2	2.1	ND	2.4	ND	2.4	ND	2.3	ND	2.4	NR	-	NR	-
	2-Hexanone	μg/m ³	NA -	NA	- 1	ND	11 1	D 14	ND	13	ND	13	ND	13	ND	12	ND	13	ND	13	ND	13	ND	13	NR	-	NR	-
	2-Propanol	ug/m ³	NA -	NA	- 1	ND	6.6 N	D 8.6	ND	8	ND	7.9	ND	7.9	ND	7.1	ND	8	ND	7.9	ND	7.6	ND	7.9	NR	-	NR	-
	3-Chloropropene	11g/m ³	NA -	NΔ		ND	84	D 11	ND	10	ND	10	ND	10	ND	9.1	ND	10	ND	10	ND	9.7	ND	10	NR		NR	
	4 Ethyltoluono	µg/m ³	NA	NA	-	ND	2.2	D 12	ND	4	100	3.0	8.2	2.0	ND	2.6	ND	4	17	2.0	ND	2.0	ND	4	ND	-	NIR	
	4-Eurytoidene	μg/m	NA -	NA	- 1		3.3 1	D 4.3	ND	4	100	3.9	0.3	3.9	ND	3.0	ND	4	17	3.9	ND	3.0	ND	4	NR	-	NR	
	4-Metnyi-2-pentanone	µg/m	NA -	NA	- 1	ND	2.8 r	D 3.6	ND	3.3	ND	3.3	ND	3.3	ND	3	ND	3.3	ND	3.5	ND	5.2	ND	3.3	NK	-	NK	-
	Acetone	µg/m	NA -	NA		8.6	6.4	1 8.3	41	7.7	22	7.6	9.6	7.6	9.3	6.9	9.2	7.7	12	7.6	24	7.4	ND	7.6	NK	-	NK	-
	alpha-Chlorotoluene	µg/m ³	NA -	NA	- 1	ND	3.5 N	D 4.5	ND	4.2	ND	4.1	ND	4.1	ND	3.8	ND	4.2	ND	4.1	ND	4	ND	4.2	NR	-	NR	-
	Benzene	µg/m°	NA -	NA	- 1	ND	2.2 1	D 2.8	ND	2.6	140	2.6	6.5	2.6	ND	2.3	ND	2.6	15	2.6	3.8	2.5	3.3	2.6	NR	-	NR	-
	Bromodichloromethane	μg/m ³	NA -	NA	- 1	ND	4.5 N	D 5.9	ND	5.5	ND	5.4	ND	5.4	ND	4.8	ND	5.4	ND	5.4	ND	5.2	ND	5.4	NR	-	NR	-
	Bromoform	$\mu g/m^3$	NA -	NA	- 1	ND	7 1	D 9	ND	8.4	ND	8.3	ND	8.3	ND	7.5	ND	8.4	ND	8.3	ND	8	ND	8.3	NR	-	NR	-
	Bromomethane	μg/m ³	NA -	NA	- 1	ND	2.6 N	D 3.4	ND	3.2	ND	3.1	ND	3.1	ND	2.8	ND	3.1	ND	3.1	ND	3	ND	3.1	NR	-	NR	-
	Carbon Disulfide	$\mu g/m^3$	NA -	NA	-	6	2.1	D 2.7	3.7	2.5	ND	2.5	ND	2.5	ND	2.2	ND	2.5	ND	2.5	ND	2.4	2.8	2.5	NR	-	NR	-
	Carbon Tetrachloride	$\mu g/m^3$	NA -	NA	- 1	ND	4.2 N	D 5.5	ND	5.1	ND	5	ND	5	ND	4.6	ND	5.1	ND	5	ND	4.9	ND	5.1	NR	-	NR	-
	Chlorobenzene	ug/m ³	NA -	NA	- 1	ND	3.1	D 4	ND	3.8	ND	3.7	ND	3.7	ND	3.3	ND	3.7	ND	3.7	ND	3.6	ND	3.7	NR	-	NR	
	Chloroethane	µg/m ³	NA	NA		ND	18	D 23	ND	2.0	ND	2.1	ND	2.1	ND	1.0	ND	2.1	ND	2.1	ND	2	ND	2.1	NP		NP	
	Chloroform	μg/m ³	NA	NA	-	ND	3.3	D 43	ND	4	ND	3.0	ND	3.0	ND	3.5	ND	4	ND	3.0	ND	3.8	ND	3.0	NP	-	NR	
	Chloromethana	μg/m ³	NA -	NA			5.5 1	D 4.3	ND	4	ND	5.5	ND	5.9	ND	5.5	ND	4	ND	5.9	0.2	5.8	ND	5.9	ND	-	NR	
		μg/m	NA -	NA	- 1		3.0 1	D 7.2	ND	0.7	ND	0.0	ND	0.0	ND	0	ND	0.7	ND	0.0	9.2	0.4	ND	0.0	NR	-	NK	
	cis-1,2-Dichloroethene	µg/m	NA -	NA	- 1	ND	2.7 1	D 3.5	ND	3.2	ND	3.2	ND	3.2	ND	2.9	ND	3.2	ND	3.2	ND	3.1	ND	3.2	NK	-	NK	-
	cis-1,3-Dichloropropene	µg/m"	NA -	NA	- 1	ND	3.1 N	D 4	ND	3.7	ND	3.6	ND	3.6	ND	3.3	ND	3.7	ND	3.6	ND	3.5	ND	3.6	NR	-	NR	-
	Cumene	µg/m [°]	NA -	NA	- 1	ND	3.3 N	D 4.3	ND	4	11	3.9	ND	3.9	ND	3.6	ND	4	ND	3.9	ND	3.8	ND	4	NR	-	NR	-
	Cyclohexane	µg/m³	NA -	NA	- 1	ND	2.3 N	D 3	ND	2.8	ND	2.8	ND	2.8	ND	2.5	ND	2.8	ND	2.8	ND	2.7	ND	2.8	NR	-	NR	-
	Dibromochloromethane	μg/m ³	NA -	NA	- 1	ND	5.8 1	D 7.4	ND	6.9	ND	6.8	ND	6.8	ND	6.2	ND	6.9	ND	6.8	ND	6.6	ND	6.8	NR	-	NR	-
	Ethanol	μg/m ³	NA -	NA	- 1	ND	5.1 N	D 6.6	16	6.1	15	6	10	6	11	5.5	ND	6.1	12	6	10	5.8	ND	6.1	NR	-	NR	-
	Ethyl Benzene	$\mu g/m^3$	NA -	NA	- 1	ND	2.9	D 3.8	ND	3.5	170	3.5	11	3.5	ND	3.1	ND	3.5	24	3.5	ND	3.4	5.1	3.5	NR	-	NR	-
	Freon 11	$\mu g/m^3$	NA -	NA	- 1	ND	3.8 N	D 4.9	ND	4.6	ND	4.5	ND	4.5	ND	4.1	ND	4.6	ND	4.5	ND	4.4	ND	4.5	NR	-	NR	-
	Freon 113	μg/m ³	NA -	NA	- 1	ND	5.2 1	D 6.7	ND	6.2	ND	6.1	ND	6.1	ND	5.6	ND	6.2	ND	6.1	ND	5.9	ND	6.2	NR	-	NR	-
	Freon 114	μg/m ³	NA -	NA	- 1	ND	4.7 N	D 6.1	ND	5.7	ND	5.6	ND	5.6	ND	5.1	ND	5.7	ND	5.6	ND	5.4	ND	5.6	NR	-	NR	-
	Freon 12	ug/m ³	NA -	NA	. 1	ND	3.3	D 43	ND	4	ND	4	ND	4	ND	3.6	ND	4	ND	4	ND	3.8	ND	4	NR	-	NR	-
	Hentane	µg/m ³	NA -	NA		ND	28	D 36	ND	33	64	3 3	ND	33	ND	3	ND	33	56	33	ND	3.2	ND	33	NR		NR	
	Hexachlorobutadiene	11g/m ³	NA -	NA		ND	2.0 1	D 37	ND	25	ND	2/	ND	3.3	ND	31	ND	34	ND	34	ND	32	ND	34	NR		NP	-
	Havana	μg/m μg/m ³	NA -	NA	- -	ND	27 1	D 21	ND	20	2.4	24	ND	24	ND	24	ND	24	ND	29	ND	22	ND	29	ND	-	NP	
	nexane	μg/m	NA -	INA	- '		2.4 1	ע <u>3.1</u>		2.9	5.4	2.8		2.8	ND NT	2.0	IND	2.0	UND	2.8	ND	2.1		2.0	INK	-	INK	-
	m,p-Xylene	µg/m"	NA -	NA	- 1	ND	2.9 N	D 3.8	ND	3.5	200	3.5	13	3.5	ND	3.1	ND	3.5	24	3.5	ND	3.4	6.6	3.5	NK	-	NR	-
	Methyl tert-butyl ether	μg/m´́	NA -	NA	- 1	NĎ	2.4 N	D 3.2	ND	2.9	ND	2.9	ND	2.9	ND	2.6	ND	2.9	ND	2.9	ND	2.8	ND	2.9	NR	-	NR	-
	Methylene Chloride	µg/m³	NA -	NA	- 1	ND	2.3 N	D 3	ND	2.8	ND	2.8	11	2.8	4	2.5	ND	2.8	ND	2.8	ND	2.7	ND	2.8	NR	-	NR	-
	o-Xylene	μg/m ³	NA -	NA	- 1	ND	2.9 N	D 3.8	ND	3.5	70	3.5	4.5	3.5	ND	3.1	ND	3.5	8.5	3.5	ND	3.4	ND	3.5	NR	-	NR	-
	Propylbenzene	$\mu g/m^3$	NA -	NA	- 1	ND	3.3 N	D 4.3	ND	4	4.9	3.9	ND	3.9	ND	3.6	ND	4	ND	3.9	ND	3.8	ND	4	NR	-	NR	-
	Styrene	$\mu g/m^3$	NA -	NA	- 1	ND	2.9 N	D 3.7	ND	3.5	43	3.4	ND	3.4	ND	3.1	ND	3.4	3.4	3.4	ND	3.3	ND	3.4	NR	-	NR	-
	Tetrachloroethene	μg/m ³	NA -	NA	- 1	ND	4.6 N	D 5.9	ND	5.5	ND	5.4	ND	5.4	ND	4.9	ND	5.5	ND	5.4	ND	5.2	ND	5.5	NR	-	NR	-
	Tetrahydrofuran	μg/m ³	NA -	NA	- 1	ND	2	D 2.6	ND	2.4	ND	2.4	ND	2.4	ND	2.1	ND	2.4	ND	2.4	ND	2.3	ND	2.4	NR	-	NR	-
	Toluene	ug/m ³	NA -	NA	. 1	ND	2.5	D 33	ND	3.1	160	3	9	3	4.2	2.7	ND	3	15	3	3.6	2.9	6.2	3	NR		NR	
	trans-1 2-Dichloroethene	μø/m ³	NA -	NA		ND	27	D 35	ND	3.1	ND	3.2	ND	32	ND	2.7	ND	3.2	ND	3.2	ND	3.1	ND	3.2	NR		NR	
	trans 1.3 Dichloropropage	ug/m ³	NA	NA		ND	3.1	- 3.5 D 4	ND	37	ND	3.2	ND	3.4	ND	3.2	ND	3.7	ND	3.6	ND	3.5	ND	3.6	NP		NP	
	Tricklass these	μg/m μg/m ³		NA NA	- -		2.6	D 47	ND	3.1	ND	5.0	ND	3.0	ND	2.2		3.7	ND	3.0	ND	5.5	ND	4.2	ND	-	ND	
	V I CI I I I	μg/m	NA -	INA	-		3.0 1	D 4./		4.4	ND	4.5	ND	4.5	ND	3.9	IND	4.4	ND	4.5	ND	4.2	ND	4.3	INK	-	INK	-
	vinyl Chloride	μg/m	NA -	NA	- 1	ND	1.7 N	D 2.2	ND	2.1	ND	2	ND	2	ND	1.8	ND	2.1	ND	2	ND	2	ND	2	NK	-	NK	-

CONFIRMATORY AIR SAMPLING RESULTS Tidewater Demolition Project Pawtucket, RI

		Units		8/13	/2010			8/10	8/16/2010			8/31	/2010			9/16	/2010			9/2	0/2010			10/5	5/2010			10/13	3/2010	
			PAWVOC-S	sta1-U-100813	PAWVOC-S	Sta1-D-100813	PAWVOC-S	Sta1-U-100810	6 PAWVOC-	Sta1-D-100810	6 PAWVOC-	Sta1-U-100831	PAWVOC-S	Sta1-D-100831	PAWVOC-S	ta1-U-100916	PAWVOC-8	Sta1-D-100916	PAWVOC-S	Sta1-U-10092	PAWVOC-S	ta1-D-100920	PAWVOC-S	sta1-U-101005	5 PAWVOC-S	ta1-D-101005	PAWVOC-8	Sta1-U-101013	PAWVOC-8	ta1-D-101013
			Loca	tion F	Loca	ation A	Loca	tion F	Loc	ation A	Loc	ation D	Loca	tion A	Loca	tion D	Loca	tion A	Loca	tion F	Loca	tion A	Loca	tion C	Loca	tion B	Loca	tion C	Loca	tion A
			Up	wind	Dow	vnwind	Up	wind	Dov	vnwind	UI	owind	Dow	nwind	Up	wind	Dow	nwind	Up	wind	Dow	nwind	Up	wind	Dow	nwind	Up	wind	Dow	nwind
			Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
TO-13	Semi-Volatile Organic Compounds (S	VOCs)													1						-		1							
	2-Chloronaphthalene	μg/m ³	ND	0.008	ND	0.009	NA	-	NA	-	ND	0.009	ND	0.214	ND	0.008	ND	0.082	NA	-	NA	-	ND	0.009	ND	0.040	ND	0.036	ND	0.009
	2-Methylnaphthalene	μg/m ³	ND	0.008	0.037	0.009	NA	-	NA	-	0.045	0.009	3.338	0.214	0.184	0.008	1.635	0.082	NA	-	NA	-	0.104	0.009	0.741	0.040	0.594	0.036	0.145	0.009
	Acenaphthene	μg/m³	ND	0.008	ND	0.009	NA	-	NA	-	0.019	0.009	ND	0.214	ND	0.008	ND	0.082	NA	-	NA		ND	0.009	ND	0.040	ND	0.036	ND	0.009
	Acenaphthylene	$\mu g/m^3$	ND	0.008	ND	0.009	NA	-	NA	-	ND	0.009	ND	0.214	ND	0.008	ND	0.082	NA	-	NA	-	ND	0.009	ND	0.040	ND	0.036	ND	0.009
	Anthracene	μg/m ³	ND	0.008	ND	0.009	NA	-	NA	-	ND	0.009	ND	0.214	ND	0.008	ND	0.082	NA	-	NA	-	ND	0.009	ND	0.040	ND	0.036	ND	0.009
	Benzo(a)anthracene	μg/m ³	ND	0.008	ND	0.009	NA	-	NA	-	ND	0.009	ND	0.214	ND	0.008	ND	0.082	NA	-	NA	-	ND	0.009	ND	0.040	ND	0.036	ND	0.009
	Benzo(a)pyrene	$\mu g/m^3$	ND	0.008	ND	0.009	NA	-	NA	-	ND	0.009	ND	0.214	ND	0.008	ND	0.082	NA	-	NA	-	ND	0.009	ND	0.040	ND	0.036	ND	0.009
	Benzo(b)fluoranthene	μg/m ³	ND	0.008	ND	0.009	NA	-	NA	-	ND	0.009	ND	0.214	ND	0.008	ND	0.082	NA	-	NA	-	ND	0.01	ND	0.040	ND	0.036	ND	0.009
	Benzo(g,h,i)perylene	μg/m ³	ND	0.008	ND	0.009	NA	-	NA	-	ND	0.009	ND	0.214	ND	0.008	ND	0.082	NA	-	NA	-	ND	0.01	ND	0.040	ND	0.036	ND	0.009
	Benzo(k)fluoranthene	μg/m ³	ND	0.008	ND	0.009	NA	-	NA	-	ND	0.009	ND	0.214	ND	0.008	ND	0.082	NA	-	NA	-	ND	0.01	ND	0.040	ND	0.036	ND	0.009
	Chrysene	μg/m ³	ND	0.008	ND	0.009	NA	-	NA	-	ND	0.009	ND	0.214	ND	0.008	ND	0.082	NA	-	NA	-	ND	0.01	ND	0.040	ND	0.036	ND	0.009
	Dibenz(a,h)anthracene	$\mu g/m^3$	ND	0.008	ND	0.009	NA	-	NA	-	ND	0.009	ND	0.214	ND	0.008	ND	0.082	NA	-	NA	-	ND	0.01	ND	0.040	ND	0.036	ND	0.009
	Fluoranthene	μg/m ³	ND	0.008	ND	0.009	NA	-	NA	-	0.012	0.009	ND	0.214	ND	0.008	ND	0.082	NA	-	NA	-	ND	0.01	ND	0.040	ND	0.036	ND	0.009
	Fluorene	μg/m ³	ND	0.008	ND	0.009	NA	-	NA	-	0.024	0.009	ND	0.214	ND	0.008	ND	0.082	NA	-	NA	-	ND	0.01	ND	0.040	ND	0.036	ND	0.009
	Indeno(1,2,3-c,d)pyrene	$\mu g/m^3$	ND	0.008	ND	0.009	NA	-	NA	-	ND	0.009	ND	0.214	ND	0.008	ND	0.082	NA	-	NA	-	ND	0.01	ND	0.040	ND	0.036	ND	0.009
	Naphthalene	$\mu g/m^3$	0.011	0.008	0.131	0.009	NA	-	NA	-	0.253	0.009	25.678	0.214	0.879	0.008	10.626	0.082	NA	-	NA	-	1.22	0.01	5.40	0.040	4.86	0.036	0.941	0.009
	Phenanthrene	$\mu g/m^3$	0.024	0.008	0.019	0.009	NA	-	NA	-	0.056	0.009	ND	0.214	0.016	0.008	ND	0.082	NA	-	NA	-	ND	0.009	ND	0.040	ND	0.036	ND	0.009
	Pyrene	μg/m ³	ND	0.008	ND	0.009	NA	-	NA	-	ND	0.009	ND	0.214	ND	0.008	ND	0.082	NA	-	NA		ND	0.009	ND	0.040	ND	0.036	ND	0.009
PM10	Total Lead																													
	Total Lead	μg/m ³	ND	0.023	0.076	0.17	NA	-	NA	-	ND	0.017	0.43	0.021	1.24	0.023	1.84	0.017	NA	-	NA		0.05	0.017	0.16	0.022	NR		NR	-
40CFR50 App. B	Total Suspended Particulate (TSP)																													
	TSP	µg/m3	20.92	0.19	73.32	0.14	NA	-	NA	-	NA	-	NA	-	287.7	0.2	184.13	0.14	NA	-	NA	-	17.08	0.14	34.36	0.19	NR	-	NR	-

Notes: 1. NA = Not analyzed. 2. ND = Not detected.

ND = Not detected.
NR = Lab results pending.
RL = Reporting Limit
Refer to attached site plan showing location designations A through F

ZNOSE FIELD SCREENING DATA

			Naphthalene Concentration	
Date	TWA Sample		(ppbv)	Location
9/20/2010	TWA-1	0815 to 082	4 16	А
9/20/2010	TWA-2	0829 to 084	4 20	А
9/20/2010	TWA-3	0847 to 090	8 18	А
9/20/2010	TWA-4	0914 to 092	6 19	А
9/20/2010	TWA-5	0930 to 094	2 13	А
9/20/2010	TWA-6	0945 to 095	8 20	А
9/20/2010	TWA-7	1001 to 102	3 17	А
9/20/2010	TWA-8	1033 to 104	5 20	А
9/20/2010	TWA-9	1033 to 104	5 20	А
9/20/2010	TWA-10	1051 to 112	1 7	А
9/20/2010	TWA-11	1127 to 113	9 < 6	А
9/20/2010	TWA-12	1151 to 120	4 17	А
9/20/2010	TWA-13	1209 to 122	2 22	А
9/20/2010	TWA-14	1227 to 123	9 13	А
9/20/2010	TWA-15	1243 to 130	8 14	В
9/20/2010	TWA-16	1312 to 132	7 11	В
9/20/2010	TWA-17	1330 to 134	9 17	В
9/20/2010	TWA-18	1404 to 142	6 12	В
9/20/2010	TWA-19	1420 to 143	2 16	В
9/20/2010	TWA-20	1436 to 144	8 15	В
9/20/2010	TWA-21	1452 to 150	5 12	В
9/20/2010	TWA-22	1508 to 152	0 13	В
9/20/2010	TWA-23	1524 to 153	6 15	В
9/20/2010	TWA-24	1540 to 155	2 13	В
9/20/2010	TWA-25	1559 to 162	1 11	В
9/21/2010	TWA-1	0756 to 080	8 < 6	С
9/21/2010	TWA-2	0812 to 082	6 < 6	С
9/21/2010	TWA-3	0830 to 084	2 < 6	С
9/21/2010	TWA-4	0846 to 085	8 4	С
9/21/2010	TWA-5	0901 to 092	7 < 6	С
9/21/2010	TWA-6	0921 to 093	3 < 6	С
9/21/2010	TWA-7	0937 to 094	9 < 6	С
9/21/2010	TWA-8	0953 to 100	3 < 6	С
9/21/2010	TWA-9	1030 to 104	2 < 7	D
9/21/2010	TWA-10	1046 to 105	8 < 7	D

				Naphthalen	e Concentration	
Date	TWA Sample			(1	opbv)	Location
9/21/2010	TWA-11	1101 to	1114	<	7	D
9/21/2010	TWA-12	1117 to	1131	<	7	D
9/21/2010	TWA-13	1134 to	1147	<	7	D
9/21/2010	TWA-14	1151 to	1204	<	7	D
9/21/2010	TWA-15	1208 to	1221	<	7	D
9/21/2010	TWA-16	1225 to	1237	<	7	D
9/21/2010	TWA-17	1241 to	1253	<	7	D
9/21/2010	TWA-18	1339 to	1352	<	7	E
9/21/2010	TWA-19	1355 to	1407	<	7	E
9/21/2010	TWA-20	1410 to	1427	<	7	E
9/21/2010	TWA-21	1430 to	1442	<	7	E
9/21/2010	TWA-22	1446 to	1459	<	7	Е
9/21/2010	TWA-23	1502 to	1514	<	7	Е
9/21/2010	TWA-24	1518 to	1531	<	7	E
9/21/2010	TWA-25	1536 to	1548	<	7	E
9/21/2010	TWA-26	1554 to	1607	<	7	E
9/22/2010	TWA-1	0744 to	0758	<	7	E
9/22/2010	TWA-2	0802 to	0814	<	7	E
9/22/2010	TWA-3	0817 to	0830	<	7	E
9/22/2010	TWA-4	0833 to	0846	<	7	E
9/22/2010	TWA-5	0849 to	0902	<	7	E
9/22/2010	TWA-6	0906 to	0918	<	7	E
9/22/2010	TWA-7	0922 to	0935	<	7	E
9/22/2010	TWA-8	0938 to	0953	<	7	E
9/22/2010	TWA-9	1016 to	1028	<	7	В
9/22/2010	TWA-10	1031 to	1050	<	7	В
9/22/2010	TWA-11	1053 to	1106	<	7	В
9/22/2010	TWA-12	1109 to	1121	<	7	В
9/22/2010	TWA-13	1125 to	1137	<	7	В
9/22/2010	TWA-14	1140 to	1153	<	7	В
9/22/2010	TWA-15	1156 to	1208	<	7	В
9/22/2010	TWA-16	1211 to	1227	<	7	В
9/22/2010	TWA-17	1230 to	1243	<	7	В
9/22/2010	TWA-18	1248 to	1301	<	7	В
9/22/2010	TWA-19	1358 to	1412	<	7	D
9/22/2010	TWA-20	1415 to	1428	<	7	D
9/22/2010	TWA-21	1431 to	1443	<	7	D

				Naphthalen	e Concentration	
Date	TWA Sample			()	opbv)	Location
9/22/2010	TWA-22	1446 to	1504	<	7	D
9/22/2010	TWA-23	1508 to	1520		6	D
9/22/2010	TWA-24	1524 to	1536	<	7	D
9/22/2010	TWA-25	1541 to	1553	<	7	D
9/22/2010	TWA-26	1557 to	1610	<	7	D
9/22/2010	TWA-27	1614 to	1626		12	D
9/23/2010	TWA-1	0813 to	0826		22	А
9/23/2010	TWA-2	0829 to	0842		18	Α
9/23/2010	TWA-3	0845 to	0859		21	Α
9/23/2010	TWA-4	0902 to	0915		21	Α
9/23/2010	TWA-5	0919 to	0932		20	Α
9/23/2010	TWA-6	0935 to	0947		27	А
9/23/2010	TWA-7	0951 to	1003		20	А
9/23/2010	TWA-8	1018 to	1030	<	7	D
9/23/2010	TWA-9	1034 to	1046	<	7	D
9/23/2010	TWA-10	1050 to	1102	<	7	D
9/23/2010	TWA-11	1106 to	1118	<	7	D
9/23/2010	TWA-12	1122 to	1134	<	7	D
9/23/2010	TWA-13	1140 to	1152		6	D
9/23/2010	TWA-14	1219 to	1231	<	7	Е
9/23/2010	TWA-15	1234 to	1247	<	7	Е
9/23/2010	TWA-16	1251 to	1304	<	7	Е
9/23/2010	TWA-17	1307 to	1321	<	7	E
9/23/2010	TWA-18	1324 to	1337		5	E
9/23/2010	TWA-19	1340 to	1357	<	7	E
9/23/2010	TWA-20	1414 to	1426	<	7	E
9/23/2010	TWA-20	1414 to	1426	<	7	В
9/23/2010	TWA-21	1435 to	1447	<	7	В
9/23/2010	TWA-22	1450 to	1504	<	7	В
9/23/2010	TWA-23	1507 to	1520	<	7	В
9/23/2010	TWA-24	1526 to	1538	<	7	В
9/23/2010	TWA-25	1543 to	1555	<	7	В
9/23/2010	TWA-26	1600 to	1613	<	7	В
9/23/2010	TWA-27	1616 to	1628	<	7	В
9/23/2010	TWA-28	1632 to	1644	<	7	В
9/23/2010	TWA-29	1647 to	1709	<	7	В

				Naphthalen	e Concentration	
Date	TWA Sample			()	opbv)	Location
9/24/2010	TWA-1	0800 to	0812	<	7	D
9/24/2010	TWA-2	0816 to	0828	<	7	D
9/24/2010	TWA-3	0833 to	0845	<	7	D
9/24/2010	TWA-4	0850 to	0902		6	D
9/24/2010	TWA-5	0907 to	0919		9	D
9/24/2010	TWA-6	0922 to	0935		9	D
9/24/2010	TWA-7	0940 to	0952		9	D
9/24/2010	TWA-8	0956 to	1008		6	D
9/24/2010	TWA-9	1012 to	1024	<	7	D
9/24/2010	TWA-10	1031 to	1043	<	7	D
9/24/2010	TWA-11	1047 to	1059	<	7	D
9/24/2010	TWA-12	1102 to	1115		6	D
9/24/2010	TWA-13	1139 to	1151	<	7	E
9/24/2010	TWA-14	1231 to	1245	<	7	E
9/24/2010	TWA-15	1248 to	1301	<	7	E
9/24/2010	TWA-16	1304 to	1316	<	7	E
9/24/2010	TWA-17	1319 to	1333		5	E
9/24/2010	TWA-18	1338 to	1351		5	E
9/24/2010	TWA-19	1356 to	1408	<	7	E
9/24/2010	TWA-20	1412 to	1424	<	7	E
9/24/2010	TWA-21	1428 to	1441	<	7	E
9/24/2010	TWA-22	1444 to	1457	<	7	E

					Naphthalene Concentration		
Date	TWA Sample				(F	opbv)	Location
9/27/2010	TWA-1	0905	to	0917	<	7	E
9/27/2010	TWA-2	0920	to	0932	<	7	E
9/27/2010	TWA-3	0935	to	0945		21	E
9/27/2010	TWA-4	0953	to	1005		7	E
9/27/2010	TWA-5	1008	to	1020		5	E
9/27/2010	TWA-6	1024	to	1036		5	E
9/27/2010	TWA-7	1039	to	1051		7	E
9/27/2010	TWA-8	0543	to	1106		8	E
9/27/2010	TWA-9	1109	to	1122		9	E
9/27/2010	TWA-10	1125	to	1137		6	E
9/27/2010	TWA-11	1140	to	1152		6	E
9/27/2010	TWA-12	1152	to	1205		4	E
9/28/2010	TWA-1	1118	to	1130	<	6	В
9/28/2010	TWA-2	1133	to	1145	<	6	В
9/28/2010	TWA-3	1148	to	1201	<	6	В
9/28/2010	TWA-4	1204	to	1216	<	6	В
9/28/2010	TWA-5	1219	to	1231	<	6	В
9/28/2010	TWA-6	1235	to	1248	<	6	В
9/28/2010	TWA-7	1252	to	1304	<	6	В
9/28/2010	TWA-8	1307	to	1319	<	6	В
9/28/2010	TWA-9	1322	to	1335	<	6	В
9/28/2010	TWA-10	1338	to	1350	<	6	В
9/28/2010	TWA-11	1353	to	1406	<	6	В
9/28/2010	TWA-12	1409	to	1423	<	6	В
9/28/2010	TWA-13	1426	to	1443	<	6	В

					Naphthaler		
Date	TWA Sample					(ppbv)	Location
9/29/2010	TWA-1	1133	to	1148	<	6	С
9/29/2010	TWA-2	1151	to	1204	<	6	С
9/29/2010	TWA-3	1207	to	1219	<	6	С
9/29/2010	TWA-4	1222	to	1235	<	6	С
9/29/2010	TWA-5	1246	to	1258	<	6	С
9/29/2010	TWA-6	1301	to	1315	<	6	С
9/29/2010	TWA-7	1318	to	1327	<	6	С
9/30/2010	TWA-1	1429	to	1441	<	6	D
9/30/2010	TWA-2	1444	to	1456		6	D
9/30/2010	TWA-3	1459	to	1511		7	D
9/30/2010	TWA-4	1514	to	1526		6	D
9/30/2010	TWA-5	1529	to	1542		6	D
9/30/2010	TWA-6	1545	to	1557		4	D
9/30/2010	TWA-7	1600	to	1612	<	6	D
10/1/2010	TWA-1	0805	to	0817	<	6	Е
10/1/2010	TWA-2	0820	to	0832	<	6	Е
10/1/2010	TWA-3	0835	to	0846	<	6	Е
10/1/2010	TWA-4	0849	to	0900	<	6	Е
10/1/2010	TWA-5	0903	to	0915	<	6	Е
10/1/2010	TWA-6	0917	to	0929	<	6	E
10/1/2010	TWA-7	0932	to	0943	<	6	Е
10/1/2010	TWA-8	1021	to	1033	<	6	D
10/1/2010	TWA-9	1036	to	1048	<	6	D
10/1/2010	TWA-10	1051	to	1103	<	6	D
10/1/2010	TWA-11	1106	to	1119	<	6	D
							-
10/1/2010	TWA-12	1122	to	1128	<	6	U

					Naphthalene Concentration	
Date	TWA Sample				(ppbv)	Location
10/4/2010	TWA-1	0846	to	0900	5	В
10/4/2010	TWA-2	0903	to	0915	5	В
10/4/2010	TWA-3	0918	to	0930	11	В
10/4/2010	TWA-4	0933	to	0945	5	В
10/4/2010	TWA-5	0948	to	1000	4	В
10/4/2010	TWA-6	1006	to	1019	4	В
10/4/2010	TWA-7	1022	to	1034	6	В
10/4/2010	TWA-8	1037	to	1049	8	В
10/4/2010	TWA-9	1052	to	1104	11	В
10/4/2010	TWA-10	1107	to	1119	6	В
10/4/2010	TWA-11	1122	to	1134	8	В
10/4/2010	TWA-12	1137	to	1146	5	В
10/4/2010	TWA-13	1321	to	1333	6	Е
10/4/2010	TWA-14	1336	to	1348	< 6	Е
10/4/2010	TWA-15	1351	to	1403	< 6	Е
10/4/2010	TWA-16	4064	to	1418	5	Е
10/4/2010	TWA-17	1421	to	1434	4	Е
10/4/2010	TWA-18	1437	to	1449	4	E
10/4/2010	TWA-19	1452	to	1504	< 6	E
10/5/2010	TWA-1	0807	to	0819	< 6	В
10/5/2010	TWA-2	0822	to	0834	5	В
10/5/2010	TWA-3	0837	to	0849	5	В
10/5/2010	TWA-4	0852	to	0905	4	В
10/5/2010	TWA-5	0908	to	0920	< 6	В
10/5/2010	TWA-6	0923	to	0935	7	В
10/5/2010	TWA-7	0938	to	0950	5	В
10/5/2010	TWA-8	0953	to	1006	6	В
10/5/2010	TWA-9	1028	to	1044	6	В
10/5/2010	TWA-10	1115	to	1127	11	В
10/5/2010	TWA-11	1130	to	1143	5	В
10/5/2010	TWA-12	1146	to	1158	4	В
10/5/2010	TWA-13	1226	to	1238	< 6	E
10/5/2010	TWA-14	1241	to	1253	10	E
10/5/2010	TWA-15	1256	to	1308	7	E
10/5/2010	TWA-16	1312	to	1324	< 6	E
10/5/2010	TWA-17	1327	to	1339	< 6	E
10/5/2010	TWA-18	1342	to	1355	< 6	E
10/5/2010	TWA-19	1359	to	1359	< 6	E

					Nanhthal	ane Concentration	
Date	TWA Sample				Napritian	(ppby)	Location
2410						(PP)	Location
10/6/2010	Τ\Λ/Δ_1	1045	to	1057	6	5	в
10/6/2010	Τ\//Δ_2	11045	to	1112	è	5	B
10/6/2010	TWA-2	1115	to	1127		5	B
10/0/2010	TWA-5	1115	10	1127		5	D
							в
10/6/2010	T\A/A_4	1120	to	1122	/	5	D
10/0/2010	100.4	1150	10	1155	<u> </u>	5	
10/72010	ΤW/Α-1	0811	to	0823	<	5	D
10/72010	TWA-2	0826	to	0836	<	5	D
10/72010	TWA-3	0842	to	0854	<	5	D
10/72010	TWA-4	0857	to	0909	<	5	D
10/72010	TWA-5	0912	to	0924	<	5	D
10/72010	TWA-6	0927	to	0940	<	5	D
10/72010	TWA-7	0948	to	0954	<	5	D
10/72010	TWA-8	1003	to	1015	<	5	D
10/72010	TWA-9	1018	to	1031	<	5	D
10/72010	TWA-10	1034	to	1055	<	5	D
10/72010	TWA-11	1058	to	1111	<	5	D
10/72010	TWA-12	1114	to	1126	<	5	D
10/72010	TWA-13	1129	to	1141	<	5	D
10/72010	TWA-14	1144	to	1156	<	5	D
10/72010	TWA-15	1324	to	1336	<	5	Δ
10/72010	TWA-16	1339	to	1351	~	5	Δ
10/72010	TWA-17	1354	to	1406	<	5	Δ
10/72010	TWA-18	1409	to	1421	<	5	Δ
10/72010	TWA-19	1425	to	1443	<	5	Δ
10/72010	TWA-20	1446	to	1458	<	5	Δ
10/72010	TWA-21	1502	to	1502	<	5	A
10,72010		1001		1001	-	0	
10/8/2010	TWA-1	0745	to	0758	<	6	В
10/8/2010	TWA-2	0801	to	0813	<	6	В
10/8/2010	TWA-3	0816	to	0828	<	6	В
10/8/2010	TWA-4	0831	to	0843	<	6	В
10/8/2010	TWA-5	0846	to	0858	<	6	В
10/8/2010	TWA-6	0901	to	0910	<	6	В
10/8/2010	TWA-7	0920	to	0932	<	6	В
10/8/2010	TWA-8	0935	to	0947	<	6	В
10/8/2010	TWA-9	0950	to	1002	<	6	В
10/8/2010	TWA-10	1005	to	1017	<	6	В
10/8/2010	TWA-11	1023	to	1035	<	6	В
10/8/2010	TWA-12	1105	to	1117	<	6	А
10/8/2010	TWA-13	1120	to	1133	<	6	А
10/8/2010	TWA-14	1136	to	1148	<	6	А
10/8/2010	TWA-15	1154	to	1206	<	6	А
10/8/2010	TWA-16	1217	to	1229	<	6	А
10/8/2010	TWA-17	1232	to	1245	<	6	А
10/8/2010	TWA-18	1248	to	1300	<	6	А
10/8/2010	TWA-19	1303	to	1306	<	6	А
10/8/2010	TWA-20	1322	to	1334	<	6	А