

Mr. Jeffrey Crawford Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street Providence, RI 02908-5767

Subject:

October 2016 Quarterly Monitoring Report for Springfield Street School Complex

Dear Mr. Crawford:

ARCADIS US, Inc. (ARCADIS) conducted quarterly monitoring of soil gas, indoor air, the cap, and the sub-slab ventilation system between June 2nd and 3rd, 2016. The monitoring was performed in accordance with the *Long-Term Operation and Maintenance Plan and Site Contingency Plan* (O&M Plan) contained in the *Remedial Action Work Plan* prepared by ATC dated April 2, 1999, revised May 3, 1999 and May 9, 1999. The *Remedial Action Work Plan* (RAWP) was approved by the Rhode Island Department of Environmental Management (RIDEM) in a letter dated June 4, 1999.

This work is subject to the Limitations contained in Attachment A. Results of monitoring are provided in the following sections and in the attachments.

COVER MONITORING

ARCADIS conducted a visual survey of the site on October 5th, 2016 for evidence of significant soil cover erosion, or for any areas of settling and depression.

The orange indicator barrier was not observed during the inspection, and there was no evidence of significant settling or cover erosion in need of repair.

WELL REPAIRS

Groundwater monitoring well ATC-4 was observed to be open and missing its gripper cap and lid, as the elevation of the well box relative to the PVC casing of the well had sunk. This caused the PVC to push the lid away, leaving the well exposed. On October 6, 2016, the PVC pipe of ATC-4 was cut and a gripper cap

Arcadis U.S., Inc.

300 Metro Center Boulevard

Suite 250

Warwick

Rhode Island 02886 Tel 401 738 3887

Fax 401 732 1686

www.arcadis.com

ENVIRONMENTAL

Date

October 18, 2016

Contact

Donna H. Pallister, PE

Phone:

401.285.2235

Email:

Donna.pallister@arcadis.co m

Our ref:

WK012152.2016

and lid were added. Additionally, the PVC casing of soil gas monitoring well WB-8 was cut so that a gripper cap could be fit under the locking lid of the stickup.

The lid of groundwater monitoring well MW-7 was observed to be vandalized and its lock smashed off. The lid and lock were replaced on October 11, 2016.

SUB-SLAB VENTILATION SYSTEM

Field Monitoring

The sub-slab ventilation system was inspected by ARCADIS during the quarterly monitoring on October 5th, 2016. The two elementary school blowers and one of the two middle school blowers were operating normally upon arrival. The second middle school blower, middle school back, was not operating.

Samples of influent and effluent (before and after the carbon canisters) air were collected at each functioning blower and screened for methane, carbon dioxide, oxygen, carbon monoxide, hydrogen sulfide, and organic vapors using a Landtec GEM5000 Plus and a MiniRae 3000. Results of screening are provided in Table 1. Methane, carbon monoxide, hydrogen sulfide and organic vapors were not detected in any of the samples. Carbon dioxide was detected at concentrations of 0.5% for the elementary school effluent and at concentrations of 0.7% and 0.5% at the two elementary school influent ports. Carbon dioxide was detected at the middle school front influent and effluent ports at a concentration of 0.2%. All of these concentrations exceed the RAWP Action Level of 1000 ppm (0.1%).

Soil Gas Laboratory Results

Sub-slab soil gas samples were collected from the influent to each functioning sub-slab ventilation system. The samples were collected in Tedlar bags and submitted to Con-Test Analytical Laboratories for analysis of volatile organic compounds (VOCs) by EPA method TO-14. Results of the analysis are summarized in Table 2, and the laboratory report is provided in Attachment B.

The Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs) and CT DEEP Proposed Residential Volatilization Criteria for Soil Vapor are provided in Table 2 for comparison purposes. The OSHA PELs are not directly applicable to soil gas, because it does not represent exposure point concentrations. The PELs are the average concentrations that OSHA allows to be present in a workplace without any respiratory protection or exposure controls. The concentrations detected in soil gas were well below the OSHA PELs and the CT DEEP Proposed Residential Volatilization Criteria.

INDOOR AIR MONITORING

Indoor air monitoring was conducted on October 7th, 2016 using a Landtec GEM 5000 Plus meter (methane, hydrogen sulfide, oxygen), a Mini Rae 3000 photoionization detector (organic vapors), and a Fluke 975 Airmeter (carbon dioxide, carbon monoxide). School was in session during the monitoring event. Results of monitoring are provided in the Table 3. Carbon dioxide measurements were made with a Fluke 975 Airmeter indoor air quality meter. The Fluke 975 has a range of 0 to 5,000 ppm, with a resolution of 1 ppm.

The outside temperature on October 7th, 2016 was 53.6°F and ambient carbon dioxide was measured at 513 ppm.

Carbon dioxide did not exceed the RAWP Action Levels at any monitoring point. Methane, carbon monoxide, hydrogen sulfide, and organic vapors were not detected. Carbon dioxide was detected at concentrations between 475 and 896 ppm. As noted below, these readings are within the expected range for indoor air levels of carbon dioxide in an occupied building.

Concentrations of carbon dioxide inside occupied buildings are expected to be higher than the concentrations in outdoor air because the building occupants expel carbon dioxide. Therefore, in indoor air, the concentration of carbon dioxide is typically used as an indicator of the effectiveness of the heating, ventilating, and air conditioning (HVAC) system in circulating outdoor air into the building. The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) have prepared ASHRAE Standard 62.1-2007 titled *Ventilation for Acceptable Indoor Air Quality*. The purpose of the Standard is to specify minimum ventilation rates and other measures to provide indoor air quality that is acceptable to human occupants and that minimize adverse health effects. A discussion regarding carbon dioxide concentrations in indoor air contained in Informative Attachment C of the Standard states: "... maintaining a steady-state CO₂ concentration in a space of no greater than about 700 ppm above outdoor air levels will indicate that a substantial majority of visitors entering a space will be satisfied with respect to human bioeffluents (body odor)." This is the basis for ASHRAE's recommendations for concentrations of carbon dioxide in indoor air.

The Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) for carbon dioxide in the workplace is 5,000 ppm. All readings were below this concentration.

The control panels for the methane monitors at both schools were inspected on September 22, 2016. The methane monitor control panels had stickers that indicated that the monitors were calibrated by Diamond Technical Services within the month prior to the inspection. Diamond Technical Services calibrates the sensors on a monthly basis.

Calibration Certificates from Diamond Calibration indicate that many of the sensors read above 0 when calibrated to the zero gas. This prevents the sensors from giving a fault alarm if the reading drops below zero due to a sudden temperature change, and still provides a conservative measure of protection because the alarm limit does not change.

GROUNDWATER MONITORING

The groundwater monitoring wells were sampled by ARCADIS on October 5th, 2016. Prior to sampling, the depth to water was gauged, and a volume of water equivalent to approximately three well volumes was removed from the well. Groundwater samples were collected in laboratory prepared sample jars and delivered under chain-of-custody protocol to Contest Laboratory in East Longmeadow, Massachusetts for analysis for volatile organic compounds by EPA method 8260. During the sampling period, MW-6, MW-8, and ATC-4 were discovered dry and unable to be sampled. The laboratory report is provided as Attachment B. Results of analysis of groundwater samples are summarized in Table 4.

No target analytes were detected in either of the two groundwater samples collected on October 5th, 2016.

SOIL GAS MONITORING

Soil gas monitoring was conducted at 29 locations on October 4th, 2016. The sampling was conducted by placing an air sampling gripper cap on each well and attaching a piece of tubing. A volume of air equivalent to approximately 3 well volumes was removed from each well using a Sensidyne BDXII air sampling pump. Soil gas was then screened using a Landtec GEM 5000 Plus Landfill Gas Analyzer and a MiniRae 3000 Photoionization Detector (PID).

Soil Gas Field Monitoring Results

Soil gas samples were screened for methane, carbon monoxide, hydrogen sulfide, carbon dioxide, oxygen, and total VOCs. Soil gas survey results are provided in Table 5. Total VOCs, Methane, Carbon monoxide, and hydrogen sulfide were not detected in any samples.

Carbon dioxide was detected in soil gas at concentrations ranging from 0.1% to 11.4% during the October 2016 monitoring event. The carbon dioxide RAWP action level of 0.1% was exceeded at all monitoring points. The maximum concentration detected during the June 2016 monitoring round was 11.4%, which was higher than the maximum detected during the June 2016 round of 9.3%. This is consistent with the pattern shown during previous rounds of declining carbon dioxide concentrations in the winter, and increasing concentrations in the summer and early fall. Graphs depicting carbon dioxide, oxygen, and methane concentrations over time for selected representative wells are presented in Attachment C.

The presence of carbon dioxide in soil gas is an indicator of subsurface biological activity and does not represent a threat to users of the property. The highest concentrations of carbon dioxide were found in wells MPL3 and WB-15, located on the northern end of the property near Hartford Avenue and Milo Street. The monitoring locations on the northern end of the property adjacent to large expanses of paved parking lot, sidewalk, and streets have typically had the highest carbon dioxide concentrations.

VACUUM TESTING

Vacuum testing was conducted on October 14th, 2016 to confirm negative pressure in the soil gas around the occupied buildings. The measurements are performed to assess whether the sub-slab ventilation system is functioning as designed. The testing confirmed the sub-slab ventilation system is performing as designed. Vacuum testing results may be found in Figure 1.

CONCLUSIONS

Methane, hydrogen sulfide, carbon monoxide and organic vapor concentrations did not exceed RAWP action levels in any soil gas or indoor air samples in this quarterly round of sampling. Carbon dioxide concentrations exceeded the action level at 29 soil gas locations and 5 sub slab system monitoring

points. The detection of carbon dioxide in soil gas is typical of what has been detected during previous monitoring events and appears to be a result of naturally occurring biological activity in the subsurface.

If you have any questions or require any additional information, please contact the undersigned at 401-285-2235.

Sincerely,

Arcadis U.S., Inc.

Donna H. Pallister, PE, LSP

Senior Environmental Engineer

Copies

A. Sepe, City of Providence Providence Public Building Authority

Donna H Pallett

Enclosures:

Tables

- 1 System Monitoring Notes
- 2 Soil Gas Lab Results
- 3 Indoor Air Monitoring Results
- 4 Groundwater Monitoring Results
- 5 Soil Gas Survey results

Figures

- 1 Area of Vacuum Influence
- 2 Site Plan

Attachments

- A. Limitations and Service Constraints
- B. Complete Lab Results
- C. Soil Gas Trends

TABLES

Monitoring Location	Methane % by volume Landtec	Carbon Dioxide % by volume	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
Elementary School inlet 1	0	0.7	21	0	0	0
Elementary School inlet 2	0	0.5	21	0	0	0
Elementary School Outlet	0	0.5	20.6	0	0	0
Middle School front shed inlet	0	0.2	21.9	0	0	0
Middle School front shed after 2nd carbon	0	0.2	21.8	0	0	0
Middle School back shed inlet #	NT	NT	NT	NT	NT	NT
Middle School back shed after 2nd carbon #	NT	NT	NT	NT	NT	NT
Remedial Action Work Plan Action Levels	0.5	1,000 ppm (0.1%)	NA	9 ppm	10 ppm	5 ppm

Measurements made with: Landtec GEM5000 Plus, MiniRae 3000

Sampling date: 10/5/2016 **Measured by:** Jon Lewis

#- Middle school back shed not tested because blower not functioning properly

^o arameter	Sample Date	CT DEEP Proposed Residental Volatization Criteria For Soil Vapor (ug/m3)*	OSHA PELs (ug/m3)	Middle School Back (ug/m3)	Middle School Front (ug/m3)	Elementa ry School #1 (ug/m3)	ry Schoo # 2 (ug/m3)
	6/16/2015			NT	ND	ND	ND
	10/27/2015			NT	ND	ND	0.35
Benzene	1/6/2016	3,247	3,000	NT	0.59	1	0.89
	3/23/2016			NT	ND	ND	ND
	6/3/2016			NT	0.41	0.32	ND
	10/5/2016			NT	0.58	0.69	0.36
	6/16/2015			NT	ND	ND	ND
	10/27/2015			NT	ND	ND	ND
Carbon Tetrachloride	1/6/2016	6,395	62,900	NT	0.64	0.57	0.6
Carbon Tetrachionae	3/23/2016	0,555	02,300	NT	ND	ND	ND
	6/3/2016			NT	0.64	ND	ND
	10/5/2016			NT	ND	ND	ND
	6/16/2015			NT	ND	1.5	1.5
	10/27/2015			NT	ND	1.3	1.6
OU	1/6/2016			NT	0.25	1.3	1.3
Chloroform	3/23/2016	22,334	240,000	NT	ND	1	1.1
	6/3/2016			NT	ND	0.75	0.89
	10/5/2016			NT	ND	1.6	1.4
	6/16/2015			NT	ND	ND	ND
	10/27/2015			NT	0.51	ND	ND
Chloromethane	1/6/2016	NA	207,000	NT	0.35	2.3	2.1
	3/23/2016	_	201,000	NT	ND	ND	ND
	6/3/2016			NT	0.71 ND	ND	ND ND
	10/5/2016 6/16/2015	5,805,840	450,000	NT NT	ND ND	ND ND	ND
	10/27/2015			NT	0.71	1	0.89
	1/6/2016			NT	1.1	0.51	0.66
1,4-Dichlorobenzene	3/23/2016			NT	ND	ND	ND
	6/3/2016			NT	ND	ND	ND
	10/5/2016			NT	ND	ND	ND
	6/16/2015			NT	4.1	6.6	3.6
	10/27/2015			NT	3.7	4.2	7
Dichlorodifluoromethane (Freon 12)	1/6/2016 3/23/2016	NA NA	4,950,000	NT NT	4.1 2.7	4.1 3.1	4.3 5.9
	6/3/2016	-		NT	1.5	1.2	2.5
	10/5/2016			NT	4.3	11	3.1
	6/16/2015			NT	ND	ND	ND
	10/27/2015			NT	ND	ND	ND
1.2-Dichloroethane	1/6/2016	4,000	202,372	NT	ND	ND	ND
1,2 Diomoroculario	3/23/2016		202,012	NT	ND	ND	0.56
	6/3/2016			NT	ND ND	ND	ND
	10/5/2016 6/16/2015			NT		ND 8.2	ND 1.2
	10/27/2015			NT NT	2.5 3.9	2.5	1.2 5.6
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon	1/6/2016	-		NT	2.8	1.6	2.6
114)	3/23/2016	NA NA	7,000,000	NT	0.98	ND	2.6
·	6/3/2016			NT	0.78	ND	1.4
	10/5/2016			NT	5.3	17	2.7
	6/16/2015			NT	0.5	0.53	0.56
	10/27/2015	_		NT	ND	0.72	0.59
Ethylbenzene	1/6/2016	7,281,812	435,000	NT	0.29	0.33	0.48
·	3/23/2016	-		NT NT	ND 0.5	ND ND	ND ND
	6/3/2016 10/5/2016	-		NT	0.5	1.4	ND ND

Parameter	Sample Date	CT DEEP Proposed Residental Volatization Criteria For Soil Vapor (ug/m3)*	OSHA PELs (ug/m3)	Middle School Back (ug/m3)	Middle School Front (ug/m3)	Elementa ry School #1 (ug/m3)	
	6/16/2015			NT	110	78	64
	10/27/2015			NT	21	30	8.4
Methylene Chloride	1/6/2016	4,237,289	86,750	NT	4.1	2.4	2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3/23/2016	- , , , , , ,	,	NT	ND	ND	ND
	6/3/2016			NT	17 4.2	15	17 3.9
	10/5/2016 6/16/2015			NT NT	1.7	4.2	1.7
	10/27/2015			NT	30	1.5 46	27
	1/6/2016			NT	34	31	31
Styrene	3/23/2016	34,633	456,000	NT	25	26	25
	6/3/2016			NT	38	36	35
	10/5/2016			NT	1.3	2.3	1.3
	6/16/2015			NT	3.9	23	4.8
	10/27/2015			NT	1.6	2.6	32
Tetrachloroethylene	1/6/2016	75,840	678,000	NT	6	2.8	19
r etracrilor detrivierie	3/23/2016	75,640	076,000	NT	1.2	1.6	9.8
	6/3/2016			NT	1	3.1	7.9
	10/5/2016			NT	3.6	51	6.2
	6/16/2015			NT	5.7	4.7	6.2
	10/27/2015			NT	27	36	25
Toluene	1/6/2016	2,910,779	750,000	NT	31	27	28
	3/23/2016			NT NT	18 21	18	16
	6/3/2016 10/5/2016			NT	3.6	18 9.5	19 3.7
	6/16/2015			NT	ND	2.1	ND
	10/27/2015			NT	ND	ND	4.2
	1/6/2016	_		NT	0.53	0.82	4.1
Trichloroethylene	3/23/2016	38,237	537,000	NT	ND	ND	1.1
	6/3/2016			NT	ND	ND	1.1
	10/5/2016			NT	ND	5.6	0.7
	6/16/2015		5,600,000	NT	2.3	2.9	2.6
	10/27/2015			NT	2.7	3.7	3.4
Trichlorofluoromethane (Freon 11)	1/6/2016	NA		NT	2.9	2.8	4
The filorofidoroffie thane (Freom 11)	3/23/2016			NT	3.2	2.8	3
	6/3/2016			NT	3.8	2.9	3.9
	10/5/2016			NT	1.7	3.2	1.8
	6/16/2015			NT	ND	ND	ND
	10/27/2015			NT	ND 0.04	ND 0.77	ND 0.04
1,1,2- Trichloro-1,2,2-trifluoroethane(Freon 113)	1/6/2016	NA NA	7,600,000	NT	0.64	0.77	0.64
	3/23/2016 6/3/2016	-		NT NT	ND ND	0.84 ND	0.8 ND
	10/5/2016	-		NT	ND	ND	ND
	6/16/2015			NT	1.6	1.5	1.5
	10/27/2015			NT	1.2	0.76	1.9
4.0.4 Trim att. II a const	1/6/2016		405.000""	NT	0.68	0.44	0.54
1,2,4-Trimethylbenzene	3/23/2016	NA NA	125,000##	NT	ND	ND	ND
	6/3/2016			NT	0.66	ND	0.59
	10/5/2016			NT	2	2	2
	6/16/2015			NT	ND	ND	ND
	10/27/2015			NT	ND	ND	ND
1,3,5-Trimethylbenzene	1/6/2016	6,883	125,000##	NT	ND	ND	ND
.,-,	3/23/2016		,000	NT	ND	ND	ND
	6/3/2016	_		NT	ND	ND 0.74	ND
	10/5/2016			NT	0.7	0.71	0.66
	6/16/2015	-		NT	2.4	2.4	2.6
	10/27/2015	-		NT	1.3	2.7	2.4
M/p-Xylene	1/6/2016	2,215,755#	435,000	NT	1.6	1.2	1.7
	3/23/2016	-		NT NT	ND 1.7	ND 0.91	ND 1.1
	6/3/2016	1		INI	2.3	0.91	ND

Parameter	Sample Date	CT DEEP Proposed Residental Volatization Criteria For Soil Vapor (ug/m3)*	OSHA PELs (ug/m3)	ISCHOOL Back	Middle School Front (ug/m3)		
	6/16/2015			NT	1.4	1.3	1.3
	10/27/2015			NT	0.57	1.1	0.89
o-Xylene	1/6/2016	2,215,755#	435,000	NT	0.62	0.53	0.64
o-xylerie	3/23/2016	2,213,733#	455,000	NT	ND	ND	ND
	6/3/2016			NT	0.67	ND	0.48
	10/5/2016			NT	ND	ND	ND

Notes:

Samples collected in Tedlar bags and analyzed via EPA method TO-14
Only detected compounds are listed, see laboratory certificate for complete list of analyses
OSHA PELs = Occupational Safety and Health Administration Permissable Exposure Limits
CT DEEP= Connecticut Dpeartment of Energy and Environmental Protection
ug/m3 = micrograms per cubic meter

Results prior to June 2015 are not shown.

^{*} From Appendix F to Sections 22a-133k-1 through 22a-133k-3 of the Regulations of Connecticut State Agencies

^{#-} Represents Total Xylenes

^{##-} Represents total trimethylbenzene

Table 3 **Indoor Air Monitoring Results Springfield Street School Complex** Providence, RI 10/7/2016

Monitoring Location	Methane % by volume Landtec	Carbon Dioxide PPM	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
E.S. Front office	0	574	21.3	0	0	0
E.S. Elevator	0	475	21.2	0	0	0
E.S. Faculty Work Room	0	610	21.2	0	0	0
E.S. Gym	0	575	21.2	0	0	0
E.S. Stairway B	0	553	21.2	0	0	0
E.S. Stairway C	0	520	21.3	0	0	0
E.S. Library	0	533	21.3	0	0	0
E.S. Front Stairs	0	506	213	0	0	0
E.S. Cafeteria	0	562	21.2	0	0	0
E.S. Mechanical Room	0	632	21.2	0	0	0
M.S. Front Office	0	569	21.5	0	0	0
M.S. Elevator	0	690	21.5	0	0	0
M.S. Stairway near Elem. School GS-01	0	797	21.8	0	0	0
M.S. Near sensor #16 in hall outside cafeteria	0	822	21.8	0	0	0
M.S. Faculty Work Room	0	776	21.5	0	0	0
M.S. Sensor #15 Outside Gym	0	759	21.7	0	0	0
M.S. GS-03 Across from Boys Bathroom	0	896	21.7	0	0	0
M.S. Gym	0	599	21.6	0	0	0
M.S. Outside of Music Room	0	842	21.8	0	0	0
M.S. Cafeteria	0	627	21.6	0	0	0
M.S. Front Hall near sensor #4	0	870	21.7	0	0	0
M.S. Hallway across from elevator near sensor #9	0	880	21.7	0	0	0
M.S. Near sensor GS 06 hallway right end	0	889	21.7	0	0	0
M.S. stairway near Hartford Ave. sensor GS-7	0	681	21.9	0	0	0
Remedial Action Work Plan Action Levels	0.5	1,000 ppm (0.1%)	NA	9 ppm	10 ppm	5 ppm

Notes: The indoor air quality monitoring panels in the M.S. and E.S. were calibrated on 9/22/2016. E.S. indicates Elementary School, M.S. indicates Middle School

Measurements made with: MiniRae 3000 photoionization detector, Fluke 975 Airmeter, Landtec Gem 5000 Plus

PPM = Parts per million

Outdoor conditions: carbon dioxide = 513 ppm temperature = 53.6 degrees F

Sampling Dates and Results in μg/L Sampling Dates and Results in μg/L										
Well ID	Detected Compounds	6/15/2015	10/29/2015	1/6/2016	3/23/2016	6/3/2016	10/5/2016			
ATC-1										
	Chloromethane	4.1	ND	ND	ND	ND	ND	NA		
ATC-2		Closed	Closed	Closed	Closed	Closed	Closed			
MW-6		ND	NS	NS	NS	NS	NS			
ATC-3		Closed	Closed	Closed	Closed	Closed	Closed			
MW-7		ND	ND	ND	ND	ND	ND			
ATC-4										
	Chlorobenzene	ND	1.2	ND	ND	ND	NS	70		
	1,4-dichlorobenzene	ND	1.8	1.4	1	1	NS	NA		
ATC-5		Closed	Closed	Closed	Closed	Closed	Closed			
/WV-8		ND	NS	NS	NS	NS	NS			
Sampled By:		ARCADIS	ARCADIS	ARCADIS	ARCADIS	ARCADIS	ARCADIS			

ND = not detected above method detection limit NS = not sampled

NA = No applicable standard published

MTBE = Methyl tert-Butyl Ether
μg/L = micrograms per liter
Samples collected prior to 6/15/15 and after 2009 are hidden.

Monitoring Location	Methane % by volume Landtec	Carbon Dioxide % by volume	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
WB-1	0	3.9	18.1	0	0	0
WB-2	0	0.5	21.3	0	0	0
WB-3	0	0.2	22.2	0	0	0
WB-4	0	0.3	21.9	0	0	0
WB-5	0	0.1	22.2	0	0	0
WB-6	0	0.3	22	0	0	0
WB-7	0	0.3	22	0	0	0
WB-8	0	0.1	22.2	0	0	0
WB-12	0	1.2	21.3	0	0	0
WB-12	0	2.7	19.2	0	0	0
	-			1	-	-
WB-14	0	5	15	0	0	0
WB-15	0	11.4	6.4	0	0	0
EPL-1	0	0.4	21.4	0	0	0
EPL-2	0	2	19.6	0	0	0
EPL-3	0	2.4	19	0	0	0
EPL-4	0	3.2	17.6	0	0	0
EPL-5	0	4.2	16	0	0	0
ENE-1	0	0.1	21.5	0	0	0
MG1	0	0.1	21.8	0	0	0
MG2	0	3.9	18.1	0	0	0
MG3	0	0.1	21.9	0	0	0
MG4	0	3.3	17.4	0	0	0
MG5	0	6.7	13.2	0	0	0
MPL2	0	2.9	18.7	0	0	0
MPL3	0	11.4	9.4	0	0	0
MPL5	0	9.6	10.7	0	0	0
MPL6	0	8.7	12.5	0	0	0
MPL7	0	10.5	11	0	0	0
MPL8	0	6.1	14.5	0	0	0
Remedial Action Work Plan Action Levels	0.5	1,000 ppm (0.1%)	NA	9 ppm	10 ppm	5 ppm

Sampled by: Jon Lewis Weather Conditions: 10/4/2016 - overcast, 61°F Sampling Equipment: Landtec GEM 5000 Plus, MiniRae 3000 PID

FIGURES

ATTACHMENT A

Limitations and Service Constraints

LIMITATIONS AND SERVICE CONSTRAINTS

GENERAL REPORTS/DOCUMENT

The opinions and recommendations presented in this report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by ARCADIS and the party for whom this report was originally prepared. This report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry. No representation, warranty, or guarantee, express or implied, is intended or given. To the extent that ARCADIS relied upon any information prepared by other parties not under contract to ARCADIS, ARCADIS makes no representation as to the accuracy or completeness of such information. This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared for a particular purpose. Only the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user's sole risk.

Results of any investigations or testing and any findings presented in this report apply solely to conditions existing at the time when ARCADIS' investigative work was performed. It must be recognized that any such investigative or testing activities are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the project site may vary from those at the locations where data were collected. ARCADIS's ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities. As such, 100% confidence in environmental investigation conclusions cannot reasonably be achieved.

ARCADIS, therefore, does not provide any guarantees, certifications, or warranties regarding any conclusions regarding environmental contamination of any such property. Furthermore, nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

ATTACHMENT B

Complete Lab Results

October 12, 2016

Donna Pallister Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250 Warwick, RI 02886

Project Location: Springfield St. Schools, Providence, RI

Client Job Number:

Project Number: WK012152.2016

Laboratory Work Order Number: 16J0220

Enclosed are results of analyses for samples received by the laboratory on October 6, 2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
16J0220-01	5
16J0220-02	7
16J0220-03	9
Sample Preparation Information	11
QC Data	12
Volatile Organic Compounds by GC/MS	12
B160097	12
Flag/Qualifier Summary	17
Certifications	18
Chain of Custody/Sample Receipt	20

REPORT DATE: 10/12/2016

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250

PURCHASE ORDER NUMBER: 5131

Warwick, RI 02886 ATTN: Donna Pallister

PROJECT NUMBER: WK012152.2016

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 16J0220

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Springfield St. Schools, Providence, RI

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
ATC-1	16J0220-01	Ground Water		SW-846 8260C	
MW-7	16J0220-02	Ground Water		SW-846 8260C	
TB	16J0220-03	Trip Blank Water		SW-846 8260C	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8260C

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side. Analyte & Samples(s) Qualified:

Methyl Acetate

B160097-BS1, B160097-BSD1

L-06

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the high side. Analyte & Samples(s) Qualified:

Isopropylbenzene (Cumene)

B160097-BS1, B160097-BSD1

V-05

Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side. Analyte & Samples(s) Qualified:

1,4-Dioxane

16J0220-01[ATC-1], 16J0220-02[MW-7], 16J0220-03[TB], B160097-BLK1, B160097-BS1, B160097-BSD1

Continuing calibration did not meet method specifications and was biased on the high side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the high side.

Analyte & Samples(s) Qualified:

Isopropylbenzene (Cumene)

B160097-BS1, B160097-BSD1

V-20

Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result

Analyte & Samples(s) Qualified:

Chloromethane

B160097-BS1, B160097-BSD1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Project Manager

Lua Webblington

Project Location: Springfield St. Schools, Providenc Sample Description: Work Order: 16J0220

Date Received: 10/6/2016

Field Sample #: ATC-1 Sampled: 10/5/2016 10:00

Sample ID: 16J0220-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Bromodichloromethane	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Bromoform	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Bromomethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
2-Butanone (MEK)	ND	20	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
tert-Butyl Alcohol (TBA)	ND	20	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
n-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
sec-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
tert-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Carbon Disulfide	ND	4.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Carbon Tetrachloride	ND	5.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Chlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Chlorodibromomethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Chloroethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Chloroform	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Chloromethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
2-Chlorotoluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
4-Chlorotoluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,2-Dibromoethane (EDB)	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Dibromomethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,2-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,3-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,4-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,1-Dichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,2-Dichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,1-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
cis-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
trans-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,2-Dichloropropane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,3-Dichloropropane	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
2,2-Dichloropropane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,1-Dichloropropene	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
cis-1,3-Dichloropropene	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
trans-1,3-Dichloropropene	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH

Page 5 of 22

Project Location: Springfield St. Schools, Providenc Sample Description: Work Order: 16J0220

Date Received: 10/6/2016

Field Sample #: ATC-1 Sampled: 10/5/2016 10:00

Sample ID: 16J0220-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1	-	SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,4-Dioxane	ND	50	μg/L	1	V-05	SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Hexachlorobutadiene	ND	0.60	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
2-Hexanone (MBK)	ND	10	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Isopropylbenzene (Cumene)	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Methyl Acetate	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Methyl Cyclohexane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Methylene Chloride	ND	5.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Naphthalene	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
n-Propylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Styrene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Tetrachloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Tetrahydrofuran	ND	10	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Toluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,2,3-Trichlorobenzene	ND	5.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,2,4-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,3,5-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Trichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:02	EEH
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,2-Dichloroethane-d4		99.2	70-130					10/7/16 20:02	
T 1 10		00.0	70 120					10/5/16 20 02	

Project Location: Springfield St. Schools, Providenc Sample Description: Work Order: 16J0220

Date Received: 10/6/2016

Field Sample #: MW-7 Sampled: 10/5/2016 10:50

Sample ID: 16J0220-02
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	mpounds by G	SC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Carbon Disulfide	ND	4.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Chlorodibromomethane	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,2-Dibromoethane (EDB)	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Dibromomethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,2-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,3-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,4-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,1-Dichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,2-Dichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,1-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
cis-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
trans-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,2-Dichloropropane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,1-Dichloropropene	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
cis-1,3-Dichloropropene	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
trans-1,3-Dichloropropene	ND	0.50	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Diethyl Ether	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH

Page 7 of 22

Project Location: Springfield St. Schools, Providenc Work Order: 16J0220 Sample Description:

Date Received: 10/6/2016

Sampled: 10/5/2016 10:50 Field Sample #: MW-7

Sample ID: 16J0220-02 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,4-Dioxane	ND	50	μg/L	1	V-05	SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Hexachlorobutadiene	ND	0.60	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Methyl Acetate	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Naphthalene	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
n-Propylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,2,4-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,3,5-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Trichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	ЕЕН
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 20:29	EEH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		100	70-130					10/7/16 20:29	
Toluene-d8		101	70-130					10/7/16 20:29	

	Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-	Dichloroethane-d4	100	70-130		10/7/16 20:29
Tolu	nene-d8	101	70-130		10/7/16 20:29
4-Bı	romofluorobenzene	98.7	70-130		10/7/16 20:29

Project Location: Springfield St. Schools, Providenc Sample Description: Work Order: 16J0220

Date Received: 10/6/2016

Field Sample #: TB Sampled: 10/5/2016 00:00

Sample ID: 16J0220-03

Sample Matrix: Trip Blank Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Carbon Disulfide	ND	4.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Chlorodibromomethane	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
-			rb =	•		2 2.0 02000		Dogo O	

Page 9 of 22

Project Location: Springfield St. Schools, Providenc Work Order: 16J0220 Sample Description:

Date Received: 10/6/2016

Sampled: 10/5/2016 00:00 Field Sample #: TB

Sample ID: 16J0220-03 Sample Matrix: Trip Blank Water

Volatile Organic Compounds by GC/MS

		Vo	latile Organic Comp	pounds by G	C/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analys
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,4-Dioxane	ND	50	$\mu g/L$	1	V-05	SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Ethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Hexachlorobutadiene	ND	0.60	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
2-Hexanone (MBK)	ND	10	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Isopropylbenzene (Cumene)	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Methyl Acetate	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Methyl Cyclohexane	ND	1.0	$\mu g/L$	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Naphthalene	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,3,5-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
o-Xylene	ND	1.0	μg/L	1		SW-846 8260C	10/7/16	10/7/16 19:09	EEH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		99.8	70-130					10/7/16 19:09	
Toluene-d8		99.9	70-130					10/7/16 19:09	
4-Bromofluorobenzene		98.2	70-130					10/7/16 19:09	

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
16J0220-01 [ATC-1]	B160097	5	5.00	10/07/16
16J0220-02 [MW-7]	B160097	5	5.00	10/07/16
16J0220-03 [TB]	B160097	5	5.00	10/07/16

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B160097 - SW-846 5030B										
Blank (B160097-BLK1)				Prepared & A	Analyzed: 10/	/07/16				
Acetone	ND	50	μg/L							
Acrylonitrile	ND	5.0	μg/L							
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L							
Benzene	ND	1.0	μg/L							
Bromobenzene	ND	1.0	μg/L							
Bromochloromethane	ND	1.0	μg/L							
Bromodichloromethane	ND	0.50	μg/L							
Bromoform	ND	1.0	μg/L							
Bromomethane	ND	2.0	μg/L							
2-Butanone (MEK)	ND	20	μg/L							
tert-Butyl Alcohol (TBA)	ND	20	μg/L							
n-Butylbenzene	ND	1.0	μg/L							
sec-Butylbenzene	ND	1.0	μg/L							
tert-Butylbenzene	ND	1.0	$\mu g/L$							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$							
Carbon Disulfide	ND	4.0	$\mu g/L$							
Carbon Tetrachloride	ND	5.0	μg/L							
Chlorobenzene	ND	1.0	μg/L							
Chlorodibromomethane	ND	2.0	μg/L							
Chloroethane	ND	2.0	μg/L							
Chloroform	ND	2.0	μg/L							
Chloromethane	ND	2.0	μg/L							
2-Chlorotoluene	ND	1.0	μg/L							
4-Chlorotoluene	ND	1.0	μg/L							
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L							
1,2-Dibromoethane (EDB)	ND ND	0.50	μg/L μg/L							
Dibromomethane	ND ND	1.0	μg/L μg/L							
1,2-Dichlorobenzene	ND ND	1.0	μg/L μg/L							
1,3-Dichlorobenzene	ND ND	1.0	μg/L μg/L							
1,4-Dichlorobenzene	ND ND	1.0	μg/L μg/L							
trans-1,4-Dichloro-2-butene	ND ND	2.0	μg/L μg/L							
Dichlorodifluoromethane (Freon 12)	ND ND	2.0	μg/L μg/L							
1,1-Dichloroethane	ND ND	1.0	μg/L μg/L							
1,2-Dichloroethane	ND ND	1.0	μg/L μg/L							
1,1-Dichloroethylene		1.0	μg/L μg/L							
r,1-Dichloroethylene cis-1,2-Dichloroethylene	ND ND	1.0 1.0	μg/L μg/L							
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	ND ND	1.0 1.0	μg/L μg/L							
trans-1,2-Dichloroethylene 1,2-Dichloropropane	ND ND	1.0 1.0	μg/L μg/L							
	ND ND									
1,3-Dichloropropane	ND ND	0.50	μg/L μg/L							
2,2-Dichloropropane	ND ND	1.0	μg/L μg/L							
1,1-Dichloropropene	ND ND	2.0 0.50	μg/L μg/L							
cis-1,3-Dichloropropene	ND	0.50	μg/L μg/I							
trans-1,3-Dichloropropene	ND	0.50	μg/L μg/I							
Diethyl Ether	ND	2.0	μg/L μg/I							
Diisopropyl Ether (DIPE)	ND	0.50	μg/L							** *
1,4-Dioxane	ND	50	μg/L							V-05
Ethylbenzene	ND	1.0	μg/L							
Hexachlorobutadiene	ND	0.60	μg/L							
2-Hexanone (MBK)	ND	10	μg/L							
(Sopropylbenzene (Cumene)	ND	1.0	$\mu g/L$							
p-Isopropyltoluene (p-Cymene)	ND	1.0	$\mu g/L$							
Methyl Acetate	ND	1.0	μg/L							

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch B160097 - SW-846 5030B		<u> </u>				-			•	
lank (B160097 - SW-846 5030B				Prenared &	Analyzed: 10	/07/16				
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1 Topared &						
lethyl Cyclohexane	ND	1.0	μg/L							
ethylene Chloride	ND	5.0	μg/L							
Methyl-2-pentanone (MIBK)	ND	10	μg/L							
aphthalene	ND	2.0	μg/L							
Propylbenzene	ND	1.0	μg/L							
yrene	ND ND	1.0	μg/L μg/L							
1,1,2-Tetrachloroethane	ND	1.0	μg/L							
1,2,2-Tetrachloroethane	ND	0.50	μg/L							
etrachloroethylene	ND	1.0	μg/L							
etrahydrofuran	ND	10	μg/L							
bluene	ND ND	1.0	μg/L μg/L							
2.3-Trichlorobenzene	ND ND	5.0	μg/L μg/L							
2,4-Trichlorobenzene	ND ND	1.0	μg/L μg/L							
3,5-Trichlorobenzene	ND ND	1.0	μg/L μg/L							
1,1-Trichloroethane		1.0	μg/L μg/L							
1,2-Trichloroethane	ND ND	1.0	μg/L μg/L							
richloroethylene	ND ND	1.0	μg/L μg/L							
richlorofluoromethane (Freon 11)	ND	2.0	μg/L μg/L							
2,3-Trichloropropane	ND									
2,3-1 richloropropane 1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	2.0	μg/L							
1,2-1 richloro-1,2,2-trifluoroethane (Freon 13)	ND	1.0	μg/L							
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND	1.0	μg/L							
inyl Chloride	ND	2.0	μg/L							
+p Xylene	ND ND	2.0	μg/L							
Xylene	ND ND	1.0	μg/L							
urrogate: 1,2-Dichloroethane-d4	24.9		μg/L	25.0		99.6	70-130			
urrogate: Toluene-d8	25.1		μg/L	25.0		100	70-130			
urrogate: 4-Bromofluorobenzene	25.1		$\mu g/L$	25.0		101	70-130			
CS (B160097-BS1)				Prepared &	Analyzed: 10	/07/16				
cetone	82.9	50	μg/L	100		82.9	70-160			
crylonitrile	8.96	5.0	μg/L	10.0		89.6	70-130			
rt-Amyl Methyl Ether (TAME)	9.14	0.50	μg/L	10.0		91.4	70-130			
enzene	10.9	1.0	μg/L	10.0		109	70-130			
romobenzene	10.9	1.0	μg/L	10.0		109	70-130			
romochloromethane	12.1	1.0	μg/L	10.0		121	70-130			
romodichloromethane	10.8	0.50	μg/L	10.0		108	70-130			
romoform	9.56	1.0	μg/L	10.0		95.6	70-130			
romomethane	7.06	2.0	μg/L	10.0		70.6	40-160			
Butanone (MEK)	101	20	μg/L	100		101	40-160			
rt-Butyl Alcohol (TBA)	83.9	20	μg/L	100		83.9	40-160			
Butylbenzene	83.9 11.7	1.0	μg/L μg/L	10.0		117	70-130			
c-Butylbenzene	11.7	1.0	μg/L μg/L	10.0		117	70-130			
rt-Butylbenzene	11.2	1.0	μg/L μg/L	10.0		112	70-130			
rt-Butyl Ethyl Ether (TBEE)	9.94	0.50	μg/L μg/L	10.0		99.4	70-130			
arbon Disulfide		4.0	μg/L μg/L	10.0		83.5	70-130			
arbon Tetrachloride	8.35	5.0	μg/L μg/L			83.5 107	70-130 70-130			
hlorobenzene	10.7			10.0						
	11.0	1.0	μg/L	10.0		110	70-130			
Chlorodibromomethane	9.56	2.0 2.0	μg/L μg/L	10.0		95.6	70-130			
		7.0	0.9/17	10.0		89.6	70-130			
Chloroethane Chloroform	8.96 10.8	2.0	μg/L	10.0		108	70-130			

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

nalyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch B160097 - SW-846 5030B										
CS (B160097-BS1)				Prepared &	Analyzed: 10	/07/16				
hloromethane	6.88	2.0	μg/L	10.0		68.8	40-160			V-20
Chlorotoluene	10.9	1.0	$\mu g \! / \! L$	10.0		109	70-130			
Chlorotoluene	11.3	1.0	μg/L	10.0		113	70-130			
2-Dibromo-3-chloropropane (DBCP)	10.4	5.0	μg/L	10.0		104	70-130			
2-Dibromoethane (EDB)	11.1	0.50	$\mu g/L$	10.0		111	70-130			
ibromomethane	10.8	1.0	$\mu g/L$	10.0		108	70-130			
2-Dichlorobenzene	10.6	1.0	$\mu g/L$	10.0		106	70-130			
3-Dichlorobenzene	10.9	1.0	$\mu g/L$	10.0		109	70-130			
4-Dichlorobenzene	10.4	1.0	$\mu g/L$	10.0		104	70-130			
nns-1,4-Dichloro-2-butene	8.95	2.0	$\mu g/L$	10.0		89.5	70-130			
ichlorodifluoromethane (Freon 12)	7.34	2.0	μg/L	10.0		73.4	40-160			
1-Dichloroethane	11.5	1.0	μg/L	10.0		115	70-130			
2-Dichloroethane	10.6	1.0	μg/L	10.0		106	70-130			
1-Dichloroethylene	10.3	1.0	μg/L	10.0		103	70-130			
s-1,2-Dichloroethylene	10.9	1.0	μg/L	10.0		109	70-130			
ans-1,2-Dichloroethylene	10.8	1.0	μg/L	10.0		108	70-130			
2-Dichloropropane	10.4	1.0	μg/L	10.0		104	70-130			
3-Dichloropropane	10.7	0.50	μg/L	10.0		107	70-130			
2-Dichloropropane	10.2	1.0	μg/L	10.0		102	40-130			
1-Dichloropropene	11.2	2.0	μg/L	10.0		112	70-130			
s-1,3-Dichloropropene	9.13	0.50	μg/L	10.0		91.3	70-130			
uns-1,3-Dichloropropene	10.6	0.50	μg/L	10.0		106	70-130			
iethyl Ether	9.38	2.0	μg/L	10.0		93.8	70-130			
isopropyl Ether (DIPE)	9.99	0.50	μg/L	10.0		99.9	70-130			
4-Dioxane	66.7	50	μg/L	100		66.7	40-130			V-05
hylbenzene	11.0	1.0	μg/L	10.0		110	70-130			
exachlorobutadiene	11.7	0.60	μg/L	10.0		117	70-130			
Hexanone (MBK)	96.4	10	μg/L	100		96.4	70-160			
opropylbenzene (Cumene)	13.3	1.0	μg/L	10.0		133 *	70-130			L-06, V-0
Isopropyltoluene (p-Cymene)	10.9	1.0	μg/L	10.0		109	70-130			, . •
ethyl Acetate	16.5	1.0	μg/L	10.0		165 *	70-130			L-02
ethyl tert-Butyl Ether (MTBE)	9.26	1.0	μg/L	10.0		92.6	70-130			_ ~_
ethyl Cyclohexane	10.8	1.0	μg/L	10.0		108	70-130			
ethylene Chloride	10.7	5.0	μg/L	10.0		107	70-130			
Methyl-2-pentanone (MIBK)	101	10	μg/L	100		101	70-160			
aphthalene	11.1	2.0	μg/L	10.0		111	40-130			
Propylbenzene	11.3	1.0	μg/L	10.0		113	70-130			
yrene	10.9	1.0	μg/L	10.0		109	70-130			
1,1,2-Tetrachloroethane	10.3	1.0	μg/L	10.0		103	70-130			
1,2,2-Tetrachloroethane	11.2	0.50	μg/L	10.0		112	70-130			
etrachloroethylene	11.2	1.0	μg/L	10.0		112	70-130			
etrahydrofuran	12.8	10	μg/L μg/L	10.0		128	70-130			
luene	11.0	1.0	μg/L μg/L	10.0		110	70-130			
2,3-Trichlorobenzene	10.7	5.0	μg/L μg/L	10.0		107	70-130			
2,4-Trichlorobenzene	10.6	1.0	μg/L	10.0		106	70-130			
3,5-Trichlorobenzene	10.1	1.0	μg/L μg/L	10.0		101	70-130			
1,1-Trichloroethane	10.7	1.0	μg/L μg/L	10.0		107	70-130			
1,2-Trichloroethane		1.0	μg/L μg/L	10.0		113	70-130			
richloroethylene	11.3	1.0	μg/L μg/L	10.0		113	70-130			
richlorofluoromethane (Freon 11)	11.4 10.8	2.0	μg/L μg/L	10.0		108	70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B160097 - SW-846 5030B										
LCS (B160097-BS1)				Prepared & A	Analyzed: 10	/07/16				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.1	1.0	μg/L	10.0		101	70-130			
113) 1,2,4-Trimethylbenzene	10.6	1.0	ua/I	10.0		106	70-130			
1,3,5-Trimethylbenzene	10.6	1.0	μg/L μα/Ι			106				
Vinyl Chloride	11.2	2.0	μg/L	10.0		112	70-130			
•	9.12	2.0	μg/L	10.0		91.2	40-160			
n+p Xylene o-Xylene	21.9	1.0	μg/L	20.0		109	70-130			
	10.9	1.0	μg/L	10.0		109	70-130			
Surrogate: 1,2-Dichloroethane-d4	25.1		μg/L	25.0		101	70-130			
Surrogate: Toluene-d8	25.3		μg/L	25.0		101	70-130			
Surrogate: 4-Bromofluorobenzene	25.1		μg/L	25.0		100	70-130			
LCS Dup (B160097-BSD1)				Prepared & A	Analyzed: 10	/07/16				
Acetone	88.4	50	μg/L	100		88.4	70-160	6.50	25	
Acrylonitrile	9.61	5.0	$\mu g/L$	10.0		96.1	70-130	7.00	25	
ert-Amyl Methyl Ether (TAME)	9.40	0.50	$\mu g/L$	10.0		94.0	70-130	2.80	25	
Benzene	10.9	1.0	$\mu g/L$	10.0		109	70-130	0.367	25	
Bromobenzene	11.1	1.0	$\mu g/L$	10.0		111	70-130	1.73	25	
Bromochloromethane	12.3	1.0	$\mu g/L$	10.0		123	70-130	1.72	25	
Bromodichloromethane	10.8	0.50	$\mu g/L$	10.0		108	70-130	0.0928	25	
Bromoform	9.75	1.0	$\mu g/L$	10.0		97.5	70-130	1.97	25	
Bromomethane	7.41	2.0	$\mu g/L$	10.0		74.1	40-160	4.84	25	
2-Butanone (MEK)	111	20	$\mu g/L$	100		111	40-160	8.74	25	
ert-Butyl Alcohol (TBA)	97.0	20	μg/L	100		97.0	40-160	14.5	25	
n-Butylbenzene	11.7	1.0	$\mu g/L$	10.0		117	70-130	0.599	25	
ec-Butylbenzene	11.4	1.0	$\mu g/L$	10.0		114	70-130	1.95	25	
ert-Butylbenzene	11.0	1.0	$\mu g/L$	10.0		110	70-130	0.455	25	
ert-Butyl Ethyl Ether (TBEE)	10.1	0.50	$\mu g/L$	10.0		101	70-130	1.70	25	
Carbon Disulfide	8.27	4.0	$\mu g/L$	10.0		82.7	70-130	0.963	25	
Carbon Tetrachloride	10.6	5.0	μg/L	10.0		106	70-130	1.22	25	
Chlorobenzene	11.0	1.0	$\mu g/L$	10.0		110	70-130	0.455	25	
Chlorodibromomethane	9.93	2.0	$\mu g/L$	10.0		99.3	70-130	3.80	25	
Chloroethane	9.48	2.0	$\mu g/L$	10.0		94.8	70-130	5.64	25	
Chloroform	10.9	2.0	μg/L	10.0		109	70-130	1.11	25	
Chloromethane	6.73	2.0	$\mu g/L$	10.0		67.3	40-160	2.20	25	V-20
2-Chlorotoluene	11.0	1.0	μg/L	10.0		110	70-130	1.46	25	
4-Chlorotoluene	11.3	1.0	μg/L	10.0		113	70-130	0.0888	25	
1,2-Dibromo-3-chloropropane (DBCP)	10.5	5.0	μg/L	10.0		105	70-130	0.864	25	
1,2-Dibromoethane (EDB)	11.4	0.50	μg/L	10.0		114	70-130	3.11	25	
Dibromomethane	11.1	1.0	μg/L	10.0		111	70-130	2.19	25	
1,2-Dichlorobenzene	11.0	1.0	μg/L	10.0		110	70-130	3.60	25	
1,3-Dichlorobenzene	11.1	1.0	$\mu g/L$	10.0		111	70-130	2.19	25	
1,4-Dichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	0.384	25	
rans-1,4-Dichloro-2-butene	9.04	2.0	μg/L	10.0		90.4	70-130	1.00	25	
Dichlorodifluoromethane (Freon 12)	7.16	2.0	$\mu g/L$	10.0		71.6	40-160	2.48	25	
1,1-Dichloroethane	11.2	1.0	μg/L	10.0		112	70-130	2.55	25	
1,2-Dichloroethane	10.8	1.0	μg/L	10.0		108	70-130	2.24	25	
1,1-Dichloroethylene	10.3	1.0	μg/L	10.0		103	70-130	0.00	25	
cis-1,2-Dichloroethylene	11.2	1.0	$\mu g/L$	10.0		112	70-130	2.35	25	
rans-1,2-Dichloroethylene	10.9	1.0	μg/L	10.0		109	70-130	0.0921	25	
1,2-Dichloropropane	10.7	1.0	μg/L	10.0		107	70-130	2.94	25	
1,3-Dichloropropane	10.8	0.50	μg/L	10.0		108	70-130	1.30	25	
2,2-Dichloropropane	10.1	1.0	μg/L	10.0		101	40-130	0.891	25	
1,1-Dichloropropene	11.2	2.0	μg/L	10.0		112	70-130	0.269	25	

Page 15 of 22

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B160097 - SW-846 5030B											
LCS Dup (B160097-BSD1)				Prepared &	Analyzed: 10	/07/16					
cis-1,3-Dichloropropene	9.43	0.50	μg/L	10.0		94.3	70-130	3.23	25		
trans-1,3-Dichloropropene	11.0	0.50	$\mu g/L$	10.0		110	70-130	3.23	25		
Diethyl Ether	9.37	2.0	$\mu g/L$	10.0		93.7	70-130	0.107	25		
Diisopropyl Ether (DIPE)	9.90	0.50	$\mu g/L$	10.0		99.0	70-130	0.905	25		
1,4-Dioxane	71.5	50	$\mu g/L$	100		71.5	40-130	6.94	50	V-05	†‡
Ethylbenzene	10.9	1.0	$\mu g/L$	10.0		109	70-130	0.912	25		
Hexachlorobutadiene	11.8	0.60	$\mu g/L$	10.0		118	70-130	1.11	25		
2-Hexanone (MBK)	105	10	$\mu g/L$	100		105	70-160	9.02	25		†
Isopropylbenzene (Cumene)	13.3	1.0	$\mu g/L$	10.0		133 *	70-130	0.00	25	L-06, V-06	
p-Isopropyltoluene (p-Cymene)	11.0	1.0	$\mu g/L$	10.0		110	70-130	1.01	25		
Methyl Acetate	17.3	1.0	$\mu g/L$	10.0		173 *	70-130	4.50	25	L-02	
Methyl tert-Butyl Ether (MTBE)	9.67	1.0	μg/L	10.0		96.7	70-130	4.33	25		
Methyl Cyclohexane	10.7	1.0	μg/L	10.0		107	70-130	0.840	25		
Methylene Chloride	10.1	5.0	μg/L	10.0		101	70-130	5.38	25		
4-Methyl-2-pentanone (MIBK)	109	10	μg/L	100		109	70-160	7.77	25		†
Naphthalene	12.4	2.0	$\mu g/L$	10.0		124	40-130	11.0	25		†
n-Propylbenzene	11.2	1.0	μg/L	10.0		112	70-130	0.798	25		
Styrene	10.9	1.0	μg/L	10.0		109	70-130	0.276	25		
1,1,1,2-Tetrachloroethane	10.2	1.0	μg/L	10.0		102	70-130	0.878	25		
1,1,2,2-Tetrachloroethane	11.8	0.50	μg/L	10.0		118	70-130	5.03	25		
Tetrachloroethylene	11.4	1.0	μg/L	10.0		114	70-130	1.51	25		
Tetrahydrofuran	13.0	10	μg/L	10.0		130	70-130	0.930	25		
Toluene	10.9	1.0	μg/L	10.0		109	70-130	0.820	25		
1,2,3-Trichlorobenzene	11.9	5.0	μg/L	10.0		119	70-130	10.2	25		
1,2,4-Trichlorobenzene	11.6	1.0	μg/L	10.0		116	70-130	8.65	25		
1,3,5-Trichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	3.22	25		
1,1,1-Trichloroethane	10.8	1.0	μg/L	10.0		108	70-130	0.834	25		
1,1,2-Trichloroethane	11.5	1.0	μg/L	10.0		115	70-130	2.11	25		
Trichloroethylene	11.2	1.0	μg/L	10.0		112	70-130	1.41	25		
Trichlorofluoromethane (Freon 11)	10.6	2.0	μg/L	10.0		106	70-130	1.31	25		
1,2,3-Trichloropropane	11.1	2.0	μg/L	10.0		111	70-130	4.62	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.73	1.0	μg/L	10.0		97.3	70-130	3.53	25		
1,2,4-Trimethylbenzene	10.9	1.0	$\mu \text{g/L}$	10.0		109	70-130	2.51	25		
1,3,5-Trimethylbenzene	11.4	1.0	$\mu g/L$	10.0		114	70-130	2.13	25		
Vinyl Chloride	8.67	2.0	$\mu g/L$	10.0		86.7	40-160	5.06	25		†
m+p Xylene	21.6	2.0	$\mu \text{g/L}$	20.0		108	70-130	1.06	25		
o-Xylene	10.9	1.0	$\mu g/L$	10.0		109	70-130	0.0918	25		
Surrogate: 1,2-Dichloroethane-d4	25.3		μg/L	25.0		101	70-130				_
Surrogate: Toluene-d8	25.1		μg/L	25.0		101	70-130				
Surrogate: 4-Bromofluorobenzene	25.3		μg/L	25.0		101	70-130				

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit
DL	Method Detection Limit
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-02	Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
L-06	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the high side.
V-05	Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side.
V-06	Continuing calibration did not meet method specifications and was biased on the high side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the high side.
V-20	Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260C in Water	
Acetone	CT,NY,ME,NH,VA
Acrylonitrile	CT,NY,ME,NH,VA
tert-Amyl Methyl Ether (TAME)	NY,ME,NH,VA
Benzene	CT,NY,ME,NH,VA
Bromochloromethane	NY,ME,NH,VA
Bromodichloromethane	CT,NY,ME,NH,VA
Bromoform	CT,NY,ME,NH,VA
Bromomethane	CT,NY,ME,NH,VA
2-Butanone (MEK)	CT,NY,ME,NH,VA
tert-Butyl Alcohol (TBA)	NY,ME,NH,VA
n-Butylbenzene	NY,ME,VA
sec-Butylbenzene	NY,ME,VA
tert-Butylbenzene	NY,ME,VA
tert-Butyl Ethyl Ether (TBEE)	NY,ME,NH,VA
Carbon Disulfide	CT,NY,ME,NH,VA
Carbon Tetrachloride	CT,NY,ME,NH,VA
Chlorobenzene	CT,NY,ME,NH,VA
Chlorodibromomethane	CT,NY,ME,NH,VA
Chloroethane	CT,NY,ME,NH,VA
Chloroform	CT,NY,ME,NH,VA
Chloromethane	CT,NY,ME,NH,VA
2-Chlorotoluene	NY,ME,NH,VA
4-Chlorotoluene	NY,ME,NH,VA
Dibromomethane	NY,ME,NH,VA
1,2-Dichlorobenzene	CT,NY,ME,NH,VA
1,3-Dichlorobenzene	CT,NY,ME,NH,VA
1,4-Dichlorobenzene	CT,NY,ME,NH,VA
trans-1,4-Dichloro-2-butene	NY,ME,NH,VA
Dichlorodifluoromethane (Freon 12)	NY,ME,NH,VA
1,1-Dichloroethane	CT,NY,ME,NH,VA
1,2-Dichloroethane	CT,NY,ME,NH,VA
1,1-Dichloroethylene	CT,NY,ME,NH,VA
cis-1,2-Dichloroethylene	NY,ME
trans-1,2-Dichloroethylene	CT,NY,ME,NH,VA
1,2-Dichloropropane	CT,NY,ME,NH,VA
1,3-Dichloropropane	NY,ME,VA
2,2-Dichloropropane	NY,ME,NH,VA
1,1-Dichloropropene	NY,ME,NH,VA
cis-1,3-Dichloropropene	CT,NY,ME,NH,VA
trans-1,3-Dichloropropene	CT,NY,ME,NH,VA
Diisopropyl Ether (DIPE)	NY,ME,NH,VA
Ethylbenzene	CT,NY,ME,NH,VA
Hexachlorobutadiene	CT,NY,ME,NH,VA
2-Hexanone (MBK)	CT,NY,ME,NH,VA
Isopropylbenzene (Cumene)	NY,ME,VA
p-Isopropyltoluene (p-Cymene)	CT,NY,ME,NH,VA
Methyl tert-Butyl Ether (MTBE)	CT,NY,ME,NH,VA
y = (, * ,******,* ***, * 11

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260C in Water	
Methylene Chloride	CT,NY,ME,NH,VA
4-Methyl-2-pentanone (MIBK)	CT,NY,ME,NH,VA
Naphthalene	NY,ME,NH,VA
n-Propylbenzene	CT,NY,ME,NH,VA
Styrene	CT,NY,ME,NH,VA
1,1,1,2-Tetrachloroethane	CT,NY,ME,NH,VA
1,1,2,2-Tetrachloroethane	CT,NY,ME,NH,VA
Tetrachloroethylene	CT,NY,ME,NH,VA
Toluene	CT,NY,ME,NH,VA
1,2,3-Trichlorobenzene	NY,ME,NH,VA
1,2,4-Trichlorobenzene	CT,NY,ME,NH,VA
1,3,5-Trichlorobenzene	ME
1,1,1-Trichloroethane	CT,NY,ME,NH,VA
1,1,2-Trichloroethane	CT,NY,ME,NH,VA
Trichloroethylene	CT,NY,ME,NH,VA
Trichlorofluoromethane (Freon 11)	CT,NY,ME,NH,VA
1,2,3-Trichloropropane	NY,ME,NH,VA
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NY,VA
1,2,4-Trimethylbenzene	NY,ME,VA
1,3,5-Trimethylbenzene	NY,ME,VA
Vinyl Chloride	CT,NY,ME,NH,VA
m+p Xylene	CT,NY,ME,NH,VA
o-Xylene	CT,NY,ME,NH,VA

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2017
CT	Connecticut Department of Publile Health	PH-0567	09/30/2017
NY	New York State Department of Health	10899 NELAP	04/1/2017
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2017
RI	Rhode Island Department of Health	LAO00112	12/30/2016
NC	North Carolina Div. of Water Quality	652	12/31/2016
NJ	New Jersey DEP	MA007 NELAP	06/30/2017
FL	Florida Department of Health	E871027 NELAP	06/30/2017
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2017
ME	State of Maine	2011028	06/9/2017
VA	Commonwealth of Virginia	460217	12/14/2016
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2017

Table of Contents **B** = Sodium bisulfate **DW**= drinking water ***Container Code Dissolved Metals WBE/DBE Certifie GW= groundwater NELAC & AIHA-LAP, LLC WW = wastewater T = Na thiosulfate X = Na hydroxide O Field Filtered # of Containers C Lab to Filter S = Sulfuric Acid ** Preservation ***Cont. Code: **Preservation *Matrix Code: A=amber glass M = Methanol N = Nitric Acid S=summa can THE STARTS AT 9:08 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR T=tedlar bag S = soll/solld St = sludge O = Other Accredited O = other **ST**≖sterile P=plastic O=Other G=g lass V= viai 1 | Ced H= HCL 1011 ○ MA State DW Form Required PWSID # Please use the following codes to let Con-Test know if a specific sample Is your project MCP or RCP? H - High; M - Medium; L - Low, C - Clean; U - Unknown may be high in concentration in Matrix/Conc. Code Box: ANALYSIS REQUESTED O MCP Form Required O RCP Form Required CHAIN OF CUSTODY RECORD 8 V 0 **Detection Limit Requirements** 0 M M Conc Code Rev 04.05.12 Telephone 401-285. 2235 Project # W/KO/2 152. 2016 "Enhanced Data Package" Email DOUNA. PALLISTER <u>3</u> <u>J</u> Composite Grab Lade DATA DELIVERY (check all that apply) PARCA DIS . CONT. Format. OFAX #FINAL CWEBSITE Mas sachusetts: Connecticut: OOTHER Officer Require lab approval RUSH T Client PQ# Date/Time 80 500 Ending Turnaround 10-Day 0 172-Hr 0 14-Day 0 24-Hr 0 148-Hr Sollection F ax # 7-Day Email: info@contestlabs.com Beginning www.contestlabs.com © Phone: 413-525-2332 Date/Time 70 Project Location: Springtril St. Stork, Prov. R. eto certer BIVD. Client Sample ID / Description Date/Time: 250 NOVWICK, I Date/Time: achlogie/Time Date Time られて ANALYTICAL LABORATORY Project Proposal Provided? (for billing purposes) proposal date しん Company Name: H/Cald15 iquished by: (signature) Relinquist/ed by: (signature) Bura Address: 300 M d/by//signature) (signature) Con-Test Lab ID Sampled By: nony use only) Attention: / Comments Recent 20 of 22

East longmeadow, MA 01028

39 Spruce Street

PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT. 39 Spruce St.
East Longmeadow, MA. 01028
P: 413-525-2332
F: 413-525-6405
www.contestlabs.com

Page 1 of 2

Sample Receipt Checklist

CLIENT NAME: Arcadis		RECEIVED BY:	JM DA.	TE: 10/6/16
1) Was the chain(s) of custody i	relinquished and sign	ned? Yes 🗸	No	No COC Incl.
Does the chain agree with the	_	Yes V	/ No	
If not, explain:	·		7 –	
) Are all the samples in good c If not, explain:	ondition?	Yes	No	
) How were the samples receiv	red:			
on Ice Direct from S	ampling	AmbientIn (Cooler(s)	
ere the samples received in Te	mperature Complian	ce of (2-6°C)? Ye	es <u> </u>	N/A
emperature °C by Temp blank		Temperature °C by Te	mp gun	3,2
Are there Dissolved samples	for the lab to filter?	Yes	No <u>/</u>	_
Who was notified	Date	Time		/
Are there any RUSH or SHOR	T HOLDING TIME san	nples? Yes	No <u></u>	·
Who was notified	Date	Time		
TITIO Was Hothica		Donningia	to subcontract	samples? Yes No
Who was nothed		Permission		
	ed:	(Malk in a	ients only) if no	t already approved
	ed: Login	(Walk-in cl	• •	t already approved
Location where samples are store	Login	(Walk-in cl	ature:	t already approved
) Location where samples are store) Do all samples have the prope	er Acid pH: Yes _	(Walk-in cl	nature:	t aiready approved
) Location where samples are store) Do all samples have the prope) Do all samples have the prope	er Acid pH: Yes _ er Base pH: Yes _	(Walk-in cl Client Sign No No N/	nature:	
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any dis	er Acid pH: Yes _ er Base pH: Yes _ screpancies with the	No No N/CoC vs the sample	A Yes	t already approved
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any di	er Acid pH: Yes _ er Base pH: Yes _ screpancies with the	(Walk-in cl Client Sign No No N/	A Yes	
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any dis	er Acid pH: Yes _ er Base pH: Yes _ screpancies with the	No No N/CoC vs the sample	A Yes	
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any dis	er Acid pH: Yes _ er Base pH: Yes _ screpancies with the ontainers rece	No No N/CoC vs the sample	Yes Test	N/A
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any discountry Co	er Acid pH: Yes _ er Base pH: Yes _ screpancies with the ontainers rece	No N/ CoC vs the sample:	Yes Test	N/A
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any discounty Co	er Acid pH: Yes _ er Base pH: Yes _ screpancies with the ontainers rece	No N/ No N/ CoC vs the sample	Yes Test	N/A
Location where samples are store Do all samples have the proper Do all samples have the proper Was the PC notified of any discrete the proper 1 Liter Amber 500 mL Amber	er Acid pH: Yes _ er Base pH: Yes _ screpancies with the ontainers rece	No No N/ No N/ Coc vs the sample: 16 oz a 8 oz ambe	Yes Test amber r/clear jar	N/A
Location where samples are store Do all samples have the prope Do all samples have the prope O) Was the PC notified of any dis Co 1 Liter Amber 500 mL Amber 250 mL Amber (80z amber)	er Acid pH: Yes _ er Base pH: Yes _ screpancies with the ontainers rece	No No N/ No N/ CoC vs the sample. eived at Con- 16 oz a 8 oz ambe 4 oz ambe	Yes Test amber r/clear jar r/clear jar	N/A
Location where samples are store Do all samples have the prope Do all samples have the prope O) Was the PC notified of any discrete 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic	er Acid pH: Yes _ er Base pH: Yes _ screpancies with the ontainers rece # of containers	No N/ No N/ CoC vs the sample. 16 oz a 8 oz ambe 4 oz ambe 2 oz ambe	Yes Test amber r/clear jar r/clear jar g / Ziploc	N/A
Location where samples are store Do all samples have the prope Do all samples have the prope O) Was the PC notified of any dis Co 1 Liter Amber 500 mL Amber 250 mL Amber (80z amber) 1 Liter Plastic 500 mL Plastic	er Acid pH: Yes _ er Base pH: Yes _ screpancies with the ontainers rece	No N/ No N/ CoC vs the sample. 16 oz a 8 oz ambe 4 oz ambe 2 oz ambe Plastic Ba SOC Perchlor	Yes Test amber r/clear jar r/clear jar g / Ziploc Kit rate Kit	N/A
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any discrete 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle	er Acid pH: Yes _ er Base pH: Yes _ screpancies with the ontainers rece # of containers	No No N/ No N/ CoC vs the sample: 16 oz a 8 oz ambe 4 oz ambe 2 oz ambe Plastic Ba SOC	Yes Test amber r/clear jar r/clear jar g / Ziploc Kit rate Kit	N/A
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any discrete 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below	er Acid pH: Yes _ er Base pH: Yes _ screpancies with the ontainers rece # of containers	No N/ No N/ CoC vs the sample. 16 oz a 8 oz ambe 4 oz ambe 2 oz ambe Plastic Ba SOC Perchlor	Yes Test amber r/clear jar r/clear jar g / Ziploc Kit rate Kit nt bottle lass jar	N/A

Page 2 of 2

Login Sample Receipt Checklist
(Rejection Criteria Listing - Using Sample Acceptance Policy)
Any False statement will be brought to the attention of Client

Question	Answer (True/Fal	se) <u>Comment</u>
The state of the s	T/F/NA /	
	$\Lambda I/\Lambda$	
1) The cooler's custody seal, if present, is intact.	/ //1	
2) The cooler or samples do not appear to have		
been compromised or tampered with.	T	
	,	
3) Samples were received on ice.	ļ ,	
	-	
4) Cooler Temperature is acceptable.	1	
El Caplar Tamparatura in recorded	T	
5) Cooler Temperature is recorded.		
6) COC is filled out in ink and legible.	T	
7) COC is filled out with all pertinent information.		
	,	
8) Field Sampler's name present on COC.	<u> </u>	
9) There are no discrepancies between the		
sample IDs on the container and the COC.	1	
10) Samples are received within Holding Time	T	
10) Samples are received within Holding Time.		
11) Sample containers have legible labels.	1	,
11) dample doritamere have legisle lasse.		
12) Containers are not broken or leaking.	1	
	/^	
13) Air Cassettes are not broken/open.	N/H	
	-	
14) Sample collection date/times are provided.		
45) Annualista constituente que constitu		
15) Appropriate sample containers are used.		
16) Proper collection media used.		
Tof 1 Topos Concollors Modela account		
17) No headspace sample bottles are completely filled.		
:		
18) There is sufficient volume for all requsted		
analyses, including any requested MS/MSDs.	<u> </u>	
40) T 1 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
19) Trip blanks provided if applicable.		
20) VOA sample vials do not have head space or	1	
bubble is <6mm (1/4") in diameter.		
24) Complete de not require enlitting or compositing	<u></u>	
21) Samples do not require splitting or compositing. Who notified of Fals	 e statements?	Date/Time: //
Doc #277 Rev. 4 August 2013 Log-In Technician II		Date/Time: / O// // &
	0/1	, 76/12
		1430

October 18, 2016

Donna Pallister Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250 Warwick, RI 02886

Project Location: Springfield St. Schools - Providence, RI

Client Job Number:

Project Number: WK012152.2016

Laboratory Work Order Number: 16J0255

Enclosed are results of analyses for samples received by the laboratory on October 6, 2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
Sample Preparation Information	11
QC Data	12
Air Toxics by EPA Compendium Methods	12
B160480	12
Flag/Qualifier Summary	14
Certifications	15
Chain of Custody/Sample Receipt	18

Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250

Warwick, RI 02886

ATTN: Donna Pallister

PURCHASE ORDER NUMBER:

REPORT DATE: 10/18/2016

PROJECT NUMBER: WK012152.2016

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 16J0255

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Springfield St. Schools - Providence, RI

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
ES#1	16J0255-01	Sub Slab		EPA TO-14A	
ES#2	16J0255-02	Sub Slab		EPA TO-14A	
MS Front	16J0255-03	Sub Slab		EPA TO-14A	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT 10/18/2016: Report revised to change TO-15 compound list to TO-14 compound list as requested by the client.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

ANALYTICAL RESULTS

Project Location: Springfield St. Schools - Providen Date Received: 10/6/2016

Field Sample #: ES#1
Sample ID: 16J0255-01
Sample Matrix: Sub Slab
Sampled: 10/5/2016 12:45

Sample Description/Location: Sub Description/Location:

Canister ID: Canister Size: Flow Controller ID: Sample Type: Work Order: 16J0255 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type: Flow Controller Calibration

RPD Pre and Post-Sampling:

	ppl	hv.		ug/n	n3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
Benzene	0.22	0.10		0.69	0.32	2	10/9/16 2:00	CMR
Bromomethane	ND	0.10		ND	0.39	2	10/9/16 2:00	CMR
Carbon Tetrachloride	ND	0.10		ND	0.63	2	10/9/16 2:00	CMR
Chlorobenzene	ND	0.10		ND	0.46	2	10/9/16 2:00	CMR
Chloroethane	ND	0.10		ND	0.26	2	10/9/16 2:00	CMR
Chloroform	0.32	0.10		1.6	0.49	2	10/9/16 2:00	CMR
Chloromethane	ND	0.20		ND	0.41	2	10/9/16 2:00	CMR
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	10/9/16 2:00	CMR
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	10/9/16 2:00	CMR
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	10/9/16 2:00	CMR
1,4-Dichlorobenzene	ND	0.10		ND	0.60	2	10/9/16 2:00	CMR
Dichlorodifluoromethane (Freon 12)	2.2	0.10		11	0.49	2	10/9/16 2:00	CMR
1,1-Dichloroethane	ND	0.10		ND	0.40	2	10/9/16 2:00	CMR
1,2-Dichloroethane	ND	0.10		ND	0.40	2	10/9/16 2:00	CMR
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	10/9/16 2:00	CMR
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	10/9/16 2:00	CMR
1,2-Dichloropropane	ND	0.10		ND	0.46	2	10/9/16 2:00	CMR
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	10/9/16 2:00	CMR
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	10/9/16 2:00	CMR
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	2.4	0.10		17	0.70	2	10/9/16 2:00	CMR
Ethylbenzene	0.33	0.10		1.4	0.43	2	10/9/16 2:00	CMR
Hexachlorobutadiene	ND	0.10		ND	1.1	2	10/9/16 2:00	CMR
Methylene Chloride	1.2	1.0		4.2	3.5	2	10/9/16 2:00	CMR
Styrene	0.54	0.10		2.3	0.43	2	10/9/16 2:00	CMR
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	10/9/16 2:00	CMR
Tetrachloroethylene	7.5	0.10		51	0.68	2	10/9/16 2:00	CMR
Toluene	2.5	0.10		9.5	0.38	2	10/9/16 2:00	CMR
1,2,4-Trichlorobenzene	ND	0.10		ND	0.74	2	10/9/16 2:00	CMR
1,1,1-Trichloroethane	ND	0.10		ND	0.55	2	10/9/16 2:00	CMR
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	10/9/16 2:00	CMR
Trichloroethylene	1.0	0.10		5.6	0.54	2	10/9/16 2:00	CMR
Trichlorofluoromethane (Freon 11)	0.57	0.10		3.2	0.56	2	10/9/16 2:00	CMR
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.10		ND	0.77	2	10/9/16 2:00	CMR
1,2,4-Trimethylbenzene	0.42	0.10		2.0	0.49	2	10/9/16 2:00	CMR
1,3,5-Trimethylbenzene	0.14	0.10		0.71	0.49	2	10/9/16 2:00	CMR
Vinyl Chloride	ND	0.10		ND	0.26	2	10/9/16 2:00	CMR
m&p-Xylene	0.76	0.20		3.3	0.87	2	10/9/16 2:00	CMR

ANALYTICAL RESULTS

 $\label{eq:project_continuity} Project\ Location:\ Springfield\ St.\ Schools\ -\ Providen$ $Date\ Received:\ 10/6/2016$

Field Sample #: ES#1 Sample ID: 16J0255-01 Sample Matrix: Sub Slab Sampled: 10/5/2016 12:45 Sample Description/Location: Sub Description/Location:

Canister ID: Canister Size: Flow Controller ID: Sample Type: Work Order: 16J0255 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type: Flow Controller Calibration

RPD Pre and Post-Sampling:

	ppbv		ug/	m3		Date/Time			
Analyte	Results RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst		
o-Xylene	ND 0.10		ND	0.43	2	10/9/16 2:00	CMR		
Surrogates	% Recovery		% REC Limits						
4-Bromofluorobenzene (1)	113		70-130			10/9/16 2:00			

ANALYTICAL RESULTS

Project Location: Springfield St. Schools - Providen

Date Received: 10/6/2016 Field Sample #: ES#2 Sample ID: 16J0255-02 Sample Matrix: Sub Slab Sampled: 10/5/2016 12:50 Sample Description/Location: Sub Description/Location:

Canister ID: Canister Size: Flow Controller ID: Sample Type: Work Order: 16J0255 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type: Flow Controller Calibration

RPD Pre and Post-Sampling:

	ppl	bv		ug/r	n3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
Benzene	0.11	0.10		0.36	0.32	2	10/9/16 2:41	CMR
Bromomethane	ND	0.10		ND	0.39	2	10/9/16 2:41	CMR
Carbon Tetrachloride	ND	0.10		ND	0.63	2	10/9/16 2:41	CMR
Chlorobenzene	ND	0.10		ND	0.46	2	10/9/16 2:41	CMR
Chloroethane	ND	0.10		ND	0.26	2	10/9/16 2:41	CMR
Chloroform	0.28	0.10		1.4	0.49	2	10/9/16 2:41	CMR
Chloromethane	ND	0.20		ND	0.41	2	10/9/16 2:41	CMR
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	10/9/16 2:41	CMR
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	10/9/16 2:41	CMR
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	10/9/16 2:41	CMR
1,4-Dichlorobenzene	ND	0.10		ND	0.60	2	10/9/16 2:41	CMR
Dichlorodifluoromethane (Freon 12)	0.62	0.10		3.1	0.49	2	10/9/16 2:41	CMR
1,1-Dichloroethane	ND	0.10		ND	0.40	2	10/9/16 2:41	CMR
1,2-Dichloroethane	ND	0.10		ND	0.40	2	10/9/16 2:41	CMR
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	10/9/16 2:41	CMR
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	10/9/16 2:41	CMR
1,2-Dichloropropane	ND	0.10		ND	0.46	2	10/9/16 2:41	CMR
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	10/9/16 2:41	CMR
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	10/9/16 2:41	CMR
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	0.39	0.10		2.7	0.70	2	10/9/16 2:41	CMR
Ethylbenzene	ND	0.10		ND	0.43	2	10/9/16 2:41	CMR
Hexachlorobutadiene	ND	0.10		ND	1.1	2	10/9/16 2:41	CMR
Methylene Chloride	1.1	1.0		3.9	3.5	2	10/9/16 2:41	CMR
Styrene	0.31	0.10		1.3	0.43	2	10/9/16 2:41	CMR
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	10/9/16 2:41	CMR
Tetrachloroethylene	0.92	0.10		6.2	0.68	2	10/9/16 2:41	CMR
Toluene	0.99	0.10		3.7	0.38	2	10/9/16 2:41	CMR
1,2,4-Trichlorobenzene	ND	0.10		ND	0.74	2	10/9/16 2:41	CMR
1,1,1-Trichloroethane	ND	0.10		ND	0.55	2	10/9/16 2:41	CMR
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	10/9/16 2:41	CMR
Trichloroethylene	0.13	0.10		0.70	0.54	2	10/9/16 2:41	CMR
Trichlorofluoromethane (Freon 11)	0.32	0.10		1.8	0.56	2	10/9/16 2:41	CMR
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.10		ND	0.77	2	10/9/16 2:41	CMR
1,2,4-Trimethylbenzene	0.40	0.10		2.0	0.49	2	10/9/16 2:41	CMR
1,3,5-Trimethylbenzene	0.13	0.10		0.66	0.49	2	10/9/16 2:41	CMR
Vinyl Chloride	ND	0.10		ND	0.26	2	10/9/16 2:41	CMR
m&p-Xylene	ND	0.20		ND	0.87	2	10/9/16 2:41	CMR

ANALYTICAL RESULTS

Project Location: Springfield St. Schools - Providen Date Received: 10/6/2016 Field Sample #: ES#2

Sample ID: 16J0255-02 Sample Matrix: Sub Slab Sampled: 10/5/2016 12:50 Sample Description/Location: Sub Description/Location:

Canister ID: Canister Size: Flow Controller ID: Sample Type: Work Order: 16J0255 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type: Flow Controller Calibration RPD Pre and Post-Sampling:

	ppbv			ug/m3			Date/Time		
Analyte	Results	RL	Flag/Qual	Results	RL	Dilu	ution	Analyzed	Analyst
o-Xylene	ND	0.10		ND	0.43		2	10/9/16 2:41	CMR
Surrogates	% Recov	% Recovery		% REC Limits					
4-Bromofluorobenzene (1)		107		70-130			10/9/16 2:41		

ANALYTICAL RESULTS

Project Location: Springfield St. Schools - Providen Date Received: 10/6/2016

Field Sample #: MS Front Sample ID: 16J0255-03 Sample Matrix: Sub Slab Sampled: 10/5/2016 13:35 Sample Description/Location: Sub Description/Location:

Canister ID: Canister Size: Flow Controller ID: Sample Type: Work Order: 16J0255 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type:

Flow Controller Calibration RPD Pre and Post-Sampling:

	pp	bv		ug/n	13		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
Benzene	0.18	0.10		0.58	0.32	2	10/9/16 3:21	CMR
Bromomethane	ND	0.10		ND	0.39	2	10/9/16 3:21	CMR
Carbon Tetrachloride	ND	0.10		ND	0.63	2	10/9/16 3:21	CMR
Chlorobenzene	ND	0.10		ND	0.46	2	10/9/16 3:21	CMR
Chloroethane	ND	0.10		ND	0.26	2	10/9/16 3:21	CMR
Chloroform	ND	0.10		ND	0.49	2	10/9/16 3:21	CMR
Chloromethane	ND	0.20		ND	0.41	2	10/9/16 3:21	CMR
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	10/9/16 3:21	CMR
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	10/9/16 3:21	CMR
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	10/9/16 3:21	CMR
1,4-Dichlorobenzene	ND	0.10		ND	0.60	2	10/9/16 3:21	CMR
Dichlorodifluoromethane (Freon 12)	0.87	0.10		4.3	0.49	2	10/9/16 3:21	CMR
1,1-Dichloroethane	ND	0.10		ND	0.40	2	10/9/16 3:21	CMR
1,2-Dichloroethane	ND	0.10		ND	0.40	2	10/9/16 3:21	CMR
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	10/9/16 3:21	CMR
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	10/9/16 3:21	CMR
1,2-Dichloropropane	ND	0.10		ND	0.46	2	10/9/16 3:21	CMR
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	10/9/16 3:21	CMR
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	10/9/16 3:21	CMR
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	0.76	0.10		5.3	0.70	2	10/9/16 3:21	CMR
Ethylbenzene	0.21	0.10		0.90	0.43	2	10/9/16 3:21	CMR
Hexachlorobutadiene	ND	0.10		ND	1.1	2	10/9/16 3:21	CMR
Methylene Chloride	1.2	1.0		4.2	3.5	2	10/9/16 3:21	CMR
Styrene	0.31	0.10		1.3	0.43	2	10/9/16 3:21	CMR
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	10/9/16 3:21	CMR
Tetrachloroethylene	0.52	0.10		3.6	0.68	2	10/9/16 3:21	CMR
Toluene	0.96	0.10		3.6	0.38	2	10/9/16 3:21	CMR
1,2,4-Trichlorobenzene	ND	0.10		ND	0.74	2	10/9/16 3:21	CMR
1,1,1-Trichloroethane	ND	0.10		ND	0.55	2	10/9/16 3:21	CMR
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	10/9/16 3:21	CMR
Trichloroethylene	ND	0.10		ND	0.54	2	10/9/16 3:21	CMR
Trichlorofluoromethane (Freon 11)	0.31	0.10		1.7	0.56	2	10/9/16 3:21	CMR
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.10		ND	0.77	2	10/9/16 3:21	CMR
1,2,4-Trimethylbenzene	0.41	0.10		2.0	0.49	2	10/9/16 3:21	CMR
1,3,5-Trimethylbenzene	0.14	0.10		0.70	0.49	2	10/9/16 3:21	CMR
Vinyl Chloride	ND	0.10		ND	0.26	2	10/9/16 3:21	CMR
m&p-Xylene	0.52	0.20		2.3	0.87	2	10/9/16 3:21	CMR

ANALYTICAL RESULTS

Project Location: Springfield St. Schools - Providen Date Received: 10/6/2016

Field Sample #: MS Front Sample ID: 16J0255-03 Sample Matrix: Sub Slab Sampled: 10/5/2016 13:35 Sample Description/Location: Sub Description/Location:

Canister ID: Canister Size: Flow Controller ID: Sample Type: Work Order: 16J0255 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg):

Flow Controller Type: Flow Controller Calibration RPD Pre and Post-Sampling:

	ppl	ppbv			ug/m3			Date/Time			
Analyte	Results	RL	Flag/Qual	Results	RL		Dilution	Analyzed	Analyst		
o-Xylene	ND	0.10		ND	0.43		2	10/9/16 3:21	CMR		
Surrogates	% Recov	ery		% REC	C Limits						
4-Bromofluorobenzene (1)		116		70-	-130			10/9/16 3:21			

Sample Extraction Data

Prep Method: TO-15 Prep-EPA TO-14A	Pressure	Pre	Pre-Dil Initial	Pre-Dil Final	Default Injection	Actual Injection		
Lab Number [Field ID]	Batch	Dilution	Dilution	mL	mL	mL	mL	Date
16J0255-01 [ES#1]	B160480	1	1	N/A	1000	400	200	10/08/15
16J0255-02 [ES#2]	B160480	1	1	N/A	1000	400	200	10/08/15
16J0255-03 [MS Front]	B160480	1	1	N/A	1000	400	200	10/08/15

o-Xylene

Surrogate: 4-Bromofluorobenzene (1)

ND

8.73

0.034

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

Namistro Results RL Results RL Results RL Ppbv Result %REC Limit Limit Limit Limit Results RL Results RL Ppbv Result %REC Limit Limit Results RL Ppbv Result %REC Limit Results RESULT R	its RPD	Limit	Flag/Qual
Blank (B160480-BLK1)			riag/Qua
Benzene ND 0.034 Bromomethane ND 0.034 Carbon Tetrachloride ND 0.034 Chlorobenzene ND 0.034 Chlorobenzene ND 0.034 Chlorothane ND 0.034 Chloromethane ND 0.034 Chloromethane ND 0.034 Chloromethane ND 0.068 1,2-Dibromoethane (EDB) ND 0.034 1,2-Dichlorobenzene ND 0.034 1,3-Dichlorobenzene ND 0.034 1,4-Dichlorobenzene ND 0.034 1,4-Dichlorobenzene ND 0.034 1,1-Dichlorothane (Freon 12) ND 0.034 1,1-Dichlorothane (Freon 12) ND 0.034 1,1-Dichlorothane ND 0.034 1,1-Dichlorothane ND 0.034 1,1-Dichlorothane ND 0.034 1,1-Dichlorothane ND 0.034 1,1-Dichlorothylene ND 0.034 1,2-Dichlorothylene ND 0.034 1,2-Dichlorothylene ND 0.034 1,2-Dichloropropene ND 0.034 1,1-Dichloropropene ND 0.034			
Bromomethane ND 0.034 Carbon Tetrachloride ND 0.034 Chlorochane ND 0.034 Chlorochane ND 0.034 Chloromethane ND 0.034 Chloromethane ND 0.068 1,2-Dibromoethane (EDB) ND 0.034 1,2-Dichlorobenzene ND 0.034 1,3-Dichlorobenzene ND 0.034 1,4-Dichlorobenzene ND 0.034 1,1-Dichlorothane ND 0.034 1,1-Dichlorothane ND 0.034 1,1-Dichlorothylene ND 0.034 1,2-Dichlorothylene ND 0.034 1,2-Dichloropropene ND 0.034 ttans-1,3-Dichloropropene ND 0.034 ttans-1,3-Dichloropropene ND 0.034 ttans-1,2-Dichloro-1,1,2-2-tetrafluoroethane ND 0.034 (Freen I14) ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND			
Carbon Tetrachloride ND 0.034 Chloroebnacene ND 0.034 Chloroethane ND 0.034 Chloroform ND 0.034 Chloromethane ND 0.068 1,2-Dichloromoethane (EDB) ND 0.034 1,2-Dichlorobenzene ND 0.034 1,3-Dichlorobenzene ND 0.034 1,4-Dichlorobenzene ND 0.034 1,1-Dichlorobenzene ND 0.034 1,1-Dichloroethane ND 0.034 1,1-Dichloroethane ND 0.034 1,2-Dichloroethylene ND 0.034 cis-1,2-Dichloroethylene ND 0.034 cis-1,3-Dichloropropane ND 0.034 cis-1,3-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 Ethylbenzene ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.034 Methylene Chloride ND			
Chlorobenzene ND 0.034 Chlorocthane ND 0.034 Chloroform ND 0.034 Chloromethane ND 0.068 1,2-Dichlorobenzene ND 0.034 1,2-Dichlorobenzene ND 0.034 1,4-Dichlorobenzene ND 0.034 1,1-Dichlorobenzene ND 0.034 1,1-Dichloroethane ND 0.034 1,2-Dichloroethane ND 0.034 1,1-Dichloroethylene ND 0.034 cis-1,2-Dichloroethylene ND 0.034 cis-1,3-Dichloropropane ND 0.034 cis-1,3-Dichloropropene ND 0.034 1,2-Dichloro-1,1,2,2-tetrafluroethane ND 0.034 (Freon 114) ND 0.034 Hexachlorobutadiene ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.034 Styrene ND 0.034 Tetrachloroethane ND 0.034 </td <td></td> <td></td> <td></td>			
Chloroethane ND 0.034 Chloroform ND 0.034 Chloromethane ND 0.068 1,2-Dirbormoethane (EDB) ND 0.034 1,2-Dichlorobenzene ND 0.034 1,3-Dichlorobenzene ND 0.034 1,4-Dichlorobenzene ND 0.034 Dichlorodifluoromethane (Freon 12) ND 0.034 1,1-Dichloroethane ND 0.034 1,2-Dichloroethane ND 0.034 1,1-Dichloroethylene ND 0.034 cis-1,2-Dichloropropane ND 0.034 cis-1,3-Dichloropropane ND 0.034 t1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.034 (Freon 114) ND 0.034 Hexachlorobutadiene ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.034 Styrene ND 0.034 Tetrachloroethylene ND 0.034 Totuene ND			
Chloroform ND 0.034 Chloromethane ND 0.068 1,2-Dirbromoethane (EDB) ND 0.034 1,2-Dichlorobenzene ND 0.034 1,3-Dichlorobenzene ND 0.034 1,4-Dichlorobenzene ND 0.034 Dichlorodifluoromethane (Freon 12) ND 0.034 1,1-Dichloroethane ND 0.034 1,2-Dichloroethane ND 0.034 1,1-Dichloroethylene ND 0.034 cis-1,2-Dichloroethylene ND 0.034 cis-1,3-Dichloropropane ND 0.034 trans-1,3-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 Hexachlorobutadiene ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.034 Styrene ND 0.034 Tetrachloroethylene ND 0.034 Tetrachloroethylene			
Chloromethane ND 0.068 1,2-Dibromoethane (EDB) ND 0.034 1,2-Dichlorobenzene ND 0.034 1,3-Dichlorobenzene ND 0.034 1,4-Dichlorodifluoromethane (Freon 12) ND 0.034 Dichlorodifluoromethane (Freon 12) ND 0.034 1,1-Dichloroethane ND 0.034 1,2-Dichloroethane ND 0.034 1,1-Dichloroethylene ND 0.034 cis-1,2-Dichloroethylene ND 0.034 cis-1,3-Dichloropropane ND 0.034 cis-1,3-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 tethylbenzene ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.034 Styrene ND 0.034 Tetrachloroethylene ND 0.034			
1,2-Dibromoethane (EDB) ND 0.034 1,2-Dichlorobenzene ND 0.034 1,3-Dichlorobenzene ND 0.034 1,4-Dichlorobenzene ND 0.034 Dichlorodifluoromethane (Freon 12) ND 0.034 1,1-Dichloroethane ND 0.034 1,2-Dichloroethane ND 0.034 1,1-Dichloroethylene ND 0.034 cis-1,2-Dichloroethylene ND 0.034 cis-1,3-Dichloropropane ND 0.034 cis-1,3-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.034 Feren 114) ND 0.034 Ethylbenzene ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.034 Styrene ND 0.034 Tetrachloroethylene ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 1,1,1-Trichloroethane ND			
1,2-Dichlorobenzene ND 0.034 1,3-Dichlorobenzene ND 0.034 1,4-Dichlorobenzene ND 0.034 Dichlorodifluoromethane (Freon 12) ND 0.034 1,1-Dichloroethane ND 0.034 1,2-Dichloroethane ND 0.034 1,1-Dichloroethylene ND 0.034 cis-1,2-Dichloroethylene ND 0.034 1,2-Dichloropropane ND 0.034 cis-1,3-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.034 Feron 114) ND 0.034 Ethylbenzene ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.034 Styrene ND 0.034 Tetrachloroethylene ND 0.034 Totuene ND 0.034 Totuene ND 0.034 Totuene ND 0.034 Totuene ND 0.034 <t< td=""><td></td><td></td><td></td></t<>			
1,3-Dichlorobenzene ND 0.034 1,4-Dichlorodifluoromethane (Freon 12) ND 0.034 1,1-Dichloroethane ND 0.034 1,2-Dichloroethane ND 0.034 1,1-Dichloroethylene ND 0.034 1,1-Dichloroethylene ND 0.034 cis-1,2-Dichloropropane ND 0.034 cis-1,3-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.034 (Freon 114) ND 0.034 Ethylbenzene ND 0.034 Methylene Chloride ND 0.034 Styrene ND 0.034 1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 Toluene ND 0.034 1,1,2-Trichloroethane ND 0.034 Toluene ND 0.034 1,1,1-Trichloroethane ND 0.034			
1,4-Dichlorobenzene ND 0.034 Dichlorodifluoromethane (Freon 12) ND 0.034 1,1-Dichloroethane ND 0.034 1,2-Dichloroethane ND 0.034 1,1-Dichloroethylene ND 0.034 cis-1,2-Dichloroptoplene ND 0.034 1,2-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) ND 0.034 Ethylbenzene ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.034 Styrene ND 0.034 1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 Toluene ND 0.034 1,1,1-Trichloroethane ND 0.034 Toluene ND 0.034 1,1,1-Trichloroethane ND 0.034			
Dichlorodifluoromethane (Freon 12) ND 0.034 1,1-Dichloroethane ND 0.034 1,2-Dichloroethane ND 0.034 1,1-Dichloroethylene ND 0.034 cis-1,2-Dichloroethylene ND 0.034 1,2-Dichloropropane ND 0.034 cis-1,3-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 (Freon 114) ND 0.034 Ethylbenzene ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.034 Styrene ND 0.034 1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 Toluene ND 0.034 1,1,1-Trichloroethane ND 0.034			
1,1-Dichloroethane ND 0.034 1,2-Dichloroethylene ND 0.034 1,1-Dichloroethylene ND 0.034 1,2-Dichloroptopene ND 0.034 1,2-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.034 (Freon 114) ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.034 Styrene ND 0.034 1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034			
1,2-Dichloroethane ND 0.034 1,1-Dichloroethylene ND 0.034 cis-1,2-Dichloroethylene ND 0.034 1,2-Dichloropropane ND 0.034 cis-1,3-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.034 (Freon 114) ND 0.034 Ethylbenzene ND 0.034 Methylene Chloride ND 0.34 Styrene ND 0.034 1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034			
1,1-Dichloroethylene ND 0.034 cis-1,2-Dichloroethylene ND 0.034 1,2-Dichloropropane ND 0.034 cis-1,3-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) ND 0.034 Ethylbenzene ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.034 Styrene ND 0.034 1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034			
cis-1,2-Dichloroethylene ND 0.034 1,2-Dichloropropane ND 0.034 cis-1,3-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) ND 0.034 Ethylbenzene ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.34 Styrene ND 0.034 1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034			
1,2-Dichloropropane ND 0.034 cis-1,3-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.034 (Freon 114) ND 0.034 Ethylbenzene ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.034 Styrene ND 0.034 1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034			
cis-1,3-Dichloropropene ND 0.034 trans-1,3-Dichloropropene ND 0.034 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.034 (Freon 114) ND 0.034 Ethylbenzene ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.034 Styrene ND 0.034 1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034			
trans-1,3-Dichloropropene ND 0.034 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) Ethylbenzene ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.34 Styrene ND 0.034 1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034 1,1,1-Trichloroethane ND 0.034			
1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.034 (Freon 114) ND 0.034 Ethylbenzene ND 0.034 Hexachlorobutadiene ND 0.34 Methylene Chloride ND 0.34 Styrene ND 0.034 1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034			
(Freon 114) Ethylbenzene ND 0.034 Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.34 Styrene ND 0.034 1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034			
Hexachlorobutadiene ND 0.034 Methylene Chloride ND 0.34 Styrene ND 0.034 1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034			
Methylene Chloride ND 0.34 Styrene ND 0.034 1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034			
Styrene ND 0.034 1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034			
1,1,2,2-Tetrachloroethane ND 0.034 Tetrachloroethylene ND 0.034 Toluene ND 0.034 1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034			
Tetrachloroethylene ND 0.034 Toluene ND 0.034 1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034			
Toluene ND 0.034 1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034			
1,2,4-Trichlorobenzene ND 0.034 1,1,1-Trichloroethane ND 0.034			
1,1,1-Trichloroethane ND 0.034			
1.1.2 Trichlorouthone ND 0.034			
1,1,2-111emoroculaile ND 0.034			
Trichloroethylene ND 0.034			
Trichlorofluoromethane (Freon 11) ND 0.034			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon ND 0.034 113)			
1,2,4-Trimethylbenzene ND 0.034			
1,3,5-Trimethylbenzene ND 0.034			
Vinyl Chloride ND 0.034			
m&p-Xylene ND 0.068			

8.00

109

70-130

Trichlorofluoromethane (Freon 11)

Surrogate: 4-Bromofluorobenzene (1)

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl Chloride

m&p-Xylene

o-Xylene

1,1,2-Trichloro-1,2,2-trifluoroethane (Freon

3.94

3.79

4.11

4.57

3.52

10.8

5.45

8.70

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

	ppl		ug/ı		Spike Level	Source		%REC		RPD	
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag/Qual
Batch B160480 - TO-15 Prep											
LCS (B160480-BS1)					Prepared & A	Analyzed: 10	0/08/16				
Benzene	4.81				5.00		96.1	55.6-131			
Bromomethane	3.83				5.00		76.6	29.2-163			
Carbon Tetrachloride	3.68				5.00		73.5	70.9-128			
Chlorobenzene	4.01				5.00		80.3	67.8-126			
Chloroethane	3.82				5.00		76.4	49.5-146			
Chloroform	3.55				5.00		71.0	65-133			
Chloromethane	3.58				5.00		71.5	55.1-139			
1,2-Dibromoethane (EDB)	3.92				5.00		78.4	76.8-121			
1,2-Dichlorobenzene	4.56				5.00		91.3	79.6-141			
1,3-Dichlorobenzene	4.80				5.00		95.9	76.2-147			
1,4-Dichlorobenzene	4.57				5.00		91.4	73.6-147			
Dichlorodifluoromethane (Freon 12)	3.88				5.00		77.7	40.6-164			
1,1-Dichloroethane	3.70				5.00		74.0	67.7-119			
1,2-Dichloroethane	3.73				5.00		74.6	69.8-121			
1,1-Dichloroethylene	3.76				5.00		75.3	72.9-121			
cis-1,2-Dichloroethylene	3.78				5.00		75.7	66.2-119			
1,2-Dichloropropane	3.77				5.00		75.4	49.8-131			
cis-1,3-Dichloropropene	4.09				5.00		81.8	59.9-138			
trans-1,3-Dichloropropene	4.37				5.00		87.4	60.6-130			
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	3.24				5.00		64.7	36.3-154			
Ethylbenzene	5.02				5.00		100	73.3-137			
Hexachlorobutadiene	5.44				5.00		109	68.1-180			
Methylene Chloride	3.88				5.00		77.7	73.7-115			
Styrene	4.10				5.00		82.0	58.2-141			
1,1,2,2-Tetrachloroethane	3.77				5.00		75.4	70.2-141			
Tetrachloroethylene	4.62				5.00		92.5	62.6-135			
Toluene	5.30				5.00		106	74.9-124			
1,2,4-Trichlorobenzene	6.17				5.00		123	62.9-176			
1,1,1-Trichloroethane	3.63				5.00		72.6	62-128			
1,1,2-Trichloroethane	4.29				5.00		85.7	76.3-120			
Trichloroethylene	3.89				5.00		77.9	68.4-122			

78.8

75.8

82.2

91.3

70.3

108

109

56.8-154

62.7-147

75.7-137

74-134

53.7-137

78.8-139

70.4-140

70-130

5.00

5.00

5.00

5.00

5.00

10.0

5.00

8.00

FLAG/QUALIFIER SUMMARY

* OC res	sult is outside of	of established limits.
----------	--------------------	------------------------

† Wide recovery limits established for difficult compound.

‡ Wide RPD limits established for difficult compound.

Data exceeded client recommended or regulatory level

ND Not Detected

RL Reporting Limit

DL Method Detection Limit

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

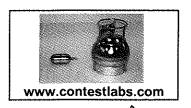
CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA TO-14A in Air	
Benzene	AIHA,FL,NY
Bromomethane	AIHA,FL,NY
Carbon Tetrachloride	AIHA,FL,NY
Chlorobenzene	AIHA,FL,NY
Chloroethane	AIHA,FL,NY
Chloroform	AIHA,FL,NY
Chloromethane	AIHA,FL,NY
1,2-Dibromoethane (EDB)	NY
1,2-Dichlorobenzene	AIHA,FL,NY
1,3-Dichlorobenzene	AIHA,FL,NY
1,4-Dichlorobenzene	AIHA,FL,NY
Dichlorodifluoromethane (Freon 12)	AIHA,FL,NY
1,1-Dichloroethane	AIHA,FL,NY
1,2-Dichloroethane	AIHA,FL,NY
1,1-Dichloroethylene	AIHA,FL,NY
cis-1,2-Dichloroethylene	AIHA,FL,NY
1,2-Dichloropropane	AIHA,FL,NY
cis-1,3-Dichloropropene	AIHA,FL,NY
trans-1,3-Dichloropropene	NY
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	AIHA,FL,NY
Ethylbenzene	AIHA,FL,NY
Hexachlorobutadiene	AIHA,FL,NY
Methylene Chloride	AIHA,FL,NY
Styrene	AIHA,FL,NY
1,1,2,2-Tetrachloroethane	AIHA,FL,NY
Tetrachloroethylene	AIHA,FL,NY
Toluene	AIHA,FL,NY
1,2,4-Trichlorobenzene	AIHA,FL,NY
1,1,1-Trichloroethane	AIHA,FL,NY
1,1,2-Trichloroethane	AIHA,FL,NY
Trichloroethylene	AIHA,FL,NY
Trichlorofluoromethane (Freon 11)	AIHA,FL,NY
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NY
1,2,4-Trimethylbenzene	AIHA,FL,NY
1,3,5-Trimethylbenzene	AIHA,FL,NY
Vinyl Chloride	AIHA,FL,NY
m&p-Xylene	AIHA,FL,NY
o-Xylene	AIHA,FL,NY
EPA TO-15 in Air	
Benzene	AIHA,FL,NJ,NY,VA,ME
Bromomethane	AIHA,FL,NJ,NY,ME
Carbon Tetrachloride	AIHA,FL,NJ,NY,VA,ME
Chlorobenzene	AIHA,FL,NJ,NY,VA,ME
Chloroethane	AIHA,FL,NJ,NY,VA,ME
Chloroform	AIHA,FL,NJ,NY,VA,ME
Chloromethane	AIHA,FL,NJ,NY,VA,ME

CERTIFICATIONS

Certified Analyses included in this Report


Analyte	Certifications
EPA TO-15 in Air	
1,2-Dibromoethane (EDB)	AIHA,NJ,NY,ME
1,2-Dichlorobenzene	AIHA,FL,NJ,NY,VA,ME
1,3-Dichlorobenzene	AIHA,NJ,NY,ME
1,4-Dichlorobenzene	AIHA,FL,NJ,NY,VA,ME
Dichlorodifluoromethane (Freon 12)	AIHA,NY,ME
1,1-Dichloroethane	AIHA,FL,NJ,NY,VA,ME
1,2-Dichloroethane	AIHA,FL,NJ,NY,VA,ME
1,1-Dichloroethylene	AIHA,FL,NJ,NY,VA,ME
cis-1,2-Dichloroethylene	AIHA,FL,NY,VA,ME
1,2-Dichloropropane	AIHA,FL,NJ,NY,VA,ME
cis-1,3-Dichloropropene	AIHA,FL,NJ,NY,VA,ME
trans-1,3-Dichloropropene	AIHA,NY,ME
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	AIHA,NJ,NY,VA,ME
Ethylbenzene	AIHA,FL,NJ,NY,VA,ME
Hexachlorobutadiene	AIHA,NJ,NY,VA,ME
Methylene Chloride	AIHA,FL,NJ,NY,VA,ME
Styrene	AIHA,FL,NJ,NY,VA,ME
1,1,2,2-Tetrachloroethane	AIHA,FL,NJ,NY,VA,ME
Tetrachloroethylene	AIHA,FL,NJ,NY,VA,ME
Toluene	AIHA,FL,NJ,NY,VA,ME
1,2,4-Trichlorobenzene	AIHA,NJ,NY,VA,ME
1,1,1-Trichloroethane	AIHA,FL,NJ,NY,VA,ME
1,1,2-Trichloroethane	AIHA,FL,NJ,NY,VA,ME
Trichloroethylene	AIHA,FL,NJ,NY,VA,ME
Trichlorofluoromethane (Freon 11)	AIHA,NY,ME
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	AIHA,NJ,NY,VA,ME
1,2,4-Trimethylbenzene	AIHA,NJ,NY,ME
1,3,5-Trimethylbenzene	AIHA,NJ,NY,ME
Vinyl Chloride	AIHA,FL,NJ,NY,VA,ME
m&p-Xylene	AIHA,FL,NJ,NY,VA,ME
o-Xylene	AIHA,FL,NJ,NY,VA,ME

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2017
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2017
NY	New York State Department of Health	10899 NELAP	04/1/2017
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2017
RI	Rhode Island Department of Health	LAO00112	12/30/2016
NC	North Carolina Div. of Water Quality	652	12/31/2016
NJ	New Jersey DEP	MA007 NELAP	06/30/2017
FL	Florida Department of Health	E871027 NELAP	06/30/2017
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2017
ME	State of Maine	2011028	06/9/2017
VA	Commonwealth of Virginia	460217	12/14/2016
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2017

(p.100/g)		http://www.contestlabs.com	Doc #378 Rev 0 5/8/15		-
7 <u>8</u> J	ار ار	CHAIN OF CUSTODY RECORD (AIR)	39 Spruce Street East Longmeado	Street meadow, MA 010	Page / of //
Fax: 413-525-6405	3	स्थाति । भागतान्त्रकान्त्रकान्त्रकान्त्रकान्त्र	ANALYSIS REQUESTED	red	
Email: Infoecontestlabs.com	7. 7-Day Other:	10-Day		- £	Please fill out completely,
300 M	W.	sh-Auguspal Required			sign, date and retain the yellow copy for your
Phone: 461-285-7235	1-Day	3-Day			records
Somethal St. School	Z 2-Day	4-Day		ı	Summa canisters and
Project Location: Color April	Format DDF	Batta Bentreny		Fina	now controllers must be returned within 15 days of
Project Manager: DawNA TALLISTER		T TUDE	7-0	eipt Pre: Pre	receipt or rental fees will apply
Con-Test Bid:	Enhanced Data	Enhanced Data Package Required:	2	ssur	For summa canister and
Invoice Recipient:	Email Toc	Email To DONNA PAL LISTER			flow controller information please refer
Lab Use Crient Use			A Notember 1		to Con-Test's Air Media Agreement
	1				
Con-Test Client Sample ID / Description Work Order#	Beginning Ending Macade Section Sectin Section Section Section Section Section Section Section Section	Total	A rue riters		Summa Can Flow ID Controller ID
0 65#1	Stre 5/01	SS			
03 RS#2	0521 5/01	22			
()3 MS Frant	10/5-1335	\$			
Comments:	/	Please use the following co concentration within th H - High; M - Medium; L - I	Please use the following codes to indicate possible sample concentration within the Conc Code column above: H - High; M - Medium; L - Low; C - Clean; U - Unknown	ΣI	Matrix Codes:
Rejudylshed by (signature) Date/Time:	Defection Limit Requirements	ments Special Requirements	lents		SG = SOIL GAS IA = INDOOR AIR AMB = AMBIENT
Mature hark		MA WC	MA MCP Required		SS = SUB SLAB D = DUP BI = BI ANK
Relinquished by: (signature)	183	CT RC	CT RCP Required		0 = Other
9 1 bate/Time:	(A) 在 (B) (A)	Enh Packag	Enhanced Data Package Required NE.AC.	NELAC and AMALAP LLC Accredited	Accredited
Refriquished by: (signature) / Date/Time:	TURNAROUND TIME (BUSII) QUESTIONS ON THIS CHAII	NESS DAYS) STARTS AT 9:00 AM N. IF THIS FORM IS NOT FILLED	TURNAROUND TIME (BUSINESS DAYS) STARTS AT 9:00 AM THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON THIS CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS INCORRECT, TURNAROUND TIME	T UNLESS THERI ECT, TURNAROL	ARE IND TIME
Received by: (signature) Date/Time:	CANNOT START UNTIL AL	CANNOT START UNTIL ALL QUESTIONS HAVE BEEN ANSWERED PLEASE BE CAREFUL NOT I	ONS HAVE BEEN ANSWERED. PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT	UMENT	

AIR Only Receipt Checklist

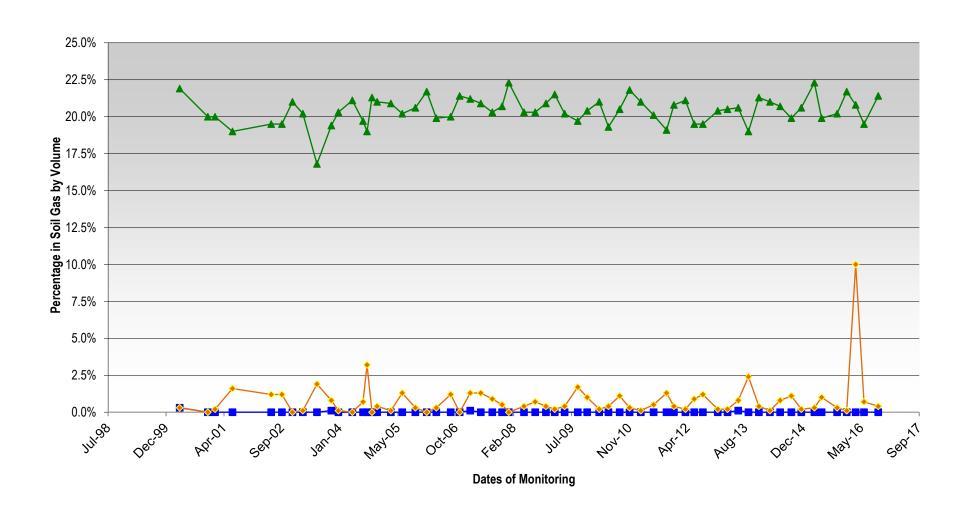
39 Spruce St.
East Longmeadow, MA.
01028

P: 413-525-2332 F: 413-525-6405

Doc # 278 Rev. 5 O Page 19 of 20

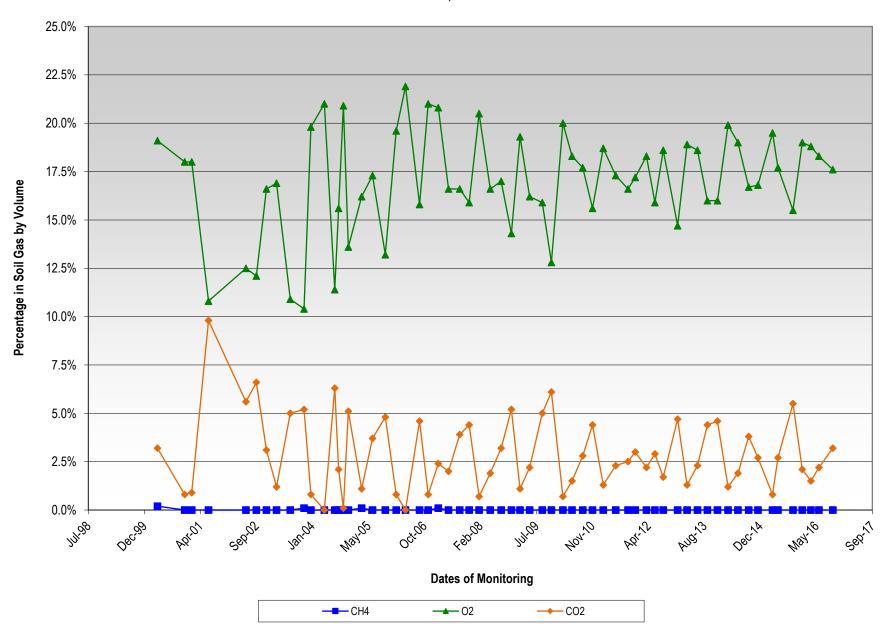
CLIEN.	T NAME		Trea	<u>dis</u>		······································		_RE	CEIVED	BY:	<u> </u>	<u> </u>	DATE	: (6	16/1	<u> </u>
1) Was	s the cl	hain(s)	of cus	stody re	dinauis	shed a	nd signe	42			Yes		No	,	,	
•				•	-		ia signic	u .					-		-	
2) Doe	es the c		gree w explain	rith the :	sample	es?					Yes		No		-	
3) Are	all the		es in g explain	ood co	nditior	า?					Yes	/	No		-	
4) Are	there a	any sai	mples '	"On Ho	ld"?				Yes		No	<u> </u>	Stored	where:		
5) Are	there a	any RU	SH or	SHORT	HOLD	ING TI	ME samp	oles?		Yes		No				
	Who w	vas noti	ified			Date			Time			-				
6) Loc	ation v	vhere s	sample	s are s	tored:		4~ 1	_a le	,	(Walk-		its only)		•	? Yes approve	
7) Nun	nber of	cans	Individ	ually C	ertified	or Ba	tch Certi	fied?		$\sim 1/7$	A					
,				•												
				Co	ntai	ner	s rec	eiv	ed a	it Co	on-T	est				
								*****		# of Co	ntainer	s	Tvo	es (Siz	e, Dura	tion)
	S	umma	Cans (TO-14/	ΓΟ-15/	APH)					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			00 (0	-,	
				ar Bag						3				·····	·	
				7 Tube						-						
			Reg	ulators	3								ļ			
			Res	trictors	j											
	Н	g/Hope	calite T	ube (N	IOSH 6	009)					SECULARIZATION CONTRACTOR	Wester Report Colors				
				0A/TO												
	P	CB Flo	risil Tu	bes (N	IOSH 5	5503)										
			Air c	assette	a											
			PM 2	.5/PM 1	0											
		TO-11	A Cart	ridges												
			C)ther												
Unuse	d Sum	mas/P	UF Med	dia:			raine he valorite v 16 et de vite e tre e troche e tre		Unuse	ed Regu	ulators	-				
2) We	re all r	eturn	ed sur		ans, R	estric	d into th tors & R heet?		ators a		JF's de	ocume	ented a	as retu	rned i	n the
Labora	atory C	omme	nts:													
			<u> </u>						*************************************	***************************************						

Page 2 of 2 Login Sample Receipt Checklist

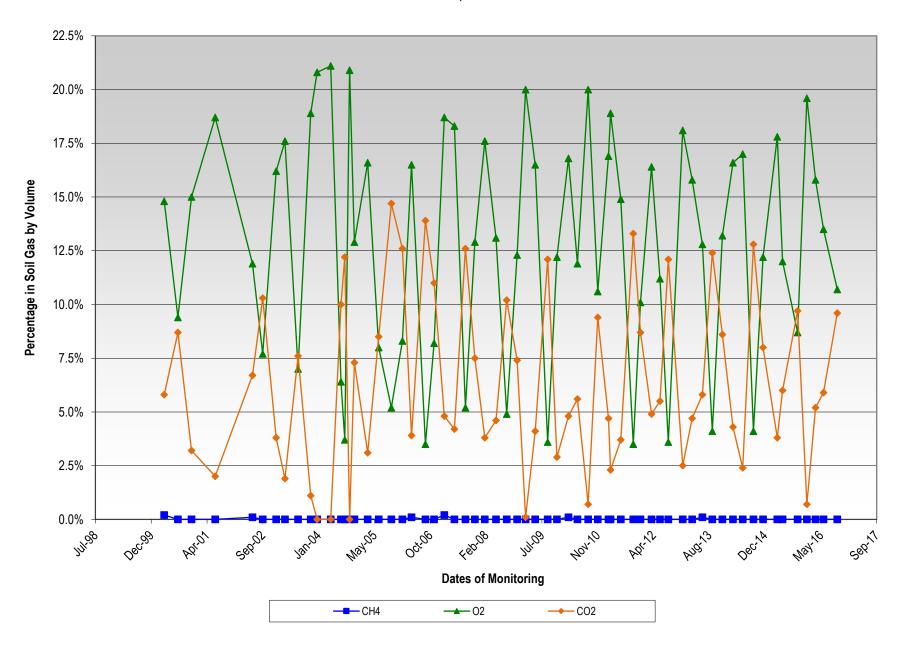

(Rejection Criteria Listing - Using Sample Acceptance Policy) Any False statement will be brought to the attention of Client

Question	Answer (True/Fals	se) <u>Comment</u>
	T/F/NA	
1) The coolers'/boxes' custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	-	
3) Samples were received on ice.	7	
4) Cooler Temperature is acceptable.	T	
5) Cooler Temperature is recorded.	T	
6) COC is filled out in ink and legible.	T	
7) COC is filled out with all pertinent information.	T	
8) Field Sampler's name present on COC.	T	
9) Samples are received within Holding Time.		
10) Sample containers have legible labels.	IT	***************************************
11) Containers/media are not broken or leaking and valves and caps are closed tightly.		
12) Sample collection date/times are provided.	7	
13) Appropriate sample/media containers are used.	T	
14) There is sufficient volume for all requsted analyses, including any requested MS/MSDs.	T_{i}	
15) Trip blanks provided if applicable.	MA	
	tified óf False state echnician Initials:	ments? Date/Time: $10/\epsilon/16$
		1430

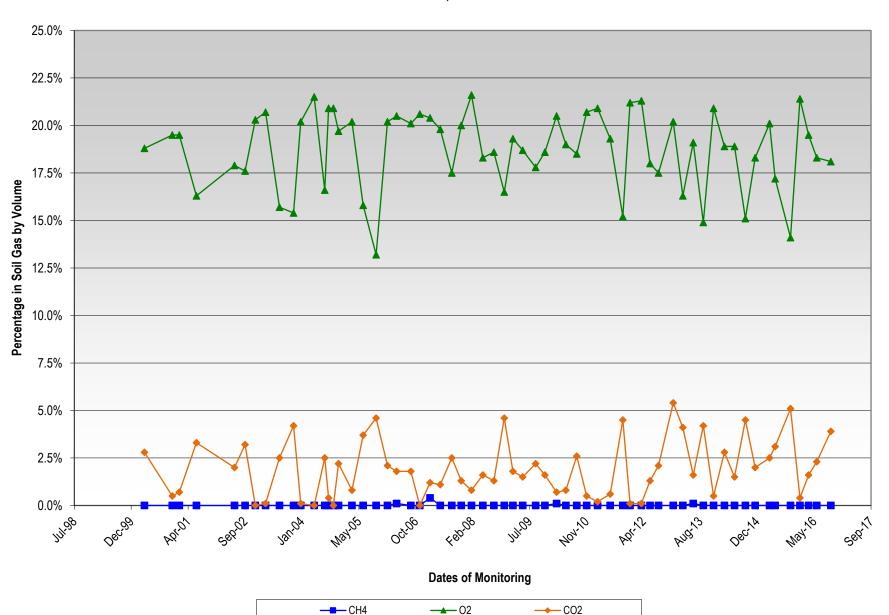
ATTACHMENT C

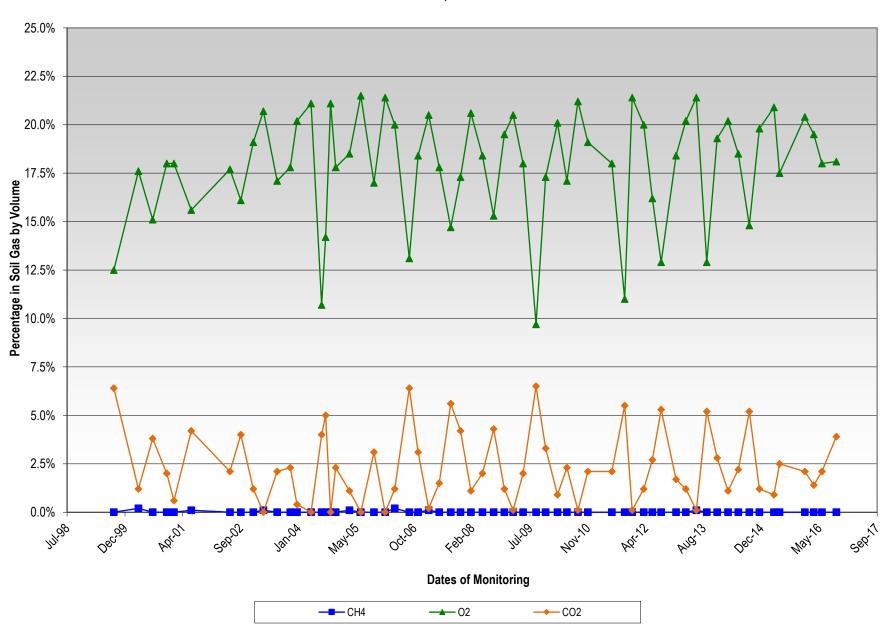

Soil Gas Trends

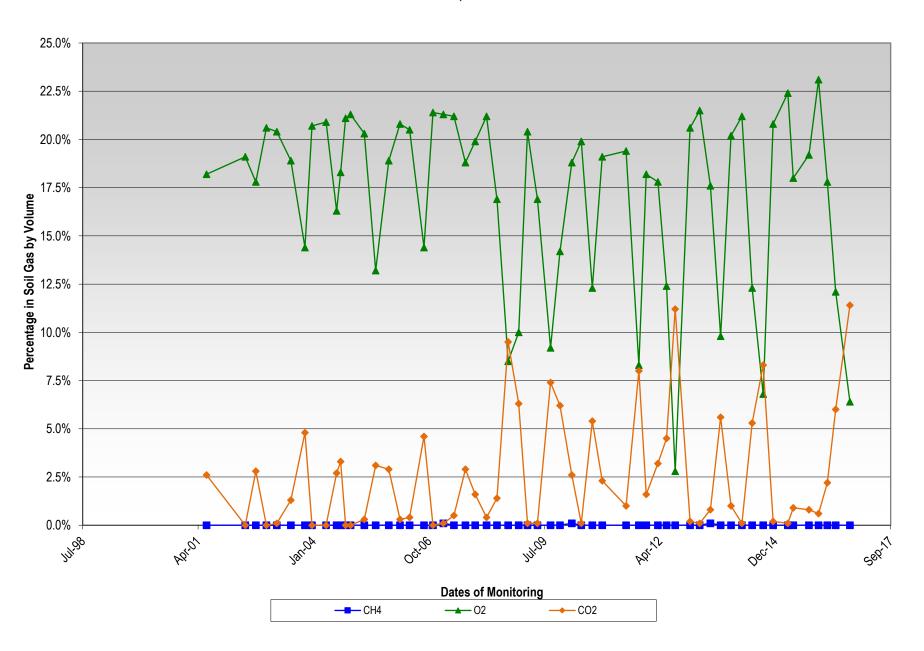
Soil Gas Well EPL1 Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time Springfield Street School Complex Providence, Rhode Island

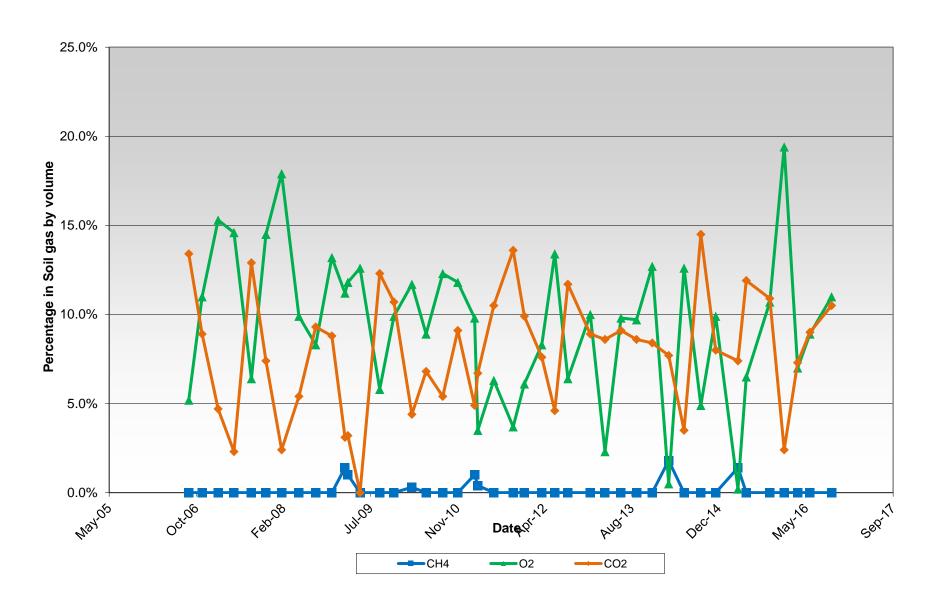


—— CH4 —— O2 —— CO2


Soil Gas Well EPL4
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island


Soil Gas Well MPL5
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island


Soil Gas Well MG2
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island


Soil Gas Well WB1
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island

Soil Gas Well WB15 Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time Springfield Street School Complex Providence, Rhode Island

Soil Gas MPL 7
Fluctuation in Methane, Oxygen, Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island

