

Mr. Jeffrey Crawford Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street Providence, RI 02908-5767

Subject:

March 2016 Quarterly Monitoring Report for Springfield Street School Complex

Dear Mr. Crawford:

ARCADIS US, Inc. (ARCADIS) conducted quarterly monitoring of soil gas, indoor air, the cap, and the sub-slab ventilation system March 16th and March 23rd 2016. The monitoring was performed in accordance with the *Long-Term Operation and Maintenance Plan and Site Contingency Plan* (O&M Plan) contained in the *Remedial Action Work Plan* prepared by ATC dated April 2, 1999, revised May 3, 1999 and May 9, 1999. The *Remedial Action Work Plan* (RAWP) was approved by the Rhode Island Department of Environmental Management (RIDEM) in a letter dated June 4, 1999.

This work is subject to the Limitations contained in Attachment A. Results of monitoring are provided in the following sections and in the attachments.

COVER MONITORING

ARCADIS conducted a visual survey of the site on March 23rd, 2016 for evidence of significant soil cover erosion, or for any areas of settling and depression.

The orange indicator barrier was not observed during the inspection, and there was no evidence of significant settling or cover erosion in need of repair.

SUB-SLAB VENTILATION SYSTEM

Field Monitoring

The sub-slab ventilation system was inspected by ARCADIS during the quarterly monitoring on March 23rd, 2016. The two elementary school blowers and one of the two middle school blowers were operating normally upon arrival. The second middle school blower, middle school back, was not operating.

Arcadis U.S., Inc.

300 Metro Center Boulevard

Suite 250

Warwick

Rhode Island 02886 Tel 401 738 3887 Fax 401 732 1686

www.arcadis.com

ENVIRONMENTAL

Date

April 25, 2016

Contact

Donna H. Pallister, PE

Phone

401.285.2235

Email:

Donna.pallister@arcadis.co

Our ref:

WK012152.0011

Samples of influent and effluent (before and after the carbon canisters) air were collected at each functioning blower and screened for methane, carbon dioxide, oxygen, carbon monoxide, hydrogen sulfide, and organic vapors using a Landtec GEM5000 Plus and a MiniRae 2000. Results of screening are provided in Table 1. Methane, carbon monoxide, hydrogen sulfide and organic vapors were not detected in any of the samples. Carbon dioxide was detected at concentrations of 0.1% to 0.2 %; all the sample concentrations were greater than the RAWP Action Level of 1000 ppm (0.1%).

Soil Gas Laboratory Results

Sub-slab soil gas samples were collected from the influent to each functioning sub-slab ventilation system. The samples were collected in Tedlar bags and submitted to Con-Test Analytical Laboratories for analysis of volatile organic compounds (VOCs) by EPA method TO-14. Results of the analysis are summarized in Table 2, and the laboratory report is provided in Attachment B.

The Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs) and CT DEEP Proposed Residential Volatilization Criteria for Soil Vapor are provided in Table 2 for comparison purposes. The OSHA PELs are not directly applicable to soil gas, because it does not represent exposure point concentrations. The PELs are the average concentrations that OSHA allows to be present in a workplace without any respiratory protection or exposure controls. The concentrations detected in soil gas were well below the OSHA PELs and the CT DEEP Proposed Residential Volatilization Criteria.

INDOOR AIR MONITORING

Indoor air monitoring was conducted on March 16th, 2016 using a Landtec GEM 5000 Plus meter (methane, hydrogen sulfide, oxygen), a Mini Rae photoionization detector (organic vapors), and a Fluke 975 Airmeter (carbon dioxide, carbon monoxide. Results of monitoring are provided in the Table 3. Carbon dioxide measurements were made with a Fluke 975 Airmeter indoor air quality meter. The Fluke 975 has a range of 0 to 5,000 ppm, with a resolution of 1 ppm.

The outside temperature on March 16th, 2016 was approximately 39°F and ambient carbon dioxide was measured at 420 ppm.

All readings were below the RAWP Action Levels. Methane, hydrogen sulfide and carbon monoxide were not detected. Organic vapors were detected in the elementary school library at a concentration of 0.1 ppm, in the elementary school front stairs at a concentration of 0.2 ppm, and in the elementary school cafeteria at a concentration of 0.9 ppm, which is below the RAWP Action Level. Carbon dioxide was detected at concentrations between 486 and 925 ppm. As noted below, these readings are within the expected range for indoor air levels of carbon dioxide in an occupied building.

Concentrations of carbon dioxide inside occupied buildings are expected to be higher than the concentrations in outdoor air because the building occupants expel carbon dioxide. Therefore, in indoor air, the concentration of carbon dioxide is typically used as an indicator of the effectiveness of the heating, ventilating, and air conditioning (HVAC) system in circulating outdoor air into the building. The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) have prepared ASHRAE Standard 62.1-2007 titled *Ventilation for Acceptable Indoor Air Quality*. The purpose of the

Standard is to specify minimum ventilation rates and other measures to provide indoor air quality that is acceptable to human occupants and that minimize adverse health effects. A discussion regarding carbon dioxide concentrations in indoor air contained in Informative Attachment C of the Standard states: "... maintaining a steady-state CO₂ concentration in a space of no greater than about 700 ppm above outdoor air levels will indicate that a substantial majority of visitors entering a space will be satisfied with respect to human bioeffluents (body odor)." This is the basis for ASHRAE's recommendations for concentrations of carbon dioxide in indoor air.

The Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) for carbon dioxide in the workplace is 5,000 ppm. All readings were below this concentration.

The control panels for the methane monitors at both schools were inspected on March 16th, 2016. The methane monitor control panels had stickers that indicated that the monitors were calibrated by Diamond Technical Services within the month prior to the inspection. Diamond Technical Services calibrates the sensors on a monthly basis.

Calibration Certificates from Diamond Calibration indicate that many of the sensors read above 0 when calibrated to the zero gas. This prevents the sensors from giving a fault alarm if the reading drops below zero due to a sudden temperature change, and still provides a conservative measure of protection because the alarm limit does not change.

GROUNDWATER MONITORING

The groundwater monitoring wells were sampled by ARCADIS on March 23rd, 2016. Prior to sampling, the depth to water was gauged, and a volume of water equivalent to approximately three well volumes was removed from the well. Groundwater samples were collected in laboratory prepared sample jars and delivered under chain-of-custody protocol to Contest Laboratory in East Longmeadow, Massachusetts for analysis for volatile organic compounds by EPA method 8260. During the sampling period, MW-8 was discovered dry and unable to be sampled. The laboratory report is provided as Attachment B. Results of analysis of groundwater samples are summarized in Table 4.

No target analytes were detected in any of the groundwater samples collected on March 23rd, 2016.

SOIL GAS MONITORING

Soil gas monitoring was conducted at 28 locations on March 2016. The sampling was conducted by placing an air sampling gripper cap on each well and attaching a piece of tubing. A volume of air equivalent to approximately 3 well volumes was removed from each well using a Sensidyne BDXII air sampling pump. Soil gas was then screened using a Landtec GEM 5000 Plus Landfill Gas Analyzer and a MiniRae Photoionization Detector (PID).

Soil Gas Field Monitoring Results

Soil gas samples were screened for methane, carbon monoxide, hydrogen sulfide, carbon dioxide, oxygen, and total VOCs. During the screening, well WB-2 could not be located and was not tested. Soil

gas survey results are provided in Table 5. Methane, Carbon monoxide, hydrogen sulfide, and total VOCs were not detected in any samples.

Carbon dioxide was detected in soil gas at concentrations ranging from 0.1% to 9.3% during the March 2016 monitoring event. The carbon dioxide RAWP action level of 0.1% was exceeded at every monitoring point. The maximum concentration detected during the March 2016 monitoring round was 9.3%, which was greater than the maximum detected during the January 2015 round of 4.5%. Graphs depicting carbon dioxide, oxygen, and methane concentrations over time for selected representative wells are presented in Attachment C.

Methane was detected in MPL-6 at a concentration of 0.8%, higher than the RAWP Action Level of 0.5%. MPL-6 is located near Hartford Avenue and has been impacted by natural gas from the street in the past.

The presence of carbon dioxide in soil gas is an indicator of subsurface biological activity and does not represent a threat to users of the property. The highest concentration of carbon dioxide was found in well MPL-6, located on the northern end of the property near Hartford Avenue. The monitoring locations on the northern end of the property adjacent to large expanses of paved parking lot, sidewalk, and streets have typically had the highest carbon dioxide concentrations.

CONCLUSIONS

Hydrogen sulfide, carbon monoxide, and organic vapor concentrations did not exceed RAWP action levels in any soil gas or indoor air samples in this quarterly round of sampling. Methane was detected above the RAWP action level at one soil gas monitoring location. Carbon dioxide concentrations exceeded the action level at 20 soil gas locations and sub slab system monitoring points. The detection of carbon dioxide in soil gas is typical of what has been detected during previous monitoring events and appears to be a result of naturally occurring biological activity in the subsurface.

If you have any questions or require any additional information, please contact the undersigned at 401-285-2235.

Sincerely,

Arcadis U.S., Inc.

Donna H. Pallister, PE, LSP

Senior Environmental Engineer

Sonna H Pallet

Copies:

A. Sepe, City of Providence Providence Public Building Authority

Enclosures:

Tables

- 1 System Monitoring Notes
- 2 Soil Gas Lab Results
- 3 Indoor Air Monitoring Results
- 4 Groundwater Monitoring Results
- 5 Soil Gas Survey results

Figures

1 Site Plan

Attachments

- A. Limitations and Service Constraints
- B. Complete Lab Results
- C. Soil Gas Trends

TABLES

Monitoring Location	Methane % by volume Landtec	Carbon Dioxide % by volume	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
Elementary School inlet 1	0	0.1	20.8	0	0	0
Elementary School inlet 2	0	0.1	20.1	0	0	0
Elementary School Outlet	0	0.2	20.7	0	0	0
Middle School front shed inlet	0	0.1	20.9	0	0	0
Middle School front shed after 2nd carbon	0	0.1	20.9	0	0	0
Middle School back shed inlet #	NT	NT	NT	NT	NT	NT
Middle School back shed after 2nd carbon #	NT	NT	NT	NT	NT	NT
Remedial Action Work Plan Action Levels	0.5	1,000 ppm (0.1%)	NA	9 ppm	10 ppm	5 ppm

Measurements made with: Landtec GEM5000 Plus, MiniRae 2000

Sampling date: 3/23/2016

Measured by: Kristen Audette & Jon Lewis

#- Middle school back shed not tested because blower not functioning properly

Parameter	Sample Date	CT DEEP Proposed Residental Volatization Criteria For Soil Vapor (ug/m3)*	OSHA PELs (ug/m3)	Middle School Back (ug/m3)	Middle School Front (ug/m3)	Elementa ry School #1 (ug/m3)	Elementa ry School # 2 (ug/m3)
	12/19/2014			NT	0.93	0.63	0.67
	5/11/2015			NT	0.43	0.49	0.61
Benzene	6/16/2015	3,247	3,000	NT	ND	ND	ND
20123.10	10/27/2015	0,2	0,000	NT	ND	ND	0.35
	1/6/2016]		NT	0.59	1	0.89
	3/23/2016			NT	ND	ND	ND
	12/19/2014			NT	ND	ND	ND
	5/11/2015			NT	ND	ND	ND
Carbon Tetrachloride	6/16/2015	6,395	62,900	NT	ND	ND	ND
Carbon retrachionde	10/27/2015	0,393	02,900	NT	ND	ND	ND
	1/6/2016			NT	0.64	0.57	0.6
	3/23/2016	1		NT	ND	ND	ND
	12/19/2014			NT	ND	1	1.1
	5/11/2015	†		NT	ND	0.85	1.1
·	6/16/2015	†		NT	ND	1.5	1.5
Chloroform	10/27/2015	22,334	240,000	NT	ND	1.3	1.6
	1/6/2016	1		NT	0.25	1.3	1.3
	3/23/2016	+		NT	ND	1.3	1.1
	12/19/2014			NT	0.77	ND	ND
Chloromethane	5/11/2015	†		NT	0.57	ND	ND
	6/16/2015	NA NA	207,000	NT	ND	ND	ND
	10/27/2015		201,000	NT	0.51	ND	ND
	1/6/2016			NT	0.35	2.3	2.1
	3/23/2016			NT	ND	ND	ND
	12/19/2014 5/11/2015	-	450,000	NT NT	ND ND	ND ND	ND ND
	6/16/2015	+		NT	ND	ND	ND
1,4-Dichlorobenzene	10/27/2015	5,805,840		NT	0.71	1	0.89
	1/6/2016]		NT	1.1	0.51	0.66
	3/23/2016			NT	ND	ND	ND
	12/19/2014			NT	3.6	4.9	5
	5/11/2015	-		NT NT	3	4.1	3
Dichlorodifluoromethane (Freon 12)	6/16/2015 10/27/2015	NA	4,950,000	NT	4.1 3.7	6.6 4.2	3.6 7
	1/6/2016	+		NT	4.1	4.1	4.3
	3/23/2016	1		NT	2.7	3.1	5.9
	12/19/2014			NT	ND	ND	ND
	5/11/2015			NT	ND	ND	ND
1,2-Dichloroethane	6/16/2015	4,000	202,372	NT	ND	ND	ND
,	10/27/2015	- '	,	NT	ND	ND	ND
	1/6/2016 3/23/2016	-		NT NT	ND ND	ND ND	ND 0.56
	12/19/2014			NT	ND	1	0.98
	5/11/2015	†		NT	0.82	2.1	1.1
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon	6/16/2015	NA NA	7 000 000	NT	2.5	8.2	1.2
114)	10/27/2015	INA	7,000,000	NT	3.9	2.5	5.6
	1/6/2016			NT	2.8	1.6	2.6
	3/23/2016			NT	0.98	ND	2.6
	12/19/2014			NT	ND 2.8	ND 2.5	ND 3.9
	5/11/2015 6/16/2015	+		NT NT	2.8 0.5	2.5 0.53	0.56
Ethylbenzene	10/27/2015	7,281,812	435,000	NT	ND	0.33	0.59
	1/6/2016	†		NT	0.29	0.72	0.48
	3/23/2016	†		NT	ND	ND	ND

Parameter	Sample Date	CT DEEP Proposed Residental Volatization Criteria For Soil Vapor (ug/m3)*	OSHA PELs (ug/m3)	Middle School Back (ug/m3)	Middle School Front (ug/m3)	Elementa ry School #1 (ug/m3)	
	12/19/2014	vapor (agrino)		NT	3.9	4.4	4.2
	5/11/2015]		NT	ND	ND	ND
Methylene Chloride	6/16/2015	4,237,289	86,750	NT	110	78	64
Wietrylone Chienae	10/27/2015	4,207,200	00,700	NT	21	30	8.4
	1/6/2016	-		NT	4.1	2.4	2
	3/23/2016			NT	ND	ND 0.7	ND
	12/19/2014 5/11/2015	-		NT NT	5 30	2.7	2.5 34
	6/16/2015	+		NT	1.7	1.5	1.7
Styrene	10/27/2015	34,633	456,000	NT	30	46	27
	1/6/2016	†		NT	34	31	31
	3/23/2016	1		NT	25	26	25
	12/19/2014			NT	1.8	2.8	3.3
	5/11/2015]		NT	15	11	3.7
Tetrachloroethylene	6/16/2015	75,840	678,000	NT	3.9	23	4.8
. diadinordaniyidha	10/27/2015	. 5,5 .5	0.0,000	NT	1.6	2.6	32
	1/6/2016	-		NT	6	2.8	19
	3/23/2016			NT	1.2	1.6	9.8
	12/19/2014	-		NT	54	20	22
	5/11/2015 6/16/2015	-		NT NT	46 5.7	41	53 6.2
Toluene	10/27/2015	2,910,779	750,000	NT	27	36	25
	1/6/2016	+		NT	31	27	28
	3/23/2016	+		NT	18	18	16
Triplercethylese	12/19/2014			NT	0.82	ND	1.2
	5/11/2015	†		NT	ND	1.5	ND
	6/16/2015	38,237	537,000	NT	ND	2.1	ND
Trichloroethylene	10/27/2015		557,000	NT	ND	ND	4.2
	1/6/2016			NT	0.53	0.82	4.1
	3/23/2016			NT	ND	ND	1.1
	12/19/2014			NT	5	3.1	4
	5/11/2015	-	5,600,000	NT	2.7	2.6	4.5
Trichlorofluoromethane (Freon 11)	6/16/2015	NA		NT	2.3	2.9	2.6
	10/27/2015 1/6/2016	-		NT NT	2.7	3.7 2.8	3.4
·	3/23/2016	+		NT	3.2	2.8	3
	12/19/2014			NT	ND	ND	ND
	5/11/2015	†		NT	ND	ND	ND
4.4.0. Triabless 4.0.0 triffmens athems (Feee 4.40)	6/16/2015	NA NA	7,600,000	NT	ND	ND	ND
1,1,2- Trichloro-1,2,2-trifluoroethane(Freon 113)	10/27/2015	I NA	7,000,000	NT	ND	ND	ND
	1/6/2016	1		NT	0.64	0.77	0.64
	3/23/2016			NT	ND	0.84	0.8
	12/19/2014	4		NT	ND 4.2	ND 4.7	ND 0.0
	5/11/2015			NT NT	1.3 1.6	1.7	2.3
1,2,4-Trimethylbenzene	6/16/2015 10/27/2015	NA	125,000	NT	1.6	1.5 0.76	1.5 1.9
	1/6/2016	†		NT	0.68	0.76	0.54
	3/23/2016	†		NT	ND	ND	ND
	12/19/2014			NT	0.96	0.89	ND
	5/11/2015	†		NT	18	17	25
M/p-Yylono	6/16/2015	2,215,755#	435,000	NT	2.4	2.4	2.6
M/p-Xylene	10/27/2015	2,213,735#	433,000	NT	1.3	2.7	2.4
	1/6/2016	1		NT	1.6	1.2	1.7
	3/23/2016			NT	ND	ND	ND
	12/19/2014			NT	ND	ND	ND
	5/11/2015	↓		NT	3.6	3.5	5.4
o-Xylene	6/16/2015	2,215,755#	435,000	NT	1.4	1.3	1.3
-	10/27/2015	2,213,730#	•	NT	0.57	1.1	0.89
	1/6/2016			NT	0.62	0.53	0.64 ND

Parameter Samp	le Date CT DEEP Proposed Residental Volatization Criteria For So Vapor (ug/m3)	(ug/m3) il	I School Back	Middle School Front (ug/m3)	ry School #1	Elementa ry School # 2 (ug/m3)
----------------	--	---------------	---------------	--------------------------------	-----------------	---

Notes:

Samples collected in Tedlar bags and analyzed via EPA method TO-14
Only detected compounds are listed, see laboratory certificate for complete list of analyses
OSHA PELs = Occupational Safety and Health Administration Permissable Exposure Limits
CT DEEP= Connecticut Dpeartment of Energy and Environmental Protection
ug/m3 = micrograms per cubic meter

Results prior to December 2014 are not shown.

^{*} From Appendix F to Sections 22a-133k-1 through 22a-133k-3 of the Regulations of Connecticut State Agencies #- Represents Total Xylenes

Monitoring Location	Methane % by volume Landtec	Carbon Dioxide PPM	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
E.S. Front office	0	659	22.8	0	0	0
E.S. Elevator	0	822	22.8	0	0	0
E.S. Faculty Work Room	0	837	22.8	0	0	0
E.S. Gym	0	692	22.4	0	0	0
E.S. Stairway B	0	731	22.6	0	0	0
E.S. Stairway C	0	774	21.8	0	0	0
E.S. Library	0	732	22	0	0	0.1
E.S. Front Stairs	0	925	21.8	0	0	0.2
E.S. Cafeteria	0	816	21.6	0	0	0.9
E.S. Mechanical Room	0	866	22.2	1	0	0
M.S. Front Office	0	547	23.7	0	0	0
M.S. Elevator	0	569	23.1	0	0	0
M.S. Stairway near Elem. School GS-01	0	650	22.7	0	0	0
M.S. Near sensor #16 in hall outside cafeteria	0	582	22	0	0	0
M.S. Faculty Work Room	0	557	23.5	0	0	0
M.S. Sensor #15 Outside Gym	0	607	22.1	0	0	0
M.S. GS-03 Across from Boys Bathroom	0	585	23	0	0	0
M.S. Gym	0	645	22	0	0	0
M.S. Outside of Music Room	0	625	22.2	0	0	0
M.S. Cafeteria	0	610	21.9	0	0	0
M.S. Front Hall near sensor #4	0	486	23.6	0	0	0
M.S. Hallway across from elevator near sensor #9	0	690	23.3	0	0	0
M.S. Near sensor GS 06 hallway right end	0	643	22.5	0	0	0
M.S. stairway near Hartford Ave. sensor GS-7	0	699	22.4	0	0	0
Remedial Action Work Plan Action Levels	0.5	1,000 ppm (0.1%)	NA	9 ppm	10 ppm	5 ppm

Notes: The indoor air quality monitoring panels in the M.S. and E.S. were calibrated on 3/16/2016.

E.S. indicates Elementary School, M.S. indicates Middle School

Measurements made with: MiniRae photoionization detector, Fluke 975 Airmeter, Landtec Gem 5000 Plus

PPM = Parts per million

Outdoor conditions: carbon dioxide = 420 ppm temperature = 39 degrees F

Sampling Dates and Results in μg/L Sampling Dates and Results in μg/L								
Well ID	Detected Compounds	12/18/2014	4/2/2015	6/15/2015	10/29/2015	1/6/2016	3/23/2016	
ATC-1								
	Chloromethane	ND	ND	4.1	ND	ND	ND	NA
ATC-2		Closed	Closed	Closed	Closed	Closed	Closed	
MW-6		ND	ND	ND	NS	NS	ND	
ATC-3		Closed	Closed	Closed	Closed	Closed	Closed	
MW-7		ND	ND	ND	ND	ND	ND	
ATC-4								
	Chlorobenzene	ND	ND	ND	1.2	ND	ND	70
	1,4-dichlorobenzene	1.2	ND	ND	1.8	1.4	1	NA
ATC-5		Closed	Closed	Closed	Closed	Closed	Closed	
MW-8		ND	ND	ND	NS	NS	NS	
Sampled By:		ARCADIS	ARCADIS	ARCADIS	ARCADIS	ARCADIS	ARCADIS	

ND = not detected above method detection limit

NS = not sampled

NA = No applicable standard published MTBE = Methyl tert-Butyl Ether µg/L = micrograms per liter

Samples collected prior to 12/18/14 and after 2009 are hidden.

Monitoring Location	Methane % by volume Landtec	Carbon Dioxide % by volume	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
WB-1	0	1.4	19.5	0	0	0
WB-2	NT	NT	NT	NT	NT	NT
WB-3	0	0.1	21.2	0	0	0
WB-4	0	0.2	20.9	0	0	0
WB-5	0	0.1	21	0	0	0
WB-6	0	0.2	20.9	0	0	0
WB-7	0	0.1	21.1	0	0	0
WB-8	0	0.1	20.7	0	0	0
	-					-
WB-12	0	1	20.1	0	0	0
WB-13	0	0.4	20.4	0	0	0
WB-14	0	0.1	20.6	0	0	0
WB-15	0	2.2	17.8	0	0	0
EPL-1	0	0.1	20.8	0	0	0
EPL-2	0	0.1	20.6	0	0	0
EPL-3	0	0.8	20.1	0	0	0
EPL-4	0	1.5	18.8	0	0	0
EPL-5	0	2.5	18	0	0	0
ENE-1	0	0.4	20.6	0	0	0
MG1	0	0.5	19.9	0	0	0.1
MG2	0	1.6	19.5	0	0	0
MG3	0	0.1	20.9	0	0	0
MG4	0	1	20.2	0	0	0
MG5	0	2.8	18.7	0	0	0.1
MPL2	0	0.7	20	0	0	0
MPL3	0	3.1	16.9	0	0	0
MPL5	0	5.2	15.8	0	0	0
MPL6	0.8	9.3	1.1	0	0	0
MPL7	0	7.3	7	0	0	0.1
MPL8	0	1.5	18.8	0	0	0
Remedial Action Work Plan Action Levels	0.5	1,000 ppm (0.1%)	NA	9 ppm	10 ppm	5 ppm

Sampled by: Jonathan Lewis Weather Conditions: 3/23/2016 - Drizzle in AM, mostly clear, ~50 F Sampling Equipment: Landtec GEM 5000 Plus, MiniRae 2000 PID

FIGURES

ATTACHMENT A

Limitations and Service Constraints

LIMITATIONS AND SERVICE CONSTRAINTS

GENERAL REPORTS/DOCUMENT

The opinions and recommendations presented in this report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by ARCADIS and the party for whom this report was originally prepared. This report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry. No representation, warranty, or guarantee, express or implied, is intended or given. To the extent that ARCADIS relied upon any information prepared by other parties not under contract to ARCADIS, ARCADIS makes no representation as to the accuracy or completeness of such information. This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared for a particular purpose. Only the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user's sole risk.

Results of any investigations or testing and any findings presented in this report apply solely to conditions existing at the time when ARCADIS' investigative work was performed. It must be recognized that any such investigative or testing activities are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the project site may vary from those at the locations where data were collected. ARCADIS's ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities. As such, 100% confidence in environmental investigation conclusions cannot reasonably be achieved.

ARCADIS, therefore, does not provide any guarantees, certifications, or warranties regarding any conclusions regarding environmental contamination of any such property. Furthermore, nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

ATTACHMENT B

Complete Lab Results

March 31, 2016

Donna Pallister Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250 Warwick, RI 02886

Project Location: Springfield St.

Client Job Number:

Project Number: WK012152.0007

Laboratory Work Order Number: 16C1114

Enclosed are results of analyses for samples received by the laboratory on March 24, 2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
Sample Preparation Information	11
QC Data	12
Air Toxics by EPA Compendium Methods	12
B145402	12
Flag/Qualifier Summary	14
Certifications	15
Chain of Custody/Sample Receipt	17

REPORT DATE: 3/31/2016

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250 Warwick, RI 02886

PURCHASE ORDER NUMBER: 5131

ATTN: Donna Pallister

PROJECT NUMBER: WK012152.0007

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 16C1114

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Springfield St.

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
ES #1	16C1114-01	Air		EPA TO-14A	
ES #2	16C1114-02	Air		EPA TO-14A	
MS Front	16C1114-03	Air		EPA TO-14A	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA TO-14A

Qualifications:

A-09

Holding times and stability of samples taken in tedlar bags have not been determined

Analyte & Samples(s) Qualified:

16C1114-01[ES #1], 16C1114-02[ES #2], 16C1114-03[MS Front]

L-05

Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the high side.

Analyte & Samples(s) Qualified:

1,1,2-Trichloro-1,2,2-trifluoroethar

16C1114-01[ES #1], 16C1114-02[ES #2], B145402-BS1

V-05

Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side. Analyte & Samples(s) Qualified:

1,2-Dichloropropane

16C1114-01[ES #1], 16C1114-02[ES #2], 16C1114-03[MS Front], B145402-BLK1, B145402-BS1

Continuing calibration did not meet method specifications and was biased on the high side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the high side.

Analyte & Samples(s) Qualified:

1,1,2-Trichloro-1,2,2-trifluoroethar

16C1114-01[ES #1], 16C1114-02[ES #2], B145402-BS1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Project Manager

Jua Watthington

ANALYTICAL RESULTS

Project Location: Springfield St. Date Received: 3/24/2016 Field Sample #: ES #1

Sample ID: 16C1114-01 Sample Matrix: Air Sampled: 3/23/2016 09:55 Sample Description/Location: Sub Description/Location:

Canister ID: Canister Size: Flow Controller ID: Sample Type:

Work Order: 16C1114 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type:

Flow Controller Calibration RPD Pre and Post-Sampling:

		1	EPA TO-14A					
Sample Flags: A-09	ppl	ov		ug/r	m3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
Benzene	ND	0.10		ND	0.32	2	3/26/16 1:23	TPH
Bromomethane	ND	0.10		ND	0.39	2	3/26/16 1:23	TPH
Carbon Tetrachloride	ND	0.10		ND	0.63	2	3/26/16 1:23	TPH
Chlorobenzene	ND	0.10		ND	0.46	2	3/26/16 1:23	TPH
Chloroethane	ND	0.10		ND	0.26	2	3/26/16 1:23	TPH
Chloroform	0.21	0.10		1.0	0.49	2	3/26/16 1:23	TPH
Chloromethane	ND	0.20		ND	0.41	2	3/26/16 1:23	TPH
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	3/26/16 1:23	TPH
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	3/26/16 1:23	TPH
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	3/26/16 1:23	TPH
1,4-Dichlorobenzene	ND	0.10		ND	0.60	2	3/26/16 1:23	TPH
Dichlorodifluoromethane (Freon 12)	0.64	0.10		3.1	0.49	2	3/26/16 1:23	TPH
1,1-Dichloroethane	ND	0.10		ND	0.40	2	3/26/16 1:23	TPH
1,2-Dichloroethane	ND	0.10		ND	0.40	2	3/26/16 1:23	TPH
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	3/26/16 1:23	TPH
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	3/26/16 1:23	TPH
1,2-Dichloropropane	ND	0.10	V-05	ND	0.46	2	3/26/16 1:23	TPH
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	3/26/16 1:23	TPH
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	3/26/16 1:23	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.10		ND	0.70	2	3/26/16 1:23	TPH
Ethylbenzene	ND	0.10		ND	0.43	2	3/26/16 1:23	TPH
Hexachlorobutadiene	ND	0.10		ND	1.1	2	3/26/16 1:23	TPH
Methylene Chloride	ND	1.0		ND	3.5	2	3/26/16 1:23	TPH
Styrene	6.1	0.10		26	0.43	2	3/26/16 1:23	TPH
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	3/26/16 1:23	TPH
Tetrachloroethylene	0.24	0.10		1.6	0.68	2	3/26/16 1:23	TPH
Toluene	4.9	0.10		18	0.38	2	3/26/16 1:23	TPH
1,2,4-Trichlorobenzene	ND	0.10		ND	0.74	2	3/26/16 1:23	TPH
1,1,1-Trichloroethane	ND	0.10		ND	0.55	2	3/26/16 1:23	TPH
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	3/26/16 1:23	TPH
Trichloroethylene	ND	0.10		ND	0.54	2	3/26/16 1:23	TPH
Trichlorofluoromethane (Freon 11)	0.50	0.10		2.8	0.56	2	3/26/16 1:23	ТРН
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.11	0.10	L-05, V-06	0.84	0.77	2	3/26/16 1:23	ТРН
1,2,4-Trimethylbenzene	ND	0.10		ND	0.49	2	3/26/16 1:23	ТРН
1,3,5-Trimethylbenzene	ND	0.10		ND	0.49	2	3/26/16 1:23	ТРН
Vinyl Chloride	ND	0.10		ND	0.26	2	3/26/16 1:23	TPH
m&p-Xylene	ND	0.20		ND	0.87	2	3/26/16 1:23	TPH
* =								

ANALYTICAL RESULTS

Project Location: Springfield St. Date Received: 3/24/2016 Field Sample #: ES #1 Sample ID: 16C1114-01 Sample Matrix: Air

Sampled: 3/23/2016 09:55

Sample Description/Location: Sub Description/Location: Canister ID: Canister Size: Flow Controller ID:

Sample Type:

Work Order: 16C1114 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type: Flow Controller Calibration RPD Pre and Post-Sampling:

EPA	1 O-14A	

Sample Flags: A-09	ppbv	ug/m3	Date/Time
Analyte	Results RL	Flag/Qual Results RL	Dilution Analyzed Analyst
o-Xylene	ND 0.10	ND 0.43	2 3/26/16 1:23 TPH
Surrogates	% Recovery	% REC Limits	
4-Bromofluorobenzene (1)	113	70-130	3/26/16 1:23

ANALYTICAL RESULTS

Project Location: Springfield St. Date Received: 3/24/2016 Field Sample #: ES #2 Sample ID: 16C1114-02

Sample 1D: 16C1114-02
Sample Matrix: Air
Sampled: 3/23/2016 10:00

Sample Flags: A-09

Sample Description/Location: Sub Description/Location:

Canister ID: Canister Size: Flow Controller ID: Sample Type: Work Order: 16C1114 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type:

Flow Controller Calibration
RPD Pre and Post-Sampling:

Sample Flags: A-09	ppl	bv		ug/m3			Date/Time		
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst	
Benzene	ND	0.10		ND	0.32	2	3/26/16 2:02	TPH	
Bromomethane	ND	0.10		ND	0.39	2	3/26/16 2:02	TPH	
Carbon Tetrachloride	ND	0.10		ND	0.63	2	3/26/16 2:02	TPH	
Chlorobenzene	ND	0.10		ND	0.46	2	3/26/16 2:02	TPH	
Chloroethane	ND	0.10		ND	0.26	2	3/26/16 2:02	TPH	
Chloroform	0.22	0.10		1.1	0.49	2	3/26/16 2:02	TPH	
Chloromethane	ND	0.20		ND	0.41	2	3/26/16 2:02	TPH	
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	3/26/16 2:02	TPH	
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	3/26/16 2:02	TPH	
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	3/26/16 2:02	TPH	
1,4-Dichlorobenzene	ND	0.10		ND	0.60	2	3/26/16 2:02	TPH	
Dichlorodifluoromethane (Freon 12)	1.2	0.10		5.9	0.49	2	3/26/16 2:02	TPH	
1,1-Dichloroethane	ND	0.10		ND	0.40	2	3/26/16 2:02	TPH	
1,2-Dichloroethane	0.14	0.10		0.56	0.40	2	3/26/16 2:02	TPH	
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	3/26/16 2:02	TPH	
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	3/26/16 2:02	TPH	
1,2-Dichloropropane	ND	0.10	V-05	ND	0.46	2	3/26/16 2:02	TPH	
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	3/26/16 2:02	TPH	
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	3/26/16 2:02	TPH	
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	0.37	0.10		2.6	0.70	2	3/26/16 2:02	TPH	
Ethylbenzene	ND	0.10		ND	0.43	2	3/26/16 2:02	TPH	
Hexachlorobutadiene	ND	0.10		ND	1.1	2	3/26/16 2:02	TPH	
Methylene Chloride	ND	1.0		ND	3.5	2	3/26/16 2:02	TPH	
Styrene	5.8	0.10		25	0.43	2	3/26/16 2:02	TPH	
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	3/26/16 2:02	TPH	
Tetrachloroethylene	1.4	0.10		9.8	0.68	2	3/26/16 2:02	TPH	
Toluene	4.4	0.10		16	0.38	2	3/26/16 2:02	TPH	
1,2,4-Trichlorobenzene	ND	0.10		ND	0.74	2	3/26/16 2:02	TPH	
1,1,1-Trichloroethane	ND	0.10		ND	0.55	2	3/26/16 2:02	TPH	
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	3/26/16 2:02	TPH	
Trichloroethylene	0.20	0.10		1.1	0.54	2	3/26/16 2:02	TPH	
Trichlorofluoromethane (Freon 11)	0.54	0.10		3.0	0.56	2	3/26/16 2:02	TPH	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.10	0.10	L-05, V-06	0.80	0.77	2	3/26/16 2:02	TPH	
1,2,4-Trimethylbenzene	ND	0.10		ND	0.49	2	3/26/16 2:02	TPH	
1,3,5-Trimethylbenzene	ND	0.10		ND	0.49	2	3/26/16 2:02	TPH	
Vinyl Chloride	ND	0.10		ND	0.26	2	3/26/16 2:02	TPH	
m&p-Xylene	ND	0.20		ND	0.87	2	3/26/16 2:02	TPH	

ANALYTICAL RESULTS

Project Location: Springfield St. Date Received: 3/24/2016 Field Sample #: ES #2 Sample ID: 16C1114-02 Sample Matrix: Air

Sampled: 3/23/2016 10:00

Sample Description/Location: Sub Description/Location: Canister ID: Canister Size: Flow Controller ID: Sample Type: Work Order: 16C1114 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type: Flow Controller Calibration RPD Pre and Post-Sampling:

EPA TO-14A

		Ern 10 1411								
Sample Flags: A-09	ppbv		ug/	m3		Date/Time				
Analyte	Results F	L Flag/Qual	Flag/Qual Results RL Dilution Analyzed							
o-Xylene	ND 0.	10	ND	0.43	2	3/26/16 2:02	ТРН			
Surrogates	% Recovery		% REC Limits							
4-Bromofluorobenzene (1)	11	118		-130		3/26/16 2:02				

ANALYTICAL RESULTS

Project Location: Springfield St. Date Received: 3/24/2016 Field Sample #: MS Front Sample ID: 16C1114-03 Sample Matrix: Air

Sampled: 3/23/2016 10:15

Sample Description/Location: Sub Description/Location: Canister ID: Canister Size: Flow Controller ID:

Sample Type:

Work Order: 16C1114 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type: Flow Controller Calibration RPD Pre and Post-Sampling:

EPA TO-14

Sample Flags: A-09	ppl	hx/		ug/ı	m3		Date/Time		
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst	
Benzene	ND	0.10	0 -	ND	0.32	2	3/26/16 2:41	ТРН	
Bromomethane	ND	0.10		ND	0.39	2	3/26/16 2:41	TPH	
Carbon Tetrachloride	ND	0.10		ND	0.63	2	3/26/16 2:41	TPH	
Chlorobenzene	ND	0.10		ND	0.46	2	3/26/16 2:41	TPH	
Chloroethane	ND	0.10		ND	0.26	2	3/26/16 2:41	TPH	
Chloroform	ND	0.10		ND	0.49	2	3/26/16 2:41	TPH	
Chloromethane	ND	0.20		ND	0.41	2	3/26/16 2:41	TPH	
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	3/26/16 2:41	TPH	
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	3/26/16 2:41	TPH	
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	3/26/16 2:41	TPH	
1,4-Dichlorobenzene	ND	0.10		ND	0.60	2	3/26/16 2:41	TPH	
Dichlorodifluoromethane (Freon 12)	0.56	0.10		2.7	0.49	2	3/26/16 2:41	TPH	
1,1-Dichloroethane	ND	0.10		ND	0.40	2	3/26/16 2:41	TPH	
1,2-Dichloroethane	ND	0.10		ND	0.40	2	3/26/16 2:41	TPH	
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	3/26/16 2:41	TPH	
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	3/26/16 2:41	TPH	
1,2-Dichloropropane	ND	0.10	V-05	ND	0.46	2	3/26/16 2:41	TPH	
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	3/26/16 2:41	TPH	
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	3/26/16 2:41	TPH	
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	0.14	0.10		0.98	0.70	2	3/26/16 2:41	TPH	
Ethylbenzene	ND	0.10		ND	0.43	2	3/26/16 2:41	TPH	
Hexachlorobutadiene	ND	0.10		ND	1.1	2	3/26/16 2:41	TPH	
Methylene Chloride	ND	1.0		ND	3.5	2	3/26/16 2:41	TPH	
Styrene	5.8	0.10		25	0.43	2	3/26/16 2:41	TPH	
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	3/26/16 2:41	TPH	
Tetrachloroethylene	0.18	0.10		1.2	0.68	2	3/26/16 2:41	TPH	
Toluene	4.7	0.10		18	0.38	2	3/26/16 2:41	TPH	
1,2,4-Trichlorobenzene	ND	0.10		ND	0.74	2	3/26/16 2:41	TPH	
1,1,1-Trichloroethane	ND	0.10		ND	0.55	2	3/26/16 2:41	TPH	
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	3/26/16 2:41	TPH	
Trichloroethylene	ND	0.10		ND	0.54	2	3/26/16 2:41	TPH	
Trichlorofluoromethane (Freon 11)	0.58	0.10		3.2	0.56	2	3/26/16 2:41	TPH	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.10		ND	0.77	2	3/26/16 2:41	TPH	
1,2,4-Trimethylbenzene	ND	0.10		ND	0.49	2	3/26/16 2:41	TPH	
1,3,5-Trimethylbenzene	ND	0.10		ND	0.49	2	3/26/16 2:41	TPH	
Vinyl Chloride	ND	0.10		ND	0.26	2	3/26/16 2:41	TPH	
m&p-Xylene	ND	0.20		ND	0.87	2	3/26/16 2:41	TPH	

ANALYTICAL RESULTS

Project Location: Springfield St. Date Received: 3/24/2016 Field Sample #: MS Front Sample ID: 16C1114-03 Sample Matrix: Air Sampled: 3/23/2016 10:15 Sample Description/Location: Sub Description/Location: Canister ID: Canister Size: Flow Controller ID:

Sample Type:

Work Order: 16C1114 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type: Flow Controller Calibration RPD Pre and Post-Sampling:

EPA	1 O-14A	

Sample Flags: A-09	ppbv	ug/m3	Date/Time			
Analyte	Results RL	Flag/Qual Results RL	Dilution Analyzed Analyst			
o-Xylene	ND 0.10	ND 0.43	2 3/26/16 2:41 TPH			
Surrogates	% Recovery	% REC Limits				
4-Bromofluorobenzene (1)	118	70-130	3/26/16 2:41			

Sample Extraction Data

Prep Method: TO-15 Prep-EPA TO-14A		Pressure	Pre	Pre-Dil Initial	Pre-Dil Final	Default Injection	Actual Injection	
Lab Number [Field ID]	Batch	Dilution	Dilution	mL	mL	mL	mL	Date
16C1114-01 [ES #1]	B145402	1	1	N/A	1000	400	200	03/25/16
16C1114-02 [ES #2]	B145402	1	1	N/A	1000	400	200	03/25/16
16C1114-03 [MS Front]	B145402	1	1	N/A	1000	400	200	03/25/16

o-Xylene

Surrogate: 4-Bromofluorobenzene (1)

ND

9.10

0.035

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

An Toxics by ETA Compendium Archous - Quanty Control										
Analyte	ppb Results	v RL	ug/m3 Results RL	Spike Level ppbv	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag/Qual
Batch B145402 - TO-15 Prep										
Blank (B145402-BLK1)				Prepared & A	Analyzed: 03	3/25/16				
Benzene	ND	0.035								
Bromomethane	ND	0.035								
Carbon Tetrachloride	ND	0.035								
Chlorobenzene	ND	0.035								
Chloroethane	ND	0.035								
Chloroform	ND	0.035								
Chloromethane	ND	0.070								
1,2-Dibromoethane (EDB)	ND	0.035								
1,2-Dichlorobenzene	ND	0.035								
1,3-Dichlorobenzene	ND	0.035								
1,4-Dichlorobenzene	ND	0.035								
Dichlorodifluoromethane (Freon 12)	ND	0.035								
1,1-Dichloroethane	ND	0.035								
1,2-Dichloroethane	ND	0.035								
1,1-Dichloroethylene	ND	0.035								
cis-1,2-Dichloroethylene	ND	0.035								
1,2-Dichloropropane	ND	0.035								V-05
cis-1,3-Dichloropropene	ND	0.035								
trans-1,3-Dichloropropene	ND	0.035								
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035								
Ethylbenzene	ND	0.035								
Hexachlorobutadiene	ND	0.035								
Methylene Chloride	ND	0.35								
Styrene	ND	0.035								
1,1,2,2-Tetrachloroethane	ND	0.035								
Tetrachloroethylene	ND	0.035								
Toluene	ND	0.035								
1,2,4-Trichlorobenzene	ND	0.035								
1,1,1-Trichloroethane	ND	0.035								
1,1,2-Trichloroethane	ND	0.035								
Trichloroethylene	ND	0.035								
Trichlorofluoromethane (Freon 11)	ND	0.035								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.035								
1,2,4-Trimethylbenzene	ND	0.035								
1,3,5-Trimethylbenzene	ND	0.035								
Vinyl Chloride	ND	0.035								
m&p-Xylene	ND	0.070								

114

8.00

70-130

Surrogate: 4-Bromofluorobenzene (1)

9.44

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

Austral	ppb		ug/n		Spike Level	Source	0/DEC	%REC	DDD	RPD	FI/O1
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag/Qual
Batch B145402 - TO-15 Prep											
LCS (B145402-BS1)					Prepared & A	Analyzed: 03/25	/16				
Benzene	4.07				5.00		81.3	70-130			
Bromomethane	5.72				5.00		114	70-130			
Carbon Tetrachloride	4.56				5.00		91.2	70-130			
Chlorobenzene	5.02				5.00		100	70-130			
Chloroethane	5.85				5.00		117	70-130			
Chloroform	6.05				5.00		121	70-130			
Chloromethane	5.19				5.00		104	70-130			
1,2-Dibromoethane (EDB)	4.94				5.00		98.8	70-130			
1,2-Dichlorobenzene	5.54				5.00		111	70-130			
1,3-Dichlorobenzene	5.60				5.00		112	70-130			
1,4-Dichlorobenzene	5.47				5.00		109	70-130			
Dichlorodifluoromethane (Freon 12)	6.21				5.00		124	70-130			
1,1-Dichloroethane	5.44				5.00		109	70-130			
1,2-Dichloroethane	5.12				5.00		102	70-130			
1,1-Dichloroethylene	5.23				5.00		105	70-130			
cis-1,2-Dichloroethylene	5.19				5.00		104	70-130			
1,2-Dichloropropane	3.90				5.00		78.1	70-130			V-05
cis-1,3-Dichloropropene	4.39				5.00		87.8	70-130			
trans-1,3-Dichloropropene	4.02				5.00		80.4	70-130			
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	5.21				5.00		104	70-130			
Ethylbenzene	4.95				5.00		99.1	70-130			
Hexachlorobutadiene	5.34				5.00		107	70-130			
Methylene Chloride	4.64				5.00		92.7	70-130			
Styrene	5.22				5.00		104	70-130			
1,1,2,2-Tetrachloroethane	4.74				5.00		94.7	70-130			
Tetrachloroethylene	5.46				5.00		109	70-130			
Toluene	5.02				5.00		100	70-130			
1,2,4-Trichlorobenzene	4.98				5.00		99.5	70-130			
1,1,1-Trichloroethane	4.16				5.00		83.3	70-130			
1,1,2-Trichloroethane	5.04				5.00		101	70-130			
Trichloroethylene	4.36				5.00		87.2	70-130			
Trichlorofluoromethane (Freon 11)	6.49				5.00		130	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	7.17				5.00		143 *	70-130			L-05, V-06
1,2,4-Trimethylbenzene	5.16				5.00		103	70-130			
1,3,5-Trimethylbenzene	5.06				5.00		101	70-130			
Vinyl Chloride	5.49				5.00		110	70-130			
m&p-Xylene	10.6				10.0		106	70-130			
o-Xylene	4.83				5.00		96.6	70-130			

8.00

118

70-130

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit
DL	Method Detection Limit
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
A-09	Holding times and stability of samples taken in tedlar bags have not been determined
L-05	Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the high side.
V-05	Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side.
V-06	Continuing calibration did not meet method specifications and was biased on the high side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the high side.

CERTIFICATIONS

Certified Analyses included in this Report

EPATO-HAIN AIP BROZZORE AHIA-FL, NY Cutron Tetrachloride AHIA-FL, NY Chlorocherzore AHIA-FL, NY Chlorocherzore AHIA-FL, NY Chlorocherzore AHIA-FL, NY Chlorocherane AHIA-FL, NY Chlorocherane (DBI) NY 1,2-Dichlorocherzore AHIA-FL, NY 1,3-Dichlorocherzore AHIA-FL, NY 1,4-Dichlorocherzore AHIA-FL, NY Dichlorochilane (Fron 12) AHIA-FL, NY 1,1-Dichlorocherzore AHIA-FL, NY 1,1-Dichlorochylene AHIA-FL, NY 1,1-Dichlorochylene AHIA-FL, NY 1,1-Dichlorochylene AHIA-FL, NY cis-1,2-Dichlorochylene AHIA-FL, NY ris-1,2-Dichlorochylene AHIA-FL, NY ris-1,2-Dichlorochylene AHIA-FL, NY ris-1,2-Dichlorochylene AHIA-FL, NY ris-1,2-Dichlor	Analyte	Certifications
Dirmomethane	EPA TO-14A in Air	
Carbon Termediouride AHA, FL, NY Chloroedhane AHA, FL, NY Chloroedhane AHA, FL, NY Chloromedhane AHA, FL, NY 1,2-Dichlorobenece AHA, FL, NY 1,3-Dichlorobenece AHA, FL, NY 1,4-Dichlorobenece AHA, FL, NY 1,4-Dichlorobenece AHA, FL, NY 1,4-Dichlorochane AHA, FL, NY 1,1-Dichlorochane AHA, FL, NY 1,2-Dichlorochane AHA, FL, NY 1,2-Dichlorochylene AHA, FL, NY 1,2-Dichlorochylene AHA, FL, NY 1,2-Dichloropropene AHA, FL, NY 1,2-Dichloropropene AHA, FL, NY 1,2-Dichloropropene AHA, FL, NY 1,2-Dichloropropene AHA, FL, NY 1,2-Dichlorobundalene AHA, FL, NY Heachlorobundalene AHA, FL, NY Mahylene Chloride AHA, FL, NY Syrne AHA, FL, NY Toluene AHA, FL, NY Toluene AHA, FL, NY Tichloroechane AHA, FL, NY Tichloroechane AHA, FL, NY <td>Benzene</td> <td>AIHA,FL,NY</td>	Benzene	AIHA,FL,NY
Chlorocheme AHA,FL,NY Chlorocheme AHA,FL,NY Chloromethane AHA,FL,NY Chloromethane (EDB) NY 1,2-Dichlorochemene AHA,FL,NY 1,3-Dichlorochemene AHA,FL,NY 1,4-Dichlorochemene AHA,FL,NY 1,4-Dichlorochemene AHA,FL,NY 1,4-Dichlorochemene AHA,FL,NY 1,2-Dichlorochemene AHA,FL,NY 1,2-Dichlorochemene AHA,FL,NY 1,2-Dichlorochylore AHA,FL,NY 1,2-Dichlorochylore AHA,FL,NY 1,2-Dichloropopone AHA,FL,NY 1,2-Dichloropopone AHA,FL,NY 1,2-Dichloropopone AHA,FL,NY Ebylbenzame AHA,FL,NY Hesachorobutadine AHA,FL,NY Mathylanc Chloride AHA,FL,NY Syrene AHA,FL,NY Tetrachlorochylene AHA,FL,NY Tetrachlorochylene AHA,FL,NY Tetrachlorochylene AHA,FL,NY 1,1,2-Trichlorochane AHA,FL,NY Tichloroflorochane AHA,FL,NY Tichlor	Bromomethane	AIHA,FL,NY
Chloroethane AlHA,FL,NY Chloromethane AlHA,FL,NY 1.2-Dichorochene (EDB) NY 1.2-Dichorochenzere AlHA,FL,NY 1.3-Dichlorochenzene AlHA,FL,NY 1.4-Dichlorochenzene AlHA,FL,NY Dichlorocififuoromethane (Freen 12) AlHA,FL,NY 1.1-Dichlorocethane AlHA,FL,NY 1.2-Dichlorocethylene AlHA,FL,NY cis-1.2-Dichlorocethylene AlHA,FL,NY cis-1.3-Dichloropropase AlHA,FL,NY cis-1.3-Dichloropropase AlHA,FL,NY trans-1.3-Dichloropropase AlHA,FL,NY Edwalhorobutadice AlHA,FL,NY Methylene Chloride AlHA,FL,NY Methylene Chloride AlHA,FL,NY Treachforochylene AlHA,FL,NY Tetrachforochane AlHA,FL,NY Tetrachforochane AlHA,FL,NY Toluene AlHA,FL,NY 1,1,2-Trichlorochane AlHA,FL,NY 1,1,2-Trichlorochane AlHA,FL,NY 1,1,2-Trichlorochane (Frem 11) AlHA,FL,NY 1,1,2-Trichlorochane (Frem 11) AlHA,FL,NY <t< td=""><td>Carbon Tetrachloride</td><td>AIHA,FL,NY</td></t<>	Carbon Tetrachloride	AIHA,FL,NY
Chloroform AlHA,FL,NY Chloromethane AlHA,FL,NY 1,2-Dichlorobenzene AlHA,FL,NY 1,3-Dichlorobenzene AlHA,FL,NY 1,4-Dichlorobenzene AlHA,FL,NY 1,4-Dichlorosthane (Fron 12) AlHA,FL,NY 1,1-Dichlorosthane AlHA,FL,NY 1,2-Dichlorosthane AlHA,FL,NY 1,1-Dichlorosthylene AlHA,FL,NY 1,2-Dichlorosthylene AlHA,FL,NY 1,2-Dichlorosthylene AlHA,FL,NY 1,2-Dichlorosthylene AlHA,FL,NY 1,2-Dichlorosthylene AlHA,FL,NY 1,2-Dichlorosthylene AlHA,FL,NY Edyblenzene AlHA,FL,NY Edyblenzene AlHA,FL,NY Hexachlorobutadicne AlHA,FL,NY Methylene Chloride AlHA,FL,NY Syrene AlHA,FL,NY 1,1,2-Tetrachlorochane AlHA,FL,NY 1,1,2-Trichlorochane AlHA,FL,NY 1,1,1-Trichlorochane AlHA,FL,NY 1,1,2-Trichlorochane AlHA,FL,NY 1,1,2-Trichlorochane AlHA,FL,NY 1,1,2-Trichlorochylene	Chlorobenzene	AIHA,FL,NY
Chloromethane AIII.A.FL.NY 1,2-Dichlorobenzene AIHA.FL.NY 1,3-Dichlorobenzene AIHA.FL.NY 1,4-Dichlorobenzene AIHA.FL.NY 1,4-Dichlorodenzene AIHA.FL.NY 1,1-Dichlorodenzene AIHA.FL.NY 1,1-Dichlorodenzene AIHA.FL.NY 1,1-Dichlorodenzene AIHA.FL.NY 1,2-Dichlorodenzene AIHA.FL.NY 1,1-Dichlorodenzene AIHA.FL.NY 1,2-Dichlorodenzene AIHA.FL.NY 1,2-Dichlorodenzene AIHA.FL.NY 1,2-Dichloropropone AIHA.FL.NY 1,2-Fictanchorochane AIHA.FL.NY 1,2-Fictanchorochane AIHA.FL.NY 1,1,2-Fictanchorochane AIHA.FL.NY 1,1,2-Fictanchorochane AIHA.FL.NY 1,1,1-Tichlorochane AIHA.FL.NY 1,1,1-Tichlorochane AIHA.FL.NY 1,1,2-Tichlorochane AIHA.FL.NY 1,1,2	Chloroethane	AIHA,FL,NY
1,2-Dichlorobenzene AHA,FL,NY 1,3-Dichlorobenzene AHA,FL,NY 1,4-Dichlorobenzene AHIA,FL,NY 1,1-Dichlorodifluoromethane (Froon 12) AHA,FL,NY 1,1-Dichlorochane AHA,FL,NY 1,2-Dichlorochylene AHA,FL,NY 1,2-Dichlorochylene AHA,FL,NY 1,2-Dichlorochylene AHA,FL,NY 1,2-Dichloropropene AHA,FL,NY 1,2-Dichloropropene AHA,FL,NY 1,2-Dichloropropene NY 1,2-Dichloropropene AHA,FL,NY 1,2-Dichloropropene NY 1,2-Dichloropropene AHA,FL,NY 1,1-Lorope Chinde AHA,FL,NY 1,1-Lorope Chinde AHA,FL,NY 1,1-2-Trichloropename AHA,FL,NY 1,1,1-Trichloropename AHA,FL,NY 1,1,2-Trichloropename	Chloroform	AIHA,FL,NY
1,2-Dichlorobenzene	Chloromethane	AIHA,FL,NY
1,4-Dichlorobenzene	1,2-Dibromoethane (EDB)	NY
AlhA,FL,NY Dichlorodifluoromethane (Froon 12) AlhA,FL,NY 1,1-Dichloroethane AlhA,FL,NY 1,2-Dichloroethylene AlhA,FL,NY 1,2-Dichloroethylene AlhA,FL,NY 1,2-Dichloropropane AlhA,FL,NY 1,2-Dichloro-1,1,2-2-tetrafluoroethane (Froon 114) AlhA,FL,NY 1,1-Dichlorobrane AlhA,FL,NY 1,1-Z-Tetrachloroethane AlhA,FL,NY 1,1-Z-Tetrachloroethylene AlhA,FL,NY 1,1-Z-Tetrachloroethane Alh	1,2-Dichlorobenzene	AIHA,FL,NY
Dichlorodifluoromethane (Freon 12) AIHA,FL,NY 1,1-Dichloroethane AIHA,FL,NY 1,1-Dichloroethylene AIHA,FL,NY cis-1,2-Dichloroethylene AIHA,FL,NY cis-1,3-Dichloropropane AIHA,FL,NY trans-1,3-Dichloropropene NY 1,2-Dichloro-1,1,2-Leterafluoroethane (Freon 114) AIHA,FL,NY Hexachlorobutadiene AIHA,FL,NY Methylene Chloride AIHA,FL,NY Styrene AIHA,FL,NY Tetrachloroethylene AIHA,FL,NY Toluene AIHA,FL,NY 1,1,2-Trichloroethylene AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,2-Trimethylbenzene AIHA,FL,NY 1,3-5-Trimethylbenzene AIHA,FL,NY 1,3-5-Trimethylbenzene AIHA,FL,NY Nynl Chloride AIHA	1,3-Dichlorobenzene	AIHA,FL,NY
1,1-Dichloroethane AHA,FL,NY 1,2-Dichloroethylene AHA,FL,NY cis-1,2-Dichloroethylene AHA,FL,NY 1,2-Dichloropropane AHA,FL,NY cis-1,3-Dichloropropene AHA,FL,NY trans-1,3-Dichloropropene NY 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) AHA,FL,NY Ethylbenzene AHA,FL,NY Hexachlorobutadiene AHA,FL,NY Methylene Chloride AHA,FL,NY Syrene AHA,FL,NY 1,1,2,2-Tetrachloroethane AHA,FL,NY Totuene AHA,FL,NY 1,2,4-Trichloroethane AHA,FL,NY 1,1,1-Trichloroethane AHA,FL,NY 1,1,2-Trichloroethane AHA,FL,NY Trichloroethylene AHA,FL,NY Trichloroethane (Fron 11) AHA,FL,NY Trichloroethone (Fron 11) AHA,FL,NY Trichloroethylene AHA,FL,NY Trichloroethane (Fron 11) AHA,FL,NY Trichloroethylene AHA,FL,NY Trichloroethylene AHA,FL,NY Trichloroethylene AHA,FL,NY Trich	1,4-Dichlorobenzene	AIHA,FL,NY
1,2-Dichloroethylene	Dichlorodifluoromethane (Freon 12)	AIHA,FL,NY
1,1-Dichloroethylene	1,1-Dichloroethane	AIHA,FL,NY
cis-1,2-Dichloroptopane AlHA,FL,NY cis-1,3-Dichloropropene AlHA,FL,NY trans-1,3-Dichloropropene NY 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) AlHA,FL,NY Ethylbenzene AlHA,FL,NY Hexachlorobutadiene AlHA,FL,NY Methylene Chloride AlHA,FL,NY Styrene AlHA,FL,NY 1,1,2-2-Tetrachloroethane AlHA,FL,NY Toluene AlHA,FL,NY 1,2,4-Trichloroethane AlHA,FL,NY 1,1,1-Trichloroethane AlHA,FL,NY 1,1,2-Trichloroethane AlHA,FL,NY 1,1,2-Trichloroethylene AlHA,FL,NY Trichlorofluoromethane (Freon 11) AlHA,FL,NY 1,1,2-Trichloroethane AlHA,FL,NY 1,1,2-Trichloroethylene AlHA,FL,NY 1,1,2-Trichloroethylene AlHA,FL,NY 1,1,2-Trichloroethylene AlHA,FL,NY 1,1,2-Trichloroethylene AlHA,FL,NY 1,1,2-Trichloroethylene AlHA,FL,NY 1,1,2-Trichloroethylene AlHA,FL,NY 1,2,4-Trimethylbenzene AlHA,FL,NY 1,2,4-Trimethylbenzene	1,2-Dichloroethane	AIHA,FL,NY
1,2-Dichloropropene AlHA,FL,NY cis-1,3-Dichloropropene AlHA,FL,NY trans-1,3-Dichloropropene NY 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Fron 114) AlHA,FL,NY Ethylbenzene AlHA,FL,NY Hexachlorobutadiene AlHA,FL,NY Methylene Chloride AlHA,FL,NY Styrene AlHA,FL,NY 1,1,2,2-Tetrachloroethane AlHA,FL,NY Totuene AlHA,FL,NY 1,2,4-Trichloroethylene AlHA,FL,NY 1,1,1-Trichloroethane AlHA,FL,NY 1,1,2-Trichloroethane AlHA,FL,NY Trichloroethylene AlHA,FL,NY Trichloroethouromethane (Freon 11) AlHA,FL,NY Trichlorofluoromethane (Freon 11) AlHA,FL,NY 1,2-Triinethylbenzene AlHA,FL,NY Vinyl Chloride AlHA,FL,NY Vinyl Chloride AlHA,FL,NY	1,1-Dichloroethylene	AIHA,FL,NY
cis-1,3-Dichloropropene trans-1,3-Dichloropropene NY 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) Ethylbenzene AIHA,FL,NY Hexachlorobutadiene AIHA,FL,NY Methylene Chloride Styrene AIHA,FL,NY 1,1,2,2-Tetrachloroethane AIHA,FL,NY Tetrachloroethylene AIHA,FL,NY Toluene AIHA,FL,NY 1,2,4-Trichlorobenzene AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY 1,1,2-Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofthylene AIHA,FL,NY Trichlorofthylene AIHA,FL,NY Trichlorofthylene AIHA,FL,NY Trichloroethane (Freon 11) AIHA,FL,NY 1,2,4-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY Vinyl Chloride AIHA,FL,NY M&P-Xylene AIHA,FL,NY	cis-1,2-Dichloroethylene	AIHA,FL,NY
trans-1,3-Dichloropropene NY 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) AIHA,FL,NY Ethylbenzene AIHA,FL,NY Hexachlorobutadiene AIHA,FL,NY Methylene Chloride AIHA,FL,NY Styrene AIHA,FL,NY 1,1,2,2-Tetrachloroethane AIHA,FL,NY Toluene AIHA,FL,NY 1,2,4-Trichlorobenzene AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	1,2-Dichloropropane	AIHA,FL,NY
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) Ethylbenzene AIHA,FL,NY Hexachlorobutadiene AIHA,FL,NY Methylene Chloride AIHA,FL,NY Styrene AIHA,FL,NY 1,1,2,2-Tetrachloroethane AIHA,FL,NY Toluene AIHA,FL,NY Toluene AIHA,FL,NY 1,2,4-Trichloroethylene AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY Trichlorofluoromethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY Vinyl Chloride AIHA,FL,NY M&P-Xylene AIHA,FL,NY MIHA,FL,NY	cis-1,3-Dichloropropene	AIHA,FL,NY
Ethylbenzene AIHA,FL,NY Hexachlorobutadiene AIHA,FL,NY Methylene Chloride AIHA,FL,NY Styrene AIHA,FL,NY 1,1,2,2-Tetrachloroethane AIHA,FL,NY Tetrachloroethylene AIHA,FL,NY Toluene AIHA,FL,NY 1,2,4-Trichlorobenzene AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY Vinyl Chloride AIHA,FL,NY	trans-1,3-Dichloropropene	NY
Hexachlorobutadiene AIHA,FL,NY Methylene Chloride AIHA,FL,NY Styrene AIHA,FL,NY 1,1,2,2-Tetrachloroethane AIHA,FL,NY Tetrachloroethylene AIHA,FL,NY Toluene AIHA,FL,NY 1,2,4-Trichloroetnane AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorothylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY Warp-Xylene AIHA,FL,NY	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	AIHA,FL,NY
Methylene Chloride AIHA,FL,NY Styrene AIHA,FL,NY 1,1,2,2-Tetrachloroethane AIHA,FL,NY Toluene AIHA,FL,NY 1,2,4-Trichloroebnzene AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY AIHA,FL,NY NY Vinyl Chloride AIHA,FL,NY M&p-Xylene AIHA,FL,NY MAHA,FL,NY MAHA,FL,NY MAHA,FL,NY MAHA,FL,NY	Ethylbenzene	AIHA,FL,NY
Styrene AIHA,FL,NY 1,1,2,2-Tetrachloroethane AIHA,FL,NY Tetrachloroethylene AIHA,FL,NY Toluene AIHA,FL,NY 1,2,4-Trichlorobenzene AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	Hexachlorobutadiene	AIHA,FL,NY
1,1,2,2-TetrachloroethaneAIHA,FL,NYTetrachloroethyleneAIHA,FL,NYTolueneAIHA,FL,NY1,2,4-TrichlorobenzeneAIHA,FL,NY1,1,1-TrichloroethaneAIHA,FL,NY1,1,2-TrichloroethaneAIHA,FL,NYTrichloroethyleneAIHA,FL,NYTrichlorofluoromethane (Freon 11)AIHA,FL,NY1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)NY1,2,4-TrimethylbenzeneAIHA,FL,NY1,3,5-TrimethylbenzeneAIHA,FL,NYVinyl ChlorideAIHA,FL,NYm&p-XyleneAIHA,FL,NY	Methylene Chloride	AIHA,FL,NY
Tetrachloroethylene AIHA,FL,NY Toluene AIHA,FL,NY 1,2,4-Trichlorobenzene AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	Styrene	AIHA,FL,NY
Toluene AIHA,FL,NY 1,2,4-Trichlorobenzene AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	1,1,2,2-Tetrachloroethane	AIHA,FL,NY
1,2,4-Trichlorobenzene AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	Tetrachloroethylene	AIHA,FL,NY
1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	Toluene	AIHA,FL,NY
1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	1,2,4-Trichlorobenzene	AIHA,FL,NY
Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	1,1,1-Trichloroethane	AIHA,FL,NY
Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride m&p-Xylene AIHA,FL,NY	1,1,2-Trichloroethane	AIHA,FL,NY
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	Trichloroethylene	AIHA,FL,NY
1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	Trichlorofluoromethane (Freon 11)	AIHA,FL,NY
1,3,5-TrimethylbenzeneAIHA,FL,NYVinyl ChlorideAIHA,FL,NYm&p-XyleneAIHA,FL,NY	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NY
Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	1,2,4-Trimethylbenzene	AIHA,FL,NY
m&p-Xylene AIHA,FL,NY	1,3,5-Trimethylbenzene	AIHA,FL,NY
	Vinyl Chloride	AIHA,FL,NY
o-Xylene AIHA,FL,NY	m&p-Xylene	AIHA,FL,NY
	o-Xylene	AIHA,FL,NY

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires		
AIHA	AIHA-LAP, LLC	100033	02/1/2018		
MA	Massachusetts DEP	M-MA100	06/30/2016		
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2017		
NY	New York State Department of Health	10899 NELAP	04/1/2016		
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2017		
RI	Rhode Island Department of Health	LAO00112	12/30/2016		
NC	North Carolina Div. of Water Quality	652	12/31/2016		
NJ	New Jersey DEP	MA007 NELAP	06/30/2016		
FL	Florida Department of Health	E871027 NELAP	06/30/2016		
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2016		
WA	State of Washington Department of Ecology	C2065	02/23/2016		
ME	State of Maine	2011028	06/9/2017		
VA	Commonwealth of Virginia	460217	12/14/2016		
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2016		

CHAIN OF CUSTODY RECORD

39 Spruce Street

East long meadow, MA 01028

Page 2 of 2

***Container Code Dissolved Metals O Fleid Filtered # of Containers C Lab to Filter ***Cont. Code: ** Preservation A=amber glass S¤summa can T=tedlar bag ST=sterile P=plastic O=Other Gag lass V= vial ANALYSIS REQUESTED 1700 Ú Sanc Code DONNAFALLISTEKAZA 1elephone: 40/-188-884 "Enhanced Data Package" WK01215-0010 Rev 04.05.12 *Matrix Code DATA DELIVERY (check all that apply EXCEL SEXCEL Composite Grab OWEBSITE S OOTHER S PDF SAMAIL Ending Date/Time Client PQ# Project# O FAX ormat #≭ Xö Email Collection Email: info@contestlabs.com Beginning Oate/Time 3-25-16 www.contestlabs.com COMMENTE (CS | © Phone: 413-525-2332 Client Sample ID / Description SPEING-PIELD STATE Attention: DOMNA DAWISTER MATHOR CECUI 300 METRO CENTRA Project Proposal Provided? (for billing purposes) ANALYTICAL LABORATORY WARWICK RI 02086 proposal date サシリ ARCADI Con-Test Lab ID Company Name: Project Location: \Box Sampled By: Address: ું દ

Table of Contents DW= drinking water GW= groundwater WW = was tewater *Matrix Code: S = soil/solid St. = studge O = other 自然に O MA State DW Form Required PWSID# Please use the following codes to let Con-Test know if a specific sample is your project MCP or RCP? H - High; M - Medium; L - Low; C - Clean; U - Unknown may be high in concentration in Matrix/Conc. Code Box: ○ MCP Form Required C RCP Form Required **Detection Limit Requirements** Mas sachusetts: Connecticut: Other 37 10-Day Turnaround RUSH Date/Time: Date/Time Date/Tipre 二 ろ こ Relinquished by: (signature) (Signa quistre Comments Page

8 = Sodium bisulfate

S = Sulfuric Acid

N = Nitric Acid

M = Methanol

paol =

T

2

3.7.5-16

3

3-12-16

45 FKONT

で、井

20 8

**Preservation

T = Na thiosulfate

O = Other

X = Na hydroxide

WBE/DBE Certified URNORATION TIME STARTS AT 9,00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT. Other: * Require lab approval (1)

D 72-Hr D 4-Day

Date/Time:

Signature

0 124-Hr 0 148-Hr

NELAC & AIHA-LAP, LLC

Accredited

Page 1 of 2

39 Spruce St. East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405

www.contestlabs.com AIR Only Receipt Checklist									F: 413-525-6405				
CLIENT NAME	Arcadis			EIVED BY: VP				DATE:	3	/24/2016			
1) Was the chain(s) of c	ustody relinquish	ned and signed	?			Yes	Х	No					
2) Does the chain agree If not, expla	-	s?				Yes	X	No					
3) Are all the samples in If not, expla	•	?				Yes	X	_ No					
4) Are there any sample	s "On Hold"?		Ye	s		No	х	Stored	where:				
5) Are there any RUSH of	or SHORT HOLDII	NG TIME samp	les?		Yes		No	Х					
Who was notified _		-		е			_						
Air Permission to subcontract samples? Y (Walk-in clients only) if not already app Client Signature:									approved				
7) Number of cans Indiv	idually Certified	or Batch Certif	ied?										
	·												
	Contair	ners rece	eived	a	t Co	n-1	Test						
				#	# of Co	ntaine	rs	Type	es (Sizo	e, Duration)			
Summa Cans	s (TO-14/TO-15/A	PH)		-				. , , ,	00 (0.1	<u>, = a. a.a.o,</u>			
	dlar Bags				(3							
TO	-17 Tubes												
R	egulators												
	estrictors										_		
	Tube (NIOSH 60	100)											
<u> </u>)-10A/TO-13) PUF												
,	Tubes (NIOSH 55												
	r cassette	,											
PM	2.5/PM 10												
TO-11A Ca	artridges												
	Other												
Unused Summas/PUF M	ledia:		Unu	ıse	d Regu	ulators	S:						

- 1) Was all media (used & unused) checked into the WASP?
- 2) Were all returned summa cans, Restrictors & Regulators and PUF's documented as returned in the Air Lab Inbound/Outbound Excel Spreadsheet?

Labora	atory C	omme	nts:							

Page 2 of 2 <u>Login Sample Receipt Checklist</u>

(Rejection Criteria Listing - Using Sample Acceptance Policy) Any False statement will be brought to the attention of Client

Question	Answer (True/Fals	Se) Comment
	T/F/NA	
1) The coolers'/boxes' custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	Т	
3) Samples were received on ice.	Т	
4) Cooler Temperature is acceptable.	Т	
5) Cooler Temperature is recorded.	Т	
6) COC is filled out in ink and legible.	Т	
7) COC is filled out with all pertinent information.	Т	
8) Field Sampler's name present on COC.	Т	
9) Samples are received within Holding Time.	Т	
10) Sample containers have legible labels.	Т	
11) Containers/media are not broken or leaking and valves and caps are closed tightly.	Т	
12) Sample collection date/times are provided.	Т	
13) Appropriate sample/media containers are used.	Т	
14) There is sufficient volume for all requsted analyses, including any requested MS/MSDs.	Т	
15) Trip blanks provided if applicable.	NA	

Who notified of False statements?

Date/Time:

Doc #278 Rev. 5 October 2014

Log-In Technician Initials: VP #####

March 30, 2016

Donna Pallister Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250 Warwick, RI 02886

Project Location: Springfield St.

Client Job Number:

Project Number: WK012152.0007

Laboratory Work Order Number: 16C1113

Enclosed are results of analyses for samples received by the laboratory on March 24, 2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
16C1113-01	5
16C1113-02	7
16C1113-03	9
16C1113-04	11
16C1113-05	13
Sample Preparation Information	15
QC Data	16
Volatile Organic Compounds by GC/MS	16
B145123	16
Flag/Qualifier Summary	21
Certifications	22
Chain of Custody/Sample Receipt	24

Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250

PURCHASE ORDER NUMBER: 5131

REPORT DATE: 3/30/2016

Warwick, RI 02886 ATTN: Donna Pallister

PROJECT NUMBER: WK012152.0007

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 16C1113

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Springfield St.

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
ATC-1	16C1113-01	Ground Water		SW-846 8260C	
MW-7	16C1113-02	Ground Water		SW-846 8260C	
ATC-4	16C1113-03	Ground Water		SW-846 8260C	
E Blank	16C1113-04	Equipment Blank Water		SW-846 8260C	
MW-6	16C1113-05	Ground Water		SW-846 8260C	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8260C

Qualifications:

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

Bromochloromethane

B145123-BSD1

Methyl Acetate

B145123-BS1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound.

Analyte & Samples(s) Qualified:

tert-Butyl Alcohol (TBA)

16C1113-01[ATC-1], 16C1113-02[MW-7], 16C1113-03[ATC-4], 16C1113-04[E Blank], 16C1113-05[MW-6], B145123-BLK1, B145123-BS1, B145123-BSD1

Vinyl Chloride

16C1113-01[ATC-1], 16C1113-02[MW-7], 16C1113-03[ATC-4], 16C1113-04[E Blank], 16C1113-05[MW-6], B145123-BLK1, B145123-BS1, B145123-BSD1

V-05

Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side. Analyte & Samples(s) Qualified:

tert-Butyl Alcohol (TBA)

16C1113-01[ATC-1], 16C1113-02[MW-7], 16C1113-03[ATC-4], 16C1113-04[E Blank], 16C1113-05[MW-6], B145123-BLK1, B145123-BS1, B145123-BSD1

V-20

Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

Methyl Acetate

B145123-BS1, B145123-BSD1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Project Manager

Jua Watshington

Project Location: Springfield St. Sample Description: Work Order: 16C1113

Date Received: 3/24/2016
Field Sample #: ATC-1

Sampled: 3/23/2016 08:50

Sample ID: 16C1113-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	inpounds by G	ic/Mis		Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L	1	-	SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1	R-05, V-05	SW-846 8260C	3/25/16	3/26/16 4:11	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Carbon Disulfide	ND	4.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,4-Dichlorobenzene	ND	1.0		1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C			EEH
1,1-Dichloroethane	ND ND	1.0	μg/L μg/L	1		SW-846 8260C SW-846 8260C	3/25/16 3/25/16	3/26/16 4:11	
1,2-Dichloroethane	ND	1.0		1		SW-846 8260C		3/26/16 4:11 3/26/16 4:11	EEH EEH
1,1-Dichloroethylene		1.0	μg/L				3/25/16		
cis-1,2-Dichloroethylene	ND		μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
•	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH

Page 5 of 26

Project Location: Springfield St. Sample Description: Work Order: 16C1113

Date Received: 3/24/2016 Field Sample #: ATC-1

Sampled: 3/23/2016 08:50

Sample ID: 16C1113-01 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,4-Dioxane	ND	50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Hexachlorobutadiene	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Methyl Acetate	ND	5.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Naphthalene	ND	2.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
n-Propylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Styrene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Tetrachloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,2,3-Trichlorobenzene	ND	5.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,2,4-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,3,5-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Trichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,2,3-Trichloropropane	ND	2.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Vinyl Chloride	ND	2.0	$\mu g/L$	1	R-05	SW-846 8260C	3/25/16	3/26/16 4:11	EEH
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:11	EEH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		110	70-130					3/26/16 4:11	
Toluene do		102	70.130					3/26/16 4:11	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	110	70-130		3/26/16 4:11
Toluene-d8	102	70-130		3/26/16 4:11
4-Bromofluorobenzene	93.6	70-130		3/26/16 4:11

Project Location: Springfield St. Sample Description: Work Order: 16C1113

Date Received: 3/24/2016

Field Sample #: MW-7

Sampled: 3/23/2016 11:40

Sample ID: 16C1113-02
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1	R-05, V-05	SW-846 8260C	3/25/16	3/26/16 4:38	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Carbon Disulfide	ND	4.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
y- 	1112	2.0	μ5/12	1		511 010 02000	J, 23/10	Dog 7	

Page 7 of 26

Project Location: Springfield St. Sample Description: Work Order: 16C1113

Date Received: 3/24/2016 Field Sample #: MW-7

Sampled: 3/23/2016 11:40

Sample ID: 16C1113-02 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,4-Dioxane	ND	50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Hexachlorobutadiene	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Methyl Acetate	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Naphthalene	ND	2.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
n-Propylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Styrene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Tetrachloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,2,3-Trichlorobenzene	ND	5.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,2,4-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,3,5-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Trichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,2,3-Trichloropropane	ND	2.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Vinyl Chloride	ND	2.0	$\mu g/L$	1	R-05	SW-846 8260C	3/25/16	3/26/16 4:38	EEH
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 4:38	EEH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		112	70-130					3/26/16 4:38	
Toluene do		101	70.130					3/26/16 4:38	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	112	70-130		3/26/16 4:38
Toluene-d8	101	70-130		3/26/16 4:38
4-Bromofluorobenzene	92.8	70-130		3/26/16 4:38

Project Location: Springfield St. Sample Description: Work Order: 16C1113

Date Received: 3/24/2016
Field Sample #: ATC-4

Sampled: 3/23/2016 10:10

Sample ID: 16C1113-03
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	mpounds by G	C/MS		D-4-	D-4-/T:	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1	<u> </u>	SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1	R-05, V-05	SW-846 8260C	3/25/16	3/26/16 5:05	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Carbon Disulfide	ND	4.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μ g /L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,4-Dichlorobenzene	1.0	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,1-Dichloroethane	ND	1.0	μ g /L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
3	112	2.5	μg·L			5 5.0 02000	5,25,10	Page 0 (

Page 9 of 26

Project Location: Springfield St. Work Order: 16C1113 Sample Description:

Date Received: 3/24/2016 Field Sample #: ATC-4

Sampled: 3/23/2016 10:10

Sample ID: 16C1113-03 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,4-Dioxane	ND	50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Hexachlorobutadiene	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Methyl Acetate	ND	5.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Methyl Cyclohexane	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Naphthalene	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,2,3-Trichlorobenzene	ND	5.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,2,4-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,3,5-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Trichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,2,3-Trichloropropane	ND	2.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Vinyl Chloride	ND	2.0	$\mu g/L$	1	R-05	SW-846 8260C	3/25/16	3/26/16 5:05	EEH
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:05	EEH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		112	70-130					3/26/16 5:05	
Toluene do		100	70.130					3/26/16 5:05	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	112	70-130		3/26/16 5:05
Toluene-d8	100	70-130		3/26/16 5:05
4-Bromofluorobenzene	93.9	70-130		3/26/16 5:05

Project Location: Springfield St. Sample Description: Work Order: 16C1113

Date Received: 3/24/2016
Field Sample #: E Blank

Sampled: 3/23/2016 10:14

Sample ID: 16C1113-04

Sample Matrix: Equipment Blank Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Benzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1	R-05, V-05	SW-846 8260C	3/25/16	3/26/16 3:44	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Carbon Disulfide	ND	4.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
•			rb -	•		2 2.0 02000		Dog 11	

Page 11 of 26

Project Location: Springfield St. Sample Description: Work Order: 16C1113

Date Received: 3/24/2016

Field Sample #: E Blank

Sampled: 3/23/2016 10:14

Sample ID: 16C1113-04

Sample Matrix: Equipment Blank Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1	<u> </u>	SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,4-Dioxane	ND	50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Hexachlorobutadiene	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Methyl Acetate	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Naphthalene	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,2,3-Trichlorobenzene	ND	5.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,2,4-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,3,5-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Trichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,2,3-Trichloropropane	ND	2.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
(Freon 113) 1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Vinyl Chloride	ND	2.0	μg/L	1	R-05	SW-846 8260C	3/25/16	3/26/16 3:44	EEH
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
o-Xylene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 3:44	EEH
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				

Project Location: Springfield St. Sample Description: Work Order: 16C1113

Date Received: 3/24/2016
Field Sample #: MW-6

Sampled: 3/23/2016 12:37

Sample ID: 16C1113-05
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	mpounds by G	GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1	1 mg/ Qum	SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1	R-05, V-05	SW-846 8260C	3/25/16	3/26/16 5:32	EEH
n-Butylbenzene	ND	1.0	μg/L	1	r	SW-846 8260C	3/25/16	3/26/16 5:32	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Carbon Disulfide	ND	4.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Dibromomethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,2-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,1-Dichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,2-Dichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,1-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
cis-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
trans-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Diethyl Ether	ND	2.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH

Page 13 of 26

Project Location: Springfield St. Sample Description: Work Order: 16C1113

Date Received: 3/24/2016 Field Sample #: MW-6

Sampled: 3/23/2016 12:37

Sample ID: 16C1113-05 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,4-Dioxane	ND	50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Hexachlorobutadiene	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Methyl Acetate	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Naphthalene	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,3,5-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Vinyl Chloride	ND	2.0	$\mu g/L$	1	R-05	SW-846 8260C	3/25/16	3/26/16 5:32	EEH
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	3/25/16	3/26/16 5:32	EEH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		110	70-130					3/26/16 5:32	
Toluene do		102	70.130					3/26/16 5:32	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	110	70-130		3/26/16 5:32
Toluene-d8	102	70-130		3/26/16 5:32
4-Bromofluorobenzene	94.7	70-130		3/26/16 5:32

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
16C1113-01 [ATC-1]	B145123	5	5.00	03/25/16
16C1113-02 [MW-7]	B145123	5	5.00	03/25/16
16C1113-03 [ATC-4]	B145123	5	5.00	03/25/16
16C1113-04 [E Blank]	B145123	5	5.00	03/25/16
16C1113-05 [MW-6]	B145123	5	5.00	03/25/16

RPD

%REC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B145123 - SW-846 5030B										
Blank (B145123-BLK1)				Prepared: 03	3/25/16 Analy	yzed: 03/26/	6			
Acetone	ND	50	$\mu g/L$							
Acrylonitrile	ND	5.0	μg/L							
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L							
Benzene	ND	1.0	μg/L							
Bromobenzene	ND	1.0	μg/L							
Bromochloromethane	ND	1.0	μg/L							
Bromodichloromethane	ND	0.50	μg/L							
Bromoform	ND	1.0	μg/L							
Bromomethane	ND	2.0	$\mu g/L$							
2-Butanone (MEK)	ND	20	$\mu g/L$							
tert-Butyl Alcohol (TBA)	ND	20	μg/L							R-05, V-05
n-Butylbenzene	ND	1.0	μg/L							
sec-Butylbenzene	ND	1.0	μg/L							
tert-Butylbenzene	ND	1.0	μg/L							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L							
Carbon Disulfide	ND	2.0	$\mu g/L$							
Carbon Tetrachloride	ND	1.0	$\mu g/L$							
Chlorobenzene	ND	1.0	μg/L							
Chlorodibromomethane	ND	0.50	μg/L							
Chloroethane	ND	2.0	μg/L							
Chloroform	ND	2.0	μg/L							
Chloromethane	ND	2.0	μg/L							
2-Chlorotoluene	ND	1.0	μg/L							
4-Chlorotoluene	ND	1.0	μg/L							
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L							
1,2-Dibromoethane (EDB)	ND	0.50	μg/L							
Dibromomethane	ND	1.0	μg/L							
1,2-Dichlorobenzene	ND	1.0	μg/L							
1,3-Dichlorobenzene	ND ND	1.0	μg/L							
1,4-Dichlorobenzene	ND ND	1.0	μg/L							
trans-1,4-Dichloro-2-butene		2.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L μg/L							
1,1-Dichloroethane	ND	1.0	μg/L μg/L							
1,2-Dichloroethane	ND	1.0	μg/L μg/L							
1,1-Dichloroethylene	ND	1.0								
cis-1,2-Dichloroethylene	ND		μg/L							
trans-1,2-Dichloroethylene	ND	1.0 1.0	μg/L μg/L							
1,2-Dichloropropane	ND	1.0	μg/L μg/L							
1,3-Dichloropropane	ND	0.50	μg/L μg/L							
2,2-Dichloropropane	ND	1.0								
2,2-Dichloropropane 1,1-Dichloropropene	ND	2.0	μg/L μg/I							
cis-1,3-Dichloropropene	ND		μg/L μg/I							
• •	ND	0.50	μg/L							
trans-1,3-Dichloropropene	ND	0.50	μg/L							
Diethyl Ether	ND	2.0	μg/L							
Diisopropyl Ether (DIPE)	ND	0.50	μg/L							
1,4-Dioxane	ND	50	μg/L							
Ethylbenzene	ND	1.0	μg/L							
Hexachlorobutadiene	ND	0.50	μg/L							
2-Hexanone (MBK)	ND	10	μg/L							
Isopropylbenzene (Cumene)	ND	1.0	$\mu g \! / \! L$							
p-Isopropyltoluene (p-Cymene)	ND	1.0	$\mu g/L$							
Methyl Acetate	ND	1.0	$\mu g/L$							

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch B145123 - SW-846 5030B										
lank (B145123-BLK1)				Prepared: 03	3/25/16 Analy	zed: 03/26/1	6			
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L							
1ethyl Cyclohexane	ND	1.0	μg/L							
1ethylene Chloride	ND	5.0	μg/L							
-Methyl-2-pentanone (MIBK)	ND	10	μg/L							
aphthalene	ND	2.0	μg/L							
-Propylbenzene	ND	1.0	μg/L							
tyrene	ND	1.0	μg/L							
1,1,2-Tetrachloroethane	ND	1.0	μg/L							
1,2,2-Tetrachloroethane	ND	0.50	μg/L							
etrachloroethylene	ND	1.0	μg/L							
etrahydrofuran	ND	10	μg/L							
oluene	ND	1.0	$\mu g/L$							
,2,3-Trichlorobenzene	ND	2.0	μg/L							
,2,4-Trichlorobenzene	ND	1.0	μg/L							
3,5-Trichlorobenzene	ND	1.0	μg/L							
,1,1-Trichloroethane	ND	1.0	μg/L							
1,2-Trichloroethane	ND	1.0	μg/L							
richloroethylene	ND	1.0	μg/L							
richlorofluoromethane (Freon 11)	ND	2.0	μg/L							
2,3-Trichloropropane	ND	2.0	μg/L							
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	1.0	μg/L							
13) ,2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND ND	1.0	μg/L μg/L							
Tinyl Chloride	ND ND	2.0	μg/L							R-05
n+p Xylene	ND ND	2.0	μg/L							10-03
-Xylene	ND ND	1.0	μg/L μg/L							
urrogate: 1,2-Dichloroethane-d4	27.6		μg/L	25.0		110	70-130			
urrogate: Toluene-d8	25.2		μg/L μg/L	25.0		101	70-130			
urrogate: 4-Bromofluorobenzene	23.7		μg/L μg/L	25.0		95.0	70-130			
CS (B145123-BS1)			1.0		3/25/16 Analy					
cetone	104	50	μg/L	100	,,23,10 11hdi	104	70-160			
crylonitrile	9.74	5.0	μg/L	10.0		97.4	70-130			
ert-Amyl Methyl Ether (TAME)	8.83	0.50	μg/L				70-130			
				10.0		88.3				
enzene				10.0 10.0		88.3 115				
	11.5	1.0	μg/L	10.0		115	70-130			
romobenzene	11.5 10.1	1.0 1.0	μg/L μg/L	10.0 10.0		115 101	70-130 70-130			
romobenzene romochloromethane	11.5 10.1 12.7	1.0 1.0 1.0	μg/L μg/L μg/L	10.0 10.0 10.0		115 101 127	70-130 70-130 70-130			
romobenzene romochloromethane romodichloromethane	11.5 10.1 12.7 9.99	1.0 1.0 1.0 0.50	μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0		115 101 127 99.9	70-130 70-130 70-130 70-130			
romobenzene romochloromethane romodichloromethane romoform	11.5 10.1 12.7 9.99 9.60	1.0 1.0 1.0 0.50 1.0	μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0		115 101 127 99.9 96.0	70-130 70-130 70-130 70-130 70-130			
romobenzene romochloromethane romodichloromethane romoform romomethane	11.5 10.1 12.7 9.99 9.60 4.12	1.0 1.0 1.0 0.50 1.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0		115 101 127 99.9 96.0 41.2	70-130 70-130 70-130 70-130 70-130 40-160			
romobenzene romochloromethane romodichloromethane romoform romomethane	11.5 10.1 12.7 9.99 9.60 4.12 124	1.0 1.0 1.0 0.50 1.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0		115 101 127 99.9 96.0 41.2 124	70-130 70-130 70-130 70-130 70-130 40-160 40-160			R-05 V-05
romobenzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) rt-Butyl Alcohol (TBA)	11.5 10.1 12.7 9.99 9.60 4.12 124 83.5	1.0 1.0 1.0 0.50 1.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0		115 101 127 99.9 96.0 41.2 124 83.5	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160			R-05, V-05
romobenzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) ert-Butyl Alcohol (TBA) -Butylbenzene	11.5 10.1 12.7 9.99 9.60 4.12 124 83.5 10.8	1.0 1.0 1.0 0.50 1.0 2.0 20	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 100 100		115 101 127 99.9 96.0 41.2 124 83.5 108	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130			R-05, V-05
romobenzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) ert-Butyl Alcohol (TBA) -Butylbenzene ex-Butylbenzene	11.5 10.1 12.7 9.99 9.60 4.12 124 83.5 10.8 9.86	1.0 1.0 0.50 1.0 2.0 20 20 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 100 100 10		115 101 127 99.9 96.0 41.2 124 83.5 108 98.6	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130			R-05, V-05
romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene rc-Butylbenzene rt-Butylbenzene	11.5 10.1 12.7 9.99 9.60 4.12 124 83.5 10.8 9.86 10.2	1.0 1.0 0.50 1.0 2.0 20 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 100 10.0 10.0 10.0		115 101 127 99.9 96.0 41.2 124 83.5 108 98.6 102	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130			R-05, V-05
romobenzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) rt-Butyl Alcohol (TBA) -Butylbenzene ec-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE)	11.5 10.1 12.7 9.99 9.60 4.12 124 83.5 10.8 9.86 10.2	1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 100 10.0 10.0 10.0		115 101 127 99.9 96.0 41.2 124 83.5 108 98.6 102	70-130 70-130 70-130 70-130 70-130 40-160 40-160 70-130 70-130 70-130			R-05, V-05
romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butyl Ether (TBEE) arbon Disulfide	11.5 10.1 12.7 9.99 9.60 4.12 124 83.5 10.8 9.86 10.2 10.2 9.37	1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0 1.0 0.50	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 100 10.0 10.0 10.0 10.0		115 101 127 99.9 96.0 41.2 124 83.5 108 98.6 102 102 93.7	70-130 70-130 70-130 70-130 70-130 40-160 40-160 70-130 70-130 70-130 70-130			R-05, V-05
romobenzene romochloromethane romodichloromethane romoform romomethane .Butanone (MEK) rt-Butyl Alcohol (TBA) .Butylbenzene rc-Butylbenzene rt-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride	11.5 10.1 12.7 9.99 9.60 4.12 124 83.5 10.8 9.86 10.2 10.2 9.37 10.8	1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 0.50 2.1 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		115 101 127 99.9 96.0 41.2 124 83.5 108 98.6 102 102 93.7	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130			R-05, V-05
irenzene iromobenzene iromochloromethane iromodichloromethane iromoform iromomethane iromomethan	11.5 10.1 12.7 9.99 9.60 4.12 124 83.5 10.8 9.86 10.2 10.2 9.37 10.8 9.61	1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 0.50 2.0 1.0 1.0 1.0 0.50 2.0 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		115 101 127 99.9 96.0 41.2 124 83.5 108 98.6 102 102 93.7 108 96.1	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130			R-05, V-05
romobenzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) ert-Butyl Alcohol (TBA) -Butylbenzene ec-Butylbenzene ert-Butylbenzene ert-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorobenzene	11.5 10.1 12.7 9.99 9.60 4.12 124 83.5 10.8 9.86 10.2 10.2 9.37 10.8	1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 0.50 2.1 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		115 101 127 99.9 96.0 41.2 124 83.5 108 98.6 102 102 93.7	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130			R-05, V-05

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %	REC	%REC Limits	RPD	RPD Limit	Notes
Batch B145123 - SW-846 5030B										
LCS (B145123-BS1)				Prepared: 03	3/25/16 Analyzed:	03/26/16	5			
Chloromethane	6.28	2.0	μg/L	10.0	62	2.8	40-160			
2-Chlorotoluene	8.97	1.0	$\mu g/L$	10.0	89	9.7	70-130			
4-Chlorotoluene	9.53	1.0	μg/L	10.0	9:	5.3	70-130			
1,2-Dibromo-3-chloropropane (DBCP)	10.2	5.0	μg/L	10.0	1	02	70-130			
1,2-Dibromoethane (EDB)	9.77	0.50	μg/L	10.0	9'	7.7	70-130			
Dibromomethane	11.0	1.0	μg/L	10.0	1	10	70-130			
1,2-Dichlorobenzene	10.0	1.0	μg/L	10.0	1	00	70-130			
1,3-Dichlorobenzene	9.58	1.0	μg/L	10.0	9:	5.8	70-130			
1,4-Dichlorobenzene	9.72	1.0	μg/L	10.0	9	7.2	70-130			
trans-1,4-Dichloro-2-butene	10.8	2.0	μg/L	10.0	1	08	70-130			
Dichlorodifluoromethane (Freon 12)	5.75	2.0	μg/L	10.0	5′	7.5	40-160			
1,1-Dichloroethane	11.8	1.0	μg/L	10.0	1	18	70-130			
1,2-Dichloroethane	10.3	1.0	$\mu g/L$	10.0	1	03	70-130			
1,1-Dichloroethylene	9.52	1.0	μg/L	10.0	9:	5.2	70-130			
cis-1,2-Dichloroethylene	11.1	1.0	$\mu g/L$	10.0	1	11	70-130			
trans-1,2-Dichloroethylene	11.0	1.0	μg/L	10.0		10	70-130			
1,2-Dichloropropane	10.8	1.0	μg/L	10.0	1	08	70-130			
1,3-Dichloropropane	9.95	0.50	μg/L	10.0		9.5	70-130			
2,2-Dichloropropane	8.14	1.0	μg/L	10.0		1.4	40-130			
1,1-Dichloropropene	11.3	2.0	μg/L	10.0		13	70-130			
cis-1,3-Dichloropropene	8.00	0.50	μg/L	10.0		0.0	70-130			
trans-1,3-Dichloropropene	8.42	0.50	μg/L	10.0		1.2	70-130			
Diethyl Ether	10.1	2.0	μg/L	10.0		01	70-130			
Diisopropyl Ether (DIPE)	10.6	0.50	μg/L	10.0		06	70-130			
1,4-Dioxane	118	50	μg/L	100		18	40-130			
Ethylbenzene	9.89	1.0	μg/L	10.0		3.9	70-130			
Hexachlorobutadiene	10.6	0.50	μg/L	10.0		06	70-130			
2-Hexanone (MBK)	111	10	μg/L	100		11	70-160			
Isopropylbenzene (Cumene)	9.20	1.0	μg/L	10.0		2.0	70-130			
p-Isopropyltoluene (p-Cymene)	10.3	1.0	μg/L	10.0		03	70-130			
Methyl Acetate	14.5	1.0	μg/L	10.0		45 *	70-130			L-07, V-20
Methyl tert-Butyl Ether (MTBE)	9.92	1.0	μg/L	10.0		9.2	70-130			E-07, V -20
Methyl Cyclohexane	10.4	1.0	μg/L μg/L	10.0		04	70-130			
Methylene Chloride		5.0	μg/L μg/L	10.0		06	70-130			
4-Methyl-2-pentanone (MIBK)	10.6	10	_	10.0		09	70-150			
Naphthalene	109	2.0	μg/L μg/L	10.0		15	40-130			
n-Propylbenzene	11.5 9.20	1.0	μg/L μg/L	10.0		2.0	70-130			
Styrene		1.0	μg/L μg/L	10.0		2.7	70-130			
1,1,1,2-Tetrachloroethane	9.27	1.0	μg/L μg/L	10.0		5.4	70-130			
1,1,2,2-Tetrachloroethane	9.54	0.50	μg/L μg/L	10.0			70-130			
Tetrachloroethylene	10.3	1.0				03				
Tetrahydrofuran	9.91	1.0	μg/L μg/I	10.0		9.1	70-130			
Toluene	12.1	1.0	μg/L μg/I	10.0 10.0		21 3.2	70-130 70-130			
1,2,3-Trichlorobenzene	9.82	2.0	μg/L μg/L	10.0			70-130			
1,2,4-Trichlorobenzene	11.6	1.0	μg/L μg/L	10.0		16 03	70-130			
1,3,5-Trichlorobenzene	10.3	1.0								
1,1,1-Trichloroethane	9.34	1.0	μg/L μg/I	10.0		3.4	70-130			
1,1,2-Trichloroethane	10.5		μg/L μg/I	10.0		05	70-130			
	10.6	1.0	μg/L	10.0		06	70-130			
Trichler for a section of Trichler for a sec	10.8	1.0	μg/L	10.0		08	70-130			
Trichlorofluoromethane (Freon 11)	9.13	2.0	μg/L	10.0		1.3	70-130			
1,2,3-Trichloropropane	10.2	2.0	μg/L	10.0	1	02	70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

atch B145123 - SW-846 5030B CS (B145123-BS1) 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 13) 2,4-Trimethylbenzene 3,5-Trimethylbenzene inyl Chloride 1-thy Xylene 2-Xylene	9.52 10.6 9.47 7.25 19.3 9.66 27.7 24.9 23.5	1.0 1.0 1.0 2.0 2.0 1.0	μg/L μg/L μg/L μg/L	Prepared: 03. 10.0 10.0 10.0	3/25/16 Analy	yzed: 03/26/1 95.2	6 70-130			
1,2-Trichloro-1,2,2-trifluoroethane (Freon 13) 2,2,4-Trimethylbenzene 3,3,5-Trimethylbenzene inyl Chloride 1+p Xylene 2-Xylene 2-	10.6 9.47 7.25 19.3 9.66 27.7 24.9	1.0 1.0 2.0 2.0	μg/L μg/L μg/L	10.0	3/25/16 Analy	-				
13) ,2,4-Trimethylbenzene ,3,5-Trimethylbenzene inyl Chloride t-p Xylene -Xylene urrogate: 1,2-Dichloroethane-d4 urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene CS Dup (B145123-BSD1) cetone crylonitrile ert-Amyl Methyl Ether (TAME) enzene romochloromethane romodichloromethane romodichloromethane romoform	10.6 9.47 7.25 19.3 9.66 27.7 24.9	1.0 1.0 2.0 2.0	μg/L μg/L μg/L	10.0		95.2	70-130			
2,2.4-Trimethylbenzene 3,3.5-Trimethylbenzene inyl Chloride 1-tp Xylene 2-Xylene urrogate: 1,2-Dichloroethane-d4 urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene CS Dup (B145123-BSD1) cetone crylonitrile ert-Amyl Methyl Ether (TAME) enzene romochloromethane romodichloromethane romoform	9.47 7.25 19.3 9.66 27.7 24.9	1.0 2.0 2.0	μg/L μg/L				, 0 150			
3,5-Trimethylbenzene inyl Chloride x+p Xylene x-Xylene urrogate: 1,2-Dichloroethane-d4 urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene CS Dup (B145123-BSD1) cetone crylonitrile crt-Amyl Methyl Ether (TAME) enzene romochloromethane romodichloromethane romoform	9.47 7.25 19.3 9.66 27.7 24.9	1.0 2.0 2.0	μg/L μg/L							
inyl Chloride htp Xylene -Xylene urrogate: 1,2-Dichloroethane-d4 urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene CS Dup (B145123-BSD1) cetone crylonitrile rt-Amyl Methyl Ether (TAME) enzene romochloromethane romodichloromethane romoform	7.25 19.3 9.66 27.7 24.9	2.0 2.0	μg/L	10.0		106	70-130			
n+p Xylene -Xylene urrogate: 1,2-Dichloroethane-d4 urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene CS Dup (B145123-BSD1) cetone crylonitrile ort-Amyl Methyl Ether (TAME) enzene romochloromethane romodichloromethane romoform	19.3 9.66 27.7 24.9	2.0				94.7	70-130			
-Xylene urrogate: 1,2-Dichloroethane-d4 urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene CS Dup (B145123-BSD1) cetone crylonitrile urt-Amyl Methyl Ether (TAME) enzene romochloromethane romodichloromethane romoform	9.66 27.7 24.9		LLOV/I	10.0		72.5	40-160			R-05
urrogate: 1,2-Dichloroethane-d4 urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene CS Dup (B145123-BSD1) cetone crylonitrile ert-Amyl Methyl Ether (TAME) enzene romochloromethane romodichloromethane romoform	27.7 24.9	1.0	μg/L	20.0		96.6	70-130			
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene CS Dup (B145123-BSD1) cetone crylonitrile rrt-Amyl Methyl Ether (TAME) enzene romochloromethane romodichloromethane romoform	24.9		μg/L	10.0		96.6	70-130			
cetone crylonitrile rrt-Amyl Methyl Ether (TAME) enzene romochloromethane romoform			$\mu g/L$	25.0		111	70-130			
CS Dup (B145123-BSD1) cetone crylonitrile crt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform	23.5		$\mu g/L$	25.0		99.7	70-130			
cetone crylonitrile ert-Amyl Methyl Ether (TAME) enzene romochloromethane romodichloromethane romoform	23.3		$\mu g/L$	25.0		94.2	70-130			
crylonitrile ert-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform				Prepared: 03	/25/16 Analy	yzed: 03/26/1	6			
ert-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform	88.4	50	μg/L	100		88.4	70-160	16.0	25	
enzene romobenzene romochloromethane romodichloromethane romoform	8.70	5.0	μg/L	10.0		87.0	70-130	11.3	25	
romobenzene romochloromethane romodichloromethane romoform	8.48	0.50	$\mu g/L$	10.0		84.8	70-130	4.04	25	
romochloromethane romodichloromethane romoform	11.3	1.0	$\mu g/L$	10.0		113	70-130	1.40	25	
romodichloromethane romoform	9.98	1.0	μg/L	10.0		99.8	70-130	1.20	25	
romoform	13.2	1.0	$\mu g/L$	10.0		132 *	70-130	3.48	25	L-07
	10.3	0.50	$\mu g/L$	10.0		103	70-130	2.67	25	
	9.44	1.0	μg/L	10.0		94.4	70-130	1.68	25	
romomethane	4.80	2.0	μg/L	10.0		48.0	40-160	15.2	25	
-Butanone (MEK)	101	20	μg/L	100		101	40-160	21.0	25	
ert-Butyl Alcohol (TBA)	64.2	20	μg/L	100		64.2	40-160	26.2 *	* 25	R-05, V-05
-Butylbenzene	10.5	1.0	μg/L	10.0		105	70-130	3.28	25	
ec-Butylbenzene	9.80	1.0	μg/L	10.0		98.0	70-130	0.610	25	
ert-Butylbenzene	10.1	1.0	μg/L	10.0		101	70-130	0.494	25	
ert-Butyl Ethyl Ether (TBEE)	9.88	0.50	μg/L	10.0		98.8	70-130	3.58	25	
arbon Disulfide	8.80	2.0	μg/L	10.0		88.0	70-130	6.27	25	
arbon Tetrachloride	10.8	1.0	μg/L	10.0		108	70-130	0.185	25	
hlorobenzene	9.70	1.0	μg/L	10.0		97.0	70-130	0.932	25	
hlorodibromomethane	9.36	0.50	μg/L	10.0		93.6	70-130	0.214	25	
hloroethane	10.6	2.0	μg/L	10.0		106	70-130	2.70	25	
hloroform	11.0	2.0	μg/L	10.0		110	70-130	1.08	25	
hloromethane	8.05	2.0	μg/L	10.0		80.5	40-160	24.7	25	
-Chlorotoluene	8.84	1.0	μg/L μg/L	10.0		88.4	70-130	1.46	25	
-Chlorotoluene	9.42	1.0	μg/L μg/L	10.0		94.2	70-130	1.16	25	
,2-Dibromo-3-chloropropane (DBCP)	9.42 8.47	5.0	μg/L μg/L	10.0		84.7	70-130	19.0	25	
,2-Dibromoethane (EDB)	9.80	0.50	μg/L μg/L	10.0		98.0	70-130	0.307	25	
Dibromomethane (EBB)	9.80 11.0	1.0	μg/L μg/L	10.0		110	70-130	0.636	25	
,2-Dichlorobenzene	9.74	1.0	μg/L μg/L	10.0		97.4	70-130	2.73	25	
3-Dichlorobenzene	9.74	1.0	μg/L μg/L	10.0		93.3	70-130	2.73	25	
4-Dichlorobenzene		1.0	μg/L μg/L	10.0		95.5 96.8	70-130	0.412	25	
ans-1,4-Dichloro-2-butene	9.68 9.97	2.0	μg/L μg/L	10.0		96.8 99.7	70-130	7.81	25	
vichlorodifluoromethane (Freon 12)		2.0	μg/L μg/L	10.0			40-160		25	
,1-Dichloroethane	5.63	1.0	μg/L μg/L	10.0		56.3		2.11	25 25	
,2-Dichloroethane	12.0	1.0		10.0		120	70-130 70-130	1.68	25 25	
,1-Dichloroethylene	10.6	1.0	μg/L μg/I			106	70-130	2.77		
-	9.59		μg/L	10.0		95.9	70-130	0.733	25	
is-1,2-Dichloroethylene	11.2	1.0	μg/L	10.0		112	70-130	0.179	25	
ans-1,2-Dichloroethylene	11.2	1.0	μg/L	10.0		112	70-130	1.98	25	
2-Dichloropropane	10.5	1.0	μg/L	10.0		105	70-130	2.54	25	
3-Dichloropropane	9.88	0.50	μg/L	10.0		98.8	70-130	0.706	25	
,2-Dichloropropane ,1-Dichloropropene	8.07	1.0	μg/L	10.0		80.7	40-130	0.864	25	

Page 19 of 26

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B145123 - SW-846 5030B											_
LCS Dup (B145123-BSD1)				Prepared: 03	3/25/16 Anal	yzed: 03/26/	16				
cis-1,3-Dichloropropene	8.06	0.50	μg/L	10.0		80.6	70-130	0.747	25		
trans-1,3-Dichloropropene	8.09	0.50	$\mu g/L$	10.0		80.9	70-130	4.00	25		
Diethyl Ether	9.78	2.0	$\mu g/L$	10.0		97.8	70-130	3.61	25		
Diisopropyl Ether (DIPE)	10.4	0.50	$\mu \text{g/L}$	10.0		104	70-130	1.91	25		
1,4-Dioxane	98.5	50	$\mu g/L$	100		98.5	40-130	18.0	50		† ‡
Ethylbenzene	9.87	1.0	$\mu \text{g/L}$	10.0		98.7	70-130	0.202	25		
Hexachlorobutadiene	10.7	0.50	$\mu g/L$	10.0		107	70-130	0.468	25		
2-Hexanone (MBK)	91.7	10	$\mu g/L$	100		91.7	70-160	18.9	25		†
Isopropylbenzene (Cumene)	9.19	1.0	$\mu \text{g/L}$	10.0		91.9	70-130	0.109	25		
p-Isopropyltoluene (p-Cymene)	10.1	1.0	$\mu \text{g}/L$	10.0		101	70-130	2.06	25		
Methyl Acetate	12.9	1.0	μg/L	10.0		129	70-130	11.3	25	V-20	
Methyl tert-Butyl Ether (MTBE)	9.48	1.0	μg/L	10.0		94.8	70-130	4.54	25		
Methyl Cyclohexane	10.1	1.0	μg/L	10.0		101	70-130	2.54	25		
Methylene Chloride	10.8	5.0	μg/L	10.0		108	70-130	1.59	25		
4-Methyl-2-pentanone (MIBK)	95.7	10	μg/L	100		95.7	70-160	13.1	25		†
Naphthalene	9.80	2.0	μg/L	10.0		98.0	40-130	15.7	25		†
n-Propylbenzene	9.25	1.0	μg/L	10.0		92.5	70-130	0.542	25		
Styrene	9.42	1.0	μg/L	10.0		94.2	70-130	1.61	25		
1,1,1,2-Tetrachloroethane	9.21	1.0	μg/L	10.0		92.1	70-130	3.52	25		
1,1,2,2-Tetrachloroethane	9.60	0.50	μg/L	10.0		96.0	70-130	7.04	25		
Tetrachloroethylene	10.2	1.0	μg/L	10.0		102	70-130	2.79	25		
Tetrahydrofuran	11.1	10	μg/L	10.0		111	70-130	8.64	25		
Toluene	9.91	1.0	μg/L	10.0		99.1	70-130	0.912	25		
1,2,3-Trichlorobenzene	10.6	2.0	μg/L	10.0		106	70-130	8.98	25		
1,2,4-Trichlorobenzene	9.69	1.0	μg/L	10.0		96.9	70-130	6.30	25		
1,3,5-Trichlorobenzene	9.13	1.0	μg/L	10.0		91.3	70-130	2.27	25		
1,1,1-Trichloroethane	10.4	1.0	μg/L	10.0		104	70-130	0.763	25		
1,1,2-Trichloroethane	10.0	1.0	μg/L	10.0		100	70-130	5.61	25		
Trichloroethylene	11.0	1.0	μg/L	10.0		110	70-130	1.93	25		
Trichlorofluoromethane (Freon 11)	9.06	2.0	μg/L	10.0		90.6	70-130	0.770	25		
1,2,3-Trichloropropane	9.46	2.0	μg/L	10.0		94.6	70-130	8.02	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.03	1.0	μg/L	10.0		90.3	70-130	5.28	25		
1,2,4-Trimethylbenzene	10.2	1.0	$\mu \text{g/L}$	10.0		102	70-130	3.17	25		
1,3,5-Trimethylbenzene	9.23	1.0	$\mu \text{g}/L$	10.0		92.3	70-130	2.57	25		
Vinyl Chloride	10.5	2.0	$\mu \text{g}/L$	10.0		105	40-160	36.3 *	25	R-05	†
m+p Xylene	19.2	2.0	$\mu \text{g}/L$	20.0		96.2	70-130	0.415	25		
o-Xylene	9.69	1.0	$\mu g/L$	10.0		96.9	70-130	0.310	25		
Surrogate: 1,2-Dichloroethane-d4	27.4		μg/L	25.0		110	70-130				
Surrogate: Toluene-d8	25.3		μg/L	25.0		101	70-130				
Surrogate: 4-Bromofluorobenzene	23.2		μg/L	25.0		92.7	70-130				

FLAG/QUALIFIER SUMMARY

	(
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit
DL	Method Detection Limit
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
V-05	Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side.
V-20	Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

QC result is outside of established limits.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260C in Water	
Acetone	CT,NY,ME,NH,VA
Acrylonitrile	CT,NY,ME,NH,VA
tert-Amyl Methyl Ether (TAME)	NY,ME,NH,VA
Benzene	CT,NY,ME,NH,VA
Bromochloromethane	NY,ME,NH,VA
Bromodichloromethane	CT,NY,ME,NH,VA
Bromoform	CT,NY,ME,NH,VA
Bromomethane	CT,NY,ME,NH,VA
2-Butanone (MEK)	CT,NY,ME,NH,VA
tert-Butyl Alcohol (TBA)	NY,ME,NH,VA
n-Butylbenzene	NY,ME,VA
sec-Butylbenzene	NY,ME,VA
tert-Butylbenzene	NY,ME,VA
tert-Butyl Ethyl Ether (TBEE)	NY,ME,NH,VA
Carbon Disulfide	CT,NY,ME,NH,VA
Carbon Tetrachloride	CT,NY,ME,NH,VA
Chlorobenzene	CT,NY,ME,NH,VA
Chlorodibromomethane	CT,NY,ME,NH,VA
Chloroethane	CT,NY,ME,NH,VA
Chloroform	CT,NY,ME,NH,VA
Chloromethane	CT,NY,ME,NH,VA
2-Chlorotoluene	NY,ME,NH,VA
4-Chlorotoluene	NY,ME,NH,VA
Dibromomethane	NY,ME,NH,VA
1,2-Dichlorobenzene	CT,NY,ME,NH,VA
1,3-Dichlorobenzene	CT,NY,ME,NH,VA
1,4-Dichlorobenzene	CT,NY,ME,NH,VA
trans-1,4-Dichloro-2-butene	NY,ME,NH,VA
Dichlorodifluoromethane (Freon 12)	NY,ME,NH,VA
1,1-Dichloroethane	CT,NY,ME,NH,VA
1,2-Dichloroethane	CT,NY,ME,NH,VA
1,1-Dichloroethylene	CT,NY,ME,NH,VA
cis-1,2-Dichloroethylene	NY,ME
trans-1,2-Dichloroethylene	CT,NY,ME,NH,VA
1,2-Dichloropropane	CT,NY,ME,NH,VA
1,3-Dichloropropane	NY,ME,VA
2,2-Dichloropropane	NY,ME,NH,VA
1,1-Dichloropropene	NY,ME,NH,VA
cis-1,3-Dichloropropene	CT,NY,ME,NH,VA
trans-1,3-Dichloropropene	CT,NY,ME,NH,VA
Diisopropyl Ether (DIPE)	NY,ME,NH,VA
Ethylbenzene	CT,NY,ME,NH,VA
Hexachlorobutadiene	CT,NY,ME,NH,VA
2-Hexanone (MBK)	CT,NY,ME,NH,VA
Isopropylbenzene (Cumene)	NY,ME,VA
p-Isopropyltoluene (p-Cymene)	CT,NY,ME,NH,VA
Methyl tert-Butyl Ether (MTBE)	CT,NY,ME,NH,VA

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260C in Water	
Methylene Chloride	CT,NY,ME,NH,VA
4-Methyl-2-pentanone (MIBK)	CT,NY,ME,NH,VA
Naphthalene	NY,ME,NH,VA
n-Propylbenzene	CT,NY,ME,NH,VA
Styrene	CT,NY,ME,NH,VA
1,1,1,2-Tetrachloroethane	CT,NY,ME,NH,VA
1,1,2,2-Tetrachloroethane	CT,NY,ME,NH,VA
Tetrachloroethylene	CT,NY,ME,NH,VA
Toluene	CT,NY,ME,NH,VA
1,2,3-Trichlorobenzene	NY,ME,NH,VA
1,2,4-Trichlorobenzene	CT,NY,ME,NH,VA
1,3,5-Trichlorobenzene	ME
1,1,1-Trichloroethane	CT,NY,ME,NH,VA
1,1,2-Trichloroethane	CT,NY,ME,NH,VA
Trichloroethylene	CT,NY,ME,NH,VA
Trichlorofluoromethane (Freon 11)	CT,NY,ME,NH,VA
1,2,3-Trichloropropane	NY,ME,NH,VA
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NY,VA
1,2,4-Trimethylbenzene	NY,ME,VA
1,3,5-Trimethylbenzene	NY,ME,VA
Vinyl Chloride	CT,NY,ME,NH,VA
m+p Xylene	CT,NY,ME,NH,VA
o-Xylene	CT,NY,ME,NH,VA
The CON-TEST Environmental Laboratory operates up	nder the following certifications and accreditations:

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2016
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2017
NY	New York State Department of Health	10899 NELAP	04/1/2016
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2017
RI	Rhode Island Department of Health	LAO00112	12/30/2016
NC	North Carolina Div. of Water Quality	652	12/31/2016
NJ	New Jersey DEP	MA007 NELAP	06/30/2016
FL	Florida Department of Health	E871027 NELAP	06/30/2016
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2016
WA	State of Washington Department of Ecology	C2065	02/23/2016
ME	State of Maine	2011028	06/9/2017
VA	Commonwealth of Virginia	460217	12/14/2016
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2016

CHAIN OF CUSTODY RECORD

East longmeadow, MA 01028

W

39 Spruce Street

***Container Code Dissolved Metals O Field Filtered # of Containers ** Preservation C Lab to Filter ***Comt. Code: A=amber glass ST=sterile P=plastic G=g|ass V= vial ANALYSIS REQUESTED 20928 201 DUMMA PALLETER & DURGAIS "Enhanced Data Package" Rev 04.05.12 Telephone: 401 738-3887 WK012152,0010 DATA DELIVERY (check all that apply) **SEXCEL** OEMAIL OWEBSITE OTHER Project # ○ FAX ormat. Email Collection # xe Email: info@contestlabs.com www.contestiabs.com CON Fax: 413-525-2332 Address: 300 METRO CEMER BLVD Project Location: SPCINGF1PWS77655T DUNNA PALLISTER WARMILL, RI 02,086 ANALYTICAL LABORATORY Project Proposal Provided? (for billing purposes) KRISTEN PHOPERTE. proposaldate Company Name: ARCADLS Sampled By: Attention:

8 = Sodium bisulfate **DW**= drinking water GW= groundwater WW= wastewater T = Na thiosulfate X = Na hydroxide S = Sulfuric Acid *Matrix Code: N = Nitric Acid S = soil/solid St = sludge O = Other O = other Amair Please use the following codes to let Con-Test know if a specific sample is your project MCP or RCP? H - High; M - Medium; L - Low; C - Clean; U - Unknown may be high in concentration in Matrix/Conc. Code Box: ○ MCP Form Required O RCP Form Required **Detection Limit Requirements** Ø X Mas sachusetts: t821 Other S7D 10/4 10-Day **Turnaround** 3-23-16 a o o Date/Time: Jul. 81-8 TEMOBILLAR F Blank MW-10 Relinquished by: (signature) Received by (signature) d 8Comments

**Preservation

V 3

97 850

4-WH

20

ATC-4

Ö 5

0/01

3-23-16

Cane Code

Composite Grab Cade

Ending Date/rime

Beginning Oate/Time

Client Sample ID / Description

Con-Test Lab ID

3-23-16

5

3

M

M = Methanol

HE HC

| = | ced

S-summa can

T-tedlar bag

0=Other

IUNINAROUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT. Orner Require lab approval 24 of 26

WBE/DBE Certifier

Table of Contents

NELAC & AIHA-LAP, LLC

○ MA State DW Form Required PWSiD#

Connecticut:

RUSH [↑]

Dy. (signature)

ceived by (signature)

0 172-Hr 0 14-Day

Date/Jime:

0 24-Hr O 148-Hr

Accredited

39 Spruce St.
East Longmeadow, MA. 01028
P: 413-525-2332
F: 413-525-6405
www.contestlabs.com

Page 1 of 2

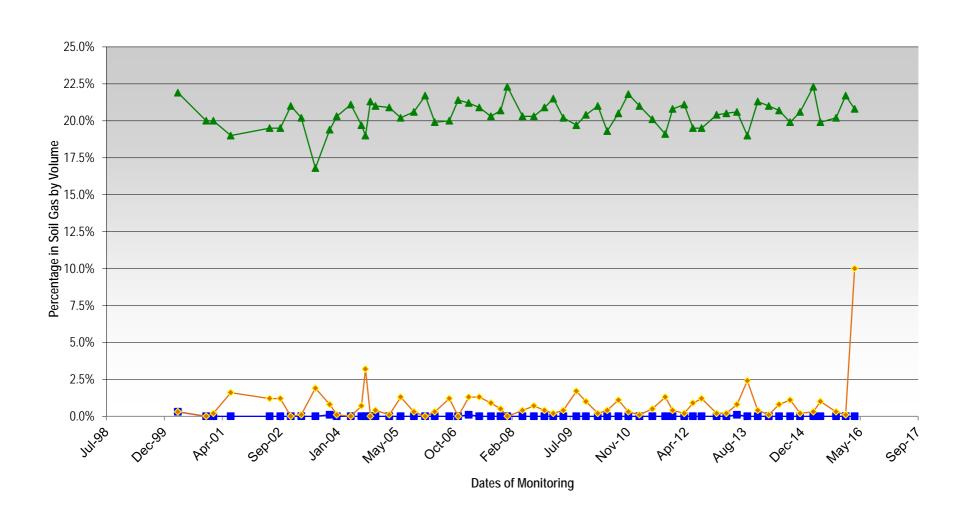
Sample Receipt Checklist

CLIENT NAM <u>E:</u>	ARCADIS	<u>S</u>	RECEIVE	DBY:		/P	_DATE:_	3/24/2016
) Was the chain(s) of custody	y relinquis	shed and sig	ned?	Yes	<u>X</u>	No		No COC Incl.
2) Does the chain agree with t	he sample	es?				_	X	
If not, explain:	Trip Bla	ank Vials nev	er received			_		
B) Are all the samples in good If not, explain:	condition	1?		Yes	Х	_ No		
) How were the samples rece	eived:							
On Ice X Direct from			Ambient		In Cod	oler(s)	Χ	
Were the samples received in								N/A
Temperature ℃ by Temp blank			_Temperatu	re ℃ by	Temp	gun		5.7
5) Are there Dissolved sample	s for the I	ab to filter?		Yes		No	Χ	
Who was notified		Date	Time			_		
6) Are there any RUSH or SHO	RT HOLD	ING TIME sa	amples?	Yes		No	Χ	
Who was notified			_			_		
		19		Permi	ssion to	subco	ontract sa	mples? Yes No
								eady approved
\ Location where samples are st				Ilvvain	-III CIICI	its Offiy) ii fiot aii	
) Location where samples are st				`	Cianati	ıro:		
•	tored:			Client				
	tored:	pH: Yes	No	Client	N/A	X		
C) Location where samples are stB) Do all samples have the proB) Do all samples have the pro	tored: oper Acid			Client	N/A	X		
B) Do all samples have the pro	oper Acid	pH: Yes	No	Client	_ N/A _ N/A	<u>X</u> <u>X</u>	- -	N/A X
B) Do all samples have the pro D) Do all samples have the pro D) Was the PC notified of any	oper Acid oper Base discrepar	pH: Yes	No e CoC vs tl	Client	_ N/A _ N/A ples:	X X Yes	- -	
B) Do all samples have the pro B) Do all samples have the pro B) Was the PC notified of any	oper Acid oper Base discrepar	pH: Yes	No e CoC vs tl	Client	_ N/A _ N/A ples:	X X Yes	- -	
B) Do all samples have the pro D) Do all samples have the pro D) Was the PC notified of any	oper Acid oper Base discrepar	pH: Yes ncies with th	No e CoC vs tl	Client ne samp	_ N/A _ N/A ples:	X X Yes	- -	N/A <u>X</u>
B) Do all samples have the pro D) Do all samples have the pro D) Was the PC notified of any	oper Acid oper Base discrepar	pH: Yes ncies with th	No e CoC vs tl	Client ne samp at Co	N/A N/A ples:	x x Yes	- - 	N/A <u>X</u>
Do all samples have the pro Do all samples have the pro Was the PC notified of any Liter Amber	oper Acid oper Base discrepar	pH: Yes ncies with th	No e CoC vs tl	Client ne samp at Cc 16 8 oz a	N/A N/A ples: On-To	X X Yes	-	N/A <u>X</u>
Do all samples have the pro Do all samples have the proper	oper Acid oper Base discrepar	pH: Yes ncies with th	No e CoC vs tl	Client ne samp at Co 16 8 oz a 4 oz a	N/A N/A ples: On-To	X X Yes est	- - - - - - -	N/A <u>X</u>
Do all samples have the pro Do all samples have the pro Was the PC notified of any 1 Liter Amber 500 mL Amber 250 mL Amber (80z amber) 1 Liter Plastic 500 mL Plastic	oper Acid oper Base discrepar	pH: Yes ncies with th	No e CoC vs tl	ne samp at Co	N/A N/A ples: On-To amber/camb	X X Yes est	- - - - - - - - -	N/A <u>X</u>
1 Liter Amber 250 mL Amber (8oz amber) 1 Liter Plastic 250 mL plastic 250 mL plastic	oper Acid oper Base discrepar	pH: Yes ncies with th Ners rec containers	No e CoC vs tl	Client ne samp at Co 8 oz a 4 oz a 2 oz a Plast	N/A N/A ples: On-To amber/o amber/o ic Bag / SOC K	X X Yes est ber clear jac	- - - - - - - - -	N/A <u>X</u>
1 Liter Amber 500 mL Amber 1 Liter Plastic 500 mL Plastic 250 mL Vial - type listed below	oper Acid oper Base discrepar	pH: Yes ncies with th	No e CoC vs tl	Client ne samp at Co 8 oz a 4 oz a 2 oz a Plast	N/A N/A ples: On-To amber/o amber/o ic Bag / SOC K rchlorat	X X Yes est ber clear jac	- - - - - - - - -	N/A <u>X</u>
1 Liter Amber 500 mL Amber 250 mL Amber (80z amber) 1 Liter Plastic 500 mL Plastic 250 mL Vial - type listed below Colisure / bacteria bottle	oper Acid oper Base discrepar	pH: Yes ncies with th Ners rec containers	No e CoC vs tl	Client ne samp at Co 8 oz a 4 oz a 2 oz a Plast Per Flast	N/A N/A N/A ples: On-To amber/o amber/o amber/o ic Bag / SOC K rchlorat shpoint	X X Yes est Aber Clear ja Cle	- - - - - - - - -	N/A <u>X</u>
1 Liter Amber 500 mL Amber 1 Liter Plastic 500 mL Plastic 250 mL Vial - type listed below	oper Acid oper Base discrepar	pH: Yes ncies with th Ners rec containers	No e CoC vs tl	Client ne samp at Co 8 oz a 4 oz a 2 oz a Plast Per Flast	N/A N/A ples: On-To amber/o amber/o ic Bag / SOC K rchlorat	X X Yes est aber clear jac clear jac clear jac dear jac	- - - - - - - - -	N/A <u>X</u>

Page 2 of 2 **Login Sample Receipt Checklist**

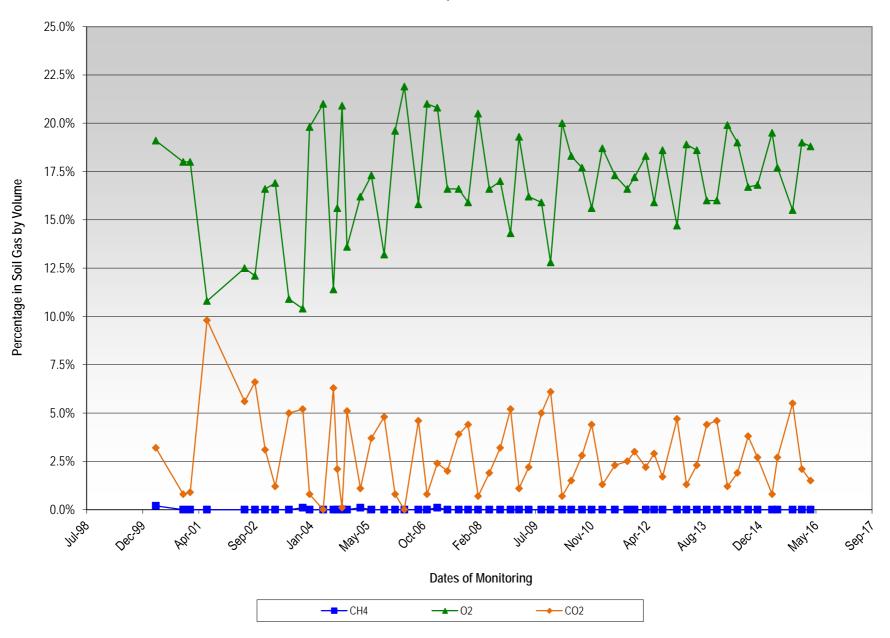
(Rejection Criteria Listing - Using Sample Acceptance Policy) Any False statement will be brought to the attention of Client

Question	Answer (True/False)	Comment
	T/F/NA	
1) The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	т	
3) Samples were received on ice.	Т	
4) Cooler Temperature is acceptable.	Т	
5) Cooler Temperature is recorded.	Т	
6) COC is filled out in ink and legible.	Т	
7) COC is filled out with all pertinent information.	Т	
8) Field Sampler's name present on COC.	Т	
9) There are no discrepancies between the sample IDs on the container and the COC.	Т	
10) Samples are received within Holding Time.	Т	_
11) Sample containers have legible labels.	Т	_
12) Containers are not broken or leaking.	Т	_
13) Air Cassettes are not broken/open.	NA	_
14) Sample collection date/times are provided.	Т	
15) Appropriate sample containers are used.	Т	
16) Proper collection media used.	Т	
17) No headspace sample bottles are completely filled.	Т	_
18) There is sufficient volume for all requsted analyses, including any requested MS/MSDs.	Т	_
19) Trip blanks provided if applicable.	NA	
20) VOA sample vials do not have head space or bubble is <6mm (1/4") in diameter.	Т	
21) Samples do not require splitting or compositing.	Т	Data/Time:

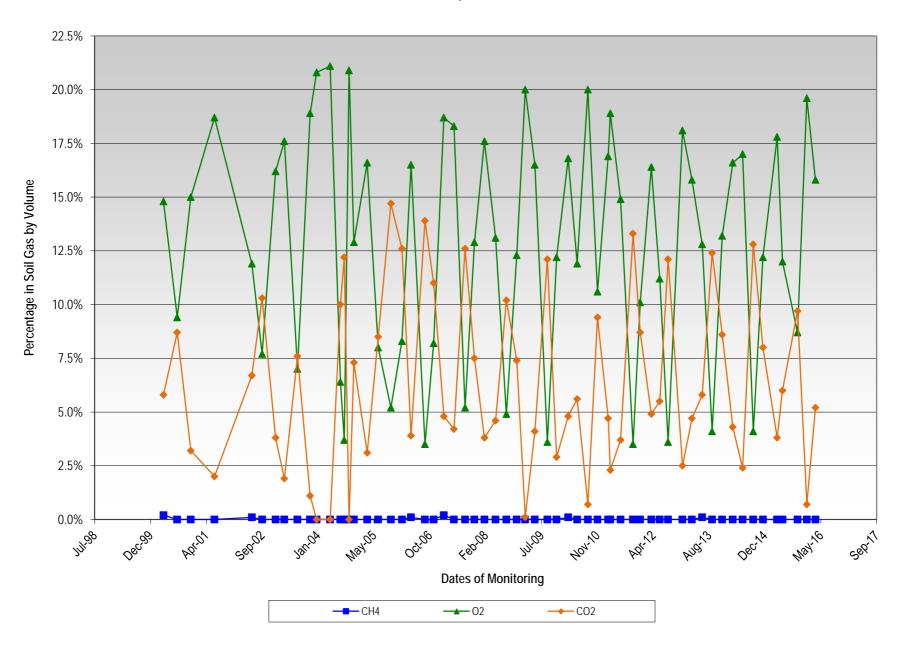

Who notified of False statements?

Date/Time: **Log-In Technician Initials:** Date/Time: 3/24/16 1345 Doc #277 Rev. 4 August 2013 <u>VP</u>

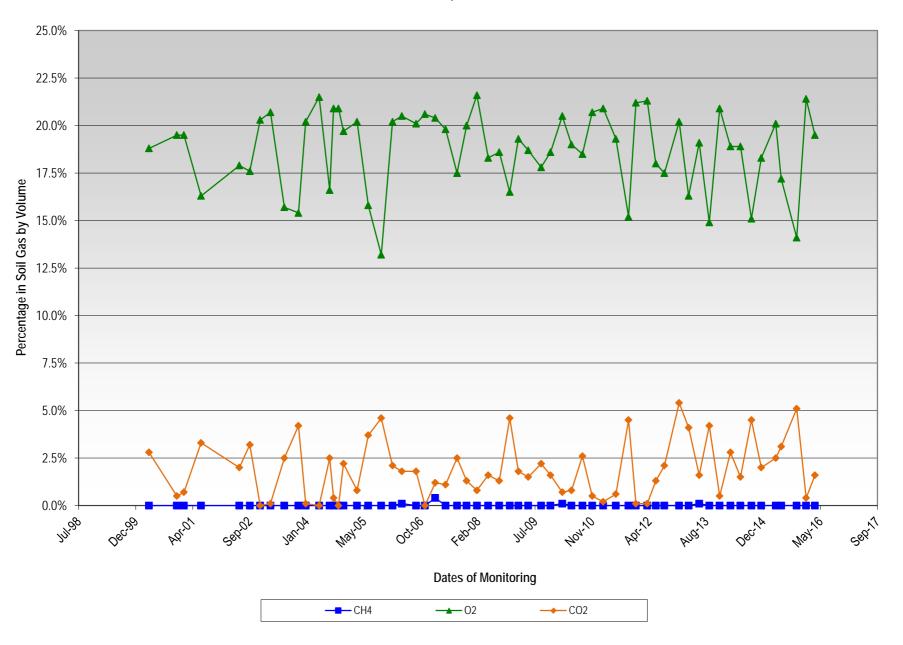
ATTACHMENT C

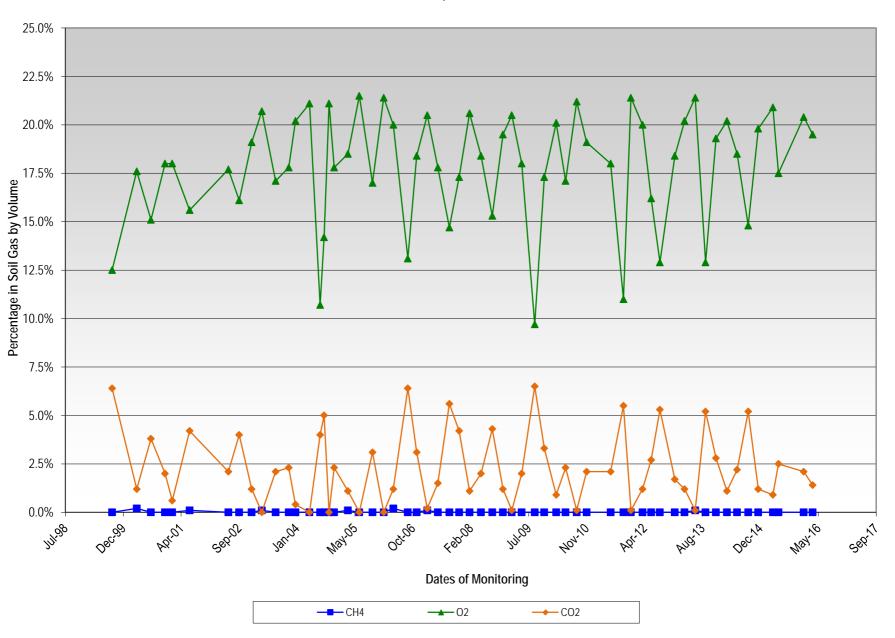

Soil Gas Trends

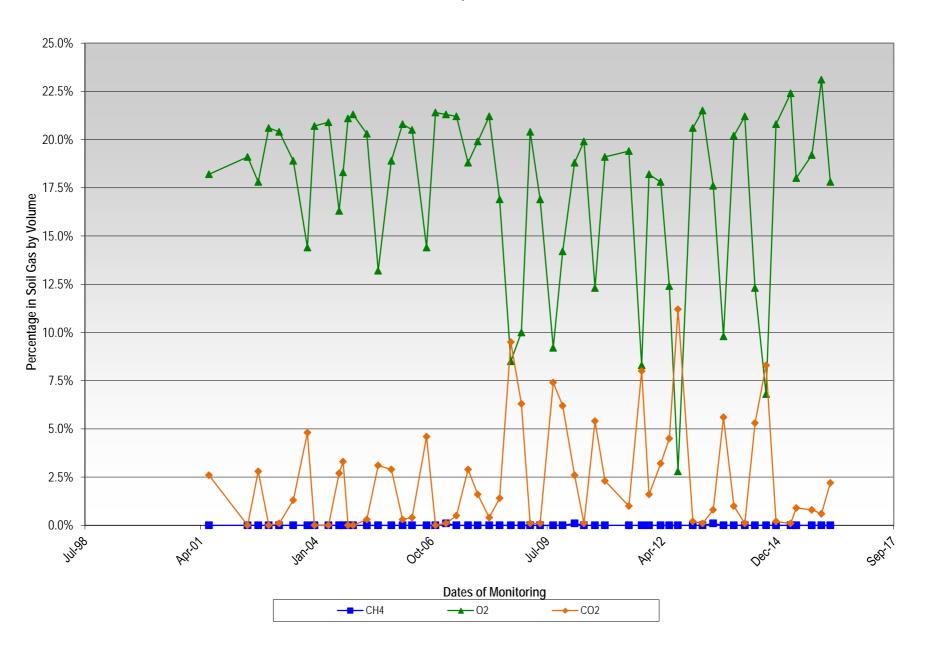
Soil Gas Well EPL1 Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time Springfield Street School Complex Providence, Rhode Island

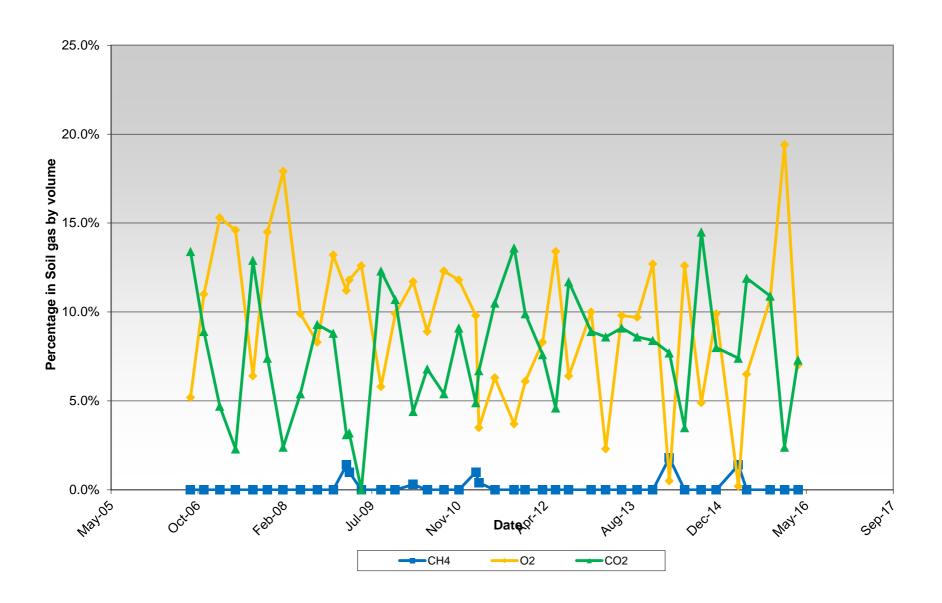


—■ CH4 —— O2 —— CO2


Soil Gas Well EPL4
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island


Soil Gas Well MPL5
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island


Soil Gas Well MG2
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island


Soil Gas Well WB1
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island

Soil Gas Well WB15
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island

Soil Gas MPL 7
Fluctuation in Methane, Oxygen, Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island

