

Mr. Jeffrey Crawford Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street Providence, RI 02908-5767

Subject:

June 2016 Quarterly Monitoring Report for Springfield Street School Complex

Dear Mr. Crawford:

ARCADIS US, Inc. (ARCADIS) conducted quarterly monitoring of soil gas, indoor air, the cap, and the sub-slab ventilation system between June 2nd and 3rd, 2016. The monitoring was performed in accordance with the *Long-Term Operation and Maintenance Plan and Site Contingency Plan* (O&M Plan) contained in the *Remedial Action Work Plan* prepared by ATC dated April 2, 1999, revised May 3, 1999 and May 9, 1999. The *Remedial Action Work Plan* (RAWP) was approved by the Rhode Island Department of Environmental Management (RIDEM) in a letter dated June 4, 1999.

This work is subject to the Limitations contained in Attachment A. Results of monitoring are provided in the following sections and in the attachments.

COVER MONITORING

ARCADIS conducted a visual survey of the site on June 3rd, 2016 for evidence of significant soil cover erosion, or for any areas of settling and depression.

The orange indicator barrier was not observed during the inspection, and there was no evidence of significant settling or cover erosion in need of repair.

SUB-SLAB VENTILATION SYSTEM

Field Monitoring

The sub-slab ventilation system was inspected by ARCADIS during the quarterly monitoring on June 2nd, 2016. The two elementary school blowers and one of the two middle school blowers were operating normally upon arrival. The second middle school blower, middle school back, was not operating.

Arcadis U.S., Inc.

300 Metro Center Boulevard

Suite 250

Warwick

Rhode Island 02886 Tel 401 738 3887 Fax 401 732 1686

www.arcadis.com

FNVIRONMENTAL

Date

June 24, 2016

Contact

Donna H. Pallister, PE

Phone:

401.285.2235

Email:

Donna.pallister@arcadis.co m

Our ref:

WK012152.0010

Samples of influent and effluent (before and after the carbon canisters) air were collected at each functioning blower and screened for methane, carbon dioxide, oxygen, carbon monoxide, hydrogen sulfide, and organic vapors using a Landtec GEM5000 Plus and a MiniRae 2000. Results of screening are provided in Table 1. Methane, carbon monoxide, hydrogen sulfide and organic vapors were not detected in any of the samples. Carbon dioxide was detected at concentrations of 0.1% in air from the elementary school effluent and the middle school front influent ports, equal to the RAWP Action Level of 1000 ppm (0.1%). Carbon dioxide was not detected in air from the other influent and effluent ports.

Soil Gas Laboratory Results

Sub-slab soil gas samples were collected from the influent to each functioning sub-slab ventilation system. The samples were collected in Tedlar bags and submitted to Con-Test Analytical Laboratories for analysis of volatile organic compounds (VOCs) by EPA method TO-14. Results of the analysis are summarized in Table 2, and the laboratory report is provided in Attachment B.

The Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs) and CT DEEP Proposed Residential Volatilization Criteria for Soil Vapor are provided in Table 2 for comparison purposes. The OSHA PELs are not directly applicable to soil gas, because it does not represent exposure point concentrations. The PELs are the average concentrations that OSHA allows to be present in a workplace without any respiratory protection or exposure controls. The concentrations detected in soil gas were well below the OSHA PELs and the CT DEEP Proposed Residential Volatilization Criteria.

INDOOR AIR MONITORING

Indoor air monitoring was conducted on June 3rd, 2016 using a Landtec GEM 5000 Plus meter (methane, hydrogen sulfide, oxygen), a Mini Rae photoionization detector (organic vapors), and a Fluke 975 Airmeter (carbon dioxide, carbon monoxide). School was in session during the monitoring event. Results of monitoring are provided in the Table 3. Carbon dioxide measurements were made with a Fluke 975 Airmeter indoor air quality meter. The Fluke 975 has a range of 0 to 5,000 ppm, with a resolution of 1 ppm.

The outside temperature on June 3rd, 2016 was approximately 64°F and ambient carbon dioxide was measured at 513 ppm.

The only reading exceeding RAWP Action Levels was taken in the Middle School cafeteria, with carbon dioxide at 1008 ppm. Methane, carbon monoxide, hydrogen sulfide, and organic vapors were not detected. Carbon dioxide was detected at concentrations between 590 and 1008 ppm. As noted below, these readings are within the expected range for indoor air levels of carbon dioxide in an occupied building. Carbon dioxide was likely higher in the cafeteria due to the number of people in the room at the time of the measurement.

Concentrations of carbon dioxide inside occupied buildings are expected to be higher than the concentrations in outdoor air because the building occupants expel carbon dioxide. Therefore, in indoor air, the concentration of carbon dioxide is typically used as an indicator of the effectiveness of the heating, ventilating, and air conditioning (HVAC) system in circulating outdoor air into the building. The

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) have prepared ASHRAE Standard 62.1-2007 titled *Ventilation for Acceptable Indoor Air Quality*. The purpose of the Standard is to specify minimum ventilation rates and other measures to provide indoor air quality that is acceptable to human occupants and that minimize adverse health effects. A discussion regarding carbon dioxide concentrations in indoor air contained in Informative Attachment C of the Standard states: "... maintaining a steady-state CO₂ concentration in a space of no greater than about 700 ppm above outdoor air levels will indicate that a substantial majority of visitors entering a space will be satisfied with respect to human bioeffluents (body odor)." This is the basis for ASHRAE's recommendations for concentrations of carbon dioxide in indoor air.

The Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) for carbon dioxide in the workplace is 5,000 ppm. All readings were below this concentration.

The control panels for the methane monitors at both schools were inspected on May 25, 2016. The methane monitor control panels had stickers that indicated that the monitors were calibrated by Diamond Technical Services within the month prior to the inspection. Diamond Technical Services calibrates the sensors on a monthly basis.

Calibration Certificates from Diamond Calibration indicate that many of the sensors read above 0 when calibrated to the zero gas. This prevents the sensors from giving a fault alarm if the reading drops below zero due to a sudden temperature change, and still provides a conservative measure of protection because the alarm limit does not change.

GROUNDWATER MONITORING

The groundwater monitoring wells were sampled by ARCADIS on June 3rd, 2016. Prior to sampling, the depth to water was gauged, and a volume of water equivalent to approximately three well volumes was removed from the well. Groundwater samples were collected in laboratory prepared sample jars and delivered under chain-of-custody protocol to Contest Laboratory in East Longmeadow, Massachusetts for analysis for volatile organic compounds by EPA method 8260. During the sampling period, MW-6 and MW-8 were discovered dry and unable to be sampled. The laboratory report is provided as Attachment B. Results of analysis of groundwater samples are summarized in Table 4.

The only well in which target analytes were detected was ATC-4, which had 1.0 μ g/L of 1,4-dichlorobenzene. There is no GB groundwater standard for 1,4 dichlorobenzene. 1,4 dichlorobenzene has been detected during many previous sampling events in these well at similar concentrations. No other target analytes were detected in any of the groundwater samples collected on June 2nd, 2016.

SOIL GAS MONITORING

Soil gas monitoring was conducted at 28 locations on June 6th 2016. The sampling was conducted by placing an air sampling gripper cap on each well and attaching a piece of tubing. A volume of air equivalent to approximately 3 well volumes was removed from each well using a Sensidyne BDXII air

sampling pump. Soil gas was then screened using a Landtec GEM 5000 Plus Landfill Gas Analyzer and a MiniRae Photoionization Detector (PID).

Soil Gas Field Monitoring Results

Soil gas samples were screened for methane, carbon monoxide, hydrogen sulfide, carbon dioxide, oxygen, and total VOCs. During the screening, well WB-2 could not be located and was not tested. Soil gas survey results are provided in Table 5. Methane, Carbon monoxide, and hydrogen sulfide were not detected in any samples. Total VOCs were only detected in one well, EPL-2, at 0.1 ppm, well below the RAWP action level of 5 ppm.

Carbon dioxide was detected in soil gas at concentrations ranging from 0% to 9.3% during the June 2016 monitoring event. The carbon dioxide RAWP action level of 0.1% was exceeded at all measured monitoring poinst besides WB-3, WB-5, WB-8, and WB-13, where carbon dioxide was not detected. The maximum concentration detected during the June 2016 monitoring round was 9.3%, which was equal to the maximum detected during the March 2016 round of 9.3%. Graphs depicting carbon dioxide, oxygen, and methane concentrations over time for selected representative wells are presented in Attachment C.

The presence of carbon dioxide in soil gas is an indicator of subsurface biological activity and does not represent a threat to users of the property. The highest concentration of carbon dioxide was found in well MPL-6, located on the northern end of the property near Hartford Avenue. The monitoring locations on the northern end of the property adjacent to large expanses of paved parking lot, sidewalk, and streets have typically had the highest carbon dioxide concentrations.

ANNUAL ELUR INSPECTIONS

After the Five Year Review of the Site was completed, RIDEM issued a letter dated August 17, 2012 which requires, among other things, that annual inspections be conducted for compliance with the Environmental Land Usage Restriction (ELUR). The Annual ELUR inspections was conducted during the June 2016 monitoring round.

The Site was inspected for compliance with the restrictions contained in Section A of the ELUR. The restrictions specified in the ELUR are listed below along with the current status with respect to the restriction:

- No residential use beyond current RIDEM approved use as a school compliant, no change in
 use
- No groundwater on the property to be used as potable water compliant, no drinking water wells have been installed.
- No soil shall be disturbed in any manner without written permission of the Office of Waste
 Management except as permitted in the Long Tern Operation and Maintenance Plan (LTOMP) –
 compliant, no evidence of disturbance of soils not in compliance with the LTOMP.
- Humans engaged in activities at the Property shall not be exposed to soils containing Hazardous
 Materials and/or petroleum in concentrations exceeding applicable Department approved Direct

- Exposure Criteria set forth in the Remediation Regulations compliant, no evidence of breaches of cap that would allow people at the site to come in contact with underlying impacted soil.
- No subsurface structures shall be constructed on the Property over groundwater containing
 Hazardous Materials and/or petroleum concentrations exceeding the applicable Department
 approved GB Objectives compliant, no Hazardous Materials or petroleum have been detected
 in groundwater at concentrations exceeding GB Objectives.
- The engineered controls described in the LTOMP must not be disturbed and shall be properly
 maintained to prevent humans engaged in residential activities from being exposed to soils
 containing Hazardous Materials and/or petroleum in concentrations exceeding the applicable
 Department approved residential Direct Exposure Criteria compliant, engineered controls are in
 place and properly maintained.

CONCLUSIONS

Methane, hydrogen sulfide, carbon monoxide and organic vapor concentrations did not exceed RAWP action levels in any soil gas or indoor air samples in this quarterly round of sampling. Carbon dioxide concentrations exceeded the action level at 1 indoor air location, 24 soil gas locations, and 5 sub slab system monitoring points. The detection of carbon dioxide in soil gas is typical of what has been detected during previous monitoring events and appears to be a result of naturally occurring biological activity in the subsurface.

If you have any questions or require any additional information, please contact the undersigned at 401-285-2235.

Sincerely,

Arcadis U.S., Inc.

Donna H. Pallister, PE, LSP

Senior Environmental Engineer

Copies:

A. Sepe, City of Providence Providence Public Building Authority

Sonna H Pallett

Enclosures:

Tables

- 1 System Monitoring Notes
- 2 Soil Gas Lab Results

- 3 Indoor Air Monitoring Results
- 4 Groundwater Monitoring Results
- 5 Soil Gas Survey results

Figures

1 Site Plan

Attachments

- A. Limitations and Service Constraints
- B. Complete Lab Results
- C. Soil Gas Trends

TABLES

Monitoring Location	Methane % by volume Landtec	Carbon Dioxide % by volume	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
Elementary School inlet 1	0	0	20.6	0	0	0
Elementary School inlet 2	0	0	20.5	0	0	0
Elementary School Outlet	0	0.1	20.5	0	0	0
Middle School front shed inlet	0	0.1	20.7	0	0	0
Middle School front shed after 2nd carbon	0	0	21	0	0	0
Middle School back shed inlet #	NT	NT	NT	NT	NT	NT
Middle School back shed after 2nd carbon #	NT	NT	NT	NT	NT	NT
Remedial Action Work Plan Action Levels	0.5	1,000 ppm (0.1%)	NA	9 ppm	10 ppm	5 ppm

Measurements made with: Landtec GEM5000 Plus, MiniRae 2000

Sampling date: 6/2/2016

Measured by: Kristen Audette & Jon Lewis

#- Middle school back shed not tested because blower not functioning properly

		CT DEEP					
Parameter	Sample Date	Proposed Residental Volatization Criteria For Soil Vapor (ug/m3)*	OSHA PELs (ug/m3)	Middle School Back (ug/m3)	Middle School Front (ug/m3)		Elementa ry School # 2 (ug/m3)
	5/11/2015			NT	0.43	0.49	0.61
	6/16/2015			NT	ND	ND	ND
Benzene	10/27/2015	3,247	3,000	NT	ND	ND	0.35
Delizerie	1/6/2016	3,247	3,000	NT	0.59	1	0.89
	3/23/2016			NT	ND	ND	ND
	6/3/2016			NT	0.41	0.32	ND
	5/11/2015			NT	ND	ND	ND
	6/16/2015			NT	ND	ND	ND
Code or Total ablanda	10/27/2015	0.005	62,900	NT	ND	ND	ND
Carbon Tetrachloride	1/6/2016	6,395		NT	0.64	0.57	0.6
	3/23/2016	†		NT	ND	ND	ND
	6/3/2016			NT	0.64	ND	ND
	5/11/2015			NT	ND	0.85	1.1
	6/16/2015	†		NT	ND	1.5	1.5
Chloroform	10/27/2015	+		NT	ND	1.3	1.6
	1/6/2016	22,334	240,000				
		-		NT	0.25	1.3	1.3
	3/23/2016 6/3/2016	-		NT NT	ND ND	0.75	1.1 0.89
	5/11/2015			NT	0.28	ND	ND
	6/16/2015			NT	ND	ND	ND
Chloromethane	10/27/2015	NA NA	207.000	NT	0.51	ND	ND
	1/6/2016] INA	207,000	NT	0.35	2.3	2.1
	3/23/2016	1		NT	ND 0.74	ND	ND
	6/3/2016			NT	0.71	ND	ND
	5/11/2015 6/16/2015	-	450,000	NT NT	ND ND	ND ND	ND ND
	10/27/2015			NT	0.71	1	0.89
1,4-Dichlorobenzene	1/6/2016	5,805,840		NT	1.1	0.51	0.66
	3/23/2016	1		NT	ND	ND	ND
	6/3/2016			NT	ND	ND	ND
	5/11/2015			NT	3	4.1	3
	6/16/2015 10/27/2015	-		NT NT	4.1 3.7	6.6 4.2	3.6 7
Dichlorodifluoromethane (Freon 12)	1/6/2016	- NA	4,950,000	NT	4.1	4.2	4.3
	3/23/2016	1		NT	2.7	3.1	5.9
	6/3/2016			NT	1.5	1.2	2.5
	5/11/2015			NT	ND	ND	ND
	6/16/2015			NT	ND	ND	ND
1,2-Dichloroethane	10/27/2015	4,000	202,372	NT	ND	ND	ND
	1/6/2016 3/23/2016	-		NT NT	ND ND	ND ND	ND 0.56
	6/3/2016			NT	ND	ND	ND
	5/11/2015			NT	0.82	2.1	1.1
	6/16/2015			NT	2.5	8.2	1.2
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon	10/27/2015	NA	7,000,000	NT	3.9	2.5	5.6
114)	1/6/2016	- "	.,,	NT	2.8	1.6	2.6
	3/23/2016			NT NT	0.98 0.78	ND ND	2.6 1.4
	6/3/2016 5/11/2015			NT	2.8	2.5	3.9
	6/16/2015			NT	0.5	0.53	0.56
Pale die	10/27/2015	7,004,040	405.000	NT	ND	0.72	0.59
Ethylbenzene	1/6/2016	7,281,812	435,000	NT	0.29	0.33	0.48
	3/23/2016	1		NT	ND	ND	ND
	6/3/2016			NT	0.5	ND	ND

		CT DEEP					
Parameter	Sample Date	Proposed Residental Volatization Criteria For Soil Vapor (ug/m3)*	OSHA PELs (ug/m3)	Middle School Back (ug/m3)	Middle School Front (ug/m3)	Elementa ry School #1 (ug/m3)	
	5/11/2015			NT	ND	ND	ND
	6/16/2015	_		NT	110	78	64
Methylene Chloride	10/27/2015	4,237,289	86,750	NT	21	30	8.4
•	1/6/2016 3/23/2016	-		NT NT	4.1 ND	2.4 ND	2 ND
	6/3/2016	-		NT	17	15	17
	5/11/2015			NT	30	28	34
	6/16/2015	+		NT	1.7	1.5	1.7
•	10/27/2015	1		NT	30	46	27
Styrene	1/6/2016	34,633	456,000	NT	34	31	31
	3/23/2016			NT	25	26	25
	6/3/2016			NT	38	36	35
	5/11/2015			NT	15	11	3.7
	6/16/2015			NT	3.9	23	4.8
Tetrachloroethylene	10/27/2015	75,840	678,000	NT	1.6	2.6	32
	1/6/2016	1 2,0.0	2. 3,000	NT	6	2.8	19
	3/23/2016			NT	1.2	1.6	9.8
	6/3/2016			NT	1	3.1	7.9
	5/11/2015			NT	46	41	53
	6/16/2015			NT	5.7	4.7	6.2
Toluene	10/27/2015	2,910,779	750,000	NT NT	27 31	36 27	25 28
	1/6/2016 3/23/2016			NT	18	18	16
	6/3/2016	+		NT	21	18	19
	5/11/2015			NT	ND	1.5	ND
	6/16/2015	+		NT	ND	2.1	ND
Trichloroethylene	10/27/2015			NT	ND	ND	4.2
	1/6/2016	38,237	537,000	NT	0.53	0.82	4.1
	3/23/2016			NT	ND	ND	1.1
	6/3/2016			NT	ND	ND	1.1
	5/11/2015		5,600,000	NT	2.7	2.6	4.5
	6/16/2015			NT	2.3	2.9	2.6
Trichlorofluoromethane (Freon 11)	10/27/2015	NA NA		NT	2.7	3.7	3.4
Thomason and the tree in the	1/6/2016			NT	2.9	2.8	4
	3/23/2016			NT	3.2	2.8	3
	6/3/2016			NT	3.8	2.9	3.9
	5/11/2015			NT	ND	ND	ND
	6/16/2015			NT	ND	ND	ND
1,1,2- Trichloro-1,2,2-trifluoroethane(Freon 113)	10/27/2015	NA NA	7,600,000	NT NT	ND 0.64	ND 0.77	ND 0.64
	1/6/2016 3/23/2016	+		NT	0.64 ND	0.77	0.64
	6/3/2016	†		NT	ND	ND	ND
	5/11/2015			NT	1.3	1.7	2.3
	6/16/2015	†		NT	1.6	1.5	1.5
A O A Trimed House	10/27/2015	†	405.000	NT	1.2	0.76	1.9
1,2,4-Trimethylbenzene	1/6/2016	NA NA	125,000	NT	0.68	0.44	0.54
	3/23/2016			NT	ND	ND	ND
	6/3/2016			NT	0.66	ND	0.59
	5/11/2015			NT	18	17	25
	6/16/2015			NT	2.4	2.4	2.6
M/p-Xylene	10/27/2015	2,215,755#	435,000	NT	1.3	2.7	2.4
	1/6/2016		.55,000	NT	1.6	1.2	1.7
	3/23/2016			NT	ND	ND	ND
	6/3/2016			NT	1.7	0.91	1.1
	5/11/2015			NT	3.6	3.5	5.4
o-Xvlene	6/16/2015			NT	1.4	1.3	1.3
		2,215,755#	435,000	NT	0.57	1.1	0.89
o-Xylene	10/27/2015	2,215,755#	435,000				
o-Xylene	1/6/2016 3/23/2016	2,215,755#	435,000	NT NT	0.62 ND	0.53 ND	0.64 ND

Parameter Samp	le Date CT DEEP Proposed Residental Volatization Criteria For So Vapor (ug/m3)	(ug/m3) il	I School Back	Middle School Front (ug/m3)	ry School #1	Elementa ry School # 2 (ug/m3)
----------------	--	---------------	---------------	--------------------------------	-----------------	---

Notes:

Samples collected in Tedlar bags and analyzed via EPA method TO-14
Only detected compounds are listed, see laboratory certificate for complete list of analyses
OSHA PELs = Occupational Safety and Health Administration Permissable Exposure Limits
CT DEEP= Connecticut Dpeartment of Energy and Environmental Protection
ug/m3 = micrograms per cubic meter

Results prior to May 2015 are not shown.

^{*} From Appendix F to Sections 22a-133k-1 through 22a-133k-3 of the Regulations of Connecticut State Agencies #- Represents Total Xylenes

Monitoring Location	Methane % by volume Landtec	Carbon Dioxide PPM	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
E.S. Front office	0	647	20.9	0	0	0
E.S. Elevator	0	590	20.8	0	0	0
E.S. Faculty Work Room	0	666	20.9	0	0	0
E.S. Gym	0	661	20.9	0	0	0
E.S. Stairway B	0	615	21	0	0	0
E.S. Stairway C	0	700	21	0	0	0
E.S. Library	0	685	20.8	0	0	0
E.S. Front Stairs	0	612	20.9	0	0	0
E.S. Cafeteria	0	720	20.9	0	0	0
E.S. Mechanical Room	0	613	20.9	0	0	0
M.S. Front Office	0	725	21.2	0	0	0
M.S. Elevator	0	689	21.3	0	0	0
M.S. Stairway near Elem. School GS-01	0	663	21.1	0	0	0
M.S. Near sensor #16 in hall outside cafeteria	0	980	20.9	0	0	0
M.S. Faculty Work Room	0	621	21.2	0	0	0
M.S. Sensor #15 Outside Gym	0	887	21	0	0	0
M.S. GS-03 Across from Boys Bathroom	0	641	20.9	0	0	0
M.S. Gym	0	756	21.1	0	0	0
M.S. Outside of Music Room	0	749	21	0	0	0
M.S. Cafeteria	0	1008	20.9	0	0	0
M.S. Front Hall near sensor #4	0	748	21	0	0	0
M.S. Hallway across from elevator near sensor #9	0	593	21.2	0	0	0
M.S. Near sensor GS 06 hallway right end	0	621	21.1	0	0	0
M.S. stairway near Hartford Ave. sensor GS-7	0	604	21.2	0	0	0
Remedial Action Work Plan Action Levels	0.5	1,000 ppm (0.1%)	NA	9 ppm	10 ppm	5 ppm

Notes: The indoor air quality monitoring panels in the M.S. and E.S. were calibrated on 5/25/2016.

E.S. indicates Elementary School, M.S. indicates Middle School

Measurements made with: MiniRae photoionization detector, Fluke 975 Airmeter, Landtec Gem 5000 Plus

PPM = Parts per million

Outdoor conditions: carbon dioxide = 513 ppm temperature = 64 degrees F

Sampling Dates and Results in µg/L Sampling Dates and Results in µg/L									
Well ID	Detected Compounds	4/2/2015	6/15/2015	10/29/2015	1/6/2016	3/23/2016	6/3/2016		
ATC-1									
	Chloromethane	ND	4.1	ND	ND	ND	ND	NA	
ATC-2		Closed	Closed	Closed	Closed	Closed	Closed		
/IW-6		ND	ND	NS	NS	NS	NS		
ATC-3		Closed	Closed	Closed	Closed	Closed	Closed		
/IVV-7		ND	ND	ND	ND	ND	ND		
ATC-4									
	Chlorobenzene	ND	ND	1.2	ND	ND	ND	70	
	1,4-dichlorobenzene	ND	ND	1.8	1.4	1	1	NA	
ATC-5		Closed	Closed	Closed	Closed	Closed	Closed		
1W-8		ND	ND	NS	NS	NS	NS		
Sampled By:		ARCADIS	ARCADIS	ARCADIS	ARCADIS	ARCADIS	ARCADIS		

ND = not detected above method detection limit NS = not sampled

NA = No applicable standard published

MTBE = Methyl tert-Butyl Ether
μg/L = micrograms per liter
Samples collected prior to 4/2/2015 and after 2009 are hidden.

Monitoring Location	Methane % by volume Landtec	Carbon Dioxide % by volume	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
WB-1	0	2.1	18	0	0	0
WB-2	NT	NT	NT	NT	NT	NT
WB-3	0	0	20.9	0	0	0
WB-4	0	0.4	20.6	0	0	0
WB-5	0	0	20.5	0	0	0
WB-6	0	0.5	19.8	0	0	0
WB-7	0	0.2	20.8	0	0	0
WB-8	0	0.2	20.7	0	0	0
WB-12	0	1.6	19.2	0	0	0
WB-13	0	0	20.3	0	0	0
WB-14	0	0.8	19.6	0	0	0
WB-15	0	6	12.1	0	0	0
EPL-1	0	0.7	19.5	0	0	0
EPL-2	0	1.7	18.1	0	0	0.1
EPL-3	0	2	16.3	0	0	0
EPL-4	0	2.2	18.3	0	0	0
EPL-5	0	2.8	17.2	0	0	0
ENE-1	0	1.6	18.8	0	0	0
MG1	0	0.1	20.9	0	0	0
MG2	0	2.3	18.3	0	0	0
MG3	0	0.8	19.8	0	0	0
MG4	0	1.3	18.9	0	0	0
MG5	0	3.8	16.2	0	0	0
MPL2	0	2.9	16.7	0	0	0
MPL3	0	5.5	13.3	0	0	0
MPL5	0	5.9	13.5	0	0	0
MPL6	0	9.3	7.9	0	0	0
MPL7	0	9	8.9	0	0	0
MPL8	0	3.4	16.4	0	0	0
Remedial Action Work Plan Action Levels	0.5	1,000 ppm (0.1%)	NA	9 ppm	10 ppm	5 ppm

Sampled by: Jonathan Lewis Weather Conditions: 6/2/2016 - overcast, 58 F Sampling Equipment: Landtec GEM 5000 Plus, MiniRae 2000 PID

FIGURES

ATTACHMENT A

Limitations and Service Constraints

LIMITATIONS AND SERVICE CONSTRAINTS

GENERAL REPORTS/DOCUMENT

The opinions and recommendations presented in this report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by ARCADIS and the party for whom this report was originally prepared. This report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry. No representation, warranty, or guarantee, express or implied, is intended or given. To the extent that ARCADIS relied upon any information prepared by other parties not under contract to ARCADIS, ARCADIS makes no representation as to the accuracy or completeness of such information. This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared for a particular purpose. Only the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user's sole risk.

Results of any investigations or testing and any findings presented in this report apply solely to conditions existing at the time when ARCADIS' investigative work was performed. It must be recognized that any such investigative or testing activities are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the project site may vary from those at the locations where data were collected. ARCADIS's ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities. As such, 100% confidence in environmental investigation conclusions cannot reasonably be achieved.

ARCADIS, therefore, does not provide any guarantees, certifications, or warranties regarding any conclusions regarding environmental contamination of any such property. Furthermore, nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

ATTACHMENT B

Complete Lab Results

June 7, 2016

Donna Pallister Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250 Warwick, RI 02886

Project Location: Providence, RI

Client Job Number:

Project Number: WK01215.0010

Laboratory Work Order Number: 16F0177

Enclosed are results of analyses for samples received by the laboratory on June 3, 2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
16F0177-01	5
16F0177-02	7
16F0177-03	9
16F0177-04	11
16F0177-05	13
Sample Preparation Information	15
QC Data	16
Volatile Organic Compounds by GC/MS	16
B150745	16
Flag/Qualifier Summary	21
Certifications	22
Chain of Custody/Sample Receipt	24

Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250

PURCHASE ORDER NUMBER:

REPORT DATE: 6/7/2016

Warwick, RI 02886 ATTN: Donna Pallister

PROJECT NUMBER: WK01215.0010

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 16F0177

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Providence, RI

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
ATC-1	16F0177-01	Ground Water		SW-846 8260C	
MW-7	16F0177-02	Ground Water		SW-846 8260C	
MW-6	16F0177-03	Ground Water		SW-846 8260C	
ATC-4	16F0177-04	Ground Water		SW-846 8260C	
Trip Blank	16F0177-05	Trip Blank Water		SW-846 8260C	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8260C

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

Dichlorodifluoromethane (Freon 12

 $16F0177-01[ATC-1], \\ 16F0177-02[MW-7], \\ 16F0177-03[MW-6], \\ 16F0177-04[ATC-4], \\ 16F0177-05[Trip Blank], \\ B150745-BLK1, \\ B150745-BS1, \\ B150745-BSD1, \\ B15074-BSD1, \\ B$

Methyl Acetate

 $16F0177-01[ATC-1], \\ 16F0177-02[MW-7], \\ 16F0177-03[MW-6], \\ 16F0177-04[ATC-4], \\ 16F0177-05[Trip Blank], \\ B150745-BLK1, \\ B150745-BS1, \\ B150745-BSD1, \\ B15074-BSD1, \\ B150745-BSD1, \\ B15074-BSD1, \\ B150$

V-06

Continuing calibration did not meet method specifications and was biased on the high side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the high side.

tert-Butyl Alcohol (TBA)

B150745-BS1, B150745-BSD1

V-20

Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

1,4-Dioxane

B150745-BS1, B150745-BSD1

Chloromethane

B150745-BS1, B150745-BSD1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Jua Webshirsten

Project Manager

Sample Description: Work Order: 16F0177

Project Location: Providence, RI
Date Received: 6/3/2016
Field Sample #: ATC-1

Sampled: 6/2/2016 09:15

Sample ID: 16F0177-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Volatile Organic Co Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Bromobenzene	ND	1.0	μg/L μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Bromochloromethane	ND	1.0	μg/L μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Bromodichloromethane	ND	0.50		1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Bromomethane			μg/L						EEH
	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Carbon Disulfide	ND	4.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Carbon Tetrachloride	ND	5.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Chlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Chlorodibromomethane	ND	0.50	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Chloroethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Chloroform	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Chloromethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
2-Chlorotoluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
4-Chlorotoluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
trans-1,4-Dichloro-2-butene	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1	L-04	SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,2-Dichloropropane									EEH
1,3-Dichloropropane	ND ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	
	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH

Page 5 of 26

Project Location: Providence, RI Sample Description: Work Order: 16F0177

Date Received: 6/3/2016 Field Sample #: ATC-1

Sampled: 6/2/2016 09:15

Sample ID: 16F0177-01 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,4-Dioxane	ND	100	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Hexachlorobutadiene	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Methyl Acetate	ND	1.0	μg/L	1	L-04	SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Naphthalene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
n-Propylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,2,4-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,3,5-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 14:51	EEH
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
1,2-Dichloroethane-d4		114	70-130					6/6/16 14:51	
Toluene-d8		99.5	70-130					6/6/16 14:51	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	114	70-130		6/6/16 14:51
Toluene-d8	99.5	70-130		6/6/16 14:51
4-Bromofluorobenzene	100	70-130		6/6/16 14:51

Sample Description: Work Order: 16F0177

Project Location: Providence, RI
Date Received: 6/3/2016
Field Sample #: MW-7

Sampled: 6/2/2016 10:20

Sample ID: 16F0177-02

Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1	•	SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Carbon Disulfide	ND	4.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
trans-1,4-Dichloro-2-butene	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1	L-04	SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1	LUI	SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,2-Dichloropropane	ND	1.0		1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,3-Dichloropropane	ND ND	0.50	μg/L μg/L	1		SW-846 8260C SW-846 8260C	6/6/16	6/6/16 15:18	EEH
2,2-Dichloropropane									
1,1-Dichloropropene	ND ND	1.0 2.0	μg/L	1		SW-846 8260C SW-846 8260C	6/6/16 6/6/16	6/6/16 15:18	EEH
cis-1,3-Dichloropropene			μg/L					6/6/16 15:18	EEH
trans-1,3-Dichloropropene	ND ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Diethyl Ether	ND ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Diomyi Eulei	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH

Page 7 of 26

Sample Description: Work Order: 16F0177

Date Received: 6/3/2016 Field Sample #: MW-7

Project Location: Providence, RI

Sampled: 6/2/2016 10:20

Sample ID: 16F0177-02 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,4-Dioxane	ND	100	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Hexachlorobutadiene	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Methyl Acetate	ND	1.0	μg/L	1	L-04	SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Naphthalene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
n-Propylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,2,4-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,3,5-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:18	EEH
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
1,2-Dichloroethane-d4		113	70-130					6/6/16 15:18	
Toluene-d8		98.0	70-130					6/6/16 15:18	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	113	70-130		6/6/16 15:18
Toluene-d8	98.0	70-130		6/6/16 15:18
4-Bromofluorobenzene	98.5	70-130		6/6/16 15:18

Project Location: Providence, RI Sample Description: Work Order: 16F0177

Date Received: 6/3/2016

Field Sample #: MW-6

Sampled: 6/2/2016 11:10

Sample ID: 16F0177-03

Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Carbon Disulfide	ND	4.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
trans-1,4-Dichloro-2-butene	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1	L-04	SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
	•		1.0					Dogo O	

Page 9 of 26

Project Location: Providence, RI Sample Description: Work Order: 16F0177

Date Received: 6/3/2016

Field Sample #: MW-6

Sampled: 6/2/2016 11:10

98.4

70-130

Sample ID: 16F0177-03

Sample Matrix: Ground Water

4-Bromofluorobenzene

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,4-Dioxane	ND	100	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Ethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Hexachlorobutadiene	ND	0.50	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
2-Hexanone (MBK)	ND	10	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Isopropylbenzene (Cumene)	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Methyl Acetate	ND	1.0	$\mu g/L$	1	L-04	SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Methyl Cyclohexane	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Methylene Chloride	ND	5.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Naphthalene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
n-Propylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Styrene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Tetrachloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Tetrahydrofuran	ND	10	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Toluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,2,3-Trichlorobenzene	ND	5.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,2,4-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,3,5-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Trichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,2,3-Trichloropropane	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
o-Xylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 15:45	EEH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		113	70-130					6/6/16 15:45	
Toluene-d8		97.8	70-130					6/6/16 15:45	

6/6/16 15:45

Sample Description: Work Order: 16F0177

Project Location: Providence, RI
Date Received: 6/3/2016
Field Sample #: ATC-4

Sampled: 6/2/2016 12:25

Sample ID: 16F0177-04

Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Carbon Disulfide	ND	4.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,4-Dichlorobenzene	1.0	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
trans-1,4-Dichloro-2-butene	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1	L-04	SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
							F	Dogo 11	

Page 11 of 26

Project Location: Providence, RI Sample Description: Work Order: 16F0177

Date Received: 6/3/2016 Field Sample #: ATC-4

Sampled: 6/2/2016 12:25

Sample ID: 16F0177-04 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,4-Dioxane	ND	100	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Hexachlorobutadiene	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Methyl Acetate	ND	1.0	μg/L	1	L-04	SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Naphthalene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
n-Propylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,2,4-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,3,5-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,2,3-Trichloropropane	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 16:12	EEH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		112	70-130					6/6/16 16:12	
Toluene-d8		98.6	70-130					6/6/16 16:12	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	112	70-130		6/6/16 16:12
Toluene-d8	98.6	70-130		6/6/16 16:12
4-Bromofluorobenzene	99.6	70-130		6/6/16 16:12

Project Location: Providence, RI Sample Description: Work Order: 16F0177

Date Received: 6/3/2016

Field Sample #: Trip Blank

Sampled: 6/2/2016 00:00

Sample ID: 16F0177-05

Sample Matrix: Trip Blank Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Carbon Disulfide	ND	4.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,2-Dibromoethane (EDB)	ND	0.50	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,3-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
trans-1,4-Dichloro-2-butene	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1	L-04	SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,1-Dichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,2-Dichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
trans-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH

Page 13 of 26

Project Location: Providence, RI Sample Description: Work Order: 16F0177

Date Received: 6/3/2016

Field Sample #: Trip Blank

Sampled: 6/2/2016 00:00

Sample ID: 16F0177-05

Sample Matrix: Trip Blank Water

4-Bromofluorobenzene

Volatile Organic Compounds by GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,4-Dioxane	ND	100	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Hexachlorobutadiene	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Isopropylbenzene (Cumene)	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Methyl Acetate	ND	1.0	$\mu g/L$	1	L-04	SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Naphthalene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
n-Propylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Styrene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Toluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,3,5-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Trichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/6/16	6/6/16 12:37	EEH
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
1,2-Dichloroethane-d4		117	70-130					6/6/16 12:37	
Toluene-d8		98.6	70-130					6/6/16 12:37	

70-130

99.6

6/6/16 12:37

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
16F0177-01 [ATC-1]	B150745	5	5.00	06/06/16
16F0177-02 [MW-7]	B150745	5	5.00	06/06/16
16F0177-03 [MW-6]	B150745	5	5.00	06/06/16
16F0177-04 [ATC-4]	B150745	5	5.00	06/06/16
16F0177-05 [Trip Blank]	B150745	5	5.00	06/06/16

RPD

%REC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B150745 - SW-846 5030B										
Blank (B150745-BLK1)				Prepared &	Analyzed: 06	/06/16				
Acetone	ND	50	$\mu \text{g/L}$							
Acrylonitrile	ND	5.0	$\mu g/L$							
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							
Benzene	ND	1.0	μg/L							
Bromobenzene	ND	1.0	$\mu g/L$							
Bromochloromethane	ND	1.0	μg/L							
Bromodichloromethane	ND	0.50	μg/L							
Bromoform	ND	1.0	μg/L							
Bromomethane	ND	2.0	μg/L							
2-Butanone (MEK)	ND	20	μg/L							
tert-Butyl Alcohol (TBA)	ND	20	μg/L							
n-Butylbenzene	ND	1.0	μg/L							
sec-Butylbenzene	ND	1.0	μg/L							
tert-Butylbenzene	ND	1.0	μg/L							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$							
Carbon Disulfide	ND	4.0	$\mu g/L$							
Carbon Tetrachloride	ND	5.0	$\mu g/L$							
Chlorobenzene	ND	1.0	$\mu g/L$							
Chlorodibromomethane	ND	0.50	$\mu g/L$							
Chloroethane	ND	2.0	$\mu g/L$							
Chloroform	ND	2.0	$\mu g/L$							
Chloromethane	ND	2.0	$\mu g/L$							
2-Chlorotoluene	ND	1.0	$\mu g/L$							
4-Chlorotoluene	ND	1.0	$\mu g/L$							
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	$\mu g/L$							
1,2-Dibromoethane (EDB)	ND	0.50	$\mu g/L$							
Dibromomethane	ND	1.0	$\mu g/L$							
1,2-Dichlorobenzene	ND	1.0	$\mu g/L$							
1,3-Dichlorobenzene	ND	1.0	$\mu g/L$							
1,4-Dichlorobenzene	ND	1.0	$\mu g/L$							
trans-1,4-Dichloro-2-butene	ND	5.0	$\mu g/L$							
Dichlorodifluoromethane (Freon 12)	ND	2.0	$\mu g/L$							L-04
1,1-Dichloroethane	ND	1.0	$\mu g/L$							
1,2-Dichloroethane	ND	1.0	$\mu g/L$							
1,1-Dichloroethylene	ND	1.0	$\mu g/L$							
cis-1,2-Dichloroethylene	ND	1.0	$\mu g/L$							
trans-1,2-Dichloroethylene	ND	1.0	$\mu g/L$							
1,2-Dichloropropane	ND	1.0	$\mu g/L$							
1,3-Dichloropropane	ND	0.50	$\mu g/L$							
2,2-Dichloropropane	ND	1.0	$\mu g/L$							
1,1-Dichloropropene	ND	2.0	$\mu g/L$							
cis-1,3-Dichloropropene	ND	0.50	$\mu g/L$							
trans-1,3-Dichloropropene	ND	0.50	$\mu g/L$							
Diethyl Ether	ND	2.0	$\mu \text{g/L}$							
Diisopropyl Ether (DIPE)	ND	0.50	$\mu g/L$							
1,4-Dioxane	ND	100	$\mu g/L$							
Ethylbenzene	ND	1.0	$\mu g/L$							
Hexachlorobutadiene	ND	0.50	$\mu g/L$							
2-Hexanone (MBK)	ND	10	μg/L							
Isopropylbenzene (Cumene)	ND	1.0	μg/L							
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L							

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B150745 - SW-846 5030B										
lank (B150745-BLK1)				Prepared & A	Analyzed: 06	/06/16				
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L							
1ethyl Cyclohexane	ND	1.0	$\mu g/L$							
lethylene Chloride	ND	5.0	$\mu g/L$							
-Methyl-2-pentanone (MIBK)	ND	10	$\mu g/L$							
aphthalene	ND	2.0	$\mu g/L$							
Propylbenzene	ND	1.0	$\mu g/L$							
tyrene	ND	1.0	$\mu g/L$							
1,1,2-Tetrachloroethane	ND	1.0	μg/L							
1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$							
etrachloroethylene	ND	1.0	μg/L							
etrahydrofuran	ND	10	$\mu g/L$							
oluene	ND	1.0	μg/L							
2,3-Trichlorobenzene	ND	5.0	μg/L							
2,4-Trichlorobenzene	ND	1.0	μg/L							
3,5-Trichlorobenzene	ND	1.0	μg/L							
1,1-Trichloroethane	ND	1.0	μg/L							
1,2-Trichloroethane	ND	1.0	μg/L							
richloroethylene	ND	1.0	μg/L							
richlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$							
2,3-Trichloropropane	ND	2.0	$\mu g/L$							
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	1.0	μg/L							
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND	1.0	μg/L							
inyl Chloride	ND	2.0	μg/L							
n+p Xylene	ND	2.0	μg/L							
Xylene	ND	1.0	μg/L							
urrogate: 1,2-Dichloroethane-d4	28.7		$\mu g/L$	25.0		115	70-130			
urrogate: Toluene-d8	24.6		$\mu g/L$	25.0		98.4	70-130			
urrogate: 4-Bromofluorobenzene	23.8		μg/L	25.0		95.3	70-130			
CS (B150745-BS1)				Prepared & A	Analyzed: 06	/06/16				
cetone	130	50	μg/L	100		130	70-160			
crylonitrile	9.88	5.0	$\mu g/L$	10.0		98.8	70-130			
rt-Amyl Methyl Ether (TAME)	9.48	0.50	$\mu g/L$	10.0		94.8	70-130			
enzene	8.43	1.0	$\mu g/L$	10.0		84.3	70-130			
romobenzene	9.57	1.0	$\mu g/L$	10.0		95.7	70-130			
romochloromethane	9.83	1.0	$\mu \text{g/L}$	10.0		98.3	70-130			
romodichloromethane	9.54	0.50	$\mu \text{g/L}$	10.0		95.4	70-130			
romoform	10.8	1.0	$\mu \text{g/L}$	10.0		108	70-130			
romomethane	7.34	2.0	$\mu \text{g/L}$	10.0		73.4	40-160			
Butanone (MEK)	103	20	$\mu \text{g/L}$	100		103	40-160			
rt-Butyl Alcohol (TBA)	114	20	$\mu g \! / \! L$	100		114	40-160			V-06
Butylbenzene	10.4	1.0	$\mu \text{g/L}$	10.0		104	70-130			
c-Butylbenzene	9.31	1.0	$\mu \text{g/L}$	10.0		93.1	70-130			
rt-Butylbenzene	9.39	1.0	$\mu g \! / \! L$	10.0		93.9	70-130			
rt-Butyl Ethyl Ether (TBEE)	10.1	0.50	$\mu \text{g/L}$	10.0		101	70-130			
arbon Disulfide	9.38	4.0	$\mu \text{g/L}$	10.0		93.8	70-130			
arbon Tetrachloride	10.7	5.0	$\mu g/L$	10.0		107	70-130			
hlorobenzene	8.57	1.0	$\mu g/L$	10.0		85.7	70-130			
hlorodibromomethane	9.75	0.50	$\mu g \! / \! L$	10.0		97.5	70-130			
	10.5	2.0	μg/L	10.0		105	70-130			
hloroethane	10.5		1.0 -	10.0		100				

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B150745 - SW-846 5030B											
LCS (B150745-BS1)				Prepared &	Analyzed: 06	/06/16					
Chloromethane	10.1	2.0	μg/L	10.0		101	40-160			V-20	†
2-Chlorotoluene	9.01	1.0	$\mu g/L$	10.0		90.1	70-130				
4-Chlorotoluene	9.33	1.0	$\mu g/L$	10.0		93.3	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	10.6	5.0	$\mu g/L$	10.0		106	70-130				
1,2-Dibromoethane (EDB)	9.04	0.50	$\mu g/L$	10.0		90.4	70-130				
Dibromomethane	9.19	1.0	$\mu g/L$	10.0		91.9	70-130				
1,2-Dichlorobenzene	9.04	1.0	$\mu g/L$	10.0		90.4	70-130				
1,3-Dichlorobenzene	9.36	1.0	$\mu g/L$	10.0		93.6	70-130				
1,4-Dichlorobenzene	8.82	1.0	$\mu g/L$	10.0		88.2	70-130				
trans-1,4-Dichloro-2-butene	11.5	5.0	$\mu g/L$	10.0		115	70-130				
Dichlorodifluoromethane (Freon 12)	3.94	2.0	$\mu g/L$	10.0		39.4 *	40-160			L-04	†
1,1-Dichloroethane	9.34	1.0	$\mu g/L$	10.0		93.4	70-130				
1,2-Dichloroethane	9.42	1.0	$\mu g/L$	10.0		94.2	70-130				
1,1-Dichloroethylene	9.52	1.0	$\mu g \! / \! L$	10.0		95.2	70-130				
cis-1,2-Dichloroethylene	8.59	1.0	$\mu g/L$	10.0		85.9	70-130				
trans-1,2-Dichloroethylene	8.90	1.0	$\mu g/L$	10.0		89.0	70-130				
1,2-Dichloropropane	8.48	1.0	$\mu g/L$	10.0		84.8	70-130				
1,3-Dichloropropane	8.86	0.50	μg/L	10.0		88.6	70-130				
2,2-Dichloropropane	11.2	1.0	μg/L	10.0		112	40-130				†
1,1-Dichloropropene	9.25	2.0	μg/L	10.0		92.5	70-130				
cis-1,3-Dichloropropene	8.69	0.50	μg/L	10.0		86.9	70-130				
trans-1,3-Dichloropropene	9.57	0.50	μg/L	10.0		95.7	70-130				
Diethyl Ether	8.92	2.0	μg/L	10.0		89.2	70-130				
Diisopropyl Ether (DIPE)	9.06	0.50	μg/L	10.0		90.6	70-130				
1,4-Dioxane	100	100	μg/L	100		100	40-130			V-20	†
Ethylbenzene	9.17	1.0	μg/L	10.0		91.7	70-130				
Hexachlorobutadiene	11.2	0.50	μg/L	10.0		112	70-130				
2-Hexanone (MBK)	103	10	μg/L	100		103	70-160				†
Isopropylbenzene (Cumene)	9.41	1.0	μg/L	10.0		94.1	70-130				
p-Isopropyltoluene (p-Cymene)	9.94	1.0	μg/L	10.0		99.4	70-130				
Methyl Acetate	6.15	1.0	μg/L	10.0		61.5 *	70-130			L-04	
Methyl tert-Butyl Ether (MTBE)	9.13	1.0	μg/L	10.0		91.3	70-130				
Methyl Cyclohexane	9.49	1.0	μg/L	10.0		94.9	70-130				
Methylene Chloride	9.87	5.0	μg/L	10.0		98.7	70-130				
4-Methyl-2-pentanone (MIBK)	104	10	μg/L	100		104	70-160				†
Naphthalene	8.43	2.0	μg/L	10.0		84.3	40-130				†
n-Propylbenzene	9.08	1.0	μg/L	10.0		90.8	70-130				
Styrene	9.13	1.0	μg/L	10.0		91.3	70-130				
1,1,1,2-Tetrachloroethane	9.91	1.0	μg/L	10.0		99.1	70-130				
1,1,2,2-Tetrachloroethane	9.31	0.50	μg/L	10.0		93.1	70-130				
Tetrachloroethylene	9.89	1.0	μg/L	10.0		98.9	70-130				
Tetrahydrofuran	10.3	10	μg/L	10.0		103	70-130				
Toluene	8.51	1.0	μg/L	10.0		85.1	70-130				
1,2,3-Trichlorobenzene	9.31	5.0	μg/L	10.0		93.1	70-130				
1,2,4-Trichlorobenzene	9.95	1.0	μg/L	10.0		99.5	70-130				
1,3,5-Trichlorobenzene	10.5	1.0	μg/L	10.0		105	70-130				
1,1,1-Trichloroethane	10.2	1.0	μg/L	10.0		102	70-130				
1,1,2-Trichloroethane	8.99	1.0	μg/L	10.0		89.9	70-130				
Trichloroethylene	9.49	1.0	μg/L	10.0		94.9	70-130				
Trichlorofluoromethane (Freon 11)	9.99	2.0	μg/L	10.0		99.9	70-130				
1,2,3-Trichloropropane	9.99	2.0	μg/L μg/L	10.0		91.2	70-130				

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
eatch B150745 - SW-846 5030B										
CS (B150745-BS1)				Prepared &	Analyzed: 06	/06/16				
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.1	1.0	μg/L	10.0		101	70-130			
13)										
,2,4-Trimethylbenzene	9.22	1.0	μg/L	10.0		92.2	70-130			
,3,5-Trimethylbenzene	9.74	1.0	μg/L	10.0		97.4	70-130			
/inyl Chloride	7.91	2.0	μg/L	10.0		79.1	40-160			
n+p Xylene	18.5	2.0	μg/L	20.0		92.6	70-130			
-Xylene	9.07	1.0	$\mu g/L$	10.0		90.7	70-130			
urrogate: 1,2-Dichloroethane-d4	28.4		μg/L	25.0		114	70-130			
urrogate: Toluene-d8	24.4		$\mu g/L$	25.0		97.5	70-130			
durrogate: 4-Bromofluorobenzene	25.0		$\mu g/L$	25.0		99.9	70-130			
CS Dup (B150745-BSD1)				Prepared & A	Analyzed: 06	/06/16				
cetone	121	50	μg/L	100	*	121	70-160	7.21	25	
Acrylonitrile	10.2	5.0	μg/L	10.0		102	70-130	3.58	25	
ert-Amyl Methyl Ether (TAME)	9.58	0.50	μg/L	10.0		95.8	70-130	1.05	25	
Benzene	9.38 8.04	1.0	μg/L μg/L	10.0		80.4	70-130	4.74	25	
Bromobenzene	9.38	1.0	μg/L μg/L	10.0		93.8	70-130	2.01	25	
romochloromethane	9.38 9.96	1.0	μg/L μg/L	10.0		99.6	70-130	1.31	25	
Bromodichloromethane	9.96 9.87	0.50	μg/L μg/L	10.0		98.7	70-130	3.40	25	
Bromoform		1.0	μg/L μg/L	10.0			70-130	2.33	25 25	
romotorm Fromomethane	10.6					106				
	7.61	2.0	μg/L	10.0		76.1	40-160	3.61	25	
-Butanone (MEK)	100	20	μg/L	100		100	40-160	2.33	25	17.06
ert-Butyl Alcohol (TBA)	116	20	μg/L	100		116	40-160	2.01	25	V-06
-Butylbenzene	9.96	1.0	μg/L	10.0		99.6	70-130	4.71	25	
ec-Butylbenzene	9.10	1.0	μg/L	10.0		91.0	70-130	2.28	25	
ert-Butylbenzene	9.15	1.0	μg/L	10.0		91.5	70-130	2.59	25	
ert-Butyl Ethyl Ether (TBEE)	9.90	0.50	μg/L	10.0		99.0	70-130	2.00	25	
arbon Disulfide	8.57	4.0	μg/L	10.0		85.7	70-130	9.03	25	
arbon Tetrachloride	10.3	5.0	μg/L	10.0		103	70-130	3.33	25	
Chlorobenzene	8.46	1.0	μg/L	10.0		84.6	70-130	1.29	25	
Chlorodibromomethane	10.0	0.50	μg/L	10.0		100	70-130	2.73	25	
Chloroethane	9.64	2.0	μg/L	10.0		96.4	70-130	8.35	25	
Chloroform	9.06	2.0	$\mu g/L$	10.0		90.6	70-130	1.86	25	
Chloromethane	10.1	2.0	$\mu g/L$	10.0		101	40-160	0.297	25	V-20
-Chlorotoluene	8.99	1.0	$\mu g/L$	10.0		89.9	70-130	0.222	25	
-Chlorotoluene	8.82	1.0	$\mu g/L$	10.0		88.2	70-130	5.62	25	
,2-Dibromo-3-chloropropane (DBCP)	10.6	5.0	$\mu g/L$	10.0		106	70-130	0.283	25	
,2-Dibromoethane (EDB)	9.49	0.50	$\mu g/L$	10.0		94.9	70-130	4.86	25	
Dibromomethane	9.38	1.0	$\mu g/L$	10.0		93.8	70-130	2.05	25	
,2-Dichlorobenzene	8.90	1.0	$\mu g/L$	10.0		89.0	70-130	1.56	25	
,3-Dichlorobenzene	9.19	1.0	$\mu g/L$	10.0		91.9	70-130	1.83	25	
,4-Dichlorobenzene	8.67	1.0	$\mu g/L$	10.0		86.7	70-130	1.72	25	
ans-1,4-Dichloro-2-butene	11.3	5.0	$\mu g/L$	10.0		113	70-130	1.31	25	
richlorodifluoromethane (Freon 12)	3.70	2.0	μg/L	10.0		37.0 *	40-160	6.28	25	L-04
1-Dichloroethane	9.04	1.0	μg/L	10.0		90.4	70-130	3.26	25	
2-Dichloroethane	9.56	1.0	μg/L	10.0		95.6	70-130	1.48	25	
1-Dichloroethylene	9.02	1.0	μg/L	10.0		90.2	70-130	5.39	25	
s-1,2-Dichloroethylene	8.54	1.0	μg/L	10.0		85.4	70-130	0.584	25	
ans-1,2-Dichloroethylene	8.35	1.0	μg/L	10.0		83.5	70-130	6.38	25	
,2-Dichloropropane	8.51	1.0	μg/L μg/L	10.0		85.1	70-130	0.353	25	
,3-Dichloropropane	8.66	0.50	μg/L μg/L	10.0		86.6	70-130	2.28	25	
,2-Dichloropropane	8.00	1.0	μg/L μg/L	10.0		111	40-130	1.17	25	
,1-Dichloropropene	9.07	2.0	μg/L μg/L	10.0		90.7	70-130	1.17	25	
. Diemoropropone	9.07	2.0	μ _B /L	10.0		70.1	/0-130	1.71		age 19

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B150745 - SW-846 5030B									· · · ·		
LCS Dup (B150745-BSD1)				Prepared &	Analyzed: 06	5/06/16					
cis-1,3-Dichloropropene	8.66	0.50	μg/L	10.0		86.6	70-130	0.346	25		
trans-1,3-Dichloropropene	9.56	0.50	μg/L	10.0		95.6	70-130	0.105	25		
Diethyl Ether	8.68	2.0	μg/L	10.0		86.8	70-130	2.73	25		
Diisopropyl Ether (DIPE)	8.83	0.50	μg/L	10.0		88.3	70-130	2.57	25		
1,4-Dioxane	118	100	μg/L	100		118	40-130	16.0	50	V-20	† ‡
Ethylbenzene	8.77	1.0	μg/L	10.0		87.7	70-130	4.46	25		
Hexachlorobutadiene	11.3	0.50	μg/L	10.0		113	70-130	1.07	25		
2-Hexanone (MBK)	106	10	μg/L	100		106	70-160	2.71	25		†
Isopropylbenzene (Cumene)	9.00	1.0	μg/L	10.0		90.0	70-130	4.45	25		
p-Isopropyltoluene (p-Cymene)	9.69	1.0	μg/L	10.0		96.9	70-130	2.55	25		
Methyl Acetate	6.31	1.0	$\mu g/L$	10.0		63.1 *	70-130	2.57	25	L-04	
Methyl tert-Butyl Ether (MTBE)	8.88	1.0	μg/L	10.0		88.8	70-130	2.78	25		
Methyl Cyclohexane	9.44	1.0	μg/L	10.0		94.4	70-130	0.528	25		
Methylene Chloride	9.65	5.0	μg/L	10.0		96.5	70-130	2.25	25		
4-Methyl-2-pentanone (MIBK)	106	10	μg/L	100		106	70-160	1.50	25		†
Naphthalene	8.53	2.0	μg/L	10.0		85.3	40-130	1.18	25		†
n-Propylbenzene	8.83	1.0	μg/L	10.0		88.3	70-130	2.79	25		
Styrene	8.92	1.0	μg/L	10.0		89.2	70-130	2.33	25		
1,1,1,2-Tetrachloroethane	9.54	1.0	μg/L	10.0		95.4	70-130	3.80	25		
1,1,2,2-Tetrachloroethane	9.34	0.50	μg/L	10.0		93.4	70-130	0.322	25		
Tetrachloroethylene	9.62	1.0	μg/L	10.0		96.2	70-130	2.77	25		
Tetrahydrofuran	10.6	10	μg/L	10.0		106	70-130	2.20	25		
Toluene	8.54	1.0	μg/L	10.0		85.4	70-130	0.352	25		
1,2,3-Trichlorobenzene	9.10	5.0	μg/L	10.0		91.0	70-130	2.28	25		
1,2,4-Trichlorobenzene	10.1	1.0	μg/L	10.0		101	70-130	1.10	25		
1,3,5-Trichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130	2.42	25		
1,1,1-Trichloroethane	9.88	1.0	μg/L	10.0		98.8	70-130	2.79	25		
1,1,2-Trichloroethane	9.17	1.0	μg/L	10.0		91.7	70-130	1.98	25		
Trichloroethylene	9.15	1.0	$\mu \text{g}/L$	10.0		91.5	70-130	3.65	25		
Trichlorofluoromethane (Freon 11)	9.56	2.0	μg/L	10.0		95.6	70-130	4.40	25		
1,2,3-Trichloropropane	8.99	2.0	μg/L	10.0		89.9	70-130	1.44	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.49	1.0	μg/L	10.0		94.9	70-130	6.03	25		
1,2,4-Trimethylbenzene	9.10	1.0	$\mu g/L$	10.0		91.0	70-130	1.31	25		
1,3,5-Trimethylbenzene	9.36	1.0	$\mu g/L$	10.0		93.6	70-130	3.98	25		
Vinyl Chloride	7.66	2.0	$\mu g/L$	10.0		76.6	40-160	3.21	25		†
m+p Xylene	17.8	2.0	$\mu g/L$	20.0		89.0	70-130	4.07	25		
o-Xylene	8.85	1.0	$\mu g/L$	10.0		88.5	70-130	2.46	25		
Surrogate: 1,2-Dichloroethane-d4	28.4		μg/L	25.0		114	70-130				
Surrogate: Toluene-d8	25.0		μg/L	25.0		99.8	70-130				
Surrogate: 4-Bromofluorobenzene	24.7		μg/L	25.0		98.8	70-130				

FLAG/QUALIFIER SUMMARY

†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit
DL	Method Detection Limit
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
V-06	Continuing calibration did not meet method specifications and was biased on the high side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the high side.
V-20	Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

QC result is outside of established limits.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260C in Water	
Acetone	CT,NY,ME,NH,VA
Acrylonitrile	CT,NY,ME,NH,VA
tert-Amyl Methyl Ether (TAME)	NY,ME,NH,VA
Benzene	CT,NY,ME,NH,VA
Bromochloromethane	NY,ME,NH,VA
Bromodichloromethane	CT,NY,ME,NH,VA
Bromoform	CT,NY,ME,NH,VA
Bromomethane	CT,NY,ME,NH,VA
2-Butanone (MEK)	CT,NY,ME,NH,VA
tert-Butyl Alcohol (TBA)	NY,ME,NH,VA
n-Butylbenzene	NY,ME,VA
sec-Butylbenzene	NY,ME,VA
tert-Butylbenzene	NY,ME,VA
tert-Butyl Ethyl Ether (TBEE)	NY,ME,NH,VA
Carbon Disulfide	CT,NY,ME,NH,VA
Carbon Tetrachloride	CT,NY,ME,NH,VA
Chlorobenzene	CT,NY,ME,NH,VA
Chlorodibromomethane	CT,NY,ME,NH,VA
Chloroethane	CT,NY,ME,NH,VA
Chloroform	CT,NY,ME,NH,VA
Chloromethane	CT,NY,ME,NH,VA
2-Chlorotoluene	NY,ME,NH,VA
4-Chlorotoluene	NY,ME,NH,VA
Dibromomethane	NY,ME,NH,VA
1,2-Dichlorobenzene	CT,NY,ME,NH,VA
1,3-Dichlorobenzene	CT,NY,ME,NH,VA
1,4-Dichlorobenzene	CT,NY,ME,NH,VA
trans-1,4-Dichloro-2-butene	NY,ME,NH,VA
Dichlorodifluoromethane (Freon 12)	NY,ME,NH,VA
1,1-Dichloroethane	CT,NY,ME,NH,VA
1,2-Dichloroethane	CT,NY,ME,NH,VA
1,1-Dichloroethylene	CT,NY,ME,NH,VA
cis-1,2-Dichloroethylene	NY,ME
trans-1,2-Dichloroethylene	CT,NY,ME,NH,VA
1,2-Dichloropropane	CT,NY,ME,NH,VA
1,3-Dichloropropane	NY,ME,VA
2,2-Dichloropropane	NY,ME,NH,VA
1,1-Dichloropropene	NY,ME,NH,VA
cis-1,3-Dichloropropene	CT,NY,ME,NH,VA
trans-1,3-Dichloropropene	CT,NY,ME,NH,VA
Diisopropyl Ether (DIPE)	NY,ME,NH,VA
Ethylbenzene	CT,NY,ME,NH,VA
Hexachlorobutadiene	CT,NY,ME,NH,VA
2-Hexanone (MBK)	CT,NY,ME,NH,VA
Isopropylbenzene (Cumene)	NY,ME,VA
p-Isopropyltoluene (p-Cymene)	CT,NY,ME,NH,VA
Methyl tert-Butyl Ether (MTBE)	CT,NY,ME,NH,VA

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260C in Water	
Methylene Chloride	CT,NY,ME,NH,VA
4-Methyl-2-pentanone (MIBK)	CT,NY,ME,NH,VA
Naphthalene	NY,ME,NH,VA
n-Propylbenzene	CT,NY,ME,NH,VA
Styrene	CT,NY,ME,NH,VA
1,1,1,2-Tetrachloroethane	CT,NY,ME,NH,VA
1,1,2,2-Tetrachloroethane	CT,NY,ME,NH,VA
Tetrachloroethylene	CT,NY,ME,NH,VA
Toluene	CT,NY,ME,NH,VA
1,2,3-Trichlorobenzene	NY,ME,NH,VA
1,2,4-Trichlorobenzene	CT,NY,ME,NH,VA
1,3,5-Trichlorobenzene	ME
1,1,1-Trichloroethane	CT,NY,ME,NH,VA
1,1,2-Trichloroethane	CT,NY,ME,NH,VA
Trichloroethylene	CT,NY,ME,NH,VA
Trichlorofluoromethane (Freon 11)	CT,NY,ME,NH,VA
1,2,3-Trichloropropane	NY,ME,NH,VA
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NY,VA
1,2,4-Trimethylbenzene	NY,ME,VA
1,3,5-Trimethylbenzene	NY,ME,VA
Vinyl Chloride	CT,NY,ME,NH,VA
m+p Xylene	CT,NY,ME,NH,VA
o-Xylene	CT,NY,ME,NH,VA

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2016
CT	Connecticut Department of Publile Health	PH-0567	09/30/2017
NY	New York State Department of Health	10899 NELAP	04/1/2017
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2017
RI	Rhode Island Department of Health	LAO00112	12/30/2016
NC	North Carolina Div. of Water Quality	652	12/31/2016
NJ	New Jersey DEP	MA007 NELAP	06/30/2016
FL	Florida Department of Health	E871027 NELAP	06/30/2016
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2016
ME	State of Maine	2011028	06/9/2017
VA	Commonwealth of Virginia	460217	12/14/2016
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2016

CHAIN OF CUSTODY RECORD Email: info@contestlabs.com www.contestlabs.com CO Fax: 413-525-2332 ANALYTICAL LABORATORY

East longmeadow, MA 01028 39 Spruce Street

8 = Sodium bisulfate Dissolved Metals "Container Code O Fleid Filtered # of Containers ** Preservation Lab to Filter S = Sulfuric Acid ***Cont. Code: **Preservation A=amber glass M = Methanol N = Nitric Acid S=summa can T-redlar bag ST =sterile P=plastic 0=Other G=g|3ss V= vial H = HCL l = Iced 0 ANALYSIS REQUESTED 80928 N 201 DOWNA, PALLISTERO A RCAON Cons Corle 20/1 "Enhanced Data Package" Telephone: 401-738-3887 WKOIZIKZ, ODIO ् डाइ *Matrix <u>≥</u> Cade Š M Ž DATA DELIVERY (check all that apply) Composite Grab SPOT SPENCEL OWEBSITE Q Q Q Q S O OTHER FAX DEMAIL Client PO# Project # Date/Time Ending 0201 550 011/ 9 ormat # XB Email Collection 0)//2/0) SIMIC Date/Time Beginning 0/2/0 Client Sample ID / Description 300 METRY CENTER BUND SUTTE 250, WARMICK, RI 02856 KRISTEN AWETE Attention: Doorse becarified Project Location: PROVIDENCE, NO Project Proposal Provided? (for biffing purposes) アンをみるア proposal date イスーム Company Name: ARCA-DIS NW-C MW-J ATCL Con-Test Lab ID Sampled By: Address: O yes_

						ļ			>
\$ ∕	į spiralitais į į į į	Ka De	Relingvished by (signature)		Date/Time:	Turnaround	Detection Limit Requirements	Г	O = other
/	1	4	7		14/11 174)	_ 7-Day		Is your project MCP or RCP ?	
No.	Served	V: (5)	(pature)		Date Tune	☐ 10-Day		O MCP Form Required	
ĺ				6/3/16	17	S other SD		C RCP Form Required	
Pa	nquish		(Mighature)	49/10	Date/I/me:	RUSH	Connecticut:	O MA State DW Form Required PWSID #	
ge		7		Q1 /c q	2	O '24-Hr O '48-Hr		NELAC & ALCONOMICAL NELAC & AL	NELAC & AIHA-I AP 11 C
24	eived by: (s	*S):X	inature)	12/2/10	Date Time:	7 / C Date/Time: D 172.Hr D 14.Day		Acor	Accredited
of		7	- Kalle	1/2/2/18	4.15	[†] Require lab approval Other:	Other:	WBF/	WRE/DRF Certified
26	URNAF	NOON	DIME STARTS A	2T 9:06 A.M. THE	E DAY AFTER	JRNAROUND TIME STARTS AT 9:06 A.M. THE DAY AFTER SAMPLE RECEIPT UNL	ESS THERE ARE QUESTIONS ON YOUR C	PT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OF	ETEL Y OB
3	MCORF	ECT.	TURNAROUND T	TIME WILL NOT S	STARTUNTIL	ALL DEFESTIONS ARE A	NCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT	THE COUNTY OF THE PROPERTY OF	

please be careful not to contaminate this document

Table of Contents

DW= drinking water

Please use the following codes to let Con-Test know if a specific sample

may be high in concentration in Matrix/Conc. Code Box:

いなのつ ゴー

Comments

H - High; M - Medium; L - Low; C - Clean; U - Unknown

S = Soil/solid St = sludge

Anair

GW= groundwater WW = wastewater

"Matrix Code:

T = Na thiosulfate

O = Other

X = Na hydroxide

39 Spruce St.
East Longmeadow, MA. 01028
P: 413-525-2332
F: 413-525-6405
www.contestlabs.com

Page 1 of 2

Sample Receipt Checklist

		RE	ECEIVED	BY:	<u> 418</u>		_DATE:_	4/5	
Was the chain(s) of custody i	relinquished	l and signed	l?	Yes	/	No		No	COC Incl.
2) Does the chain agree with the If not, explain:				Yes		No	***************************************		
3) Are all the samples in good c If not, explain:	ondition?			Yes	<u> </u>	No			
4) How were the samples receiv	red:								
On Ice Direct from S	Sampling	An	nbient		In Coo	ler(s)	•		
Vere the samples received in Te							No		N/A
emperature °C by Temp blank		Te	mperatu	re °C by	y Temp	gun	5.6)	
i) Are there Dissolved samples	for the lab t	o filter?		Yes		No	<u></u>		
Who was notified	Date		Time _						
Who was notified Note: The there any RUSH or SHOR	T HOLDING	TIME samp	les?	Yes	X	No No		-	
Who was notified						•			
				Permi	ssion to	subco	ntract sa	mples?	Yes No
				IL CHID				•	
) I continu where courses are also	rod					te only	I if not al	たつつべいへ	paraved
Location where samples are sto	red:	56T		(Walk-	-in clien	_			pproved
		og In		(Walk- Client	-in clien Signatu	re:) if not al		pproved
		og In Yes _		(Walk- Client	-in clien	re:			pproved
) Do all samples have the prop	er Acid pH:			(Walk- Client	-in clien Signatu	re:			pproved
) Do all samples have the prop) Do all samples have the prop	er Acid pH: er Base pH:	Yes	No	(Walk-	in clien Signatu N/A N/A	re:			pproved
) Do all samples have the prop) Do all samples have the prop 0) Was the PC notified of any d	er Acid pH: er Base pH: iscrepancie	Yess with the Co	No No OC vs th	(Walk-Client	-in clien Signatu N/A N/A	re:Yes			pproved
) Location where samples are stored. Do all samples have the proper to all samples have the proper to the proper	er Acid pH: er Base pH: iscrepancie ontaine	Yess with the Co	No No OC vs th	(Walk-Client	-in clien Signatu N/A N/A	re:Yes		N/A	
) Do all samples have the prop) Do all samples have the prop 0) Was the PC notified of any d C	er Acid pH: er Base pH: iscrepancie	Yess with the Co	No No OC vs th	(Walk-Client	in clien Signatu N/A N/A bles:	Yes		N/A	pproved
) Do all samples have the prop) Do all samples have the prop 0) Was the PC notified of any d C	er Acid pH: er Base pH: iscrepancie ontaine	Yess with the Co	No No OC vs th	(Walk-Client	Signatu N/A N/A Dies: On-Te	Yes		N/A	
) Do all samples have the prop) Do all samples have the prop 0) Was the PC notified of any d C 1 Liter Amber 500 mL Amber	er Acid pH: er Base pH: iscrepancie ontaine	Yess with the Co	No No OC vs th	e samp	Signatu N/A N/A Dies: On-Te	Yes est		N/A	
) Do all samples have the prop) Do all samples have the prop 0) Was the PC notified of any d C 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber)	er Acid pH: er Base pH: iscrepancie ontaine	Yess with the Co	No No OC vs th	e samp t Co	Signatu N/A N/A Dies: On-Te	Yes est per lear jar lear jar		N/A	
) Do all samples have the prop) Do all samples have the prop 0) Was the PC notified of any d C 1 Liter Amber 500 mL Amber	er Acid pH: er Base pH: iscrepancie ontaine	Yess with the Co	No No OC vs th	e samp	Signatu N/A N/A Dies: On-Te Soz ami mber/cl mber/cl	Yes ear jar dear jar dear jar		N/A	
) Do all samples have the prop) Do all samples have the prop 0) Was the PC notified of any d C 1 Liter Amber 500 mL Amber 250 mL Amber (80z amber) 1 Liter Plastic 500 mL Plastic	er Acid pH: er Base pH: iscrepancie ontaine	Yess with the Co	No No OC vs th	e samp t Co 16 8 oz a 4 oz a 2 oz a Plasti	Signatu N/A N/A Dies: On-Te	Yes ear jar lear jar lear jar Ziploc		N/A	
) Do all samples have the prop) Do all samples have the prop 0) Was the PC notified of any d C 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic	er Acid pH: er Base pH: iscrepancie ontaine	Yess with the Co	No No OC vs th	e samp 16 8 oz a 4 oz a 2 oz a Plasti	N/A N/A N/A Dies: O oz aml mber/cl mber/cl mber/cl mber/cl	Yes ear jar ear jar ziploc t		N/A	
) Do all samples have the prop) Do all samples have the prop 0) Was the PC notified of any d C 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic	er Acid pH: er Base pH: iscrepancies ontaine # of cont	Yess with the Co	No No OC vs th	e samp t Co 16 8 oz a 4 oz a 2 oz a Plasti	Signatu N/A N/A Dies: On-Te Soz ami amber/cl amber/cl c Bag / SOC Ki	Yes ear jar		N/A	
) Do all samples have the prop) Do all samples have the prop 0) Was the PC notified of any d C 1 Liter Amber 500 mL Amber 250 mL Amber (80z amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below	er Acid pH: er Base pH: iscrepancies ontaine # of cont	Yess with the Co	No No OC vs th	e samp t Co 16 8 oz a 4 oz a 2 oz a Plasti Per Flas	N/A N/A N/A Notes: On-Te mber/cl mber/cl c Bag / SOC Kirchlorate	Yes Pear jar Pear ja		N/A	

Page 2 of 2 Login Sample Receipt Checklist

(Rejection Criteria Listing - Using Sample Acceptance Policy) Any False statement will be brought to the attention of Client

Question	Answer (True/Fals	e) <u>Comment</u>
	T/F/NA	
1) The cooler's custody seal, if present, is intact.	MA	
The cooler or samples do not appear to have been compromised or tampered with.	T	
3) Samples were received on ice.	7	
4) Cooler Temperature is acceptable.	T	
5) Cooler Temperature is recorded.	7	
6) COC is filled out in ink and legible.	7	
7) COC is filled out with all pertinent information.	T	
8) Field Sampler's name present on COC.	T	
9) There are no discrepancies between the sample IDs on the container and the COC.	T	
10) Samples are received within Holding Time.	7	
11) Sample containers have legible labels.	7	
12) Containers are not broken or leaking.	T	
13) Air Cassettes are not broken/open.	NA	
14) Sample collection date/times are provided.	7	
15) Appropriate sample containers are used.	7	
16) Proper collection media used.	7	
17) No headspace sample bottles are completely filled.	1	
18) There is sufficient volume for all requsted analyses, including any requested MS/MSDs.	T	
19) Trip blanks provided if applicable.	AHA T	
20) VOA sample vials do not have head space or bubble is <6mm (1/4") in diameter.	T	
21) Samples do not require splitting or compositing. Who notified of False	N/A	Date/Time:

Doc #277 Rev. 4 August 2013

Who notified of False statements?

Log-In Technician Initials:

June 10, 2016

Donna Pallister Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250 Warwick, RI 02886

Project Location: Providence, RI

Client Job Number:

Project Number: WK01215.0010

Laboratory Work Order Number: 16F0175

Enclosed are results of analyses for samples received by the laboratory on June 3, 2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
Sample Preparation Information	11
QC Data	12
Air Toxics by EPA Compendium Methods	12
B151214	12
Flag/Qualifier Summary	14
Certifications	15
Chain of Custody/Sample Receipt	17

Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250 Warwick, RI 02886

ATTN: Donna Pallister

PURCHASE ORDER NUMBER:

REPORT DATE: 6/10/2016

PROJECT NUMBER: WK01215.0010

ANALYTICAL SUMMARY

16F0175 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Providence, RI

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
ES #1	16F0175-01	Air		EPA TO-14A	
ES #2	16F0175-02	Air		EPA TO-14A	
MS Front	16F0175-03	Air		EPA TO-14A	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the

best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

ANALYTICAL RESULTS

Project Location: Providence, RI Date Received: 6/3/2016 Field Sample #: ES #1 Sample ID: 16F0175-01 Sample Matrix: Air

Sampled: 6/2/2016 13:40

Sample Description/Location: Sub Description/Location: Canister ID: Canister Size: Flow Controller ID:

Sample Type:

Work Order: 16F0175
Initial Vacuum(in Hg):
Final Vacuum(in Hg):
Receipt Vacuum(in Hg):
Flow Controller Type:
Flow Controller Calibration
RPD Pre and Post-Sampling:

	pp	bv		ug/ı	m3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
Benzene	0.10	0.10		0.32	0.32	2	6/9/16 17:02	TPH
Bromomethane	ND	0.10		ND	0.39	2	6/9/16 17:02	TPH
Carbon Tetrachloride	ND	0.10		ND	0.63	2	6/9/16 17:02	TPH
Chlorobenzene	ND	0.10		ND	0.46	2	6/9/16 17:02	TPH
Chloroethane	ND	0.10		ND	0.26	2	6/9/16 17:02	TPH
Chloroform	0.15	0.10		0.75	0.49	2	6/9/16 17:02	TPH
Chloromethane	ND	0.20		ND	0.41	2	6/9/16 17:02	TPH
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	6/9/16 17:02	TPH
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	6/9/16 17:02	TPH
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	6/9/16 17:02	TPH
1,4-Dichlorobenzene	ND	0.10		ND	0.60	2	6/9/16 17:02	TPH
Dichlorodifluoromethane (Freon 12)	0.24	0.10		1.2	0.49	2	6/9/16 17:02	TPH
1,1-Dichloroethane	ND	0.10		ND	0.40	2	6/9/16 17:02	TPH
1,2-Dichloroethane	ND	0.10		ND	0.40	2	6/9/16 17:02	TPH
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	6/9/16 17:02	TPH
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	6/9/16 17:02	TPH
1,2-Dichloropropane	ND	0.10		ND	0.46	2	6/9/16 17:02	TPH
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	6/9/16 17:02	TPH
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	6/9/16 17:02	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.10		ND	0.70	2	6/9/16 17:02	TPH
Ethylbenzene	ND	0.10		ND	0.43	2	6/9/16 17:02	TPH
Hexachlorobutadiene	ND	0.10		ND	1.1	2	6/9/16 17:02	TPH
Methylene Chloride	4.2	1.0		15	3.5	2	6/9/16 17:02	TPH
Styrene	8.4	0.10		36	0.43	2	6/9/16 17:02	TPH
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	6/9/16 17:02	TPH
Tetrachloroethylene	0.46	0.10		3.1	0.68	2	6/9/16 17:02	TPH
Toluene	4.9	0.10		18	0.38	2	6/9/16 17:02	TPH
1,2,4-Trichlorobenzene	ND	0.10		ND	0.74	2	6/9/16 17:02	TPH
1,1,1-Trichloroethane	ND	0.10		ND	0.55	2	6/9/16 17:02	TPH
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	6/9/16 17:02	TPH
Trichloroethylene	ND	0.10		ND	0.54	2	6/9/16 17:02	TPH
Trichlorofluoromethane (Freon 11)	0.52	0.10		2.9	0.56	2	6/9/16 17:02	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.10		ND	0.77	2	6/9/16 17:02	TPH
1,2,4-Trimethylbenzene	ND	0.10		ND	0.49	2	6/9/16 17:02	TPH
1,3,5-Trimethylbenzene	ND	0.10		ND	0.49	2	6/9/16 17:02	TPH
Vinyl Chloride	ND	0.10		ND	0.26	2	6/9/16 17:02	TPH
m&p-Xylene	0.21	0.20		0.91	0.87	2	6/9/16 17:02	TPH

ANALYTICAL RESULTS

Project Location: Providence, RI Date Received: 6/3/2016 Field Sample #: ES #1 Sample ID: 16F0175-01 Sample Matrix: Air Sampled: 6/2/2016 13:40 Sample Description/Location: Sub Description/Location: Canister ID: Canister Size: Flow Controller ID: Sample Type: Work Order: 16F0175 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type: Flow Controller Calibration RPD Pre and Post-Sampling:

	ppl	bv		ug/ı	m3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
o-Xylene	ND	0.10		ND	0.43	2	6/9/16 17:02	ТРН
Surrogates	% Recov	ery		% REG	C Limits			
4-Bromofluorobenzene (1)		93.5		70-	-130		6/9/16 17:02	

ANALYTICAL RESULTS

Project Location: Providence, RI Date Received: 6/3/2016 Field Sample #: ES #2 Sample ID: 16F0175-02 Sample Matrix: Air

Sampled: 6/2/2016 13:45

Sample Description/Location: Sub Description/Location: Canister ID: Canister Size: Flow Controller ID:

Sample Type:

Work Order: 16F0175 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type: Flow Controller Calibration RPD Pre and Post-Sampling:

	ppl	bv		ug/r	n3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
Benzene	ND	0.10		ND	0.32	2	6/9/16 17:43	TPH
Bromomethane	ND	0.10		ND	0.39	2	6/9/16 17:43	TPH
Carbon Tetrachloride	ND	0.10		ND	0.63	2	6/9/16 17:43	TPH
Chlorobenzene	ND	0.10		ND	0.46	2	6/9/16 17:43	TPH
Chloroethane	ND	0.10		ND	0.26	2	6/9/16 17:43	TPH
Chloroform	0.18	0.10		0.89	0.49	2	6/9/16 17:43	TPH
Chloromethane	ND	0.20		ND	0.41	2	6/9/16 17:43	TPH
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	6/9/16 17:43	TPH
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	6/9/16 17:43	TPH
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	6/9/16 17:43	TPH
1,4-Dichlorobenzene	ND	0.10		ND	0.60	2	6/9/16 17:43	TPH
Dichlorodifluoromethane (Freon 12)	0.51	0.10		2.5	0.49	2	6/9/16 17:43	TPH
1,1-Dichloroethane	ND	0.10		ND	0.40	2	6/9/16 17:43	TPH
1,2-Dichloroethane	ND	0.10		ND	0.40	2	6/9/16 17:43	TPH
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	6/9/16 17:43	TPH
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	6/9/16 17:43	TPH
1,2-Dichloropropane	ND	0.10		ND	0.46	2	6/9/16 17:43	TPH
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	6/9/16 17:43	TPH
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	6/9/16 17:43	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	0.19	0.10		1.4	0.70	2	6/9/16 17:43	TPH
Ethylbenzene	ND	0.10		ND	0.43	2	6/9/16 17:43	TPH
Hexachlorobutadiene	ND	0.10		ND	1.1	2	6/9/16 17:43	TPH
Methylene Chloride	5.0	1.0		17	3.5	2	6/9/16 17:43	TPH
Styrene	8.3	0.10		35	0.43	2	6/9/16 17:43	TPH
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	6/9/16 17:43	TPH
Tetrachloroethylene	1.2	0.10		7.9	0.68	2	6/9/16 17:43	TPH
Toluene	5.0	0.10		19	0.38	2	6/9/16 17:43	TPH
1,2,4-Trichlorobenzene	ND	0.10		ND	0.74	2	6/9/16 17:43	TPH
1,1,1-Trichloroethane	ND	0.10		ND	0.55	2	6/9/16 17:43	TPH
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	6/9/16 17:43	TPH
Trichloroethylene	0.20	0.10		1.1	0.54	2	6/9/16 17:43	TPH
Trichlorofluoromethane (Freon 11)	0.69	0.10		3.9	0.56	2	6/9/16 17:43	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.10		ND	0.77	2	6/9/16 17:43	TPH
1,2,4-Trimethylbenzene	0.12	0.10		0.59	0.49	2	6/9/16 17:43	TPH
1,3,5-Trimethylbenzene	ND	0.10		ND	0.49	2	6/9/16 17:43	TPH
Vinyl Chloride	ND	0.10		ND	0.26	2	6/9/16 17:43	TPH
m&p-Xylene	0.25	0.20		1.1	0.87	2	6/9/16 17:43	TPH

ANALYTICAL RESULTS

Project Location: Providence, RI Date Received: 6/3/2016 Field Sample #: ES #2 Sample ID: 16F0175-02 Sample Matrix: Air Sampled: 6/2/2016 13:45 Sample Description/Location: Sub Description/Location: Canister ID: Canister Size: Flow Controller ID:

Sample Type:

Work Order: 16F0175 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type: Flow Controller Calibration RPD Pre and Post-Sampling:

		_						
	ppl	ov		ug/ı	m3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
o-Xylene	0.11	0.10		0.48	0.43	2	6/9/16 17:43	TPH
Surrogates	% Recov	ery		% REC	C Limits			
4-Bromofluorobenzene (1)		95.0		70-	-130		6/9/16 17:43	

ANALYTICAL RESULTS

Project Location: Providence, RI Date Received: 6/3/2016 Field Sample #: MS Front Sample ID: 16F0175-03 Sample Matrix: Air Sampled: 6/2/2016 15:45 Sample Description/Location: Sub Description/Location: Canister ID: Canister Size: Flow Controller ID:

Sample Type:

Work Order: 16F0175 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type: Flow Controller Calibration RPD Pre and Post-Sampling:

EPA T	O-14 <i>A</i>	١
-------	---------------	---

	pp	bv		ug/r	n3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
Benzene	0.13	0.10		0.41	0.32	2	6/9/16 18:24	TPH
Bromomethane	ND	0.10		ND	0.39	2	6/9/16 18:24	TPH
Carbon Tetrachloride	0.10	0.10		0.64	0.63	2	6/9/16 18:24	TPH
Chlorobenzene	ND	0.10		ND	0.46	2	6/9/16 18:24	TPH
Chloroethane	ND	0.10		ND	0.26	2	6/9/16 18:24	TPH
Chloroform	ND	0.10		ND	0.49	2	6/9/16 18:24	TPH
Chloromethane	0.34	0.20		0.71	0.41	2	6/9/16 18:24	TPH
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	6/9/16 18:24	TPH
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	6/9/16 18:24	TPH
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	6/9/16 18:24	TPH
1,4-Dichlorobenzene	ND	0.10		ND	0.60	2	6/9/16 18:24	TPH
Dichlorodifluoromethane (Freon 12)	0.30	0.10		1.5	0.49	2	6/9/16 18:24	TPH
1,1-Dichloroethane	ND	0.10		ND	0.40	2	6/9/16 18:24	TPH
1,2-Dichloroethane	ND	0.10		ND	0.40	2	6/9/16 18:24	TPH
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	6/9/16 18:24	TPH
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	6/9/16 18:24	TPH
1,2-Dichloropropane	ND	0.10		ND	0.46	2	6/9/16 18:24	TPH
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	6/9/16 18:24	TPH
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	6/9/16 18:24	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	0.11	0.10		0.78	0.70	2	6/9/16 18:24	TPH
Ethylbenzene	0.12	0.10		0.50	0.43	2	6/9/16 18:24	TPH
Hexachlorobutadiene	ND	0.10		ND	1.1	2	6/9/16 18:24	TPH
Methylene Chloride	4.9	1.0		17	3.5	2	6/9/16 18:24	TPH
Styrene	8.9	0.10		38	0.43	2	6/9/16 18:24	TPH
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	6/9/16 18:24	TPH
Tetrachloroethylene	0.15	0.10		1.0	0.68	2	6/9/16 18:24	TPH
Toluene	5.5	0.10		21	0.38	2	6/9/16 18:24	TPH
1,2,4-Trichlorobenzene	ND	0.10		ND	0.74	2	6/9/16 18:24	TPH
1,1,1-Trichloroethane	ND	0.10		ND	0.55	2	6/9/16 18:24	TPH
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	6/9/16 18:24	TPH
Trichloroethylene	ND	0.10		ND	0.54	2	6/9/16 18:24	TPH
Trichlorofluoromethane (Freon 11)	0.68	0.10		3.8	0.56	2	6/9/16 18:24	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.10		ND	0.77	2	6/9/16 18:24	TPH
1,2,4-Trimethylbenzene	0.13	0.10		0.66	0.49	2	6/9/16 18:24	TPH
1,3,5-Trimethylbenzene	ND	0.10		ND	0.49	2	6/9/16 18:24	TPH
Vinyl Chloride	ND	0.10		ND	0.26	2	6/9/16 18:24	TPH
m&p-Xylene	0.39	0.20		1.7	0.87	2	6/9/16 18:24	TPH

ANALYTICAL RESULTS

Project Location: Providence, RI Date Received: 6/3/2016 Field Sample #: MS Front Sample ID: 16F0175-03 Sample Matrix: Air Sampled: 6/2/2016 15:45 Sample Description/Location: Sub Description/Location: Canister ID: Canister Size: Flow Controller ID:

Sample Type:

Work Order: 16F0175
Initial Vacuum(in Hg):
Final Vacuum(in Hg):
Receipt Vacuum(in Hg):
Flow Controller Type:
Flow Controller Calibration
RPD Pre and Post-Sampling:

	pp	bv		ug/ı	n3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
o-Xylene	0.15	0.10		0.67	0.43	2	6/9/16 18:24	ТРН
Surrogates	% Recov	very		% REC	C Limits			
4-Bromofluorobenzene (1)		93.6		70-	130		6/9/16 18:24	

Sample Extraction Data

Prep Method: TO-15 Prep-EPA TO-14A		Pressure	Pre	Pre-Dil Initial	Pre-Dil Final	Default Injection	Actual Injection	
Lab Number [Field ID]	Batch	Dilution	Dilution	mL	mL	mL	mL	Date
16F0175-01 [ES #1]	B151214	1	1	N/A	1000	400	200	06/09/16
16F0175-02 [ES #2]	B151214	1	1	N/A	1000	400	200	06/09/16
16F0175-03 [MS Front]	B151214	1	1	N/A	1000	400	200	06/09/16

Surrogate: 4-Bromofluorobenzene (1)

7.26

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

	ppbv		ug/m3		Spike Level	Source		%REC		RPD	
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag/Qual

Blank (B151214-BLK1)			Prepared & Analyzed: 06/09/16
Benzene	ND	0.035	
Bromomethane	ND	0.035	
Carbon Tetrachloride	ND	0.035	
Chlorobenzene	ND	0.035	
Chloroethane	ND	0.035	
Chloroform	ND	0.035	
Chloromethane	ND	0.070	
,2-Dibromoethane (EDB)	ND	0.035	
,2-Dichlorobenzene	ND	0.035	
,3-Dichlorobenzene	ND	0.035	
,4-Dichlorobenzene	ND	0.035	
Dichlorodifluoromethane (Freon 12)	ND	0.035	
,1-Dichloroethane	ND	0.035	
,2-Dichloroethane	ND	0.035	
,1-Dichloroethylene	ND	0.035	
is-1,2-Dichloroethylene	ND	0.035	
,2-Dichloropropane	ND	0.035	
s-1,3-Dichloropropene	ND	0.035	
ans-1,3-Dichloropropene	ND	0.035	
2-Dichloro-1,1,2,2-tetrafluoroethane reon 114)	ND	0.035	
hylbenzene	ND	0.035	
exachlorobutadiene	ND	0.035	
ethylene Chloride	ND	0.35	
yrene	ND	0.035	
,2,2-Tetrachloroethane	ND	0.035	
trachloroethylene	ND	0.035	
luene	ND	0.035	
2,4-Trichlorobenzene	ND	0.035	
1,1-Trichloroethane	ND	0.035	
1,2-Trichloroethane	ND	0.035	
richloroethylene	ND	0.035	
richlorofluoromethane (Freon 11)	ND	0.035	
1,2-Trichloro-1,2,2-trifluoroethane (Freon 3)	ND	0.035	
,2,4-Trimethylbenzene	ND	0.035	
,3,5-Trimethylbenzene	ND	0.035	
7inyl Chloride	ND	0.035	
&p-Xylene	ND	0.070	
Xylene	ND	0.035	

8.00

70-130

90.8

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

Analyte	ppbv Results RL	ug/m3 Results RL	Spike Level ppbv	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag/Qual
Batch B151214 - TO-15 Prep									
LCS (B151214-BS1)			Prepared & A	Analyzed: 06/09)/16				
Benzene	5.18		5.00		104	70-130			
Bromomethane	4.40		5.00		88.1	70-130			
Carbon Tetrachloride	6.31		5.00		126	70-130			
Chlorobenzene	4.30		5.00		86.0	70-130			
Chloroethane	4.50		5.00		89.9	70-130			
Chloroform	4.68		5.00		93.6	70-130			
Chloromethane	5.40		5.00		108	70-130			
1,2-Dibromoethane (EDB)	5.05		5.00		101	70-130			
1,2-Dichlorobenzene	4.79		5.00		95.8	70-130			
1,3-Dichlorobenzene	5.00		5.00		100	70-130			
1,4-Dichlorobenzene	4.86		5.00		97.3	70-130			
Dichlorodifluoromethane (Freon 12)	4.36		5.00		87.1	70-130			
1,1-Dichloroethane	4.29		5.00		85.8	70-130			
1,2-Dichloroethane	5.50		5.00		110	70-130			
1,1-Dichloroethylene	5.52		5.00		110	70-130			
cis-1,2-Dichloroethylene	4.32		5.00		86.5	70-130			
1,2-Dichloropropane	4.66		5.00		93.1	70-130			
cis-1,3-Dichloropropene	6.17		5.00		123	70-130			
trans-1,3-Dichloropropene	6.32		5.00		126	70-130			
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	3.73		5.00		74.5	70-130			
Ethylbenzene	5.49		5.00		110	70-130			
Hexachlorobutadiene	5.22		5.00		104	70-130			
Methylene Chloride	5.35		5.00		107	70-130			
Styrene	4.82		5.00		96.3	70-130			
1,1,2,2-Tetrachloroethane	5.60		5.00		112	70-130			
Tetrachloroethylene	4.40		5.00		88.0	70-130			
Toluene	4.98		5.00		99.6	70-130			
1,2,4-Trichlorobenzene	4.38		5.00		87.6	70-130			
1,1,1-Trichloroethane	6.41		5.00		128	70-130			
1,1,2-Trichloroethane	4.77		5.00		95.4	70-130			
Trichloroethylene	5.35		5.00		107	70-130			
Trichlorofluoromethane (Freon 11)	5.52		5.00		110	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	5.15		5.00		103	70-130			
1,2,4-Trimethylbenzene	5.68		5.00		114	70-130			
1,3,5-Trimethylbenzene	5.74		5.00		115	70-130			
Vinyl Chloride	4.46		5.00		89.1	70-130			
m&p-Xylene	12.0		10.0		120	70-130			

5.00

8.00

118

95.1

70-130

70-130

5.90

7.61

o-Xylene

Surrogate: 4-Bromofluorobenzene (1)

FLAG/QUALIFIER SUMMARY

* OC res	sult is outside of	f established limits.
----------	--------------------	-----------------------

† Wide recovery limits established for difficult compound.

‡ Wide RPD limits established for difficult compound.

Data exceeded client recommended or regulatory level

ND Not Detected

RL Reporting Limit

DL Method Detection Limit

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

CERTIFICATIONS

Certified Analyses included in this Report

EPET TO-HA In AIF BRORDER AHA FL, NY Carbon Tetrachloride AHA, FL, NY Chiorosherune AHA, FL, NY Chiorosherune AHA, FL, NY Chiorosherune AHA, FL, NY Chiorosherune AHA, FL, NY 1, 2-Dichloroshurae AHA, FL, NY 1, 3-Dichloroshurae AHA, FL, NY 1, 3-Dichloroshurae AHA, FL, NY 1, 4-Dichloroshurae AHA, FL, NY 1, 1, 1-Dichloroshurae AHA, FL, NY 1, 1-Dichlorospopene AHA, FL, NY 1, 1, 2-Dichlorospopene AHA, FL, NY Ny AHA, FL, NY 1, 1, 2-Dichlorospopene AHA, FL, NY Ny AHA, FL, NY <	Analyte	Certifications
Bromomethane AllIA,FL,NY Carbon Extrachloride AllIA,FL,NY Chlorocetrane AllIA,FL,NY Chlorocethane AllIA,FL,NY Chloromethane AllIA,FL,NY 1,2-Dichorocethane (EDB) NY 1,2-Dichorocethane (EDB) NY 1,3-Dichlorocethane AllIA,FL,NY 1,4-Dichlorocethane AllIA,FL,NY 1,4-Dichlorocethane (Freon 12) AllIA,FL,NY 1,1-Dichlorocethane AllIA,FL,NY 1,1-Dichlorocethane AllIA,FL,NY 1,1-Dichlorocethylene AllIA,FL,NY 1,2-Dichlorocethylene AllIA,FL,NY cis-1,2-Dichlorocethylene AllIA,FL,NY cis-1,3-Dichloropropene AllIA,FL,NY trans-1,3-Dichloropropene AllIA,FL,NY Etypleacuse AllIA,FL,NY Tolace AllIA,FL,NY	EPA TO-14A in Air	
Carbon Termeditoride AHA,FL,NY Chloroedmane AHA,FL,NY Chloroedmane AHA,FL,NY Chloromedmane AHA,FL,NY 1,2-Dichromoedmane (EDB) NY 1,3-Dichlorobenzene AHA,FL,NY 1,4-Dichlorobenzene AHA,FL,NY 1,4-Dichlorobenzene AHA,FL,NY 1,4-Dichloroedmane (Freen 12) AHA,FL,NY 1,1-Dichloroedmane AHA,FL,NY 1,2-Dichloroedmane AHA,FL,NY 1,1-Dichloroedmane AHA,FL,NY 1,1-Dichloroedmane AHA,FL,NY 1,2-Dichloroedmane AHA,FL,NY 1,2-Dichloroedmane AHA,FL,NY 1,2-Dichloropropene AHA,FL,NY 1,2-Dichloropropene AHA,FL,NY 1,2-Dichloropropene AHA,FL,NY 1,2-Dichloroedmane AHA,FL,NY Hetachlorobutatione AHA,FL,NY Metachlorobutatione AHA,FL,NY Maybene Chloride AHA,FL,NY Toluene AHA,FL,NY Toluene AHA,FL,NY Toluene AHA,FL,NY Tickl	Benzene	AIHA,FL,NY
Chlorocheme AHA,FL,NY Chlorocheme AHA,FL,NY Chloromethane AHA,FL,NY Chloromethane (EDB) NY 1,2-Dichlorochemene AHA,FL,NY 1,3-Dichlorochemene AHA,FL,NY 1,4-Dichlorochemene AHA,FL,NY 1,4-Dichlorochemene AHA,FL,NY 1,4-Dichlorochemene AHA,FL,NY 1,2-Dichlorochemene AHA,FL,NY 1,2-Dichlorochemene AHA,FL,NY 1,2-Dichlorochylore AHA,FL,NY 1,2-Dichlorochylore AHA,FL,NY 1,2-Dichloropropene AHA,FL,NY 1,2-Dichloropropene AHA,FL,NY 1,2-Dichloropropene AHA,FL,NY 1,2-Dichlorochulame AHA,FL,NY Hesachorobutadine AHA,FL,NY Mathylanc Chloride AHA,FL,NY Syrene AHA,FL,NY Tolloene AHA,FL,NY Tolloene AHA,FL,NY Tolloene AHA,FL,NY Tolloene AHA,FL,NY Tolloene AHA,FL,NY Tolloene AHA,FL,NY <td>Bromomethane</td> <td>AIHA,FL,NY</td>	Bromomethane	AIHA,FL,NY
Chloroethane AlHA,FL,NY Chloromethane AlHA,FL,NY 1.2-Dicknowethane (EDB) NY 1.2-Dickhoroethane (EDB) NY 1.2-Dickhoroethane AlHA,FL,NY 1.3-Dickhoroethane AlHA,FL,NY Dickhoroethane (Freen 12) AlHA,FL,NY 1.1-Dickhoroethane (Freen 12) AlHA,FL,NY 1.2-Dickhoroethylene AlHA,FL,NY 1.2-Dickhoroethylene AlHA,FL,NY 1.2-Dickhoroptylene AlHA,FL,NY 1.2-Dickhoroptylene AlHA,FL,NY 1.2-Dickhoroptylene AlHA,FL,NY 1.2-Dickhoroptylene NY 1.2-Dickhoroptylene AlHA,FL,NY 5-bydylbenzene AlHA,FL,NY Methylene Chloride AlHA,FL,NY Methylene Chloride AlHA,FL,NY Styrene AlHA,FL,NY Tetrachloroethylene AlHA,FL,NY Tetrachloroethane AlHA,FL,NY Tickberthoroethane AlHA,FL,NY 1,1,2-Tirckhoroethane AlHA,FL,NY 1,1,2-Tirckhoroethane AlHA,FL,NY 1,1,1-Tirckhoroethane <t< td=""><td>Carbon Tetrachloride</td><td>AIHA,FL,NY</td></t<>	Carbon Tetrachloride	AIHA,FL,NY
Chloroform AllIA,FL,NY Chloromethane AllIA,FL,NY 1,2-Dishorobenzene AllIA,FL,NY 1,3-Dishorobenzene AllIA,FL,NY 1,4-Dishorobenzene AllIA,FL,NY 1,4-Dishorothane AllIA,FL,NY 1,1-Dishorothane AllIA,FL,NY 1,1-Dishorothane AllIA,FL,NY 1,1-Dishorothylene AllIA,FL,NY 1,2-Dishorothylene AllIA,FL,NY 1,2-Dishorothylene AllIA,FL,NY 1,2-Dishorothylene AllIA,FL,NY 1,2-Dishorothylene AllIA,FL,NY 1,2-Dishorothylene AllIA,FL,NY 1,2-Dishorothylene AllIA,FL,NY Ethylbenzene AllIA,FL,NY Hekarbiorothylene (Freon 114) AllIA,FL,NY Hekarbiorothylene AllIA,FL,NY 1,1,2-Tetrachlorochane AllIA,FL,NY 1,1,2-Tetrachlorochane AllIA,FL,NY 1,1,1-Trichlorochane AllIA,FL,NY 1,1,1-Trichlorochane AllIA,FL,NY 1,1,2-Trichlorochane AllIA,FL,NY 1,1,2-Trinchlorochane AllIA,FL,NY 1,1,2	Chlorobenzene	AIHA,FL,NY
Chloromethane AIII.A.FL.NY 1,2-Dichlorobenzene AIHA.FL.NY 1,3-Dichlorobenzene AIHA.FL.NY 1,4-Dichlorobenzene AIHA.FL.NY 1,4-Dichlorodenzene AIHA.FL.NY 1,1-Dichlorodenzene AIHA.FL.NY 1,1-Dichlorodenzene AIHA.FL.NY 1,1-Dichlorodenzene AIHA.FL.NY 1,2-Dichlorodenzene AIHA.FL.NY 1,1-Dichlorodenzene AIHA.FL.NY 1,2-Dichlorodenzene AIHA.FL.NY 1,2-Dichlorodenzene AIHA.FL.NY 1,2-Dichloropenpene AIHA.FL.NY 1,2-Fistanchoropenpene AIHA.FL.NY 1,2-Fistanchoropenpene AIHA.FL.NY 1,1,2-Fistanchoropenpene AIHA.FL.NY 1,1,1-Tichloropenpene AIHA.FL.NY 1,1,1-Tichloropenpene AIHA.FL.NY 1,1,1-Tichloropenpene AIHA.FL.NY 1,1,1-Tichloropenpene AIHA.FL.NY 1,1,1-Tichloropenpene AIHA.FL.NY 1,1,1-Tichloropenpene AIHA.FL.NY 1,1,2-Tichloropenpene AIHA.FL.NY 1,2,3-Tirmethylbenzene AIHA.FL.NY	Chloroethane	AIHA,FL,NY
1,2-Dichlorobenzene AHA,FL,NY 1,3-Dichlorobenzene AHA,FL,NY 1,4-Dichlorobenzene AHIA,FL,NY 1,1-Dichlorodifluoromethane (Froon 12) AHA,FL,NY 1,1-Dichlorochane AHA,FL,NY 1,2-Dichlorochylene AHA,FL,NY 1,2-Dichlorochylene AHA,FL,NY 1,2-Dichlorochylene AHA,FL,NY 1,2-Dichloropropene AHA,FL,NY 1,2-Dichloropropene AHA,FL,NY 1,2-Dichloropropene NY 1,2-Dichloropropene AHA,FL,NY Hecachorobutaliene AHA,FL,NY Herachorobutaliene AHA,FL,NY 1,1,2-Trichlorobenzene AHA,FL,NY 1,1,1-Trichlorobenzene AHA,FL,NY Trichlorochylene	Chloroform	AIHA,FL,NY
1,2-Dichlorobenzene	Chloromethane	AIHA,FL,NY
1,4-Dichlorobenzene	1,2-Dibromoethane (EDB)	NY
AlhA,FL,NY Dichlorodifluoromethane (Fron 12) AlhA,FL,NY 1,1-Dichloroethane AlhA,FL,NY 1,2-Dichloroethylene AlhA,FL,NY 1,2-Dichloroethylene AlhA,FL,NY 1,2-Dichloropropane AlhA,FL,NY 1,2-Dichloro-1,1,2-tetrafluoroethane (Fron 114) AlhA,FL,NY 1,1-Dichlorothylene AlhA,FL,NY 1,1-Tinchloroethane AlhA,FL,NY 1,1-Tinchloroethane (Fron 11) AlhA,FL,NY 1,1-Tinchloroethane (Fron 113) NY 1,2-Tinchloroethane (Fron 114,FL,NY 1,3-Tincethylbenzene AlhA,FL,NY 1,4-Tinchloroethylene AlhA,FL,NY 1,4-Tinchloroethylene AlhA,FL,NY 1,4-Tinchloroethylene AlhA,FL,NY 1,4-Tinchloroethylene AlhA,FL,NY 1,4-Tinchloroethylene AlhA,FL,NY 1,4-Tinchloroethylene AlhA,FL,NY 1,4-Tinchloroethyle	1,2-Dichlorobenzene	AIHA,FL,NY
Dichlorodifluoromethane (Freon 12) AIHA,FL,NY 1,1-Dichloroethane AIHA,FL,NY 1,1-Dichloroethylene AIHA,FL,NY cis-1,2-Dichloroethylene AIHA,FL,NY cis-1,3-Dichloropropane AIHA,FL,NY trans-1,3-Dichloropropene NY 1,2-Dichloro-1,1,2-Leterafluoroethane (Freon 114) AIHA,FL,NY 1,2-Dichloro-1,1,2-Leterafluoroethane (Freon 114) AIHA,FL,NY Hexachlorobutadiene AIHA,FL,NY Methylene Chloride AIHA,FL,NY Styrene AIHA,FL,NY 1,1,2-Tetrachloroethane AIHA,FL,NY Toluene AIHA,FL,NY 1,2,4-Trichlorobenzene AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethane (Freon 11) AIHA,FL,NY Trichloroethane (Freon 11) AIHA,FL,NY Trichloroethane (Freon 11) AIHA,FL,NY Tr	1,3-Dichlorobenzene	AIHA,FL,NY
1,1-Dichloroethane AHA,FL,NY 1,2-Dichloroethylene AHA,FL,NY cis-1,2-Dichloroethylene AHA,FL,NY 1,2-Dichloropropane AHA,FL,NY cis-1,3-Dichloropropene AHA,FL,NY trans-1,3-Dichloropropene NY 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) AHA,FL,NY Ethylbenzene AHA,FL,NY Hexachlorobutadiene AHA,FL,NY Methylene Chloride AHA,FL,NY Syrene AHA,FL,NY 1,1,2,2-Tetrachloroethane AHA,FL,NY Tetrachloroethylene AHA,FL,NY Toluene AHA,FL,NY 1,1,1-Trichloroethane AHA,FL,NY 1,1,2-Trichloroethane AHA,FL,NY 1,1,2-Trichloroethane AHA,FL,NY Trichloroethylene AHA,FL,NY Trichloroethane (Fron 11) AHA,FL,NY Trichloroethylene AHA,FL,NY Trichloroethylene AHA,FL,NY Trichloroethane (Fron 11) AHA,FL,NY Trichloroethylene AHA,FL,NY Trichloroethylene AHA,FL,NY Trichloroet	1,4-Dichlorobenzene	AIHA,FL,NY
1,2-Dichloroethylene	Dichlorodifluoromethane (Freon 12)	AIHA,FL,NY
1,1-Dichloroethylene	1,1-Dichloroethane	AIHA,FL,NY
cis-1,2-Dichloroptopane AlHA,FL,NY cis-1,3-Dichloropropene AlHA,FL,NY trans-1,3-Dichloropropene NY 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) AlHA,FL,NY Ethylbenzene AlHA,FL,NY Hexachlorobutadiene AlHA,FL,NY Methylene Chloride AlHA,FL,NY Styrene AlHA,FL,NY 1,1,2-2-Tetrachloroethane AlHA,FL,NY Toluene AlHA,FL,NY 1,2,4-Trichloroethane AlHA,FL,NY 1,1,1-Trichloroethane AlHA,FL,NY 1,1,2-Trichloroethane AlHA,FL,NY 1,1,2-Trichloroethane AlHA,FL,NY 1,1,2-Trichloroethane AlHA,FL,NY 1,1,2-Trichloroethane (Freon 11) AlHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AlHA,FL,NY Vinyl Chloride AlHA,FL,NY Winyl Chloride AlHA,FL,NY	1,2-Dichloroethane	AIHA,FL,NY
1,2-Dichloropropene AlHA,FL,NY cis-1,3-Dichloropropene AlHA,FL,NY trans-1,3-Dichloropropene NY 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Fron 114) AlHA,FL,NY Ethylbenzene AlHA,FL,NY Hexachlorobutadiene AlHA,FL,NY Methylene Chloride AlHA,FL,NY Styrene AlHA,FL,NY 1,1,2,2-Tetrachloroethane AlHA,FL,NY Totuene AlHA,FL,NY 1,2,4-Trichloroethane AlHA,FL,NY 1,1,1-Trichloroethane AlHA,FL,NY 1,1,2-Trichloroethane AlHA,FL,NY Trichloroethylene AlHA,FL,NY Trichloroethane (Freon 11) AlHA,FL,NY Trichloroethone (Freon 113) NY 1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2-T-Trimethylbenzene AlHA,FL,NY Vinyl Chloride AlHA,FL,NY Winyl Chloride AlHA,FL,NY	1,1-Dichloroethylene	AIHA,FL,NY
cis-1,3-Dichloropropene trans-1,3-Dichloropropene NY 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) Ethylbenzene AIHA,FL,NY Hexachlorobutadiene AIHA,FL,NY Methylene Chloride AIHA,FL,NY Methylene Chloride AIHA,FL,NY Styrene AIHA,FL,NY 1,1,2,2-Tetrachloroethane AIHA,FL,NY Totuene AIHA,FL,NY 1,2,4-Trichlorobenzene AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethane (Freon 11) AIHA,FL,NY Trichloroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY Vinyl Chloride AIHA,FL,NY M&P-Xylene AIHA,FL,NY	cis-1,2-Dichloroethylene	AIHA,FL,NY
trans-1,3-Dichloropropene NY 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) AIHA,FL,NY Ethylbenzene AIHA,FL,NY Hexachlorobutadiene AIHA,FL,NY Methylene Chloride AIHA,FL,NY Styrene AIHA,FL,NY 1,1,2,2-Tetrachloroethane AIHA,FL,NY Tetrachloroethylene AIHA,FL,NY Toluene AIHA,FL,NY 1,1,2-Trichlorobenzene AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	1,2-Dichloropropane	AIHA,FL,NY
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) Ethylbenzene AIHA,FL,NY Hexachlorobutadiene AIHA,FL,NY Methylene Chloride AIHA,FL,NY Styrene AIHA,FL,NY I,1,2,2-Tetrachloroethane AIHA,FL,NY Toluene AIHA,FL,NY Toluene AIHA,FL,NY 1,2,4-Trichlorobenzene AIHA,FL,NY I,1,1-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY Vinyl Chloride AIHA,FL,NY M&p-Xylene	cis-1,3-Dichloropropene	AIHA,FL,NY
Ethylbenzene AIHA,FL,NY Hexachlorobutadiene AIHA,FL,NY Methylene Chloride AIHA,FL,NY Styrene AIHA,FL,NY 1,1,2,2-Tetrachloroethane AIHA,FL,NY Tetrachloroethylene AIHA,FL,NY Toluene AIHA,FL,NY 1,2,4-Trichlorobenzene AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY Vinyl Chloride AIHA,FL,NY	trans-1,3-Dichloropropene	NY
Hexachlorobutadiene AIHA,FL,NY Methylene Chloride AIHA,FL,NY Styrene AIHA,FL,NY 1,1,2,2-Tetrachloroethane AIHA,FL,NY Tetrachloroethylene AIHA,FL,NY Toluene AIHA,FL,NY 1,2,4-Trichlorobenzene AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY Web-Xylene AIHA,FL,NY	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	AIHA,FL,NY
Methylene Chloride AIHA,FL,NY Styrene AIHA,FL,NY 1,1,2,2-Tetrachloroethane AIHA,FL,NY Tetrachloroethylene AIHA,FL,NY Toluene AIHA,FL,NY 1,2,4-Trichloroethane AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY I,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY M&p-Xylene AIHA,FL,NY	Ethylbenzene	AIHA,FL,NY
Styrene AIHA,FL,NY 1,1,2,2-Tetrachloroethane AIHA,FL,NY Tetrachloroethylene AIHA,FL,NY Toluene AIHA,FL,NY 1,2,4-Trichlorobenzene AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	Hexachlorobutadiene	AIHA,FL,NY
1,1,2,2-TetrachloroethaneAIHA,FL,NYTetrachloroethyleneAIHA,FL,NYTolueneAIHA,FL,NY1,2,4-TrichlorobenzeneAIHA,FL,NY1,1,1-TrichloroethaneAIHA,FL,NY1,1,2-TrichloroethaneAIHA,FL,NYTrichloroethyleneAIHA,FL,NYTrichlorofluoromethane (Freon 11)AIHA,FL,NY1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)NY1,2,4-TrimethylbenzeneAIHA,FL,NY1,3,5-TrimethylbenzeneAIHA,FL,NYVinyl ChlorideAIHA,FL,NYm&p-XyleneAIHA,FL,NY	Methylene Chloride	AIHA,FL,NY
Tetrachloroethylene AIHA,FL,NY Toluene AIHA,FL,NY 1,2,4-Trichlorobenzene AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	Styrene	AIHA,FL,NY
Toluene AIHA,FL,NY 1,2,4-Trichlorobenzene AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	1,1,2,2-Tetrachloroethane	AIHA,FL,NY
1,2,4-Trichloroethane AIHA,FL,NY 1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	Tetrachloroethylene	AIHA,FL,NY
1,1,1-Trichloroethane AIHA,FL,NY 1,1,2-Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	Toluene	AIHA,FL,NY
1,1,2-Trichloroethane AIHA,FL,NY Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	1,2,4-Trichlorobenzene	AIHA,FL,NY
Trichloroethylene AIHA,FL,NY Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	1,1,1-Trichloroethane	AIHA,FL,NY
Trichlorofluoromethane (Freon 11) AIHA,FL,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) NY 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride m&p-Xylene AIHA,FL,NY	1,1,2-Trichloroethane	AIHA,FL,NY
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	Trichloroethylene	AIHA,FL,NY
1,2,4-Trimethylbenzene AIHA,FL,NY 1,3,5-Trimethylbenzene AIHA,FL,NY Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	Trichlorofluoromethane (Freon 11)	AIHA,FL,NY
1,3,5-TrimethylbenzeneAIHA,FL,NYVinyl ChlorideAIHA,FL,NYm&p-XyleneAIHA,FL,NY	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	
Vinyl Chloride AIHA,FL,NY m&p-Xylene AIHA,FL,NY	1,2,4-Trimethylbenzene	AIHA,FL,NY
m&p-Xylene AIHA,FL,NY	1,3,5-Trimethylbenzene	AIHA,FL,NY
	Vinyl Chloride	AIHA,FL,NY
o-Xylene AIHA,FL,NY	m&p-Xylene	AIHA,FL,NY
	o-Xylene	AIHA,FL,NY

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2016
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2017
NY	New York State Department of Health	10899 NELAP	04/1/2017
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2017
RI	Rhode Island Department of Health	LAO00112	12/30/2016
NC	North Carolina Div. of Water Quality	652	12/31/2016
NJ	New Jersey DEP	MA007 NELAP	06/30/2016
FL	Florida Department of Health	E871027 NELAP	06/30/2016
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2016
ME	State of Maine	2011028	06/9/2017
VA	Commonwealth of Virginia	460217	12/14/2016
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2016

CHAIN OF CUSTODY RECORD

East longmeadow, MA 01028

39 Spruce Street

Table of Contents B = Sodium bisulfate DW= drinking water "**Container Code Dissolved Metals **GW**= groundwater WW = wastewater NELAC & AIHA-LAP, LLC T = Na thiosulfate X = Na hydroxide O Field Filtered # of Containers S = Sulfuric Acid C Lab to Filter ** Preservation ***Cont. Code: **Preservation A=amber glass *Matrix Code: M = Methanol N = Nitric Acid S=summa can S = soil/solid T-tedlar bag St = sludge Accredited o = Other ST = sterile O = other P=plastic 0=Other G=glass K HC V≖ via He H W ○ MA State DW Form Required PWSID # Please use the following codes to let Con-Test know if a specific sample Is your project MCP or RCP? H - High; M - Medium; L - Low; C - Clean; U - Unknown may be high in concentration in Matrix/Conc. Code Box: ANALYSIS REQUESTED O MCP Form Required O RCP Form Required **Detection Limit Requirements** 5001 01 DONNA PALLISTERO ARCADIS. . COM Cane Code "Enhanced Data Package" Project # WK 0/2/5/00/0 KKKEL GGIS Telephone: 401-738-3884 ្និង០ខ J ◂ ∢ DATA DELIVERY (check all that apply) Composite Grab COMMAIL OWEBSITE $\mathcal {L}$ Q Q Mas sachusetts. Connecticut: OOTHER **\$** J 7-60 INC DAIS Ending Date Time Other STD 1340 1225 Turnaround *3hSI* े FAX ormat 10-Day O 172-Hr O 14-Day O 124-Hr O 148-Hr Fax# 7-Day Email Section Email: info@contestlabs.com RUSH 0/2/16 www.contestlabs.com Date) Time 0/17/10 Beginning BUND, SURTE 0/12/10 Datestides Date/Time: Client Sample ID / Description Date/Time: Date/Time: 12/16/ ADDEFE 300 METRO CENTRA DONNA PALLISTER WARNICKAI 02886 Project Location: PROVIDE NCE, R.I ANALYTICAL LABORATORY Project Proposal Provided? (for billing purposes) proposal date MS FRONT ARCADIS ES#2 **MEISTEN** RS サ Company Name: Con-Test Lab ID なな Received/by: (sik Sampled By: inquished by **Refinquished** Attention: Comments Address: 800 Page

WBE/DBE Certifier URMARBUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR please be careful not to contaminate this document ACORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT. Other † Require lab approval

Laboratory Comments:

AIR Only Receipt Checklist

Page 1 of 2

39 Spruce St.
East Longmeadow, MA.
01028
P: 413-525-2332
F: 413-525-6405

CLIENT NAME Acadis		REC	CEIVED	BY:	1	DL	DATE:	6	/3/16
1) Was the chain(s) of custody relinqui	shed and signed	?			Yes		_ No		
2) Does the chain agree with the sampl If not, explain:	les?					<u> </u>			
S) Are all the samples in good condition If not, explain:	n?				Yes		No		
l) Are there any samples "On Hold"?			Yes		No	Χ	Stored	where:	
5) Are there any RUSH or SHORT HOLI	DING TIME samp	les?			•				
Who was notified	_		Time			-			
Who was nothing				5					0 Vaa Na
								•	? Yes No
6) Location where samples are stored:	***************************************		,	1) if not a	lready a	approved
			<u> </u>	Client	Signatu	ıre:			****
Number of cans Individually Certified	d or Batch Certifi	ed?							
Cantai			- الم	4 0 -	· - T				
Contai	iners rece	31V	ea a)n-ı	est			
				# of Co	ntainer	s	Type	es (Size	e, Duration)
Summa Cans (TO-14/TO-15/	APH)								1
Tedlar Bags				7					
TO-17 Tubes									
Regulators								1947 Avilla 217 (2015) 211 Colores	

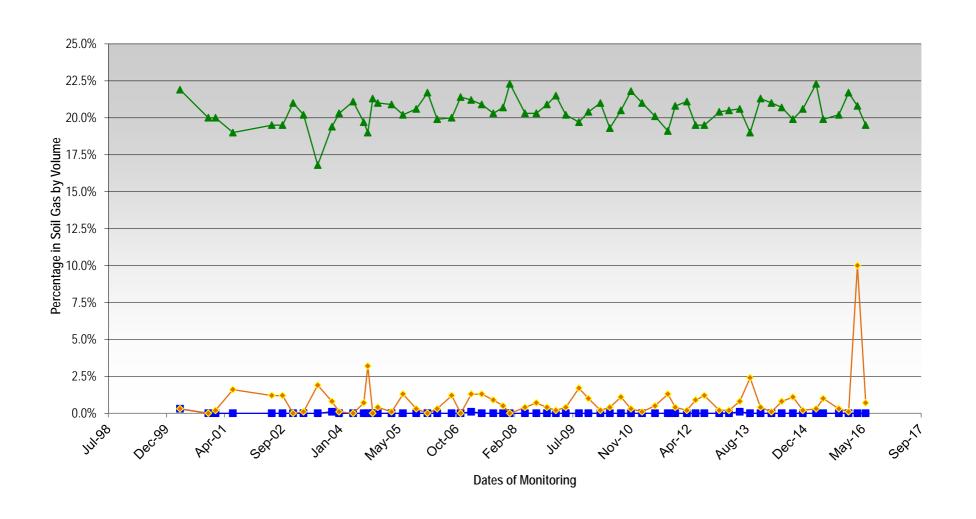
Restrictors									
Hg/Hopcalite Tube (NIOSH (6009)								
(TO-4A/ TO-10A/TO-13) PL									
PCB Florisil Tubes (NIOSH	5503)								
Air cassette				-					
PM 2.5/PM 10 TO-11A Cartridges					·············		-		
Other									
Other							<u> </u>	······································	····
Inused Summas/PUF Media:			Unuse	ed Regu	ulators	:			
) Was all media (used & unused) c				and Pl	JF's d	ocume	ented a	s retu	rned in the

Doc # 278 Rev. 5 O Page 18 of 19

Page 2 of 2 Login Sample Receipt Checklist

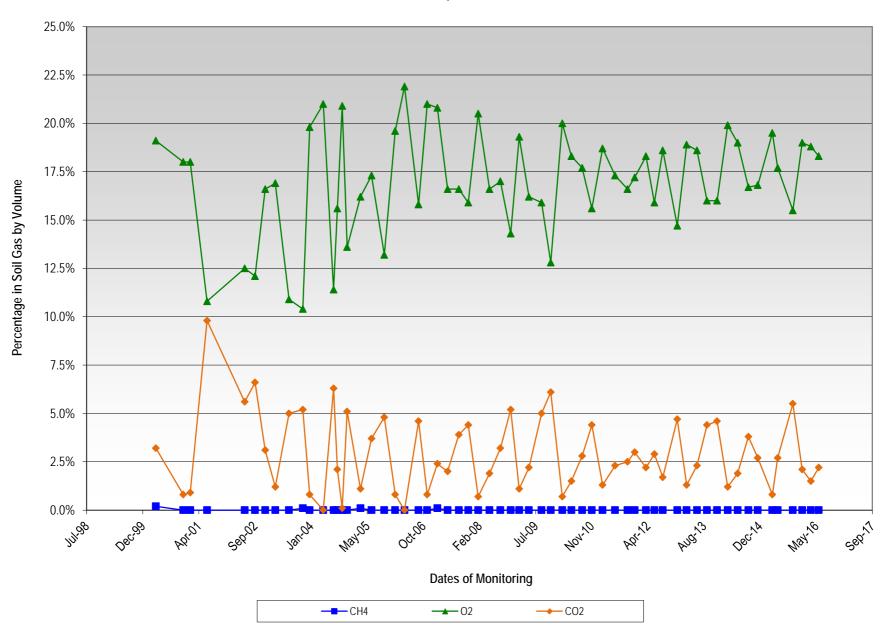
(Rejection Criteria Listing - Using Sample Acceptance Policy)

Any False statement will be brought to the attention of Client

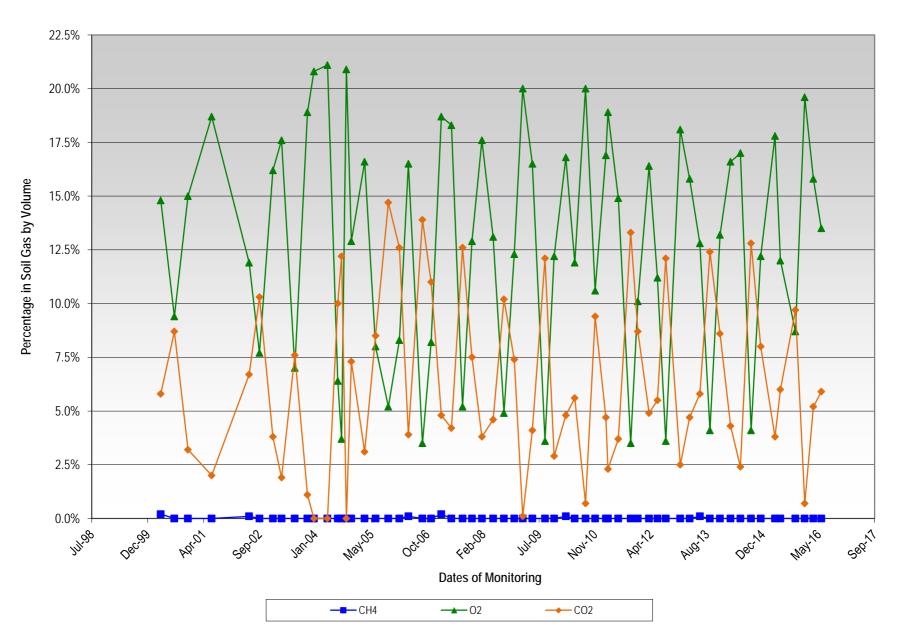

Answer (True/False)

Question	Answer (True/False)	Comment
	T/F/NA	
1) The coolers'/boxes' custody seal, if present, is intact.	NA NA	
The cooler or samples do not appear to have been compromised or tampered with.	T.	
3) Samples were received on ice.	at NA	
4) Cooler Temperature is acceptable.	JA JA	
5) Cooler Temperature is recorded.	L Als	
6) COC is filled out in ink and legible.	1	
7) COC is filled out with all pertinent information.	T	
3) Field Sampler's name present on COC.	T	
9) Samples are received within Holding Time.	T .	
10) Sample containers have legible labels.	T	
11) Containers/media are not broken or leaking and valve and caps are closed tightly.	s	
12) Sample collection date/times are provided.	T	<u> </u>
13) Appropriate sample/media containers are used.		
14) There is sufficient volume for all requsted analyses, including any requested MS/MSDs.	T	
15) Trip blanks provided if applicable.	<u> </u>	
	otified of False statements? Technician Initials:	Date/Time: 6/3/16

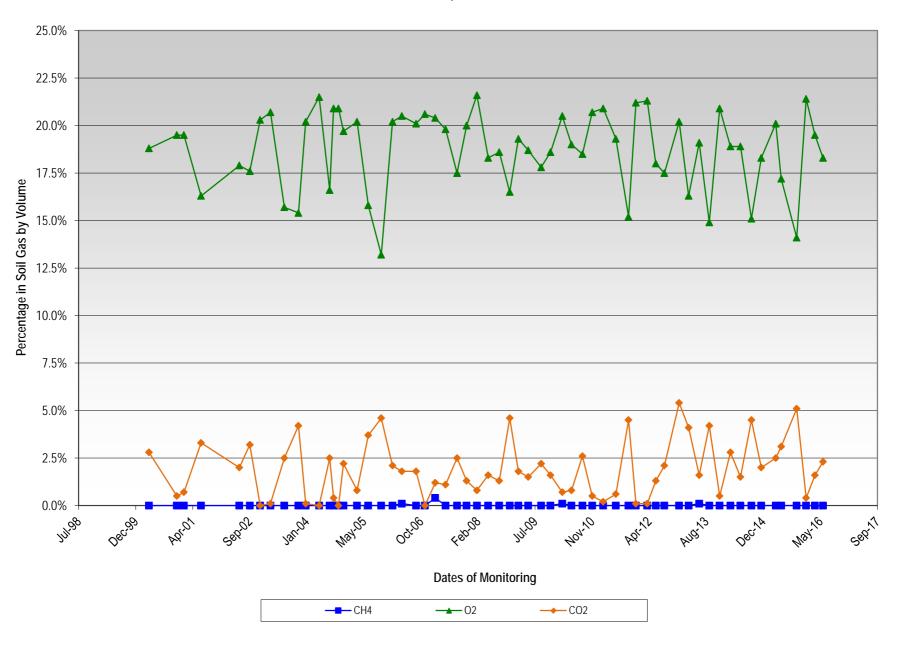
ATTACHMENT C

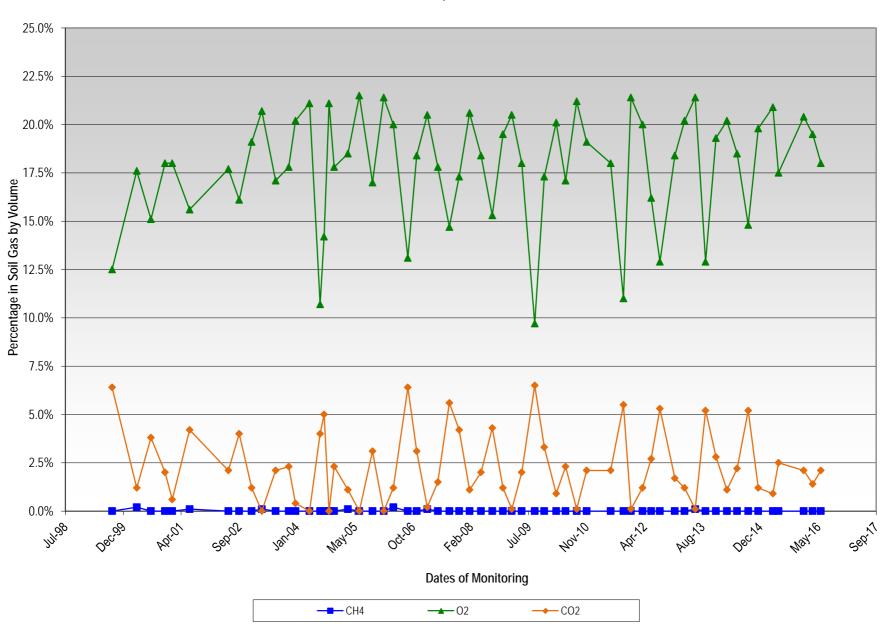

Soil Gas Trends

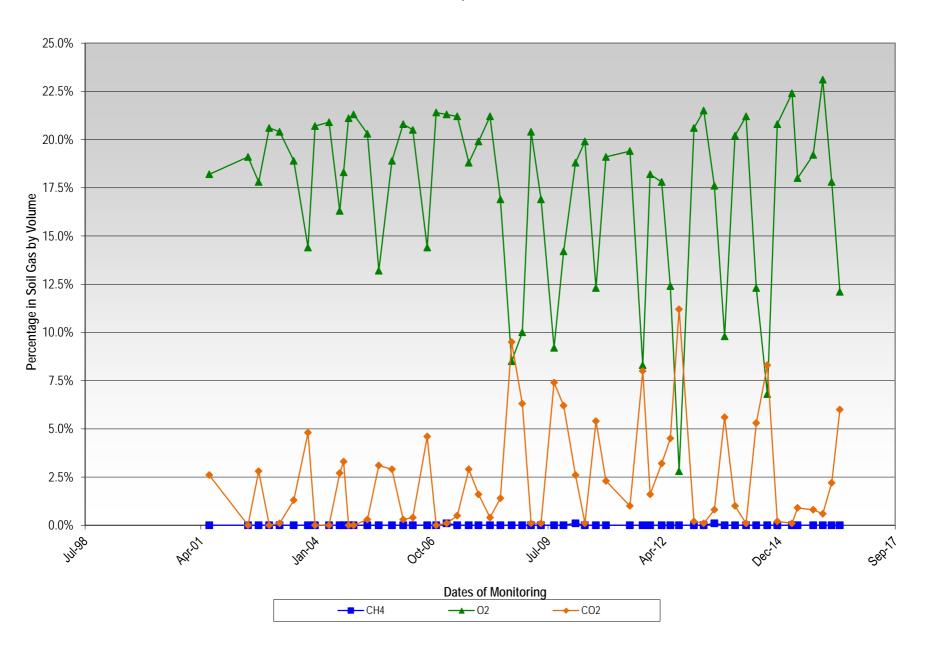
Soil Gas Well EPL1 Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time Springfield Street School Complex Providence, Rhode Island

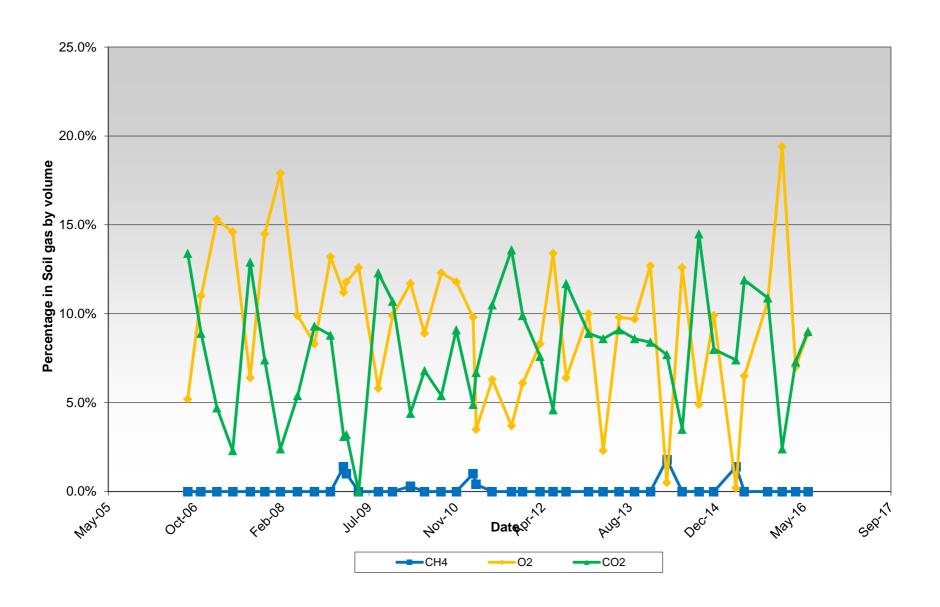


—— CH4 —— O2 —— CO2


Soil Gas Well EPL4
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island


Soil Gas Well MPL5
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island


Soil Gas Well MG2
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island


Soil Gas Well WB1
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island

Soil Gas Well WB15
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island

Soil Gas MPL 7
Fluctuation in Methane, Oxygen, Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island

