Tim O'Connor & Company, LLC environmental consultation

August 1, 2018

Ms. Kasandra McKenzie Environmental Scientist Rhode Island Department of Environmental Management 235 Promenade Street Providence, Rhode Island 02908-5767

Re:

Ouarterly Report – 2nd Quarter 2018

Former Portsmouth Landfill

Dear: Ms. McKenzie

This Quarterly Report is submitted on behalf of AP Enterprise, LLC (APE) regarding the Portsmouth Landfill (the Property) per the Beneficial Use Determination Approval (BUDA) which was issued by the Rhode Island Department of Environmental Management (RIDEM) on September 20, 2010, amended on March 11, 2011 and March 18, 2014 and most recently renewed on September 9, 2014. On September 20, 2015 the BUDA expired.

This report covers activities conducted during the period of April 1 to June 30, 2018.

Construction Activities

Construction activities during this reporting period consisted of:

- The delivery and management of newly accepted final capping soil;
- The delivery and management of soils per Appendix A of the RIDEM Rules and Regulations for Composting and Solid Waste Management Facilities (the Appendix A Soils); and
- Erosion control activities.

Photos of the Property are attached as Appendix A.

Soil Accepted

The attached table summarizes the soils delivered to the Property during this reporting period. The supporting laboratory analysis data for the DW Clark sand was submitted last period. The remainder of the soil accepted are covered by Appendix A of the RIDEM Rules and Regulations

for Composting and Solid Waste Management Facilities. Therefore no data packages are included in this report.

Complaints

No complaints were received directly by APE during this reporting period.

Schedule

The APE project team estimates that 99% of the landfill now has at least six inches of final cap soil on it. The volume of capping soil required to complete the landfill cap is driven by a number of variables and is guided the elevations in the approved final site grading plan.

Monitoring

The next round of sampling expected to take place in August 2018.

Please feel free to contact me should you have any questions regarding this matter.

Sincerely

TIM O'CONNOR & COMPANY, LLC

Timothy M. O'Connor, PE, LEED-AP

Principal

Former Portsmouth Landfill Soils Accepted 2nd Quarter 2018

Delivery Dates	Source	Consultant	Quantity (tons)
Delivery Dates			
	DW Clark Foundry; 692 North Bedford Street; East		
4/2 to 6/18	Bridgewater, MA	Mark A Germano, LSP	1,848.00
4/5 to c/ ±0	* Somerville, MA DPW		54.45
4/3			00 010
E /1 9. 2. 6/20 8. 21	* Massachusetts DPW		658.00
3/1 0 3, 0/20 0 21			170.00
6/12	* Brockton. MA DPW		170.00
0/12			JA 007 C
		Total	2,/30.45

Notes

^{1. * -} Indicates soils reguilated per Appendix A of the RIDEM Rules and Regulations for Composting and Solid Waste Management Facilities

Appendix A – Photographs

Photo 1 - Along Mason Avenue Looking North

Photo 2 - Along Park Avenue Looking West

Photo 3 – Along Eastern Limit of Disturbance Looking North

Photo 4 - Along Eastern Limit of Disturbance

Photo 5 – Along Northwestern Limit of Disturbance Looking West

Photo 6 – Southwestern Portion of Site

Appendix B – Analytical Data (no new or additional data this period)

Parameter	RI Direct Exposure Criteria-	SAMPLING LOCATION											
Parameter	Residential	SP-1	SP-2	SFS-COMP-1	FNDRY-DISP-1	DISP-7/10-1	DISP-7/10-2	DISP-7/10-3	DISP-7/10-4	DISP-7/10-5	Disp-Supp-1	Disp-Supp-2	Disp-Supp-3
Sampling Date		5/13/2016	5/13/2016	1/13/2017	5/19/2017	7/10/2017	7/10/2017	7/10/2017	7/10/2017	7/10/2017	2/5/2018	2/5/2018	2/5/2018
SM21-22 2510B Modified (µmhos/cm)													
SPECIFIC CONDUCTANCE		180	660		2300								
SW-846 1010A (°C)													
FLASHPOINT				93	>93								
SW-846 6010C-D (mg/Kg dry) Metals Digestion													
ARSENIC	7	ND (4.87)	ND (5)		ND (4.99)	ND (2.5)					1.12	1.15	0.82
BARIUM	5500				ND (4.99)						3.3	3.72	
CADMIUM	39	ND (0.974)	ND (1)		ND (0.998)								
CHROMIUM	390	ND (4.87)	ND (5)		71.5								
LEAD	150	5.91	ND (5)		ND (4.99)								
SELENIUM	390				9.58						ND (0.7)	ND (0.69)	
SILVER	200				ND (4.99)						ND (0.35)	ND (0.34)	
SW-846 7471B (mg/Kg dry) Metals Digestion													
MERCURY	23	ND (0.083)	ND (0.0847)		ND (0.856)								
SW-846 6010C-D (mg/Kg dry) Metals Digestion													
ANTIMONY	10						ND (2.5)	ND (2.3)	ND (2.6)	ND (2.4)			
BERYLLIUM	1.5						ND (0.25)	ND (0.23)	ND (0.26)	ND (0.24)			
COPPER	3,100						100	2.1	19	210			
NICKEL	1,000						7.0	5.0	16	130			
THALLIUM	5.5						ND (2.5)	ND (2.3)	ND (2.6)	ND (2.4)			
ZINC	6,000						5.4	ND (0.92)	20	24			
SW-846 8082A (ug/Kg dry)													
Total PCBs	10,000	ND	ND		ND								
SW-846 8100 Modified (mg/Kg dry)													
TPH	500	ND (50)	ND (51)		88.7								
SW-846 8260C (ug/Kg dry)													
NAPHTHALENE	54,000	ND (77.5)	ND (105)		713								
SW-846 8270D (ug/Kg dry)													
BENZO(G,H,I)PERYLENE	800	ND (100)	ND (102)	200									
INDENO(1,2,3-CD)PYRENE	900	ND (10)	ND (10.2)	188	ND (10.3)								
SW-846 9014 (mg/Kg)	Ī												
REACTIVE CYANIDE	1		ND (0.105)	ND (0.105)	ND (0.103)								
SW-846 9030A (mg/Kg)			<u> </u>		i	1				1			
REACTIVE SULFIDE	1		ND (0.263)	ND (0.263)	ND (0.258)								
SW-846 9045C (pH Units)					i	1				1			
PH				9.07	9.15								
NOTES:													

NUTE:

I. ND = Not detected above the lab reporting limits shown in parenthesis. Individual detection limits available in laboratory reports.

2. Blank cell = Not Tested for the submitted sample

3. Shaded values exceed the relevant acceptance criteria

4. Values detected above laboratory detection limits shown in bold

Parameter	RI Direct Exposure Criteria-								
Tarameter.	Residential	Disp-Supp-4	Disp-Supp-5	Disp-Supp-6	Disp-Supp-7	Disp-Supp-8			
Sampling Date		2/5/2018	2/5/2018	2/5/2018	2/5/2018	2/5/2018			
M21-22 2510B Modified (µmhos/cm)									
PECIFIC CONDUCTANCE									
SW-846 1010A (°C)									
LASHPOINT									
W-846 6010C-D (mg/Kg dry) Metals Digestion									
ARSENIC	7	ND (0.69)	0.92	ND (0.69)	1.42	1.19			
BARIUM	5500								
CADMIUM	39								
CHROMIUM	390								
EAD	150								
ELENIUM	390								
SILVER	200								
GW-846 7471B (mg/Kg dry) Metals Digestion									
MERCURY	23								
GW-846 6010C-D (mg/Kg dry) Metals Digestion									
ANTIMONY	10								
BERYLLIUM	1.5								
COPPER	3,100								
NICKEL	1,000								
THALLIUM	5.5								
ZINC	6,000								
W-846 8082A (ug/Kg dry)									
Total PCBs	10,000								
SW-846 8100 Modified (mg/Kg dry)									
PH .	500								
W-846 8260C (ug/Kg dry)									
APHTHALENE	54,000								
W-846 8270D (ug/Kg dry)									
BENZO(G,H,I)PERYLENE	800								
NDENO(1,2,3-CD)PYRENE	900								
SW-846 9014 (mg/Kg)									
REACTIVE CYANIDE									
W-846 9030A (mg/Kg)	1								
REACTIVE SULFIDE									
W-846 9045C (pH Units)	1								
PH									
NOTES:									
ND = Not detected above the lab reporting limits shown i	in parenthesis. Individual detection limits								
. Blank cell = Not Tested for the submitted sample	parameter and detection mints								
. Shaded values exceed the relevant acceptance criteria									
Values detected above laboratory detection limits shown									

Tuesday, April 19, 2016

Jeff Burek
DW Clark, Inc.
692 North Bedford Street
East Bridgewater, MA 02333

TEL: (508) 378-4014 FAX: (508) 378-9710

Project: Location: GeoLabs, Inc.

GeoLabs, Inc. 45 Johnson Lane Braintree MA 02184

Tele: 781 848 7844 Fax: 781 848 7811

Order No.: 1603104

Dear Jeff Burek:

GeoLabs, Inc. received 2 sample(s) on 3/16/2016 for the analyses presented in the following report.

The laboratory results in this report relate only to samples submitted.

All data for associated QC met method or laboratory specifications, except when noted in the Case Narrative.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

David Mick

Laboratory Director

For current certifications, please visit our website at www.geolabs.com

Certifications:

CT (PH-0148) - MA (M-MA015) - NH (2508) - RI (LA000252)

Date: 19-Apr-16

CLIENT:

DW Clark, Inc.

Project:

Lab Order:

1603104

CASE NARRATIVE

Physical Condition of Samples

The project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged, in appropriate containers with the correct preservation.

Project Documentation

The project was accompanied by satisfactory Chain of Custody documentation.

Analysis of Sample(s)

All extractable samples were extracted and analyzed and any Volatile samples were analyzed within method specified holding times and according to GeoLabs documented Standard Operating Procedure. No analytical anomalies or non-conformances were noted by the laboratory during the processing of these samples.

SIGNATURE:

LAB DIRECTOR

PRINTED NAME: David Mick

DATE: 04/19/16

Reported Date: 19-Apr-16

CLIENT:

Project:

Lab ID:

DW Clark, Inc.

Lab Order:

1603104

1603104-001

Client Sample ID: Sample 1

Collection Date: 3/16/2016

Date Received: 3/16/2016

Matrix: SOIL

		Traditia. Boild								
Analyses		Result	RL Q	ual Unit	s DF	Date Analyzed				
CLP METALS	BY ICP - SW6010B					Analyst: QS				
	Prep Method:	(SW3010A)	Pre	Date:	3/22/2016 4:04:55 PM					
Arsenic		ND	0.500	mg/L	5	3/22/2016				
Barium		ND	0.100	mg/L	5	3/22/2016				
Cadmium		ND	0.0250	mg/L	5	3/22/2016				
Chromium		ND	0.250	mg/L	5	3/22/2016				
Lead		ND	0.250	mg/L	5	3/22/2016				
Selenium		ND	0.250	mg/L	5	3/22/2016				
Silver		ND	0.0500	mg/L	5	3/22/2016				

TCLP MERCURY - E245.1

Analyst: EC

	Prep Method:	(SW7470A/E245.1)	P	rep Date:	3/24/2016 5:13:53 PM	
Mercury		ND	0.00200	mg/L	1	3/24/2016

TCLP SEMIVOLATILE ORGANICS - SW8270C

Analyst: Admir

Prep Method:	(SW3510)	P	rep D	ate:	4/15/2016 12:12:35 PM		
1,4-Dichlorobenzene	ND	100	H	μg/L	1	4/15/2016 8:58:00 PM	
2,4,5-Trichlorophenol	ND	75.0	Н	μg/L	1	4/15/2016 8:58:00 PM	
2,4,6-Trichlorophenol	ND	50.0	Н	μg/L	1	4/15/2016 8:58:00 PM	
2,4-Dinitrotoluene	ND	50.0	Н	μg/L	1	4/15/2016 8:58:00 PM	
2-Methylphenol	ND	100	Н	μg/L	1	4/15/2016 8:58:00 PM	
3-Methylphenol/4-Methylphenol	ND	150	Н	μg/L	1	4/15/2016 8:58:00 PM	
Hexachiorobenzene	ND	100	Н	μg/L	1	4/15/2016 8:58:00 PM	
Hexachlorobutadiene	ND	50.0	H	μg/L	1	4/15/2016 8:58:00 PM	
Hexachloroethane	ND	200	Н	μg/L	1	4/15/2016 8:58:00 PM	
Nitrobenzene	ND	375	Н	µg/L	1	4/15/2016 8:58:00 PM	
Pentachlorophenol	ND	100	Н	μg/L		4/15/2016 8:58:00 PM	
Pyridine	ND	125	Н	μg/L		4/15/2016 8:58:00 PM	
Surr: 2,4,6-Tribromophenol	94.8	15-110	Н	%REC		4/15/2016 8:58:00 PM	
Surr: 2-Fluorobiphenyl	54.0	30-130	Н	%REC	•		
Surr: 2-Fluorophenol	43.3	15-110	Н	%REC	•	4/15/2016 8:58:00 PM	
Surr: Nitrobenzene-d5	71.9	30-130	Н	%REC	•	4/15/2016 8:58:00 PM	
Surr: Phenol-d6	34.8	15-110	Н			4/15/2016 8:58:00 PM	
Surr: Terphenyl-d14	80.6			%REC	•	4/15/2016 8:58:00 PM	
edenosity with	0.00	30-130	Н	%REC	1	4/15/2016 8:58:00 PM	

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Spike Recovery outside recovery limits

Reported Date: 19-Apr-16

CLIENT:

DW Clark, Inc.

Lab Order:

1603104

Client Sample ID: Sample 2

Collection Date: 3/16/2016

Date Received: 3/16/2016

Project: Lah ID:

1603104-002

Lad ID:	1603104-002	Matrix: SOIL							
Analyses		Result	RL Q	ual Unit	s DF	Date Analyzed			
TCLP METALS	BY ICP - SW6010B					Analyst: Q			
	Prep Method:	(SW3010A)	Prep	Date:	3/22/2016 4:04:55 PM				
Arsenic		ND	0.500	mg/L	5	3/22/2016			
Barium		ND	0.100	mg/L	5	3/22/2016			
Cadmium		ND	0.0250	mg/L	5	3/22/2016			
Chromium		ND	0.250	mg/L	5	3/22/2016			
Lead		ND	0.250	mg/L	5	3/22/2016			
Selenium		ND	0.250	mg/L	5	3/22/2016			
Silver		ND	0.0500	mg/L	5	3/22/2016			
CLP MERCUR	RY - E245.1					Analyst: EC			
	Prep Method:	(SW7470A/E245.1)	Prep	Date:	3/24/2016 5:13:53 PM				
Mercury		ND	0.00200	mg/L	1	3/24/2016			

Qualifiers:	В	Analyte detected in the associated Method Blank	BRL	Below Reporting Lin
	E	Value above quantitation range	н	Holding times for pre
	τ	Ampleto detected by the second state of the second		Ç

Analyte detected below quantitation limits

RL Reporting Limit

preparation or analysis exceeded

ND Not Detected at the Reporting Limit Spike Recovery outside recovery limits

692 North Bedford Street, East Bridgewater, MA 02333 Phone: (508) 378-4014 Fax: (508) 378-9710

Purchase Order

VENDOR: 104259

GEOLABS INC. 45 JOHNSON LANE BRAINTREE, MA 02184 U.S.A.

Order#: P10821

Order Date: 03/16/16

Page#:

1

Fax: 781 848 7811

/ Phone: 800 298 7060

SHIP TO: 692 North Bedford Street East Bridgewater, MA, 02333

BILL TO: P.O. Box 448 East Bridgewater, MA, 02333

Attention: DAVE KAHLER

Requested By: JEFF

Payment Terms	Establish		
	see Freight Terms	Carrier	
NET 30	Prepaid - DWC	IIPS	

Line Order Qty Part Number Due Date Taxable? Price Um Extended Price 2,00 M02572 03/25/16 .00 OUTSIDE TESTING - SAND TESTING TEST FOR TCLP RCRA 8 METALS FAX RESULTS TO 508 378 9710 ATTN. JEFF, ALSO MAIL SAMPLES FOR TCLP SAMPLE 1 - SPENT FOUNDRY SAND 3104 - 1771 SAMPLE 2 - 50/50 MIX WITH CRUSHED AGGREGATE PURCHASE ORDER TOTAL .00

Friday, June 03, 2016

GeoLabs, Inc.

GeoLabs, Inc. 45 Johnson Lane Braintree MA 02184

Tele: 781 848 7844 Fax: 781 848 7811

Mark Germano Germano 15 Pinehurst Rd. Marshfield, MA 02050

TEL: (339) 793-3528

FAX:

Project:

DW Clark, Inc.

Location:

692 N. Bedford St, E. Bridgewater MA

Order No.: 1605082

Dear Mark Germano:

GeoLabs, Inc. received 2 sample(s) on 5/13/2016 for the analyses presented in the following report.

The laboratory results in this report relate only to samples submitted. All data for associated QC met method or laboratory specifications, except where noted in the Case Narrative.

Analytical methods and results meet requirements of 310CMR 40.1056(J) as per MADEP Compendium of Analytical Methods (CAM).

If you have any questions regarding these tests results, please feel free to call.

Singerely,

David Mick

Laboratory Director

For current certifications, please visit our website at www.geolabs.com

Certifications:

CT (PH-0148) - MA (M-MA015) - NH (2508) - RI (LA000252)

MassDEP Analytical Protocol Certification Form										
Laboratory Na	me: GeoLabs, In	ıc.		Projec	et #:					
Project Location	on: D.W. Clark,	nc.		RTN:						
This form prov	This form provides certification for the following data set: 1605082 (001-002)									
Matrices:	☐ Ground	water/Surface	e Watei	r □ Soil/Sediment I	☐ Drinking Water ☐	Air ⊠	Other			
CAM Protocol (check all that apply below):										
8260 VQC	7470/7471 Hg	MassDEP VF	·Η	8081 Pesicides	7196 Hex Cr		MassDEP A	\PH		
CAM II A 🗵	CAM III B 🗵	CAM IV A		CAM V B	CAM VI B 🖂		CAM IX A			
8270 SVOC	7010 Metals	MassDEP EF	·Η	8151 Herbicides	8330 Explosives		TO-15 VOC			
CAMIIB 🗵	CAM III C 🗆	CAM IV B		CAM V C 🗆	CAM VIII A 🖂		CAM IX B			
6010 Metals	6020 Metals	8082 PCB		9014 Total Cyanide/PAC	6860 Perchlorate					
CAMIIIA 🗵	CAM III D 🗆	CAM V A	×	CAM VI A 🗆	CAM VIII B					
Affirmative R	esponses to Qu	estions A th	rough	F are required for "F	Presumptive Certainty	" status				
Α	vvere all samples received in a condition consistent with those described on the Chain of Custody, properly preserved (including temperature) in the field or laboratory, and						⊠ Yes	□ No		
В	protocol(s) followed?						⊠ Yes	□ No		
If the protocol(s) implemented for an identified performance standard from confidences:							□ No			
D	Does the laboratory report comply with all reporting requirements specified in CAM VII A, "Quality							□ No		
E		1, and APH Me	ethods c		conducted without signific t of significant modification		□ Yes	□No		
	b. APH and TO	D-15 Methods	only: W	as the complete analyte	e list reported for each met	thod?	☐ Yes	□ No		
F					onses to Questions A thro		⊠ Yes	□ No		
G	vvere the repo	rting limits at o	or below	all CAM reporting limits protocol(s)?	ptive Certainty" status s specified in the selected	CAM	⊠ Yes	□No		
<u>Data Us</u>	<u>er Note:</u> Data tha representati	t achieve "Pro veness requi	esumpti rements	ive Certainty" status n s described in 310 CM	nay not necessarily mee R 40. 1056 (2) (k) and WS	the data C-07-350	i usabiility a).	ind		
H	Were all C	C performanc	e standa	ards as specified in the	CAM protocol(s) achieved	l?	□ Yes	⊠ No¹		
1	Were results re	ported for the	complet	e analyte list specified i	n the selected CAM protoc	col(s)?	☐ Yes	⊠ No¹		
¹ All negative r	esponses must b	e addressed	in an a	ttached laboratory na	rrative.					
I, the undersigr	ned, attest under t	h _g pains and	penalti	es of perjury that, bas	ed upon my personal inc	quiry of				
those responsi	l, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best									
of my knowled	of my knowledge and period accurate and complete.									
Signature:	NIII			Positi	on: Laboratory Direct	or				
Printed Name	: David Mick			Date:	June 3, 2016					

Date: 03-Jun-16

CLIENT:

Germano

Project:

DW Clark, Inc.

Lab Order:

1605082

CASE NARRATIVE

Physical Condition of Samples

The project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged, in appropriate containers with the correct preservation.

Project Documentation

The project was accompanied by satisfactory Chain of Custody documentation.

Analysis of Sample(s)

Select metals reported via method 6010C, per client request.

All extractable samples were extracted and analyzed and any Volatile samples were analyzed within method specified holding times and according to GeoLabs documented Standard Operating Procedure. The following analytical anomalies or non-conformances were noted by the laboratory during the processing of these samples:

See QC to review spike/recoveryes outside of recovery ranges.

SIGNATURE:

LAB DIRECTOR

PRINTED NAME David Mick

DATE: 06/03/16

Reported Date: 03-Jun-16

CLIENT: Lab Order: Project: Lab ID:

Germano

1605082

DW Clark, Inc. 1605082-001

Client Sample ID: SP-1

Collection Date: 5/13/2016 10:30:00 AM

Date Received: 5/13/2016
Matrix: SOIL

Analyses		Result	RL Q	ual Unit	s DF	Date Analyzed
POLYCHLORINA	TED BIPHENYLS	- SW8082A				Analyst: DM
	Prep Method:	(SW3545A)	Prep	Date:	5/20/2016 12:37:37	PM
Aroclor 1016		ND	50.0	µg/Kg	1	5/25/2016

Prep Method:	(SW3545A)	Prep	o Date:	5/20/2016 12:37:37	PM
Aroclor 1016	ND	50.0	μg/Kg	1	5/25/2016
Aroclor 1221	ND	50.0	µg/Kg	1	5/25/2016
Aroclor 1232	ND	50.0	μg/Kg	1	5/25/2016
Aroclor 1242	ND	50.0	μg/Kg	1	5/25/2016
Aroclor 1248	ND	50.0	µg/Kg	1	5/25/2016
Aroclor 1254	ND	50.0	μg/Kg	1	5/25/2016
Aroclor 1260	ND	50.0	μg/Kg	1	5/25/2016
Surr: Decachlorobiphenyl Sig 1	35.0	30-150	%REC	1	5/25/2016
Surr: Decachlorobiphenyl Sig 2	43.0	30-150	%REC	1	5/25/2016
Surr: Tetrachloro-m-Xylene Sig 1	86.0	30-150	%REC	1	5/25/2016
Surr: Tetrachloro-m-Xylene Sig 2	101	30-150	%REC	1	5/25/2016

TOTAL PETROLEUM HYDROCARBONS - 8100M

Prep Method: (8100M) Prep Date: 5/20/2016 12:42:01 PM Total Petroleum Hydrocarbons ND 50.0 mg/Kg 1 5/28/2016 Surr: o-Terphenyl 108 40-140 %REC 1 5/28/2016

TOTAL METALS BY ICP - SW6010C

Analyst: QS

Analyst: Admir

Prep Method:		(SW3050B)	Prep Date: 5/17/2016 12:53:09 PM			PM	
Arsenic		ND	4.87	mg/Kg	1	5/17/2016	
Cadmium		ND	0.974	mg/Kg	1	5/17/2016	
Chromium		ND	4.87	mg/Kg	1	5/17/2016	
Lead		5.91	4.87	mg/Kg	1	5/17/2016	

MERCURY - SW7471B

Analyst: EC

	Prep Method:	(SW7471B)	Prep	Date:	5/19/2016 3:37:36 PM	
Mercury		ND	0.0830	mg/Kg	1	5/19/2016

Qualifiers:

- B Analyte detected in the associated Method Blank
- BRL Below Reporting Limit

E Value above quantitation range

- H Holding times for preparation or analysis exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit

RL Reporting Limit

S Spike Recovery outside recovery limits

Reported Date: 03-Jun-16

CLIENT:

Germano

Client Sample ID: SP-1

Lab Order:

1605082

ment sample us. Si -i

Project:

DW Clark, Inc.

Collection Date: 5/13/2016 10:30:00 AM **Date Received:** 5/13/2016

Lab ID:

1605082-001

Matrix: SOIL

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS - SW8	270D				Analyst: Adm
Prep Method:	(SW3545A)	Prep	Date: 5/19/2	2016 10:32:35	AM
1,1-Biphenyl	ND	10.0	μg/Kg	1	5/19/2016 1:45:00 PM
1,2,4-Trichlorobenzene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
1,2-Dichlorobenzene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
1,2-Dinitrobenzene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
1,3-Dichlorobenzene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
1,3-Dinitrobenzene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
1,4-Dichlorobenzene	ND	100	μg/Kg	1	5/19/2016 1:45;00 PM
1,4-Dinitrobenzene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
2,3,4,6-Tetrachiorophenol	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
2,4,5-Trichlorophenol	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
2,4,6-Trichlorophenol	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
2,4-Dichlorophenol	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
2,4-Dimethylphenol	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
2,4-Dinitrophenol	ND	500	μg/Kg	1	5/19/2016 1:45:00 PM
2,4-Dinitrotoluene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
2,6-Dinitrotoluene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
2-Chloronaphthalene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
2-Chlorophenol	ND	100	µg/Kg	1	5/19/2016 1:45:00 PM
2-Methyinaphthalene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
2-Methylphenol	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
2-Nitroaniline	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
2-Nitrophenol	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
3,3´-Dichlorobenzidine	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
3-Methylphenol/4-Methylphenol	ND	100	µg/Kg	1	5/19/2016 1:45:00 PM
3-Nitroaniline	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
4,6-Dinitro-2-Methylphenol	ND	500	μg/Kg	1	5/19/2016 1:45:00 PM
4-Bromophenyl Phenyl Ether	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
4-Chloro-3-Methylphenol	ND	500	μg/Kg	1	5/19/2016 1:45:00 PM
4-Chloroaniline	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
4-Chlorophenyl Phenyl Ether	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
4-Nitroaniline	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
4-Nitrophenol	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Acenaphthene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Acenaphthylene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Acetophenone	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Aniline	ND	500	μg/Kg	1	5/19/2016 1:45:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits

Reported Date: 03-Jun-16

CLIENT:

Germano

Client Sample ID: SP-1

Lab Order:

1605082

RL Reporting Limit

Project:

DW Clark, Inc.

Collection Date: 5/13/2016 10:30:00 AM

Lab ID:

1605082-001

Date Received: 5/13/2016 Matrix: SOIL

S Spike Recovery outside recovery limits

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS - SW8	270D				Analyst: Adm
Prep Method:	(SW3545A)	Prep	Date: 5/19/2	016 10:32:35	AM ·
Anthracene	ND	100	µg/Kg	1	5/19/2016 1:45:00 PM
Azobenzene	ND	500	µg/Kg	1	5/19/2016 1:45:00 PM
Benz(a)Anthracene	ND	10.0	μg/Kg	1	5/19/2016 1:45:00 PM
Benzo(a)Pyrene	ND	10.0	μg/Kg	1	5/19/2016 1:45:00 PM
Benzo(b)Fluoranthene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Benzo(g,h,i)Perylene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Benzo(k)Fluoranthene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Benzyl Alcohol	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Bis(2-Chloroethoxy)Methane	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Bis(2-Chloroethyl)Ether	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Bis(2-Chloroisopropyl)Ether	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Bis(2-Ethylhexyl)Phthalate	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Butyl Benzyl Phthalate	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Carbazole	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Chrysene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Dibenz(a,h)Anthracene	ND	10.0	μg/Kg	1	5/19/2016 1:45:00 PM
Dibenzofuran	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Diethyl Phthalate	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Dimethyl Phthalate	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Di-n-Butyl Phthalate	ND	500	μg/Kg	1	5/19/2016 1:45:00 PM
Di-n-Octyl Phthalate	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Fluoranthene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Fluorene	ND	100	μg/Kg	4	5/19/2016 1:45:00 PM
Hexachlorobenzene	ND	10.0	μg/Kg	1	5/19/2016 1:45:00 PM
Hexachlorobutadiene	ND	10.0	μg/Kg	1	5/19/2016 1:45:00 PM
Hexachloroethane	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Indeno(1,2,3-cd)Pyrene	ND	10.0	μg/Kg	1	5/19/2016 1:45:00 PM
Isophorone	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Naphthalene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Nitrobenzene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
N-Nitrosodimethylamine	ND	500	μg/Kg	1	5/19/2016 1:45:00 PM
N-Nitrosodi-n-Propylamine	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
N-Nitrosodiphenylamine	ND	500	μg/Kg	1	5/19/2016 1:45:00 PM
Pentachlorophenol	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Phenanthrene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Phenoi	ND	100	µg/Kg	1	5/19/2016 1:45:00 PM
•	e associated Method Bla	nk	BRL Below Rep	oorting Limit	
E Value above quantital	ion range		H Holding ti	mes for prepara	tion or analysis exceeded
J Analyte detected belo	w quantitation limits			ted at the Repor	
RI Reporting Limit					=

Reported Date: 03-Jun-16

CLIENT:

Germano

Client Sample ID: SP-1

Lab Order:

1605082

Project:

DW Clark, Inc.

Collection Date: 5/13/2016 10:30:00 AM **Date Received:** 5/13/2016

Lab ID:

1605082-001

Matrix: SOIL

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS - SW8270D					Analyst: Admir
Prep Metho	od: (SW3545A)	Prej	Date: 5/19/2	016 10:32:35	AM
Pyrene	ND	100	μg/Kg	1	5/19/2016 1:45:00 PM
Pyridine	ND	500	µg/Kg	1	5/19/2016 1:45:00 PM
Surr: 2,4,6-Tribromophenol	48.1	30-130	%REC	1	5/19/2016 1:45:00 PM
5 A #1 14 1					

Pyridine	ND	500	μg/Kg	1	5/19/2016 1:45:00 PM
Surr: 2,4,6-Tribromophenol	48.1	30-130	%REC	1	5/19/2016 1:45:00 PM
Surr: 2-Fluorobiphenyl	42.7	30-130	%REC	1	5/19/2016 1:45:00 PM
Surr: 2-Fluorophenol	54.9	30-130	%REC	1	5/19/2016 1:45:00 PM
Surr: Nitrobenzene-d5	51.5	30-130	%REC	1	5/19/2016 1:45:00 PM
Surr: Phenol-d6	57.6	30-130	%REC	1	5/19/2016 1:45:00 PM
Surr: Terphenyl-d14	55,5	30-130	%REC	1	5/19/2016 1:45:00 PM

VOLATILE ORGANIC COMPOUNDS - 8260B

Analyst: Admir

Prep Method:		Prep	Date:		
1,1,1,2-Tetrachloroethane	ND	31.0	µg/Kg	0.62	5/18/2016 5:10:00 PM
1,1,1-Trichloroethane	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,1,2,2-Tetrachloroethane	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,1,2-Trichloroethane	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,1-Dichloroethane	ND	77.5	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,1-Dichloroethene	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,1-Dichloropropene	ND	31.0	µg/Kg	0.62	5/18/2016 5:10:00 PM
1,2,3-Trichlorobenzene	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,2,4-Trichlorobenzene	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,2,4-Trimethylbenzene	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,2-Dibromo-3-Chloropropane	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,2-Dibromoethane	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,2-Dichlorobenzene	ND	31.0	μg/Kg	0,62	5/18/2016 5:10:00 PM
1,2-Dichloroethane	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,2-Dichloropropane	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,3,5-Trimethylbenzene	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,3-Dichlorobenzene	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,3-Dichloropropane	ND	31,0	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,4-Dichlorobenzene	ND	31,0	μg/Kg	0.62	5/18/2016 5:10:00 PM
1,4-Dioxane	ND	6200	μg/Kg	0.62	5/18/2016 5:10:00 PM
2,2-Dichloropropane	ND	77.5	µg/Kg	0.62	5/18/2016 5:10:00 PM
2-Butanone	ND	77.5	μg/Kg	0.62	5/18/2016 5:10:00 PM
2-Chloroethyl Vinyl Ether	ND	31.0	µg/Kg	0.62	5/18/2016 5:10:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits

Reported Date: 03-Jun-16

CLIENT:

Germano

Client Sample ID: SP-1

Lab Order:

1605082

Project:

DW Clark, Inc.

Collection Date: 5/13/2016 10:30:00 AM

Lab ID:

1605082-001

Date Received: 5/13/2016 Matrix: SOIL

Analyses			Result	RL (Qual	Units	DF	Date Analyzed
VOLATILE	ORG	ANIC COMPOUNDS -	8260B					Analyst: Adm
		Prep Method:		Pro	ep Dat	e:		
2-Chlorotoi	luene		ND	77.5		μg/Kg	0.62	5/18/2016 5:10:00 PM
2-Hexanon	e		ND	77.5		μg/Kg	0.62	5/18/2016 5:10:00 PM
2-Methoxy-	-2-Meti	nylbutane (TAME)	ND	31.0		μg/Kg	0.62	5/18/2016 5:10:00 PM
4-Chlorotol		, ,	ND	77.5		μg/Kg	0.62	5/18/2016 5:10:00 PM
4-Isopropyl	ltoluen	9	ND	31.0		μg/Kg	0.62	5/18/2016 5:10:00 PM
4-Methyl-2-	-Pentai	none	ND	31.0		µg/Kg	0.62	5/18/2016 5:10:00 PM
Acetone			ND	77.5		µg/Kg	0.62	5/18/2016 5:10:00 PM
Acrylonitrile	Э		ND	31.0		µg/Kg	0.62	5/18/2016 5:10:00 PM
Benzene			ND	31.0		μg/Kg	0.62	5/18/2016 5:10:00 PM
Bromobenz	zene		ND	31.0		µg/Kg	0.62	5/18/2016 5:10:00 PM
Bromochlor		ane	ND	77.5		μg/Kg μg/Kg	0.62	5/18/2016 5:10:00 PM
Bromodichl			ND	31.0		µg/Kg µg/Kg		5/18/2016 5:10:00 PM
Bromoform		u la l'o	ND	31.0		µg/Kg µg/Kg	0.62 0.62	
Bromometh			ND ND	31.0				5/18/2016 5:10:00 PM
Carbon Dis			ND	31.0		μg/Kg μg/Kg	0.62 0.62	5/18/2016 5:10:00 PM 5/18/2016 5:10:00 PM
Carbon Tet		ide	ND	31.0		րց/Kg	0.62	5/18/2016 5:10:00 PM
Chlorobenz			ND	31.0		μg/Kg	0.62	
Chloroethar			ND	31.0		µg/Kg µg/Kg	0.62	5/18/2016 5:10:00 PM 5/18/2016 5:10:00 PM
Chloroform			ND	31.0		μg/Kg	0.62	5/18/2016 5:10:00 PM
Chlorometh			ND	31.0		μg/Kg μg/Kg	0.62	
cis-1,2-Dich		hene	ND	31.0		μg/Kg μg/Kg		5/18/2016 5:10:00 PM
cis-1,3-Dich			ND	31.0			0.62	5/18/2016 5:10:00 PM
Dibromochl			ND	31.0		µg/Kg	0.62	5/18/2016 5:10:00 PM
Dibromome		a latife	ND ND			µg/Kg	0.62	5/18/2016 5:10:00 PM
Dichlorodifle		athano	ND	31.0		µg/Kg	0.62	5/18/2016 5:10:00 PM
Diethyl Ethe		suidife	ND	31.0		µg/Kg	0.62	5/18/2016 5:10:00 PM
Diisopropyl			ND	31.0		µg/Kg	0.62	5/18/2016 5:10:00 PM
Ethylbenzer			ND ND	31.0		µg/Kg	0.62	5/18/2016 5:10:00 PM
Ethyl-t-Buty			ND	31.0		µg/Kg	0.62	5/18/2016 5:10:00 PM
Hexachlorol				31.0		µg/Kg	0.62	5/18/2016 5:10:00 PM
Isopropylbe		nie	ND	31.0		μg/Kg	0.62	5/18/2016 5:10:00 PM
Methyl Tert-		Ethor	ND ND	31.0		µg/Kg	0.62	5/18/2016 5:10:00 PM
	-			31.0		µg/Kg	0.62	5/18/2016 5:10:00 PM
Methylene (U	ND	31.0		µg/Kg	0.62	5/18/2016 5:10:00 PM
Naphthalen			ND	77.5		μg/Kg	0.62	5/18/2016 5:10:00 PM
n-Butylbenz			ND	31.0		µg/Kg	0.62	5/18/2016 5:10:00 PM
n-Propylben	zene		ND	31.0		µg/Kg	0.62	5/18/2016 5:10:00 PM
Qualifiers:	В	Analyte detected in the as			BF		Reporting Limit	
	E	Value above quantitation	· ·		H			on or analysis exceeded
	J	Analyte detected below q	uantitation limits		N	D Not De	etected at the Reporti	ng Limit
	RL	Reporting Limit			S		Recovery outside rec	

Reported Date: 03-Jun-16

CLIENT:

Germano

Lab Order: Project:

Lab ID:

1605082

DW Clark, Inc.

Client Sample ID: SP-1

Collection Date: 5/13/2016 10:30:00 AM

Date Received: 5/13/2016

1605082-001

Matrix: SOIL

Analyses	Result	RL Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS - 8	3260B				Analyst: Adm i
Prep Method:		Prep Da	ite;		
sec-Butylbenzene	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
Styrene	ND	77.5	µg/Kg	0.62	5/18/2016 5:10:00 PM
tert-Butylbenzene	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
Tetrachloroethene	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
Tetrahydrofuran	ND	77.5	μg/Kg	0.62	5/18/2016 5:10:00 PM
Toluene	ND	31.0	µg/Kg	0.62	5/18/2016 5:10:00 PM
trans-1,2-Dichloroethene	ND	31.0	µg/Kg	0.62	5/18/2016 5:10:00 PM
trans-1,3-Dichloropropene	ND	31.0	µg/Kg	0.62	5/18/2016 5:10:00 PM
Trichloroethene	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
Trichlorofluoromethane	ND	77.5	μg/Kg	0.62	5/18/2016 5:10:00 PM
Vinyl Chloride	ND	31.0	μg/Kg	0.62	5/18/2016 5:10:00 PM
Xylenes, Total	ND	77.5	µg/Kg	0.62	5/18/2016 5:10:00 PM
Surr: 1,2-Dichloroethane-d4	111	70-130	%REC	0.62	5/18/2016 5:10:00 PM
Surr: 4-Bromofluorobenzene	98.2	70-130	%REC	0.62	5/18/2016 5:10:00 PM
Surr: Dibromofluoromethane	105	70-130	%REC	0.62	5/18/2016 5:10:00 PM
Surr: Toluene-d8	76.8	70-130	%REC	0.62	5/18/2016 5:10:00 PM
SPECIFIC CONDUCTANCE - E120.1					Analyst: RP
Prep Method:		Prep Da	te:		
Specific Conductance	180	2.00	µmhos/cm	1	5/17/2016

Qu	ıal	il	ñε	r	s:

В Analyte detected in the associated Method Blank

Value above quantitation range E

Analyte detected below quantitation limits J

RL Reporting Limit

BRL Below Reporting Limit

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Spike Recovery outside recovery limits

Reported Date: 03-Jun-16

CLIENT:

Germano

Lab Order:

1605082

Project:

DW Clark, Inc.

Lab ID:

1605082-002

Client Sample ID: SP-2

Collection Date: 5/13/2016 10:40:00 AM

Date Received: 5/13/2016

Matrix: SOIL

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS	- SW8082A		•		Analyst: DM
Prep Method:	(SW3545A)	Prep	Date: 5/20/201	16 12:37:37	PM
Aroclor 1016	ND	51.0	μg/Kg-dry	1	5/25/2016
Aroclor 1221	ND	51.0	µg/Kg-dry	1	5/25/2016
Aroclor 1232	ND	51.0	μg/Kg-dry	1	5/25/2016
Arocior 1242	ND	51.0	μg/Kg-dry	1	5/25/2016
Aroclor 1248	ND	51.0	μg/Kg-dry	1	5/25/2016
Aroclor 1254	ND	51.0	μg/Kg-dry	1	5/25/2016
Aroclor 1260	ND	51.0	µg/Kg-dry	1	5/25/2016
Surr: Decachlorobiphenyl Sig 1	31.0	30-150	%REC	1	5/25/2016
Surr: Decachlorobiphenyl Sig 2	40.0	30-150	%REC	1	5/25/2016
Surr: Tetrachloro-m-Xylene Sig 1	78.0	30-150	%REC	1	5/25/2016
Surr: Tetrachloro-m-Xylene Sig 2	88,0	30-150	%REC	1	5/25/2016

TOTAL PETROLEUM HYDROCARBONS - 8100M

Prep Method:	(8100M)	Pre		16 12:42:01	PM	
Total Petroleum Hydrocarbons	ND	51.0	mg/Kg-dry	1	5/28/2016	
Surr: o-Terphenyl	87.2	40-140	%REC	1	5/28/2016	

TOTAL METALS BY ICP - SW6010C

Analyst: QS

Analyst: Admir

	Prep Method:	(SW3050B)	Prep	Date: 5/17/201	6 12:53:09	PM	
Arsenic		ND	5.00	mg/Kg-dry	1	5/17/2016	
Cadmium		ND	1.00	mg/Kg-dry	1	5/17/2016	
Chromium		ND	5.00	mg/Kg-dry	1	5/17/2016	
Lead		ND	5.00	mg/Kg-dry	1	5/17/2016	

MERCURY - SW7471B

Analyst: EC

	Prep Method:	(SW7471B)			5/19/2016 3:	37:36 PM	
Mercury		ND	0.0847	mg/Kg-	dry	1	5/19/2016

Qualifiers:

- Analyte detected in the associated Method Blank
 - Value above quantitation range
- Analyte detected below quantitation limits
- RL Reporting Limit

E

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits

45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

Reported Date: 03-Jun-16

CLIENT:

Germano

Lab Order:

1605082

RL Reporting Limit

Project:

DW Clark, Inc.

Lab ID:

1605082-002

Client Sample ID: SP-2

Collection Date: 5/13/2016 10:40:00 AM

Date Received: 5/13/2016

Matrix: SOIL

S Spike Recovery outside recovery limits

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS - SW8	270D				Analyst: Adm
Prep Method:	(SW3545A)	Prep	Date: 5/19/20	16 10:32:35	AM
1,1-Biphenyl	ND	10.2	μg/Kg-dry	1	5/19/2016 2:23:00 PM
1,2,4-Trichlorobenzene	ND	102	µg/Kg-dry	1	5/19/2016 2:23:00 PM
1,2-Dichlorobenzene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
1,2-Dinitrobenzene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
1,3-Dichlorobenzene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
1,3-Dinitrobenzene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
1,4-Dichlorobenzene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
1,4-Dinitrobenzene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
2,3,4,6-Tetrachlorophenol	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
2,4,5-Trichlorophenol	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
2,4,6-Trichlorophenol	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
2,4-Dichlorophenol	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
2,4-Dimethylphenol	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
2,4-Dinitrophenol	ND	510	μg/Kg-dry	1	5/19/2016 2:23:00 PM
2,4-Dinitrotoluene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
2,6-Dinitrotoluene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
2-Chloronaphthalene	ND ·	102	µg/Kg-dry	1	5/19/2016 2:23:00 PM
2-Chlorophenol	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
2-Methylnaphthalene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
2-Methylphenol	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
2-Nitroaniline	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
2-Nitrophenol	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
3,3´-Dichlorobenzidine	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
3-Methylphenol/4-Methylphenol	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
3-Nitroaniline	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
4,6-Dinitro-2-Methylphenol	ND	510	µg/Kg-dry	1	5/19/2016 2:23:00 PM
4-Bromophenyl Phenyl Ether	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
4-Chloro-3-Methylphenol	ND	510	μg/Kg-dry	1	5/19/2016 2:23:00 PM
4-Chloroaniline	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
4-Chlorophenyl Phenyl Ether	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
4-Nitroaniline	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
4-Nitrophenol	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Acenaphthene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Acenaphthylene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Acetophenone	ND	102	µg/Kg-dry	1	5/19/2016 2:23:00 PM
Aniline	ND	510	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Qualifiers: B Analyte detected in the	e associated Method Blanl	k	BRL Below Repo	rting Limit	
E Value above quantitat	tion range				tion or analysis exceeded
J Analyte detected belo	w quantitation limits			at the Repor	
RI Reporting Limit					

Reported Date: 03-Jun-16

CLIENT:

Germano

1605082

Lab Order: Project:

Lab ID:

DW Clark, Inc. 1605082-002

Client Sample ID: SP-2

Collection Date: 5/13/2016 10:40:00 AM

Date Received: 5/13/2016

Matrix: SOIL

Analyses	Result	RL (Qual Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS - SW8	270D				Analyst: Adm
Prep Method:	(SW3545A)	Pr	ep Date: 5/19	/2016 10:32:35	AIV
Anthracene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Azobenzene	ND	510	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Benz(a)Anthracene	ND	10.2	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Benzo(a)Pyrene	ND	10.2	µg/Kg-dry	1	5/19/2016 2:23:00 PM
Benzo(b)Fluoranthene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Benzo(g,h,i)Perylene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Benzo(k)Fluoranthene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Benzyl Alcohol	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Bis(2-Chloroethoxy)Methane	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Bis(2-Chloroethyl)Ether	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Bis(2-Chloroisopropyl)Ether	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Bis(2-Ethylhexyl)Phthalate	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Butyl Benzyl Phthalate	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Carbazole	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Chrysene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Dibenz(a,h)Anthracene	ND	10.2	ug/Kg-dry	1	5/19/2016 2:23:00 PM
Dibenzofuran	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Diethyl Phthalate	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Dimethyl Phthalate	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Di-n-Butyl Phthalate	ND	510	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Di-n-Octyl Phthalate	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Fluoranthene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Fluorene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Hexachlorobenzene	ND	10.2	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Hexachlorobutadiene	ND	10.2	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Hexachloroethane	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Indeno(1,2,3-cd)Pyrene	ND	10.2	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Isophorone	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Naphthalene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Nitrobenzene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
N-Nitrosodimethylamine	ND	510	μg/Kg-dry	1	5/19/2016 2:23:00 PM
N-Nitrosodi-n-Propylamine	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
N-Nitrosodiphenylamine	ND	510	µg/Kg-dry	1	5/19/2016 2:23:00 PM
Pentachlorophenol	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Phenanthrene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Phenol	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM

- В Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- BRL Below Reporting Limit
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- Spike Recovery outside recovery limits

Reported Date: 03-Jun-16

CLIENT:

Germano

Client Sample ID: SP-2

Lab Order:

1605082

Collection Date: 5/13/2016 10:40:00 AM

Project:

DW Clark, Inc.

Date Received: 5/13/2016

Lab ID:

1605082-002

Matrix: SOIL

Analyses	Result	RL Qual Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS - SW8270D				Analyst: Admir

Prep Method:	(SW3545A)	Prep	Date: 5/19/201	6 10:32:35	5 AM
Pyrene	ND	102	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Pyridine	ND	510	μg/Kg-dry	1	5/19/2016 2:23:00 PM
Surr: 2,4,6-Tribromophenol	63.7	30-130	%REC	1	5/19/2016 2:23:00 PM
Surr: 2-Fluorobiphenyl	56.8	30-130	%REC	1	5/19/2016 2:23:00 PM
Surr: 2-Fluorophenol	66.5	30-130	%REC	1	5/19/2016 2:23:00 PM
Surr: Nitrobenzene-d5	62.1	30-130	%REC	1	5/19/2016 2:23:00 PM
Surr: Phenol-d6	70.7	30-130	%REC	1	5/19/2016 2:23:00 PM
Surr: Terphenyl-d14	75.7	30-130	%REC	1	5/19/2016 2:23:00 PM

VOLATILE ORGANIC COMPOUNDS - 8260B

Analyst: Admir

Prep Method:		Prep	Date:		
1,1,1,2-Tetrachloroethane	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,1,1-Trichloroethane	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,1,2,2-Tetrachloroethane	ND	41.8	µg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,1,2-Trichloroethane	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,1-Dichloroethane	ND	105	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,1-Dichloroethene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,1-Dichloropropene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46;00 PM
1,2,3-Trichlorobenzene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,2,4-Trichlorobenzene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,2,4-Trimethylbenzene	ND	41.8	µg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,2-Dibromo-3-Chloropropane	ND	41.8	μg/Kg-dry	0,82	5/18/2016 5:46:00 PM
1,2-Dibromoethane	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,2-Dichlorobenzene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,2-Dichloroethane	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,2-Dichloropropane	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,3,5-Trimethylbenzene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,3-Dìchlorobenzene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,3-Dichloropropane	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,4-Dichlorobenzene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
1,4-Dioxane	ND	8370	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
2,2-Dichloropropane	ND	105	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
2-Butanone	ND	105	µg/Kg-dry	0.82	5/18/2016 5:46:00 PM
2-Chloroethyl Vinyl Ether	ND	41.8	µg/Kg-dry	0.82	5/18/2016 5:46:00 PM

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- RL Reporting Limit

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Spike Recovery outside recovery limits

Reported Date: 03-Jun-16

CLIENT:

Germano

Client Sample ID: SP-2

Lab Order:

1605082

Project:

DW Clark, Inc.

Collection Date: 5/13/2016 10:40:00 AM

Lab ID:

1605082-002

Date Received: 5/13/2016 Matrix: SOIL

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUNDS -	8260B				Analyst: Adn
Prep Method:		Prep	Date:		
2-Chlorotoluene	ND	105	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
2-Hexanone	ND	105	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
2-Methoxy-2-Methylbutane (TAME)	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
4-Chlorotoluene	ND	105	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
4-Isopropyltoluene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
4-Methyl-2-Pentanone	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Acetone	ND	105	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Acrylonitrile	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Benzene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Bromobenzene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Bromochloromethane	ND	105	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Bromodichioromethane	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Bromoform	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Bromomethane	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Carbon Disulfide	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Carbon Tetrachloride	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Chlorobenzene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Chloroethane	ND	41.8	µg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Chloroform	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Chloromethane	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
cis-1,2-Dichloroethene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
cis-1,3-Dichloropropene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Dibromochloromethane	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Dibromomethane	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Dichlorodifluoromethane	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Diethyl Ether	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Diisopropyl Ether	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Ethylbenzene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Ethyl-t-Butyl Ether	ND	41.8	µg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Hexachlorobutadiene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Isopropylbenzene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Methyl Tert-Butyl Ether	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Methylene Chloride	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Naphthalene	ND	105	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
n-Butylbenzene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
n-Propylbenzene	ND	41.8	µg/Kg-dry	0.82	5/18/2016 5:46:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits

Reported Date: 03-Jun-16

CLIENT: Lab Order:

Germano

1605082

Project: Lab ID:

1605082-002

DW Clark, Inc.

Client Sample ID: SP-2

Collection Date: 5/13/2016 10:40:00 AM

Date Received: 5/13/2016

Matrix: SOIL

Analyses	Result	RL Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS - 8	3260B				Analyst: Adm i
Prep Method:		Prep Da	te:		
sec-Butylbenzene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Styrene	ND	105	µg/Kg-dry	0.82	5/18/2016 5:46:00 PM
tert-Butylbenzene	ND	41.8	µg/Kg-dry	0.82	5/18/2016 5:46;00 PM
Tetrachloroethene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Tetrahydrofuran	ND	105	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Toluene	ND	41.8	µg/Kg-dry	0.82	5/18/2016 5:46:00 PM
trans-1,2-Dichloroethene	ND	41.8	μg/Kg-dry	0.82	5/18/2016 5:46:00 PM
trans-1,3-Dichloropropene	ND	41.8	µg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Trichloroethene	ND	41.8	µg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Trichlorofiuoromethane	ND	105	µg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Vinyl Chloride	ND	41.8	µg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Xylenes, Total	ND	105	µg/Kg-dry	0.82	5/18/2016 5:46:00 PM
Surr: 1,2-Dichloroethane-d4	102	70-130	%REC	0.82	5/18/2016 5:46:00 PM
Surr: 4-Bromofluorobenzene	102	70-130	%REC	0.82	5/18/2016 5:46:00 PM
Surr: Dibromofluoromethane	98.3	70-130	%REC	0.82	5/18/2016 5:46:00 PM
Surr: Toluene-d8	78.9	70-130	%REC	0.82	5/18/2016 5:46:00 PM
SPECIFIC CONDUCTANCE - E120.1					Analyst: RP
Prep Method:		Prep Da	te:		
Specific Conductance	660	2.00	μmhos/cm	1	5/17/2016

Qualifiers:	В	Analyte detected in the associated Method Blank	ВІ
	E	Value above quantitation range	H

J Analyte detected below quantitation limits

RL Reporting Limit

RL Below Reporting Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Spike Recovery outside recovery limits

ANALYTICAL QC SUMMARY REPORT

CLIENT: Germano

Work Order: 1605082

Project: DW Clark, Inc.

TestCode: 6010C_S

Date: 03-Jun-16

Sample ID: MBLK-26510	SampType: MBLK	TestCoc	TestCode: 6010C_S	Units: mg/Kg		Prep Date	Prep Date: 5/17/2016	9	RunNo: 61027	721	
Client ID: ZZZZZ	Batch ID: 26510	Test	TestNo: SW6010C	(SW3050B)		Analysis Date: 5/17/2016	e: 5/17/20	9	SeqNo: 670120	120	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Arsenic	QN	5.00									
Cadmium	QN	1.00									
Chromium	QN	5.00									
Lead	ON	2.00									

Sample ID: LCS-26510	SampType: LCS	TestCod	TestCode: 6010C_S	Units: mg/Kg		Prep Dat	Prep Date: 5/17/2016	9	RunNo: 61027	27	
Client ID: ZZZZZ	Batch ID: 26510	TestN	TestNo: SW6010C	(SW3050B)		Analysis Dat	Analysis Date: 5/17/2016	9	SeqNo: 670118	118	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Arsenic	118.3	5.00	133.3	0	88.7	80	120				
Cadmium	121.8	1.00	133.3	0	91.4	80	120				
Chromium	117.9	5.00	133.3	0	88.5	80	120				
Lead	122.2	5.00	133.3	0	91.7	80	120				

Holding times for preparation or analysis exceeded RPD outside recovery limits H R Spike Recovery outside recovery limits E Value above quantitation range
ND Not Detected at the Reporting Limit
S Spike Recovery outside recovery limit BRL Below Reporting Limit

J Analyte detected below quantitation limits Reporting Limit J. Qualifiers:

Germano CLIENT: 1605082 Work Order: Project:

DW Clark, Inc.

S ASE	•
8082A	Ì
TestCode:	

Sample ID: MB-26522	SampType: MBLK	TestCo	de: 8082A_S_	TestCode: 8082A_S_AS Units: µg/Kg		Prep Date:	5: 5/20/2016	RunNo: 61168	
Client ID: ZZZZZ	Batch ID: 26522	Test	TestNo: SW8082	(SW3545A)		Analysis Date	Analysis Date: 5/25/2016	SeqNo: 671243	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	t Qual
Aroclor 1016	QN	50.0							
Aroclor 1221	QN	50.0							
Aracior 1232	QN	50.0							
Aroclor 1242	ON	20.0							
Aroclor 1248	QN	50.0							
Arodor 1254	QN	50.0							
Aroclar 1260	QN	50.0							
Surr: Decachlorobiphenyl Sig 1	1 30.00	0	100	0	30.0	30	150		
Surr: Decachlorobiphenyl Sig 2	2 36.00	0	100	0	36.0	30	150		
Surr: Tetrachloro-m-Xylene Sig 1	ig 1 74.00	0	100	0	74.0	30	150		
Surr: Tetrachloro-m-Xylene Sig 2	ig 2 78.00	0	100	0	78.0	30	150		
Sample ID; LCS-26522	SampType: LCS	TestCo	TestCode: 8082A_S_AS	AS Units: µg/Kg		Prep Date:	:: 5/20/2016	RunNo: 61168	
Client ID: ZZZZZ	Batch ID: 26522	Test	No: SW8082	(SW3545A)		Analysis Date:	s: 5/25/2016	SeqNo: 671241	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	%REC LowLimit HighLimit	HighLimit RPD Ref Val	%RPD RPDLimit	t Qual
Aroclor 1016	125.4	50.0	100	0	125	40	140	rannunsky insammany inspiratory of the property of the propert	
Aroclor 1260	118.2	50.0	100	0	118	40	140		
Surr: Decachlorobiphenyl Sig 1	1 37.00	0	100	0	37.0	30	150		
Surr: Decachlorobiphenyl Sig 2	2 45.00	0	100	0	45.0	30	150		
Surr: Tetrachloro-m-Xylene Sig 1	g 1 82.00	0	100	0	82.0	30	150		
Surr: Tetrachloro-m-Xylene Sig 2	g 2 87.00	0	100	0	87.0	30	150		

Holding times for preparation or analysis exceeded RPD outside recovery limits H R Spike Recovery outside recovery limits E Value above quantitation range
ND Not Detected at the Reporting Limit
S Spike Recovery outside recovery limi Analyte detected below quantitation limits BRL Below Reporting Limit Reporting Limit ب ع Qualifiers:

GeoLabs, Inc.

45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

CLIENT: Germano

Work Order: 1605082

DW Clark, Inc.	χ.
Project:	

TestCode: 8260B_S_MCP

Sample ID: MBLK	SampType: mblk	TestCode:	8260B_S_N	TestCode: 8260B_S_MC Units: µg/Kg		Prep Date:	.e.		RunNo: 61048	48	
Client ID: ZZZZZ	Batch ID: R61048	TestNo:	TestNo: SW8260B		4	Analysis Date:	te: 5/18/2016	116	SeqNo: 670215	215	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	QN	50.0									
1,1,1-Trichloroethane	QN N	20.0									
1,1,2,2-Tetrachloroethane	Q	20.0									
1,1,2-Trichloroethane	QN	50.0									
1,1-Dichloroethane	QV.	125									
1,1-Dichloroethene	QN	50.0									
1,1-Dichloropropene	QN	90.09									
1,2,3-Trichlorobenzene	ON	50.0									
1,2,4-Trichlorobenzene	QN	50.0									
1,2,4-Trimethylbenzene	QN	50.0									
1,2-Dibromo-3-Chloropropane	QN	50.0									
1,2-Dibromoethane	ON	50.0									
1,2-Dichlorobenzene	QN	50.0		٠							
1,2-Dichloroethane	QN	50.0									
1,2-Dichloropropane	ON	50.0									
1,3,5-Trimethylbenzene	QN	50.0									
1,3-Dichlorobenzene	QN	50.0									
1,3-Dichloropropane	QN	50.0									
1,4-Dichlorobenzene	QN	50.0									
1,4-Dioxane	<u>Q</u>	10000									
2,2-Dichloropropane	QN	125									
2-Butanone	ΩN	125									
2-Chloroethyl Vinyl Ether	QN	50.0									
2-Chlorotoluene	QN	125									
2-Hexanone	QN	125									
2-Methoxy-2-Methylbutane (TAME)	QN (Ξ	50.0									
4-Chlorotoluene	QN	125									
4-Isopropyltoluene	QN	50.0									
Qualifiers: BRL Below Reporting Limit	ing Limit		[Value above quantitation range	a			Holding times for preparation or analysis exceeded	eparation or an	alysis exceede	-
J Analyte detect	Analyte detected below quantitation limits	Į	ND Not Det	Not Detected at the Reporting Limit	Limit		R	RPD outside recovery limits	ry limits		
RL Reporting Limit	nit		S Spike R	Spike Recovery outside recovery limits	ry limits						

Germano CLIENT:

1605082 Work Order: DW Clark, Inc. Project:

TestCode: 8260B_S_MCP

Complete No. 17	F C	ł									
Sample ID: WBLK	samp lype: mblk	estCo	de: 8260B_S	lestCode: 8260B_S_MC Units: µg/Kg		Prep Date:	e:		RunNo: 61048	948	
Client ID: ZZZZZ	Batch ID: R61048	Test	TestNo: SW8260B		•	Analysis Date:	te: 5/18/2016	116	SeqNo: 670215	215	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4-Methyl-2-Pentanone	QN	50.0									
Acetone	QN	125									
Acrylonitrile	Q	50.0									
Benzene	9	50.0									
Bromobenzene	QN	50.0									
Bromochloromethane	2	125									
Bromodichloromethane	QN	50.0									
Bromoform	QN	20.0									
Bromomethane	Q.	50.0									
Carbon Disulfide	QN	90.09									
Carbon Tetrachloride	ON	90.09				-					
Chlorobenzene	QN	50.0									
Chloroethane	QN	50.0									
Chloroform	Q	50.0									
Chloromethane	QN	50.0									
cis-1,2-Dichloroethene	QN	50.0									
cis-1,3-Dichloropropene	QN	50.0									
Dibromochloromethane	QN	90.09									
Dibromomethane	QN	50.0									
Dichlorodifluoromethane	QN	50.0									
Diethyl Ether	Q	50.0									
Diisopropyl Ether	ON	50.0									
Ethylbenzene	Q	50.0									
Ethyl-t-Butyl Ether	QN	50.0									
Hexachlorobutadiene	QN	50.0									
Isopropylbenzene	QN	20.0									
Methyl Tert-Butyl Ether	QN	50.0									
Methylene Chloride	QN	50.0									
Qualifiers: BRL Below Reporting Limit	ing Limit		E Value a	Value above quantitation range			H	Holding times for preparation or analysis exceeded	reparation or an	alysis exceede	þ
J Analyte detect	Analyte detected below quantitation limits		ND Not De	Not Detected at the Reporting Limit	imit		R	RPD outside recovery limits	ry limits		
RL Reporting Limit	nìt		S Spike R	Spike Recovery outside recovery limits	/ limits						

45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811 GeoLabs, Inc.

CLIENT:

Germano 1605082 Work Order:

DW Clark, Inc. Project:

TestCode: 8260B_S_MCP

Sample ID: MBLK	SampType: mblk	TestCo	Je: 8260B_S_M	TestCode: 8260B_S_MC Units: µg/Kg		Prep Date:	.;		RunNo: 61048		
Client ID: ZZZZZ	Batch ID: R61048	Test	TestNo: SW8260B			Analysis Date: 5/18/2016	e: 5/18/20	7.6	SeqNo: 670215	10	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD RI	RPDLimit	Qual
Naphthalene	QN	125		alle de la faction de la f				***************************************			
n-Butylbenzene	QN	20.0									
n-Propylbenzene	QN	20.0									
sec-Butylbenzene	ON	50.0									
Styrene	QN	125									
tert-Butylbenzene	QV	90.0									
Tetrachloroethene	QN	50.0									
Tetrahydrofuran	QV	125									
Toluene	9	50.0									
trans-1,2-Dichloroethene	ON	50.0									
trans-1,3-Díchloropropene	QN	50.0									
Trichloroethene	QN	50.0									
Trichlorofluoromethane	ON.	125									
Vinyl Chloride	QN	20.0									
Xylenes, Total	ON	125									
Surr: 1,2-Dichloroethane-d4	824.0	0	750	0	110	20	130				
Surr: 4-Bromofluorobenzene	741.2	0	750	0	98.8	70	130				
Surr: Dibromofluoromethane	675.8	0	750	0	90.1	70	130				
Surr: Toluene-d8	589.2	0	750	0	78.6	70	130				
Sample ID: LCS	SampType: Ics	TestCoc	e: 8260B_S_M(TestCode: 8260B_S_MC Units: µg/Kg		Prep Date:			RunNo: 61048		
Client ID: ZZZZZ	Batch ID: R61048	Test	TestNo: SW8260B		4	Analysis Date: 5/18/2016	9: 5/18/20	16	SeqNo: 670213		

Sample ID: LCS	SampType: Ics	TestCod	3: 8260B_S	TestCode: 8260B_S_MC Units: µg/Kg		Prep Date:	.e.	RunNo: 61048	1048	
Client ID: ZZZZZ	Batch ID: R61048	TestN	TestNo: SW8260B			Analysis Dat	Analysis Date: 5/18/2016	SeqNo: 670213	70213	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	Quaf
1,1,1,2-Tetrachloroethane	1155	50.0	1250	0	92.4	70	130			
1,1,1-Trichloroethane	1114	50.0	1250	0	89.1	70	130			
1,1,2,2-Tetrachloroethane	1227	50.0	1250	0	98.2	70	130			
Qualifiers: BRL Below Reporting Limit	oorting Limit		E Value	Value above quantitation range	9.		H Holding times	Holding times for preparation or analysis exceeded	analysis excee	ded
J Analyte det	J Analyte detected below quantitation limits		ND Not D	Not Detected at the Reporting Limit	Limit		R RPD outside	RPD outside recovery limits		

45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811 GeoLabs, Inc.

S Spike Recovery outside recovery limits

RL Reporting Limit

CLIENT: Germano

Work Order: 1605082

Project: DW Clark, Inc.

TestCode: 8260B_S_MCP

0 - 10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	O	L City L	0 0000	77		Č			97070	
Salliple ID. FCS	Sampiye. ics	estrode	. ozoub_o	estande: ozoub_a_mic_ollins: µging		riep Dale.	ni.		KUNNO: 01048	
Client ID: ZZZZZ	Batch ID: R61048	TestNo	No: SW8260B			Analysis Date:	»: 5/18/2016	16	SeqNo: 670213	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	nit Qual
1,1,2-Trichloroethane	1284	50.0	1250	0	103	70	130			
1,1-Dichloroethane	1270	125	1250	0	102	70	130			
1,1-Dichloroethene	1134	50.0	1250	0	2.06	70	130			
1,1-Dichloropropene	1112	50.0	1250	0	89.0	70	130			
1,2,3-Trichlorobenzene	1051	50.0	1250	0	84.1	70	130			
1,2,4-Trichlorobenzene	1202	50.0	1250	0	96.1	70	130			
1,2,4-Trimethylbenzene	1390	50.0	1250	0	111	70	130			
1,2-Dibromo-3-Chloropropane	1228	20.0	1250	0	98.3	70	130			
1,2-Dibromoethane	1260	50.0	1250	0	101	20	130			
1,2-Dichlorobenzene	1188	50.0	1250	0	95.0	0,2	130			
1,2-Dichloroethane	1262	50.0	1250	0	101	70	130			
1,2-Dichloropropane	1224	20.0	1250	0	97.9	70	130			
1,3,5-Trimethylbenzene	1352	50.0	1250	0	108	70	130			
1,3-Dichlorobenzene	1222	50.0	1250	0	7.76	70	130			
1,3-Dichloropropane	1308	50.0	1250	0	105	70	130			
1,4-Dichlorobenzene	1092	50.0	1250	0	87.3	70	130			
2,2-Dichloropropane	856.5	125	1250	0	68.5	70	130			S
2-Butanone	1323	125	1250	0	106	70	130			
2-Chloroethyl Vinyl Ether	1224	50.0	1250	0	97.9	20	130			
2-Chlorotoluene	1308	125	1250	0	105	70	130			
2-Hexanone	1147	125	1250	0	91.8	20	130			
2-Methoxy-2-Methylbutane (TAME)	E) ND	50.0	1250	0	0	20	130			S
4-Chlorotoluene	1349	125	1250	0	108	70	130			
4-Isopropyltoluene	1329	50.0	1250	0	106	70	130			
4-Methyl-2-Pentanone	1208	50.0	1250	0	9.96	70	130			
Acetone	1267	125	1250	0	101	70	130			
Acrylonitrile	2344	50.0	2500	0	93.7	70	130			
Benzene	1228	50.0	1250	0	98.3	20	130			
Qualifiers: BRL Below Reporting Limit	ing Limit	The force of forcess plants are plants and the forces	E Value	Value above quantitation range	و ا		H	folding times for p	Holding times for preparation or analysis exceeded	eeded
J Analyte detect	Analyte detected below quantitation limits		ND Not De	Not Detected at the Reporting Limit	Limit		R	RPD outside recovery limits	ery limits	
RL Reporting Limit	nit		S Snike	Snike Recovery outside recovery limits	ery limits					

GeoLabs, Inc. 45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

CLIENT: Germano

Work Order: 1605082

Project: DW Clark, In

DW Clark, Inc.

TestCode: 8260B_S_MCP

				***************************************						***************************************	
Sample ID: LCS	SampType: Ics	TestCod	TestCode: 8260B_S_MC	MC Units: µg/Kg		Prep Date	æ.		RunNo: 61048	48	
Cifent ID: ZZZZZ	Batch ID: R61048	TestN	TestNo: SW8260B			Analysis Date:	e: 5/18/2016	16	SeqNo: 670213	213	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromobenzene	1252	50.0	1250	0	100	70	130				
Bromochloromethane	1222	125	1250	0	97.7	70	130				
Bromodichloromethane	1185	50.0	1250	0	94.8	70	130				
Bromoform	1379	50.0	1250	0	110	70	130				
Bromomethane	1190	50.0	1250	0	95.2	70	130				
Carbon Disulfide	1101	50.0	1250	0	88.1	70	130				
Carbon Tetrachloride	1121	50.0	1250	0	89.7	70	130				
Chlorobenzene	1129	50.0	1250	0	90.3	70	130				
Chloroethane	1080	50.0	1250	0	86.4	70	130				
Chloroform	1218	50.0	1250	0	97.4	70	130				
Chloromethane	1121	50.0	1250	0	89.7	70	130				
cis-1,2-Dichloroethene	1300	50.0	1250	0	104	70	130				
cis-1,3-Dichloropropene	1234	50.0	1250	0	98.7	20	130				
Dibromochloromethane	1264	50.0	1250	0	101	70	130				
Dibromomethane	1138	50.0	1250	0	91.1	20	130				
Dichlorodifluoromethane	1059	50.0	1250	0	84.7	70	130				
Diethyl Ether	Q	50.0	1250	0	0	20	130				ဟ
Diisopropyl Ether	1314	50.0	1250	0	105	70	130				
Ethylbenzene	1315	50.0	1250	0	105	70	130				
Ethyl-t-Butyl Ether	1292	50.0	1250	0	103	70	130				
Hexachlorobutadiene	1076	50.0	1250	0	86.0	70	130				
Isopropylbenzene	1061	50.0	1250	0	84.9	70	130				
Methyl Tert-Butyl Ether	1312	50.0	1250	0	105	70	130				
Methylene Chloride	1158	50.0	1250	0	92.7	70	130				
Naphthalene	1218	125	1250	0	97.5	70	130				
n-Butylbenzene	1254	50.0	1250	0	100	70	130				
n-Propylbenzene	1353	50.0	1250	0	108	70	130				
sec-Butylbenzene	1270	90.09	1250	0	102	20	130				
Qualifiers: BRL Below Reporting Limit	ting Limit		E Value	Value above quantitation range	9		H	Holding times for preparation or analysis exceeded	reparation or an	alysis exceede	Ę.
J Analyte detec	Analyte detected below quantitation limits		ND Not De	Not Detected at the Reporting Limit	Limit		R	RPD outside recovery limits	ary limits		
RL Reporting Limit	mit		S Spike F	Spike Recovery outside recovery limits	ery limits						

Germano CLIENT:

1605082 Work Order:

TestCode: 8260B_S_MCP

DW Clark, Inc. Project:

Sample ID: LCS	SampType: Ics	TestCo	le: 8260B_S_I	TestCode: 8260B_S_MC Units: µg/Kg		Prep Date:	E.	***************************************	RunNo: 61048	
Client ID: ZZZZZ	Batch ID: R61048	Test	TestNo: SW8260B		**	Analysis Date	Analysis Date: 5/18/2016		SeqNo: 670213	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	LowLimit HighLimit RPD Ref Val	Ref Val	%RPD RPDLimit	Qual
Styrene	1386	125	1250	0	111	70	130			
tert-Butylbenzene	1402	20.0	1250	0	112	70	130			
Tetrachloroethene	1215	20.0	1250	0	97.2	70	130			
Tetrahydrofuran	1310	125	1250	0	105	70	130			
Totuene	1180	50.0	1250	0	94.4	70	130			
trans-1,2-Dichloroethene	1125	20.0	1250	0	90.0	20	130			
trans-1,3-Dichloropropene	1242	20.0	1250	0	99.3	70	130			
Trichloroethene	1139	50.0	1250	0	91.1	20	130			
Trichlorofluoromethane	1132	125	1250	0	90.5	70	130			
Vinyl Chloride	1170	50.0	1250	0	93.6	70	130			
Xylenes, Total	3514	125	3750	0	93.7	70	130			
Surr: 1,2-Dichloroethane-d4	688.8	0	750	0	91.8	20	130			
Surr: 4-Bromofluorobenzene	773.0	0	750	0	103	70	130			
Surr: Dibromofluoromethane	760.5	0	750	0	101	70	130			
Surr: Toluene-d8	815.2	0	750	0	109	20	130			

Holding times for preparation or analysis exceeded RPD outside recovery limits H W Spike Recovery outside recovery limits E Value above quantitation range

ND Not Detected at the Reporting Limit

S Spike Recovery outside recovery lim Value above quantitation range BRL Below Reporting Limit

J Analyte detected below quantitation limits Reporting Limit J Z Qualifiers:

45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811 GeoLabs, Inc.

Germano 1605082 Work Order:

8270D_S_ASE
TestCode:
DW Clark, Inc.
Project:

Sample ID: MB-26513	SampType: mblk	TestCode:	TestCode: 8270D_S_AS	S Units: µg/Kg		Prep Date:	te: 5/19/2016	016	RunNo: 61055	355	
Client ID: ZZZZ	Batch ID: 26513	TestNo:	TestNo: SW8270C	(SW3545A)	•	Analysis Date:	te: 5/19/2016	016	SeqNo: 670277	7.27	
Analyte	Result	PQL S	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Biphenyl	QN	10.0							- and an analysis and an		
1,2,4-Trichlorobenzene	Q	100									
1,2-Dichlorobenzene	g	100									
1,2-Dinitrobenzene	Q	100									
1,3-Dichlorobenzene	Q.	100									
1,3-Dinitrobenzene	Q	100									
1,4-Dichlorobenzene	QN	100									
1,4-Dinitrobenzene	QV	100									
2,3,4,6-Tetrachlorophenol	Q	100									
2,4,5-Trichlorophenol	QN	100									
2,4,6-Trichlorophenol	QN	100									
2,4-Dichlorophenol	QV	100									
2,4-Dimethylphenol	Q	100									
2,4-Dinitrophenol	QN	200									
2,4-Dinitrotoluene	QN	100									
2,6-Dinitrotoluene	ON	100									
2-Chloronaphthalene	ON.	100									
2-Chlorophenol	QN	100									
2-Methylnaphthalene	Q	100									
2-Methylphenol	ON.	100									
2-Nitroaniline	Q	100									
2-Nitrophenol	ON.	100									
3,3'-Dichlorobenzidine	<u>QN</u>	100									
3-Methylphenol/4-Methylphenol	QN	100									
3-Nitroaniline	QN	100									
4,6-Dinitro-2-Methylphenol	QN	200									
4-Bromophenyl Phenyl Ether	QN	100									
4-Chloro-3-Methylphenol	QN	200									
Qualifiers: BRL Below Reporting Limit	ing Limit	AN ORNICA TO AN ORNICA AND AND AND AND AND AND AND AND AND AN		Value above quantitation range	٠	-	H	Holding times for preparation or analysis exceeded	reparation or a	nalysis exceede	
	Analyte detected below quantitation limits	Z	ND Not Dete	Not Detected at the Reporting Limit	Limit		×	RPD outside recovery limits	ery limits		
RL Reporting Limit	nit	•	S Spike Re	Spike Recovery outside recovery limits	ary limits						

45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811 GeoLabs, Inc.

CLIENT: Germano

Work Order: 1605082

Project: DW Clark, Inc.

S ASE
8270D
TestCode:

Sample ID: MB-26513	SampType: mblk	TestCod	TestCode: 8270D_S_AS	S Units: µg/Kg		Prep Date:	5/19/2016	2016	RunNo: 61055	55	
Client ID: ZZZZZ	Batch ID: 26513	TestN	TestNo: SW8270C	(SW3545A)		Analysis Date:	5/19/2016	2016	SeqNo: 670277	277	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	t RPD Ref Val	%RPD	RPDLimit	Qual
4-Chloroaniline	QN	100									
4-Chlorophenyl Phenyl Ether	ND	100									
4-Nitroaniline	ND	100									
4-Nitrophenol	QV	100									
Acenaphthene	Q	100									
Acenaphthylene	QN	100									
Acetophenone	QN	100									
Aniline	QN	200									
Anthracene	QN	100									
Azobenzene	QN	200									
Benz(a)Anthracene	QN	10.0									
Benzo(a)Pyrene	QV	10.0									
Benzo(b)Fluoranthene	ON.	100									
Benzo(g,h,i)Perylene	QN	100									
Benzo(k)Fluoranthene	QN	100									
Benzyf Alcohol	<u>Q</u>	100									
Bis(2-Chloroethoxy)Methane	Q	100									
Bis(2-Chloroethyt)Ether	QN	100									
Bis(2-Chlorolsopropyl)Ether	QN	100									
Bis(2-Ethylhexyl)Phthalate	Q	100									
Butyl Benzyl Phthalate	Q	100									
Carbazole	QN	100									
Chrysene	QN	100									
Dibenz(a,h)Anthracene	Q	10.0									
Dibenzofuran	ND	100									
Diethyl Phthalate	9	100									
Dimethyl Phthalate	QN	100									
Di-n-Butyl Phthalate	QN	200									
Qualifiers: BRL Below Reporting Limit	ing Limit		E Value at	Value above quantitation range	0		H	Holding times for preparation or analysis exceeded	eparation or an	alysis exceede	þ
J Analyte detect	Analyte detected below quantitation limits		ND Not Det	Not Detected at the Reporting Limit	Limit		æ	RPD outside recovery limits	ry limits		
	•			4							

S Spike Recovery outside recovery limits

RL Reporting Limit

Germano CLIENT:

1605082 Work Order:

DW Clark, Inc. Project:

TestCode: 8270D_S_ASE

Sample ID: MB-26513	SampType: mblk	TestCode: 8270D	TestCode: 8270D_S_AS Units: µg/Kg	Units: µg/Kg		Prep Date: 5/19/2016	5/19/2016	RunNo: 61055	
Client ID: ZZZZZ	Batch ID: 26513	TestN	TestNo: SW8270C	(SW3545A)	1	Analysis Date: 5/19/2016	5/19/2016	SeqNo: 670277	
Analyte	Result	PQL	SPK value Si	SPK Ref Val	%REC	LowLimit Hig	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit (Qual
Di-n-Octyl Phthalate	QN	100							
Fluoranthene	Q	100							
Fluorene	QN	100							
Hexachlorobenzene	QN	10.0							
Hexachlorobutadiene	QN	10.0							
Hexachloroethane	QN	100							
Indeno(1,2,3-cd)Pyrene	ON	10.0							
Isophorone	Q	100							
Naphthalene	QN	100							
Nitrobenzene	QN	100							
N-Nitrosodimethylamine	QN.	200							
N-Nitrosodi-n-Propylamine	QN.	100							
N-Nitrosodiphenylamine	<u>Q</u>	200							
Pentachlorophenol	QN	100							
Phenanthrene	QN	100							
Phenol	8	100							
Pyrene	Q	100							
Pyridine	QN	200							
Surr: 2,4,6-Tribromophenol	5693	0	7500	0	75.9	30	130		
Surr: 2-Fluorobiphenyl	3862	0	2000	0	77.2	30	130		
Surr: 2-Fluorophenol	6764	0	7500	0	90.2	30	130		
Surr: Nitrobenzene-d5	4336	0	2000	0	86.7	30	130		
Surr: Phenol-d6	6964	0	7500	0	92.8	30	130		
Surr: Terphenyl-d14	4382	0	2000	0	7.78	30	130		

45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811 Spike Recovery outside recovery limits GeoLabs, Inc.

B Value above quantitation range
ND Not Detected at the Reporting Limit
S Spike Recovery outside recovery limit

BRL Below Reporting Limit

J Analyte detected below quantitation limits

Qualifiers:

RL Reporting Limit

H Holding times for preparation or analysis exceeded R RPD outside recovery limits

Germano 1605082 Work Order:

Project:

, Inc.	
DW Clark,	
<u>}</u>	
:t:	

TestCode: 8270D_S_ASE

Sample ID: LCS-26513	SampType: Ics	TestCoc	TestCode: 8270D S AS	S Units: µa/Ka		Prep Date:	5/19/2016	16	RunNo: 61055	355	
Client ID: ZZZZZ	Batch ID: 26513	Test	TestNo: SW8270C	(SW3545A)		Analysis Date:	5/19/2016	9	SeqNo: 670279	1279	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Biphenyi	198.0	10.0	250	0	79.2	40	140				
1,2,4-Trichlorobenzene	1688	100	2500	0	67.5	40	140				
1,2-Dichlorobenzene	1698	100	2500	0	67.9	40	140				
1,2-Dinitrobenzene	1983	100	2500	0	79.3	40	140				
1,3-Dichlorobenzene	1654	100	2500	0	66.2	40	140				
1,3-Dinitrobenzene	2150	100	2500	0	86.0	40	140				
1,4-Dichlorobenzene	1634	100	2500	0	65.4	40	140				
1,4-Dinitrobenzene	2028	100	2500	0	81.1	40	140				
2,3,4,6-Tetrachlorophenol	2250	100	2500	0	0.06	30	130				
2,4,5-Trichlorophenol	1924	100	2500	0	6.97	30	130				
2,4,6-Trichlorophenol	1938	100	2500	0	77.5	30	130				
2,4-Dichlorophenol	1908	100	2500	0	76.3	30	130				
2,4-Dimethylphenol	1350	100	2500	0	54.0	30	130				
2,4-Dinitrophenol	Q	200	2500	0	0	15	130				S
2,4-Dinitrotoluene	2042	100	2500	0	81.7	40	140				
2,6-Dinitrotoluene	2076	100	2500	0	83.0	40	140				
2-Chloronaphthalene	1902	100	2500	0	76.1	40	140	٠			
2-Chlorophenol	2016	100	2500	0	80.6	30	130				
2-Methylnaphthalene	1836	100	2500	0	73.4	40	140				
2-Methylphenol	2342	100	2500	0	93.7	30	130				
2-Nitroaniline	2448	100	2500	0	97.9	15	130				
2-Nitrophenol	1890	100	2500	0	75.6	30	130				
3,3'-Dichlorobenzidine	2415	100	2500	0	9.96	40	140				
3-Methylphenol/4-Methylphenol	2252	100	2500	0	90.1	30	130				
3-Nitroaniline	2208	100	2500	0	88.3	15	140				
4,6-Dinitro-2-Methylphenol	570.0	200	2500	0	22.8	30	130				S
4-Bromophenyl Phenyl Ether	2296	100	2500	0	91.9	40	140				
4-Chloro-3-Methylphenol	2172	200	2500	0	86.9	30	130				
Qualifiers: BRL Below Reporting Limit	ng Limit		E Value ab	Value above quantitation range	9		HH	Holding times for preparation or analysis exceeded	reparation or a	nalysis exceede	PK
<u>-</u>	Analyte detected below quantitation limits			Not Detected at the Reporting Limit	Limit			RPD outside recovery limits	rv limits	,	
	TO COLD TIMESTATION OF THE PARTY OF THE PART			Alvana stranska stranska	A. A				y rannar		

45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811 GeoLabs, Inc.

S Spike Recovery outside recovery limits

RL Reporting Limit

Germano 1605082 Work Order:

Project:

DW Clark, Inc.

8270D S ASE	!
TestCode:	

Sample ID: LCS-26513	SampType: Ics	TestCoc	TestCode: 8270D_S_AS	S Units: µg/Kg		Prep Date:	5/19/2016	RunNo: 61055	
Client ID: ZZZZZ	Batch ID: 26513	Test	TestNo: SW8270C	(SW3545A)		Analysis Date:	5/19/2016	SeqNo: 670279	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	Val %RPD RPDLimit	Qual
4-Chloroaniline	1840	100	2500	0	73.6	15	140	integradestratestratestratestratestratestratestratestratestratestratestratestratestratestratestratestratestrate	
4-Chlorophenyl Phenyl Ether	2126	100	2500	0	85.0	40	140		
4-Nitroaniline	2208	100	2500	0	88.3	15	140		
4-Nitrophenol	1824	100	2500	0	73.0	15	130		
Acenaphthene	2141	100	2500	0	85.6	40	140		
Acenaphthylene	2096	100	2500	0	83.9	40	140		
Acetophenone	1941	100	2500	0	77.6	40	140		
Aniline	1806	200	2500	0	72.2	45	140		
Anthracene	2234	100	2500	0	89.3	40	140		
Azobenzene	2099	200	2500	0	84.0	40	140		
Benz(a)Anthracene	2320	10.0	2500	0	92.8	40	140	-	
Benzo(a)Pyrene	2284	10.0	2500	0	91.4	40	140		
Benzo(b)Fluoranthene	2344	100	2500	0	93.8	40	140		
Benzo(g,h,i)Perylene	2011	100	2500	0	80.4	40	140		
Benzo(k)Fluoranthene	2210	100	2500	0	88.4	40	140		
Benzyl Alcohol	1996	100	2500	0	79.9	40	140		
Bis(2-Chloroethoxy)Methane	2072	100	2500	0	82.9	. 40	140		
Bis(2-Chloroethyl)Ether	1779	100	2500	0	71.2	40	140		
Bis(2-Chloroisopropyl)Ether	2097	100	2500	0	83.9	40	140		
Bis(2-Ethylhexyl)Phthalate	2124	100	2500	0	85.0	40	140		
Butyl Benzyl Phthalate	2498	100	2500	0	6.66	40	140		
Carbazole	2252	100	2500	0	90.1	40	140		
Chrysene	2321	100	2500	0	92.8	40	140		
Dibenz(a,h)Anthracene	2282	10.0	2500	0	91.3	40	140		
Dibenzofuran	2032	100	2500	0	81.3	40	140		
Diethyl Phthalate	2040	100	2500	0	81.6	40	140		
Dimethyl Phthalate	1990	100	2500	0	79.6	40	140		
Di-n-Butyl Phthalate	2016	200	2500	0	80.7	40	140		
Qualifiers: BRL Below Reporting Limit	ing Limit		E Value ab	Value above quantitation range	92		H Holding tim	Holding times for preparation or analysis exceeded	ded
J Analyte detect	Analyte detected below quantitation limits		ND Not Dete	Not Detected at the Reporting Limit	Limit		R RPD outside	RPD outside recovery limits	
RL Reporting Limit	nit		S Spike Re	Spike Recovery outside recovery limits	ery limits				

45 Johnson Lane \sim Braintree MA 02184 \sim 781 848 7844 \sim 781 848 7811 GeoLabs, Inc.

Germano 1605082 Work Order:

DW Clark, Inc. Project:

TestCode: 8270D_S_ASE

Sample ID: LCS-26513	SampType: Ics	TestCoc	TestCode: 8270D_S_AS	Units: µg/Kg		Prep Date:	5/19/2016		RunNo: 61055	5	
Client ID: ZZZZZ	Batch ID: 26513	Test	TestNo: SW8270C	(SW3545A)		Analysis Dafe:	5/19/2016		SeqNo: 670279	79	
Analyte	Result	POL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit RPI	RPD Ref Val	%RPD	RPDLimit	Qual
Di-n-Octyl Phthalate	2340	100	2500	0	93.6	40	140				
Fluoranthene	2197	100	2500	0	87.9	40	140				
Fluorene	2106	100	2500	0	84.2	40	140				
Hexachlorobenzene	2084	10.0	2500	0	83.3	40	140				
Hexachlorobutadiene	1618	10.0	2500	0	64.7	40	140				
Hexachloroethane	1720	100	2500	0	8.89	40	140			-	
Indeno(1,2,3-cd)Pyrene	2204	10.0	2500	0	88.2	40	140				
Isophorone	2112	100	2500	0	84.5	40	140				
Naphthalene	1908	100	2500	0	76.3	40	140				
Nitrobenzene	1970	100	2500	0	78.8	40	140				
N-Nitrosodimethylamine	1875	200	2500	0	75.0	40	140				
N-Nitrosodi-n-Propylamine	2040	100	2500	0	81.6	40	140				
N-Nitrosodiphenylamine	2214	200	2500	0	88.6	40	140				
Pentachlorophenol	1430	100	2500	0	57.2	30	130				
Phenanthrene	2246	100	2500	0	89.9	40	140				
Phenol	2102	100	2500	0	84.1	30	130				
Pyrene	2512	100	2500	0	101	40	140				
Pyridine	871.5	200	2500	0	34.9	40	140				တ
Surr: 2,4,6-Tribromophenol	9959	0	7500	0	97.8	30	130				
Surr: 2-Fluorobiphenyl	3938	0	2000	0	78.8	30	130				
Surr: 2-Fluorophenol	6525	0	7500	0	87.0	30	130				
Surr: Nitrobenzene-d5	4392	0	2000	0	87.8	30	130				
Surr: Phenol-d6	7133	0	7500	0	95.1	30	130				
Surr: Terphenyl-d14	5148	0	2000	0	103	30	130				

H Holding times for preparation or analysis exceeded	R RPD outside recovery limits		
E Value above quantitation range	ND Not Detected at the Reporting Limit	S Spike Recovery outside recovery limits	
alifiers: BRL Below Reporting Limit	J Analyte detected below quantitation limits	RL Reporting Limit	
	E Value above quantitation range H Holding times for preparation or analysis exceed	BRL Below Reporting Limit E Value above quantitation range H Holding times for preparation or analysis exceed J Analyte detected below quantitation limits R RPD outside recovery limits	BRL Below Reporting Limit E Value above quantitation limits E Value above quantitation finits ND Not Detected at the Reporting Limit R RPD outside recovery limits RL Reporting Limit Spike Recovery outside recovery limits Spike Recovery outside recovery limits

45 Johnson Lane \sim Braintree MA 02184 \sim 781 848 7844 \sim 781 848 7811 GeoLabs, Inc.

CLIENT: Germano

Work Order: 1605082

Project: DW Clark, Inc.

TestCode: COND_S

Sample ID: MB-R61034	SampType: MBLK	TestCo	TestCode: COND_S	Units: µmhos/cm	Prep Date:	(e.	RunNo: 61034	
Client ID: ZZZZZ	Batch ID: R61034	Test	TestNo: E120.1		Analysis Da	Analysis Date: 5/17/2016	SeqNo: 670096	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val %RE	C LowLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual	Qual
Specific Conductance	QN	2.00						
Sample ID: LCS-R61034 Client ID: ZZZZZ	SampType: LCS Batch ID: R61034	TestCo	TestCode: COND_S TestNo: E120.1	Units: µmhos/cm	Prep Date: Analysis Date:	Prep Date: Analysis Date: 5/17/2016	RunNo: 61034 SeqNo: 670097	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val %RE	C LowLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Specific Conductance	740.0	2.00	717.5	0.06 103	06	110		

H Holding times for preparation or analysis exceeded R RPD outside recovery limits Spike Recovery outside recovery limits E Value above quantitation range
ND Not Detected at the Reporting Limit
S Spike Recovery outside recovery limit J Analyte detected below quantitation limits
RL Reporting Limit BRL Below Reporting Limit Qualifiers:

GeoLabs, Inc.

45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

CLIENT: Germano

Work Order: 1605082

Project: DW Clark, Inc.

TestCode: hg_7471b_s

Sample ID: MB-26517	SampType: MBLK	TestCode:	. hg_7471b_s	de: hg_7471b_s Units: mg/Kg		Prep Date	Prep Date: 5/19/2016	RunNo: 61052	
Client ID: ZZZZZ	Batch ID: 26517	TestNo:	TestNo: SW 7471B	(SW7471B)	4	Inalysis Date	Analysis Date: 5/19/2016	SeqNo: 670241	
Analyte	Result	PQL	SPK value SPK Ref Val	PK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual	Qual
Mercury	ND	0.0830		diskyrajoliski pirkalaktika verenska sapiska sakala saka saka saka saka saka saka					
Sample ID: LCS-26517 Client ID: ZZZZZ	SampType: LCS Batch ID: 26517	TestCode: TestNo:	stCode: hg_7471b_s TestNo: SW 7471B	TestCode: hg_7471b_s Units: mg/Kg TestNo: SW 7471B (SW7471B)	Ą	Prep Date	Prep Date: 5/19/2016 Analysis Date: 5/19/2016	RunNo: 61052 SeqNo: 670242	
Analyte	Result	Pol	SPK value SPK Ref Val	PK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	0.8500	0.0830	0.833	0	102	80	120		

H Holding times for preparation or analysis exceeded R RPD outside recovery limite RPD outside recovery limits B Value above quantitation range
ND Not Detected at the Reporting Limit
S Spike Recovery outside recovery limits BRL Below Reporting Limit

J Analyte detected below quantitation limits
RL Reporting Limit Qualifiers:

	WITHOUGH MANAGEMENT.		TO SECTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PE	<u> </u>		andred selection designated and	and the shortest				ラフノ フログ	·		
GeoLabs, Inc.	<u>၂</u> ၂၀		•						ñ	gund Time		Pageof_	7	
Environmental Laboratories	ai Lab	oratc	Selic		7. 2. 7.		24hts		L/)	STANDARD.	łS	Ž	ONS	
45 Johnson Lane	ıne					Υ I	48 R.F.S			5 Days 🔏		With the constraint of the con		
Braintree, MA 02184	02184	j	:			N	72hrs		Æ	Kush.				
Office: Fax:	781-848-7844 781-848-7811	18-78 18-78	4 1						₹	Approved By	10	- SAND FROM	Ź	
Client:	MARK A	(A	23.7	GERMANO, 180	Project N	† Number		0	3	0140V 18	P	FOUNDRY CA	CASTINGS	()
Address:	15	4	PINETARS	7	Project L	t Location:	; <u>;</u>		0	POFUE	_			
	MA	2S F	MARSHFIELD	FIRED MA 02050			•	1	3/211		\			
Phone:		339	75	33-3528										
Fax:					Purche	Purchase Order #:	# #							
Contact:	8	000			Collect	Collected By:	1	1	N I	MCISAAC				
1. 1. 1.		Į,	25	パンプラン かるれの この 色のがない	{						A	ANALYSES REQUESTED	ΈD	
	CO	COLLECTION	NOL)	CONTAIN	AINER								
			s ·			(ğ				<u>_</u>		SE	
	Ω ∢		œ ≥ >	SAMPLE	⊢ >	3 ⊃	€ ∢⊦			OEO! ABS	- } -			
SAMPLEID	.⊢ m	ΣШ	о ¬ і і ≻	_	- C . E	∢ Z	- r -) ≥ (< Ш (SAN	4) Vi		783c	മ
			шО		u	 - -	- ×			5082-	00		LEWE	
	5/13	10%	STM	SP.1	% /\g) h	0.1			100	X			
	:	₹0.₹	55	58.2	9/1) <i>h</i>	170	X	Ý	202	×			
							`	\ \	[
						802								L
						Vots	1		_					L
									_					L
									_					
									<u> </u>					Ţ
									-					
							<u> </u>			-		(L
CONTAINER CODES:	DES:			MATRIX CODES;		PRESERVATIVE CODES	ATIVE	COD	5	Relinquished By'	ĮĔ,	Redeling By:	Date/Time:	;;
A = Amber				GW = Ground Water		1 = HCI		7 = JØE		1004/11/2h	true 5/13 12/2	を買っる,	13/23	احرا
ස සන්වූ				WW = Wastewater	,	2 = HNO3		1	\	Retinguished By:	•	Received BV:	163	Ĺ
G = Glass				DW = Drinking Water		$3 = H_2SO_4$	4			1.51.5/M/S/1/2	6 3:55		11/2/11	```
P = Plastic				SL = Sludge	4	4 = Na ₂ S ₂ O ₃	Ŏ,			Retinguished By:		Received By Geol abs:	sqe:	T
S = Summa Canister	lister			S = Soil $A = Air$	47	5 = NaOH								
O = Other	V = VOA	٨		0 = Oil OT = Other		6 = MeOH	~			9	EOLABS CHAI	GEOLABS CHAIN OF CUSTODY		the state of the s
・マグタ	2			den konstant in den syrappe 2004 2005 bloken en sykken system granden den den den den den den den den den	Parameter .	de la company de		Springer of the Sciences	in des leganostatores		VOORTELLEGENEERING		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Contract Contract

Friday, January 20, 2017

Mark Germano Germano 15 Pinehurst Rd. Marshfield, MA 02050 GeoLabs, Inc.

GeoLabs, Inc. 45 Johnson Lane Braintree MA 02184 Tele: 781 848 7844

Fax: 781 848 7811

TEL: (339) 793-3528

FAX:

Project:

DW CLARK

Location:

692 N. BEDFORD ST. EAST

BRIDGEWATER MA

Order No.: 1701050

Dear Mark Germano:

GeoLabs, Inc. received 1 sample(s) on 1/13/2017 for the analyses presented in the following report.

The laboratory results in this report relate only to samples submitted.

All data for associated QC met method or laboratory specifications, except when noted in the Case Narrative.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

David Mick

Laboratory Director

For current certifications, please visit our website at www.geolabs.com Certifications:

CT (PH-0148) - MA (M-MA015) - MEE (2508) - RI (LA000252)

Date: 20-Jan-17

CLIENT:

Germano

Project:

DW CLARK

Lab Order:

1701050

CASE NARRATIVE

Physical Condition of Samples

The project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged, in appropriate containers with the correct preservation.

Project Documentation

The project was accompanied by satisfactory Chain of Custody documentation.

Analysis of Sample(s)

All extractable samples were extracted and analyzed and any Volatile samples were analyzed within method specified holding times and according to GeoLabs documented Standard Operating Procedure. No analytical anomalies or non-conformances were noted by the laboratory during the processing of these samples.

SIGNATURE:

LAB DIRECTOR

PRINTED NAME: David Mick

DATE: 01/20/17

Reported Date: 20-Jan-17

CLIENT:

Germano

Client Sample ID: SFS-COMP-1

Lab Order:

1701050

Collection Date: 1/13/2017 10:00:00 AM

Project:

DW CLARK

Date Received: 1/13/2017

Lab ID:

1701050-001

Matrix: SOIL

Analyses		Result	RL Qu	al Units	DF	Date Analyzed
IGNITABILITY -	SW1010			•		Analyst: WFR
	Prep Method:		Prep	Date:		
Flash Point		93	20	°C	1	1/17/2017

SEMIVOLATILE ORGANICS - SW8270D

Analyst: Admir

Prep Method	l: (SW3545A)	Prep	Date:	1/19/201	17 10:29:52	AM
1,1-Biphenyl	ND	10.5	µg/Kg	-dry	. 1	1/19/2017 2:27:00 PM
1,2,4-Trichlorobenzene	. ND	105	µg/Kg	-dry	1	1/19/2017 2:27:00 PM
1,2-Dichlorobenzene	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
1,2-Dinitrobenzene	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
1,3-Dichlorobenzene	ND ·	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
1,3-Dinitrobenzene	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
1,4-Dichlorobenzene	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
1,4-Dinitrobenzene	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
2,3,4,6-Tetrachlorophenol	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
2,4,5-Trichlorophenol	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
2,4,6-Trichlorophenol	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
2,4-Dichloraphenol	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
2,4-Dimethylphenol	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
2,4-Dinitrophenol	ND	526	μg/Kg		1	1/19/2017 2:27:00 PM
2,4-Dinitrotoluene	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
2,6-Dinitrotoluene	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
2-Chloronaphthalene	DИ	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
2-Chlorophenol	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
2-Methylnaphthalene	ND	105	µg/Kg	-dry	1	1/19/2017 2:27:00 PM
2-Methylphenoi	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
2-Nitroaniline	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
2-Nitrophenol	ND	105	μg/Kg	-dry	1	1/19/2017 2:27:00 PM
3,3'-Dichlorobenzidine	DИ	105	µg/Kg	-dry	1	1/19/2017 2:27:00 PM
3-Methylphenol/4-Methylphenol	ND	105	µg/Kg	•	1	1/19/2017 2:27:00 PM
3-Nitroaniline	ND	105	μg/Kg		1	1/19/2017 2:27:00 PM
4,6-Dinitro-2-Methylphenol	ND	526	μg/Kg	•	1	1/19/2017 2:27:00 PM
4-Bromophenyl Phenyl Ether	ND	105	μg/Kg	-	1	1/19/2017 2:27:00 PM
4-Chioro-3-Methylphenol	ND	526	µg/Kg	-	. 1	1/19/2017 2:27:00 PM
4-Chloroaniline	ND	105	μg/Kg	-	1	1/19/2017 2:27:00 PM
4-Chlorophenyl Phenyl Ether	ND	105	μg/Kg	-	1	1/19/2017 2:27:00 PM

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
 - Analyte detected below quantitation limits
- RL Reporting Limit

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Spike Recovery outside recovery limits

Reported Date: 20-Jan-17

CLIENT:

Germano

Client Sample ID: SFS-COMP-1

Lab Order:

1701050

Collection Date: 1/13/2017 10:00:00 AM

Project:

DW CLARK

Date Received: 1/13/2017

Lab ID:	1701050-001			Date Receiv	rix: SOIL	
Analyses		Result	RL Q	ual Units	DF	Date Analyzed
SEMIVOLATI	LE ORGANICS - SW8	270D				Analyst: Adm
	Prep Method:	(SW3545A)	Prep	Date: 1/19/201	7 10:29:52	AN
4-Nitroaniline		ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
4-Nitrophenol		ND	105	µg/Kg-dry	1	1/19/2017 2:27:00 PM
Acenaphthene	e	ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Acenaphthyle	ne	ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Acetophenone	e ·	ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Aniline		ND	526	µg/Kg-dry	1	1/19/2017 2:27:00 PM
Anthracene		ND	105	µg/Kg-dry	1	1/19/2017 2:27:00 PM
Azobenzene		ND	526	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Benz(a)Anthra	acene	. ND ·	10.5	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Benzo(a)Pyre	ne ·	ND	10.5	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Benzo(b)Fluor	ranthene	ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Benzo(g,h,i)Pe	'erylene	200	105	µg/Kg-dry	1	1/19/2017 2:27:00 PM
Benzo(k)Fluor	ranthene	ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Benzyl Alcoho	ol	ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Bis(2-Chloroe	thoxy)Methane	ND	105	µg/Kg-dry	4	1/19/2017 2:27:00 PM
Bis(2-Chloroe		ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Bis(2-Chlorois	sopropyl)Ether	ND	105	µg/Kg-dry	1	1/19/2017 2:27:00 PM
Bis(2-Ethylhe)	xyl)Phthalate	ND	105	µg/Kg-dry	1	1/19/2017 2:27:00 PM
Butyl Benzyl F	Phthalate	ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Carbazole		ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Chrysene		ND .	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Dibenz(a,h)Ar	nthracene	ND	10.5	µg/Kg-dry	1	1/19/2017 2:27:00 PM
Dibenzofuran		ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Diethyl Phthal	late .	ND	105	· μg/Kg-dry	1	1/19/2017 2:27:00 PM
Dimethyl Phth	nalate	ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Di-n-Butyl Pht	thalate	ND	526	µg/Kg-dry	1	1/19/2017 2:27:00 PM
Di-n-Octyl Pht	thalate	ND	105	µg/Kg-dry	1	1/19/2017 2:27:00 PM
·Fluoranthene		ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Fluorene		ND	105	µg/Kg-dry	1	1/19/2017 2:27:00 PM
Hexachlorobe	nzene	ND	10.5	µg/Kg-dry	1	1/19/2017 2:27:00 PM
Hexachlorobu	tadiene	ND	10.5	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Hexachloroeth	папе	ND	105	µg/Kg-dry	1	1/19/2017 2:27:00 PM
Indeno(1,2,3-c	cd)Pyrene	188	10.5	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Isophorone	•	ND	. 105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Naphthalene		ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Nitrobenzene		ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Spike Recovery outside recovery limits

Reported Date: 20-Jan-17

CLIENT:

Germano

Client Sample ID: SFS-COMP-1

Lab Order:

1701050

Project:

DW CLARK

Collection Date: 1/13/2017 10:00:00 AM

Date Received: 1/13/2017

Lab ID:	1701050-001			Mat	rix: SOIL	
Analyses		Result	RL (Qual Units	DF	Date Analyzed
SEMIVOLATIL	E ORGANICS - SW8	270D				Analyst: ZYZ
	Prep Method:	(SW3545A)	Pre	p Date: 1/19/201	7 10:29:52	AM
N-Nitrosodime	thylamine	ND	526	μg/Kg-dry	1	1/19/2017 2:27:00 PM
N-Nitrosodi-n-F	Propylamine	ND	105	µg/Kg-dry	1	1/19/2017 2:27:00 PM
N-Nitrosodiphe	enylamine	ND	526	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Pentachloroph	enol	ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Phenanthrene		ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Phenol		ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Pyrene		ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Pyridine		ND	526	μg/Kg-dry	1	1/19/2017 2:27:00 PM
Surr: 2,4,6-T	ribromophenol	45.0	30-130	%REC	1	1/19/2017 2:27:00 PM
Surr: 2-Fluor	robipheny!	47.4	30-130	%REC	1	1/19/2017 2:27:00 PM
Surr: 2-Fluor	-	64.0	30-130	%REC	1	1/19/2017 2:27:00 PM
Surr: Nitrobe	enzene-d5	37.5	30-130	%REC	1	1/19/2017 2:27:00 PM
Surr: Phenol	I-d6	46.7	30-130	%REC	1	1/19/2017 2:27:00 PM
Surr: Terphe	enyl-d14	40.6	30-130	%REC	1	1/19/2017 2:27:00 PM
	nzenediol (Resorcinol)	ND	105	μg/Kg-dry	1	1/19/2017 2:27:00 PM
	ster-Hexadecanoic acid	1290	10.5	μg/Kg-dry	1	1/19/2017 2:27:00 PM
	ster-Octadecanoic acid	1460	10.5	µg/Kg-dry	1	1/19/2017 2:27:00 PM
·	/l ester-Pentanedioic	1900	10.5	µg/Kg-dry	1	1/19/2017 2:27:00 PM
TIC: Triaceti	n	2690	10.5	μġ/Kg-dry	1	1/19/2017 2:27:00 PM
PH - SW9045C				i		
-11-34490436	•					Analyst: RP
	Prep Method:		Pre	p Date:		
pН		9.07	0	H pH Units	1	1/17/2017 2:00:00 PM
NOTES: taken at 21.7 d	leg.C					
CYANIDE, REA	ACTIVE - SW7.3.3,2					Analyst: RP
	Prep Method:		Pre _l	o Date:		•
Reactive Cyani	de	ND	0.105	mg/Kg-dry	1	1/19/2017
				•		
				•		
Qualifiers:	B Analyte detected in th	e associated Method Blo	ank	BRL Below Repor	ting Limit	
Camminers.	E Value above quantitat				-	tion or analysis exceeded
	J Analyte detected below	_		ND Not Detected		•
	CL Reporting Limit	-1		S Spike Recove		-

RL Reporting Limit

Spike Recovery outside recovery limits

Reported Date: 20-Jan-17

CLIENT:

Germano

Lab Order: Project:

1701050

Lab ID:

DW CLARK 1701050-001 Client Sample ID: SFS-COMP-1

Collection Date: 1/13/2017 10:00:00 AM

Date Received: 1/13/2017

Matrix: SOIL

Analyses

Result

RL Qual Units

DF **Date Analyzed**

1/19/2017

SULFIDE, REACTIVE - SW7.3.4.2

Analyst: RP

Prep Method:

Prep Date:

Reactive Sulfide

ND

0.263

mg/Kg-dry

Qualifiers:

Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RLReporting Limit

В

BRL Below Reporting Limit

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Spike Recovery outside recovery limits

050106/

Controller Mort Cermano Marine Mort Cermano			***************************************	***************************************							7/ /)						
Matter M	ceorans	່. ເຄີ່	•						0	p III	lime				Page .	1 of 1			
Sample results resided by 1/20/20/17 Sample resided by 1/20/20/17 Sample resided by 1/20/20/20/20/20/20/20/20/20/20/20/20/20/	Environmer	ital Labora	nories			RCS.		24hrs		Ø	ANDARD:		"	PECI/	AL INSTE	RUCTIC	SNC		
Germano	Ap Jonnson I	_ane novo.						SJ 18		ı	5 Days								
Commence Project Number: D.W. Clark Pro	Office:	781-848-78	77					5117		2 :	L T	ओ १	ample	esnits.	needed 1	ox 1720	/2017	a	
Collected By: Los Koska Project Location: GRZ N Beading Street Front REAL VISES REQUIRES REQUIRES TO	Fax;	781-848-78	14								Jroyea 5/	" E	Trictily 3-Ben	Intere Izened	sted in <u>1</u> iol CAS#	tesorc # 108-4	일 당 당		
The continuent Froget Location: Froget Location:	Client:	Mark Gerr	nano			Project	Num		λ	Clark		Ş.	r 8270	D test	ng.				
COLLECTION Collected By: Lee Koska Collected By: Col	Address:	15 Pinehu	rst Road			Project	Loca	•	392 N	Bedfe	rd Street								
COLLECTION CONTAINER CON		Marshfield	I, MA			•			East	ridae	vater, MA								
Collected by: Lies Koaka Collected by: C	Phone:	(781) 837	- 1949							2									
COLLECTION CONTAINER CON	Fax:					Purcha	se Or	der #:	-										
CONTAINER SAMPLE Y U T O R R GEOLABS E C O O O O O O O O O	Contact:	Mark Gerr	nano			Collect	ed By		ee K	oska								,	
1	E-mail;	mgermano	316@ama	ii.con				•						NALY	SES RE	QUEST			
T		100	LECTION			CONTA	NER				. 35	(Q0,				'			
T				S		r	T	,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	728				.,		=:	· · · · · · · · · · · · · · · ·
## Note	SAMPLEID	0 < F	H-2	₹≅₽ Β≻	· · · · · · · · · · · · · · · · · · ·	i- >- 0	उ⊃∢	2 < - 0			GEOLABS SAMPLE	3) *lonic						ai i t v a:	
W17 10:00 LK DW CLARK G 80z S X		Πī	int.	_ W D		LШ	z F	z – × .			NUMBER	Кеѕого						3G/#33	**************************************
MATRIX CODES: PRESERVATIVE CODES: Refinquished By: Date/Time Received By: GW = Ground Water 1 = HCi 7 = ICE Lee Koska 1/13/17 10:30 Received By: WW = Wastewater 2 = HNOs Refinquished By: Received By: Received By: DW = Drinking Water 3 = H ₂ SO ₃ Refinquished By: Received By: SL = Sludge 4 = Na ₂ S ₂ O ₃ Refinquished By: Received By: S = Soil A = Air 5 = NaOH GBOLABS CBAIN OF CUSTODY	SFS-COMP-1	1/13/17	10:00	국	DW CLARK	Ŋ	8oz	S	×		100-	<u> </u>	Ļ	Ļ	L			-	╀-
MATRIX CODES: PRESERVATIVE CODES: Relinquished By: Date/Time Received By: GW = Ground Water 1 = HCl											. .								_
MATRIX CODES: PRESERVATIVE CODES: Relinquished By: Date/Time Received By: GW = Ground Water 1 = HCi 7 = ICE Lee Koska 1/13/17 10:30 Received By: WW = Wastewater 2 = HNO ₃ Relinquished By: Received By: SL = Sludge 4 = Na ₂ S ₂ O ₃ Relinquished By: Received By: S = Soil A = Air 5 = NaOH Relinquished By: Received By: O = Oil OT = Other 6 = MeOH GEOLABS CBAIN OF CUSTODY						•											-		_
MATRIX CODES: PRESERVATIVE CODES: Relinquished By: Date/Time Received By: GW = Ground Water 1 = HCi 7 = ICE Lee Koska 1/13/17 10:30 WW = Wastewater 2 = HNO ₃ Relinquished By: Received By: DW = Drinking Water 3 = H ₂ SO ₄ Relinquished By: Received By: SL = Sludge 4 = Na ₃ S ₂ O ₃ Relinquished By: Received By: S = Soil A = Air 5 = NaOH GEOLABS CHAIN OF CUSTODY																			
MATRIX CODES: PRESERVATIVE CODES: Refinquished By: Date/Time Received By: GW = Ground Water GW = Ground Water Ww = Wastewater 1 = HCl T = ICE Lee Koska T/13/17 10:30 Received By: DW = Drinking Water SL = NO3 3 = H ₂ SO ₄ Refinquished By: Received By: SL = Sludge SL = NaOH 4 = Na ₂ S ₂ O ₃ Refinquished By: Received By: SL = Sludge SL = NaOH 6 = MeOH GEOLABS CBAIN OF CUSTOD W																			
MATRIX CODES: PRESERVATIVE CODES: Relinquished By: Date/Time Received By: GW = Ground Water 1 = HCl 7 = ICE Lee Koska 1/13/17 10:30 Received By: WW = Wastewater 2 = HNO ₃ Relinquished By: Received By: Received By: SL = Sludge 4 = Na ₃ S ₂ O ₃ Relinquished By: Received By: S = Soil A = Air 5 = NaOH Relinquished By: Relinquished By: O = Oil OT = Other 6 = MeOH GEOLABS CHAIN OF CUSTOD Y								_	_	\dashv									
MATRIX CODES: PRESERVATIVE CODES: Relinquished By: Date/Time Received By: GW = Ground Water 1 = HCl 7 = ICE Lee Koska 1/13/17 10:30 Received By: WW = Wastewater 2 = HNO ₃ Relinquished By: Received By: DW = Drinking Water 3 = H ₂ SO ₄ Relinquished By: Received By: SL = Sludge 4 = Na ₂ S ₂ O ₃ Relinquished By: Received By: S = Soil A = Air 5 = NaOH Relinquished By: Relinquished By:							1		-				-			-		-	-
MATRIX CODES: PRESERVATIVE CODES: Relinquished By: Date/Time Received By: GW = Ground Water 1 = HCl 7 = ICE Lee Koska 1/13/17 10:30 Received By: WW = Wastewater 2 = HNO ₃ Relinquished By: Received By: Received By: DW = Drinking Water 3 = H ₂ SO ₄ Relinquished By: Received By: SL = Studge 4 = Na ₂ S ₂ O ₃ Relinquished By: Received By: S = Soil A = Mir 5 = NaOH GEOLABS CEANIN OF CUSTOD Y									-	-			-	-				+	+
MATRIX CODES: PRESERVATIVE CODES: Relinquished By: Date/Time Received By: GW = Ground Water 1 = HCl 7 = ICE Lee Koska 1/13/17 10:30 Received By: WW = Wastewater 2 = HNO ₃ Relinquished By: Received By: Received By: SL = Studge 4 = Na ₂ S ₂ O ₃ Relinquished By: Received By: S = Soil A = Air 5 = NaOH GEOLABS CHAIN OF CUSTOD Y							1		-	-						_	-		+
WW = Wastewater 2 = HNO ₃ Relinquished By: Received By: DW = Drinking Water 3 = H ₂ SO ₄ Relinquished By: Received By: SL = Sludge 4 = Na ₂ S ₂ O ₃ Relinquished By: Received By: S = Soil A = Air 5 = NaOH GEOLABS CBAIN OF CUSTODY	CONTAINER C(A = Amber	ODES:			MATRIX CODES: GW = Ground Wat		RESE = HCI	SVATIV	E CO!	ES:	Relinquished By: Lee Koska	Date/	Time	Rec	eived B		O O	ate/Ti	me;
DW = Drinking Water 3 = H ₂ SO ₄ Relinquished By: Received By/GeoLabs SL = Sludge 4 = Na ₂ S ₂ O ₃ Relinquished By: Received By/GeoLabs S = Soil A = Air 5 = NaOH GEOLABS CHAIN OF CUSTODY	B = Bag				WW = Wastewater		Ĭ H H				Relinquished By:			Rec	eived By	3		-	
SL = Sludge 4 = Na ₂ S ₂ O ₃ Relinquished By: Received By Receive	G = Glass				DW = Drinking Wa		" H ₂ S	٥ م							,				
V = VOA O = Oil OT = Other 6 = MeOH	S = Summa Ca	anister			g	***********	" Na ₂	S ₂ O ₃			Relinquished By:		~	200	eived By	MGeol.	2/	17 11	CS
		V = VOA					≕ Me	兲			3	OLAB	SCH	AIN	F CUS	TODY			

Thursday, June 15, 2017

Mark Germano Germano 15 Pinehurst Rd. Marshfield, MA 02050 GeoLabs, Inc.

GeoLabs, Inc. 45 Johnson Lane Braintree MA 02184 Tele: 781 848 7844

Fax: 781 848 7811

TEL: (339) 793-3528

FAX:

Project:

DW CLARK

Location:

Order No.: 1705066

Dear Mark Germano:

GeoLabs, Inc. received 1 sample(s) on 5/22/2017 for the analyses presented in the following report.

This is a preliminary report that contains incomplete data or data that has not been fully validated. Caution should be exercised in the use of any data presented as final reported results may not reflect the values presented.

The laboratory results in this report relate only to samples submitted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

David Kahler, on behalf of

Laboratory Director

For current certifications, please visit our website at www.geolabs.com

Certifications:

MA (M-MA015) - RI (LA000252)

Date: 15-Jun-17

CLIENT:

Germano

Project:

DW CLARK

Lab Order:

1705066

CASE NARRATIVE

Physical Condition of Samples

The project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged, in appropriate containers with the correct preservation.

Project Documentation

The project was accompanied by satisfactory Chain of Custody documentation.

Analysis of Sample(s)

All extractable samples were extracted and analyzed and any Volatile samples were analyzed within method specified holding times and according to GeoLabs documented Standard Operating Procedure. No analytical anomalies or non-conformances were noted by the laboratory during the processing of these samples.

SIGNATURE:

PRINTED NAME: David Kahler, on behalf of Lab Director

DATE:

J

Reporting Limit

Reported Date: 15-Jun-17

Client Sample ID: FNDRY-DISP-1 CLIENT: Germano Lab Order: 1705066 Collection Date: 5/19/2017 10:00:00 AM DW CLARK Date Received: 5/22/2017 Project: 1705066-001 Matrix: SOIL Lab ID: Result RL Qual Units DF Date Analyzed Analyses Analyst: Admir **IGNITABILITY - SW1010** Prep Date: Prep Method: Flash Point >93 20 °C 6/3/2017 Analyst: DC POLYCHLORINATED BIPHENYLS - SW8082A Prep Date: Prep Method: ND 1 6/15/2017 51.5 µg/Kg-dry Aroclor 1016 6/15/2017 Aroclor 1221 ND 51.5 µg/Kg-dry ND 51.5 μg/Kg-dry 6/15/2017 Aroclor 1232 Aroclor 1242 ND 51.5 μg/Kg-dry 6/15/2017 51.5 6/15/2017 ND μg/Kg-dry Aroclor 1248 6/15/2017 ND 51.5 µg/Kg-dry Aroclor 1254 6/15/2017 Aroclor 1260 ND 51.5 µg/Kg-dry Analyst: DC **TOTAL PETROLEUM HYDROCARBONS - 8100M** Prep Date: 6/12/2017 3:37:21 PM Prep Method: (8100M) 88.7 51.5 mg/Kg-dry 1 6/13/2017 Total Petroleum Hydrocarbons Analyst: Admir **TOTAL METALS BY ICP - SW6010C** (SW3050B) Prep Date: 5/5/2017 2:20:32 PM Prep Method: 4.99 5/26/2017 ND mg/Kg-dry 1 Arsenic 5/26/2017 ND 4.99 Barium mg/Kg-dry 1 Cadmium ND 0.998 mg/Kg-dry 1 5/26/2017 Chromium 71.5 4.99 mg/Kg-dry 5/26/2017 5/26/2017 ND 4.99 mg/Kg-dry Lead Selenium 9.58 4.99 mg/Kg-dry 5/26/2017 5/26/2017 Silver ND 4.99 mg/Kg-dry Analyst: EC **MERCURY - SW7471B** (SW7471B) Prep Date: 5/26/2017 3:59:38 PM Prep Method: ND 0.0856 mg/Kg-dry 1 5/26/2017 Mercury Analyte detected in the associated Method Blank BRL Below Reporting Limit Qualifiers: Holding times for preparation or analysis exceeded Ε Value above quantitation range

Analyte detected below quantitation limits

Not Detected at the Reporting Limit Spike Recovery outside recovery limits

Reported Date: 15-Jun-17

CLIENT:

Germano

Client Sample ID: FNDRY-DISP-1

Lab Order:

1705066

Collection Date: 5/19/2017 10:00:00 AM

 \mathbf{DF}

Project:

DW CLARK

Date Received: 5/22/2017

Lab ID:

1705066-001

Matrix: SOIL

Analyses

RL Qual Units Result

Date Analyzed

MERCURY - SW7471B

Analyst: EC

Analyst: Admir

Prep Method:

(SW7471B)

Prep Date:

5/26/2017 3:59:38 PM

SEMIVOLATILE ORGANICS - SW8270D

Prep Method:	(SW3545A)	Prep	Date:	5/22/20	17 10:29:14 A	M
1,1-Biphenyl	ND	10.3	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
1,2,4-Trichlorobenzene	ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
1,2-Dichlorobenzene	ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
1,2-Dinitrobenzene	ND	103	μg/Κζ	g-dry	1 .	5/30/2017 4:31:00 PM
1,3-Dichlorobenzene	ND	103	μg/Kg	g-dry	. 1 1	5/30/2017 4:31:00 PM
1,3-Dinitrobenzene	ND	103	μg/Kg	g-dry ·	1	5/30/2017 4:31:00 PM
1,4-Dichlorobenzene	ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
1,4-Dinitrobenzene	ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
2,3,4,6-Tetrachlorophenol	ND	103	μg/Ko	g-dry	1	5/30/2017 4:31:00 PM
2,4,5-Trichlorophenol	ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
2,4,6-Trichlorophenol	ND	103	μg/Kǫ	g-dry	1	5/30/2017 4:31:00 PM
2,4-Dichlorophenol	· ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
2,4-Dimethylphenol	ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
2,4-Dinitrophenol	ND	515	μg/Kg	g-dry	· 1	5/30/2017 4:31:00 PM
2,4-Dinitrotoluene	· ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
2,6-Dinitrotoluene	ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
2-Chioronaphthalene	ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
2-Chlorophenol	ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
2-Methylnaphthalene	ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
2-Methylphenol	ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
2-Nitroaniline	ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
2-Nitrophenol	ND	103	μg/Ko	g-dry	1	5/30/2017 4:31:00 PM
3,3'-Dichlorobenzidine	ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
3-Methylphenol/4-Methylphenol	ND	103	μg/Kg	g-dry	² . 1	5/30/2017 4:31:00 PM
3-Nitroaniline	ND	103	μg/Kg	g-dry	· . 1 ·	5/30/2017 4:31:00 PM
4,6-Dinitro-2-Methylphenol	ND	515	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
4-Bromophenyl Phenyl Ether	ND	103	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
4-Chloro-3-Methylphenol	ND	515	μg/Kg	g-dry	1	5/30/2017 4:31:00 PM
4-Chloroaniline	ND	103	μg/Kg		1	5/30/2017 4:31:00 PM
4-Chlorophenyl Phenyl Ether	ND	103	μg/Kg		1	5/30/2017 4:31:00 PM
4-Nitroaniline	ND	103	μg/Kg	-	1	5/30/2017 4:31:00 PM

- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Reporting Limit

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Spike Recovery outside recovery limits

Reported Date: 15-Jun-17

CLIENT:

Germano

Client Sample ID: FNDRY-DISP-1

Lab Order:

1705066

Collection Date: 5/19/2017 10:00:00 AM

Project: Lab ID:

DW CLARK 1705066-001 Date Received: 5/22/2017 Matrix: SOIL

Result RL Qual Units DF **Date Analyzed** Analyses

EMIVOLATILE ORGANICS - SW8	270D		•		Analyst: Ad
Prep Method:	(SW3545A)	Prep	Date: 5/22/20	17 10:29:14	AM
4-Nitrophenol	ND	103	µg/Kg-dry	1	5/30/2017 4:31:00 PN
Acenaphthene	ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 PN
Acenaphthylene	ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 PN
Acetophenone	ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 PN
Aniline	ND	515	μg/Kg-dry	1	5/30/2017 4:31:00 PN
Anthracene	ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 PN
Azobenzene	ND	515	μg/Kg-dry	1	5/30/2017 4:31:00 PM
Benz(a)Anthracene	ND	10.3	μg/Kg-dry	1	5/30/2017 4:31:00 PM
Benzo(a)Pyrene	ND	10.3	ug/Kg-dry	1	5/30/2017 4:31:00 PM
Benzo(b)Fluoranthene	· ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 PM
Benzo(g,h,i)Perylene	ND	103	µg/Kg-dry	1	5/30/2017 4:31:00 Pi
Benzo(k)Fluoranthene	ND ·	103	µg/Kg-dry	1	5/30/2017 4:31:00 PM
Benzyl Alcohol	ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 Pi
3is(2-Chloroethoxy)Methane	ND .	103	μg/Kg-dry	1	5/30/2017 4:31:00 Pi
Bis(2-Chloroethyl)Ether	ND	103	µg/Kg-dry	1	5/30/2017 4:31:00 PI
3is(2-Chloroisopropyl)Ether	ND	103	µg/Kg-dry	1	5/30/2017 4:31:00 PI
3is(2-Ethylhexyl)Phthalate	ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 Pt
Butyl Benzyl Phthalate	ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 PI
Carbazole	ND	103	µg/Kg-dry	1	5/30/2017 4:31:00 Pf
Chrysene	ND	103	μg/Kg-dry	1.0	5/30/2017 4:31:00 PI
Dibenz(a,h)Anthracene	ND	10.3	μg/Kg-dry	1	5/30/2017 4:31:00 Pf
Dibenzofuran	ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 Pf
Diethyl Phthalate	ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 PI
Dimethyl Phthalate	ND	103	µg/Kg-dry	1	5/30/2017 4:31:00 Pt
Di-n-Butyl Phthalate	ND	515	μg/Kg-dry	1	5/30/2017 4:31:00 PM
Di-n-Octyl Phthalate	ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 PM
Fluoranthene	ND	103	µg/Kg-dry	1	5/30/2017 4:31:00 PM
Fluorene	ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 PM
Hexachlorobenzene	ND	10.3	μg/Kg-dry	1	5/30/2017 4:31:00 PM
Hexachlorobutadiene	- ND	10.3	μg/Kg-dry	1	5/30/2017 4:31:00 PM
Hexachloroethane	ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 PM
ndeno(1,2,3-cd)Pyrene	ND	10.3	μg/Kg-dry	1	5/30/2017 4:31:00 PM
sophorone	ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 PM
Naphthalene	ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 PM
Nitrobenzene	ND	103	μg/Kg-dry	1	5/30/2017 4:31:00 PM
N-Nitrosodimethylamine	ND	515	μg/Kg-dry	1	5/30/2017 4:31:00 PM

- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Reporting Limit

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- Spike Recovery outside recovery limits

Reported Date: 15-Jun-17

CLIENT:

Germano

Client Sample ID: FNDRY-DISP-1

Lab Order:

1705066

Collection Date: 5/19/2017 10:00:00 AM

Project:

DW CLARK

Date Received: 5/22/2017

Lab ID: 1705066-001				Matrix: SOIL	017
Analyses	Result	RL Q	ıal Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS - SV	V8270D	-			Analyst: Admir
Prep Method	d: (SW3545A)	Prep	Date: 5/2	2/2017 10:29:14	AM
N-Nitrosodi-n-Propylamine	ND	103	µg/Kg-dr	/ 1	5/30/2017 4:31:00 PM
N-Nitrosodiphenylamine	ND	515	μg/Kg-dry	, 1	5/30/2017 4:31:00 PM
Pentachlorophenol	ND	103	μg/Kg-dr	/ 1	5/30/2017 4:31:00 PM
Phenanthrene	ND	103	μg/Kg-dr	y . 1	5/30/2017 4:31:00 PM
Phenol	ND	103	µg/Kg-dr	y 1	5/30/2017 4:31:00 PM
Pyrene	ND	103	μg/Kg-dn	y 1	5/30/2017 4:31:00 PM
Pyridine	ND	515	μg/Kg-dr	y 1	5/30/2017 4:31:00 PM
TIC: 1,3-Benzenediol	ND	103	μg/Kg-dr	y 1	5/30/2017 4:31:00 PM
VOLATILE ORGANIC COMPOUN	NDS - 8260B				Analyst: Admi
Prep Method	d:	Prep	Date:		
1,1,1,2-Tetrachloroethane	ND	51.5	H µg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,1,1-Trichloroethane	ND	51.5 I	-t μg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,1,2,2-Tetrachloroethane	ND .	51.5 I	i μg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,1,2-Trichloroethane	ND	51.5	-l μg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,1-Dichloroethane	ND	129	H μg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,1-Dichloroethene	ND	51.5	-l μg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,1-Dichloropropene	ND	51.5	-l μg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,2,3-Trichlorobenzene	ND	51.5	−l μg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,2,4-Trichlorobenzene	ND	51.5	⊣ μg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,2,4-Trimethylbenzene	ND	51.5	-l μg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,2-Dibromo-3-Chloropropane	ND	51.5	H μg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,2-Dibromoethane	ND	51.5	H µg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,2-Dichlorobenzene	ND	51.5	H µg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,2-Dichloroethane	ND	51.5	H μg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,2-Dichloropropane	ND	51.5	H μg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,3,5-Trimethylbenzene	ND	51.5	H μg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,3-Dichlorobenzene	AUD.		H μg/Kg-dr	y 1	6/5/2017 7:27:00 PM
1,0-01010100012010	ND	51.5	1.0		
•	ND ND		H μg/Kg-dr	y 1,	6/5/2017 7:27:00 PM
1,3-Dichloropropane 1,4-Dichlorobenzene		51.5			6/5/2017 7:27:00 PM 6/5/2017 7:27:00 PM
1,3-Dichloropropane	ND	51.5 51.5	H μg/Kg-dr	y 1	
1,3-Dichloropropane 1,4-Dichlorobenzene 1,4-Dioxane	ND ND	51.5 51.5 155	H µg/Kg-dr H µg/Kg-dr	y 1 y 1	6/5/2017 7:27:00 PM
1,3-Dichloropropane 1,4-Dichlorobenzene	ND ND ND	51.5 51.5 155 129	H µg/Kg-dr H µg/Kg-dr H µg/Kg-dr	y 1 y 1 y 1	6/5/2017 7:27:00 PM 6/5/2017 7:27:00 PM

- Analyte detected in the associated Method Blank
- Value above quantitation range Ε
- J Analyte detected below quantitation limits
- RL Reporting Limit

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- Spike Recovery outside recovery limits

Reported Date: 15-Jun-17

CLIENT:

Germano

Client Sample ID: FNDRY-DISP-1

Lab Order:

1705066

Collection Date: 5/19/2017 10:00:00 AM

Project:

DW CLARK

Date Received: 5/22/2017

Lab ID:

1705066-001

Matrix: SOIL

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUNDS -	8260B					Analyst: Adm
Prep Method:	•	F	rep Da	ate:		
2-Chlorotoluene	ND	129	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
2-Hexanone	ND	129	H	μg/Kg-dry	1	6/5/2017 7:27:00 PM
2-Methoxy-2-Methylbutane (TAME)	ND	51.5	Н	μg/Kg-dry	. 1	6/5/2017 7:27:00 PM
4-Chlorotoluene	ND .	129	Н	µg/Kg-dry	. 1	6/5/2017 7:27:00 PM
4-isopropyltoluene	ND	51.5	H	μg/Kg-dry	1	6/5/2017 7:27:00 PM
4-Methyl-2-Pentanone	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Acetone	ND	129	Н	µg/Kg-dry	1	6/5/2017 7:27:00 PM
Acrylonitrile	ŅD	51,5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Benzene	ND	51.5	Н	µg/Kg-dry	1	6/5/2017 7:27:00 PM
Bromobenzene	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Bromochloromethane	ND	129	H ·	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Bromodichloromethane	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Bromoform	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Bromomethane	ND -	51.5	H	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Carbon Disulfide	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Carbon Tetrachloride	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Chlorobenzene	. ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Chloroethane	ND	51.5	Н	µg/Kg-dry	1	6/5/2017 7:27:00 PM
Chloroform	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Chloromethane	ND .	51.5	H	μg/Kg-dry	1	6/5/2017 7:27:00 PM
cis-1,2-Dichloroethene	ND	51.5	Η	μg/Kg-dry	1	6/5/2017 7:27:00 PM
cis-1,3-Dichloropropene	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Dibromochloromethane	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Dibromomethane	ND	51.5	Η	µg/Kg-dry	7.1	6/5/2017 7:27:00 PM
Dichlorodifluoromethane	ND	51.5	• Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Diethyl Ether	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Diisopropyl Ether	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Ethylbenzene	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Ethyl-t-Butyl Ether	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Hexachiorobutadiene	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Isopropylbenzene	ND	51.5	H	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Methyl Tert-Butyl Ether	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Methylene Chloride	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Naphthalene	713	129	H	μg/Kg-dry	1	6/5/2017 7:27:00 PM
n-Butylbenzene	ND	51.5	H	μg/Kg-dry	1	6/5/2017 7:27:00 PM
n-Propylbenzene	ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits

Reported Date: 15-Jun-17

CLIENT:

Germano

Client Sample ID: FNDRY-DISP-1

Lab Order:

1705066

Collection Date: 5/19/2017 10:00:00 AM

Project:

DW CLARK

Date Received: 5/22/2017

Prep Date: sec-Butylbenzene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Styrene ND 129 H µg/Kg-dry 1 6/5/2017 7:27:00 PM tert-Butylbenzene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Tetrachloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Tetrahydrofuran ND 129 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Toluene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM trans-1,2-Dichloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM trans-1,3-Dichloropropene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Vinyl Chloride ND 129 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Vinyl Chlori	Lab ID:	1705066-001				Ma	trix::SOIL	
Sec-Butylbenzene	Analyses		Result	RL	Qual	Units	DF	Date Analyzed
Sec-Butylibenzene	VOLATILE ORGAN	NIC COMPOUNDS - 8	3260B					Analyst: Admir
Styrene		Prep Method:		F	Prep Da	ite:		
tert-Buty/benzene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Tetrach/drocethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Tetrach/drofuran ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Totuene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trochloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trochloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trochloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trochloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trochloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Vinyl Chorde ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trochloroethene ND ND<	sec-Butylbenzene		ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Tetrachloroesthene	Styrene		ND	129	Н	µg/Kg-dry	1	6/5/2017 7:27:00 PM
Tetrahydrofuran ND 129 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Toluene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM trans-1,2-Dichloropropene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM trans-1,2-Dichloropropene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM trans-1,2-Dichloropropene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM trans-1,2-Dichloropropene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Viryl Chloride ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Viryl Chloride ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Viryl Chloride ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Viryl Chloride ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dry 1 6/5/2017 1:30:00 AM NOTES: Analyst: RP Prep Method: Prep Date: Prep Date: Prep Method: Prep Date: Analyst: RP Prep Method: Prep Date: Analyst: RP Prep Method: Prep Date: Analyst: RP Prep Method: Prep Date: 1 6/3/2017 1 6/3/2017 1 6/3/2017 1 6/3/2017 1 6/3/2017 1 6/3/2017	tert-Butylbenzene		ND	51.5	H	µg/Kg-dry	1	6/5/2017 7:27:00 PM
Toluene	Tetrachloroethene		ND	51.5	H	µg/Kg-dry	1	6/5/2017 7:27:00 PM
trans-1,2-Dichloroethene ND 51.5 H µg/Kg-dny 1 6/5/2017 7:27:00 PM trans-1,3-Dichloropropene ND 51.5 H µg/Kg-dny 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dny 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 H µg/Kg-dny 1 6/5/2017 7:27:00 PM Trichloroethene ND 129 H µg/Kg-dny 1 6/5/2017 7:27:00 PM Trichloroftworomethane ND 129 H µg/Kg-dny 1 6/5/2017 7:27:00 PM Vinyl Chloride ND 51.5 H µg/Kg-dny 1 6/5/2017 7:27:00 PM Vinyl Chloride ND 51.5 H µg/Kg-dny 1 6/5/2017 7:27:00 PM Xylenes, Total ND 129 H µg/Kg-dny 1 6/5/2017 7:27:00 PM Xylenes, Total ND 129 H µg/Kg-dny 1 6/5/2017 7:27:00 PM Xylenes, Total ND 129 H µg/Kg-dny 1 6/5/2017 7:27:00 PM Xylenes, Total ND 129 H µg/Kg-dny 1 6/5/2017 7:27:00 PM Xylenes, Total ND 129 H µg/Kg-dny 1 6/5/2017 7:27:00 PM Xylenes, Total ND 129 H µg/Kg-dny 1 6/5/2017 7:27:00 PM Xylenes, Total ND 129 H µg/Kg-dny 1 6/5/2017 11:30:00 AM Xylenes, Total ND 129 H µg	Tetrahydrofuran		ND	129	Н	µg/Kg-dry	1	6/5/2017 7:27:00 PM
trans-1,3-Dichloropropene ND 51.5 h µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 51.5 h µg/Kg-dry 1 6/5/2017 7:27:00 PM Trichloroethene ND 12.9 h µg/Kg-dry 1 6/5/2017 7:27:00 PM Virly Chloride ND 51.5 h µg/Kg-dry 1 6/5/2017 7:27:00 PM Xylenes, Total ND 129 h µg/Kg-dry 1 6/5/2017 7:27:00 PM SPECIFIC CONDUCTANCE - E120.1 B Analyst: Adm Prep Method: Prep Date: Specific Conductance 2300 1.00 µmhos/cm 1 6/1/2017 Prep Method: Prep Date: Prep Method: Prep Date: Reactive Cyanide ND 0.103 mg/Kg-dry 1 6/3/2017 SULFIDE, REACTIVE - SW7.3.4.2 Prep Date: # Reactive Sulfide ND 0.258 mg/Kg-dry 1 6/3/20	Toluene		ND	51.5	Н	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Trichlorothene	trans-1,2-Dichloroethene		ND	51.5	H	μg/Kg-dry	1	6/5/2017 7:27:00 PM
Trichloroethene	trans-1,3-Dichloropi			51.5	H	µg/Kg-dry	1	6/5/2017 7:27:00 PM
Trichlorofiluoromethane		Trichloroethene		51.5	H	µg/Kg-dry	1	6/5/2017 7:27:00 PM
ND 129 H µg/Kg-dry 1 6/5/2017 7:27:00 PM	Trichlorofluorometh	ane	ND	129	H	μg/Kg-dry	1	6/5/2017 7:27:00 PM
ND	Vinyl Chloride		ND	51.5	Н	µg/Kg-dry	1	6/5/2017 7:27:00 PM
Prep Method: Prep Date: Specific Conductance 2300 1.00 µmhos/cm 1 6/1/2017 PPH - SW9045C Analyst: RP Prep Method: Prep Date: Prep Method: Prep Date: Analyst: RP Prep Method: Prep Date: Analyst: RP SULFIDE, REACTIVE - SW7.3.4.2 Prep Date: Analyst: RP Prep Method: Prep Date: 4 Analyst: RP Qualifiers: B Analyte detected in the associated Method Blank E Value above quantitation range BRL Below Reporting Limit E Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit	•		ND	. 129	Н	µg/Kg-dry	1	6/5/2017 7:27:00 PM
Specific Conductance 2300 1.00 μmhos/cm 1 6/1/2017 PH - SW9045C Prep Method: Prep Date: PP Date: PP Date: CYANIDE, REACTIVE - SW7.3.3.2 Analyst: RP Prep Method: Prep Date: Reactive Cyanide ND 0.103 mg/Kg-dry 1 6/3/2017 SULFIDE, REACTIVE - SW7.3.4.2 Analyst: RP Prep Method: Prep Date: 4. Reactive Sulfide ND 0.258 mg/Kg-dry 1 6/3/2017 Qualifiers: B Analyte detected in the associated Method Blank BRL Below Reporting Limit B Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit	SPECIFIC CONDU	CTANCE - E120.1					·4.5	Analyst: Admi
PH - SW9045C		Prep Method:		ı	Prep Da	ate:		
Prep Method: Prep Date: pH 9.15 0 H pH Units 1 5/26/2017 11:30:00 AM NOTES: taken at 20.6 deg.C CYANIDE, REACTIVE - SW7.3.3.2 Prep Method: Reactive Cyanide ND 0.103 mg/Kg-dry 1 6/3/2017 Analyst: RP Prep Method: Prep Date: Reactive Sulfide ND 0.258 mg/Kg-dry 1 6/3/2017 Analyst: RP Reactive Sulfide ND 0.258 mg/Kg-dry 1 6/3/2017 B Analyte detected in the associated Method Blank E Value above quantitation range J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit			2300	1.00	·	µmhos/cm	1	6/1/2017
Prep Method: Prep Date: pH								
Prep Method: Prep Date: pH	DII 03400450							Analyet: RD
pH 9.15 0 H pH Units 1 5/26/2017 11:30:00 AM NOTES: taken at 20.6 deg.C CYANIDE, REACTIVE - SW7.3.3.2 Analyst: RP Prep Method: Prep Date: Reactive Cyanide ND 0.103 mg/Kg-dry 1 6/3/2017 SULFIDE, REACTIVE - SW7.3.4.2 Analyst: RP Prep Method: Prep Date: Reactive Sulfide ND 0.258 mg/Kg-dry 1 6/3/2017 Qualifiers: B Analyte detected in the associated Method Blank E Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit	PH - SW9045C							Analyst. RF
NOTES: taken at 20.6 deg.C CYANIDE, REACTIVE - SW7.3.3.2 Prep Method: ND 0.103 mg/Kg-dry 1 6/3/2017 Analyst: RP Prep Method: Prep Date: Reactive Cyanide ND 0.258 mg/Kg-dry 1 6/3/2017 Analyst: RP Qualifiers: B Analyte detected in the associated Method Blank E Value above quantitation range J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit		Prep Method:		1	Prep Da	ate:		
taken at 20.6 deg.C CYANIDE, REACTIVE - SW7.3.3.2 Prep Method: Prep Date: Reactive Cyanide ND 0.103 mg/Kg-dry 1 6/3/2017 SULFIDE, REACTIVE - SW7.3.4.2 Prep Method: Prep Date: Reactive Sulfide ND 0.258 mg/Kg-dry 1 6/3/2017 Qualifiers: B Analyte detected in the associated Method Blank E Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit	рН		9.15	0	Н	pH Units	1	5/26/2017 11:30:00 AM
CYANIDE, REACTIVE - SW7.3.3.2 Prep Method: Prep Date: Reactive Cyanide ND 0.103 mg/Kg-dry 1 6/3/2017 Analyst: RP Prep Method: Prep Date: Reactive Sulfide ND 0.258 mg/Kg-dry 1 6/3/2017 Analyst: RP Qualifiers: B Analyte detected in the associated Method Blank E Value above quantitation range J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit					:			
Prep Method: Reactive Cyanide ND 0.103 mg/Kg-dry 1 6/3/2017 Analyst: RP Prep Method: Prep Date: Reactive Sulfide ND 0.258 mg/Kg-dry 1 6/3/2017 Prep Method: Reactive Sulfide ND 0.258 mg/Kg-dry 1 6/3/2017 Prep Date: Reactive Sulfide ND 0.258 mg/Kg-dry 1 6/3/2017 Prep Method: Reactive Sulfide ND 0.258 Mg/Kg-dry 1 6/3/2017 Prep Method: Reactive Sulfide ND ND ND ND ND Not Detected at the Reporting Limit ND Not Detected at the Reporting Limit	taken at 20.6 deg.0	3	•					
Reactive Cyanide ND 0.103 mg/Kg-dry 1 6/3/2017 SULFIDE, REACTIVE - SW7.3.4.2 Analyst: RP Prep Method: Prep Date: Reactive Sulfide ND 0.258 mg/Kg-dry 1 6/3/2017 Qualifiers: B Analyte detected in the associated Method Blank E Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit	CYANIDE, REACT	TVE - SW7.3.3.2						Analyst: RP
SULFIDE, REACTIVE - SW7.3.4.2 Prep Method: Reactive Sulfide ND 0.258 mg/Kg-dry 1 6/3/2017 Qualifiers: B Analyte detected in the associated Method Blank E Value above quantitation range J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit		Prep Method:		I	Prep Da	ate:		
Prep Method: Reactive Sulfide ND 0.258 mg/Kg-dry 1 6/3/2017 Qualifiers: B Analyte detected in the associated Method Blank E Value above quantitation range J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit	Reactive Cyanide		ND	0.103		mg/Kg-dry	1	6/3/2017
Prep Method: Reactive Sulfide ND 0.258 mg/Kg-dry 1 6/3/2017 Qualifiers: B Analyte detected in the associated Method Blank E Value above quantitation range J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit					:			Analyst: BD
Reactive Sulfide ND 0.258 mg/Kg-dry 1 6/3/2017 Qualifiers: B Analyte detected in the associated Method Blank BRL Below Reporting Limit E Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit	SULFIDE, REACT	IVE - SW/.3.4.2						Alidiyəti KP
Qualifiers: B Analyte detected in the associated Method Blank BRL Below Reporting Limit E Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit		Prep Method:		7.	Prep D	ate:	A.s.	
E Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit	Reactive Sulfide		ND	0.258		mg/Kg-dry	1	6/3/2017
E Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit	Ouglifiers: B	Analyte detected in the as	sociated Method Bla	nk		BRL Below Rep	porting Limit	
J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit	Quantiers:					H Holding ti	mes for prepar	ation or analysis exceeded
	_							
	*	•	p					

0 = Other ŏ - BENEROLDIOL TEMPERATURE × TICK B = Bag P = Plastic V = Voa Page. TU,CGH.CA17 equested Z CT RCP (Reasonable Confidence Protocols) GERMAND. いるので Containers: A = Amber G = Glass S = Summa Special Instructions X State / Fed Program - Criteria Requirements: círcle choice (s), Project: D.W. No. Invoice to *: M. 7 = 0ther Pc33 Project PO: みとからない X له ل الم 6 = MEOH5 = NaOH Souch VOC3 Preserative: email: MEERNAND 9166 BMAIL. COM GeoLabs SAMPLE NUMBER S F WCP Methods 3 = H2S045000 ¥ Other 댎 Preservatives Lab to do Y/N) 2 = HN03Sample Handling: circle choice Filtration Done 무 무 Done Not Needed GW-1 25.48 5 ပ္တ Received on Ice ೧೦೬೯ Preservation Data Delivery: circle choice (s) CONTAINER email Phone: [7 Fax 3 **E** CHAIN OF CUSTODY RECORD $OT \approx 0$ ther A = AirGeoLabs, Inc. Environmental Laboratories 45 Johnson Lane, Braintree, MA 02184 p 781.848.7844 • f 781.848.7811 -DISP. Format: LOCATION / ID Exce Ŧã S = Soil110 = 0 (2005) 下ろの元子 DW = Drinking Water MARSIAFICIO MA www.geolabs.com CKEMARK からなられるだって 5/7-days Turnaround: circle one 3-day SAMEGTHE SY Ľ 돐 COLLECTION 000 MARK — 🗏 ш W = Ground Water WW = Waste Water Natrix Codes: 2-day 1-day Address: 5 Contact: Client: ロムTE

-1 <1 m

₽

NH (2508) NJ (MA-009) RI (LA000252)

MA (MA - 015) PA (68-03417)

CT (PH-0148) NY(11796)

* Terms: Payment due within 30 days unless other arrangements are made. Past due balances subject to Interest and collection cost.
Note: Homeowners and Law Firms must pay when dropping off samples. We accept cash, check and credit cards.

675.J&P.C of CR.07/09/07

10.K

Date / Time

Received |

Date / Time

elinquished by:

0

10:50

July 18, 2017

Mark A. Germano, LSP Mark A. Germano, LSP 15 Pinehurst Road Marshfield, MA 02050

Project Location: DW Clark - East Bridgewater

Client Job Number:

Project Number: DW Clark

Laboratory Work Order Number: 17G0323

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on July 11, 2017. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
17G0323-01	5
17G0323-02	7
17G0323-03	9
17G0323-04	11
17G0323-05	13
Sample Preparation Information	15
QC Data	16
Metals Analyses (Total)	16
B181616	16
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	17
B181609	17
Flag/Qualifier Summary	18
Certifications	19
Chain of Custody/Sample Receipt	20

Mark A. Germano, LSP 15 Pinehurst Road Marshfield, MA 02050 ATTN: Mark A. Germano, LSP

REPORT DATE: 7/18/2017

PURCHASE ORDER NUMBER:

PROJECT NUMBER: DW Clark

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 17G0323

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: DW Clark - East Bridgewater

FIELD SAMPLE#	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
DISP-7/10-1	17G0323-01	Soil		SM 2540G	
				SW-846 6010C-D	
DISP-7/10-2	17G0323-02	Soil		SM 2540G	
				SW-846 6010C-D	
DISP-7/10-3	17G0323-03	Soil		SM 2540G	
				SW-846 6010C-D	
DISP-7/10-4	17G0323-04	Soil		SM 2540G	
				SW-846 6010C-D	
DISP-7/10-5	17G0323-05	Soil		SM 2540G	
				SW-846 6010C-D	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 6010, only a select list of metals were requested and reported except for 17G0323 sample -01 in which only As was requested and reported.

SW-846 6010C/D SW-846 6020A/B

For NC, Metals methods SW-846 6010D and SW-846 6020B are followed, and for all other states methods SW-846 6010C and SW-846 6020A are followed.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Project Location: DW Clark - East Bridgewater Sample Description: Work Order: 17G0323

Date Received: 7/11/2017

Field Sample #: DISP-7/10-1 Sampled: 7/10/2017 14:00

Sample ID: 17G0323-01
Sample Matrix: Soil

Metals Analyses (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		ND	2.5	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:11	QNW

Project Location: DW Clark - East Bridgewater Sample Description: Work Order: 17G0323

Date Received: 7/11/2017

Field Sample #: DISP-7/10-1 Sampled: 7/10/2017 14:00

Sample ID: 17G0323-01
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		98.4		% Wt	1		SM 2540G	7/14/17	7/17/17 8:41	MRL

Project Location: DW Clark - East Bridgewater Sample Description: Work Order: 17G0323

Date Received: 7/11/2017

Field Sample #: DISP-7/10-2 Sampled: 7/10/2017 14:00

Sample ID: 17G0323-02
Sample Matrix: Soil

Metals A	Analyses	(Total)
----------	----------	---------

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony		ND	2.5	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:14	QNW
Beryllium		ND	0.25	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:14	QNW
Copper		100	0.50	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:14	QNW
Nickel		7.0	0.50	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:14	QNW
Thallium		ND	2.5	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:14	QNW
Zinc		5.4	1.0	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:14	QNW

Project Location: DW Clark - East Bridgewater Sample Description: Work Order: 17G0323

Date Received: 7/11/2017

Field Sample #: DISP-7/10-2 Sampled: 7/10/2017 14:00

Sample ID: 17G0323-02
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		99.7		% Wt	1		SM 2540G	7/14/17	7/17/17 8:41	MRL

Project Location: DW Clark - East Bridgewater Sample Description: Work Order: 17G0323

Date Received: 7/11/2017

Field Sample #: DISP-7/10-3 Sampled: 7/10/2017 14:00

Sample ID: 17G0323-03
Sample Matrix: Soil

Metals	Ana	TIEGE	(Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony		ND	2.3	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:17	QNW
Beryllium		ND	0.23	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:17	QNW
Copper		2.1	0.46	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:17	QNW
Nickel		5.0	0.46	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:17	QNW
Thallium		ND	2.3	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:17	QNW
Zinc		ND	0.92	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:17	QNW

Project Location: DW Clark - East Bridgewater Sample Description: Work Order: 17G0323

Date Received: 7/11/2017

Field Sample #: DISP-7/10-3 Sampled: 7/10/2017 14:00

Sample ID: 17G0323-03
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		99.8		% Wt	1		SM 2540G	7/14/17	7/17/17 8:41	MRL

Project Location: DW Clark - East Bridgewater Sample Description: Work Order: 17G0323

Date Received: 7/11/2017

Field Sample #: DISP-7/10-4 Sampled: 7/10/2017 14:00

Sample ID: 17G0323-04
Sample Matrix: Soil

Matale	Analyses	(Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony		ND	2.6	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:22	QNW
Beryllium		ND	0.26	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:22	QNW
Copper		19	0.51	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:22	QNW
Nickel		16	0.51	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:22	QNW
Thallium		ND	2.6	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:22	QNW
Zinc		20	1.0	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:22	QNW

Project Location: DW Clark - East Bridgewater Sample Description: Work Order: 17G0323

Date Received: 7/11/2017

Field Sample #: DISP-7/10-4 Sampled: 7/10/2017 14:00

Sample ID: 17G0323-04
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		93.5		% Wt	1		SM 2540G	7/14/17	7/17/17 8:41	MRL

Project Location: DW Clark - East Bridgewater Sample Description: Work Order: 17G0323

Date Received: 7/11/2017

Field Sample #: DISP-7/10-5 Sampled: 7/10/2017 14:00

Sample ID: 17G0323-05
Sample Matrix: Soil

Metals	Analyses	(Total)
--------	----------	---------

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony		ND	2.4	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:26	QNW
Beryllium		ND	0.24	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:26	QNW
Copper		210	0.48	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:26	QNW
Nickel		130	0.48	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:26	QNW
Thallium		ND	2.4	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:26	QNW
Zinc		24	0.96	mg/Kg dry	1		SW-846 6010C-D	7/14/17	7/17/17 18:26	QNW

Project Location: DW Clark - East Bridgewater Sample Description: Work Order: 17G0323

Date Received: 7/11/2017

Field Sample #: DISP-7/10-5 Sampled: 7/10/2017 14:00

Sample ID: 17G0323-05
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		99.9		% Wt	1		SM 2540G	7/14/17	7/17/17 8:41	MRL

Sample Extraction Data

Prep Method: % Solids-SM 2540G

Lab Number [Field ID]	Batch	Date
17G0323-01 [DISP-7/10-1]	B181609	07/14/17
17G0323-02 [DISP-7/10-2]	B181609	07/14/17
17G0323-03 [DISP-7/10-3]	B181609	07/14/17
17G0323-04 [DISP-7/10-4]	B181609	07/14/17
17G0323-05 [DISP-7/10-5]	B181609	07/14/17

Prep Method: SW-846 3050B-SW-846 6010C-D

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
17G0323-01 [DISP-7/10-1]	B181616	1.01	50.0	07/14/17
17G0323-02 [DISP-7/10-2]	B181616	1.01	50.0	07/14/17
17G0323-03 [DISP-7/10-3]	B181616	1.09	50.0	07/14/17
17G0323-04 [DISP-7/10-4]	B181616	1.04	50.0	07/14/17
17G0323-05 [DISP-7/10-5]	B181616	1.04	50.0	07/14/17

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B181616 - SW-846 3050B										· ·
Blank (B181616-BLK1)			I	Prepared: 07	7/14/17 Analy	yzed: 07/17/	17			
Antimony	ND	2.3	mg/Kg wet							
Arsenic	ND	2.3	mg/Kg wet							
Beryllium	ND	0.23	mg/Kg wet							
Copper	ND	0.46	mg/Kg wet							
Nickel	ND	0.46	mg/Kg wet							
Thallium	ND	2.3	mg/Kg wet							
Zinc	ND	0.92	mg/Kg wet							
LCS (B181616-BS1)	Prepared: 07/14/17 Analyzed: 07/17/17									
Antimony	58.2	5.0	mg/Kg wet	88.2		65.9	0-210.3			
Arsenic	49.1	5.0	mg/Kg wet	57.0		86.1	77.8-122.1			
Beryllium	63.6	0.50	mg/Kg wet	67.5		94.2	82.3-117.7			
Copper	54.9	0.99	mg/Kg wet	56.4		97.3	80.4-119.6			
Nickel	56.6	0.99	mg/Kg wet	61.3		92.4	82.2-117.8			
Thallium	153	5.0	mg/Kg wet	178		85.7	78.2-121.6			
Zinc	184	2.0	mg/Kg wet	198		92.9	79.7-120.8			
LCS Dup (B181616-BSD1)			I	Prepared: 07	7/14/17 Analy	yzed: 07/17/	17			
Antimony	55.8	4.8	mg/Kg wet	88.2		63.3	0-210.3	4.16	30	
Arsenic	45.5	4.8	mg/Kg wet	57.0		79.8	77.8-122.1	7.53	30	
Beryllium	57.4	0.48	mg/Kg wet	67.5		85.0	82.3-117.7	10.3	30	
Copper	48.5	0.96	mg/Kg wet	56.4		86.0	80.4-119.6	12.4	30	
Nickel	51.4	0.96	mg/Kg wet	61.3		83.8	82.2-117.8	9.67	30	
Thallium	140	4.8	mg/Kg wet	178		78.4	78.2-121.6	8.86	30	
Zinc	167	1.9	mg/Kg wet	198		84.2	79.7-120.8	9.88	30	

QUALITY CONTROL

$Conventional\ Chemistry\ Parameters\ by\ EPA/APHA/SW-846\ Methods\ (Total)\ -\ Quality\ Control$

Analyte	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B181609 - % Solids									
Duplicate (B181609-DUP5)	Source	e: 17G0323-01	Prepared: 07	//14/17 Analy	zed: 07/17/1	17			
% Solids	98.0	% Wt		98.4			0.407	20	
Duplicate (B181609-DUP6)	Source	e: 17G0323-02	Prepared: 07	//14/17 Anal	zed: 07/17/1	17			
% Solids	99.5	% Wt		99.7			0.201	20	

FLAG/QUALIFIER SUMMARY

*	OC result i	s outside of	established	limits

† Wide recovery limits established for difficult compound.

‡ Wide RPD limits established for difficult compound.

Data exceeded client recommended or regulatory level

ND Not Detected

RL Reporting Limit

DL Method Detection Limit

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SW-846 6010C-D in Soil	
Antimony	CT,NH,NY,ME,VA,NC
Arsenic	CT,NH,NY,ME,VA,NC
Beryllium	CT,NH,NY,ME,VA,NC
Copper	CT,NH,NY,ME,VA,NC
Nickel	CT,NH,NY,ME,VA,NC
Thallium	CT,NH,NY,ME,VA,NC
Zinc	CT,NH,NY,ME,VA,NC

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2018
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2017
NY	New York State Department of Health	10899 NELAP	04/1/2018
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2018
RI	Rhode Island Department of Health	LAO00112	12/30/2017
NC	North Carolina Div. of Water Quality	652	12/31/2017
NJ	New Jersey DEP	MA007 NELAP	06/30/2018
FL	Florida Department of Health	E871027 NELAP	06/30/2018
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2018
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2017
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2017
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2018
NC-DW	North Carolina Department of Health	25703	07/31/2018

CHAIN OF CUSTODY RECORD

East longmeadow, MA 01028 39 Spruce Street

Page) of /

1760323

B = Sodium bisulfate ***Container Code Dissolved Metals GW= groundwater T = Na thiosulfate O Field Filtered X = Na hydroxide # of Containers ** Preservation O Lab to Filter S = Sulfuric Acid ***Cont. Code: A=amber glass *Matrix Code: M = Methanol N = Nitric Acid S=summa can T=tedlar bag o = Other ST=sterile P=plastic 0=Other G=glass H-HC V= vial = Iced **ANALYSIS REQUESTED** X У X Х 又 O DINJSSA ؈ X Conc Code BIZIDGEWATER MAEMAII: MOGRMANO 9100 CNAIL O "Enhanced Data Package" Company Name: MARK A. GERMANC, LSP Telephone: (781)837 1949 Fax # LEE. KOSKA @ GMAIL *Matrix 88 UN CLARK Code V) DATA DELIVERY (check all that apply) O OTHER Composite Grab O FAX KEMAIL OWEBSITE X Project # Client PO# Date/Time Ending <u>1400</u> Format: Collection Email: info@contestlabs.com 4/10/14 Beginning Date/Time Phone: 413-525-2332 www.contestlabs.com Ú 内していて Client Sample ID / Description J <u>구</u> 7 10 0 / DISP - 7/10 Project Proposal Provided? (for billing purposes) DISP - 7/10 ANALYTICAL LABORATORY PINEHURST proposal date MARKHEIGLU, TA Attention: KRRKM MCGGA Project Location: ひし CLARK DISP 0150 DISP KSSKA Con-Test Lab ID 5 (laboratory use only) Sampled By: [Address: N Ť Oyes

X MCP Analytical Certification Form Required O RCP Analysis Certification Form Required O MA State DW Form Required PWSID #

DW= drinking water

Please use the following codes to let Con-Test know if a specific sample

may be high in concentration in Matrix/Conc. Code Box:

H - High; M - Medium; L - Low; C - Clean; U - Unknown

Detection Limit Requirements

Turnaround T

Date/Fime: 7 / 11 / 17

Relinquished by: (eignature)

Comments:

7-Day

Massachusetts: METHoこ

S = soil/solid SL = sludge

A = air

o = other

Is your project IMCP or RCP?

らのこれです

Connecticut:

RUSH [↑]

Date/Time: 2711-12

(signature)

🗖 †72-Hr 🗇 †4-Day

Date/Time:

ghature)

7-11-1 76736 0 124-H10 148-H1

10-Day Other 5

Date/Time:

WW= wastewater

NELAC & AIHA Certified WBE/DBE Certified

ÜRNAROUND TIME (business days) STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT MPLETELY OR IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED. Other: Require lab approval 20 of 22

PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT

39 Spruce St.

East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405 www.contestlabs.com

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client	/V)	ak A	Gern	nano Date	-/	// = 	Time	187	
Receiv	-	Jr.		•	//	/// /			<u> </u>
How were th	•	In Cooler		No Cooler	 	On Ice		_ No Ice	
receiv	/ed?	Direct from Samp	oling		_	Ambient		Melted Ice	
Were samp	des within		By Gun #	ſ		Actual Tem	p- 2.2	<u> </u>	-
Temperatu		- Andrews	By Blank #			Actual Tem	p +		
•	Custody Se	aal Intact?			ere Samnle	s Tampered		F	•
	COC Relin			Á	,	ree With Sa			-
		eaking/loose caps	on any sam		S Chain Ag	rec with oa	mpico:		•
Is COC in in			on any san		nnles recei	ved within h	olding time?	7	
Did COC ii	_	Client	_	Analysis	T		er Name		-
pertinent Inf		Project	1	- ID's			Dates/Times	·	•
•		d out and legible?							•
Are there La			MA	***	Who wa	s notified?			
Are there Ru		•	- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_		s notified?			•
Are there Sh				=		s notified?			-
		.2	<u>_/v//></u>		VVIIU WA	o nouncu:			-
is there enou	•		- T, ,,	-	MS/MSD?	MA			
	•	ere applicable?	-N/H	-		samples red	- nuired?	NA	
Proper Medi			J/n	**	On COC?		quireu :		-
Were trip bla			~//		On COC?	10/11	- Base		
Do ali sampi	es nave the	proper pH?	PIA	Acid			Dase		
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.			Plastic		<u> </u>	z Amb.	
HCL-		500 mL Amb.			- Plastic			mb/Clear	<u> </u>
Meoh-		250 mL Amb.			_ Plastic		1	nb/Clear	
Bisulfate-		Col./Bacteria			npoint			mb/Clear	
DI-	<u> </u>	Other Plastic			Glass	5-		core	
Thiosulfate-		SOC Kit			ic Bag		Frozen:		
Sulfuric-		Perchlorate		Zip	lock				
			6.00000	Unused	Media				
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.			Plastic			z Amb.	
HCL-		500 mL Amb.			_ Plastic			mb/Clear	
Meoh-		250 mL Amb.			_ Plastic			mb/Clear	
Bisulfate-		Col./Bacteria			npoint			mb/Clear ncore	<u> </u>
DI-		Other Plastic			Glass			core	<u> </u>
Thiosulfate-		SOC Kit			ic Bag		Frozen:		
Sulfuric-		Perchlorate			lock				
Comments:									

		MADE	P MCP Analytical M	lethod Report Cert	tification Form		
Labo	ratory Name:	Con-Test Ana	lytical Laboratory		Project #: 17G	0323	
Proje							
	·		he following data set	: [list Laboratory Sar	mple ID Number(s)]		
170	30323-01 thru	ı 17G0323-05					
Matri	ces:	Soil					
CA	AM Protoco	l (check all that b	pelow)				
8260 CAM	VOC II A ()	7470/7471 Hg CAM IIIB ()	MassDEP VPH CAM IV A ()	8081 Pesticides CAM V B ()	7196 Hex Cr CAM VI B ()	MassD CAM IX	EP APH 〈A()
	SVOC II B ()	7010 Metals CAM III C ()	MassDEP EPH CAM IV A ()	8151 Herbicides CAM V C ()	8330 Explosives CAM VIII A ()	TO-15 CAM IX	
	Metals III A (X)	6020 Metals CAM III D ()	8082 PCB CAM V A ()	9014 Total Cyanide/PAC CAM VI A ()	6860 Perchlorate CAM VIII B ()		
	A	ffirmative response	to Questions A throug	ghF is required for "F	Presumptive Certainty"	status	
Α		rved (including tempera	ion consistent with those ature) in the field or labora		•	☑ Yes	□No¹
В		ytical method(s) and all	associated QC requirem	ents specificed in the se	lected CAM	☑ Yes	□No¹
С	Were all requir	ed corrective actions a	nd analytical response ac		lected CAM	☑ Yes	□No¹
D	Does the labor	ratory report comply wit	th all the reporting require of Guidlines for the Acquis	ements specified in CAM		☑ Yes	□No¹
Еa	VPH, EPH, and		Vas each method conduction all method(s) for a list of s			□Yes	□No¹
Εb	` '	•	he complete analyte list re	· ·		□Yes	□No¹
F			and performance standa			☑ Yes	□No¹
			and I below is require			<u>!</u>	
G	protocol(s)?		all CAM reporting limits sp			☑ Yes	□No¹
			esumptive Certainty" described in 310 CMF	=	ssarily meet the data us NSC-07-350.	sability	
Н	Were all QC pe	erfomance standards s	pecified in the CAM proto	ocol(s) achieved?		☑ _{Yes}	\square_{No^1}
I	Were results re	eported for the complet	e analyte list specified in	the selected CAM protoc	col(s)?	☐Yes	☑No¹
¹ All	Negative respo	onses must be addre	ssed in an attached Er	nvironmental Laborato	ry case narrative.		
thos	se responsible		nformation, the mater		pon my personal inqui nnalytical report is, to ti	-	
Sigi	nature:	Toe	Kappend	Position:	Laboratory Director		
Prin	ted Name:	Tod E. Kopyscinsk		Date:	07/18/17		

New England Testing Laboratory , Inc. (401) 353-3420

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 8B07007 Client Project: DW Clark Foundry

Report Date: 13-February-2018

Prepared for:

Mark A Germano Mark A. Germano, LSP 15 Pinehurst Rd Marshfield, MA 02050

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples in this Report

Lab ID	Sample	Matrix	Date Sampled	Date Received
8B07007-01	Disp-SUPP-1	Soil	02/05/2018	02/07/2018
8B07007-02	Disp-SUPP-2	Soil	02/05/2018	02/07/2018
8B07007-03	Disp-SUPP-3	Soil	02/05/2018	02/07/2018
8B07007-04	Disp-SUPP-4	Soil	02/05/2018	02/07/2018
8B07007-05	Disp-SUPP-5	Soil	02/05/2018	02/07/2018
8B07007-06	Disp-SUPP-6	Soil	02/05/2018	02/07/2018
8B07007-07	Disp-SUPP-7	Soil	02/05/2018	02/07/2018
8B07007-08	Disp-SUPP-8	Soil	02/05/2018	02/07/2018

Request for Analysis

Disp-SUPP-1

Analysis Method
% Solids Gravimetric
Arsenic EPA 6010C
Barium EPA 6010C
Selenium EPA 6010C
Silver EPA 6010C

Disp-SUPP-2

Analysis Method
% Solids Gravimetric
Arsenic EPA 6010C
Barium EPA 6010C
Selenium EPA 6010C
Silver EPA 6010C

Disp-SUPP-3

Analysis Method
% Solids Gravimetric
Arsenic EPA 6010C

Disp-SUPP-4

Analysis Method
% Solids Gravimetric
Arsenic EPA 6010C

Disp-SUPP-5

Analysis Method
% Solids Gravimetric
Arsenic EPA 6010C

Disp-SUPP-6

Analysis Method
% Solids Gravimetric
Arsenic EPA 6010C

Disp-SUPP-7

Analysis Method
% Solids Gravimetric
Arsenic EPA 6010C

Disp-SUPP-8

Analysis Method
% Solids Gravimetric
Arsenic EPA 6010C

Case Narrative

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the app containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Metals

All analyses were performed according to NETLAB s documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory establishacceptance criteria. The samples were received, processed, and reported with no anomalies.

Sample: Disp-SUPP-1 8B07007-01 ()

			Reporting	Date Prepared	Date Analyzed	
Analyte	Result	Qual	Limit	Units		
otal Metals						
Arsenic	1.12		0.70	mg/kg	02/08/18	02/09/18
Barium	3.30		0.35	mg/kg	02/08/18	02/09/18
Selenium	ND		0.70	mg/kg	02/08/18	02/09/18
Silver	ND		0.35	mg/kg	02/08/18	02/12/18

Sample: Disp-SUPP-2 8B07007-02 ()

			Reporting	Date Prepared	Date Analyzed	
Analyte	Result	Qual	Limit	Units		
otal Metals						
Arsenic	1.15		0.69	mg/kg	02/08/18	02/09/18
Barium	3.72		0.34	mg/kg	02/08/18	02/09/18
Selenium	ND		0.69	mg/kg	02/08/18	02/09/18
Silver	ND		0.34	mg/kg	02/08/18	02/12/18

Sample: Disp-SUPP-3 8B07007-03 ()

		Reporting			Date Prepared	Date Analyzed
Analyte	Result	Qual	Limit	Units		
Total Metals Arsenic	0.82		0.69	mg/kg	02/08/18	02/09/18

Sample: Disp-SUPP-4 8B07007-04 ()

		Reporting			Date Prepared	Date Analyzed
Analyte	Result	Qual	Limit	Units		
Total Metals Arsenic	ND		0.69	mg/kg	02/08/18	02/09/18

Sample: Disp-SUPP-5 8B07007-05 ()

		Reporting			Date Prepared	Date Analyzed
Analyte	Result	Qual	Limit	Units		
Total Metals Arsenic	0.92		0.69	mg/kg	02/08/18	02/09/18

Sample: Disp-SUPP-6 8B07007-06 ()

		Reporting			Date Prepared	Date Analyzed
Analyte	Result	Qual	Limit	Units		
Total Metals Arsenic	ND		0.69	mg/kg	02/08/18	02/09/18

Sample: Disp-SUPP-7 8B07007-07 ()

		Reporting			Date Prepared	Date Analyzed
Analyte	Result	Qual	Limit	Units		
Total Metals Arsenic	1.42		0.69	mg/kg	02/08/18	02/09/18

Sample: Disp-SUPP-8 8B07007-08 ()

		Reporting			Date Prepared	Date Analyzed		
Analyte	Result	Qual	Limit	Units				
Total Metals								
Arsenic	1.19		0.70	mg/kg	02/08/18	02/09/18		

Quality Control

Total Metals

Analyte	Result Qual	Reporting Limit Un	its	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B8B0254 - Metals Dig	gestion Soils								
Blank (B8B0254-BLK1)			Prep	ared: 02/0	8/18 Analyze	d: 02/09/18			
Selenium	ND	0.66 mg/kg							
Barium	ND	0.33 mg/kg							
Arsenic	ND	0.66 mg/kg							
Silver	ND	0.33 mg/kg							
LCS (B8B0254-BS1)			Prep	oared: 02/0	8/18 Analyze	d: 02/09/18			
Selenium	13.7	0.66 mg/kg		13.3		103	85-115		
Barium	67.4	0.33 mg/kg		66.7		101	85-115		
Arsenic	14.5	0.66 mg/kg		13.3		108	85-115		
Silver	24.5	0.33 mg/kg		26.7		91.8	85-115		

Notes and Definitions

<u>Item</u>	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.