

LIMITED SUBSURFACE INVESTIGATION & GROUNDWATER & LANDFILL GAS MONITORING REPORT THE FORMER PORTSMOUTH LANDFILL PARK AVENUE PORTSMOUTH, RI 02871

ATC PROJECT NO. 3010000238

PREPARED FOR:

AP ENTERPRISE LLC 28 TEAL DRIVE WAKEFIELD, RHODE ISLAND 02879

PREPARED BY:

ATC GROUP SERVICES LLC 400 RESERVOIR AVENUE, SUITE 2C PROVIDENCE, RHODE ISLAND 02907

JULY 31, 2017

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	Site Location and Description	
2.0	SCOPE OF WORK	1
3.0	FIELD ACTIVITIES	2
3.1	Soil Boring, Screening, and Well Completion	2
3.2	Monitoring Well Gauging and Area Groundwater Flow	
3.3	Groundwater Sampling and Analysis	
3.4	Groundwater Analytical Results.	
3.5	Soil Gas Point Installation	
	Soil Gas Monitoring	
4.0	CONCLUSIONS	5

Appendices

Appendix A	Site Locus Map, Site Plan and Groundwater Contour Map, and Water Level Measurements Data
Appendix B	Soils Boring Logs
Appendix C	Table 1 - Summary of Groundwater Analytical Results; Table 2 – Soil Gas Monitoring Data; and Laboratory Analytical Results

1.0 INTRODUCTION

ATC Group Services LLC (ATC) was retained by AP Enterprise to install four groundwater monitoring wells and landfill gas monitoring points, and to conduct two years of quarterly groundwater and landfill gas monitoring at the former Portsmouth Landfill located on Park Avenue in Portsmouth, Rhode Island (the Site). The objective this work is to support the Rhode Island Department of Environmental Management (RIDEM) approved Site Monitoring Plan as prepared by Tim O'Connor & Company LLC.

1.1 Site Location and Description

The entrance to the former Portsmouth Landfill is located 500 feet west-northwest of the intersection formed by Boyds Lane and Park Avenue. The property is identified by the Portsmouth Tax Assessor as Plat 20 Lots 1, 2 & 13 and Plat 25 Lot 2. The property encompasses approximately 15.02 acres. The ground surface is generally level, with downward slopes along the landfill margins. Please refer to **Appendix A** for a Site Locus Map and a Site Plan, developed by DiPrete Engineering.

2.0 SCOPE OF WORK

ATC's scope of work consisted of the following tasks:

- Preparing a Health and Safety Plan in accordance with the Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120.
- Notifying the Dig-Safe utility locating service prior to drilling activity.
- Advancing four (4) soil borings by Geoprobe to a maximum depth of 20 feet. Collecting and analyzing groundwater samples to assess the potential for releases of oil and/or hazardous materials to the environment.
- Continuous soil sampling and inspection of each soil sample for staining, odors, or other physical evidence of impairment, and screening of the samples for of total organic vapors (TOV) using a photoionization detector (PID).
- Installing four (4) two-inch inside diameter PVC groundwater monitoring wells and well development using a peristaltic pump. Collection of groundwater samples to assess for releases of volatile organic compounds (VOCs) and 15 heavy metals to groundwater.
- Gauging the depth to groundwater, and if present, noting separate phase product in all monitoring wells.
- Determining groundwater elevations to evaluate local groundwater gradient and flow.
- Installation of four (4) soil gas points (SGPs).

- Soil gas monitoring of methane, hydrogen sulfide, oxygen and carbon dioxide using a Landtech Gem 2000 Landfill Gas Analyzer.
- Preparing this report.

3.0 FIELD ACTIVITIES

Prior to implementing the field activities, a utility locator service (DIGSAFE) was contacted and public utility lines were marked. In addition, to minimize the risk of potential exposure to chemical and physical hazards associated with the subsurface investigation activities, a Site specific Health and Safety Plan was prepared.

The following field activities were conducted at the Site to evaluate the potential presence of contamination in soil gas and groundwater as result of the historic storage, use, and releases of oil, gasoline and/or hazardous materials.

3.1 Soil Boring, Screening, and Well Completion

On April 25, 2017, ATC mobilized to the property to observe the installation of four soil borings (B-1 through B-4). TDS Technical Drilling Services (TDS) of Sterling, MA was the drilling company. TDS employed a Geoprobe DT 6610 track-mounted drilling rig. Soil boring locations are described below and depicted on the Site Plan presented as **Figure 2**, in **Appendix A**. Additional soil borings and monitoring wells will be installed in the future.

The soil borings were advanced depths of 15-20 feet below ground surface, groundwater, or refusal, whichever was encountered first. Soil samples were collected continuously from grade in five-foot long acetate-lined steel drilling rods. Soils consisted of fill and stratified sands. No obvious municipal waste, like metal, plastic, or glass was observed. The soil samples were field screened using a PID to confirm the presence of organic vapors. Vapor concentrations were very low and ranged from non-detect (ND) to 0.4 parts per million by volume (ppmv) in B-2.

Groundwater was encountered at depths of less than 10 feet below grade. Geologic and hydrogeologic conditions, as well as PID measurements were recorded on the soil boring logs, which are provided in **Appendix B**.

Groundwater monitoring wells were constructed in each of the four soil borings using two-inch diameter, polyvinyl chloride (PVC) riser and 10 to 15 feet of machine-slotted 0.01 inch well screen. The well screen was placed to intercept the groundwater table. The annulus around the PVC well screen was backfilled with uniform grade, silica sand to approximately two feet above the screen section. Approximately one foot of bentonite was placed around the PVC riser pipe above the silica sand to prevent local surface water runoff and infiltration from directly entering into the wells. The boreholes were backfilled with native soils from the top of the bentonite seal to the surface. A lockable four-inch by five foot water-tight stand pipe with expansion cap was cemented at the ground surface. Monitoring well construction diagrams are presented in **Appendix B**. Subsequent to monitoring well installation, each well was developed to enhance the hydraulic connection between the well screen and the natural formation or fill by removing fine silts. Approximately 10 gallons of water was pumped from each of the wells. The extracted water was allowed to percolate back into the ground.

3.2 Monitoring Well Gauging and Area Groundwater Flow

On May 30, 2017, ATC gauged the groundwater monitoring wells using an ORS electronic oil/water interface probe. ATC gauged the depth to groundwater from the top of the PVC well risers. The depth to groundwater ranged from 7.38 feet in MW-1 to 13.5 feet in MW-3. Non-aqueous phase liquids were not detected on the water surface, or in the bottom of the wells.

On June 15, 2017, DiPrete Engineering completed a well elevation survey of the recently installed monitoring wells. The monitoring wells were surveyed with reference to mean seal level. Based upon the well elevation survey, the depth to groundwater and resulting groundwater gradients indicate the flow is split. The highest groundwater elevation (2.90 feet above mean sea level) was noted at well MW-3. Based upon the groundwater elevation data present at this time, the groundwater gradient is directed radially away from well MW-3. Gradients were directed toward the south on the southern portion of the property, and to the north and east on the northern portion of the property. A Water Level Gauging Sheet is provided in **Appendix A**. A Groundwater Contour Map developed using the Golden Software "Surfer Program" is superimposed on **Figure 2**.

3.3 Groundwater Sampling and Analysis

On May 31, 2017, ATC completed the first quarterly groundwater sampling round. The groundwater samples were obtained using the USEPA's Low Stress Purging and Sampling Procedure (EQA SOP-GW-001). The samples were obtained using a variable speed low-flow peristaltic pump to control the rate of purging and limit the drawdown. Dedicated disposable polyethylene tubing was used at each well. Field parameters were recorded during sampling using a YSI Pro Series with flow-through cell and LaMotte turbidity meter. Field parameters included pH, water temperature, specific conductance and dissolved oxygen. The groundwater samples were collected upon parameter stabilization, and contained in laboratory grade and pre-preserved sample containers. The samples were chilled in a cooler and temporarily kept in ATCs sample cooler until they were transported under Chain of Custody to the ESS Laboratory. ESS analyzed the samples for VOCs using EPA Method 8260, and EPA Methods 6010 and 7010 for the metals.

3.4 Groundwater Analytical Results

VOCs and metals were not reported in excess of the RIDEM GA Groundwater Objectives. Detected analytes included barium in well (MW-1); barium, lead, and zinc in well (MW-2); barium, zinc, 1,4-dichlorobenzene, chlorobenzene, diethyl ether, isopropylbenzene; and barium, cadmium, copper, nickel, and zinc in MW-4. The groundwater data is summarized on **Table 1**. Refer to **Appendix D** for copies of the laboratory analytical reports and **Table 1**.

The initial laboratory report dated June 9, 2017 indicated elevated reporting limits for lead due to sample matrix interference. The samples were re-run on June 27, 2017 using method 7010, and the resulting concentrations are provided on the laboratory report. The laboratory also reports the

The laboratory report also indicated the *"Relative percent difference for duplicate is outside of criteria* (D+)". For acetone, the laboratory notes also indicated *"the Blank Spike Duplicate, Duplicate and Matrix Spike Duplicate are measures of precision. The Blank Spike Duplicate tests*

the precision of the procedure; the other two test the precision in regards to matrix. If the Duplicate and/or Matrix Spike Duplicate are outside of criteria, while the Blank Spike Duplicate is acceptable, it is assumed that the sample is non-homogeneous. This data would represent a range more than a finite point."

3.5 Soil Gas Point Installation

On April 25, 2017, ATC observed the installation of four permanent SGPs by TDS peripheral to and beyond the landfill solid waste mound, at the locations SG-1, SG-1, SG-1 and SG-4. SGP locations are shown of **Figure 2**. The four peripheral SGPs are positioned to monitor for potential landfill gas migration away from the solid waste mound. These points are positioned between the landfill mound boundary and the nearby habitable structures.

Each SGP was installed in the unsaturated zone, using a Geoprobe brand 21" stainless soil gas implant. The depth of placement was determined by the existing depth to groundwater at each location, which ranged from approximately four to ten feet below grade. Each SGPs was backfilled with uniform grade, silica sand to approximately one foot above the screen section. Approximately one foot of bentonite was placed above the SGP to seal it from surface water intrusion. Each SGP was connected to 3/8" by 1/4" tubing that was brought to the ground surface. At the ground surface, the SGP tubing was protected by a two-inch, by five-foot lockable standpipe cemented at grade.

3.6 Soil Gas Monitoring

The first quarterly round of landfill gas monitoring was conducted on May 30, 2017. The monitoring included recording of landfill gas and meteorological parameters at four points around and within the landfill periphery. Methane, hydrogen sulfide, oxygen and carbon dioxide were field measured using a Landtech Gem 2000 Landfill Gas Analyzer.

Referring to **Figure 2**, the peripheral points were installed between the landfill mound boundary and nearby habitable structures. The four soil gas points SG-1 through SG-4 are used to monitor landfill gas concentrations within the solid waste mound.

Soil gas and ambient methane, hydrogen sulfide, oxygen and carbon dioxide concentrations were measured at each landfill gas monitoring point. The point measurements were collected from the SGP petcocks. Additionally, ambient temperature, barometric pressure, and wind speed and direction were measured and recorded for each point using field instruments. Refer to **Appendix C** for **Table 2**, which summarizes the landfill gas monitoring data.

On May 30, 2017, methane was detected at peripheral monitoring point SG-3 at a concentration of 9.7%, which is within methane's the lower and upper explosive limits of 5% to 15%. The concentration of methane detected in SG-3 exceeds the RIDEM Solid Waste Regulation No. 2, Section 2.3.08 (d), of 25% of the LEL (1.25%) at the Site boundary.

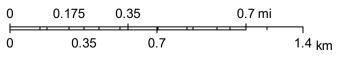
No methane was detected at any other monitoring point. Hydrogen sulfide was not detected at any monitoring point. The recorded carbon dioxide concentrations at the monitoring points ranged from non-detectable up to 12.5% at SG-3. The oxygen concentrations at the peripheral monitoring points ranged from atmospheric (approximately 20.6%) in SG-1, SG-2 and SG-4 down to 1.3% at SG-3.

4.0 CONCLUSIONS

ATC has performed the first quarterly groundwater and landfill gas monitoring at the former Portsmouth town landfill on Park Avenue in Portsmouth, Rhode Island. Based upon the scope of work and sampling activities completed, ATC concludes the following:

- No VOCs and no metals were reported above applicable GA Groundwater Objectives in the four groundwater samples collected from MW-1 through MW-4 on May 31, 2017.
- In soil gas monitoring point SG-3, the methane concentration was 9.7%, which is within the methane explosive limits of 5% to 15%. The oxygen concentration at SG-3 was 1.3%. The closest building to SG-3 is approximately 200 to the east. ATC does not think current conditions constitute a threat to human health, however conditions will be closely monitored.
- No methane was detected at any other peripheral monitoring point. Hydrogen sulfide was not detected at any peripheral monitoring point. The recorded carbon dioxide concentrations at the peripheral monitoring points ranged from non-detectable up to 12.5% at SG-3. The oxygen concentrations at the peripheral monitoring points ranged from atmospheric in SG-1, SG-2 and SG-4 down to 1.3% at SG-3.

Figures


RIDEM Environmental Resource Map

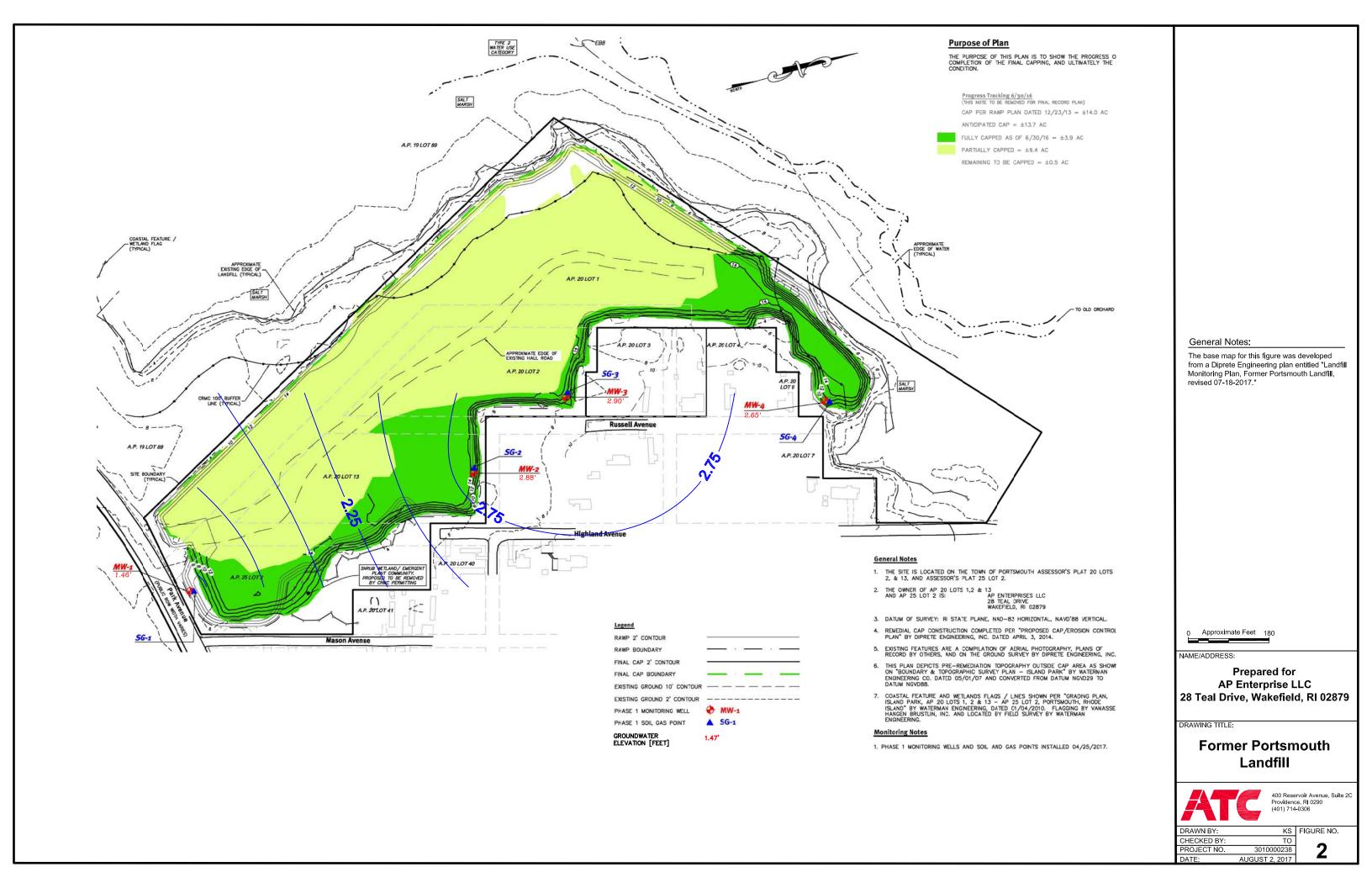

July 7, 2017

Figure 1: Site Locus Map

Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, © OpenStreetMap contributors, and the GIS

Tables

Table 1	Groundwater Analytical Results Former Portsmouth Town Landfill Park Avenue, Portsmouth, Rhode Island														
Well ID	Date	Barium	Cadmium	Copper	Lead	Nickel	Zinc	1,4- Dichlorobenzene	Chlorobenzene	Diethyl Ether	Isopropylbenzene				
MW-1	5/31/17	0.062	ND (0.0025)	ND (0.010)	ND (0.002)	ND (0.025)	ND (0.025)	ND (0.0010)	ND (0.0010)	ND (0.0010)	ND (0.0010)				
MW-2	5/31/17	0.084	ND (0.0025)	ND (0.010)	0.005	ND (0.025)	0.044	ND (0.0010)	ND (0.0010)	ND (0.0010)	ND (0.0010)				
MW-3	5/31/17	0.681	ND (0.0025)	ND (0.010)	ND (0.002)	ND (0.025)	0.035	0.0011	0.0040	0.0011	0.0240				
MW-4	5/31/17	0.050	0.0043	0.057	ND (0.002)	0.042	1.53	ND (0.0010)	ND (0.0010)	ND (0.0010)	ND (0.0010)				
-	Groundwater ectives	2	0.005	NS	0.015	0.1	NS	0.075	0.1	NS	NS				

Notes: All units in mg/L = milligrams per liter unless otherwise noted

NS = No Standard

NA = Not Available or Not Analyzed ND = not detected above method detection limit

Date: 5/30/2017

Soil Gas Monitoring Form Former Portsmouth Landfill Park Avenue, Portsmouth, RI

			Amb	pient					Soil	Gas		
Location	Temperature (F°)	Barometric Pressure (inches Hg)	Wind Velocity (miles per hour)	Wind Direction	Ambient Methane (CH4) (%)	Ambient Oxygen (O2) (%)	Soil Gas Methane (CH4) (%)	Soil Gas Oxygen (O2) (%)	Soil Gas Hydrogen Sulfide (H ₂ S) (ppm)	Soil Gas LEL (%)	C02 (%)	Soil Gas VOCs (ppm)
SG-1	54	30.24	4	SE	0.0	20.5	0	20.5	0	0	0	0.3
SG-2	56	30.22	6	SE	0.0	20.6	0	20.6	0	0	0	0.3
SG-3	56	30.22	6	SE	0.0	20.4	9.7	1.3	0	>100	12.5	0.6
SG-4	56	30.20	8	SE	0.0	20.1	0	19.6	0	0	0.2	1.0

Landfill gases measured using a Landtech Gem 2000 Plus Landfill Gas Monitor VOCs measured using a MiniRae 2000, (10.6 eV lamp) photoionization meter Appendix A

	ATC Gro	•								
				Drilled By: 7	TECHNICAL DR	ILLING SERVICES	Project #: 30	10000238		
				Drilling Met	hod: GEOPROBE	6610	Well Number:			
				Sampling Me	ethod: 5-FOOT M	ACROCORE	Location:	Former Por		andfill, Park Ave
				Screening In	strument: OVM 5	80B (10.6 Ev)			Portsmouth,	RI
				Depth to Wa	ter: 4.17'		Date: 4/25/17			
				Hole Diamet			Logged By: A			
SER:	TYPE: PVC			DIAMETE		IGTH: 3'	Well Seal: Bl			Total Depth: 15
CREEN:	TYPE: PVC	SLOT:().10"	DIAMETE	R: 2" LEN	GTH: 12'	Sand Pack: #	2 SAND		
				WEL	L COMPLETIO	ON AND SAMPLE DA	ТА			
OEPTH SAMPLING (ft) ID		BLOWS ON ER (inches)	WELL CONST.	MOISTURE CONTENT	(1	LITHOLOGY Description of materials)		SCREENING RESULTS		NOTES
, , , , , , , , , , , , , , , , , , ,	0-6 6-12			CONTENT	(1	compton or materials,		KLSUL15		noillo
1								++		
3				Dry	0'-5' Brown, Me gravel, Wet at 4'	edium to Course SAND, so	me coarse	ND		
4 5				Wet	giavel, wet at 4' (iuning nign tide		++		
6					1					
7 8				Wet	5'-9' Tan to Brow to coarse gravel	wn, Fine to Medium SANI), some medium	ND		
9					9'-10' Organic Pe	at Layer				
10 11					-					
12					10'-15' Tan, Fine	to Coarse SAND, some Po	ebbles			
13 14				Wet				ND		
15 EOB					EOB @ 15'					
+										
								T		
					1					
GENERAL REM	ARKS: N.D. :	= None detecte of 0.2 parts			t's detection limi	<u>Well Legend</u>	Concrete Bentonite Sand Pack Unconsolic		creen Vative Fill	

							Drilled By: 7	FECHNICAL	DRILLING SERVICE	S Project #: 30	10000238		
								hod: GEOPRO		Well Number			
										Location:		tsmouth Town	Landfill, Park Ave
									T MACROCORE			Portsmouth,	RI
									M 580B (10.6 Ev)				
							Depth to Wa			Date: 4/25/1			
GED		TUDE	DVC				Hole Diamet			Logged By:			T . 1 D . 1 . 1/
SER:		TYPE:				4.0.1	DIAMETE		LENGTH: 7'		ENTONITE		Total Depth: 17
CREEN:		TYPE:	PVC	2	SLOT:0	.10"	DIAMETE	R: 2"	LENGTH: 10'	Sand Pack: #	2 SAND		
							WEL	L COMPLE	CTION AND SAMPLE	DATA			
	PLING		MMER I			WELL			LITHOLOGY	1.)	SCREENING		NOTES
(ft) 1	D	0-6	6-12		s) 18-24	CONST	CONTENT		(Description of materi	ais)	RESULTS		NOTES
1													
2 3							Dry	0'-5' Brown	, Medium to Course SAND	, some medium to	ND		
4							Í		l, rock fragments				
5 6								-			├ ───┤		
7									n and Gray to Dark Gray, F	ine to Course			
8 9							Dry Wet	SAND, some	e gravel		0.4		
10							wet	_					
11 12								10'-15' Gray	to Tan, Fine to Coarse SA	ND			
12							Wet				ND		
14								EOB @ 17'					
15 16													
17 E	OB					\sim							
								_					
								-					
_†													
+													
					[]					
+											├ ──┤		
GENERAL	REMA	RKS:	N.D. =			l above t er millic	the instrumen	t's detection	Well Lege	Concrete Bentonite Sand Pack	1	Screen Native Fill	<u> </u>

				-			1			
				Drilled By: 7	ECHNICAL DRILLIN	G SERVICES	Project #: 30	10000238		
				Drilling Met	nod: GEOPROBE 6610		Well Number:			1/11 5 1 4
				Sampling Mo	ethod: 5-FOOT MACRO	CORE	Location:	Former Po		Landfill, Park Ave
				Screening In	strument: OVM 580B (1	0.6 Ev)			Portsmouth,	RI
				Depth to Wa	ter: 10.23'		Date: 4/25/17			
				Hole Diamet	er: 3.25"		Logged By: A			
SER:	TYPE: PVC			DIAMETE			Well Seal: Bl			Total Depth: 17
REEN:	TYPE: PVC	SLOT:().10"	DIAMETE	R: 2" LENGTH:	10'	Sand Pack: #2	2 SAND		
				WEL	L COMPLETION AN	D SAMPLE DA	ТА			
(ft) ID		BLOWS ON ER (inches)	WELL CONST.	MOISTURE CONTENT		THOLOGY otion of materials)		SCREENING RESULTS		NOTES
	0-6 6-12		CONST.	CONTENT	(Descrip	buon of materials)		RESULTS		NOTES
1										
2 3				Dry	0'-1' No Recovery			ND		
4					1'-4' Fill, Brick, Wood 4'-5' Gray, CLAY laye					
5 6			┦╿╿		5"-7' Brown and Gray,		ND, some silt			
7				D	7'-8' Gray, Clay layer 8'-10' Brown and Gray,			ND		
8 9				Dry	8-10 Brown and Gray,	Fille SAND		ND		
10				Wet	10'-15' Gray to Tan, Fin	e to Medium SANI)			
11 12										
13				Wet	EOB @ 17'			ND		
14 15					LOD @ 17					
16										
17 EOB										
-										
-										
	+ $+$ $-$	+ $+$ $-$		<u> </u>	1					
-										
+	$\left \right $									
GENERAL REM	ARKS: N.D. :	= None detecte of 0.2 parts j			's detection limit	<u>Well Legend</u>	Concrete Bentonite Sand Pack Unconsolic		Screen Native Fill	

					Drilled By:	TECHNICAL DRILLING SERVICE	ES Project #:	3010000238	
						hod: GEOPROBE 6610		ber: MW-4	
						ethod: 5-FOOT MACROCORE	Location:		Fown Landfill, Park Ave
						strument: OVM 580B (10.6 Ev)		Portsi	nouth, RI
					Depth to Wa		Date: 4/25	5/17	
					Hole Diamet	ter: 3.25"	Logged By	r: AK	
SER:	TYPE: P	VC			DIAMETE	R: 2" LENGTH: 5'	Well Seal:	BENTONITE	Total Depth: 20
REEN:	TYPE: P	VC S	SLOT:0	.10"	DIAMETE	R: 2" LENGTH: 15'	Sand Pack	#2 SAND	
					WEL	L COMPLETION AND SAMPLE	E DATA		
EPTH SAMPLING		MER BLOWS		WELL	MOISTURE			SCREENING	
(ft) ID		IPLER (inches -12 12-18	<u>.</u>	CONST.	CONTENT	(Description of mate	erials)	RESULTS	NOTES
1									
3					Dry	0'-5' No Recovery		NA	
4									
6						5'-9' No Recovery			
7					Dry Wet	9'-10' Brown, Fine to Course SAND,	some gravel	ND	
9							Ū.		
10 11						10'-15' Brown to Tan, Fine to Coarse	SAND		
12					Wet			ND	
13 14					wet			ND	
15 16						15'-20' Tan, Fine to Medium SAND			
17									
18 19						EOB @ 20'		ND	
20 EOB					_	-			
_									
]			
	+ $+$								
_						1			
-									
-									

Appendix B

WATER LEVEL MEASUREMENTS

Location:	Portsmouth Landfill, Park Ave.	ATC #	3010000238
Client:	AP Enterprise LLC	Date:	5/30/17
Instrument:	ORS Interface Probe	Gauged By:	AK
Checked By:	KS		

WELL #	M.P. ELEVATIONS	DEPTH TO PRODUCT	DEPTH TO WATER	PRODUCT THICKNESS	EQUIVALENT HD ELEV.
MW-1	8.84	0.00	7.38	0.00	1.46
MW-2	16.25	0.00	13.37	0.00	2.88
MW-3	16.40	0.00	13.50	0.00	2.90
MW-4	14.09	0.00	11.44	0.00	2.65

NOTES:

Height of PVC; MW-1: 3.21, MW-2: 4.01, MW-3: 3.27, MW-4: 2.97

Survey completed by DiPrete Enginering (6/15/17)

Appendix C

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Keith Sullivan ATC Group Services 400 Resevoir Ave Ste 2C Providence, RI 02907

RE: Former Portsmouth Landfill (301.238) ESS Laboratory Work Order Number: 1706086

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 4:53 pm, Jul 10, 2017

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill

ESS Laboratory Work Order: 1706086

SAMPLE RECEIPT

The following samples were received on June 02, 2017 for the analyses specified on the enclosed Chain of Custody Record.

Revision 1, July 10, 2017: This report has been revised to include revised lead results.

<u>Lab Number</u>	<u>Sample Name</u>	<u>Matrix</u>	<u>Analysis</u>
1706086-01	MW-1	Ground Water	6010C, 7010, 8260B
1706086-02	MW-2	Ground Water	6010C, 7010, 8260B
1706086-02	MW-2	Ground Water	6010C, 7010, 8260B
1706086-03	MW-3	Ground Water	6010C, 7010, 8260B
1706086-04	MW-4	Ground Water	6010C, 7010, 8260B
1706086-05	Trip Blank	Aqueous	8260B

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill

ESS Laboratory Work Order: 1706086

PROJECT NARRATIVE

8260B Volatile Organic Compounds

CF70602-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Acetone (32% @ 25%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill

Analytical Methods

ESS Laboratory Work Order: 1706086

CURRENT SW-846 METHODOLOGY VERSIONS

Prep Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH / VPH

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-1 Date Sampled: 05/31/17 10:15 Percent Solids: N/A

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-01 Sample Matrix: Ground Water Units: mg/L

Extraction Method: 3005A

Total Metals

<u>Analyte</u>	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>I/V</u>	<u>F/V</u>	Batch
Antimony	ND (0.025)		6010C		1	KJK	06/05/17 23:17	50	25	CF70542
Arsenic	ND (0.002)		7010		1	KJK	06/07/17 3:16	50	25	CF70542
Barium	0.062 (0.025)		6010C		1	KJK	06/05/17 23:17	50	25	CF70542
Beryllium	ND (0.0005)		6010C		1	KJK	06/05/17 23:17	50	25	CF70542
Cadmium	ND (0.0025)		6010C		1	KJK	06/05/17 23:17	50	25	CF70542
Chromium	ND (0.010)		6010C		1	KJK	06/05/17 23:17	50	25	CF70542
Cobalt	ND (0.010)		6010C		1	KJK	06/05/17 23:17	50	25	CF70542
Copper	ND (0.010)		6010C		1	KJK	06/05/17 23:17	50	25	CF70542
Lead	ND (0.002)		7010		1	MJV	06/27/17 7:30	50	25	CF70542
Nickel	ND (0.025)		6010C		1	KJK	06/05/17 23:17	50	25	CF70542
Selenium	ND (0.005)		7010		1	KJK	06/07/17 8:37	50	25	CF70542
Silver	ND (0.005)		6010C		1	KJK	06/05/17 23:17	50	25	CF70542
Thallium	ND (0.002)		7010		1	KJK	06/07/17 1:15	50	25	CF70542
Vanadium	ND (0.010)		6010C		1	KJK	06/05/17 23:17	50	25	CF70542
Zinc	ND (0.025)		6010C		1	KJK	06/05/17 23:17	50	25	CF70542

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-1 Date Sampled: 05/31/17 10:15 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-01 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)	<u>MDL</u>	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/05/17 18:22	Sequence C7F0073	Batch CF70602
1,1,1,2-Tetrachloroethane	ND (0.0010)				-			
1,1,1-Trichloroethane	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,1,2,2-Tetrachloroethane	ND (0.0005)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,1,2-Trichloroethane	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,1-Dichloroethane	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,1-Dichloroethene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,1-Dichloropropene	ND (0.0020)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,2,3-Trichlorobenzene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,2,3-Trichloropropane	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,2,4-Trichlorobenzene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,2,4-Trimethylbenzene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,2-Dibromo-3-Chloropropane	ND (0.0050)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,2-Dibromoethane	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,2-Dichlorobenzene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,2-Dichloroethane	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,2-Dichloropropane	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,3,5-Trimethylbenzene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,3-Dichlorobenzene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,3-Dichloropropane	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,4-Dichlorobenzene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1,4-Dioxane - Screen	ND (0.500)		8260B		1	06/05/17 18:22	C7F0073	CF70602
1-Chlorohexane	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
2,2-Dichloropropane	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
2-Butanone	ND (0.0100)		8260B		1	06/05/17 18:22	C7F0073	CF70602
2-Chlorotoluene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
2-Hexanone	ND (0.0100)		8260B		1	06/05/17 18:22	C7F0073	CF70602
4-Chlorotoluene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
4-Isopropyltoluene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
4-Methyl-2-Pentanone	ND (0.0250)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Acetone	ND (0.0100)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Benzene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Bromobenzene	ND (0.0020)		8260B		1	06/05/17 18:22	C7F0073	CF70602
	110 (0.0020)		02002		-	00.00.17 10.22	0,10070	-1,0002

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-1 Date Sampled: 05/31/17 10:15 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-01 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> Bromochloromethane	<u>Results (MRL)</u> ND (0.0010)	<u>MDL</u>	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/05/17 18:22	Sequence C7F0073	<u>Batch</u> CF70602
Bromodichloromethane	ND (0.0016)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Bromoform	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Bromomethane	ND (0.0020)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Carbon Disulfide	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Carbon Tetrachloride	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Chlorobenzene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Chloroethane	ND (0.0020)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Chloroform	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Chloromethane	ND (0.0020)		8260B		1	06/05/17 18:22	C7F0073	CF70602
cis-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
cis-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Dibromochloromethane	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Dibromomethane	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Dichlorodifluoromethane	ND (0.0020)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Diethyl Ether	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Di-isopropyl ether	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Ethyl tertiary-butyl ether	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Ethylbenzene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Hexachlorobutadiene	ND (0.0006)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Hexachloroethane	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Isopropylbenzene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Methyl tert-Butyl Ether	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Methylene Chloride	ND (0.0020)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Naphthalene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
n-Butylbenzene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
n-Propylbenzene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
sec-Butylbenzene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Styrene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
tert-Butylbenzene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Tetrachloroethene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-1 Date Sampled: 05/31/17 10:15 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-01 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrahydrofuran	ND (0.0050)		8260B		I	06/05/17 18:22	C7F0073	CF70602
Toluene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Trichloroethene	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Trichlorofluoromethane	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Vinyl Acetate	ND (0.0050)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Vinyl Chloride	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Xylene O	ND (0.0010)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Xylene P,M	ND (0.0020)		8260B		1	06/05/17 18:22	C7F0073	CF70602
Xylenes (Total)	ND (0.0020)		8260B		1	06/05/17 18:22		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		90 %		70-130				
Surrogate: 4-Bromofluorobenzene		92 %		70-130				
Surrogate: Dibromofluoromethane		89 %		70-130				
Surrogate: Toluene-d8		87 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-2 Date Sampled: 05/31/17 10:55 Percent Solids: N/A

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-02 Sample Matrix: Ground Water Units: mg/L

Extraction Method: 3005A

Total Metals

Analyte Antimony	<u>Results (MRL)</u> ND (0.025)	<u>MDL</u> <u>Method</u> 6010C	<u>Limit</u>	<u>DF</u>	<u>Analyst</u> KJK	<u>Analyzed</u> 06/05/17 23:21	<u>I/V</u> 50	<u>F/V</u> 25	<u>Batch</u> CF70542
Arsenic	ND (0.023)	7010		1		06/07/17 3:22	50	25	CF70542
Barium	0.084 (0.025)	6010C		1	KJK	06/05/17 23:21	50	25	CF70542
Beryllium	ND (0.0005)	6010C		1	KJK	06/05/17 23:21	50	25	CF70542
Cadmium	ND (0.0025)	6010C		1	KJK	06/05/17 23:21	50	25	CF70542
Chromium	ND (0.010)	6010C		1	KJK	06/05/17 23:21	50	25	CF70542
Cobalt	ND (0.010)	6010C		1	KJK	06/05/17 23:21	50	25	CF70542
Copper	ND (0.010)	6010C		1	KJK	06/05/17 23:21	50	25	CF70542
Lead	0.005 (0.002)	7010		1	MJV	06/27/17 7:36	50	25	CF70542
Nickel	ND (0.025)	6010C		1	KJK	06/05/17 23:21	50	25	CF70542
Selenium	ND (0.005)	7010		1	KJK	06/07/17 8:43	50	25	CF70542
Silver	ND (0.005)	6010C		1	KJK	06/05/17 23:21	50	25	CF70542
Thallium	ND (0.002)	7010		1	KJK	06/07/17 1:21	50	25	CF70542
Vanadium	ND (0.010)	6010C		1	KJK	06/05/17 23:21	50	25	CF70542
Zinc	0.044 (0.025)	6010C		1	KJK	06/05/17 23:21	50	25	CF70542

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-2 Date Sampled: 05/31/17 10:55 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-02 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL)	MDL	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/05/17 18:48	Sequence C7F0073	Batch CF70602
	ND (0.0010)				-			
1,1,1-Trichloroethane	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,1,2,2-Tetrachloroethane	ND (0.0005)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,1,2-Trichloroethane	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,1-Dichloroethane	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,1-Dichloroethene	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,1-Dichloropropene	ND (0.0020)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,2,3-Trichlorobenzene	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,2,3-Trichloropropane	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,2,4-Trichlorobenzene	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,2,4-Trimethylbenzene	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,2-Dibromo-3-Chloropropane	ND (0.0050)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,2-Dibromoethane	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,2-Dichlorobenzene	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,2-Dichloroethane	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,2-Dichloropropane	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,3,5-Trimethylbenzene	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,3-Dichlorobenzene	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,3-Dichloropropane	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,4-Dichlorobenzene	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1,4-Dioxane - Screen	ND (0.500)		8260B		1	06/05/17 18:48	C7F0073	CF70602
1-Chlorohexane	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
2,2-Dichloropropane	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
2-Butanone	ND (0.0100)		8260B		1	06/05/17 18:48	C7F0073	CF70602
2-Chlorotoluene	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
2-Hexanone	ND (0.0100)		8260B		1	06/05/17 18:48	C7F0073	CF70602
4-Chlorotoluene	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
4-Isopropyltoluene	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
4-Methyl-2-Pentanone	ND (0.0250)		8260B		1	06/05/17 18:48	C7F0073	CF70602
Acetone	ND (0.0100)		8260B		1	06/05/17 18:48	C7F0073	CF70602
Benzene	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
Bromobenzene	ND (0.0020)		8260B		1	06/05/17 18:48	C7F0073	CF70602
	()							

2211 Tel: 401-461-7181 Dependability • Quality http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-2 Date Sampled: 05/31/17 10:55 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-02 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> Bromochloromethane	<u>Results (MRL)</u> ND (0.0010)	MDL Method 8260B	Limit DF	Analyzed 06/05/17 18:48	Sequence C7F0073	<u>Batch</u> CF70602
Bromodichloromethane	ND (0.0006)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Bromoform	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Bromomethane	ND (0.0020)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Carbon Disulfide	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Carbon Tetrachloride	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Chlorobenzene	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Chloroethane	ND (0.0020)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Chloroform	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Chloromethane	ND (0.0020)	8260B	1	06/05/17 18:48	C7F0073	CF70602
cis-1,2-Dichloroethene	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
cis-1,3-Dichloropropene	ND (0.0004)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Dibromochloromethane	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Dibromomethane	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Dichlorodifluoromethane	ND (0.0020)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Diethyl Ether	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Di-isopropyl ether	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Ethyl tertiary-butyl ether	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Ethylbenzene	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Hexachlorobutadiene	ND (0.0006)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Hexachloroethane	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Isopropylbenzene	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Methyl tert-Butyl Ether	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Methylene Chloride	ND (0.0020)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Naphthalene	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
n-Butylbenzene	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
n-Propylbenzene	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
sec-Butylbenzene	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Styrene	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
tert-Butylbenzene	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Tertiary-amyl methyl ether	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602
Tetrachloroethene	ND (0.0010)	8260B	1	06/05/17 18:48	C7F0073	CF70602

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-2 Date Sampled: 05/31/17 10:55 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-02 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	<u>Results (MRL)</u>	<u>MDL</u>	Method	<u>Limit</u>	DF	Analyzed	<u>Sequence</u>	<u>Batch</u>
Tetrahydrofuran	ND (0.0050)		8260B		1	06/05/17 18:48	C7F0073	CF70602
Toluene	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/05/17 18:48	C7F0073	CF70602
Trichloroethene	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
Trichlorofluoromethane	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
Vinyl Acetate	ND (0.0050)		8260B		1	06/05/17 18:48	C7F0073	CF70602
Vinyl Chloride	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
Xylene O	ND (0.0010)		8260B		1	06/05/17 18:48	C7F0073	CF70602
Xylene P,M	ND (0.0020)		8260B		1	06/05/17 18:48	C7F0073	CF70602
Xylenes (Total)	ND (0.0020)		8260B		1	06/05/17 18:48		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		92 %		70-130				
Surrogate: 4-Bromofluorobenzene		94 %		70-130				
Surrogate: Dibromofluoromethane		94 %		70-130				
Surrogate: Toluene-d8		88 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-3 Date Sampled: 05/31/17 11:50 Percent Solids: N/A

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-03 Sample Matrix: Ground Water Units: mg/L

Extraction Method: 3005A

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (0.025)		6010C		1	KJK	06/05/17 23:25	50	25	CF70542
Arsenic	ND (0.002)		7010		1	KJK	06/07/17 3:28	50	25	CF70542
Barium	0.681 (0.025)		6010C		1	KJK	06/05/17 23:25	50	25	CF70542
Beryllium	ND (0.0005)		6010C		1	KJK	06/05/17 23:25	50	25	CF70542
Cadmium	ND (0.0025)		6010C		1	KJK	06/05/17 23:25	50	25	CF70542
Chromium	ND (0.010)		6010C		1	KJK	06/05/17 23:25	50	25	CF70542
Cobalt	ND (0.010)		6010C		1	KJK	06/05/17 23:25	50	25	CF70542
Copper	ND (0.010)		6010C		1	KJK	06/05/17 23:25	50	25	CF70542
Lead	ND (0.002)		7010		1	MJV	06/27/17 7:42	50	25	CF70542
Nickel	ND (0.025)		6010C		1	KJK	06/05/17 23:25	50	25	CF70542
Selenium	ND (0.005)		7010		1	KJK	06/07/17 9:12	50	25	CF70542
Silver	ND (0.005)		6010C		1	KJK	06/05/17 23:25	50	25	CF70542
Thallium	ND (0.002)		7010		1	KJK	06/07/17 1:27	50	25	CF70542
Vanadium	ND (0.010)		6010C		1	KJK	06/05/17 23:25	50	25	CF70542
Zinc	0.035 (0.025)		6010C		1	KJK	06/05/17 23:25	50	25	CF70542

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-3 Date Sampled: 05/31/17 11:50 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-03 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	<u>Results (MRL)</u> ND (0.0010)	MDL Method 8260B	Limit Dl		Sequence C7F0073	<u>Batch</u> CF70602
1,1,1-Trichloroethane	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,1,2-Trichloroethane	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,1-Dichloroethane	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,1-Dichloroethene	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,1-Dichloropropene	ND (0.0020)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,2,3-Trichlorobenzene	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,2,3-Trichloropropane	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,2,4-Trichlorobenzene	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,2,4-Trimethylbenzene	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,2-Dibromoethane	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,2-Dichlorobenzene	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,2-Dichloroethane	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,2-Dichloropropane	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,3,5-Trimethylbenzene	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,3-Dichlorobenzene	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,3-Dichloropropane	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,4-Dichlorobenzene	0.0011 (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1,4-Dioxane - Screen	ND (0.500)	8260B	1	06/05/17 19:14	C7F0073	CF70602
1-Chlorohexane	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
2,2-Dichloropropane	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
2-Butanone	ND (0.0100)	8260B	1	06/05/17 19:14	C7F0073	CF70602
2-Chlorotoluene	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
2-Hexanone	ND (0.0100)	8260B	1	06/05/17 19:14	C7F0073	CF70602
4-Chlorotoluene	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
4-Isopropyltoluene	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
4-Methyl-2-Pentanone	ND (0.0250)	8260B	1	06/05/17 19:14	C7F0073	CF70602
Acetone	ND (0.0100)	8260B	1	06/05/17 19:14	C7F0073	CF70602
Benzene	ND (0.0010)	8260B	1	06/05/17 19:14	C7F0073	CF70602
Bromobenzene	ND (0.0020)	8260B	1	06/05/17 19:14	C7F0073	CF70602

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-3 Date Sampled: 05/31/17 11:50 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-03 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	<u>Results (MRL)</u> ND (0.0010)	<u>MDL</u>	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 06/05/17 19:14	Sequence C7F0073	<u>Batch</u> CF70602
Bromodichloromethane	ND (0.0006)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Bromoform	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Bromomethane	ND (0.0020)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Carbon Disulfide	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Carbon Tetrachloride	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Chlorobenzene	0.0040 (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Chloroethane	ND (0.0020)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Chloroform	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Chloromethane	ND (0.0020)		8260B		1	06/05/17 19:14	C7F0073	CF70602
cis-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
cis-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Dibromochloromethane	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Dibromomethane	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Dichlorodifluoromethane	ND (0.0020)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Diethyl Ether	0.0011 (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Di-isopropyl ether	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Ethyl tertiary-butyl ether	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Ethylbenzene	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Hexachlorobutadiene	ND (0.0006)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Hexachloroethane	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Isopropylbenzene	0.0240 (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Methyl tert-Butyl Ether	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Methylene Chloride	ND (0.0020)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Naphthalene	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
n-Butylbenzene	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
n-Propylbenzene	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
sec-Butylbenzene	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Styrene	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
tert-Butylbenzene	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Tetrachloroethene	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602

2211 Tel: 401-461-7181 Dependability • Quality http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-3 Date Sampled: 05/31/17 11:50 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-03 Sample Matrix: Ground Water Units: mg/L Analyst: MD

Analyte	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	DF	Analyzed	<u>Sequence</u>	Batch
Tetrahydrofuran	ND (0.0050)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Toluene	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Trichloroethene	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Trichlorofluoromethane	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Vinyl Acetate	ND (0.0050)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Vinyl Chloride	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Xylene O	ND (0.0010)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Xylene P,M	ND (0.0020)		8260B		1	06/05/17 19:14	C7F0073	CF70602
Xylenes (Total)	ND (0.0020)		8260B		1	06/05/17 19:14		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		<i>93 %</i>		70-130				
Surrogate: 4-Bromofluorobenzene		100 %		70-130				
Surrogate: Dibromofluoromethane		94 %		70-130				
Surrogate: Toluene-d8		89 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-4 Date Sampled: 05/31/17 13:00 Percent Solids: N/A

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-04 Sample Matrix: Ground Water Units: mg/L

Extraction Method: 3005A

Total Metals

<u>Analyte</u>	Results (MRL)	MDL N	Method	Limit	DF	<u>Analyst</u>	Analyzed	I/V	F/V	Batch
Antimony	ND (0.025)		6010C		1	KJK	06/05/17 23:31	50	25	CF70542
Arsenic	ND (0.002)		7010		1	KJK	06/07/17 3:33	50	25	CF70542
Barium	0.050 (0.025)		6010C		1	KJK	06/05/17 23:31	50	25	CF70542
Beryllium	ND (0.0005)		6010C		1	KJK	06/05/17 23:31	50	25	CF70542
Cadmium	0.0043 (0.0025)		6010C		1	KJK	06/05/17 23:31	50	25	CF70542
Chromium	ND (0.010)		6010C		1	KJK	06/05/17 23:31	50	25	CF70542
Cobalt	ND (0.010)		6010C		1	KJK	06/05/17 23:31	50	25	CF70542
Copper	0.057 (0.010)		6010C		1	KJK	06/05/17 23:31	50	25	CF70542
Lead	ND (0.002)		7010		1	MJV	06/27/17 7:47	50	25	CF70542
Nickel	0.042 (0.025)		6010C		1	KJK	06/05/17 23:31	50	25	CF70542
Selenium	ND (0.005)		7010		1	KJK	06/07/17 9:18	50	25	CF70542
Silver	ND (0.005)		6010C		1	KJK	06/05/17 23:31	50	25	CF70542
Thallium	ND (0.002)		7010		1	KJK	06/07/17 1:33	50	25	CF70542
Vanadium	ND (0.010)		6010C		1	KJK	06/05/17 23:31	50	25	CF70542
Zinc	1.53 (0.025)		6010C		1	KJK	06/05/17 23:31	50	25	CF70542

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-4 Date Sampled: 05/31/17 13:00 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-04 Sample Matrix: Ground Water Units: mg/L Analyst: MD

Analyte 1,1,1,2-Tetrachloroethane	<u>Results (MRL)</u> ND (0.0010)		1ethod 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyze</u> 06/05/17 19:		Batch CF70602
1,1,1-Trichloroethane	ND (0.0010)		3260B		1	06/05/17 19:		CF70602
1,1,2,2-Tetrachloroethane	ND (0.0005)		3260B		1	06/05/17 19:		CF70602
1,1,2-Trichloroethane	ND (0.0010)		3260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,1-Dichloroethane	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,1-Dichloroethene	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,1-Dichloropropene	ND (0.0020)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,2,3-Trichlorobenzene	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,2,3-Trichloropropane	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,2,4-Trichlorobenzene	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,2,4-Trimethylbenzene	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,2-Dibromoethane	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,2-Dichlorobenzene	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,2-Dichloroethane	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,2-Dichloropropane	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,3,5-Trimethylbenzene	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,3-Dichlorobenzene	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,3-Dichloropropane	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,4-Dichlorobenzene	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1,4-Dioxane - Screen	ND (0.500)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
1-Chlorohexane	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
2,2-Dichloropropane	ND (0.0010)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
2-Butanone	ND (0.0100)	8	8260B		1	06/05/17 19:	c40 C7F0073	CF70602
2-Chlorotoluene	ND (0.0010)	8	8260B		1	06/05/17 19:	c40 C7F0073	CF70602
2-Hexanone	ND (0.0100)	8	8260B		1	06/05/17 19:	c40 C7F0073	CF70602
4-Chlorotoluene	ND (0.0010)	8	8260B		1	06/05/17 19:	c40 C7F0073	CF70602
4-Isopropyltoluene	ND (0.0010)	8	8260B		1	06/05/17 19:	c40 C7F0073	CF70602
4-Methyl-2-Pentanone	ND (0.0250)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602
Acetone	ND (0.0100)	8	8260B		1	06/05/17 19:	c40 C7F0073	CF70602
Benzene	ND (0.0010)	8	8260B		1	06/05/17 19:	c40 C7F0073	CF70602
Bromobenzene	ND (0.0020)	8	8260B		1	06/05/17 19:	:40 C7F0073	CF70602

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-4 Date Sampled: 05/31/17 13:00 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-04 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	<u>Results (MRL)</u> ND (0.0010)	<u>MDL</u>	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/05/17 19:40	Sequence C7F0073	<u>Batch</u> CF70602
Bromodichloromethane	ND (0.0006)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Bromoform	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Bromomethane	ND (0.0020)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Carbon Disulfide	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Carbon Tetrachloride	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Chlorobenzene	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Chloroethane	ND (0.0020)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Chloroform	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Chloromethane	ND (0.0020)		8260B		1	06/05/17 19:40	C7F0073	CF70602
cis-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
cis-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Dibromochloromethane	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Dibromomethane	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Dichlorodifluoromethane	ND (0.0020)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Diethyl Ether	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Di-isopropyl ether	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Ethyl tertiary-butyl ether	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Ethylbenzene	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Hexachlorobutadiene	ND (0.0006)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Hexachloroethane	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Isopropylbenzene	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Methyl tert-Butyl Ether	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Methylene Chloride	ND (0.0020)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Naphthalene	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
n-Butylbenzene	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
n-Propylbenzene	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
sec-Butylbenzene	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Styrene	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
tert-Butylbenzene	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Tertiary-amyl methyl ether	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Tetrachloroethene	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: MW-4 Date Sampled: 05/31/17 13:00 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-04 Sample Matrix: Ground Water Units: mg/L Analyst: MD

Analyte	<u>Results (MRL)</u>	<u>MDL</u>	Method	<u>Limit</u>	DF	Analyzed	<u>Sequence</u>	Batch
Tetrahydrofuran	ND (0.0050)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Toluene	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Trichloroethene	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Trichlorofluoromethane	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Vinyl Acetate	ND (0.0050)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Vinyl Chloride	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Xylene O	ND (0.0010)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Xylene P,M	ND (0.0020)		8260B		1	06/05/17 19:40	C7F0073	CF70602
Xylenes (Total)	ND (0.0020)		8260B		1	06/05/17 19:40		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		90 %		70-130				
Surrogate: 4-Bromofluorobenzene		94 %		70-130				
Surrogate: Dibromofluoromethane		90 %		70-130				
Surrogate: Toluene-d8		90 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: Trip Blank Date Sampled: 05/31/17 00:00 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-05 Sample Matrix: Aqueous Units: mg/L Analyst: MD

Analyte 1,1,1,2-Tetrachloroethane	<u>Results (MRL)</u> ND (0.0010)	MDL Methors	o <u>d Limit D</u>		Sequence C7F0073	<u>Batch</u> CF70602
1,1,1-Trichloroethane	ND (0.0010)	8260B	1		C7F0073	CF70602
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B	1		C7F0073	CF70602
1,1,2-Trichloroethane	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,1-Dichloroethane	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,1-Dichloroethene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,1-Dichloropropene	ND (0.0020)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,2,3-Trichlorobenzene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,2,3-Trichloropropane	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,2,4-Trichlorobenzene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,2,4-Trimethylbenzene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,2-Dibromoethane	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,2-Dichlorobenzene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,2-Dichloroethane	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,2-Dichloropropane	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,3,5-Trimethylbenzene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,3-Dichlorobenzene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,3-Dichloropropane	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,4-Dichlorobenzene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1,4-Dioxane - Screen	ND (0.500)	8260B	1	06/05/17 12:17	C7F0073	CF70602
1-Chlorohexane	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
2,2-Dichloropropane	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
2-Butanone	ND (0.0100)	8260B	1	06/05/17 12:17	C7F0073	CF70602
2-Chlorotoluene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
2-Hexanone	ND (0.0100)	8260B	1	06/05/17 12:17	C7F0073	CF70602
4-Chlorotoluene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
4-Isopropyltoluene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
4-Methyl-2-Pentanone	ND (0.0250)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Acetone	ND (0.0100)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Benzene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Bromobenzene	ND (0.0020)	8260B	1	06/05/17 12:17	C7F0073	CF70602

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: Trip Blank Date Sampled: 05/31/17 00:00 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-05 Sample Matrix: Aqueous Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> Bromochloromethane	<u>Results (MRL)</u> ND (0.0010)	MDL <u>Method</u> 8260B	Limit DF	<u>Analyzed</u> 06/05/17 12:17	Sequence C7F0073	<u>Batch</u> CF70602
Bromodichloromethane	ND (0.0006)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Bromoform	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Bromomethane	ND (0.0020)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Carbon Disulfide	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Carbon Tetrachloride	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Chlorobenzene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Chloroethane	ND (0.0020)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Chloroform	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Chloromethane	ND (0.0020)	8260B	1	06/05/17 12:17	C7F0073	CF70602
cis-1,2-Dichloroethene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
cis-1,3-Dichloropropene	ND (0.0004)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Dibromochloromethane	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Dibromomethane	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Dichlorodifluoromethane	ND (0.0020)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Diethyl Ether	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Di-isopropyl ether	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Ethyl tertiary-butyl ether	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Ethylbenzene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Hexachlorobutadiene	ND (0.0006)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Hexachloroethane	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Isopropylbenzene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Methyl tert-Butyl Ether	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Methylene Chloride	ND (0.0020)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Naphthalene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
n-Butylbenzene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
n-Propylbenzene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
sec-Butylbenzene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Styrene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
tert-Butylbenzene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Tertiary-amyl methyl ether	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602
Tetrachloroethene	ND (0.0010)	8260B	1	06/05/17 12:17	C7F0073	CF70602

2211 Tel: 401-461-7181 Dependability • Quality http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill Client Sample ID: Trip Blank Date Sampled: 05/31/17 00:00 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1706086 ESS Laboratory Sample ID: 1706086-05 Sample Matrix: Aqueous Units: mg/L Analyst: MD

<u>Analyte</u> Tetrahydrofuran	<u>Results (MRL)</u> ND (0.0050)	<u>MDL</u>	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/05/17 12:17	Sequence C7F0073	Batch CF70602
Toluene	ND (0.0010)		8260B		1	06/05/17 12:17	C7F0073	CF70602
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	06/05/17 12:17	C7F0073	CF70602
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	06/05/17 12:17	C7F0073	CF70602
Trichloroethene	ND (0.0010)		8260B		1	06/05/17 12:17	C7F0073	CF70602
Trichlorofluoromethane	ND (0.0010)		8260B		1	06/05/17 12:17	C7F0073	CF70602
Vinyl Acetate	ND (0.0050)		8260B		1	06/05/17 12:17	C7F0073	CF70602
Vinyl Chloride	ND (0.0010)		8260B		1	06/05/17 12:17	C7F0073	CF70602
Xylene O	ND (0.0010)		8260B		1	06/05/17 12:17	C7F0073	CF70602
Xylene P,M	ND (0.0020)		8260B		1	06/05/17 12:17	C7F0073	CF70602
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		88 %		70-130				
Surrogate: 4-Bromofluorobenzene		<i>95 %</i>		70-130				
Surrogate: Dibromofluoromethane		91 %		70-130				
Surrogate: Toluene-d8		93 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services

Client Project ID: Former Portsmouth Landfill

ESS Laboratory Work Order: 1706086

Quality Control Data

nalyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
			Total Met	als						
atch CF70542 - 3005	A									
ank										
itimony	ND	0.025	mg/L							
senic	ND	0.002	mg/L							
irium	ND	0.025	mg/L							
ryllium	ND	0.0005	mg/L							
idmium	ND	0.0025	mg/L							
romium	ND	0.010	mg/L							
balt	ND	0.010	mg/L							
pper	ND	0.010	mg/L							
ad	ND	0.002	mg/L							
ckel	ND	0.025	mg/L							
lenium	ND	0.005	mg/L							
ver	ND	0.005	mg/L							
allium	ND	0.002	mg/L							
nadium	ND	0.010	mg/L							
nc	ND	0.025	mg/L							
s										
timony	0.254	0.025	mg/L	0.2500		102	80-120			
senic	0.264	0.062	mg/L	0.2500		105	80-120			
rium	0.252	0.025	mg/L	0.2500		101	80-120			
ryllium	0.0240	0.0005	mg/L	0.02500		96	80-120			
dmium	0.114	0.0025	mg/L	0.1250		92	80-120			
romium	0.248	0.010	mg/L	0.2500		99	80-120			
balt	0.240	0.010	mg/L	0.2500		96	80-120			
pper	0.249	0.010	mg/L	0.2500		100	80-120			
ad	0.268	0.062	mg/L	0.2500		107	80-120			
ckel	0.250	0.025	mg/L	0.2500		100	80-120			
lenium	0.531	0.125	mg/L	0.5000		106	80-120			
ver	0.114	0.005	mg/L	0.1250		91	80-120			
allium	0.279	0.062	mg/L	0.2500		112	80-120			
nadium	0.245	0.010	mg/L	0.2500		98	80-120			
ic	0.241	0.025	mg/L	0.2500		96	80-120			
S Dup										
timony	0.260	0.025	mg/L	0.2500		104	80-120	2	20	
senic	0.273	0.062	mg/L	0.2500		109	80-120	4	20	
rium	0.255	0.025	mg/L	0.2500		102	80-120	1	20	
ryllium	0.0243	0.0005	mg/L	0.02500		97	80-120	1	20	
dmium	0.117	0.0025	mg/L	0.1250		94	80-120	2	20	
romium	0.250	0.010	mg/L	0.2500		100	80-120	0.8	20	
balt	0.255	0.010	mg/L	0.2500		102	80-120	6	20	
pper	0.253	0.010	mg/L	0.2500		101	80-120	2	20	
ad	0.267	0.062	mg/L	0.2500		107	80-120	0.6	20	
kel	0.255	0.025	mg/L	0.2500		102	80-120	2	20	
lenium	0.562	0.125	mg/L	0.5000		112	80-120	6	20	
ver	0.116	0.005	mg/L	0.1250		93	80-120	2	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services

Client Project ID: Former Portsmouth Landfill

ESS Laboratory Work Order: 1706086

Quality Control Data

Analyto	Doguth	MRL	Units	Spike	Source	04.PEC	%REC	RPD	RPD Limit	Qualifian
Analyte	Result	MRL		Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Met	als						
Batch CF70542 - 3005A										
Thallium	0.293	0.062	mg/L	0.2500		117	80-120	5	20	
/anadium	0.248	0.010	mg/L	0.2500		99	80-120	1	20	
linc	0.243	0.025	mg/L	0.2500		97	80-120	0.9	20	
		8260B Vol	atile Organ	nic Compo	unds					
Batch CF70602 - 5030B										
Blank										
,1,1,2-Tetrachloroethane	ND	0.0010	mg/L							
,1,1-Trichloroethane	ND	0.0010	mg/L							
,1,2,2-Tetrachloroethane	ND	0.0005	mg/L							
,1,2-Trichloroethane	ND	0.0010	mg/L							
,1-Dichloroethane	ND	0.0010	mg/L							
,1-Dichloroethene	ND	0.0010	mg/L							
,1-Dichloropropene	ND	0.0020	mg/L							
,2,3-Trichlorobenzene	ND	0.0010	mg/L							
,2,3-Trichloropropane	ND	0.0010	mg/L							
,2,4-Trichlorobenzene	ND	0.0010	mg/L							
,2,4-Trimethylbenzene	ND	0.0010	mg/L							
,2-Dibromo-3-Chloropropane	ND	0.0050	mg/L							
,2-Dibromoethane	ND	0.0010	mg/L							
,2-Dichlorobenzene	ND	0.0010	mg/L							
,2-Dichloroethane	ND	0.0010	mg/L							
,2-Dichloropropane	ND	0.0010	mg/L							
,3,5-Trimethylbenzene	ND	0.0010	mg/L							
,3-Dichlorobenzene	ND	0.0010	mg/L							
,3-Dichloropropane	ND	0.0010	mg/L							
,4-Dichlorobenzene	ND	0.0010	mg/L							
,4-Dioxane - Screen	ND	0.500	mg/L							
-Chlorohexane	ND	0.0010	mg/L							
2,2-Dichloropropane	ND	0.0010	mg/L							
2-Butanone	ND	0.0100	mg/L							
-Chlorotoluene	ND	0.0010	mg/L							
-Hexanone	ND	0.0100	mg/L							
-Chlorotoluene	ND	0.0010	mg/L							
-Isopropyltoluene	ND	0.0010	mg/L							
-Methyl-2-Pentanone	ND	0.0250	mg/L							
Acetone	ND	0.0100	mg/L							
Benzene	ND	0.0010	mg/L							
Bromobenzene	ND	0.0020	mg/L							
Bromochloromethane	ND	0.0010	mg/L							
Bromodichloromethane	ND	0.0006	mg/L							
Bromoform	ND	0.0010	mg/L							
Bromomethane	ND	0.0020	mg/L							
Carbon Disulfide	ND	0.0010	mg/L							
	ND	0.0010	mg/L							

Dependability • Quality Fax: 401-461-4486 ٠ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill

ESS Laboratory Work Order: 1706086

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		8260B Vola	atile Organi	c Compo	unds					
Batch CF70602 - 5030B										
Chlorobenzene	ND	0.0010	mg/L							
Chloroethane	ND	0.0020	mg/L							
Chloroform	ND	0.0010	mg/L							
Chloromethane	ND	0.0020	mg/L							
is-1,2-Dichloroethene	ND	0.0010	mg/L							
is-1,3-Dichloropropene	ND	0.0004	mg/L							
bibromochloromethane	ND	0.0010	mg/L							
Dibromomethane	ND	0.0010	mg/L							
Dichlorodifluoromethane	ND	0.0020	mg/L							
Diethyl Ether	ND	0.0010	mg/L							
Di-isopropyl ether	ND	0.0010	mg/L							
thyl tertiary-butyl ether	ND	0.0010	mg/L							
thylbenzene	ND	0.0010	mg/L							
lexachlorobutadiene	ND	0.0006	mg/L							
lexachloroethane	ND	0.0010	mg/L							
sopropylbenzene	ND	0.0010	mg/L							
lethyl tert-Butyl Ether	ND	0.0010	mg/L							
lethylene Chloride	ND	0.0020	mg/L							
laphthalene	ND	0.0010	mg/L							
Butylbenzene	ND	0.0010	mg/L							
Propylbenzene	ND	0.0010	mg/L							
ec-Butylbenzene	ND	0.0010	mg/L							
tyrene	ND	0.0010	mg/L							
ert-Butylbenzene	ND	0.0010	mg/L							
ertiary-amyl methyl ether	ND	0.0010	mg/L							
etrachloroethene	ND	0.0010	mg/L							
etrahydrofuran	ND	0.0050	mg/L							
oluene	ND	0.0010	mg/L							
rans-1,2-Dichloroethene	ND	0.0010	mg/L							
rans-1,3-Dichloropropene	ND	0.0004	mg/L							
Frichloroethene	ND	0.0010	mg/L							
Frichlorofluoromethane	ND	0.0010	mg/L							
/inyl Acetate	ND	0.0050	mg/L							
/inyl Chloride	ND	0.0010	mg/L							
(ylene O	ND	0.0010	mg/L							
(ylene P,M	ND	0.0020	mg/L							
(ylenes (Total)	ND	0.0020	mg/L							
Surrogate: 1,2-Dichloroethane-d4	0.0222		mg/L	0.02500		89	70-130			
Surrogate: 4-Bromofluorobenzene	0.0231		mg/L	0.02500		92	70-130			
Surrogate: Dibromofluoromethane	0.0220		mg/L	0.02500		88	70-130			
Gurrogate: Toluene-d8	0.0228		mg/L	0.02500		91	70-130			
LCS										
,1,1,2-Tetrachloroethane	9.74		ug/L	10.00		97	70-130			
1,1,1-Trichloroethane	10.5		ug/L	10.00		105	70-130			
,1,2,2-Tetrachloroethane	9.98		ug/L	10.00		100	70-130			

Dependability • Quality

Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services

Client Project ID: Former Portsmouth Landfill

ESS Laboratory Work Order: 1706086

Quality Control Data

			Spike	Source		%REC		RPD	
Analyte	Result	MRL Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
,		8260B Volatile Orga					-		
				unus					
Batch CF70602 - 5030B									
1,1,2-Trichloroethane	9.73	ug/L	10.00		97	70-130			
1,1-Dichloroethane	10.2	ug/L	10.00		102	70-130			
1,1-Dichloroethene	9.25	ug/L	10.00		92	70-130			
1,1-Dichloropropene	10.4	ug/L	10.00		104	70-130			
1,2,3-Trichlorobenzene	12.3	ug/L	10.00		123	70-130			
1,2,3-Trichloropropane	9.59	ug/L	10.00		96	70-130			
1,2,4-Trichlorobenzene	11.6	ug/L	10.00		116	70-130			
1,2,4-Trimethylbenzene	10.9	ug/L	10.00		109	70-130			
1,2-Dibromo-3-Chloropropane	11.6	ug/L	10.00		116	70-130			
1,2-Dibromoethane	10.0	ug/L	10.00		100	70-130			
1,2-Dichlorobenzene	10.8	ug/L	10.00		108	70-130			
1,2-Dichloroethane	10.2	ug/L	10.00		102	70-130			
1,2-Dichloropropane	9.73	ug/L	10.00		97	70-130			
1,3,5-Trimethylbenzene	11.0	ug/L	10.00		110	70-130			
1,3-Dichlorobenzene	10.8	ug/L	10.00		108	70-130			
1,3-Dichloropropane	10.6	ug/L	10.00		106	70-130			
1,4-Dichlorobenzene	10.5	ug/L	10.00		105	70-130			
1,4-Dioxane - Screen	190	ug/L	200.0		95	0-332			
1-Chlorohexane	9.52	ug/L	10.00		95	70-130			
2,2-Dichloropropane	10.2	ug/L	10.00		102	70-130			
2-Butanone	43.6	ug/L	50.00		87	70-130			
2-Chlorotoluene	10.5	ug/L	10.00		105	70-130			
2-Hexanone	48.3	ug/L	50.00		97	70-130			
4-Chlorotoluene	11.0	ug/L	10.00		110	70-130			
4-Isopropyltoluene	10.8	ug/L	10.00		108	70-130			
4-Methyl-2-Pentanone	45.8	ug/L	50.00		92	70-130			
Acetone	42.8	ug/L	50.00		86	70-130			
Benzene	9.75	ug/L	10.00		98	70-130			
Bromobenzene	10.8	ug/L	10.00		108	70-130			
Bromochloromethane	10.3	ug/L	10.00		103	70-130			
Bromodichloromethane	10.0	ug/L	10.00		100	70-130			
Bromoform	10.2	ug/L	10.00		102	70-130			
Bromomethane	11.0	ug/L	10.00		110	70-130			
Carbon Disulfide	9.94	ug/L	10.00		99	70-130			
Carbon Tetrachloride	10.6	ug/L	10.00		106	70-130			
Chlorobenzene	10.5	ug/L	10.00		105	70-130			
Chloroethane	10.1	ug/L	10.00		101	70-130			
Chloroform	10.3	ug/L	10.00		103	70-130			
Chloromethane	10.5	ug/L	10.00		105	70-130			
cis-1,2-Dichloroethene	10.0	ug/L	10.00		100	70-130			
cis-1,3-Dichloropropene	10.1	ug/L	10.00		101	70-130			
Dibromochloromethane	10.5	ug/L	10.00		105	70-130			
Dibromomethane	9.55	ug/L	10.00		96	70-130			
Dichlorodifluoromethane	8.90	ug/L	10.00		89	70-130			
Diethyl Ether	8.13	ug/L	10.00		81	70-130			

2211 Tel: 401-461-7181 Dependability + Quality http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill

ESS Laboratory Work Order: 1706086

Quality Control Data

			Spike	Source		%REC		RPD	
Analyte	Result MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	8260B	Volatile Organ	ic Compo	unds					
atch CF70602 - 5030B									
i-isopropyl ether	9.09	ug/L	10.00		91	70-130			
thyl tertiary-butyl ether	9.30	ug/L	10.00		93	70-130			
thylbenzene	10.3	ug/L	10.00		103	70-130			
exachlorobutadiene	12.3	ug/L	10.00		123	70-130			
lexachloroethane	11.9	ug/L	10.00		119	70-130			
sopropylbenzene	10.3	ug/L	10.00		103	70-130			
lethyl tert-Butyl Ether	9.92	ug/L	10.00		99	70-130			
lethylene Chloride	10.0	ug/L	10.00		100	70-130			
aphthalene	11.1	ug/L	10.00		111	70-130			
Butylbenzene	11.3	ug/L	10.00		113	70-130			
Propylbenzene	10.6	ug/L	10.00		106	70-130			
ec-Butylbenzene	10.8	ug/L	10.00		100	70-130			
tyrene	10.0	ug/L	10.00		100	70-130			
ert-Butylbenzene	11.2	ug/L	10.00		102	70-130			
ertiary-amyl methyl ether	9.02	ug/L	10.00		90	70-130			
etrachloroethene	9.31	ug/L	10.00		93	70-130			
etrahydrofuran	9.89	ug/L	10.00		99	70-130			
bluene	10.3		10.00		103	70-130			
ans-1,2-Dichloroethene	10.9	ug/L	10.00		103	70-130			
		ug/L	10.00		83	70-130			
ans-1,3-Dichloropropene	8.34	ug/L							
ichloroethene	10.1	ug/L	10.00		101	70-130			
ichlorofluoromethane	9.26	ug/L	10.00		93	70-130			
nyl Acetate	9.12	ug/L	10.00		91	70-130			
nyl Chloride	9.32	ug/L	10.00		93	70-130			
/lene O	10.6	ug/L	10.00		106	70-130			
/lene P,M	20.8	ug/L	20.00		104	70-130			
/lenes (Total)	31.5	mg/L							
urrogate: 1,2-Dichloroethane-d4	0.0254	mg/L	0.02500		102	70-130			
urrogate: 4-Bromofluorobenzene	0.0272	mg/L	0.02500		109	70-130			
urrogate: Dibromofluoromethane	0.0251	mg/L	0.02500		101	70-130			
urrogate: Toluene-d8	0.0270	mg/L	0.02500		108	70-130			
CS Dup									
1,1,2-Tetrachloroethane	9.86	ug/L	10.00		99	70-130	1	25	
1,1-Trichloroethane	10.1	ug/L	10.00		101	70-130	4	25	
1,2,2-Tetrachloroethane	9.85	ug/L	10.00		98	70-130	1	25	
1,2-Trichloroethane	9.60	ug/L	10.00		96	70-130	1	25	
1-Dichloroethane	9.86	ug/L	10.00		99	70-130	4	25	
1-Dichloroethene	9.27	ug/L	10.00		93	70-130	0.2	25	
1-Dichloropropene	10.3	ug/L	10.00		103	70-130	1	25	
2,3-Trichlorobenzene	10.8	ug/L	10.00		108	70-130	13	25	
2,3-Trichloropropane	9.95	ug/L	10.00		100	70-130	4	25	
,2,4-Trichlorobenzene	10.1	ug/L	10.00		101	70-130	14	25	
2,4-Trimethylbenzene	10.2	ug/L	10.00		102	70-130	6	25	
2-Dibromo-3-Chloropropane	10.6	ug/L	10.00		106	70-130	10	25	
2-Dibromoethane	9.80	ug/L	10.00		98	70-130	2	25	

2211 Tel: 401-461-7181 Dependability + Quality http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services

Client Project ID: Former Portsmouth Landfill

ESS Laboratory Work Order: 1706086

Quality Control Data

			Spike	Source		%REC		RPD	
Analyte	Result M	RL Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	826	0B Volatile Organi	ic Compo	unds					
Batch CF70602 - 5030B									
1,2-Dichlorobenzene	10.2	ug/L	10.00		102	70-130	6	25	
1,2-Dichloroethane	9.98	ug/L	10.00		100	70-130	2	25	
1,2-Dichloropropane	9.49	ug/L	10.00		95	70-130	2	25	
1,3,5-Trimethylbenzene	10.3	ug/L	10.00		103	70-130	7	25	
1,3-Dichlorobenzene	10.2	ug/L	10.00		102	70-130	6	25	
1,3-Dichloropropane	10.1	ug/L	10.00		101	70-130	5	25	
1,4-Dichlorobenzene	9.84	ug/L	10.00		98	70-130	7	25	
1,4-Dioxane - Screen	193	ug/L	200.0		96	0-332	1	200	
L-Chlorohexane	9.10	ug/L	10.00		91	70-130	5	25	
2,2-Dichloropropane	10.3	ug/L	10.00		103	70-130	1	25	
2-Butanone	47.3	ug/L	50.00		95	70-130	8	25	
2-Chlorotoluene	9.79	ug/L	10.00		98	70-130	7	25	
2-Hexanone	56.5	ug/L	50.00		113	70-130	16	25	
1-Chlorotoluene	10.0	ug/L	10.00		100	70-130	10	25	
1-Isopropyltoluene	10.1	ug/L	10.00		101	70-130	7	25	
1-Methyl-2-Pentanone	48.3	ug/L	50.00		97	70-130	5	25	
Acetone	59.2	ug/L	50.00		118	70-130	32	25	D+
Benzene	9.57	ug/L	10.00		96	70-130	2	25	
Bromobenzene	10.4	ug/L	10.00		104	70-130	3	25	
Bromochloromethane	9.85	ug/L	10.00		98	70-130	5	25	
Bromodichloromethane	9.70	ug/L	10.00		97	70-130	3	25	
Bromoform	9.68	ug/L	10.00		97	70-130	5	25	
Bromomethane	10.5	ug/L	10.00		105	70-130	5	25	
Carbon Disulfide	9.63	ug/L	10.00		96	70-130	3	25	
Carbon Tetrachloride	10.4	ug/L	10.00		104	70-130	1	25	
Chlorobenzene	9.66	ug/L	10.00		97	70-130	8	25	
Chloroethane	8.31	ug/L	10.00		83	70-130	20	25	
Chloroform	10.0	ug/L	10.00		100	70-130	3	25	
Chloromethane	9.88	ug/L	10.00		99	70-130	6	25	
cis-1,2-Dichloroethene	9.40	ug/L	10.00		94	70-130	6	25	
cis-1,3-Dichloropropene	10.3	ug/L	10.00		103	70-130	1	25	
Dibromochloromethane	10.4	ug/L	10.00		104	70-130	0.2	25	
Dibromomethane	9.86	ug/L	10.00		99	70-130	3	25	
Dichlorodifluoromethane	8.73	ug/L	10.00		87	70-130	2	25	
Diethyl Ether	8.53	ug/L	10.00		85	70-130	5	25	
Di-isopropyl ether	8.88	ug/L	10.00		89	70-130	2	25	
thyl tertiary-butyl ether	9.34	ug/L	10.00		93	70-130	0.4	25	
thylbenzene	9.52	ug/L	10.00		95	70-130	8	25	
lexachlorobutadiene	10.9	ug/L	10.00		109	70-130	12	25	
lexachloroethane	10.7	ug/L	10.00		107	70-130	10	25	
sopropylbenzene	9.34	ug/L	10.00		93	70-130	10	25	
Methyl tert-Butyl Ether	9.78	ug/L	10.00		98	70-130	1	25	
Methylene Chloride	9.21	ug/L	10.00		92	70-130	8	25	
, Naphthalene	10.2	ug/L	10.00		102	70-130	8	25	
-Butylbenzene	10.0	ug/L	10.00		100	70-130	12	25	

2211 Tel: 401-461-7181 Dependability • Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services

Client Project ID: Former Portsmouth Landfill

ESS Laboratory Work Order: 1706086

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Andryce	Result					JULEE	Linits	N D	Ennic	Quanner
		8260B Volat	tile Organi	c Compoi	unds					
n-Propylbenzene	10.0		ug/L	10.00		100	70-130	6	25	
sec-Butylbenzene	10.1		ug/L	10.00		101	70-130	7	25	
Styrene	9.20		ug/L	10.00		92	70-130	10	25	
tert-Butylbenzene	10.2		ug/L	10.00		102	70-130	9	25	
Tertiary-amyl methyl ether	9.28		ug/L	10.00		93	70-130	3	25	
Tetrachloroethene	8.94		ug/L	10.00		89	70-130	4	25	
Tetrahydrofuran	8.62		ug/L	10.00		86	70-130	14	25	
Toluene	9.84		ug/L	10.00		98	70-130	5	25	
trans-1,2-Dichloroethene	10.8		ug/L	10.00		108	70-130	0.8	25	
trans-1,3-Dichloropropene	8.27		ug/L	10.00		83	70-130	0.8	25	
Trichloroethene	9.60		ug/L	10.00		96	70-130	5	25	
Trichlorofluoromethane	9.14		ug/L	10.00		91	70-130	1	25	
Vinyl Acetate	9.75		ug/L	10.00		98	70-130	7	25	
Vinyl Chloride	8.88		ug/L	10.00		89	70-130	5	25	
Xylene O	9.66		ug/L	10.00		97	70-130	9	25	
Xylene P,M	19.6		ug/L	20.00		98	70-130	6	25	
Xylenes (Total)	29.3		mg/L							
Surrogate: 1,2-Dichloroethane-d4	0.0260		mg/L	0.02500		104	70-130			
Surrogate: 4-Bromofluorobenzene	0.0256		mg/L	0.02500		102	70-130			
Surrogate: Dibromofluoromethane	0.0248		mg/L	0.02500		99	70-130			
Surrogate: Toluene-d8	0.0261		mg/L	0.02500		105	70-130			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill

ESS Laboratory Work Order: 1706086

Notes and Definitions

- U Analyte included in the analysis, but not detected D+ Relative percent difference for duplicate is outside of criteria (D+). D Diluted. ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes dry Sample results reported on a dry weight basis RPD Relative Percent Difference MDL Method Detection Limit MRL Method Reporting Limit LOD Limit of Detection LOQ Limit of Quantitation Detection Limit DL Initial Volume I/V F/V Final Volume Subcontracted analysis; see attached report Ş 1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range. 2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range. Results reported as a mathematical average. Avg NR No Recovery [CALC] Calculated Analyte SUB Subcontracted analysis; see attached report RL Reporting Limit
- EDL Estimated Detection Limit

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: ATC Group Services Client Project ID: Former Portsmouth Landfill

ESS Laboratory Work Order: 1706086

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

Client:ATC Group Services - KPB/HDM Shipped/Delivered Via:ESS Courier	ESS Project ID: 1706086 Date Received: 6/2/2017 Project Due Date: 6/9/2017 Days for Project: 5 Day	_
1. Air bill manifest present? No Air No.: NA	6. Does COC match bottles?	Yes
2. Were custody seals present? No	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes	9. Were labs informed about short holds & rushes?	Yes / No (NA)
Temp: 0.5 Iced with: Ice 5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes No
11. Any Subcontracting needed? Yes / No ESS Sample IDs: Analysis: TAT:	12. Were VOAs received?a. Air bubbles in aqueous VOAs?b. Does methanol cover soil completely?	Yes / No Yes / No Yes / No / MA
13. Are the samples properly preserved? Yee / No a. If metals preserved upon receipt: Date:	Time: By: Time: By:	_
Sample Receiving Notes Add Trip Blank 9 ICO Blank Osted SIGIN	A G/a/17	
14. Was there a need to contact Project Manager? Yes / No a. Was there a need to contact the client? Yes / No Who was contacted? Date:	Time: By:	_

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
01	138024	Yes	No	Yes	VOA Vial - HCI	HCI	
01	138025	Yes	No	Yes	VOA Vial - HCI	HCI	
01	138026	Yes	No	Yes	VOA Vial - HCI	HCI	
01	138030	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
02	138021	Yes	No	Yes	VOA Vial - HCI	HCI	
02	138022	Yes	No	Yes	VOA Vial - HCI	HCI	
02	138023	Yes	No	Yes	VOA Vial - HCI	HCI	
02	138029	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
03	138018	Yes	No	Yes	VOA Vial - HCI	HCI	
03	138019	Yes	No	Yes	VOA Vial - HCI	HCI	
03	138020	Yes	No	Yes	VOA Vial - HCI	HCI	
03	138028	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
04	138015	Yes	No	Yes	VOA Vial - HCI	HCI	
04	138016	Yes	No	Yes	VOA Vial - HCI	HCI	
04	138017	Yes	No	Yes	VOA Vial - HCI	HCI	
04	138027	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
05	138049	Yes	No	Yes	VOA Vial - HCI	HCI	
nd Reviev re barcod ompleted By:	e labels on c		ners?		Peg / No Date & Time:	17 1346	

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	ATC Group Services - KPB/HDM		ESS Project ID: Date Received:	1706086 6/2/2017
Reviewed Sy:	21-7	Date & Time:	_4217	1802
Delivered (By:	2H-		6/2/17	1802
	\sim			

1 K. M.						
ESS Laboratory		CHAIN OF CUSTODY	ESS Lab #	DILLOCA		
Division of Thielsch Engineering, Inc.	Turn Time	5-Day Rush		1766086		
185 Frances Avenue, Cranston RI 02910		RI GA GW Objectives	Reporting Limits GA	Gw.	5	
Tel. (401) 461-7181 Fax (401) 461-4486	Is th	is project for any of the following?:	the second se	Checker		
www.esslaboratory.com	OCT RCF	OMA MCP ORGP	Deliverables Othe		Standard Excel	
ATC. Company Name	Project # 301.238	Former Portsmouth Landfill				TT
Keith Sullivan		roir Are. Unit 2C	<u></u>			
City	State		Analysis	1907		
Telephone Number	FAX Number	02907	An O	NT TOT N		
401-714-0306	FAX Number	Keith Sillivan a McAssociates Cor	13, 280 A	TARE		
ESS Lab Collection Collection Sample	Type Sample Matrix	Sample ID	28 85 8	E SUST		
	GW			202F		
	0.0	Muo-1	$ \chi \rangle$	$\langle X X X \rangle$		
2 10 33		mw-2				
3 11:50		mw-3				
V 1:00 V		mw-4				
5		TripBlack Q5/2/n				
		The paton				
				+		
		· · · · ·				
Container Type: AC-Air Cassette AG-Ar	nber Glass B-BOD Bottle (I C-Cubitainer G - Glass O-Other P-Poly S-Ste	rile V-Vial V P F	PPPP		
Container volume. 1-100 mL 2-2.5 gal	3-250 mL 4-300 mL 5-500		11-Other* 7 3			
Preservation Code: 1-Non Preserved 2-HCI 3	-H2SO4 4-HNO3 5-NaOH 6-M	lethanol. 7-Na2S2O3 8-ZnAce, NaOH 9-NH4CI 10-DI H2C) 11-Other* 2 4	>		
		Number of Containers per				
Laboratory Use On	ίχ.	Sampled by :				
Cooler Present:		Comments: Please sp	acify "Other"	41		
Seals Intact:		· loude sp	ecify "Other" preserva	tive and containers t	ypes in this space	
Cooler Temperature: 0.5 C		GA limits				
Relinquished by: (Signature, Date & Time	Received By:	(Signature, Date & Time) Relinquished By	· (Signature D. L. 6 T			
		$\alpha \sim 11$: (Signature, Date & Tim	1 C Xa	ed By: (Signature, Date & Time	
Relinquished by: (Signature, Date & Time)		5/31/4:30 7 Lux	-1600 G/2	A C	212 16:00	
			: (Signature, Date & Tim	e) Receive	ed By: (Signature, Date & Time)	*)
X 92/17 16:30	Shine	V 60117 msi				

 \overline{Q}

 \sim

(

1706086

CONSTITUENTS FOR DETECTION MONITORING (1)

Common name (2)	CAS RN (3)
Inorganic Constituents:	
(1) Antimony	 (Total)
(2) Arsenic	 (Total)
(3) Barium	 (Total)
(4) Beryllium	 (Total)
(5) Cadmium	 (Total)
(6) Chromium	 (Total)
(7) Cobalt	 (Total)
(8) Copper	 (Total)
(9) Lead	 (Total)
(10) Nickel	 (Total)
(11) Selenium	 (Total)
(12) Silver	 (Total)
(13) Thallium	 (Total)
(14) Vanadium	 (Total)
(15) Zinc	 (Total)

4 8200

1 1

2