

Site Investigation Report Residential Property

32 & 33 Exchange Street East Greenwich, Rhode Island

Prepared For:
Grenier Properties, LLC
3 Cole Circle
East Greenwich, Rhode Island

and

Rhode Island Department of Environmental Management

Office of Waste Management 235 Promenade Street Providence, RI

Prepared By:

10 Elmgrove Avenue Providence, Rhode Island 02906

Project No. 201942

January 2020

TABLE OF CONTENTS

1.0	EXE(CUTIVE SUMMARY	1
2.0	BACI	KGROUND	2
	2.1	Site Description, History and Foreseeable Future Use	
	2.2	Geographic and Physiographic Setting	
	2.3	Ground Water Classification	
	2.4	Surface Water	
	2.5	Potential Receptors	
	2.6	Previous Environmental Investigations.	
	2.7	Past Incidences or Releases	
	2.8	RI DEM File Review	
	2.9	Current and Past Owners	
	2.10	Current Uses and Future Uses	
3.0	SITE	INVESTIGATION	5
	3.1	Public Notice and Environmental Justice Activities	
	3.2	Objectives	
	3.3	Notice of Release	
	3.4	Soil Boring and Soil Sampling Activities	
	3.5	Soil Sampling Analysis	
	3.6	Sampling and Analysis-Quality Assurance and Control Procedures	
	3.7	Ground Water Sampling	
	3.8	Ground Water Flow Direction	
	3.9	Laboratory Results	
	3.10	Regulatory Status	
	3.11	Background Concentrations	
	3.12	Potential for Entrainment or Erosion.	
	3.13	Fate and Transport Models	
	3.14	Site-Specific Factors	
	3.15	Answers to SIR Check List Questions Not Otherwise Answered in This	10
	3.13	Report	11
4.0	FIND	INGS AND CONCLUSIONS	11
5.0	DEVI	ELOPMENT OF REMEDIAL ALTERNATIVES	12
3.0	5.1		
		Monitored Natural Attenuation	12
	5.2	Remedial Alternative No.1—Excavation and Off-Site Disposal of Lead Impacted Soils	13
	5.3	Remedial Alternative No.2Engineered and Institutional Controls	
6.0	CERT	ΓIFICATIONS	14
7.0	REFI	ERENCES	14
8.0	LIMI	TATIONS AND USER RELIANCE	15
9.0	-	LIFICATIONS AND SIGNATURES OF ENVIRONMENTAL	
	PR()I	FESSIONALS	17

FIGURES:

Location Map Site Plan Figure 1: Figure 2: Figure 3: Plat Map

TABLES:

Soil- Direct Exposure Criteria Soil- MA DEP S-2/GW-2 Ground Water GB Ground Water Objectives Ground Water MA DEP S-2/GW-2 Table 1 Table 2

Table 3

Table 4

APPENDICES:

Supporting Documents Laboratory Data Sheets Appendix A: Appendix B:

Appendix C: Certifications

Appendix D: Environmental Professional Qualifications and Signatures

1.0 EXECUTIVE SUMMARY

Redwood Environmental Group, LLC (Redwood) has prepared this Site Investigation Report (SIR) for property located at 32 & 33 Exchange Street, East Greenwich, Rhode Island (the Site). This SIR was prepared in accordance with the Rhode Island Department of Environmental Management (RI DEM) Office of Waste Management (OWM) re-codified 250-RICR-140-30-1, the Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Remediation Regulations), consistent with the RI Administrative Procedures Act. The required Site Investigation Report Checklist is provided in Appendix A.

The objective of the Site Investigation (SI) was to identify potential oil and hazardous materials (OHM) contamination in the soils and ground water of the Site. Specifically, this investigation consisted of the collection and laboratory analysis of soil and ground water samples from around the Site. The SI activities were performed by Redwood in November 2019.

The SI included the performance of three (3) borings at the Site using a truck-mounted GeoProbe direct-push drilling unit to collect soil samples from the ground surface to the ground water interface. The three (3) borings were finished as ground water monitoring wells. The soil samples collected were delivered to a Rhode Island Certified laboratory for the following analysis:

- Volatile Organic Compounds (VOCs) by U.S. EPA Method 8260;
- Total Petroleum Hydrocarbons (TPH) by U.S. EPA Method 8100M;
- Semi-Volatile Organic Compounds (SVOC) by U.S. EPA Method 8270 and
- Polychlorinated biphenyl (PCB) by U.S. EPA Method 8270.

As stated above, the borings were finished as ground water monitoring wells. Redwood collected three ground water samples and delivered the samples to the same certified laboratory for VOCs by U.S. EPA Method 8260.

Table 1 attached shows the soil laboratory results for VOCs, TPH, SVOC and PCB. None of the constituents were identified above laboratory reporting limits. As such, when comparing to the RI DEM Method 1 Residential Direct Exposure Criteria (RDEC) and the GB Leachability Criteria (GBLC) applicable to the Site, none of the VOCs, TPH, SVOCs or PCBs were identified above RDEC or GBLC standards applicable to the Site.

Table 3 attached shows the ground water laboratory results for VOCs. None of the VOC constituents were identified above laboratory reporting limits. As such, when comparing to RI DEM GB Ground Water Criteria applicable to the Site, no VOCs were identified above ground water standards applicable to the Site.

In addition to the analysis and results presented above, RI DEM requested the following analysis for soil and ground water.

- Soil- MassDEP Extractible Petroleum Hydrocarbon (EPH)-8270 and MassDEP Volatile Petroleum Hydrocarbon (VPH)-2.1.
- Ground Water- MassDEP EPH-8270 and MassDEP VPH-2.1.

As shown on Tables 2 and 4, no EPH or VPH concentration were identified in the soil or ground water above laboratory reporting limits and therefore, when compared to MassDEP regulatory standards, no EPH or VPH was identified above standards.

In conclusion, only Lead was identified above regulatory standards applicable to the Site.

2.0 BACKGROUND

The Site is occupied by a house located along the Exchange Street roadway. Two small dilapidated sheds are located to the rear of the house. Undeveloped land is located to the east and northeast of the house. The Site owner plans to develop the Site with condominiums. As the history of the Site suggests automobile storage in the rear of the property for many years, the Site owner contracted with Redwood to perform surface soil sampling in June 2019. That sampling identified Lead above regulatory standards. Redwood made notification to RI DEM in July 2019 of the Lead exceedance of regulatory standards applicable to the Site. As such, RI DEM requested a full Site investigation. Hence, this SIR.

2.1 Site Description, History and Foreseeable Future Use

The Site is located at 32 & 33 Exchange Street in a dense residential area of East Greenwich Rhode Island west of Greenwich Cove. According to the East Greenwich Tax Assessor's field cards accessed through the East Greenwich Tax Assessor's website, the Site is comprised of two (2) tax assessor lots including Lot 87 (32 Exchange Street) and Lot 382 (33 Exchange Street) on the tax assessor's Plat Map 85-1. Together the lots are approximately 0.479 acres in size. The Site is currently owned by Grenier Properties, LLC of East Greenwich, Rhode Island as recorded in the East Greenwich Land Records Book 1393, Page 272 with a recording date of March 22, 2018.

The Site is occupied by an abandoned 2-story colonial house with basement and two small sheds. The Site is zoned as LHOD, Local Historic Overlay District.

No Fire Insurance Maps are available for this part of the State. The aerial photographs for years 1939, 1951, 1962, 1972, 1997, 2008, and 2019 were reviewed on the RI DEM website. All photographs show the colonial house located along the Exchange Street. Only the 2008 photograph shows the Site with cars and boats stored east and north of the house. However, the portion of the Site where the automobiles were stored is below trees and the canopy may have shielded the autos from view in several photographs. A copy of the aerial photographs reviewed is provided in Appendix A.

Future proposed development of the Site is condominiums.

2.2 Geographic and Physiographic Setting

The topography of the Site is flat with an incline at the eastern property boundary rising to the railroad tracks above. The undeveloped portion of the Site is covered with grass and scrub brush/wild vegetation. Based on ground water elevations and survey data, ground water flows in a northeasterly direction and towards Greenwich Cove located approximately 800 feet to the east (See Figure 1). The Site is approximately 14-15 feet above sea level.

Based on the FEMA Q3 Digital Data, Flood Zone Panel: 4403C0137H, Effective Date: 9/18/2013, the Site is located within Zone X-Area of minimal flood hazard, usually depicted on FIRMs as above the 500-year flood level.

Surficial material at the Site was mapped as Merrimac-Urban (MU). Redwood found the Site soils to be a mixture of medium sand and gravel with some cobble to a fine sand at the water table interface. The USGS has mapped the Site glacial deposit as Outwash.

Bedrock beneath the Site was mapped as the Narragansett Bay Group-Rhode Island Formation defined as consisting of gray to black, fine to coarse grained quartz arenite, litharenite, shale and conglomerate, with minor beds of anthracite and meta-anthracite Site (RI DEM Environmental Resource Map, RI DEM website). Redwood did not encounter bedrock during the soil sampling which was completed to approximately 20 feet below ground surface (bgs).

2.3 Ground Water Classification

According to the RI DEM website, the ground water beneath the Site is classified as GB. GB ground water is designated as ground water not suitable for public or private drinking water use without treatment.

Ground water was encountered in each ground water monitoring well installed by Redwood during the investigation in November. During the well installation and sampling, ground water was identified at approximately 14 feet below the bgs.

According to the RI DEM Environmental Resource Map as shown of the RI DEM website, there are no Well Head Protection areas within a 1.0-mile radius of the Site.

2.4 Surface Water

According to the RI DEM Environmental Resource Map, the nearest surface body of water is the Greenwich Cove which is located approximately 800 feet to the east of the Site. This body of water is an estuary located south of Long Point in East Greenwich/Warwick. According to the RI DEM Environmental Resource webpage, the cove has impairments that include total nitrogen, dissolved oxygen and fecal coliform. The RI DEM Water Quality Standard is SB1.

2.5 Potential Receptors

The activities conducted by individuals working at, visiting or trespassing the Site should be evaluated under current and foreseeable Site uses to determine whether the Lead in the surface soils at the Site pose a risk to those individuals. As redevelopment of the Site is proposed, limiting human exposure to Site contamination will be paramount to the final development plans.

Greenwich Cove is located approximately 800 feet to the east of the Site and a potential receptor. As there is no current regulatory standard established for Lead in GB Ground Water, there is no data available. However, it is unlikely that the Site condition will adversely affect Greenwich Cove due to the distance from the Site.

According to the RI DEM website, there are no Environmentally Sensitive Areas within 500 feet of the Site. Potable water at the Site and surrounding properties is provided by the municipality. There are no public water supply wells within one mile of the Site.

2.6 Previous Environmental Investigations

A <u>Phase I Environmental Site Assessment</u> was performed on the Site by Redwood in May 2019 and identified one recognized environmental conditions (RECs). Based on historical information collected and provided to Redwood, automobiles and boats have been stored at the Site in the past. This past use of the property could have adversely impacted the soils and ground waters of the Site. As such, Redwood recommended a Limited Site Investigation be performed to verify the quality of Site soil and groundwater. The Phase I Environmental Site Assessment is provided in Appendix A as reference.

<u>Soil Sampling Letter Report -</u> Redwood selected four (4) points on the Site and hand dug holes to a depth between 12 and 18 inches below ground surface (bgs). Soil samples were collected from the hole sidewalls and delivered to a Rhode Island Certified laboratory for the following analysis:

- RCRA 8 Metals by US EPA Method 6010;
- Total Petroleum Hydrocarbons (TPH) by US EPA Method 8100M; and
- Volatile Organic Compounds (VOCs) by US EPA Method 5035/8260.

RCRA-8 metals include Arsenic, Barium, Cadmium, Chromium, Lead, Mercury, Selenium and Silver. The report shows laboratory results compared to the RI DEM RDEC applicable to the Site. Of the metals analyzed, only Lead was identified above the RDEC of 150 milligrams per kilograms (mg/kg). Soil samples 201942-SS2-060419 and 201942-SS3-060419 were identified with lead at concentrations of 424 mg/kg and 197 mg/kg, respectively. All other metals listed above were either identified with low level concentrations or concentrations below the laboratory reporting limits for that metal.

No VOCs were identified above laboratory reporting limits and therefore, not detected. TPH was identified in three (3) of the four (4) samples with concentrations ranging from 111 mg/kg and 167 mg/kg. When comparing the TPH concentrations to the RDEC applicable to the Site, the TPH concentrations were identified below the RDEC of 500 mg/kg. In addition, the TPH was compared to GBLC of 2,500 mg/kg applicable to the Site. The TPH concentrations were not identified above the GBLC.

In conclusion, the June 2019 surface soil investigation identified Lead above regulatory standards applicable to the Site. VOCs and TPH were not identified above regulatory standards applicable to the Site. A copy of these reports is provided in Appendix A.

2.7 Past Incidences or Releases

Neither the Site owner nor Redwood are aware of past incidence or releases at the Site. However, abutting property owners suggest that since the property was used to store cars and boats in the past and this past use has contaminated the property.

2.8 RI DEM File Review

No RI DEM file reviews have been performed.

2.9 Current and Past Owners

The ownership information provided in this SIR was researched by Redwood at the East Greenwich Tax Assessor's Office (and website) and intended for informational purposes only. This information is not intended as a title search or for any legal purpose. Redwood makes no representation as to the completeness or accuracy of such ownership information.

Lots 85-1-87 and 85-1-382 are currently owned by Grenier Properties, LLC of East Greenwich, Rhode Island. Previously, the properties were owned by Elaine Currie who sold the lots by Warranty Deed to Grenier Properties, LLC on March 22, 2018 with a Land Records reference of Book 1393, Page 272. A copy of the Tax Assessor's Office Field Cards is provided in Appendix A.

2.10 Current Uses and Future Uses

The Site is currently occupied by an abandoned house and two small dilapidated sheds structures. The Site is zoned as LHOD-Local Historic Overlay District. Proposed future use is a condominium development.

3.0 SITE INVESTIGATION

3.1 Public Notice and Environmental Justice Activities

In accordance with the RI DEM Remediation Regulations, Redwood along with Grenier Properties, LLC conducted the required Public Notice by sending a Public Notice package to all abutting properties. As the Site is not located within an Environmental Justice Focus Area, the package was printed only in English. As required by RI DEM, a 4-foot by 6-foot sign was erected at the Site in English directing questions pertaining to the investigation to RI DEM.

Redwood will conduct Public Notice regarding the investigation findings summarized in this report. As part of the public notice activities, Redwood will mail a letter to the owners and tenants of abutting properties notifying them of the completed investigation and results. A copy of the letter and the abutters addresses will be submitted to RI DEM upon completion.

3.2 Objectives

The objective of this SI was to identify potential OHM contamination in the soils and ground water of the Site. Specifically, this investigation consisted of the collection and laboratory analysis of soil and ground water samples from around the Site. Initially, surface soil samples were collected by Redwood in June 2019 targeting metals, TPH and VOCs. Subsequent notification and discussion with RI DEM prompted additional investigation in the form of this SI including soil and/or ground water sampling for one or more of the following: SVOCs, PCBs, VOCs, TPH, EPH and VPH analysis. All waste derived from the investigation including soil from borings and purge water are to be left on Site.

A Location Map, Site Plan and Tax Assessor's Plat Map are provided as Figures 1, 2 and 3 respectively.

3.3 Notice of Release

A Hazardous Material Release Notification Form was submitted to RI DEM on July 15, 2019. The release was specific to Lead identified in surface soils above regulatory standards. Attached to the release form was the LSI report detailing the investigation which prompted the notification to RI DEM. A copy of the release form and LSI report are provided in Appendix A as reference.

3.4 Soil Boring and Soil Sampling Activities

On November 6, 2019, Redwood was on Site with New England Geotech of Jamestown, Rhode Island to perform three (3) soil borings, of which all were finished as ground water monitoring wells (designated as MW-1, MW-2 and MW-3). The installation performed used a truck-mounted Geoprobe direct-push machine. The object of this investigation was to collect soils samples from surface soils and soils at depth to confirm soil quality as it relates to, SVOCs, PCBs, TPH, VOCs, EPH and VPH. Soil samples were collected continuously from the surface to the water table utilizing 5-foot acetate Geoprobe samplers. Each soil sample was field screened for Total Organic Vapor (TOV) using the jar-headspace technique (plastic soil bags were used instead of jars) and a Photoionization Detector (PID) equipped with a 10.6eV lamp calibrated with isobutylene to a benzene standard. Soils were generally characterized using a Modified Burmiester Classification System and along with PID results, visual and olfactory observations were documented on Boring Logs. In general, SVOCs and PCBs were collected from surface soils and TPH, VOCs, EPH and VPH were collected from depth. A copy of the Boring Logs is provided in Appendix A.

Based on the observed water table depth (14-16 feet), three (3), 1-inch PVC monitoring wells were installed to a depth of approximately 20 feet bgs. The well screen was installed to straddle the water table/soil interface and riser pipe was installed to the ground surface. Filter sand was installed in the annular space to the top of the screen and bentonite seal material installed above the filter sand. A road box was installed at the surface grade. Boring Logs provided in Appendix A show each monitoring well construction.

3.5 Soil Sampling Analysis

On November 6, 2019 Redwood collected soil samples from the three borings. Each soil sample was field screened for TOV using the jar-headspace technique (plastic soil bags were used instead of jars) and a PID. PID results are measured in parts per million per volume (ppm/v). The samples were also visually observed, and any olfactory evidence was noted.

PID RESULTS

Boring/Monitoring	MW-1 ppm/v	MW-2 ppm/v	MW-3 ppm/v
Well Depth (Ft)	(Analysis)	(Analysis)	(Analysis)
0-5	0.0	0.3	0.5
	(SVOC)	(PCB)	(SVOC)
5-10	0.0	0.4 (VOC, TPH, EPH, VPH)	0.7 (VOC, TPH, EPH, VPH)
10-15	(VOC, TPH, EPH, VPH)	0.0	0.0

15-20	N/A	0.0	N/A

Highlighted boxes indicate soil samples submitted for laboratory analysis

Based on the boring location, PID readings and visual observations, three (3) soils samples were collected for laboratory analysis.

- MW-1. PID results did not identify TOV above 0.0 ppm/v. A surface soil sample as shown in the table above was collected from within the 0-5 foot interval and more specifically from between 0 and 2-feet below ground surface (bgs) as surface soil is defined as the first 2-feet of Site soils. Lacking and PID results, a second sample was collected from just above the water table for the analysis as shown in the table above.
- MW-2. PID identified results of 0.3 and 0.4 ppm/v in the 0-5 feet sample and 5-10 feet sample, respectively. A surface soil sample was collected for the analysis shown in the table. Based on PID results, a soil sample from the 5-10 foot interval was collected as shown in the table above.
- MW-3. PID identified results as 0.5 and 0.7 ppm/v in the 0-5 feet sample and 5-10 feet sample, respectively. A surface soil sample was collected for the analysis shown in the table. Based on PID results, a soil sample from the 5-10 foot interval was collected.

The soil samples were collected in laboratory supplied glassware and submitted to ESS Laboratory of Cranston, Rhode Island for one or more of the following analysis as shown in the table above:

- TPH by US EPA Method 8100M;
- VOCs by US EPA Method 5035/8260;
- SVOC by US EPA Method 8270;
- PCBs by US EPA Method 8082;
- EPH by MADEP method 8270; and
- VPH by MADEP method 2.1.

All samples were submitted to ESS Lab under proper chain of custody.

Boring logs showing the PID readings, sample recovery and soil characteristics for the Site Investigation activities are provided in Appendix A.

3.6 Sampling and Analysis-Quality Assurance and Control Procedures

Field sampling, soil screening and analytical analysis completed as part of environmental investigations at the Site were undertaken with the objective of maximizing the use of field screening data. Fixed based laboratory analysis results were used to confirm the presence and relative distribution of contaminants of concern at the Site.

Prior to scheduling subsurface activities, Redwood contacted DigSafe and the East Greenwich Department of Public Works in order to have all subsurface utilities at and near the Site properly marked. Roadway markings indicate that municipal water and sewer lines, gas and electric lines along Exchange Street.

Field screening of soil samples involved the collection of soil samples from targeted intervals and then immediately transferring the soils to zip-lock bags where they were allowed to equilibrate for approximately 15 minutes. Redwood recorded observations of subsurface conditions and soil type as the soil borings were advanced. Selected soil samples from varying depths were collected and screened for the presence of TOVs using a PID with a 10.6 eV lamp calibrated daily to 100 ppm/v as isobutylene.

Based on visual observations and/or field screening results, selected soil samples were placed into a 40-milliliter vial preserved with methanol for VOC laboratory analysis in accordance with EPA Preservation Method 5035 and placed into a cooler pending deliver to the laboratory under proper chain of custody. A 4-ounce amber jar was filled with soil from each soil sample location for TPH, laboratory analysis and for determining percent moisture content. A 4-ounce amber jar was filled with surface soil from boring locations for SVOCs and PCB laboratory analysis and for determining percent moisture content. EPH and VPH analysis followed similar procedures with separate laboratory glassware.

Laboratory analysis were completed by ESS Laboratory (ESS Lab) of Cranston, Rhode Island. ESS Lab is a Rhode Island certified lab permitted to perform all of the specified analysis in this report.

3.7 Ground Water Sampling

On November 7, 2019, Redwood personnel were on Site to collect a ground water sample from monitoring well MW-1, MW-2 and MW-3. Prior to sampling, Redwood measured each well for depth to ground water, depth to well bottom and for the presence of separate phase product using an oil/water interface probe (IP). No separate phase product was identified. To sample the well, Redwood utilized low flow sampling equipment including a variable speed peristaltic pump, dedicated silicone tubing and disposable down well plastic tubing. Approximately three (3) well volumes of water were purged from each well before the ground water sample was collected. The ground water was clear to the naked eye in all well purging and sampling. Samples collected did not exhibited unusual odors. The ground water samples were submitted to ESS Lab for VOC analysis by US EPA Method 8260 in laboratory supplied glassware with proper preservation.

In addition to VOC analysis, RI DEM requested EPH and VPH analysis by MA DEP methods. Samples were collected and placed in appropriate laboratory supplied glassware for the aforementioned analysis.

The following table shows the ground water characteristics and ground water measurements.

Sample ID	Measured Depth to Water (Feet)	Measured Well Bottom (Feet)	Product (Feet)	Well Diameter (Inches)
MW-1	14.0	20.1	0.0	1
MW-2	13.8	19.9	0.0	1
MW-3	13.6	19.8	0.0	1

3.8 Ground Water Flow Direction

Redwood performed a ground water elevation survey as part of this investigation. The three Site monitoring wells were measured for elevation using GPS survey equipment. The survey was corrected in real-time and elevations are accurate to less than 1/10 inch. The following table represents the well elevations, depth to ground water of each well as measured during the November 2019 ground water sampling and the corrected elevation of the ground water across the Site.

Monitoring Well	PVC Elevation	Depth to Ground Water	Corrected Ground Water Elevation
MW-1	15.27	14.0	1.27
MW-2	15.50	13.8	1.70
MW-3	15.35	13.6	1.75

Ground water was determined to flow in a northeasterly direction across the Site. Figure 2 shows the ground water flow contours calculated as part of this SIR.

3.9 Laboratory Results

SOILS

As shown in the Table 1, VOCs were not identified above the laboratory reporting limits in the samples analyzed from MW-1, MW-2 and MW-3 and therefore, not detected.

As shown in Table 1, no SVOCs s were identified above the laboratory reporting limits in the samples analyzed from MW-1, MW-2 and MW-3 and therefore, not detected.

As shown in Table 1, no TPH was identified above the laboratory reporting limits in the samples analyzed from MW-1, MW-2 and MW-3 and therefore, not detected.

As shown in Table 1, no PCBs were identified above the laboratory reporting limits in the samples analyzed from MW-1, MW-2 and MW-3 and therefore, not detected.

As shown in Table 2, no VPH or EPH compounds were identified above laboratory reporting limits in the samples analyzed from MW-1, MW-2 and MW-3 and therefore, not detected.

GROUND WATER

As shown in Table 3, no VOCs were identified above the laboratory reporting limits in the ground water samples analyzed from MW-1, MW-2 and MW-3 and therefore, not detected.

As shown in Table 4, no VPH or EPH compounds were identified above the laboratory reporting limits in the ground water samples analyzed from MW-1, MW-2 and MW-3 and therefore, not detected.

Laboratory data sheets for the soil and ground water analyses are provided in Appendix B.

3.10 Regulatory Status

Redwood compared the soil laboratory results, as shown on Table 1 to criteria as set forth in the RI DEM Remediation Regulations to Method 1 Residential Direct Exposure Criteria (RDEC). As TPH was not identified above laboratory reporting limits, TPH was not identified above the RDEC of 500 mg/kg, applicable to the Site. As shown in Table 1, no VOCs were identified above the laboratory reporting limits. Therefore, VOCs were not identified above regulatory standards applicable to the Site. Redwood determined that the Site is located within the RI DEM GB Ground Water Classification area. As such, GB Leachability Criteria (GBLC) applies to the Site soils. As no TPH was identified above laboratory reporting limits, TPH is not above GBLC applicable to the Site. VOCs were either not identified above GB Leachability Criteria or did not have current RI DEM standards established for the compounds.

Redwood compared the soil laboratory results of the EPH and VPH analysis as shown on Table 2 to criteria as set forth in the MA DEP Method 1 Cleanup Standards for S-2/GW-2 soil classification. As EPH or VPH values were not identified above laboratory reporting limits, no EPH or VPH values were identified above S-2/GW-2 regulatory standards.

As the ground water at the Site is classified as GB, GB Ground Water Quality Criteria apply to Site ground water. As shown on Table 3, no VOCs were identified above laboratory reporting limits. Therefore, no VOCs were identified above the GB Ground Water Quality Criteria applicable to the Site.

Redwood compared the ground water laboratory results of the EPH and VPH analysis as shown on Table 4 to criteria as set forth in the MA DEP Method 1 Cleanup Standards for GW-2 ground water classification. As EPH or VPH values were not identified above laboratory reporting limits, no EPH or VPH values were identified above S-2/GW-2 regulatory standards.

3.11 Background Concentrations

No background concentration study has been performed at the Site.

3.12 Potential for Entrainment or Erosion

With the exception of the house and sheds, the Site is covered with grass, weeds/brush and some trees. Stormwater is expected to infiltrate the Site soils. As such, the expectation for erosion from wind or storm water is minimal.

3.13 Fate and Transport Models

No analytical or numerical modeling was performed as part of this SIR.

3.14 Site-Specific Factors

The Site is currently occupied by a 2-story colonial house and two small shed structures. The structures are located on the 32 Exchange Street (85-1-87) portion of the Site. The rear portion of 32 Exchange Street and the entire property with the address 33 Exchange Street (85-1-382) is undeveloped and covered with grass, weeds, brush and few trees. The northern abutters are residential and an asphalt parking lot. The southern and western abutters are residential. The eastern abutter is Amtrak Railroad.

3.15 Answers to SIR Check List Questions Not Otherwise Answered in This Report

Check List Section 7.03 H

- There are no activities at the Site.
- There are no drinking water wells at the Site or surrounding properties.
- There are no UICs, septic tanks, current known USTs, piping or other underground structures at the Site.
- There is no hazardous waste storage at the Site.
- There is not asphalt currently at the Site.
- There are no waste management or disposal areas at the Site.

Check List Section 7.03 I

- There are no surface water bodies within 500 feet of the Site.
- There are no Environmental Sensitive Areas within 500 feet of the Site.
- There are no public water supplies within one mile of the Site.
- No off-site determination of contamination was performed.

Check List Section 7.03 K

- No free liquids on the surface.
- No DNAPL or LNAPL identified.
- No Environmentally Sensitive Areas have been affected by this release.
- There are no man-made structures currently at the Site.
- Surface areas have not been identified with stained soils or odors.
- There is no stressed vegetation at the Site.
- There are no stockpiles of soil at the Site;
- There are no hazardous substances stored or used at the Site.
- The Site is not under EPA jurisdiction.
- The contamination reported in this report falls within the Remediation Regulations only.

Check List Section 7.03 N

• There were no natural or man-made barriers to and conduits for contamination migration observed at the Site.

4.0 FINDINGS AND CONCLUSIONS

Previous to this SI, surface soil sampling was performed at 32 & 33 Exchange Street on June 4, 2019. The objective of the sampling was to identify whether historical usage of the property had adversely impacted the surface soils at the Site. Sampling included RCRA 8 metals, TPH and VOCs. No TPH or VOCs were identified above regulatory standards applicable to the Site. Lead

was the only metal identified above regulatory standards and proper notification to RI DEM was made causing the expanded site investigation which is the subject of this report.

The SI activities were performed at the Site on November 6 and 7, 2019 to further characterize the Site soils and ground water. Three (3) borings, all of which were finished as ground water wells, were installed at the Site. Selected soil samples from the surface and at depth were collected for TPH, VOCs, SVOCs, PCBs, EPH and VPH laboratory analysis.

Laboratory analysis of soils did not identify TPH, VOCs, SVOCs or PCBs above RI DEM regulatory standards applicable to the Site. Laboratory analysis for EPH and VPH did not identify these compounds above applicable MA DEP standards suggested by RI DEM personnel.

Laboratory analysis of ground water from MW-1, MW-2 and MW-3 did not identify VOCs above RI DEM regulatory standards applicable to the Site ground water. Laboratory analysis of ground water from MW-1, MW-2 and MW-3 did not identify EPH or VPH compounds above MA DEP regulatory standards suggested by RI DEM personnel.

Redwood concludes that based the site investigation activities performed in June and November 2019, that only Lead was identified in surface soils above regulatory standards applicable to the Site and will have to be addressed going forward.

5.0 DEVELOPMENT OF REMEDIAL ALTERNATIVES

Lead has been identified in surface soils above Site regulatory standards. As required by the RI DEM Remediation Regulations, two remedial alternatives besides natural attenuation are required to satisfy this report section.

The Site is occupied by a house and two sheds on the southwestern portion of the Site. The rest of the Site is undeveloped, vacant land. The future Site use is the establishment of condominiums. Construction is set to begin in 2020.

With respect to the Lead contamination, direct exposure to the impacted soils is of concern. Eliminating the direct exposure to impacted soils is paramount. As the ground water beneath the Site is classified as GB, and the fact that GB ground water has no standard established for Lead, the leachability of the Lead is not of concern.

During the aforementioned construction, the surface soils (0-2 feet) across the Site will be disturbed in one way or another. Certainly, these soils will need to be stockpiled for possible off-Site disposal or incorporation into the final Site design at depth using engineered and institutional controls as final remedies preventing direction exposure in the future.

5.1 Monitored Natural Attenuation

Monitored natural attenuation (MNA) is not a viable remedial alternative at sites with Lead impacted soils. The utilization of MNA at this Site as a remedial alternative would not comply with the Risk Management section of the Remediation Regulations because metals do not dissipate or volatilize (not naturally attenuate) and soil concentrations of Lead at the Site would continue to exceed the applicable RI DEM regulatory standards. Therefore, this alternative will not be a remedial alternative to bring the Site into compliance with RI DEM standards.

The Remediation Regulations further require that a minimum of two remedial alternatives be evaluated for this Site besides Monitored Natural Attenuation. Redwood proposes two remedial alternatives for the Site. (1) implementation of an excavation and off-Site disposal program for Lead impacted soils, and (2) use of engineered and institutional controls to manage potential exposure to impacted soil that would remain on Site under Department approved barriers.

5.2 Remedial Alternative No.1—Excavation and Off-Site Disposal of Lead Impacted Soils

Excavation and off-site disposal of Lead impacted soils is an effective way to reduce the contamination thus reducing the potential for direct exposure. This alternative is a cost-effective alternative at this time. The area represents approximately 1,500 cubic yards (CY) of soil to be disposed. This alternative is both technically and financially feasible.

A. Risk Management

By removing the contaminated soil from the Site, the long-term risks to human health and the environmental at the Site would be mitigated. However, during excavation and transportation of soil there would be potential short-term high-intensity direct exposure risks to human health. Upon completion of the remedial activity, the regulated material would no longer pose a risk to Site users.

B. Technical Feasibility

Implementation of the excavation and off-Site disposal of Lead impacted soil as a remedial alternative is technically feasible with normal excavation equipment and trucking.

C. Compliance with State and Local Laws or Other Public Concerns

Implementation of excavation and off-Site disposal of contaminated soil as a remedial alternative would comply with the Remediation Regulations, as well as other applicable state and local laws.

D. Financial Feasibility

The property will be developed as condominiums in 2020. As part of the construction process the soil removal activity and disposal off-Site will be performed. The equipment and disposal costs along with confirmation soil sampling costs are reasonable and this approach is financially feasible to complete.

5.3 Remedial Alternative No.2--Engineered and Institutional Controls

Lead contamination has been identified across the Site in surface soils. Capping of these soils with a combination of geotextile fabric and 1-foot of clean soil, 2-feet of clean fill and/or 1-foot of clean fill with an asphalt cover would mitigate direct exposure to Site soils by creating a physical barrier to the soil. The cap would also mitigate risks posed by entrainment of dust and soil erosion by securing regulated soil beneath the cap. The cap would be an effective way to prevent human contact with the impacted soils. This alternative is both technically and financially feasible. In addition to an engineered cap, an Environmental Land Use Restriction (ELUR) would be recorded in the East Greenwich Land Evidence Records describing the extent of the cap and would include a site-specific Soil management Plan (SMP). The SMP would provide instructions for

future cap inspections and the proper measures to take in the event of any construction or cap disturbances, including RI DEM notification (if necessary) and proper soil handling procedures.

A. Risk Management

This remedial alternative utilizing an engineered cap would prevent the potential for Site users to be exposed to the soils containing SVOCs, PAHs and metals above regulatory standards.

An ELUR mandates that future users of the Site maintain the engineered cap and further require that future soil disturbances be conducted in accordance with a Soil Management Plan should soils be disturbed at the impacted level. The ELUR would require annual inspections and certifications that the cap continues to be maintained adequately.

B. Technical Feasibility

The Site is proposed for redevelopment as condominiums. Surface soils will be stockpiled for later use below the capping. Should excess impacted soils be determined, these soils will be disposed of off-site at a regulated disposal facility.

C. Compliance with State and Local Laws or Other Public Concerns

Implementation of capping in conjunction with the filing of an ELUR would comply with the Remediation Regulations as well as other applicable state and local laws.

D. Financial Feasibility

This remedial alternative is considered a cost-effective remedial alternative as the engineered control can be implemented during the redevelopment of the Site. Careful planning prior to construction will keep the overall cost of this capping alternative to a minimum. The ELUR and SMP will be prepared and should not add significant cost to the project.

6.0 CERTIFICATIONS

In accordance with the Remediation Regulations, the certifications expressed shall apply to the SIR compiled and submitted to RI DEM by Redwood.

The Certifications can be found in Appendix C.

7.0 REFERENCES

FEMA- Flood Insurance Rate Map, City of East Greenwich, Rhode Island, East Greenwich County, Panel 44003C0137H, Effective Date 9/18/2013

Rhode Island Department of Environmental Management, Rules and Regulations for Ground Water Quality, Division of Water Resources

Rhode Island Department of Environmental Management, Ground Water Classification & Wellhead Protection Area Maps via the RI DEM website

Rhode Island Department of Environmental Management Office of Waste Management re-codified 250-RICR-140-30-1, the Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Remediation Regulations)

US Department of Agriculture Soil Conservation Service, Rhode Island Agricultural Experiment, 1981, Soil Survey of Rhode Island

East Greenwich Tax Assessor's Website

8.0 LIMITATIONS AND USER RELIANCE

This document was prepared for the sole use of Grenier Properties, LLC and the Rhode Island Department of Environmental Management, the only intended beneficiaries of Redwood's work. Those who may use the report and the services (hereafter "work product") performed by Redwood Environmental Group, LLC and/or sub-consultants and subcontractors (collectively the "Consultant") expressly accept the work product upon the following specific conditions:

- 1. Consultant represents that it prepared the work product in accordance with the professional and industry standards prevailing at the time such services were rendered.
- 2. The work product may contain information that is time sensitive. The work product was prepared by Consultant subject to the particular scope limitations, budgetary and time constraints and business objectives of the Client which are detailed therein or in the contract between Consultant and the Client. Changes in use, purpose, tenants, work practices, storage, Federal, state or local laws, rules or regulations may affect the work product.
- 3. Observations described and upon which the work product was based were made under the conditions stated in this Report. Any conclusions presented in the work product were based solely upon the services described therein, and not on scientific or engineering tasks or procedures beyond the scope of described services.
- 4. In preparing the work product, Consultant may have relied on certain information provided by state and local officials and information and representations made by other parties referenced therein, and on information contained in the files of the state and/or local agencies made available at the time of the investigation. To the extent that such files, information and representations are missing, incomplete, inaccurate or not provided, the conclusions of the work product may be affected, and Consultant is not responsible for same. Although there may have been some degree of overlap in the information provided by these various sources, Consultant did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this investigation. Consultant assumes no responsibility or liability to discover or determine any defects or inaccuracies in such information which could result in failure to identify contamination or other defect in, at or near the Site.
- 5. If the purpose of this investigation was to assess the physical characteristics of the subject Site with respect to the presence in the environment of hazardous substances,

waste or petroleum and chemical products and wastes as defined in the work product, unless otherwise noted, no specific attempt was made to check the compliance of present or past owners or operators of the subject Site with Federal, state or local laws and regulations, environmental or otherwise.

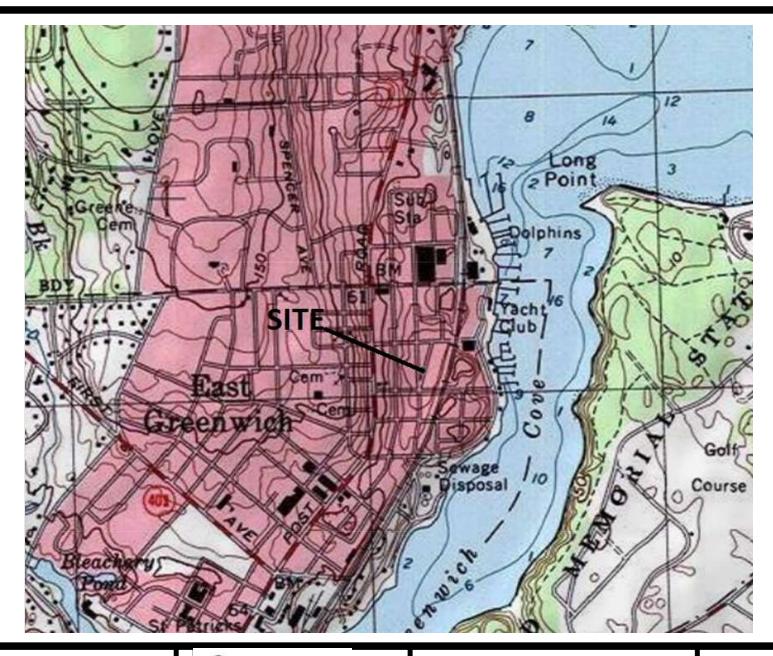
- 6. If water level readings have been made, these observations were made at the times and under the conditions stated in the report. However, it must be noted that fluctuations in water levels may occur due to variations in rainfall, passage of time and other factors and such fluctuations may affect the conclusions and recommendations presented herein.
- 7. Except as noted in the work product, no quantitative laboratory testing was performed as part of the investigation. Where such analyses have been conducted by an outside laboratory, Consultant has relied upon the data provided, and unless otherwise described in the work product, has not constructed any independent evaluation of the reliability of these tests.
- 8. If the conclusions and recommendations contained in the work product are based in part upon various types of chemical data, then the conclusions and recommendations are contingent upon the validity of such data. This data (if obtained) has been reviewed and interpretations made by Consultant. If indicated in the work product, some of this data may be preliminary or screening-level data and should be confirmed with quantitative analyses if more specific information is necessary. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time and other factors, and Consultant's review and interpretation is conditioned upon such variations.
- 9. Chemical analysis may have been performed for specific parameters during the course of this investigation as described in the work product. However, it should be noted that additional chemical constituents not included in the analyses conducted for the investigation may be present in soil, ground water, surface water, sediments or building materials at the Site and Consultant made no review or interpretations regarding the same.
- 10. Ownership and property interests of all documents, including reports, electronic media drawings and specifications prepared or furnished by Consultant pursuant to this investigation are subject to the terms and conditions specified in the contract between the Consultant and Client whether or not the project is completed.
- 11. Unless otherwise specifically noted in the work product or a requirement of the contract between the Consultant and Client, any reuse, modification or disbursement of documents to third parties will be at the sole risk of the third party and without liability, damages or legal exposure to Consultant whatsoever.
- 12. In the event that any questions arise with respect to the scope or meaning of Consultant's work product, immediately contact the Consultant for clarifications, explanation or to update the work product. In addition, Consultant has the right to verify, at the requesting party's expense, the accuracy of the information contained in the work product, as deemed necessary by Consultant, based upon the passage of time or other material changes in conditions or circumstances since conducting the work.

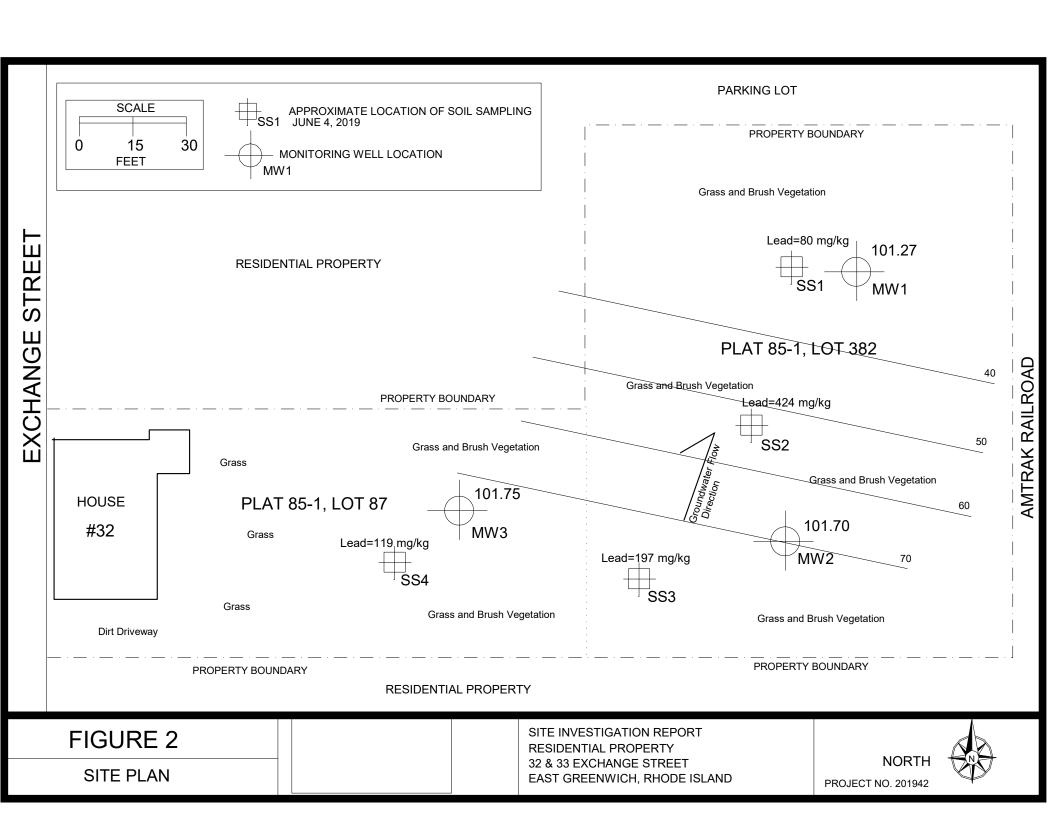
13. Any use or reliance on the work product shall constitute acceptance of the all of terms, conditions and reservations contained herein. Consultant makes no warranty, expressed or implied, to third parties whatsoever.

9.0 QUALIFICATIONS AND SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

The qualifications of the environmental professional(s) and personnel conducting this SIR are provided in Appendix D.

FIGURES		




FIGURE 1

LOCATION PLAN

SITE INVESTIGATION REPORT RESIDENTIAL PROPERTY 32 & 33 EXCHANGE STREET EAST GREENWICH, RHODE ISLAND

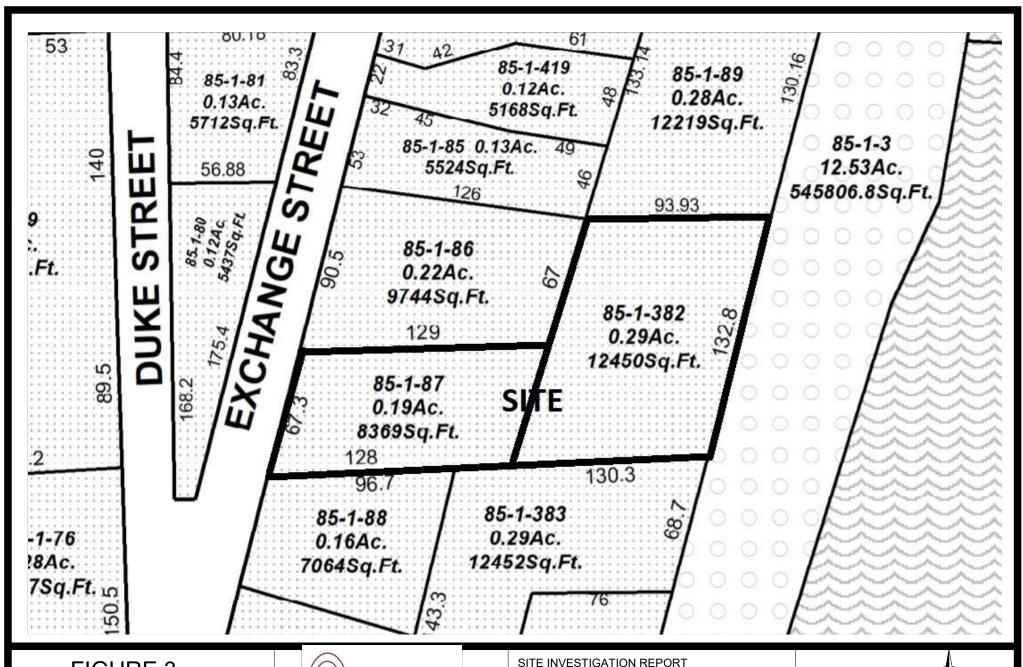


FIGURE 3

PLAT MAP

SITE INVESTIGATION REPORT RESIDENTIAL PROPERTY 32 & 33 EXCHANGE STREET EAST GREENWICH, RHODE ISLAND

NORTH
PROJECT NO. 201942

TA	\B I	LES

Sample Results For Comparison to Direct Exposure Criteria

Sample Designation				201942-MW1-110619		201942-MW2		201942-MW3	
Sample Date				11/06/2	11/06/2019		019	11/06/2	019
	Unit	RDEC	C/IDEC						
VOCs									
1,1,1,2-Tetrachloroethane	mg/kg	2.2	220	0.129	U	0.162	U	0.112	U
1,1,1-Trichloroethane	mg/kg	540	10000	0.129	U	0.162	U	0.112	U
1,1,2,2-Tetrachloroethane	mg/kg	1.3	29	0.129	U	0.162	U	0.112	U
1,1,2-Trichloroethane	mg/kg	3.6	100	0.129	U	0.162	U	0.112	U
1,1-Dichloroethane	mg/kg	920	10000	0.129	U	0.162	U	0.112	U
1,1-Dichloroethene	mg/kg	0.2	9.5	0.129	U	0.162	U	0.112	U
1,1-Dichloropropene	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
1,2,3-Trichlorobenzene	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
1,2,3-Trichloropropane	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
1,2,4-Trichlorobenzene	mg/kg	96	10000	0.129	U	0.162	U	0.112	U
1,2,4-Trimethylbenzene	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
1,2-Dibromo-3-Chloropropane	mg/kg	0.5	4.1	0.644	U	0.809	U	0.561	U
1,2-Dibromoethane	mg/kg	0.01	0.07	0.129	U	0.162	U	0.112	U
1,2-Dichlorobenzene	mg/kg	510	10000	0.129	U	0.162	U	0.112	U
1,2-Dichloroethane	mg/kg	0.9	63	0.129	U	0.162	U	0.112	U
1,2-Dichloropropane	mg/kg	1.9	84	0.129	U	0.162	U	0.112	U
1,3,5-Trimethylbenzene	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
1,3-Dichlorobenzene	mg/kg	430	10000	0.129	U	0.162	U	0.112	U
1,3-Dichloropropane	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
1,4-Dichlorobenzene	mg/kg	27	240	0.129	U	0.162	U	0.112	U
1,4-Dioxane - Screen	mg/kg	NE	NE	25.8	U	32.3	U	22.4	U
1-Chlorohexane	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
2,2-Dichloropropane	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
2-Butanone	mg/kg	10000	10000	0.644	U	0.809	U	0.561	U
2-Chlorotoluene	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
2-Hexanone	mg/kg	NE	NE	0.644	U	0.809	U	0.561	U
4-Chlorotoluene	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U

4-Isopropyltoluene	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
4-Methyl-2-Pentanone	mg/kg	1200	10000	0.644	U	0.809	U	0.561	U
Acetone	mg/kg	7800	10000	0.644	U	0.809	U	0.561	U
Benzene	mg/kg	2.5	200	0.129	U	0.162	U	0.112	U
Bromobenzene	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Bromochloromethane	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Bromodichloromethane	mg/kg	10	92	0.129	U	0.162	U	0.112	U
Bromoform	mg/kg	81	720	0.129	U	0.162	U	0.112	U
Bromomethane	mg/kg	8.0	2900	0.129	U	0.162	U	0.112	U
Carbon Disulfide	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Carbon Tetrachloride	mg/kg	1.5	44	0.129	U	0.162	U	0.112	U
Chlorobenzene	mg/kg	210	10000	0.129	U	0.162	U	0.112	U
Chloroethane	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Chloroform	mg/kg	1.2	940	0.129	U	0.162	U	0.112	U
Chloromethane	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
cis-1,2-Dichloroethene	mg/kg	630	10000	0.129	U	0.162	U	0.112	U
cis-1,3-Dichloropropene	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Dibromochloromethane	mg/kg	7.6	68	0.129	U	0.162	U	0.112	U
Dibromomethane	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Dichlorodifluoromethane	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Diethyl Ether	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Di-isopropyl ether	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Ethyl tertiary-butyl ether	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Ethylbenzene	mg/kg	71	10000	0.129	U	0.162	U	0.112	U
Hexachlorobutadiene	mg/kg	8.2	73	0.129	U	0.162	U	0.112	U
Isopropylbenzene	mg/kg	27	10000	0.129	U	0.162	U	0.112	U
Methyl tert-Butyl Ether	mg/kg	390	10000	0.129	U	0.162	U	0.112	U
Methylene Chloride	mg/kg	45	760	0.258	U	0.323	U	0.224	U
Naphthalene	mg/kg	54	10000	0.129	U	0.162	U	0.112	U
n-Butylbenzene	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
n-Propylbenzene	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
sec-Butylbenzene	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Styrene	mg/kg	13	190	0.129	U	0.162	U	0.112	U

tert-Butylbenzene	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Tertiary-amyl methyl ether	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Tetrachloroethene	mg/kg	12	110	0.129	U	0.162	U	0.112	U
Tetrahydrofuran	mg/kg	NE	NE	0.644	U	0.809	U	0.561	U
Toluene	mg/kg	190	10000	0.129	U	0.162	U	0.112	U
trans-1,2-Dichloroethene	mg/kg	1100	10000	0.129	U	0.162	U	0.112	U
trans-1,3-Dichloropropene	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Trichloroethene	mg/kg	13	520	0.129	U	0.162	U	0.112	U
Trichlorofluoromethane	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Vinyl Acetate	mg/kg	NE	NE	0.129	U	0.162	U	0.112	U
Vinyl Chloride	mg/kg	0.02	3	0.129	U	0.162	U	0.112	U
Xylene O	mg/kg	110	10000	0.129	U	0.162	U	0.112	U
Xylene P,M	mg/kg	110	10000	0.258	U	0.323	U	0.224	U
Xylenes (Total)	mg/kg	110	10000	0.258	U, D	0.323	U, D	0.224	U, D
SVOCs									
1,1-Biphenyl	mg/kg	0.8	10000	0.364	U			0.329	U
1,2,4-Trichlorobenzene	mg/kg	96	10000	0.364	Ü			0.329	Ü
1,2-Dichlorobenzene	mg/kg	510	10000	0.364	Ü			0.329	Ü
1,3-Dichlorobenzene	mg/kg	430	10000	0.364	Ü			0.329	Ü
1.4-Dichlorobenzene	mg/kg	27	240	0.364	Ü			0.329	Ü
2,3,4,6-Tetrachlorophenol	mg/kg	NE	NE	1.83	Ü			1.65	Ü
2,4,5-Trichlorophenol	mg/kg	330	10000	0.364	Ü			0.329	Ü
2,4,6-Trichlorophenol	mg/kg	58	520	0.364	Ü			0.329	Ü
2,4-Dichlorophenol	mg/kg	30	6100	0.364	Ü			0.329	Ü
2,4-Dimethylphenol	mg/kg	1400	10000	0.364	Ü			0.329	Ü
2,4-Dinitrophenol	mg/kg	160	4100	1.83	Ü			1.65	Ü
2,4-Dinitrotoluene	mg/kg	0.9	8.4	0.364	Ü			0.329	Ü
2,6-Dinitrotoluene	mg/kg	NE	NE	0.364	Ü			0.329	Ü
2-Chloronaphthalene	mg/kg	NE	NE	0.364	Ü			0.329	Ü
2-Chlorophenol	mg/kg	50	10000	0.364	Ü			0.329	Ü
2-Methylnaphthalene	mg/kg	123	10000	0.364	Ü			0.329	Ü
2-Methylphenol	mg/kg	NE	NE	0.364	Ü			0.329	Ü
	9,9			0.00 .	•			0.020	-

2-Nitroaniline	mg/kg	NE	NE	0.364	U	 	0.329	U
2-Nitrophenol	mg/kg	NE	NE	0.364	U	 	0.329	U
3,3´-Dichlorobenzidine	mg/kg	1.4	13	0.73	U	 	0.659	U
3+4-Methylphenol	mg/kg	NE	NE	0.73	U	 	0.659	U
3-Nitroaniline	mg/kg	NE	NE	0.364	U	 	0.329	U
4,6-Dinitro-2-Methylphenol	mg/kg	NE	NE	1.83	U	 	1.65	U
4-Bromophenyl-phenylether	mg/kg	NE	NE	0.364	U	 	0.329	U
4-Chloro-3-Methylphenol	mg/kg	NE	NE	0.364	U	 	0.329	U
4-Chloroaniline	mg/kg	310	8200	0.73	U	 	0.659	U
4-Chloro-phenyl-phenyl ether	mg/kg	NE	NE	0.364	U	 	0.329	U
4-Nitroaniline	mg/kg	NE	NE	0.364	U	 	0.329	U
4-Nitrophenol	mg/kg	NE	NE	1.83	U	 	1.65	U
Acenaphthene	mg/kg	43	10000	0.364	U	 	0.329	U
Acenaphthylene	mg/kg	23	10000	0.364	U	 	0.329	U
Acetophenone	mg/kg	NE	NE	0.73	U	 	0.659	U
Aniline	mg/kg	NE	NE	0.73	U	 	0.659	U
Anthracene	mg/kg	35	10000	0.364	U	 	0.329	U
Azobenzene	mg/kg	NE	NE	0.364	U	 	0.329	U
Benzo(a)anthracene	mg/kg	0.9	7.8	0.364	U	 	0.329	U
Benzo(a)pyrene	mg/kg	0.4	0.8	0.183	U	 	0.165	U
Benzo(b)fluoranthene	mg/kg	0.9	7.8	0.364	U	 	0.329	U
Benzo(g,h,i)perylene	mg/kg	0.8	10000	0.364	U	 	0.329	U
Benzo(k)fluoranthene	mg/kg	0.9	78	0.364	U	 	0.329	U
Benzoic Acid	mg/kg	NE	NE	1.83	U	 	1.65	U
Benzyl Alcohol	mg/kg	NE	NE	0.364	U	 	0.329	U
bis(2-Chloroethoxy)methane	mg/kg	NE	NE	0.364	U	 	0.329	U
bis(2-Chloroethyl)ether	mg/kg	0.6	5.2	0.364	U	 	0.329	U
bis(2-chloroisopropyl)Ether	mg/kg	9.1	82	0.364	U	 	0.329	U
bis(2-Ethylhexyl)phthalate	mg/kg	46	410	0.364	U	 	0.329	U
Butylbenzylphthalate	mg/kg	NE	NE	0.364	U	 	0.329	U
Carbazole	mg/kg	NE	NE	0.364	U	 	0.329	U
Chrysene	mg/kg	0.4	780	0.183	U	 	0.165	U
Dibenzo(a,h)Anthracene	mg/kg	0.4	0.8	0.183	U	 	0.165	U

Dibenzofuran	mg/kg	NE	NE	0.364	U			0.329	U
Diethylphthalate	mg/kg	340	10000	0.364	U			0.329	U
Dimethylphthalate	mg/kg	1900	10000	0.364	U			0.329	U
Di-n-butylphthalate	mg/kg	NE	NE	0.364	U			0.329	U
Di-n-octylphthalate	mg/kg	NE	NE	0.364	U			0.329	U
Fluoranthene	mg/kg	20	10000	0.364	U			0.329	U
Fluorene	mg/kg	28	10000	0.364	U			0.329	U
Hexachlorobenzene	mg/kg	0.4	3.6	0.183	U			0.165	U
Hexachlorobutadiene	mg/kg	8.2	73	0.364	U			0.329	U
Hexachlorocyclopentadiene	mg/kg	NE	NE	1.83	U			1.65	U
Hexachloroethane	mg/kg	46	410	0.364	U			0.329	U
Indeno(1,2,3-cd)Pyrene	mg/kg	0.9	7.8	0.364	U			0.329	U
Isophorone	mg/kg	NE	NE	0.364	U			0.329	U
Naphthalene	mg/kg	54	10000	0.364	U			0.329	U
Nitrobenzene	mg/kg	NE	NE	0.364	U			0.329	U
N-Nitrosodimethylamine	mg/kg	NE	NE	0.364	U			0.329	U
N-Nitroso-Di-n-Propylamine	mg/kg	NE	NE	0.364	U			0.329	U
N-nitrosodiphenylamine	mg/kg	NE	NE	0.364	U			0.329	U
Pentachlorophenol	mg/kg	5.3	48	1.83	U			1.65	U
Phenanthrene	mg/kg	40	10000	0.364	U			0.329	U
Phenol	mg/kg	6000	10000	0.364	U			0.329	U
Pyrene	mg/kg	13	10000	0.364	U			0.329	U
Pyridine	mg/kg	NE	NE	1.83	U			1.65	U
•									
TPH - ETPH									
Total Petroleum Hydrocarbons	mg/kg	500	2500	41.2	U	43.4	U	40.1	U
PCBs									
Aroclor 1016	mg/kg	10	10			0.05	U		
Aroclor 1221	mg/kg	10	10			0.05	U		
Aroclor 1232	mg/kg	10	10			0.05	U		
Aroclor 1242	mg/kg	10	10			0.05	U		
Aroclor 1248	mg/kg	10	10			0.05	U		
	5 5								

November 2019

Aroclor 1254	mg/kg	10	10	 	0.05	U	
Aroclor 1260	mg/kg	10	10	 	0.05	U	
Aroclor 1262	mg/kg	10	10	 	0.05	U	
Aroclor 1268	mg/kg	10	10	 	0.05	U	

Highlight Exceedances

Bold - Result for this analyte exceeds the State limit.

Italics - The method requested for this analysis does not meet criteria for all compounds. The compound is undetected, however, the Method Reporting Limit is greater than the State limit.

Qualifiers

B = Present in Blank.

D = Sample was diluted in order to obtain a value within the calibration range.

J = Value below the Method reporting Limit; Estimated value.

U = Not Detected

V = Quality Control outside of acceptance limits; Estimated value.

NS-Not Sampled

NE-Not Established

Sample Designation Sample Date			201942-MW1-110619 11/06/2019		201942-MW2-110619 11/06/2019		201942-MW3-11061 11/06/2019	
		MADEP S-2/GW-2						
EPH								
C9-C18 Aliphatics1	mg/kg	3,000	16	U	15.7	U	15.3	U
C19-C36 Aliphatics1	mg/kg	5,000	16	U	15.7	U	15.3	U
C11-C22 Aromatics1,2	mg/kg	3,000	16	U	15.7	U	15.3	U
EPH Analytes								
2-Methylnaphthalene	mg/kg	3,000	0.21	U	0.21	U	0.2	U
Acenaphthene	mg/kg	3,000	0.43	U	0.42	U	0.41	U
Naphthalene	mg/kg	20	0.43	U	0.42	U	0.41	U
Phenanthrene	mg/kg	1,000	0.43	U	0.42	U	0.41	U
Acenaphthylene	mg/kg	600	0.21	U	0.21	U	0.2	U
Anthracene	mg/kg	3,000	0.43	U	0.42	U	0.41	U
Benzo(a)anthracene	mg/kg	40	0.43	U	0.42	U	0.41	U
Benzo(a)pyrene	mg/kg	7	0.43	U	0.42	U	0.41	U
Benzo(b)fluoranthene	mg/kg	40	0.43	U	0.42	U	0.41	U
Benzo(g,h,i)perylene	mg/kg	3,000	0.43	U	0.42	U	0.41	U
Benzo(k)fluoranthene	mg/kg	400	0.43	U	0.42	U	0.41	U
Chrysene	mg/kg	400	0.43	U	0.42	U	0.41	U
Dibenzo(a,h)Anthracene	mg/kg	4	0.21	U	0.21	U	0.2	U
Fluoranthene	mg/kg	3,000	0.43	U	0.42	U	0.41	U
Fluorene	mg/kg	3,000	0.43	U	0.42	U	0.41	U
Indeno(1,2,3-cd)Pyrene	mg/kg	40	0.43	U	0.42	U	0.41	U
Pyrene	mg/kg	3,000	0.43	U	0.42	U	0.41	U
VPH								
C5-C8 Aliphatics1,2	mg/kg	500	6.4	U, D	6.38	U, D	6.06	U, D
C9-C12 Aliphatics2,3	mg/kg	3,000	12.7	U, D	12.7	U, D	12.1	U, D
C9-C10 Aromatics	mg/kg	500	6.13	U	6.11	U	5.8	U

VPH Analytes

Benzene	mg/kg	200	0.12	U	0.12	U	0.12	U
Ethylbenzene	mg/kg	1,000	0.12	U	0.12	U	0.12	U
Methyl tert-Butyl Ether	mg/kg	100	0.03	U	0.03	U	0.03	U
Naphthalene	mg/kg	20	0.12	U	0.12	U	0.12	U
Toluene	mg/kg	1,000	0.12	U	0.12	U	0.12	U
Xylene O	mg/kg	100	0.12	U	0.12	U	0.12	U
Xylene P,M	mg/kg	100	0.25	U	0.24	U	0.23	U

Highlight Exceedances

Bold - Result for this analyte exceeds the State limit.

Italics - The method requested for this analysis does not meet criteria for all compounds.

The compound is undetected, however, the Method Reporting Limit is greater than the State limit.

Qualifiers

- B = Present in Blank.
- D = Sample was diluted in order to obtain a value within the calibration range.
- J = Value below the Method reporting Limit; Estimated value.
- U = Not Detected
- V = Quality Control outside of acceptance limits; Estimated value.
- **NS-Not Sampled**
- **NE-Not Established**

Sample Designation Sample Date		201942-MW1-110719 11/07/2019		201942-MW2-110719 11/07/2019		201942-MW3-11071 11/07/2019		
VOCs	Units	GB Standard						
1,1,1,2-Tetrachloroethane	mg/L	NE	0.001	U	0.001	U	0.001	U
1,1,1-Trichloroethane	mg/L	3.1	0.001	U	0.001	U	0.001	U
1,1,2,2-Tetrachloroethane	mg/L	NE	0.0005	U	0.0005	U	0.0005	U
1,1,2-Trichloroethane	mg/L	NE	0.001	U	0.001	U	0.001	U
1,1-Dichloroethane	mg/L	NE	0.001	U	0.001	U	0.001	U
1,1-Dichloroethene	mg/L	0.007	0.001	U	0.001	U	0.001	U
1,1-Dichloropropene	mg/L	NE	0.002	U	0.002	U	0.002	U
1,2,3-Trichlorobenzene	mg/L	NE	0.001	U	0.001	U	0.001	U
1,2,3-Trichloropropane	mg/L	NE	0.001	U	0.001	U	0.001	U
1,2,4-Trichlorobenzene	mg/L	NE	0.001	U	0.001	U	0.001	U
1,2,4-Trimethylbenzene	mg/L	NE	0.001	U	0.001	U	0.001	U
1,2-Dibromo-3-Chloropropane	mg/L	0.002	0.005	U	0.005	U	0.005	U
1,2-Dibromoethane	mg/L	NE	0.001	U	0.001	U	0.001	U
1,2-Dichlorobenzene	mg/L	NE	0.001	U	0.001	U	0.001	U
1,2-Dichloroethane	mg/L	0.11	0.001	U	0.001	U	0.001	U
1,2-Dichloropropane	mg/L	3	0.001	U	0.001	U	0.001	U
1,3,5-Trimethylbenzene	mg/L	NE	0.001	U	0.001	U	0.001	U
1,3-Dichlorobenzene	mg/L	NE	0.001	U	0.001	U	0.001	U
1,3-Dichloropropane	mg/L	NE	0.001	U	0.001	U	0.001	U
1,4-Dichlorobenzene	mg/L	NE	0.001	U	0.001	U	0.001	U
1,4-Dioxane - Screen	mg/L	NE	0.5	U	0.5	U	0.5	U
1-Chlorohexane	mg/L	NE	0.001	U	0.001	U	0.001	U
2,2-Dichloropropane	mg/L	NE	0.001	U	0.001	U	0.001	U
2-Butanone	mg/L	NE	0.01	U	0.01	U	0.01	U
2-Chlorotoluene	mg/L	NE	0.001	U	0.001	U	0.001	U
2-Hexanone	mg/L	NE	0.01	U	0.01	U	0.01	U
4-Chlorotoluene	mg/L	NE	0.001	U	0.001	U	0.001	U
4-Isopropyltoluene	mg/L	NE	0.001	U	0.001	U	0.001	U
4-Methyl-2-Pentanone	mg/L	NE	0.025	U	0.025	U	0.025	U
Acetone	mg/L	NE	0.01	U	0.01	U	0.01	U

Benzene	mg/L	0.14	0.001	U	0.001	U	0.001	U
Bromobenzene	mg/L	NE	0.002	U	0.002	U	0.002	U
Bromochloromethane	mg/L	NE	0.001	U	0.001	U	0.001	U
Bromodichloromethane	mg/L	NE	0.0006	U	0.0006	U	0.0006	U
Bromoform	mg/L	NE	0.001	U	0.001	U	0.001	U
Bromomethane	mg/L	NE	0.002	U	0.002	U	0.002	U
Carbon Disulfide	mg/L	NE	0.001	U	0.001	U	0.001	U
Carbon Tetrachloride	mg/L	0.07	0.001	U	0.001	U	0.001	U
Chlorobenzene	mg/L	3.2	0.001	U	0.001	U	0.001	U
Chloroethane	mg/L	NE	0.002	U	0.002	U	0.002	U
Chloroform	mg/L	NE	0.001	U	0.001	U	0.001	U
Chloromethane	mg/L	NE	0.002	U	0.002	U	0.002	U
cis-1,2-Dichloroethene	mg/L	2.4	0.001	U	0.001	U	0.001	U
cis-1,3-Dichloropropene	mg/L	NE	0.0004	U	0.0004	U	0.0004	U
Dibromochloromethane	mg/L	NE	0.001	U	0.001	U	0.001	U
Dibromomethane	mg/L	NE	0.001	U	0.001	U	0.001	U
Dichlorodifluoromethane	mg/L	NE	0.002	U	0.002	U	0.002	U
Diethyl Ether	mg/L	NE	0.001	U	0.001	U	0.001	U
Di-isopropyl ether	mg/L	NE	0.001	U	0.001	U	0.001	U
Ethyl tertiary-butyl ether	mg/L	NE	0.001	U	0.001	U	0.001	U
Ethylbenzene	mg/L	1.6	0.001	U	0.001	U	0.001	U
Hexachlorobutadiene	mg/L	NE	0.0006	U	0.0006	U	0.0006	U
Hexachloroethane	mg/L	NE	0.001	U	0.001	U	0.001	U
Isopropylbenzene	mg/L	NE	0.001	U	0.001	U	0.001	U
Methyl tert-Butyl Ether	mg/L	5	0.001	U	0.001	U	0.001	U
Methylene Chloride	mg/L	NE	0.002	U	0.002	U	0.002	U
Naphthalene	mg/L	NE	0.001	U	0.001	U	0.001	U
n-Butylbenzene	mg/L	NE	0.001	U	0.001	U	0.001	U
n-Propylbenzene	mg/L	NE	0.001	U	0.001	U	0.001	U
sec-Butylbenzene	mg/L	NE	0.001	U	0.001	U	0.001	U
Styrene	mg/L	2.2	0.001	U	0.001	U	0.001	U
tert-Butylbenzene	mg/L	NE	0.001	U	0.001	U	0.001	U
Tertiary-amyl methyl ether	mg/L	NE	0.001	U	0.001	U	0.001	U
Tetrachloroethene	mg/L	0.15	0.001	U	0.001	U	0.001	U
Tetrahydrofuran	mg/L	NE	0.005	U	0.005	U	0.005	U

Toluene	mg/L	1.7	0.001	U	0.001	U	0.001	U
trans-1,2-Dichloroethene	mg/L	2.8	0.001	U	0.001	U	0.001	U
trans-1,3-Dichloropropene	mg/L	NE	0.0004	U	0.0004	U	0.0004	U
Trichloroethene	mg/L	0.54	0.001	U	0.001	U	0.001	U
Trichlorofluoromethane	mg/L	NE	0.001	U	0.001	U	0.001	U
Vinyl Acetate	mg/L	NE	0.005	U	0.005	U	0.005	U
Vinyl Chloride	mg/L	0.002	0.001	U	0.001	U	0.001	U
Xylene O	mg/L	NE	0.001	U	0.001	U	0.001	U
Xylene P,M	mg/L	NE	0.002	U	0.002	U	0.002	U
Xylenes (Total)	mg/L	NE	0.002	U	0.002	U	0.002	U

Highlight Exceedances

Bold - Result for this analyte exceeds the State limit.

Italics - The method requested for this analysis does not meet criteria for all compounds.

The compound is undetected, however, the Method Reporting Limit is greater than the State limit.

Qualifiers

- B = Present in Blank.
- D = Sample was diluted in order to obtain a value within the calibration range.
- J = Value below the Method reporting Limit; Estimated value.
- U = Not Detected
- V = Quality Control outside of acceptance limits; Estimated value.
- **NS-Not Sampled**
- **NE-Not Established**

Site Investigation Report 32 Exchange St. East Greenwich, Rhode Island

Sample Designation Sample Date			201942-MW 11/07/2		201942-MW 11/07/2		201942-MW 11/07/2	
		MADEP GW-2						
EPH								
C9-C18 Aliphatics1	ug/L	5,000	93	U	93	U	93	U
C19-C36 Aliphatics1	ug/L	NE	93	U	93	U	93	U
C11-C22 Aromatics1,2	ug/L	50,000	93.5	U	93.5	U	93.5	U
EPH Analytes								
2-Methylnaphthalene	ug/L	2,000	4.7	U	4.7	U	4.7	U
Acenaphthene	ug/L	NE	4.7	U	4.7	U	4.7	U
Naphthalene	ug/L	700	9.3	U	9.3	U	9.3	U
Phenanthrene	ug/L	NE	4.7	U	4.7	U	4.7	U
Acenaphthylene	ug/L	10,000	4.7	U	4.7	U	4.7	U
Anthracene	ug/L	NE	4.7	U	4.7	U	4.7	U
Benzo(a)anthracene	ug/L	NE	4.7	U	4.7	U	4.7	U
Benzo(a)pyrene	ug/L	NE	9.3	U	9.3	U	9.3	U
Benzo(b)fluoranthene	ug/L	NE	4.7	U	4.7	U	4.7	U
Benzo(g,h,i)perylene	ug/L	NE	9.3	U	9.3	U	9.3	U
Benzo(k)fluoranthene	ug/L	NE	9.3	U	9.3	U	9.3	U
Chrysene	ug/L	NE	9.3	U	9.3	U	9.3	U
Dibenzo(a,h)Anthracene	ug/L	NE	4.7	U	4.7	U	4.7	U
Fluoranthene	ug/L	NE	9.3	U	9.3	U	9.3	U
Fluorene	ug/L	NE	4.7	U	4.7	U	4.7	U
Indeno(1,2,3-cd)Pyrene	ug/L	NE	4.7	U	4.7	U	4.7	U
Pyrene	ug/L	NE	4.7	U	4.7	U	4.7	U
VPH								
C5-C8 Aliphatics1,2	ug/L	3,000	158	U	158	U	158	U
C9-C12 Aliphatics2,3	ug/L	5,000	270	U	270	U	270	U
C9-C10 Aromatics	ug/L	4,000	100	U	100	U	100	U

Site Investigation Report 32 Exchange St. East Greenwich, Rhode Island

VPH Analytes

-								
Benzene	ug/L	1,000	1.5	U	1.5	U	1.5	U
Ethylbenzene	ug/L	20,000	5	U	5	U	5	U
Methyl tert-Butyl Ether	ug/L	50,000	1.5	U	1.5	U	1.5	U
Naphthalene	ug/L	700	5	U	5	U	5	U
Toluene	ug/L	50,000	5	U	5	U	5	U
Xylene O	ug/L	3,000	5	U	5	U	5	U
Xylene P,M	ug/L	3,000	10	U	10	U	10	U

Highlight Exceedances

Bold - Result for this analyte exceeds the State limit.

Italics - The method requested for this analysis does not meet criteria for all compounds.

The compound is undetected, however, the Method Reporting Limit is greater than the State limit.

Qualifiers

- B = Present in Blank.
- D = Sample was diluted in order to obtain a value within the calibration range.
- J = Value below the Method reporting Limit; Estimated value.
- U = Not Detected
- V = Quality Control outside of acceptance limits; Estimated value.
- **NS-Not Sampled**
- **NE-Not Established**

Δ	P	D.	\mathbf{E}°	N	D	IX
$\overline{}$						

APPENDIX A SUPPORTING DOCUMENTS

250-140-30 R.I. Code R. § 1.20

Section 250-RICR-140-30-1.20 - Site Investigation Report (SIR) Checklist

A. The following information shall be completed and submitted with the SIR

1. Contact Name Gary Kaufman, Principal, Redwood Environmental Group, LLC

2. Contact Address 10 Elmgrove Avenue, Providence, RI 02906

3. Contact Telephone 401-270-7000

4. Site Name Grenier Properties, LLC (SR-09-1958)

5. Site Address 32 & 33 Exchange Street, East Greenwich, RI

B. Office Use Only

- 1. Site Investigation Report (SIR) Site
- 2. Project Code
- 3. SIR Submittal Date
- 4. Checklist Submittal Date

C. Directions: The box to the left of each item listed below is for the administrative review of the SIR submission and is for RIDEM Use Only. Under each item listed below, cross-reference the specific sections and pages in the SIR that provide detailed information that addresses each stated requirement. Failure to include cross-references shall delay review and approval. If an item is not applicable, simply state that it is not applicable and provide an explanation in the SIR.

- **1.** § 1.8.3(A)(1) of this Part List specific objectives of the SIR related to characterization of the Release, impacts of the Release and remedy. Section 3.2, Page 5
- 2. § 1.8.3(A)(2) of this Part Include information reported in the Notification of Release. A copy of the Release notification form should be included in the SIR. Include information relating to short-term response, if applicable. Section 3.3, Page 6
- **3.** § 1.8.3(A)(3) of this Part Include documentation of any past incidents or Releases.

Section 2.7, Page 4

4. § 1.8.3(A)(4) of this Part - Include list of prior property Owners and Operators, as well as sequencing of property transfers and time periods of occupancy. Section 2.9, Page 5

5. § 1.8.3(A)(5) of this Part - Include previously existing environmental information which characterizes the Contaminated-Site and all information that led to the discovery of the Contaminated-Site.

Section 2.6, Page 4

6. § 1.8.3(A)(6) of this Part - Include current uses and zoning of the Contaminated-Site, including brief statements of operations, processes employed, waste generated, Hazardous Materials handled, and any residential activities on the site, if applicable. (This section should be linked to the specific objectives section demonstrating how the compounds of concern in the investigation are those that are used or may have been used on the site or are those that may have impacted the site from an off-site source.) Section 2.1, Page 2

7. § 1.8.3(A)(7) of this Part - Include a locus map showing the location of the site using US Geological Survey 7.5-min quadrangle map or a copy of a section of that USGS map.

Figure 1

8. § 1.8.3(A)(8) of this Part - Include a site plan, to scale, showing:

- **a.** Buildings Figure 2
- **b.** Activities Section 3.15
- **c.** Structures Figure 2
- **d.** North Arrow Figure 2
- **e.** Wells Figure 2, and Section 3.15 e.
- f. UIC Systems, septic tanks, UST, piping and other underground structures

Section 3.15 f. Page 11

g. Outdoor Hazardous Materials storage and handling areas

Section 3.15 g. Page 11

h. Extent of paved areas

Section 3.15 h. Page 11

i. Location of environmental samples previously taken with analytical results

Figure 2

j. Waste management and disposal areas

Section 3.15 j. Page 11

k. Property Lines Figure 2

9. § 1.8.3(A)(9) of this Part - Include a general characterization of the property surrounding the area including, but not limited to:

Section 2.1, Page 2

a. Location and distance to any surface water bodies within 500 ft of the site.

Section 2.4, Page 3

b. Location and distance to any Environmentally Sensitive Areas within 500 ft. of the site.

Section 2.5, Page 3

c. Actual sources of potable water for all properties immediately abutting the site.

Section 2.5, Page 3

- **d.** Location and distance to all public water supplies, which have been active within the previous 2 years and within one mile of the site. Section 2.5, Page 3
- **e.** Determination as to whether the Release impacts any off-site area utilized for residential or industrial/commercial property or both. Section 3.15 e.
- **f.** Determination of the underlying groundwater classification and if the classification is GB, the distance to the nearest GA area. Section 2.3, Page 3
- **10.** § 1.8.3(A)(10) of this Part Include classifications of surface and ground water at and surrounding the site that could be impacted by a Release. Sections 2.4 & 2.5, Page 3
- **11.** § 1.8.3(A)(11) of this Part Include a description of the contamination from the Release, including: Section 1.0, Page 1
 - a. Free liquids on the surface Section 3.15 a. Page 11
 - **b.** LNAPL and DNAPL Section 3.15 b. Page 11
 - **c.** Concentrations of Hazardous Substances which can be shown to present an actual or potential threat to human health and any concentrations in excess of any of the remedial objectives; (reference §1.13 of this Part). Tables 1,2,3 & 4
 - **d.** Impact to Environmentally Sensitive Areas Section 3.15 d. Page 11
 - **e.** Contamination of man-made structures Section 3.15 e. Page 11

f. Odors or stained soil Section 3.15 f. Page 11

g. Stressed vegetation Section 3.15 g. Page 11

h. Presence of excavated or stockpiled material and an estimate of its total volume Section 3.15 h. Page 11

i. Environmental sampling locations, procedures and copies of the results of any analytical testing at the site
 Section 3.6 Figure 2 Appendix B

j. List of Hazardous Substances at the site Section 3.15 j. Page 11

k. Discuss if the contamination falls outside of the jurisdiction of the Remediation Regulations, including but not limited to USTs, UICs, and wetlands.

Section 3.15 k., Page 11

12. § 1.8.3(A)(12) of this Part - Include the concentration gradients of Hazardous Substances throughout the site for each media impacted by the Release.

Figure 2 and Table 1-4

13. § 1.8.3(A)(13) of this Part - Include the methodology and results of any investigation conducted to determine background concentrations of Hazardous Substances identified at the Contaminated-Site (see §1.13 of this Part). Section 311, Page 10

14. § 1.8.3(A)(14) of this Part. Include a listing and evaluation of the site specific hydrogeological properties which could influence the migration of Hazardous Substances throughout and away from the site, including but not limited to, where appropriate:

a. Depth to GW Section 3.7, Page 8

b. Presence and effects of both the natural and man-made barriers to and conduits for contaminant migration. Section 3.15 b, Page 11

c. Characterization of bedrock Section 2.2, Page 3

d. Groundwater contours, flow rates and gradients throughout the site. Figure 2

e.§ 1.8.3(A)(15) of this Part - Include a characterization of the topography, surface water and run-off flow patterns, including the flooding potential, of the site.
Section 2.2, Page 2

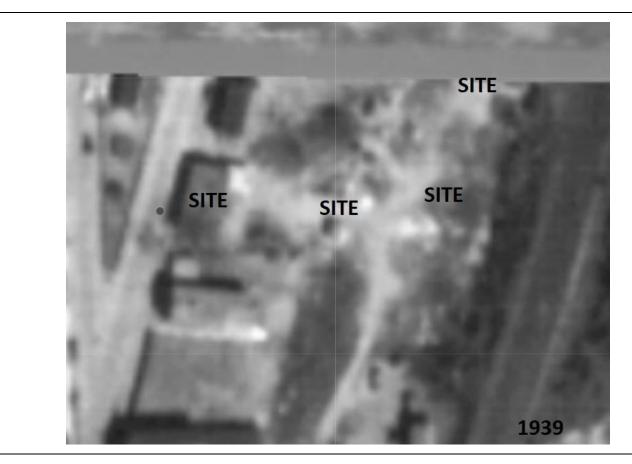
- **16.** § 1.8.3(A)(16) of this Part Include the potential for Hazardous Substances from the site to volatilize and any and all potential impacts of the volatilization to structures within the site. Section 5.1, Page 12
- **17.** § 1.8.3(A)(17) of this Part Include the potential for entrainment of Hazardous Substances from the site by wind or erosion actions. Section 3.12, Page 10
- **18.** § 1.8.3(A)(18) of this Part Include detailed protocols for all fate and transport models used in the Site Investigation. Section 3.13, Page 10
- **19.** § 1.8.3(A)(19) of this Part Include a complete list of all samples taken, the location of all samples, parameters tested for and analytical methods used during the Site Investigation. (Be sure to include the samples locations and analytical results on a site figure). Section 3.5, Page 7 & Section 3.7, Page 8
- **20.** § 1.8.3(A)(20) of this Part Include construction plans and development procedures for all monitoring wells. Well construction shall be consistent with the requirements of the Groundwater Quality Rules. Section 3.4, Page 6
- **21.** § 1.8.3(A)(21) of this Part Include procedures for the handling, storage and disposal of wastes derived from and during the investigation. Section 3.2, Page 5
- **22.** § 1.8.3(A)(22) of this Part Include a quality assurance and quality control evaluation summary report for sample handling and analytical procedures, including, but not limited to, chain-of-custody procedures and sample preservation techniques.
- **23.** § 1.8.3(A)(23) of this Part Include any other site-specific factor, that the Director believes, is necessary to make an accurate decision as to the appropriate Remedial Action to be taken at the site. Section 3.6, Page 7
- **24.** §1.8.4 of this Part Include Remedial Alternatives. The Site Investigation Report shall contain a minimum of 2 remedial alternatives other than no action/natural attenuation alternative, unless this requirement is waived by the Department. It should be clear which of these alternatives is most preferable. All alternatives shall be supported by relevant data contained in the Site Investigation Report and consistent with the current and reasonably foreseeable land usage, and documentation of the following:
 - a. Compliance with §1.9 of this Part; Section 5.0, Page 12

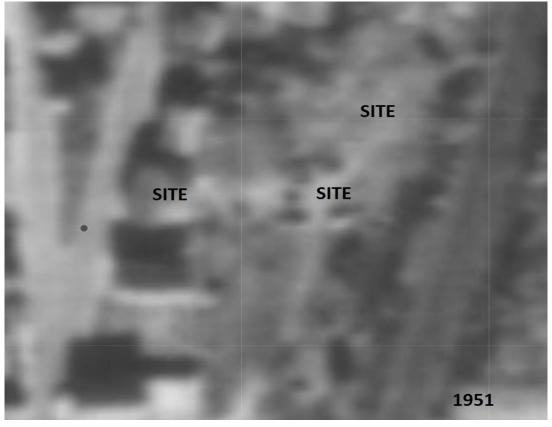
b. Technical feasibility of the preferred remedial alternative;

Section 5.0, Page 12

c. Compliance with federal, state and local laws or other public concerns; and Section 5.0, Page 12

- **d.** The ability of the Performing Party to perform the preferred remedial alternative. Section 5.0, Page 12
- **25.** §1.8.5 of this Part The Site Investigation Report and all associated progress reports shall include the following statements signed by an authorized representative of the party specified:
 - **a.** A statement signed by an authorized representative of the Person who prepared the Site Investigation Report certifying the completeness and accuracy of the information contained in that report to the best of their knowledge; and
 - **b.** A statement signed by the Performing Party responsible for the submittal of the Site Investigation Report certifying that the report is a complete and accurate representation of the site and the Release and contains all known facts surrounding the Release to the best of their knowledge.


 Appendix C
- **26.** §1.8.6 of this Part If the Site Investigation is not complete, include a schedule for the submission of periodic progress reports on the status of the investigation and interim reports on any milestones achieved in the project.


 Appendix C
- **27.** §1.8.7 of this Part Be prepared to implement public notice requirements per §§1.8.7 and 1.8.9 of this Part when the Department deems the Site Investigation Report to be complete. Redwood is prepared to proceed with public notice of SI Completion

250 R.I. Code R. § 250-RICR-140-30-1.20

AAI/ASTM Phase I Environmental Site Assessment RESIDENTIAL PROPERTY 32 & 33 EXCHANGE STREET EAST GREENWICH, RHODE ISLAND

Prepared For: **The Grenier Group, Inc.** Timothy Grenier 3 Cole Circle East Greenwich, RI 02818

Prepared By:

10 Elmgrove Avenue Providence, Rhode Island 02906

Project No. 201907

May 2019

TABLE OF CONTENTS

1.0	EXEC	UTIVE SUMMARY	1
2.0	INTD	ODUCTION	2
2.0	2.1	Purpose	
	2.2	Scope of Services	
	2.3	Significant Assumptions	
	2.4	Limitations and Exceptions	
	2.5	Special Terms and Conditions	
	2.6	User Reliance	
	2.0	OSCI Rendirec	
3.0	SITE	DESCRIPTION	
	3.1	Location and Legal Description	
	3.2	Site and Vicinity General Characteristics	
	3.3	Current Use(s) of the Property	
	3.4	Structures, Roads, and Site Improvements	
	3.5	Adjoining Properties	6
4.0	USER	PROVIDED INFORMATION	7
	4.1	Title Records	
	4.2	Environmental Liens or Environmental Land Use Restrictions (ELURs)	
	4.3	Specialized Knowledge	
	4.4	Commonly Known or Reasonably Ascertainable Information	
	4.5	Valuation Reduction for Environmental Issues	
	4.6	Owner, Property Manager and Occupant Information	
	4.7	Reason for Performing Phase I ESA	
	4.8	Previous Environmental Reports	
	DE60	DDG DEVERNA	
5.0		RDS REVIEW	
	5.1	Standard Environmental Records L Federal Environmental Records	
		2 State Environmental Records	
		Additional Environmental Record Sources	
		Local Records	
		2 Fire Department Records	
	5.2.2 5.3	Physical Setting Source(s)	
		L Regional Geology	
		2 Hydrogeology	
		B Hydrology	
	5.4	Historical Use Information Site and Adjoining Properties	
		L Aerial Photographs	
		2 Fire Insurance Maps	
		3 City Directory	
6.0		RECONNAISSANCE	
	6.1	Methodology and Limiting Conditions	
	6.2	General Site Setting	
		L Current and Past Use(s) of the Site	
AAI PhI	6.2.2	2 Current and Past Use(s) of Adjoining Property	13 Page
WAT LIII			raye

	6.2.3	General Description of Structures	13
	6.2.4	l Roads	13
	6.2.5	5 Potable Water	14
	6.2.6	Sewage Disposal System	14
	6.3		
	6.3.1	Hazardous Substances and Petroleum Products	14
	6.3.2	2 Drums and Containers	14
		Storage Tanks	
		Polychlorinated Biphenyls (PCBs)	
		5 Waste Water Discharge	
		Staining, Corrosion and or Odors	
		Heating and Cooling	
		B Drain and Sumps	
	6.4		
	6.4.1	Hazardous Substances and Petroleum Products	15
	6.4.2	2 Drums and Containers	15
		Storage Tanks	
		Pits, Ponds or Lagoons	
		Underground Structures	
		S Polychlorinated Biphenyls (PCBs)	
		Stained Soil or Pavement	
		Stress Vegetation	
	6.4.9	Solid Waste	16
7.0		RVIEWS	
	7.1	Past and Present Property Owners	
	7.2	State and Local Government Officials	17
	=====	THE CAMP CONCLUCTON	40
8.0	LIND	INGS AND CONCLUSION	18
9.0	DEVI	ATIONS AND ADDITIONAL SERVICES	10
9.0	9.1	Deviations	
	9.1 9.2	Additional Services	
	9.2	Additional Services	19
10.0	RECO	MMENDATIONS	20
	ILLOO		
11.0	REFE	RENCES	21
12.0		IFICATIONS AND SIGNATURES OF ENVIRONMENTAL	
	PROF	ESSIONALS	22
	 -		
FIGU	KES:		
	Figure	1: Location Map	
	Figure	 Location Map Site Plan 	
. DD=			
APPE	NDICES	S:	

Appendix A: Appendix B: Appendix C: Appendix D: Appendix E:

Supporting Documents ERS RecCheck Report and City Directory Report Aerial Photographs Photographic Log Environmental Professional Qualifications and Signatures

1.0 EXECUTIVE SUMMARY

Redwood Environmental Group, LLC (Redwood) has prepared this Phase I Environmental Site Assessment (ESA) for properties located at 32 & 33 Exchange Street in East Greenwich, Rhode Island, the Site. This ESA was prepared in general accordance with the American Society for Testing and Materials (ASTM) *Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process*, ASTM E1527-13 and prepared exclusively for Grenier Property Management (Grenier) in East Greenwich, Rhode Island.

The Site, which consists of two lots on Exchange Street. The lots are designated by the East Greenwich Tax Assessor's Office as Plat 85-1, Lots 87 and 302 corresponding to 32 & 33 Exchange Street, respectively. The Site is located on Exchange Street just north of the Duke Street intersection and is developed with a 2-story wood framed house with a basement. The house is boarded up with plywood and unoccupied. Redwood did not have access to the house or basement due to its poor condition. The rear of the property is undeveloped with the exception of two sheds.

The Site is currently owned by Grenier Properties, LLC of East Greenwich, Rhode Island which purchased the property on March 22, 2018. The house was constructed in the mid-1800s. The house is serviced by municipal water and sewer.

Redwood performed a Site visit on February 6, 2019. Redwood did not have access to the house or basement and makes no representation as to the environmental status within. An aboveground storage tank (AST) was formerly located on the north side of the house. Piping associated with the former AST location leads into the house in two locations - one on the first floor and one on the second floor. Redwood did not observe staining of the ground in the area of the former AST. Redwood did not observe staining, evidence of underground storage tanks (USTs) or oil and/or hazardous materials (OHM) exterior to the house.

Redwood traversed the undeveloped portion of the property to the east of the house. Two vacant sheds were observed as well as gravel/grassy areas. One area of the Site was observed to be lacking in vegetation or at least different vegetation from the rest of the Site. Redwood inquired with the owner and neighbors and discovered that this undeveloped portion of the Site was used for the storage of vehicles and boats for many years. It is possible that an event happened at this portion of the Site causing the lack of or different vegetation.

Environmental Records Search (ERS) of Laguna Hills, California conducted an environmental database search as part of this ESA. The search included reviews of available federal and state environmental database records. The Site was not identified in the databases searched.

The ERS report indicates two Resource Conservation and Recovery Act (RCRA) Generators, 12 RCRA No Longer Regulated facilities (NLR), four State Hazardous Waste Site (SHWS) facilities, one Solid Waste Landfill (SWL) facility, nine leaking underground storage tank (LUST) facilities and 18 underground storage tank (UST) facilities in the databases search radii. Based on the distance and location of the facilities identified in the ERS Report, the status of the facility as provided in the ERS Report and the anticipated

ground water flow direction in an easterly direction, Redwood does not anticipate that the facilities identified by ERS will adversely impact the environmental conditions at the Site.

Redwood has performed a Phase I Environmental Site Assessment in conformance with the scope and limitations of 40 CFR Part 312, "Standards and Practices for All Appropriate Inquires" and ASTM E1527-13 "Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process". Any limiting conditions, exception to, or deletions from, this practice are described in Section 2.0 of this Report.

Redwood did not have access to the house interior and therefore, cannot provide an opinion as to the presence of environmental issues within.

This assessment has revealed one Recognized Environmental Conditions (RECs) at the Site. Vehicles and boats were stored on the undeveloped portion of the Site for a number of years. This past use could have adversely impacted the soil and or ground water of the Site.

This assessment has not revealed Historical RECs (HRECs) or Controlled RECs (CRECs) associated with the Site.

Based on the findings and conclusions as identified in this assessment, Redwood does recommend additional investigation at this time. Redwood recommends a Limited Site Investigation (LSI) including soil and ground water sampling of the undeveloped portion of the Site, especially in areas found to be stained or where the vegetation is stressed or not uniform with the rest of the Site.

2.0 INTRODUCTION

Redwood has prepared this Phase I Environmental Site Assessment (ESA) for properties at 32 & 33 Exchange Street in East Greenwich, Rhode Island, (the Site). This assessment has been prepared exclusively for Grenier Properties, LLC (Grenier) of East Greenwich, Rhode Island. A U.S. Geographical Survey (USGS) Topographic Map and Site Plan are included as Figures 1 and 2, respectively.

2.1 Purpose

The purpose of this ESA is to document the environmental history of the Site, to evaluate the likelihood that a release of oil or hazardous material (OHM) has occurred or has the potential to impact the Site, and to provide our professional opinion regarding the current environmental condition of the Site.

2.2 Scope of Services

This ESA was performed in general accordance with the ASTM Standard E 1527-13. Redwood performed a visual reconnaissance of the Site, attempted to interview persons believed to be knowledgeable about the Site, and reviewed readily available documents and records pertaining to the environmental history of the Site at federal, state, and local agencies as referenced in this report.

2.3 Significant Assumptions

This report provides an overview of potential environmental concerns, both past and present. No subsurface testing, evaluation or confirmation of soil or ground water quality was performed. No indoor air quality testing was performed. *No assessment of the interior of the house or basement was performed.* This ESA is limited by the availability of information and assessability of the Site at the time of the assessment. It is possible that unreported disposal of OHM or improper or illegal activities impairing or impacting the environmental status of the property may have occurred which could not be identified due to the superficial nature of this report. The conclusions and recommendations regarding environmental conditions that are presented in this report are based on a Scope of Work authorized by *Grenier* dated *January 24, 2019*. However, no Scope of Work can identify all contaminants or all conditions above and below the ground.

2.4 Limitations and Exceptions

The services performed and outlined in this ESA were based, in part, upon visual observations of the Site and attendant structures (if any), on the day of the Site reconnaissance; Redwood's opinion cannot be extended to portions of the Site that were unavailable (if any) for direct observation, which were beyond the control of Redwood or for unreported disposals or improper or illegal activities. In addition, Redwood may have reviewed environmental reports prepared by others documenting historical investigations performed at the Site. Redwood assumes the reports to be accurate and complete with respect to the facts and circumstances presented; however, Redwood has not conducted any validation of the facts and circumstances presented in any such report.

The findings in this report are based solely on the information contained herein. Should additional information relative to the Site become available in the future, this information should be reviewed by Redwood and the findings presented herein may be modified, accordingly. The database search was restricted to the information provided in the *ERS* Report. This work has been undertaken in accordance with generally accepted consulting engineering practices. No air, soil or ground water testing was performed as part of this ESA; as a result, Redwood expresses no opinion regarding the same. No other warranty, express or implied, is made.

This report was prepared and rendered for the exclusive use and benefit of <u>Grenier</u> in accordance with the Scope of Work referenced above and may not be relied upon for any other purpose whatsoever. This report may not be used, copied, quoted or referred to without Redwood's prior written consent in each instance. This report is rendered as of the date hereof, and Redwood expresses no opinion as to circumstances or events which may occur subsequent to the date hereof or the date of the Site reconnaissance.

2.5 Special Terms and Conditions

There were no special terms or contractual conditions requested by <u>Grenier</u> for this ESA.

2.6 User Reliance

This report is rendered solely for the benefit of <u>Grenier</u> in accordance with the Scope of Work referenced above and may not be relied upon for any other purpose whatsoever. This report may not be used, copied, quoted or referred to without Redwood's prior written consent in each instance.

3.0 SITE DESCRIPTION

3.1 Location and Legal Description

The Site is a combination of two tax assessor lots on Exchange Street in East Greenwich as shown in the table below.

Plat/Lot	Address	Size (Acres)	Status	Owner	Zoning*
85-1-87	32 Exchange St	0.192	Vacant house	Grenier Properties, LLC	LHOD
85-1-382	33 Exchange St	0.287	Vacant Land	Grenier Properties, LLC	LHOD

^{*}Zoning- LHOD= Local Historical Overlay District

3.2 Site and Vicinity General Characteristics

The Site is located in a dense residential area of East Greenwich just west of Greenwich Cove. This area is also designated as a local historical overlay district. A 2-story colonial house is located along the western property line and Exchange Street. The balance of the property is gravel and weeds. Residential properties abut the Site to the north, south and west. The eastern abutter is Amtrak Railroad tracks. The Site is relatively flat and ground water is expected to flow in an easterly direction and Greenwich Cove approximately 725 feet east of the Site.

The Site is located on the East Greenwich, Rhode Island U.S. Geological Survey (USGS) 7.5 \times 15-minute series Quadrangle at an approximate latitude and longitude of 41° 39′ 41″ north and 71° 26′ 52″ west, respectively. The elevation of the Site is approximately 14 feet above mean sea level. Refer to Figure 1.

3.3 Current Use(s) of the Property

The house is unoccupied, and the balance of the property is undeveloped.

3.4 Structures, Roads, and Site Improvements

The Site is improved with a 2-story, wood framed house approximately 2,704 square feet in size. The house is currently boarded up as the interior is dangerous to walk through. The balance of the Site is undeveloped gravel and weeds. Access to the Site is from Exchange Street.

3.5 Adjoining Properties

Address	North	South	East	West
32 Exchange St	Residential	Residential	33 Exchange St.	Residential
33 Exchange St	Parking Lot	Residential	Amtrak RR	16, 24 & 32 Exchange St.

4.0 USER PROVIDED INFORMATION

4.1 Title Records

Redwood was not provided with title records pertaining to the Site. The ownership information provided in this ESA was researched by Redwood at the East Greenwich Tax Assessor's Office (and website) and intended for informational purposes only. This information is not intended as a title search or for any legal purpose. Redwood makes no representation as to the completeness or accuracy of such ownership information.

Both lots are currently owned by Grenier Properties, LLC of East Greenwich, Rhode Island. Previously the property was owned by Elaine Currie who sold the lots by Warranty Deed to Grenier Properties, LLC on March 22, 2018 with a Land Records reference of Book 1393, Page 272. A copy of the Tax Assessor's Office Field Cards is provided in Appendix A.

4.2 Environmental Liens or Environmental Land Use Restrictions (ELURs)

Redwood was not provided with information regarding Environmental Liens or ELURs pertaining to the Site. Redwood reviewed the land records in the East Greenwich Clerk's Office website and did not identify environmental liens or ELURs pertaining to the Site.

4.3 Specialized Knowledge

There was no specialized knowledge provided to Redwood.

4.4 Commonly Known or Reasonably Ascertainable Information

The following questions were answered by Mr. Tim Grenier of Grenier Properties, LLC:

- 1. Environmental cleanup liens that are filed or recorded against the Site: Are you aware of any environmental cleanup liens against the property filed or recorded under federal, state or local law? **NO.**
- 2. AUL/ELUR that are in place on the site or that have been filed or recorded in a registry: Are you aware of any AULs/ELURs such as engineering controls, land use restrictions or institutional controls that are in place at the site and/or have been filed or recorded in a registry under federal, state or local law? NO.
- 3. Specialized Knowledge or experience of the person seeking to qualify for the Landowner Liability Protection (LLP):
- As the user of this ESA, do you have any specialized knowledge or experience related to the property or nearby properties? **NO.**
- 4. Relationship of the purchase price to the fair market value of the property if it were not contaminated: Does the purchase price being paid for this property reasonably reflect the fair market value of the property? Is the difference in price due to environmental issues at the site? **Not Applicable**

- 5. Commonly known or reasonably ascertainable information about the Site: *Are you aware of commonly known or reasonably ascertainable information about the property that would help Redwood identify conditions of a release or threat of release-*
 - Past uses of the Site: Residential and vehicle storage
 - Specific chemicals used at the Site-Past/Present: **Petroleum products**
 - Do you have knowledge of historical or resent chemical spills? **NO.**
 - Do you have knowledge of environmental cleanups at the Site? NO.
- 6. The degree of obviousness of the presence or likely presence of contamination at the property and the ability to detect the contamination by appropriate investigation:

 As the user of the FSA, based on your knowledge and experience related to the property are there are

As the user of the ESA, based on your knowledge and experience related to the property are there any obvious indicators that point to the presence or likely presence of contamination at the property? **Unknown.**

4.5 Valuation Reduction for Environmental Issues

Grenier is unaware of any environmental issues related to the Site which would affect the value of the Site.

4.6 Owner, Property Manager and Occupant Information

Mr. Grenier told Redwood that the previous owner of the Site stored many vehicles in the undeveloped portion of the Site. Additionally, Mr. Grenier stated that he is unaware of any environmental issues at the Site.

4.7 Reason for Performing Phase I ESA

Grenier commissioned this ESA as a due diligence measure regarding a financial arrangement.

4.8 Previous Environmental Reports

Redwood was not provided with previous environmental reports pertaining to the Site.

5.0 RECORDS REVIEW

The purpose of the records review was to obtain and review documents that will help identify RECs in connection with the Site. Some records reviewed pertained not only to the Site, but also to properties within an additional approximate minimum search distance in order to help assess the likelihood of Site impacts from migrating hazardous substances or petroleum products. Unless stated otherwise the approximate minimum search distances used below are specified in the ASTM E 1527-13 Standard.

5.1 Standard Environmental Records

As part of Redwood's assessment of the Site, Environmental Record Search (ERS) of Laguna Hills, California conducted an environmental database search. The search included reviews of federal and state database records and was conducted in accordance with the specific requirements of the ASTM Standard E 1527-13. A listing of the search radii for each environmental database search is included in the ERS Report.

The Site was not identified in the databases searched.

A copy of the ERS Report is provided in Appendix B.

5.1.1 Federal Environmental Records

Record Source	At Site	Within Search Radii
National Priority List (NPL)	None	None
DeListed NPL	None	None
Superfund Enterprise Management System (SEMS)	None	None
SEMS Archive	None	None
CERCLIS Facilities	None	None
CERCLIS No Further Action Planned (NFRAP) Facilities	None	None
RCRA (Corrective Action) CORRACTS Facilities	None	None
RCRA Treatment, Storage and/or Disposal (TSD) Facilities	None	None
RCRA Generators	None	2
RCRA No Longer Regulated (NLR)	None	12

5.1.2 State Environmental Records

Record Source	At Site	Within Search Radii
State Hazardous Waste Site (SHWS)	None	4
Landfill/Solid Waste Disposal Facility	None	1
Leaking Underground Storage Tanks Sites (LUST)	None	9

Underground Storage Tanks (USTs)	None	18
Institutional/Engineering Controls (IEC)	None	None
State Brownfield Sites	None	None

As shown in the tables above and based on the distance and location of the facilities identified in the ERS Report, the status of the facility as provided in the ERS Report and the anticipated ground water flow direction in an easterly direction, Redwood does not anticipate that the facilities identified by ERS will adversely impact the environmental conditions at the Site.

5.1.3 Vapor Encroachment Condition (VEC)

As part of the ASTM Method 1527-13, environmental professionals are required to assess vapor encroachment conditions regarding the Site. The definition of vapor encroachment is "the likelihood of migrating vapors volatilized from a contaminated source to encroach upon the subsurface of a property and create a vapor encroachment condition (VEC)". Redwood assessed the local ground water flow direction as it is shown on the USGS Topographic Map of East Greenwich, Rhode Island and predicts that the ground water flow at the Site is generally to the east. As such, areas to the west of the Site are considered to be upgradient, areas to the north and south are considered cross-gradient and areas east of the Site are considered downgradient of the Site.

Redwood opines that there are no facilities located within 1,000 feet and upgradient of the Site that would adversely affect the ground water of the Site based on the current status as listed in the above table. Redwood does not believe a vapor encroachment condition exists at the Site.

5.2 Additional Environmental Record Sources

5.2.1 Local Records

Redwood obtained tax assessor property field cards from the Town of East Greenwich. According to the field cards, the properties have a designation of Plat 85-1, Lots 87 and 382 which corresponds to addresses 32 & 33 Exchange Street, respectively. A copy of the Tax Assessor's Property Record Cards and Plat Map are provided in Appendix A.

5.2.2 Fire Department Records

As the property is residential in use, the East Greenwich Fire Department does not normally keep OHM or tank records on residential properties unless the department has responded to the address for a fire.

5.3 Physical Setting Source(s)

The Site is located in a dense residential area of East Greenwich just west of Greenwich Cove. This area is also designated as a local historical overlay district. A 2-

story colonial house is located along the western property line and Exchange Street. The balance of the property is gravel and weeds. Residential properties abut the Site to the north, south and west. The eastern abutter is Amtrak Railroad tracks. The Site is relatively flat and ground water is expected to flow in an easterly direction and Greenwich Cove approximately 725 feet east of the Site.

The Site is located on the East Greenwich, Rhode Island U.S. Geological Survey (USGS) 7.5 x 15-minute series Quadrangle at an approximate latitude and longitude of 41° 39′ 41″ north and 71° 26′ 52″ west, respectively. The elevation of the Site is approximately 14 feet above mean sea level. Refer to Figure 1.

5.3.1 Regional Geology

Surficial soils at the Site are mapped as MU for Merrimac-Urban complex.

Surficial geology of the Site is mapped by the USGS as outwash.

Bedrock beneath the Site is mapped as Narragansett Bay Group-Rhode Island Formation defined as the Pennsylvanian geologic age, sedimentary, coal and anthracite constituents and part of the Esmond-Dedham Subterrane.

5.3.2 Hydrogeology

Based on a review of the Rhode Island Department of Environmental Management (RI DEM) Environmental Resource website, the Site ground water is classified as GB, water that is not suitable for drinking without treatment. There are no public water supplies within 1 mile of the Site.

5.3.3 Hydrology

Based on a review of the aforementioned topographic map of East Greenwich, ground water is expected to flow in an easterly direction and towards the Greenwich Cove located approximately 725 feet from the Site.

Based on the FEMA Q3 Digital Data, Flood Zone Panel: 44003C0137H, Effective Date: 9/18/2013, the Site is located within Zone X - Area of minimal flood hazard, usually depicted on FIRMs as above the 500-year flood level.

5.4 Historical Use Information Site and Adjoining Properties

The objective of reviewing historical sources is to develop a history of the previous uses of the Site and vicinity in order to help identify the likelihood of past uses having led to RECs in connection with the Site.

5.4.1 Aerial Photographs

Redwood performed an aerial photograph review on the RI DEM Website for years 1939, 1951, 1962, 1972, 1981, 1997, 2011 and 2018 as shown in the table below. Copies of the aerial photographs reviewed are provided in Appendix C.

Historical	Year	Description
Aerial	1939	A house structure is located on the western side of the Site. The
		balance of the Site is undeveloped.
Aerial	1951	Same as Above
Aerial	1962	Same as above with some vehicles visible on the undeveloped portion
		of the Site.
Aerial	1972	Same as Above
Aerial	1997	Same as Above
Aerial	2008	The house is located along the western border of the property and the
		several vehicles and a boat are visible on the balance of the property.
Aerial	2019	Same as above except there are no vehicles or boats on the
		undeveloped portion of the Site.

5.4.2 Fire Insurance Maps

Fire insurance maps are not available from the Rhode Island Historical Society for this part of the State.

5.4.3 City Directory

City Directory information for 32 and 33 Exchange Street was ordered from ERS. Various years from 1980 through 2018 were reviewed. 32 Exchange Street was listed as vacant in 1980. Between 1983 and 2013, the listing showed Chas Fishell. There was no listing for 2018. 33 Exchange Street was not listed in any years reviewed. A copy of the ERS City Directory Report is provided in Appendix B.

6.0 SITE RECONNAISSANCE

The purpose of the Site reconnaissance is to obtain information indicating the likelihood of identifying RECs in connection with the Site.

6.1 Methodology and Limiting Conditions

Redwood visited both locations on February 6, 2019 to perform a general site reconnaissance which included a visual reconnaissance of the Site for the identification, use, storage and/or evidence of disposal of OHM at the Site. Properties surrounding the Site were also visually observed for obvious RECs. A Photograph Log is included in Appendix D.

6.2 General Site Setting

The Site is comprised of two contiguous lots on Exchange Street. 32 Exchange Street abuts the street and is occupied by a dwelling. 33 Exchange Street is located east of the 32 Exchange Street property and runs to the north along the Amtrak Railroad tracks. This portion of the Site is undeveloped.

6.2.1 Current and Past Use(s) of the Site

Currently, the Site is occupied by a boarded up, vacant, dwelling structure with an address of 32 Exchange Street. The dwelling has been at the Site since the mid-1800's. The eastern portion of the Site has been and continues to be undeveloped. Redwood has been told by neighbors that the undeveloped portion of the Site had been used to store vehicles and boats for many years in the past.

6.2.2 Current and Past Use(s) of Adjoining Property

The railroad has been and continues to be located east of the Site. Residential property has been and continues to be located to the south and west. The northern abutter is residential and a parking lot. Previous to the parking lot was a residential structure.

6.2.3 General Description of Structures

A 2-story, wood framed building constructed in the 1800's occupies the Site. The house is boarded up and vacant. Redwood did not have access to the building. Two sheds are located at the Site and were observed to be vacant at the time of the Site assessment.

6.2.4 Roads

The Site is accessible from Exchange Street.

6.2.5 Potable Water

The Site is serviced by municipal water.

6.2.6 Sewage Disposal System

The Site is serviced by municipal sewers.

6.3 Interior Observations

Redwood did not have access to the house or basement, which according to Mr. Grenier, is vacant. The two sheds on the property were observed to be vacant.

6.3.1 Hazardous Substances and Petroleum Products

Redwood did not observe OHM in the limited areas assessed, namely the sheds.

6.3.2 Drums and Containers

Redwood did not observe drums or containers in the limited areas assessed, namely the sheds.

6.3.3 Storage Tanks

Redwood did not observe storage tanks in the limited areas assessed, namely the sheds.

6.3.4 Polychlorinated Biphenyls (PCBs)

Redwood did not observe PCB equipment in the limited areas assessed, namely the sheds.

6.3.5 Waste Water Discharge

The Site does not discharge waste water.

6.3.6 Staining, Corrosion and or Odors

Staining of the soil was evident in one of the sheds.

6.3.7 Heating and Cooling

The house was heated by home heating oil based on piping attached to the exterior of the house on the north side. Redwood did not observe a tank at the Site.

6.3.8 Drain and Sumps

Redwood did not observe drains or sumps in the limited areas assessed, namely the sheds.

6.4 Exterior Observations

The house is located on the western property line along Exchange Street. The balance of the Site is undeveloped land. Two empty sheds are located east of the house.

6.4.1 Hazardous Substances and Petroleum Products

Redwood did not observe OHM exterior to the house or in the undeveloped portion of the Site.

6.4.2 Drums and Containers

Redwood did not observe drums or containers exterior to the house or in the undeveloped portion of the Site.

6.4.3 Storage Tanks

No evidence of underground storage tanks was observed around the house. However, piping attached to the house indicates that an above ground storage tank (AST) was located at the northeast corner of the house. The AST is no longer at the Site. Redwood did not observe staining on the ground surface in the area of the former AST.

6.4.4 Pits, Ponds or Lagoons

Redwood did not observe pits, ponds or lagoons associated with OHM at the Site.

6.4.5 Underground Structures

Redwood did not observe evidence of underground structures at the Site.

6.4.6 Polychlorinated Biphenyls (PCBs)

Redwood did not observe PCB equipment associated with the Site.

6.4.7 Stained Soil or Pavement

Redwood did observe minor staining of soil in various locations in the undeveloped portion of the Site and within one of the sheds.

6.4.8 Stress Vegetation

Although the assessment was performed in the winter when vegetation is dormant, Redwood observed a large circular area on the undeveloped portion of the Site lacking

vegetation as observed on the rest of the Site. Redwood inquired to Mr. Grenier what this area may represent, but he did not know. However, after inquiry with the neighbors, Redwood was told that the undeveloped portion of the Site had been used to store vehicles and boats for many years in the past.

6.4.9 Solid Waste

Redwood did observe some solid waste dumping at the Site along the border with the railroad tracks.

7.0 INTERVIEWS

7.1 Past and Present Property Owners

Redwood obtained Site ownership information from the East Greenwich Tax Assessor's Office. Redwood interviewed Mr. Grenier for Site specific data.

7.2 State and Local Government Officials

Local municipal personnel were interviewed as described in the Section 5.2 above.

8.0 FINDINGS AND CONCLUSION

Redwood has performed a Phase I Environmental Site Assessment in conformance with the scope and limitations of 40 CFR Part 312, "Standards and Practices for All Appropriate Inquires" and ASTM E1527-13 "Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process". Any limiting conditions, exception to, or deletions from, this practice are described in Section 2.0 of this Report.

Redwood did not have access to the house interior and therefore, cannot provide an opinion as to the presence of environmental issues within.

This assessment has revealed one Recognized Environmental Conditions (RECs) at the Site. Vehicles and boats were stored on the undeveloped portion of the Site for a number of years. This past use could have adversely impacted the soil and or ground water of the Site.

This assessment has not revealed Historical RECs (HRECs) or Controlled RECs (CRECs) associated with the Site.

9.0 DEVIATIONS AND ADDITIONAL SERVICES

9.1 Deviations

This ESA was performed in general accordance with the scope and limitations of ASTM Standard E 1527-13. Limitations regarding this assessment are provided in Section 2.4 above.

9.2 Additional Services

No additional services beyond the scope of the ASTM Standard E 1527-13 were conducted as part of this assessment.

AAI/Phase I Environmental Site Assessment 32 & 33 Exchange Street East Greenwich, Rhode Island

10.0 RECOMMENDATIONS

Based on the findings and conclusions as stated in Section 8.0 above, Redwood does recommend additional investigation at this time. Redwood recommends a Limited Site Investigation (LSI) including soil and ground water sampling of the undeveloped portion of the Site, especially in areas found to be stained or where the vegetation is stressed or not uniform with the rest of the Site.

AAI/Phase I Environmental Site Assessment 32 & 33 Exchange Street East Greenwich, Rhode Island

11.0 REFERENCES

- Redwood Site Reconnaissance- February 6, 2019
- American Society for Testing and Materials Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process (ASTM E1527-13).
- ERS Database Report
- ERS City Directory Report
- Fire Insurance Maps-RI Historical Society
- Town of East Greenwich Municipal Departments- February 6, 2019
- Rhode Island Department of Environmental Management (RI DEM) Internet Resource Map

AAI/Phase I Environmental Site Assessment 32 & 33 Exchange Street East Greenwich, Rhode Island

12.0 QUALIFICATIONS AND SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

The qualifications of the environmental professional(s) and personnel conducting the Site reconnaissance and interviews are provided in Appendix E.

June 16, 2019 Project 201942

Tim Grenier Grenier Group 3 Cole Circle East Greenwich, RI 02818

Re: Letter Report

Soil Sampling Results-RCRA 8 Metals

Residential Property 32 & 33 Exchange Street East Greenwich, RI 02818

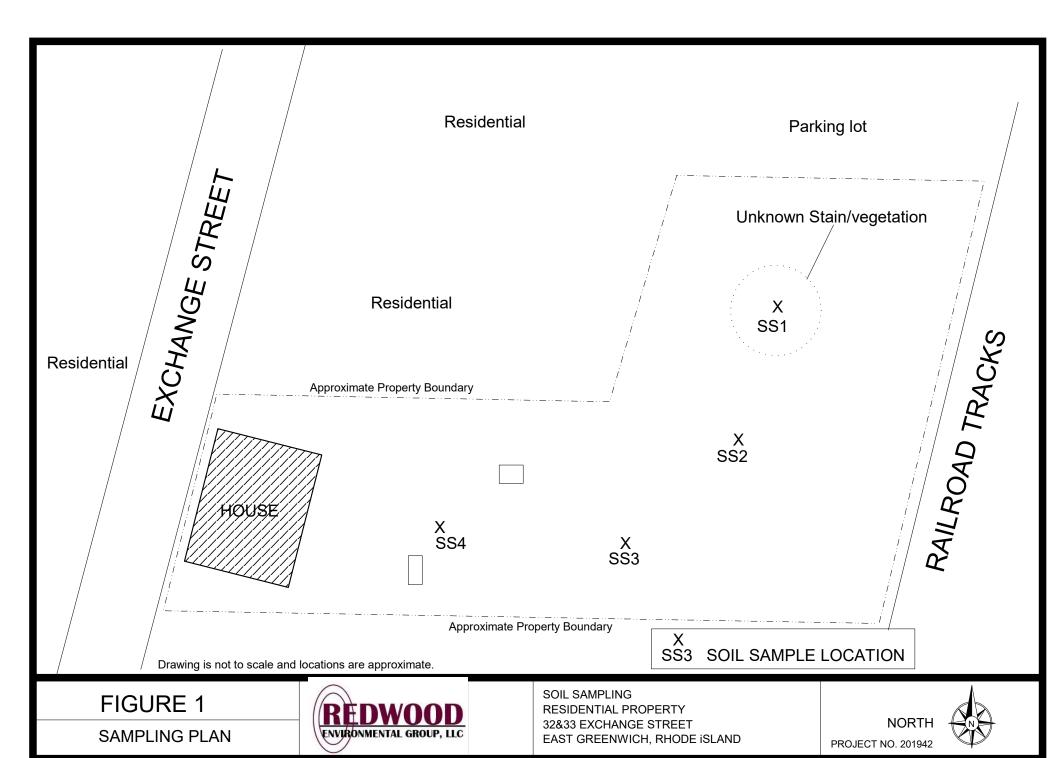
Dear Mr. Grenier:

Redwood Environmental Group, LLC (Redwood) has completed limited soil sampling at the address above (the Site) as requested by Grenier Group. Redwood arbitrarily selected 4 points across the Site and using a shovel, dug down approximately 12 to 18 inches into the soil. Soils were then collected from the sidewalls of the hole and placed in laboratory glassware. The soils were delivered to a Rhode Island Certified laboratory for RCRA-8 Metal analysis by U.S. EPA Method 6010. An orange flag was placed in each sample location. Figure 1 provides an approximate location of the sample points.

RCRA-8 metals include Arsenic, Barium, Cadmium, Chromium, Lead, Mercury, Selenium and Silver. Table 1 attached shows the results as compared to the Rhode Island Department of Environment Management (RI DEM) Residential Direct Exposure Criteria (RDEC) applicable to the Site. Only lead was identified above the RDEC of 150 milligrams per kilograms (mg/kg). Soil samples 201942-SS2-060419 and 201942-SS3-060419 were identified with lead at concentrations of 424 mg/kg and 197 mg/kg, respectively. All other metals listed above were either identified with low level concentrations or concentrations below the laboratory reporting limits for that metal.

If you have any questions regarding this report, please call me at (401) 270-7000. Thank you for the opportunity to provide environmental assessment services.

Sincerely,


REDWOOD ENVIRONMENTAL GROUP, LLC

Gary S. Kaufman

Gary S. Kaufman

Principal/Senior Project Manager

Attachments Figure 1 Table 1

Laboratory Sample Designation Sample Designation Sample Date Total Metals		RES DEC	19F0164-01 201942-SS1-060419 06/04/2019		19F0164-02 201942-SS2-060419 06/04/2019		19F0164-03 201942-SS3-060419 06/04/2019		19F0164-04 201942-SS4-060419 06/04/2019	
Arsenic	mg/kg	7	2.46	U	2.89	-	2.50	-	2.35	-
Barium	mg/kg	5500	38.9	-	74.8	-	61.8	-	35.5	-
Cadmium	mg/kg	39	1.31	-	1.99	-	1.27	-	0.85	-
Chromium	mg/kg	1400	7.99	-	12.3	-	8.42	-	8.29	-
Lead	mg/kg	150	80.0	-	424	-	197	-	119	-
Mercury	mg/kg	23	0.064	-	0.102	-	0.071	-	0.068	-
Selenium	mg/kg	390	4.93	U	3.93	U	4.36	U	4.55	U
Silver	mg/kg	200	0.49	U	0.39	U	0.44	U	0.46	U

Qualifier	Description
U	Undetected
Bold	Constituent identified above RI DEM Residential Direct Exposure Criteri

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Gary Kaufman Redwood Environmental Group 10 Elmgrove Avenue Providence, RI 02906

RE: Exchange Street (201942)

ESS Laboratory Work Order Number: 19F0164

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 7:03 pm, Jun 14, 2019

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0164

SAMPLE RECEIPT

The following samples were received on June 06, 2019 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	Sample Name	Matrix	Analysis
19F0164-01	201942-SS1-060419	Soil	6010C, 7471B
19F0164-02	201942-SS2-060419	Soil	6010C, 7471B
19F0164-03	201942-SS3-060419	Soil	6010C, 7471B
19F0164-04	201942-SS4-060419	Soil	6010C, 7471B

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0164

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0164

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS1-060419

Date Sampled: 06/04/19 14:30

Percent Solids: 94

ESS Laboratory Work Order: 19F0164 ESS Laboratory Sample ID: 19F0164-01

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	ND (2.46)		6010C		1	KJK	06/12/19 17:42	2.16	100	CF90741
Barium	38.9 (2.46)		6010C		1	KJK	06/12/19 17:42	2.16	100	CF90741
Cadmium	1.31 (0.49)		6010C		1	KJK	06/12/19 17:42	2.16	100	CF90741
Chromium	7.99 (0.99)		6010C		1	KJK	06/12/19 17:42	2.16	100	CF90741
Lead	80.0 (4.93)		6010C		1	KJK	06/12/19 17:42	2.16	100	CF90741
Mercury	0.064 (0.026)		7471B		1	MKS	06/11/19 9:39	0.8	40	CF90742
Selenium	ND (4.93)		6010C		1	KJK	06/12/19 17:42	2.16	100	CF90741
Silver	ND (0.49)		6010C		1	KJK	06/12/19 17:42	2.16	100	CF90741

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS2-060419

Date Sampled: 06/04/19 14:45

Percent Solids: 94

ESS Laboratory Work Order: 19F0164 ESS Laboratory Sample ID: 19F0164-02

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Analyte Arsenic	Results (MRL) 2.89 (1.97)	<u>MDL</u>	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 06/12/19 18:14	<u>I/V</u> 2.71	<u>F/V</u> 100	Batch CF90741
Barium	74.8 (1.97)		6010C		1	KJK	06/12/19 18:14	2.71	100	CF90741
Cadmium	1.99 (0.39)		6010C		1	KJK	06/12/19 18:14	2.71	100	CF90741
Chromium	12.3 (0.79)		6010C		1	KJK	06/12/19 18:14	2.71	100	CF90741
Lead	424 (3.93)		6010C		1	KJK	06/12/19 18:14	2.71	100	CF90741
Mercury	0.102 (0.029)		7471B		1	MKS	06/11/19 9:53	0.72	40	CF90742
Selenium	ND (3.93)		6010C		1	KJK	06/12/19 18:14	2.71	100	CF90741
Silver	ND (0.39)		6010C		1	KJK	06/12/19 18:14	2.71	100	CF90741

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS3-060419

Date Sampled: 06/04/19 15:00

Percent Solids: 94

ESS Laboratory Work Order: 19F0164 ESS Laboratory Sample ID: 19F0164-03

Sample Matrix: Soil

Units: mg/kg dry

Extraction Method: 3050B

Analyte Arsenic	Results (MRL) 2.50 (2.18)	<u>MDL</u>	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 06/12/19 18:33	<u>I/V</u> 2.43	<u>F/V</u> 100	Batch CF90741
Barium	61.8 (2.18)		6010C		1	KJK	06/12/19 18:33	2.43	100	CF90741
Cadmium	1.27 (0.44)		6010C		1	KJK	06/12/19 18:33	2.43	100	CF90741
Chromium	8.42 (0.87)		6010C		1	KJK	06/12/19 18:33	2.43	100	CF90741
Lead	197 (4.36)		6010C		1	KJK	06/12/19 18:33	2.43	100	CF90741
Mercury	0.071 (0.031)		7471B		1	MKS	06/11/19 10:03	0.67	40	CF90742
Selenium	ND (4.36)		6010C		1	KJK	06/12/19 18:33	2.43	100	CF90741
Silver	ND (0.44)		6010C		1	KJK	06/12/19 18:33	2.43	100	CF90741

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS4-060419

Date Sampled: 06/04/19 15:15

Percent Solids: 94

ESS Laboratory Work Order: 19F0164 ESS Laboratory Sample ID: 19F0164-04

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Analyte Arsenic	Results (MRL) 2.35 (2.28)	MDL	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 06/12/19 18:37	<u>I/V</u> 2.33	$\frac{\mathbf{F/V}}{100}$	Batch CF90741
Barium	35.5 (2.28)		6010C		1	KJK	06/12/19 18:37	2.33	100	CF90741
Cadmium	0.85 (0.46)		6010C		1	KJK	06/12/19 18:37	2.33	100	CF90741
Chromium	8.29 (0.91)		6010C		1	KJK	06/12/19 18:37	2.33	100	CF90741
Lead	119 (4.55)		6010C		1	KJK	06/12/19 18:37	2.33	100	CF90741
Mercury	0.068 (0.025)		7471B		1	MKS	06/11/19 10:05	0.83	40	CF90742
Selenium	ND (4.55)		6010C		1	KJK	06/12/19 18:37	2.33	100	CF90741
Silver	ND (0.46)		6010C		1	KJK	06/12/19 18:37	2.33	100	CF90741

The Microbiology Division of Thielsch Engineering, Inc.

RPD

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street

ESS Laboratory Work Order: 19F0164

%REC

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
·			Total Meta							
			Total Ficta	113						
Batch CF90741 - 3050B										
Blank										
Arsenic	ND	2.50	mg/kg wet							
Barium	ND	2.50	mg/kg wet							
Cadmium	ND	0.50	mg/kg wet							
Chromium	ND	1.00	mg/kg wet							
Lead	ND	5.00	mg/kg wet							
Selenium	ND	5.00	mg/kg wet							
Silver	ND	0.50	mg/kg wet							
LCS										
Arsenic	132	9.26	mg/kg wet	128.0		104	80-120			
Barium	509	9.26	mg/kg wet	536.0		95	80-120			
Cadmium	89.2	1.85	mg/kg wet	99.00		90	80-120			
Chromium	116	3.70	mg/kg wet	116.0		100	80-120			
Lead	273	18.5	mg/kg wet	277.0		99	80-120			
Selenium	237	18.5	mg/kg wet	242.0		98	80-120			
Silver	61.8	1.85	mg/kg wet	64.30		96	80-120			
LCS Dup										
Arsenic	138	9.80	mg/kg wet	128.0		108	80-120	4	20	
Barium	556	9.80	mg/kg wet	536.0		104	80-120	9	20	
Cadmium	92.2	1.96	mg/kg wet	99.00		93	80-120	3	20	
Chromium	115	3.92	mg/kg wet	116.0		99	80-120	0.4	20	
Lead	279	19.6	mg/kg wet	277.0		101	80-120	2	20	
Selenium	244	19.6	mg/kg wet	242.0		101	80-120	3	20	
Silver	61.5	1.96	mg/kg wet	64.30		96	80-120	0.5	20	
Reference										
Barium	509	8.77	mg/kg wet	500.0		102	70-130			
Cadmium	516	1.75	mg/kg wet	500.0		103	70-130			
Chromium	541	3.51	mg/kg wet	500.0		108	70-130			
Lead	540	17.5	mg/kg wet	500.0		108	70-130			
Silver	140	1.75	mg/kg wet	500.0		28	70-130			
Batch CF90742 - 7471B										
Blank										
Mercury	ND	0.033	mg/kg wet							
LCS										
Mercury	12.5	0.868	mg/kg wet	16.80		75	51-105			
LCS Dup										
Mercury	11.0	0.900	mg/kg wet	16.80		66	51-105	13	20	
Reference										
Mercury	0.981	0.168	mg/kg wet	1000		0.1	0-200			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0164

Notes and Definitions

U Analyte included in the analysis, but not detected
--

D Diluted.

F/V

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

Sample results reported on a dry weight basis dry

Relative Percent Difference **RPD MDL** Method Detection Limit **MRL** Method Reporting Limit LOD Limit of Detection Limit of Quantitation LOQ **Detection Limit** DL Initial Volume I/V

Final Volume

Subcontracted analysis; see attached report §

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg

Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit MF Membrane Filtration MPN Most Probably Number **TNTC** Too numerous to Count **CFU** Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0164

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Redwood	d Environmer	ntal Group <u>- K</u>	(PB/EO		ESS Proje	ct ID:	19F0164	
-						Date Rece	ived:	6/6/2019	
Shipped/De	elivered Via: _	<u> </u>	ESS Courier			Project Due I Days for Pro	Date:	6/13/2019 5 Day	
						Days IOI I II	Jjeot		
1. Air bill ma	anifest prese			No		6. Does COC mate			Yes Yes
2. Were cus	stody seals p	resent?		No		 Is COC complete Were samples re 			Yes
3. Is radiation	on count <10	0 CPM?		Yes		•			
			_		.	9. Were labs infor	med about <u>sh</u>	ort holds & rushes?	Yes / Not NA
4. Is a Cool Temp:		lced with:	lce	Yes		10. Were any ana	lyses received	outside of hold time?	Yes / No
5. Was CO	C signed and	l dated by cli	ent?	Yes]				
	ocontracting r Sample IDs: Analysis: TAT:		Yes /			12. Were VOAs re a. Air bubbles in a b. Does methanol	queous VOAs?		Yes / No Yes / No Yes / No / NA
a. If metals	samples pro preserved u el VOA vials		ved? (Yes / No Date: Date:		Time:		By:	
Sample Red	ceiving Notes	s :							
14. Was the a. Was the Who was co	re a need to	o contact Pro contact the c	ject Manager lient?	? Date:	Yes (No Yes No	/ Time:		Ву:	
Ocumba	Container	Proper	Air Bubbles	Sufficient				Record nH (C	yanide and 608
Sample Number	Container ID	Proper Container	Present	Volume	Containe	er Type	Preservative		icides)
- 01	353158	Yes	NA	Yes	4 oz. Jar	- Unnres	NP		
01 02	353156	Yes	NA NA	Yes	4 oz. Jar		NP		
03	353156	Yes	NA	Yes	4 oz. Jar	- Unpres	NP		
04	353155	Yes	NA	Yes	4 oz. Jar	- Unpres	NP		
Are barcod Are all Flas Are all Hex Are all QC	ontainers so e labels on c hpoint sticke Chrome stic stickers attac	orrect contai rs attached/d kers attached	container ID # d?	circled?		Yes / No Yes / No / NA Yes / No / NA Yes / No / NA Yes / No / NA Yes / No / NA			
One-state (/	// ;					11/2	1100	
Completed By:	//	لجيك			_ Date & Time:		6/19	11:09	
Reviewed By:		2	T.		Date & Time:	<u> </u>	(19	1328	
Delivered By:		_ `)	史义				d619	1328	

ESS Laboratory HAIN OF CUSTODY Division of Thielsch Engineering, Inc. Turn Time ESS LAB PROJECT ID Reporting Limits 185 Frances Avenue, Cranston, RI 02910-2211 If faster than 5 days, prior approval by laboratory is required # Res. State where samples were collected from: Tel. (401) 461-7181 Fax (401) 461-4486 MA (RI CT NH NJ NY Other Electronic Deliverable www.esslaboratory.com Is this project for any of the following:

MA-MCP Navy USACE Other Format: Excel __ Access __ PDF __ Other __ Co. Name Project Name (20 Char, or less) Project # Write Required Analysis 201942 City Zip Type of Containers Telephone # Fax # Email Address ESS LAB Date Collection MATRIX GRAB Sample Identification (20 Char. or less) Sample # Time 6/4/19 2:30 201942-551-060419 6 2:45 201942-552-060419 2 G 3 201942-553-060419 3:00 6 201942-554-060419 4 3:15 G Container Type: P-Poly G-Glass S-Sterile V-VOA | Matrix: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filters Yes ___ No Cooler Present Internal Use Only Preservation Code 1- NP, 2- HC1, 3- H2SO4, 4- HNO3, 5- NaOH, 6- MeOH, 7- Asorbic Acid, 8- ZnAct, 9-___Yes ___No NA: / [] Pickup Sampled by: Cosh Seals Intact Cooler Temp: 5.7 Live Scu Comments: on ice Prior to Lab delivery Technicians ___ Relinquished by: (Signature) Date/Time Received by: (Signature) Date/Time Relinquished by: (Signature) Date/Time Received by: (Signature) Date/Time 6 Yumm 6/1919: 14 Relinguished by: (Signature) Date/Time Received by: (Signature) Date/Time Relinquished by: (Signature) Date/Time Received by: (Signature) Date/Time

^{*}By circling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A

June 16, 2019 Project 201942

Tim Grenier Grenier Group 3 Cole Circle East Greenwich, RI 02818

Re: Letter Report

Soil Sampling Results-VOCs, TPH

Residential Property 32 & 33 Exchange Street East Greenwich, RI 02818

Dear Mr. Grenier:

Redwood Environmental Group, LLC (Redwood) has completed limited soil sampling at the address above (the Site) as requested by Grenier Group. Redwood arbitrarily selected 4 points across the Site and using a shovel, dug down approximately 12 to 18 inches into the soil. Soils were then collected from the sidewalls of the hole and placed in laboratory glassware. The soils were delivered to a Rhode Island Certified laboratory for the following analysis:

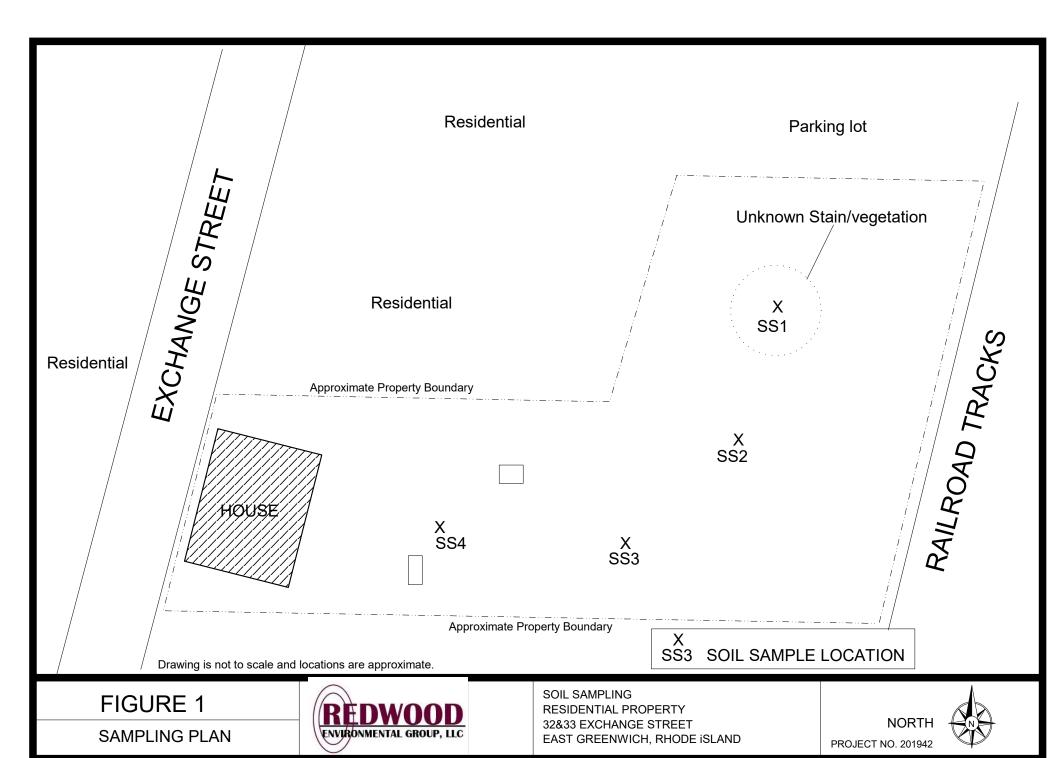
- Volatile organic compounds (VOCs) by U.S. EPA Method 8260 and
- Total Petroleum Hydrocarbons (TPH) by U.S. EPA Method 8100M

An orange flag was placed in each sample location. Figure 1 provides an approximate location of the sample points.

Table 1 attached shows the results of VOCs and TPH as compared to the Rhode Island Department of Environment Management (RI DEM) Residential Direct Exposure Criteria (RDEC) applicable to the Site. No VOCs or TPH were identified above RDEC standards applicable to the Site.

If you have any questions regarding this report, please call me at (401) 270-7000. Thank you for the opportunity to provide environmental assessment services.

Sincerely,


REDWOOD ENVIRONMENTAL GROUP, LLC

Gary S. Kaufman

Gary S. Raufman

Principal/Senior Project Manager

Attachments Figure 1 Table 1

Laboratory Sample Designation Sample Designation Sample Date		RES DEC	19F008 ² 201942-SS1 06/04/20	-060419	19F008 ² 201942-SS2 06/04/2	-060419	19F008 201942-SS3 06/04/2	-060419	19F008 201942-SS4 06/04/2	-060419
VOCs										
1,1,1,2-Tetrachloroethane	mg/kg	2.2	0.149	U	0.161	U	0.154	U	0.137	U
1,1,1-Trichloroethane	mg/kg	540	0.149	U	0.161	U	0.154	U	0.137	U
1,1,2,2-Tetrachloroethane	mg/kg	1.3	0.149	U	0.161	U	0.154	U	0.137	U
1,1,2-Trichloroethane	mg/kg	3.6	0.149	U	0.161	U	0.154	U	0.137	U
1,1-Dichloroethane	mg/kg	920	0.149	U	0.161	U	0.154	U	0.137	U
1,1-Dichloroethene	mg/kg	0.2	0.149	U	0.161	U	0.154	U	0.137	U
1,1-Dichloropropene	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
1,2,3-Trichlorobenzene	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
1,2,3-Trichloropropane	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
1,2,4-Trichlorobenzene	mg/kg	96	0.149	U	0.161	U	0.154	U	0.137	U
1,2,4-Trimethylbenzene	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
1,2-Dibromo-3-Chloropropane	mg/kg	0.5	0.744	U	0.806	U	0.77	U	0.683	U
1,2-Dibromoethane	mg/kg	0.01	0.149	U	0.161	U	0.154	U	0.137	U
1,2-Dichlorobenzene	mg/kg	510	0.149	U	0.161	U	0.154	U	0.137	U
1,2-Dichloroethane	mg/kg	0.9	0.149	U	0.161	U	0.154	U	0.137	U
1,2-Dichloropropane	mg/kg	1.9	0.149	U	0.161	U	0.154	U	0.137	U
1,3,5-Trimethylbenzene	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
1,3-Dichlorobenzene	mg/kg	430	0.149	U	0.161	U	0.154	U	0.137	U
1,3-Dichloropropane	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
1,4-Dichlorobenzene	mg/kg	27	0.149	U	0.161	U	0.154	U	0.137	U
1,4-Dioxane - Screen	mg/kg	NE	29.8	U	32.3	U	30.8	U	27.3	U
1-Chlorohexane	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
2,2-Dichloropropane	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
2-Butanone	mg/kg	10000	0.744	U	0.806	U	0.77	U	0.683	U
2-Chlorotoluene	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
2-Hexanone	mg/kg	NE	0.744	U	0.806	U	0.77	U	0.683	U
4-Chlorotoluene	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
4-Isopropyltoluene	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
4-Methyl-2-Pentanone	mg/kg	1200	0.744	U	0.806	U	0.77	U	0.683	U
Acetone	mg/kg	7800	0.744	U	0.806	U	0.77	U	0.683	U
Benzene	mg/kg	2.5	0.149	U	0.161	U	0.154	U	0.137	U
Bromobenzene	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U

Bromochloromethane	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
Bromodichloromethane	mg/kg	10	0.149	U	0.161	U	0.154	U	0.137	U
Bromoform	mg/kg	81	0.149	U	0.161	U	0.154	U	0.137	U
Bromomethane	mg/kg	0.8	0.149	U	0.161	U	0.154	U	0.137	U
Carbon Disulfide	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
Carbon Tetrachloride	mg/kg	1.5	0.149	U	0.161	U	0.154	U	0.137	U
Chlorobenzene	mg/kg	210	0.149	U	0.161	U	0.154	U	0.137	U
Chloroethane	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
Chloroform	mg/kg	1.2	0.149	U	0.161	U	0.154	U	0.137	U
Chloromethane	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
cis-1,2-Dichloroethene	mg/kg	630	0.149	U	0.161	U	0.154	U	0.137	U
cis-1,3-Dichloropropene	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
Dibromochloromethane	mg/kg	7.6	0.149	U	0.161	U	0.154	U	0.137	U
Dibromomethane	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
Dichlorodifluoromethane	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
Diethyl Ether	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
Di-isopropyl ether	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
Ethyl tertiary-butyl ether	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
Ethylbenzene	mg/kg	71	0.149	U	0.161	U	0.154	U	0.137	U
Hexachlorobutadiene	mg/kg	8.2	0.149	U	0.161	U	0.154	U	0.137	U
Isopropylbenzene	mg/kg	27	0.149	U	0.161	U	0.154	U	0.137	U
Methyl tert-Butyl Ether	mg/kg	390	0.149	U	0.161	U	0.154	U	0.137	U
Methylene Chloride	mg/kg	45	0.0610	J	0.0758	J	0.0447	J	0.0656	J
Naphthalene	mg/kg	54	0.149	U	0.161	U	0.0416	J	0.137	U
n-Butylbenzene	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
n-Propylbenzene	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
sec-Butylbenzene	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
Styrene	mg/kg	13	0.149	U	0.161	U	0.154	U	0.137	U
tert-Butylbenzene	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
Tertiary-amyl methyl ether	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
Tetrachloroethene	mg/kg	12	0.149	U	0.161	U	0.154	U	0.137	U
Tetrahydrofuran	mg/kg	NE	0.744	U	0.806	U	0.77	U	0.683	U
Toluene	mg/kg	190	0.149	U	0.0258	J	0.154	U	0.137	U
trans-1,2-Dichloroethene	mg/kg	1100	0.149	U	0.161	U	0.154	U	0.137	U
trans-1,3-Dichloropropene	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
Trichloroethene	mg/kg	13	0.149	U	0.161	U	0.154	U	0.137	U
Trichlorofluoromethane	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U
Vinyl Acetate	mg/kg	NE	0.149	U	0.161	U	0.154	U	0.137	U

U

U, D

0.323

0.323

U

U, D

0.308

0.308

TPH - ETPH Total Petroleum Hydrocarbons	mg/kg	500	167	-	142	-	111	-	41	U

0.298

0.298

Qualifier Description
U Undetected

J Reported between MDL and MRL

mg/kg

mg/kg

110

110

D Diluted

Xylene P,M

Xylenes (Total)

0.273

0.273

U

U, D

U

U, D

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Gary Kaufman Redwood Environmental Group 10 Elmgrove Avenue Providence, RI 02906

RE: Exchange Street (201942)

ESS Laboratory Work Order Number: 19F0081

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 12:43 pm, Jun 11, 2019

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0081

SAMPLE RECEIPT

The following samples were received on June 04, 2019 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	Sample Name	Matrix	Analysis
19F0081-01	201942-SS1-060419	Soil	8100M, 8260B
19F0081-02	201942-SS2-060419	Soil	8100M, 8260B
19F0081-03	201942-SS3-060419	Soil	8100M, 8260B
19F0081-04	201942-SS4-060419	Soil	8100M, 8260B
19F0081-05	Trip Blank	Soil	8260B

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0081

PROJECT NARRATIVE

5035/8260B Volatile Organic Compounds / Methanol

C9F0141-CCV1

1,4-Dioxane - Screen (43% @ 30%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0081

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS1-060419

Date Sampled: 06/04/19 14:30

Percent Solids: 94 Initial Volume: 23.4 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-01

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.149)	MDL 0.0149	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 06/10/19 13:43	Sequence C9F0141	Batch CF91031
1,1,1-Trichloroethane	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,1,2,2-Tetrachloroethane	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,1,2-Trichloroethane	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,1-Dichloroethane	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,1-Dichloroethene	ND (0.149)	0.0447	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,1-Dichloropropene	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,2,3-Trichlorobenzene	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,2,3-Trichloropropane	ND (0.149)	0.0447	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,2,4-Trichlorobenzene	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,2,4-Trimethylbenzene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,2-Dibromo-3-Chloropropane	ND (0.744)	0.149	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,2-Dibromoethane	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,2-Dichlorobenzene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,2-Dichloroethane	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,2-Dichloropropane	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,3,5-Trimethylbenzene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,3-Dichlorobenzene	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,3-Dichloropropane	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,4-Dichlorobenzene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
1,4-Dioxane - Screen	ND (29.8)	28.3	8260B		1	06/10/19 13:43	C9F0141	CF91031
1-Chlorohexane	ND (0.149)	0.0596	8260B		1	06/10/19 13:43	C9F0141	CF91031
2,2-Dichloropropane	ND (0.149)	0.0447	8260B		1	06/10/19 13:43	C9F0141	CF91031
2-Butanone	ND (0.744)	0.506	8260B		1	06/10/19 13:43	C9F0141	CF91031
2-Chlorotoluene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
2-Hexanone	ND (0.744)	0.223	8260B		1	06/10/19 13:43	C9F0141	CF91031
4-Chlorotoluene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
4-Isopropyltoluene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
4-Methyl-2-Pentanone	ND (0.744)	0.238	8260B		1	06/10/19 13:43	C9F0141	CF91031
Acetone	ND (0.744)	0.402	8260B		1	06/10/19 13:43	C9F0141	CF91031
Benzene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
Bromobenzene	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS1-060419

Date Sampled: 06/04/19 14:30

Percent Solids: 94 Initial Volume: 23.4 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-01

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte Bromochloromethane	Results (MRL) ND (0.149)	MDL 0.0447	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 06/10/19 13:43	Sequence C9F0141	Batch CF91031
Bromodichloromethane	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
Bromoform	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
Bromomethane	ND (0.149)	0.0596	8260B		1	06/10/19 13:43	C9F0141	CF91031
Carbon Disulfide	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
Carbon Tetrachloride	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
Chlorobenzene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
Chloroethane	ND (0.149)	0.0596	8260B		1	06/10/19 13:43	C9F0141	CF91031
Chloroform	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
Chloromethane	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
cis-1,2-Dichloroethene	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
cis-1,3-Dichloropropene	ND (0.149)	0.0447	8260B		1	06/10/19 13:43	C9F0141	CF91031
Dibromochloromethane	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
Dibromomethane	ND (0.149)	0.0447	8260B		1	06/10/19 13:43	C9F0141	CF91031
Dichlorodifluoromethane	ND (0.149)	0.0447	8260B		1	06/10/19 13:43	C9F0141	CF91031
Diethyl Ether	ND (0.149)	0.0447	8260B		1	06/10/19 13:43	C9F0141	CF91031
Di-isopropyl ether	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
Ethyl tertiary-butyl ether	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
Ethylbenzene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
Hexachlorobutadiene	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
Isopropylbenzene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
Methyl tert-Butyl Ether	ND (0.149)	0.0447	8260B		1	06/10/19 13:43	C9F0141	CF91031
Methylene Chloride	J 0.0610 (0.298)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
Naphthalene	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
n-Butylbenzene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
n-Propylbenzene	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
sec-Butylbenzene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
Styrene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
tert-Butylbenzene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
Tertiary-amyl methyl ether	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
Tetrachloroethene	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
Tetrahydrofuran	ND (0.744)	0.238	8260B		1	06/10/19 13:43	C9F0141	CF91031

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS1-060419

Date Sampled: 06/04/19 14:30

Percent Solids: 94 Initial Volume: 23.4 Final Volume: 15

Surrogate: Toluene-d8

Extraction Method: 5035

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-01

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Toluene	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
trans-1,2-Dichloroethene	ND (0.149)	0.0447	8260B		1	06/10/19 13:43	C9F0141	CF91031
trans-1,3-Dichloropropene	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
Trichloroethene	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
Trichlorofluoromethane	ND (0.149)	0.0596	8260B		1	06/10/19 13:43	C9F0141	CF91031
Vinyl Acetate	ND (0.149)	0.0744	8260B		1	06/10/19 13:43	C9F0141	CF91031
Vinyl Chloride	ND (0.149)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
Xylene O	ND (0.149)	0.0149	8260B		1	06/10/19 13:43	C9F0141	CF91031
Xylene P,M	ND (0.298)	0.0298	8260B		1	06/10/19 13:43	C9F0141	CF91031
Xylenes (Total)	ND (0.298)		8260B		1	06/10/19 13:43		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		84 %		70-130				
Surrogate: 4-Bromofluorobenzene		86 %		70-130				
Surrogate: Dibromofluoromethane		87 %		70-130				

86 %

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS1-060419

Date Sampled: 06/04/19 14:30

Percent Solids: 94 Initial Volume: 20.9 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-01

Sample Matrix: Soil Units: mg/kg dry Analyst: CAD

Prepared: 6/5/19 12:38

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 167 (38.1)	MDL	Method 8100M	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/07/19 17:04	Sequence C9F0107	Batch CF90516
	%.	Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		<i>85</i> %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS2-060419

Date Sampled: 06/04/19 14:45

Percent Solids: 94 Initial Volume: 21.3 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-02

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.161)	MDL 0.0161	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 06/10/19 14:10	Sequence C9F0141	Batch CF91031
1,1,1-Trichloroethane	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,1,2,2-Tetrachloroethane	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,1,2-Trichloroethane	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,1-Dichloroethane	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,1-Dichloroethene	ND (0.161)	0.0484	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,1-Dichloropropene	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,2,3-Trichlorobenzene	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,2,3-Trichloropropane	ND (0.161)	0.0484	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,2,4-Trichlorobenzene	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,2,4-Trimethylbenzene	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,2-Dibromo-3-Chloropropane	ND (0.806)	0.161	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,2-Dibromoethane	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,2-Dichlorobenzene	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,2-Dichloroethane	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,2-Dichloropropane	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,3,5-Trimethylbenzene	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,3-Dichlorobenzene	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,3-Dichloropropane	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,4-Dichlorobenzene	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
1,4-Dioxane - Screen	ND (32.3)	30.6	8260B		1	06/10/19 14:10	C9F0141	CF91031
1-Chlorohexane	ND (0.161)	0.0645	8260B		1	06/10/19 14:10	C9F0141	CF91031
2,2-Dichloropropane	ND (0.161)	0.0484	8260B		1	06/10/19 14:10	C9F0141	CF91031
2-Butanone	ND (0.806)	0.548	8260B		1	06/10/19 14:10	C9F0141	CF91031
2-Chlorotoluene	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
2-Hexanone	ND (0.806)	0.242	8260B		1	06/10/19 14:10	C9F0141	CF91031
4-Chlorotoluene	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
4-Isopropyltoluene	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
4-Methyl-2-Pentanone	ND (0.806)	0.258	8260B		1	06/10/19 14:10	C9F0141	CF91031
Acetone	ND (0.806)	0.435	8260B		1	06/10/19 14:10	C9F0141	CF91031
Benzene	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
Bromobenzene	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS2-060419

Date Sampled: 06/04/19 14:45

Percent Solids: 94 Initial Volume: 21.3 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-02

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte Bromochloromethane	Results (MRL) ND (0.161)	MDL 0.0484	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 06/10/19 14:10	Sequence C9F0141	Batch CF91031
Bromodichloromethane	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
Bromoform	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
Bromomethane	ND (0.161)	0.0645	8260B		1	06/10/19 14:10	C9F0141	CF91031
Carbon Disulfide	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
Carbon Tetrachloride	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
Chlorobenzene	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
Chloroethane	ND (0.161)	0.0645	8260B		1	06/10/19 14:10	C9F0141	CF91031
Chloroform	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
Chloromethane	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
cis-1,2-Dichloroethene	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
cis-1,3-Dichloropropene	ND (0.161)	0.0484	8260B		1	06/10/19 14:10	C9F0141	CF91031
Dibromochloromethane	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
Dibromomethane	ND (0.161)	0.0484	8260B		1	06/10/19 14:10	C9F0141	CF91031
Dichlorodifluoromethane	ND (0.161)	0.0484	8260B		1	06/10/19 14:10	C9F0141	CF91031
Diethyl Ether	ND (0.161)	0.0484	8260B		1	06/10/19 14:10	C9F0141	CF91031
Di-isopropyl ether	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
Ethyl tertiary-butyl ether	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
Ethylbenzene	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
Hexachlorobutadiene	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
Isopropylbenzene	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
Methyl tert-Butyl Ether	ND (0.161)	0.0484	8260B		1	06/10/19 14:10	C9F0141	CF91031
Methylene Chloride	J 0.0758 (0.323)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
Naphthalene	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
n-Butylbenzene	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
n-Propylbenzene	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
sec-Butylbenzene	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
Styrene	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
tert-Butylbenzene	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
Tertiary-amyl methyl ether	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
Tetrachloroethene	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
Tetrahydrofuran	ND (0.806)	0.258	8260B		1	06/10/19 14:10	C9F0141	CF91031

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS2-060419

Date Sampled: 06/04/19 14:45

Percent Solids: 94 Initial Volume: 21.3 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-02

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Toluene	J 0.0258 (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
trans-1,2-Dichloroethene	ND (0.161)	0.0484	8260B		1	06/10/19 14:10	C9F0141	CF91031
trans-1,3-Dichloropropene	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
Trichloroethene	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
Trichlorofluoromethane	ND (0.161)	0.0645	8260B		1	06/10/19 14:10	C9F0141	CF91031
Vinyl Acetate	ND (0.161)	0.0806	8260B		1	06/10/19 14:10	C9F0141	CF91031
Vinyl Chloride	ND (0.161)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
Xylene O	ND (0.161)	0.0161	8260B		1	06/10/19 14:10	C9F0141	CF91031
Xylene P,M	ND (0.323)	0.0323	8260B		1	06/10/19 14:10	C9F0141	CF91031
Xylenes (Total)	ND (0.323)		8260B		1	06/10/19 14:10		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		88 %		70-130				
Surrogate: 4-Bromofluorobenzene		89 %		70-130				
Surrogate: Dibromofluoromethane		88 %		70-130				
Surrogate: Toluene-d8		89 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS2-060419

Date Sampled: 06/04/19 14:45

Percent Solids: 94 Initial Volume: 20.8 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-02

Sample Matrix: Soil Units: mg/kg dry Analyst: CAD

Prepared: 6/5/19 12:38

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 142 (38.2)	<u>MDL</u>	Method 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 06/07/19 17:37	Sequence C9F0107	Batch CF90516
	9	6Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		95 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS3-060419

Date Sampled: 06/04/19 15:00

Percent Solids: 93 Initial Volume: 23.2 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-03

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.154)	MDL 0.0154	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 06/10/19 14:37	Sequence C9F0141	Batch CF91031
1,1,1-Trichloroethane	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,1,2,2-Tetrachloroethane	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,1,2-Trichloroethane	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,1-Dichloroethane	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,1-Dichloroethene	ND (0.154)	0.0462	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,1-Dichloropropene	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,2,3-Trichlorobenzene	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,2,3-Trichloropropane	ND (0.154)	0.0462	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,2,4-Trichlorobenzene	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,2,4-Trimethylbenzene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,2-Dibromo-3-Chloropropane	ND (0.770)	0.154	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,2-Dibromoethane	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,2-Dichlorobenzene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,2-Dichloroethane	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,2-Dichloropropane	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,3,5-Trimethylbenzene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,3-Dichlorobenzene	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,3-Dichloropropane	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,4-Dichlorobenzene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
1,4-Dioxane - Screen	ND (30.8)	29.3	8260B		1	06/10/19 14:37	C9F0141	CF91031
1-Chlorohexane	ND (0.154)	0.0616	8260B		1	06/10/19 14:37	C9F0141	CF91031
2,2-Dichloropropane	ND (0.154)	0.0462	8260B		1	06/10/19 14:37	C9F0141	CF91031
2-Butanone	ND (0.770)	0.524	8260B		1	06/10/19 14:37	C9F0141	CF91031
2-Chlorotoluene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
2-Hexanone	ND (0.770)	0.231	8260B		1	06/10/19 14:37	C9F0141	CF91031
4-Chlorotoluene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
4-Isopropyltoluene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
4-Methyl-2-Pentanone	ND (0.770)	0.246	8260B		1	06/10/19 14:37	C9F0141	CF91031
Acetone	ND (0.770)	0.416	8260B		1	06/10/19 14:37	C9F0141	CF91031
Benzene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
Bromobenzene	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS3-060419

Date Sampled: 06/04/19 15:00

Percent Solids: 93 Initial Volume: 23.2 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-03

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte Bromochloromethane	Results (MRL) ND (0.154)	MDL 0.0462	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 06/10/19 14:37	Sequence C9F0141	Batch CF91031
Bromodichloromethane	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
Bromoform	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
Bromomethane	ND (0.154)	0.0616	8260B		1	06/10/19 14:37	C9F0141	CF91031
Carbon Disulfide	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
Carbon Tetrachloride	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
Chlorobenzene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
Chloroethane	ND (0.154)	0.0616	8260B		1	06/10/19 14:37	C9F0141	CF91031
Chloroform	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
Chloromethane	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
cis-1,2-Dichloroethene	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
cis-1,3-Dichloropropene	ND (0.154)	0.0462	8260B		1	06/10/19 14:37	C9F0141	CF91031
Dibromochloromethane	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
Dibromomethane	ND (0.154)	0.0462	8260B		1	06/10/19 14:37	C9F0141	CF91031
Dichlorodifluoromethane	ND (0.154)	0.0462	8260B		1	06/10/19 14:37	C9F0141	CF91031
Diethyl Ether	ND (0.154)	0.0462	8260B		1	06/10/19 14:37	C9F0141	CF91031
Di-isopropyl ether	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
Ethyl tertiary-butyl ether	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
Ethylbenzene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
Hexachlorobutadiene	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
Isopropylbenzene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
Methyl tert-Butyl Ether	ND (0.154)	0.0462	8260B		1	06/10/19 14:37	C9F0141	CF91031
Methylene Chloride	J 0.0447 (0.308)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
Naphthalene	J 0.0416 (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
n-Butylbenzene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
n-Propylbenzene	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
sec-Butylbenzene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
Styrene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
tert-Butylbenzene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
Tertiary-amyl methyl ether	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
Tetrachloroethene	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
Tetrahydrofuran	ND (0.770)	0.246	8260B		1	06/10/19 14:37	C9F0141	CF91031

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS3-060419

Date Sampled: 06/04/19 15:00

Percent Solids: 93 Initial Volume: 23.2 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-03

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Toluene	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
trans-1,2-Dichloroethene	ND (0.154)	0.0462	8260B		1	06/10/19 14:37	C9F0141	CF91031
trans-1,3-Dichloropropene	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
Trichloroethene	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
Trichlorofluoromethane	ND (0.154)	0.0616	8260B		1	06/10/19 14:37	C9F0141	CF91031
Vinyl Acetate	ND (0.154)	0.0770	8260B		1	06/10/19 14:37	C9F0141	CF91031
Vinyl Chloride	ND (0.154)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
Xylene O	ND (0.154)	0.0154	8260B		1	06/10/19 14:37	C9F0141	CF91031
Xylene P,M	ND (0.308)	0.0308	8260B		1	06/10/19 14:37	C9F0141	CF91031
Xylenes (Total)	ND (0.308)		8260B		1	06/10/19 14:37		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		85 %		70-130				
Surrogate: 4-Bromofluorobenzene		89 %		70-130				
Surrogate: Dibromofluoromethane		89 %		70-130				
Surrogate: Toluene-d8		90 %		70-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS3-060419

Date Sampled: 06/04/19 15:00

Percent Solids: 93 Initial Volume: 20.5 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-03

Sample Matrix: Soil Units: mg/kg dry Analyst: CAD

Prepared: 6/6/19 12:15

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 111 (39.3)	<u>MDL</u>	Method 8100M	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/07/19 18:10	Sequence C9F0107	Batch CF90610
	9/	6Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		80 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS4-060419

Date Sampled: 06/04/19 15:15

Percent Solids: 94 Initial Volume: 25.6 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-04

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.137)	MDL 0.0137	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 06/10/19 15:03	Sequence C9F0141	Batch CF91031
1,1,1-Trichloroethane	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,1,2,2-Tetrachloroethane	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,1,2-Trichloroethane	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,1-Dichloroethane	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,1-Dichloroethene	ND (0.137)	0.0410	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,1-Dichloropropene	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,2,3-Trichlorobenzene	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,2,3-Trichloropropane	ND (0.137)	0.0410	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,2,4-Trichlorobenzene	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,2,4-Trimethylbenzene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,2-Dibromo-3-Chloropropane	ND (0.683)	0.137	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,2-Dibromoethane	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,2-Dichlorobenzene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,2-Dichloroethane	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,2-Dichloropropane	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,3,5-Trimethylbenzene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,3-Dichlorobenzene	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,3-Dichloropropane	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,4-Dichlorobenzene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
1,4-Dioxane - Screen	ND (27.3)	26.0	8260B		1	06/10/19 15:03	C9F0141	CF91031
1-Chlorohexane	ND (0.137)	0.0546	8260B		1	06/10/19 15:03	C9F0141	CF91031
2,2-Dichloropropane	ND (0.137)	0.0410	8260B		1	06/10/19 15:03	C9F0141	CF91031
2-Butanone	ND (0.683)	0.464	8260B		1	06/10/19 15:03	C9F0141	CF91031
2-Chlorotoluene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
2-Hexanone	ND (0.683)	0.205	8260B		1	06/10/19 15:03	C9F0141	CF91031
4-Chlorotoluene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
4-Isopropyltoluene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
4-Methyl-2-Pentanone	ND (0.683)	0.219	8260B		1	06/10/19 15:03	C9F0141	CF91031
Acetone	ND (0.683)	0.369	8260B		1	06/10/19 15:03	C9F0141	CF91031
Benzene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
Bromobenzene	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS4-060419

Date Sampled: 06/04/19 15:15

Percent Solids: 94 Initial Volume: 25.6 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-04

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte Bromochloromethane	Results (MRL) ND (0.137)	MDL 0.0410	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/10/19 15:03	Sequence C9F0141	Batch CF91031
Bromodichloromethane	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
Bromoform	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
Bromomethane	ND (0.137)	0.0546	8260B		1	06/10/19 15:03	C9F0141	CF91031
Carbon Disulfide	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
Carbon Tetrachloride	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
Chlorobenzene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
Chloroethane	ND (0.137)	0.0546	8260B		1	06/10/19 15:03	C9F0141	CF91031
Chloroform	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
Chloromethane	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
cis-1,2-Dichloroethene	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
cis-1,3-Dichloropropene	ND (0.137)	0.0410	8260B		1	06/10/19 15:03	C9F0141	CF91031
Dibromochloromethane	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
Dibromomethane	ND (0.137)	0.0410	8260B		1	06/10/19 15:03	C9F0141	CF91031
Dichlorodifluoromethane	ND (0.137)	0.0410	8260B		1	06/10/19 15:03	C9F0141	CF91031
Diethyl Ether	ND (0.137)	0.0410	8260B		1	06/10/19 15:03	C9F0141	CF91031
Di-isopropyl ether	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
Ethyl tertiary-butyl ether	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
Ethylbenzene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
Hexachlorobutadiene	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
Isopropylbenzene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
Methyl tert-Butyl Ether	ND (0.137)	0.0410	8260B		1	06/10/19 15:03	C9F0141	CF91031
Methylene Chloride	J 0.0656 (0.273)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
Naphthalene	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
n-Butylbenzene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
n-Propylbenzene	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
sec-Butylbenzene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
Styrene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
tert-Butylbenzene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
Tertiary-amyl methyl ether	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
Tetrachloroethene	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
Tetrahydrofuran	ND (0.683)	0.219	8260B		1	06/10/19 15:03	C9F0141	CF91031

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS4-060419

Date Sampled: 06/04/19 15:15

Percent Solids: 94 Initial Volume: 25.6 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-04

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Toluene	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
trans-1,2-Dichloroethene	ND (0.137)	0.0410	8260B		1	06/10/19 15:03	C9F0141	CF91031
trans-1,3-Dichloropropene	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
Trichloroethene	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
Trichlorofluoromethane	ND (0.137)	0.0546	8260B		1	06/10/19 15:03	C9F0141	CF91031
Vinyl Acetate	ND (0.137)	0.0683	8260B		1	06/10/19 15:03	C9F0141	CF91031
Vinyl Chloride	ND (0.137)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
Xylene O	ND (0.137)	0.0137	8260B		1	06/10/19 15:03	C9F0141	CF91031
Xylene P,M	ND (0.273)	0.0273	8260B		1	06/10/19 15:03	C9F0141	CF91031
Xylenes (Total)	ND (0.273)		8260B		1	06/10/19 15:03		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		81 %		70-130				
Surrogate: 4-Bromofluorobenzene		85 %		70-130				
Surrogate: Dibromofluoromethane		83 %		70-130				
Surrogate: Toluene-d8		86 %		70-130				

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS4-060419

Date Sampled: 06/04/19 15:15

Percent Solids: 94 Initial Volume: 19.4 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-04

Sample Matrix: Soil Units: mg/kg dry Analyst: CAD

Prepared: 6/6/19 12:15

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) ND (41.0)	<u>MDL</u>	Method 8100M	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/07/19 18:42	Sequence C9F0107	Batch CF90610
	9	6Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		79 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street
Client Sample ID: Trip Blank

Date Sampled: 06/04/19 00:00 Percent Solids: N/A

Initial Volume: 15 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-05

Sample Matrix: Soil

Units: mg/kg Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.200)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 06/10/19 12:23	Sequence C9F0141	Batch CF91031
1,1,1-Trichloroethane	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,1,2,2-Tetrachloroethane	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,1,2-Trichloroethane	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,1-Dichloroethane	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,1-Dichloroethene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,1-Dichloropropene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,2,3-Trichlorobenzene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,2,3-Trichloropropane	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,2,4-Trichlorobenzene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,2,4-Trimethylbenzene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,2-Dibromo-3-Chloropropane	ND (1.00)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,2-Dibromoethane	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,2-Dichlorobenzene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,2-Dichloroethane	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,2-Dichloropropane	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,3,5-Trimethylbenzene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,3-Dichlorobenzene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,3-Dichloropropane	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,4-Dichlorobenzene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1,4-Dioxane - Screen	ND (40.0)		8260B		1	06/10/19 12:23	C9F0141	CF91031
1-Chlorohexane	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
2,2-Dichloropropane	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
2-Butanone	ND (1.00)		8260B		1	06/10/19 12:23	C9F0141	CF91031
2-Chlorotoluene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
2-Hexanone	ND (1.00)		8260B		1	06/10/19 12:23	C9F0141	CF91031
4-Chlorotoluene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
4-Isopropyltoluene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
4-Methyl-2-Pentanone	ND (1.00)		8260B		1	06/10/19 12:23	C9F0141	CF91031
Acetone	ND (1.00)		8260B		1	06/10/19 12:23	C9F0141	CF91031
Benzene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
Bromobenzene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: Trip Blank Date Sampled: 06/04/19 00:00

Percent Solids: N/A Initial Volume: 15 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-05

Sample Matrix: Soil

Units: mg/kg Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte Bromochloromethane	Results (MRL) ND (0.200)	MDL Method 8260B	<u>Limit</u> <u>DF</u>	Analyzed 06/10/19 12:23	Sequence C9F0141	Batch CF91031
Bromodichloromethane	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Bromoform	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Bromomethane	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Carbon Disulfide	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Carbon Tetrachloride	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Chlorobenzene	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Chloroethane	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Chloroform	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Chloromethane	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
cis-1,2-Dichloroethene	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
cis-1,3-Dichloropropene	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Dibromochloromethane	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Dibromomethane	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Dichlorodifluoromethane	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Diethyl Ether	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Di-isopropyl ether	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Ethyl tertiary-butyl ether	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Ethylbenzene	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Hexachlorobutadiene	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Isopropylbenzene	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Methyl tert-Butyl Ether	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Methylene Chloride	ND (0.400)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Naphthalene	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
n-Butylbenzene	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
n-Propylbenzene	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
sec-Butylbenzene	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Styrene	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
tert-Butylbenzene	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Tertiary-amyl methyl ether	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Tetrachloroethene	ND (0.200)	8260B	1	06/10/19 12:23	C9F0141	CF91031
Tetrahydrofuran	ND (1.00)	8260B	1	06/10/19 12:23	C9F0141	CF91031

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: Trip Blank Date Sampled: 06/04/19 00:00

Percent Solids: N/A Initial Volume: 15 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19F0081 ESS Laboratory Sample ID: 19F0081-05

Sample Matrix: Soil

Units: mg/kg Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Toluene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
trans-1,2-Dichloroethene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
trans-1,3-Dichloropropene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
Trichloroethene	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
Trichlorofluoromethane	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
Vinyl Acetate	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
Vinyl Chloride	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
Xylene O	ND (0.200)		8260B		1	06/10/19 12:23	C9F0141	CF91031
Xylene P,M	ND (0.400)		8260B		1	06/10/19 12:23	C9F0141	CF91031
Xylenes (Total)	ND (0.600)		8260B		0	06/10/19 12:23	C9F0141	CF91031
	•	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		79 %		70-130				
Surrogate: 4-Bromofluorobenzene		86 %		70-130				
Surrogate: Dibromofluoromethane		86 %		70-130				
Surrogate: Toluene-d8		83 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Batch CF91031 - 5035

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0081

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Organic Compounds / Methanol

Batch CF91031 - 5035			
Blank			
1,1,1,2-Tetrachloroethane	ND	0.200	mg/kg wet
1,1,1-Trichloroethane	ND	0.200	mg/kg wet
1,1,2,2-Tetrachloroethane	ND	0.200	mg/kg wet
1,1,2-Trichloroethane	ND	0.200	mg/kg wet
1,1-Dichloroethane	ND	0.200	mg/kg wet
1,1-Dichloroethene	ND	0.200	mg/kg wet
1,1-Dichloropropene	ND	0.200	mg/kg wet
1,2,3-Trichlorobenzene	ND	0.200	mg/kg wet
1,2,3-Trichloropropane	ND	0.200	mg/kg wet
1,2,4-Trichlorobenzene	ND	0.200	mg/kg wet
1,2,4-Trimethylbenzene	ND	0.200	mg/kg wet
1,2-Dibromo-3-Chloropropane	ND	1.00	mg/kg wet
1,2-Dibromoethane	ND	0.200	mg/kg wet
1,2-Dichlorobenzene	ND	0.200	mg/kg wet
1,2-Dichloroethane	ND	0.200	mg/kg wet
,2-Dichloropropane	ND	0.200	mg/kg wet
1,3,5-Trimethylbenzene	ND	0.200	mg/kg wet
.,3-Dichlorobenzene	ND	0.200	mg/kg wet
,3-Dichloropropane	ND	0.200	mg/kg wet
,4-Dichlorobenzene	ND	0.200	mg/kg wet
,4-Dioxane - Screen	ND	40.0	mg/kg wet
-Chlorohexane	ND	0.200	mg/kg wet
,2-Dichloropropane	ND	0.200	mg/kg wet
-Butanone	ND	1.00	mg/kg wet
-Chlorotoluene	ND	0.200	mg/kg wet
-Hexanone	ND	1.00	mg/kg wet
-Chlorotoluene	ND	0.200	mg/kg wet
-Isopropyltoluene	ND	0.200	mg/kg wet
-Methyl-2-Pentanone	ND	1.00	mg/kg wet
cetone	ND	1.00	mg/kg wet
Benzene	ND	0.200	mg/kg wet
Bromobenzene	ND	0.200	mg/kg wet
romochloromethane	ND	0.200	mg/kg wet
romodichloromethane	ND	0.200	mg/kg wet
Bromoform	ND	0.200	mg/kg wet
Bromomethane	ND	0.200	mg/kg wet
Carbon Disulfide	ND	0.200	mg/kg wet
Carbon Tetrachloride	ND	0.200	mg/kg wet
Chlorobenzene	ND	0.200	mg/kg wet
Chloroethane	ND	0.200	mg/kg wet
Chloroform	ND	0.200	mg/kg wet
Chloromethane	ND	0.200	mg/kg wet
is-1,2-Dichloroethene	ND	0.200	mg/kg wet
cis-1,3-Dichloropropene	ND	0.200	mg/kg wet

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Batch CF91031 - 5035

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0081

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5	C	3	55,	/8	32	26	0E	3 V	ol/	atil	e	Organic	Compound	s/	Μ	1ethano	١c
---	---	---	-----	----	----	----	----	-----	-----	------	---	---------	----------	----	---	---------	----

Batch CF91031 - 5035							
Dibromochloromethane	ND	0.200	mg/kg wet				
Dibromomethane	ND	0.200	mg/kg wet				
Dichlorodifluoromethane	ND	0.200	mg/kg wet				
Diethyl Ether	ND	0.200	mg/kg wet				
Di-isopropyl ether	ND	0.200	mg/kg wet				
Ethyl tertiary-butyl ether	ND	0.200	mg/kg wet				
Ethylbenzene	ND	0.200	mg/kg wet				
Hexachlorobutadiene	ND	0.200	mg/kg wet				
Isopropylbenzene	ND	0.200	mg/kg wet				
Methyl tert-Butyl Ether	ND	0.200	mg/kg wet				
Methylene Chloride	ND	0.400	mg/kg wet				
Naphthalene	ND	0.200	mg/kg wet				
n-Butylbenzene	ND	0.200	mg/kg wet				
n-Propylbenzene	ND	0.200	mg/kg wet				
sec-Butylbenzene	ND	0.200	mg/kg wet				
Styrene	ND	0.200	mg/kg wet				
tert-Butylbenzene	ND	0.200	mg/kg wet				
Tertiary-amyl methyl ether	ND	0.200	mg/kg wet				
Tetrachloroethene	ND	0.200	mg/kg wet				
Tetrahydrofuran	ND	1.00	mg/kg wet				
Toluene	0.0220	0.200	mg/kg wet				J
rans-1,2-Dichloroethene	ND ND	0.200	mg/kg wet				-
trans-1,3-Dichloropropene	ND	0.200	mg/kg wet				
Trichloroethene	ND	0.200	mg/kg wet				
Trichlorofluoromethane	ND	0.200	mg/kg wet				
Vinyl Acetate	ND	0.200	mg/kg wet				
Vinyl Chloride	ND	0.200	mg/kg wet				
Xylene O	ND	0.200	mg/kg wet				
Xylene P,M	ND	0.400	mg/kg wet				
	4.14	0.400	mg/kg wet	5.000	<i>83</i>	70-130	
Surrogate: 1,2-Dichloroethane-d4	4.28		mg/kg wet	5.000	86	70-130 70-130	
Surrogate: 4-Bromofluorobenzene	4.14		mg/kg wet	5.000	83	70-130 70-130	
Surrogate: Dibromofluoromethane	4.28			5.000	86	70-130 70-130	
Surrogate: Toluene-d8	4.20		mg/kg wet	3.000		70-130	
LCS		0.200		2.000	0.5	70.420	
1,1,1,2-Tetrachloroethane	1.92	0.200	mg/kg wet	2.000	96	70-130	
1,1,1-Trichloroethane	2.19	0.200	mg/kg wet	2.000	109	70-130	
1,1,2,2-Tetrachloroethane	1.83	0.200	mg/kg wet	2.000	92	70-130	
1,1,2-Trichloroethane	1.91	0.200	mg/kg wet	2.000	96	70-130	
1,1-Dichloroethane	2.15	0.200	mg/kg wet	2.000	108	70-130	
1,1-Dichloroethene	2.19	0.200	mg/kg wet	2.000	109	70-130	
1,1-Dichloropropene	2.05	0.200	mg/kg wet	2.000	102	70-130	
1,2,3-Trichlorobenzene	2.18	0.200	mg/kg wet	2.000	109	70-130	
1,2,3-Trichloropropane	1.94	0.200	mg/kg wet	2.000	97	70-130	
1,2,4-Trichlorobenzene	2.25	0.200	mg/kg wet	2.000	112	70-130	
1,2,4-Trimethylbenzene	2.16	0.200	mg/kg wet	2.000	108	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0081

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Or	ganic Compounds	/ Methanol
------------------------	-----------------	------------

Batch CF91031 - 5035							
,2-Dibromo-3-Chloropropane	1.88	1.00	mg/kg wet	2.000	94	70-130	
.,2-Dibromoethane	2.14	0.200	mg/kg wet	2.000	107	70-130	
.,2-Dichlorobenzene	2.13	0.200	mg/kg wet	2.000	106	70-130	
,2-Dichloroethane	2.27	0.200	mg/kg wet	2.000	114	70-130	
,2-Dichloropropane	1.92	0.200	mg/kg wet	2.000	96	70-130	
,3,5-Trimethylbenzene	2.16	0.200	mg/kg wet	2.000	108	70-130	
,3-Dichlorobenzene	2.16	0.200	mg/kg wet	2.000	108	70-130	
,3-Dichloropropane	2.12	0.200	mg/kg wet	2.000	106	70-130	
,4-Dichlorobenzene	2.09	0.200	mg/kg wet	2.000	104	70-130	
,4-Dioxane - Screen	69.6	40.0	mg/kg wet	40.00	174	44-241	
-Chlorohexane	2.01	0.200	mg/kg wet	2.000	101	70-130	
.2-Dichloropropane	2.17	0.200	mg/kg wet	2.000	109	70-130	
Butanone	9.65	1.00	mg/kg wet	10.00	96	70-130	
Chlorotoluene	1.98	0.200	mg/kg wet	2.000	99	70-130	
Hexanone	9.41	1.00	mg/kg wet	10.00	94	70-130	
Chlorotoluene	2.15	0.200	mg/kg wet	2.000	107	70-130	
Isopropyltoluene	2.16	0.200	mg/kg wet	2.000	108	70-130	
Methyl-2-Pentanone	10.1	1.00	mg/kg wet	10.00	101	70-130	
cetone	9.15	1.00	mg/kg wet	10.00	92	70-130	
enzene	2.20	0.200	mg/kg wet	2.000	110	70-130	
omobenzene	2.25	0.200	mg/kg wet	2.000	112	70-130	
omochloromethane	2.36	0.200	mg/kg wet	2.000	118	70-130	
omodichloromethane	2.01	0.200	mg/kg wet	2.000	100	70-130	
omoform	1.98	0.200	mg/kg wet	2.000	99	70-130	
omomethane	2.03	0.200	mg/kg wet	2.000	102	70-130	
arbon Disulfide	2.14	0.200	mg/kg wet	2.000	107	70-130	
arbon Tetrachloride	2.28	0.200	mg/kg wet	2.000	114	70-130	
nlorobenzene	2.21	0.200	mg/kg wet	2.000	110	70-130	
nloroethane	1.93	0.200	mg/kg wet	2.000	96	70-130	
nloroform	2.20	0.200	mg/kg wet	2.000	110	70-130	
hloromethane	1.88	0.200	mg/kg wet	2.000	94	70-130	
s-1,2-Dichloroethene	2.22	0.200	mg/kg wet	2.000	111	70-130	
s-1,3-Dichloropropene	2.18	0.200	mg/kg wet	2.000	109	70-130	
bromochloromethane	1.71	0.200	mg/kg wet	2.000	85	70-130	
ibromomethane	2.13	0.200	mg/kg wet	2.000	107	70-130	
ichlorodifluoromethane	2.16	0.200	mg/kg wet	2.000	108	70-130	
iethyl Ether	1.98	0.200	mg/kg wet	2.000	99	70-130	
i-isopropyl ether	2.15	0.200	mg/kg wet	2.000	107	70-130	
hyl tertiary-butyl ether	2.01	0.200	mg/kg wet	2.000	101	70-130	
hylbenzene	2.16	0.200	mg/kg wet	2.000	108	70-130	
exachlorobutadiene	2.25	0.200	mg/kg wet	2.000	112	70-130	
sopropylbenzene	2.21	0.200	mg/kg wet	2.000	110	70-130	
lethyl tert-Butyl Ether	2.21	0.200	mg/kg wet	2.000	111	70-130	
lethylene Chloride	2.00	0.400	mg/kg wet	2.000	100	70-130	
, laphthalene	2.35	0.200	mg/kg wet	2.000	117	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0081

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result 9	%REC	%REC Limits	RPD	RPD Limit	Qualifie
	5035/8	3260B Volat	ile Organic C	Compound	ds / Methano	ol				
atch CF91031 - 5035										
-Butylbenzene	2.19	0.200	mg/kg wet	2.000		109	70-130			
-Propylbenzene	2.15	0.200	mg/kg wet	2.000		108	70-130			
ec-Butylbenzene	2.24	0.200	mg/kg wet	2.000		112	70-130			
tyrene	2.14	0.200	mg/kg wet	2.000		107	70-130			
ert-Butylbenzene	2.17	0.200	mg/kg wet	2.000		108	70-130			
ertiary-amyl methyl ether	2.17	0.200	mg/kg wet	2.000		109	70-130			
etrachloroethene	1.77	0.200	mg/kg wet	2.000		89	70-130			
etrahydrofuran	1.93	1.00	mg/kg wet	2.000		97	70-130			
bluene	2.25	0.200	mg/kg wet	2.000		112	70-130			
ans-1,2-Dichloroethene	2.15	0.200	mg/kg wet	2.000		107	70-130			
ans-1,3-Dichloropropene	2.09	0.200	mg/kg wet	2.000		104	70-130			
ichloroethene	2.13	0.200	mg/kg wet	2.000		107	70-130			
richlorofluoromethane	2.36	0.200	mg/kg wet	2.000		118	70-130			
nyl Acetate	1.95	0.200	mg/kg wet	2.000		98	70-130			
nyl Chloride	1.99	0.200	mg/kg wet	2.000		99	70-130			
rlene O	2.06	0.200	mg/kg wet	2.000		103	70-130			
lene P,M	4.55	0.400	mg/kg wet	4.000		114	70-130			
urrogate: 1,2-Dichloroethane-d4	4.65		mg/kg wet	5.000		93	70-130			
urrogate: 4-Bromofluorobenzene	5.25		mg/kg wet	5.000		105	70-130			
urrogate: Dibromofluoromethane	4.73		mg/kg wet	5.000		95	70-130			
urrogate: Toluene-d8	4.54		mg/kg wet	5.000		91	70-130			
CS Dup										
1,1,2-Tetrachloroethane	1.89	0.200	mg/kg wet	2.000		95	70-130	1	25	
1,1-Trichloroethane	2.27	0.200	mg/kg wet	2.000		113	70-130	4	25	
1,2,2-Tetrachloroethane	1.83	0.200	mg/kg wet	2.000		91	70-130	0.4	25	
1,2-Trichloroethane	2.10	0.200	mg/kg wet	2.000		105	70-130	10	25	
1-Dichloroethane	2.28	0.200	mg/kg wet	2.000		114	70-130	6	25	
1-Dichloroethene	2.42	0.200	mg/kg wet	2.000		121	70-130	10	25	
1-Dichloropropene	2.30	0.200	mg/kg wet	2.000		115	70-130	12	25	
2,3-Trichlorobenzene	1.91	0.200	mg/kg wet	2.000		96	70-130	13	25	
2,3-Trichloropropane	1.89	0.200	mg/kg wet	2.000		94	70-130	3	25	
2,4-Trichlorobenzene	2.23	0.200	mg/kg wet	2.000		111	70-130	1	25	
2,4-Trimethylbenzene	2.17	0.200	mg/kg wet	2.000		109	70-130	0.4	25	
2-Dibromo-3-Chloropropane	1.97	1.00	mg/kg wet	2.000		99	70-130	5	25	
2-Dibromoethane	2.16	0.200	mg/kg wet	2.000		108	70-130	1	25	
2-Dichlorobenzene	2.09	0.200	mg/kg wet	2.000		104	70-130	2	25	
2-Dichloroethane	2.30	0.200	mg/kg wet	2.000		115	70-130	1	25	
2-Dichloropropane	2.27	0.200	mg/kg wet	2.000		114	70-130	17	25	
3,5-Trimethylbenzene	2.07	0.200	mg/kg wet	2.000		103	70-130	4	25	
3-Dichlorobenzene	2.07	0.200	mg/kg wet	2.000		104	70-130	4	25	
3-Dichloropropane	2.31	0.200	mg/kg wet	2.000		115	70-130	8	25	
4-Dichlorobenzene	2.03	0.200	mg/kg wet	2.000		101	70-130	3	25	
4-Dictioropenzene 4-Dioxane - Screen	56.6	40.0	mg/kg wet	40.00		142	70-130 44-241	21	200	
Chlorohexane	2.18	0.200	mg/kg wet	2.000		109	70-130	8	25	
SHOTOTICABLE	2.18	0.200	mg/kg wet	2.000		103	70-130	13	25 25	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability

◆ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0081

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/82608	voiatile	Organic	Compounas	/ Methanoi

Batch CF91031 - 5035									
-Butanone	10.2	1.00	mg/kg wet	10.00	102	70-130	6	25	
-Chlorotoluene	1.94	0.200	mg/kg wet	2.000	97	70-130	2	25	
-Hexanone	9.34	1.00	mg/kg wet	10.00	93	70-130	0.8	25	
-Chlorotoluene	2.06	0.200	mg/kg wet	2.000	103	70-130	4	25	
Isopropyltoluene	2.20	0.200	mg/kg wet	2.000	110	70-130	2	25	
Methyl-2-Pentanone	10.2	1.00	mg/kg wet	10.00	102	70-130	1	25	
cetone	9.84	1.00	mg/kg wet	10.00	98	70-130	7	25	
enzene	2.46	0.200	mg/kg wet	2.000	123	70-130	11	25	
romobenzene	2.29	0.200	mg/kg wet	2.000	114	70-130	2	25	
romochloromethane	2.46	0.200	mg/kg wet	2.000	123	70-130	4	25	
romodichloromethane	2.09	0.200	mg/kg wet	2.000	105	70-130	4	25	
romoform	2.00	0.200	mg/kg wet	2.000	100	70-130	1	25	
romomethane	2.27	0.200	mg/kg wet	2.000	113	70-130	11	25	
arbon Disulfide	2.35	0.200	mg/kg wet	2.000	117	70-130	9	25	
arbon Tetrachloride	2.42	0.200	mg/kg wet	2.000	121	70-130	6	25	
hlorobenzene	2.30	0.200	mg/kg wet	2.000	115	70-130	4	25	
hloroethane	2.31	0.200	mg/kg wet	2.000	116	70-130	18	25	
hloroform	2.42	0.200	mg/kg wet	2.000	121	70-130	9	25	
hloromethane	2.05	0.200	mg/kg wet	2.000	103	70-130	9	25	
s-1,2-Dichloroethene	2.32	0.200	mg/kg wet	2.000	116	70-130	4	25	
s-1,3-Dichloropropene	2.36	0.200	mg/kg wet	2.000	118	70-130	8	25	
bromochloromethane	1.78	0.200	mg/kg wet	2.000	89	70-130	4	25	
ibromomethane	2.29	0.200	mg/kg wet	2.000	115	70-130	7	25	
chlorodifluoromethane	2.45	0.200	mg/kg wet	2.000	122	70-130	12	25	
iethyl Ether	1.82	0.200	mg/kg wet	2.000	91	70-130	9	25	
i-isopropyl ether	2.13	0.200	mg/kg wet	2.000	107	70-130	0.7	25	
hyl tertiary-butyl ether	2.17	0.200	mg/kg wet	2.000	108	70-130	7	25	
hylbenzene	2.25	0.200	mg/kg wet	2.000	113	70-130	4	25	
exachlorobutadiene	2.21	0.200	mg/kg wet	2.000	110	70-130	2	25	
opropylbenzene	2.11	0.200	mg/kg wet	2.000	106	70-130	4	25	
ethyl tert-Butyl Ether	2.38	0.200	mg/kg wet	2.000	119	70-130	7	25	
ethylene Chloride	2.24	0.400	mg/kg wet	2.000	112	70-130	11	25	
aphthalene	2.13	0.200	mg/kg wet	2.000	107	70-130	10	25	
-Butylbenzene	2.12	0.200	mg/kg wet	2.000	106	70-130	3	25	
Propylbenzene	2.10	0.200	mg/kg wet	2.000	105	70-130	2	25	
ec-Butylbenzene	2.12	0.200	mg/kg wet	2.000	106	70-130	6	25	
yrene	2.15	0.200	mg/kg wet	2.000	107	70-130	0.2	25	
rt-Butylbenzene	2.26	0.200	mg/kg wet	2.000	113	70-130	4	25	
ertiary-amyl methyl ether	2.36	0.200	mg/kg wet	2.000	118	70-130	8	25	
etrachloroethene	1.76	0.200	mg/kg wet	2.000	88	70-130	0.6	25	
etrahydrofuran	1.94	1.00	mg/kg wet	2.000	97	70-130	0.5	25	
bluene	2.33	0.200	mg/kg wet	2.000	116	70-130	4	25	
ans-1,2-Dichloroethene	2.34	0.200	mg/kg wet	2.000	117	70-130	9	25	
ans-1,3-Dichloropropene	2.27	0.200	mg/kg wet	2.000	114	70-130	8	25	
richloroethene	2.27	0.200	mg/kg wet	2.000	114	70-130	6	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0081

Quality Control Data

<u> </u>				Spike	Source	4	%REC		RPD	_
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	5035/	8260B Volati	le Organic C	ompound	ds / Meth	anol				
Batch CF91031 - 5035										
Trichlorofluoromethane	2.43	0.200	mg/kg wet	2.000	· · · · · ·	121	70-130	3	25	
Vinyl Acetate	1.91	0.200	mg/kg wet	2.000		96	70-130	2	25	
Vinyl Chloride	2.14	0.200	mg/kg wet	2.000		107	70-130	7	25	
Xylene O	2.29	0.200	mg/kg wet	2.000		114	70-130	11	25	
Xylene P,M	4.65	0.400	mg/kg wet	4.000		116	70-130	2	25	
Surrogate: 1,2-Dichloroethane-d4	4.68		mg/kg wet	5.000		94	70-130			
Surrogate: 4-Bromofluorobenzene	4.98		mg/kg wet	5.000		100	70-130			
Surrogate: Dibromofluoromethane	4.85		mg/kg wet	5.000		97	70-130			
Surrogate: Toluene-d8	4.49		mg/kg wet	5.000		90	70-130			
		8100M Tot	al Petroleum	Hydroca	arbons					
Batch CF90516 - 3546										
Blank										
Decane (C10)	ND	0.2	mg/kg wet							
Docosane (C22)	ND	0.2	mg/kg wet							
Dodecane (C12)	ND	0.2	mg/kg wet							
Eicosane (C20)	ND	0.2	mg/kg wet							
Hexacosane (C26)	ND	0.2	mg/kg wet							
Hexadecane (C16)	ND	0.2	mg/kg wet							
Nonadecane (C19)	ND	0.2	mg/kg wet							
Nonane (C9)	ND	0.2	mg/kg wet							
Octacosane (C28)	ND	0.2	mg/kg wet							
Octadecane (C18)	ND	0.2	mg/kg wet							
Tetracosane (C24)	ND	0.2	mg/kg wet							
Tetradecane (C14)	ND	0.2	mg/kg wet							
Total Petroleum Hydrocarbons	ND	37.5	mg/kg wet							
Triacontane (C30)	ND	0.2	mg/kg wet							
Surrogate: O-Terphenyl	4.32		mg/kg wet	5.000		86	40-140			
LCS										
Decane (C10)	2.1	0.2	mg/kg wet	2.500		85	40-140			
Docosane (C22)	2.3	0.2	mg/kg wet	2.500		93	40-140			
Dodecane (C12)	2.2	0.2	mg/kg wet	2.500		87	40-140			
Eicosane (C20)	2.3	0.2	mg/kg wet	2.500		92	40-140			
Hexacosane (C26)	2.2	0.2	mg/kg wet	2.500		90	40-140			
Hexadecane (C16)	2.2	0.2	mg/kg wet	2.500		88	40-140			
Nonadecane (C19)	2.3	0.2	mg/kg wet	2.500		93	40-140			
Nonane (C9)	1.9	0.2	mg/kg wet	2.500		76	30-140			
Octacosane (C28)	2.2	0.2	mg/kg wet	2.500		89	40-140			
Octadecane (C18)	2.3	0.2	mg/kg wet	2.500		91	40-140			
Tetracosane (C24)	2.3	0.2	mg/kg wet	2.500		92	40-140			
Tetradecane (C14)	2.2	0.2	mg/kg wet	2.500		88	40-140			
Total Petroleum Hydrocarbons	30.9	37.5	mg/kg wet	35.00		88	40-140			
Triacontane (C30)	2.2	0.2	mg/kg wet	2.500		88	40-140			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0081

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8100M Tot	al Petroleum	Hydroca	irbons					
Batch CF90516 - 3546										
Surrogate: O-Terphenyl	4.52		mg/kg wet	5.000		90	40-140			
LCS Dup										
Decane (C10)	2.2	0.2	mg/kg wet	2.500		87	40-140	2	25	
Docosane (C22)	2.4	0.2	mg/kg wet	2.500		95	40-140	2	25	
Dodecane (C12)	2.2	0.2	mg/kg wet	2.500		88	40-140	1	25	
Eicosane (C20)	2.4	0.2	mg/kg wet	2.500		94	40-140	2	25	
Hexacosane (C26)	2.3	0.2	mg/kg wet	2.500		92	40-140	3	25	
Hexadecane (C16)	2.2	0.2	mg/kg wet	2.500		89	40-140	0.9	25	
Nonadecane (C19)	2.4	0.2	mg/kg wet	2.500		94	40-140	2	25	
Nonane (C9)	1.9	0.2	mg/kg wet	2.500		78	30-140	2	25	
Octacosane (C28)	2.3	0.2	mg/kg wet	2.500		92	40-140	3	25	
Octadecane (C18)	2.3	0.2	mg/kg wet	2.500		92	40-140	1	25	
Tetracosane (C24)	2.4	0.2	mg/kg wet	2.500		94	40-140	3	25	
Tetradecane (C14)	2.2	0.2	mg/kg wet	2.500		88	40-140	0.8	25	
Total Petroleum Hydrocarbons	31.6	37.5	mg/kg wet	35.00		90	40-140	2	25	
Friacontane (C30)	2.3	0.2	mg/kg wet	2.500		91	40-140	3	25	
Surrogate: O-Terphenyl	4.57		mg/kg wet	5.000		91	40-140			
Batch CF90610 - 3546										
Blank										
Decane (C10)	ND	0.2	mg/kg wet							
Docosane (C22)	ND	0.2	mg/kg wet							
Dodecane (C12)	ND	0.2	mg/kg wet							
Eicosane (C20)	ND	0.2	mg/kg wet							
Hexacosane (C26)	ND	0.2	mg/kg wet							
Hexadecane (C16)	ND	0.2	mg/kg wet							
Nonadecane (C19)	ND	0.2	mg/kg wet							
Nonane (C9)	ND	0.2	mg/kg wet							
Octacosane (C28)	ND	0.2	mg/kg wet							
Octadecane (C18)	ND	0.2	mg/kg wet							
Tetracosane (C24)	ND	0.2	mg/kg wet							
Tetradecane (C14)	ND	0.2	mg/kg wet							
Total Petroleum Hydrocarbons	ND	37.5	mg/kg wet							
Triacontane (C30)	ND	0.2	mg/kg wet							
Surrogate: O-Terphenyl	4.52		mg/kg wet	5.000		90	40-140			
LCS										
Decane (C10)	2.1	0.2	mg/kg wet	2.500		85	40-140			
Docosane (C22)	2.3	0.2	mg/kg wet	2.500		93	40-140			

185 Frances Avenue, Cranston, RI 02910-2211

2.3

2.3

2.2

2.3

Eicosane (C20)

Hexacosane (C26)

Hexadecane (C16)

Nonadecane (C19)

Tel: 401-461-7181 Dependability Quality

mg/kg wet

mg/kg wet

mg/kg wet

mg/kg wet

2.500

2.500

2.500

2.500

0.2

0.2

0.2

0.2

Fax: 401-461-4486 Service

93

90

89

40-140

40-140

40-140

40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street

ESS Laboratory Work Order: 19F0081

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Allalyce	Nesuit					/UNLC	LIIIIG	NI D	LIIIIC	Quanner
		8100M 10t	al Petroleum	Hydroca	irbons					
Batch CF90610 - 3546										
Nonane (C9)	1.9	0.2	mg/kg wet	2.500		75	30-140			
Octacosane (C28)	2.2	0.2	mg/kg wet	2.500		90	40-140			
Octadecane (C18)	2.3	0.2	mg/kg wet	2.500		92	40-140			
Tetracosane (C24)	2.3	0.2	mg/kg wet	2.500		92	40-140			
Tetradecane (C14)	2.2	0.2	mg/kg wet	2.500		89	40-140			
Total Petroleum Hydrocarbons	31.1	37.5	mg/kg wet	35.00		89	40-140			
Triacontane (C30)	2.2	0.2	mg/kg wet	2.500		89	40-140			
Surrogate: O-Terphenyl	4.54		mg/kg wet	5.000		91	40-140			
LCS Dup										
Decane (C10)	2.1	0.2	mg/kg wet	2.500		85	40-140	0.1	25	
Docosane (C22)	2.3	0.2	mg/kg wet	2.500		92	40-140	1	25	
Dodecane (C12)	2.2	0.2	mg/kg wet	2.500		87	40-140	0.3	25	
Eicosane (C20)	2.3	0.2	mg/kg wet	2.500		92	40-140	0.8	25	
Hexacosane (C26)	2.2	0.2	mg/kg wet	2.500		88	40-140	2	25	
Hexadecane (C16)	2.3	0.2	mg/kg wet	2.500		90	40-140	1	25	
Nonadecane (C19)	2.3	0.2	mg/kg wet	2.500		93	40-140	0.4	25	
Nonane (C9)	1.9	0.2	mg/kg wet	2.500		75	30-140	0.3	25	
Octacosane (C28)	2.2	0.2	mg/kg wet	2.500		88	40-140	3	25	
Octadecane (C18)	2.3	0.2	mg/kg wet	2.500		92	40-140	0.3	25	
Tetracosane (C24)	2.3	0.2	mg/kg wet	2.500		91	40-140	2	25	
Tetradecane (C14)	2.2	0.2	mg/kg wet	2.500		89	40-140	0.1	25	
Total Petroleum Hydrocarbons	30.8	37.5	mg/kg wet	35.00		88	40-140	1	25	
Triacontane (C30)	2.2	0.2	mg/kg wet	2.500		86	40-140	3	25	
Surrogate: O-Terphenyl	4.50		mg/kg wet	5.000		90	40-140			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0081

Notes and Definitions

U	Analyte included	in the analysis	but not detected
U	Anaryte meruded	III tile allalysis.	, but not actedica

J Reported between MDL and MRL

D Diluted.

CD+ Continuing Calibration %Diff/Drift is above control limit (CD+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume

Final Volume

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.

Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

F/V

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit
MF Membrane Filtration
MPN Most Probably Number
TNTC Too numerous to Count
CFU Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0081

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Redwood	I Environmer	ntal Group -	KPB/HDM		ESS F	Project ID:	19F0081	
					-	Date	Received:	6/4/2019	<u> </u>
Shipped/D	elivered Via:		ESS Courie	r	-	Project I	Due Date:	6/11/2019	
						Days R	or Project:	5 Day	
	nanifest pres			No]	6. Does COC	match bottles?		Yes
	ustody seals			No]	7. Is COC cor	nplete and corre	ct?	Yes
3. Is radiat	ion count <1	00 CPM?		Yes	-]	8. Were samp	oles received inta	ct?	Yes
	oler Present?			Yes	- 1	9. Were labs	informed abou	t short holds & rushes?	Yes / No / NA
Temp:	3.1	lced with:	lce		_	10. Were any	analyses receiv	ed outside of hold time?	Yes / No
5. Was CO	DC signed an	d dated by cl	ient?	Yes]				
	bcontracting Sample IDs: Analysis; TAT:			No	<u>-</u>		As received? s in aqueous VO, anol cover soil c		Yes / No Yes / No Yes) No / NA
a. If metals	e samples pro s preserved u vel VOA vials	pon receipt:	ved?	Yes No Date: Date:		Time: _ Time:		By: By:	<u> </u>
Sample Re	ceiving Notes	s:							
		···				,			
	nere a need to ere a need to ontacted?			er? Date:	Yes No Yes No) _ Time: _		Ву:	_
		-							
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Contair	er Type	Preservativ	e Record pH (Cya Pestic	
01	352335	Yes	NA	Yes	VOA Vial	- Methanol	MeOH		
01	352339	Yes	NA	Yes		- Unpres	NP		
02 02	352334 352338	Yes Yes	NA NA	Yes Yes		- Methanol - Unpres	MeOH NP		
03	352333	Yes	NA	Yes		- Methanol	MeOH		
03	352337	Yes	NA	Yes		- Unpres	NP		
04	352332	Yes	NA	Yes		- Methanol	MeOH		
04 05	352336 352331	Yes Yes	NA NA	Yes Yes		- Unpres - Methanol	NP MeOH		
						Δ			
2nd Review	<i>N</i> ontainers so	anned into	storane/lah	12	Initials				
	e labels on co		_	••	n maio	Yes / No			
Are all Flas	hpoint sticke	rs attached/c	ontainer ID	# circled?		YES NO NA	i		
	Chrome sticl		1?			Yes / No NA	1		
	stickers attac ickers attach		noted?			Yes / No NA Yes / No NA)		
ALC YOR SI		YI					,		
Completed		$M \setminus$				6/4/	9 14	19	
By:		11\BL >			Data 9 Times				
Reviewed					_ Date & Time:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14/19	1742	

ESS Laboratory Sample and Cooler Receipt Checklist

Delivered By: Date Received: 6/4/2019 1742	Client:	Redwood Environmental Group - KPB/HDM _	ESS Project ID:	19F0081	
	-		Pate Received:	6/4/2019	
		214	6/4/19	1742	

ESS Laboratory CHAIN OF CUSTODY				Υ	ESS Lab	#	}	9F	\mathcal{O}	5									
	_			Turn Ti		5		5	Reportir	ıg	-	7. ^	1		Fias	0.			
Division of	Thielsch Engl	neering, Inc.	0	Regulatory		RI	1 2 2/2	-	Limits					ens					
185 Franc	es Avenue, Cra	enston RI 0291	0 86	Regulator	is this	project for any	of the follow	wing?:	Electonic Data Checker Excel										
		((401) 461-448	50	(CT RCP	○ MA MC		RGP	Deliverab	les	Otl	er (Pleas	e Specify)				· · · · · ·	
www.essia	boratory,com .Com	npany Name		Projec	t#	Tital	Project Na	me	1	7	•	2]	1 1				
Ked	wood E	NV Gr ntagt Person	Que	20194	2	Exchange 87 Address		• A	ی	<i>દ્ધ</i>	5	Z							- 1
	Cor	tagt Person				Addie	ÇSS		İysi	MASIB	260	P				1			
<u>_</u>	City	7.770070	Si	ate		Zip Co	ode	PO#	Analysis	W		B a				1 1			
							Email Addr	288	`	7	14	₹							
7	elephone Nur	nber	FAX	łumber			Ellian Addi			0/1	00	1 /2							
ESS Lab	Collection Date	Collection Time	Sample Type	Sample A	// atrix		San	nple ID		1	< 1 −	7				-			
1	6/4/19	2:30		50)	4	201942	- 551	- 060419		X	7 7	<u> </u>			┷	-			
2	<i>E</i> [1/17]	z:45		5010	_	201942	- 552	- 060419	7	*	V)					 			_
3		3:00		501	L	201942	2-553	3-06041	9	1	1	<u> </u>		<u> </u>				-	\perp
1	6/4/19	3:15		301		201947	7 - 5 54	1- 06041	9	Х	7)	<u>*</u>			 	-			
-	S 7/11	0.10				-Ti	CO B	lan.K			$\times 1$			1 1	•				
5						· · ·		10000			_								
													-	 		+ +		 	
 	-	<u> </u>									ł	- 1							
		ļ		<u> </u>				<u></u>											
											$-\dagger$		 	-	+ +				1
						 	 				\dashv		 		+-	1 1	+		+
									a. 1116al	-				 - -	- -	┼			
C	ontainer Type:	AC-Air Casse	tte AG-Amber Gla	ass B-BOD	Bottle	-	J-Jar O-O		rile V-Vial 11-Other*				 	+-+		+			1
Cont	ainer Volume:	1-100 mL 2	-2.5 gal 3-250 ml	L 4-300 ml	_ 5-500		VOA 8-2 o			-				+ +	 -	1 1	+-		
Prese	rvation Code:	1-Non Preserve	d 2-HCl 3-H2SO4	4-HNO3 5-Na	OH 6-Me	thanol 7-Na2S2O3	3 8-ZnAce, Na		Onmoles	-			 	+ +	1	+ +	1		
-							Numbe	er of Containers per	Sample:				<u> </u>	1		_i		<u> </u>	
		Laborator	y Use Only			Sampled by :	Cal		ecify "Othe			ativa a	nd conta	inere tu	nes in thi	s snace			
Coole	r Present:	V .	O Drop Off		1	Comments:		Please sp	ecity "Othe	r" pr	eserv	ative a	nu coma	miers ty	poo iii aii	оорио			
1	ls Intact:	M	- Pickup			1-1V 1	ce V	nov to cal	b de	1,	VE V	<i>r S</i> P - 1	Metals	s cano	celled	per	clie	ent	
Cooler Temperature: O \ °C												6/6/19	Peceive	RB d By: (Sig	nature.	Date &	Time)		
Relinquished by: (Signature, Date & Time) Received By: (ved By: (Signature, Date		Relinquished By	: (Signature	, Dat	 α 11	111 0)		. COGIVE	,. (Olg						
6xum rown 6/4/19 3,45				14/19	1546								1.D.: (0)		Doto º	Time			
<u> </u>	Relinquished by: (Signature, Date & Time) Received By: (Signature, Date & Time)			Signature, Date		Relinquished By	: (Signature	, Dat	e & Ti	me)	<u> </u>	Receive	d By: (Sig	nature,	Jale &	(BIRE)			
	emiquaried by	. (2:3::a:a:a; p.		 	***														
1				1				1					L						

ESS Laboratory CHAIN OF CUSTODY				Υ	ESS Lat	#)	9	$V\alpha$	186										
	_			Turn Time	5		5	Reportii	ng		7.	Δ.	den	-L	/	1.				
Division of	Thielsch Engli	neering, inc.	0	Regulatory State	RI			Limits		U		<u> </u>	100	-4-6	<u>.</u>					
185 France	es Avenue, Cra	enston RI 0291 (401) 461-448	86	is thi	s project for any	y of the follor	wing?:	Electonic Data Checker Excel												
		(401) 401-440	,0	O CT RCI		ср О	RGP	Deliverab	les] Ot	her (P	ease Spec	ify)	 -					T 1	
www.essia	<u>boratory,com</u> ,Con	pany Name		Project #	Fur)	Project Na ールハイモ と	me	1	7		2									
Led	wood E	npany Name NV Gr Itagt Person	OVD CAR	78194°Z	Addr	ess) 1	<u></u>	MADI 8	360	P	1 1	•					İ		
	Con	Mark Person						lys		4	9		Ì]			ĺ
<u> </u>	City State			ate	Zip Co	ode	PO#	Analysis	1 1	100	b 0									l
<u></u>			EAVA	lumbor		Email Addr	ess		*	N.	4						-	1		
į T	Telephone Number FAX Number					<u></u>	HOLL	200	2											
ESS Lab	Collection Date	Collection Time	Sample Type	Sample Matrix		San	nple ID			<u>ک</u>	U			-			+	+		-
1.		2:30		SOIL	201942	- 55/	- 060419	1	X	7	X			$\perp \perp$						<u> </u>
	6/4/19		-				- 06041		*	V.	x									
2		2:45		501L					X	x	Ϋ́			T						ĺ
3_		3:00		5016	201940	<u> </u>	3-06041	/	} -+		X	-					1			Γ
Ч	6/4/19	3:15		3014	20194	<u>Z ~ 554</u>	1-06041	9	Х		<u>^</u>			+		-	+-	-	 	-
						rip B	lan.K			<u>X</u>				1-1-			_		ļ	-
5													.							
	<u> </u>							<u></u>								 				
					<u> </u>		<u> </u>	<u></u>	1	-	_			1						
										-+		+		+				+-		
													_ _				+-		+	-
											\bot					-	$\overline{+}$		ļ	-
	Laterinas Turas	AC-Air Cassel	L AG-Amber Gl	iss B-BOD Bottle	C-Cubitainer	J-Jar O-Ot	ther P-Poly S-Ste	rile V-Vial						$\perp \perp$					 	├
		1-100 mL 2			0 mL 6-1L 7-	-VOA 8-2 oz			1	_		_		 		-			+-	-
Proce	mustion Code:	1-Non Preserve	2-HCI 3-H2SO4	4-HNO3 5-NaOH 6-N	Methanol 7-Na2S2O	3 8-ZnAce, Na	OH 9-NH4CI 10-DI H20		 	\dashv			}-			├ ── ─		-	+	<u> </u>
Fiese	yation code.					Numbe	er of Containers per	Sample:								<u> </u>			1	L
	<u> </u>	Laborator	y Use Only		Sampled by	: Crol							4	- hina-	in this	enace				
Coole	r Present:	V.	O Drop Off		Comments:			ecify "Othe					ontainer	s types	i III tilis	Shace	•			
i i	ls Intact:	M	O Pickup		17-74 1	ice V.	nov to la	b de	2/1	ve i	[J									
Cooler T	emperature:	31	°c				Relinquished By						Rec	eived B	v: (Sign	ature,	Date	& Tim	e)	
R	elinquished by	: (Signature, Da		Received By:	(Signature, Date		Relinquished by	. (Signature	, Dat							·····				
6 Kun (mour 6/4/19 3,45			(14/19	1546											<u> </u>	0 T:				
<u>(c</u>	Relinquished by: (Signature, Date & Time) Received By: (Signature, Date & Time)			(Signature, Date		Relinquished By	Relinquished By: (Signature, Date & Time) Received By: (Signature, Date & Time)					o. IIM	ie)	—						
		<u> </u>		T T																

NORTHEAST REVALUATION GROUP LLC

East Greenwich

(Summary Data - may not be Complete Representation of Property)

1/2 Baths: 0

Owner: GRENIER PROPERTIES LLC Parcel: 085 001 087 0000 Location: 32 EXCHANGE STREET

Account: 107 User Acct: 100404674 LUC:

Parcel Values

Total: \$197,900 Land: \$181,600 Land Area: 0.192 AC Building: \$16,300 Assessed: \$197,900

Sales Information

Book and Page Instrument Type Price Date Grantor

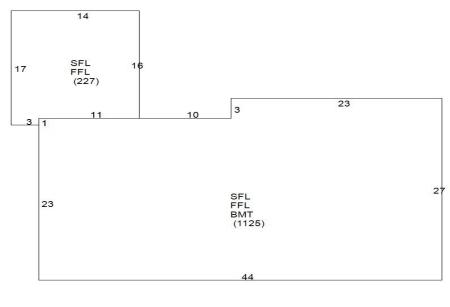
Full Bath: 1

1393-272 \$210,000 Warranty 03/22/2018 **CURRIE ELAINE SO** 715-002 Death Certificate 06/29/2013 \$0 private owner

Condition: DL Building Type: Colonial Year Built: 1860 Grade:Q4 Heat Fuel: Heat Type: BB Hot Wtr % Air Conditioned: 0.00 Fireplaces: 0

Exterior Wall: Asbestos Bsmnt Garage: 0 Roof Cover: Asphalt # of Units: 1 # of Rooms: 14

Yard Item(s)


Description Quantity Condition Quality Value Size Year 70.00000 \$300.00 Shed 1860 FR Average

Building Areas

Net Area Finished Area Area 1st FLOOR 1,352 SF 1,352 SF 2nd FLOOR 1,352 SF 1,352 SF **BASEMENT** 1,125 SF 0 SF

of Bedrooms: 10

Disclaimer: This information is for tax assessing purposes and is not warranted

NORTHEAST REVALUATION GROUP LLC

East Greenwich

(Summary Data - may not be Complete Representation of Property)

Parcel: 085 001 382 0000 Location: 33 EXCHANGE STREET Owner: GRENIER PROPERTIES LLC

Account: 433 User Acct: 100404674 LUC: 13

Parcel Values

Total: \$27,600 Land: \$27,600 Land Area: 0.287 AC Building: \$0 Assessed: \$27,600

Sales Information

Book and Page Instrument Type Date Price Grantor

1393-272 Warranty 03/22/2018 \$210,000 CURRIE ELAINE SO

715-001 Death Certificate 06/29/2013 \$0 private owner

Building Type: Year Built: Grade: Condition: AV

Heat Fuel: Heat Type: % Air Conditioned: 0.00 Fireplaces: 0

Exterior Wall: Bsmnt Garage: 0 Roof Cover: # of Units: 0

of Rooms: 0 # of Bedrooms: 0 Full Bath: 0 1/2 Baths: 0

Yard Item(s)

Description Quantity Size Year Condition Quality Value

Building Areas

Area Net Area Finished Area

Disclaimer: This information is for tax assessing purposes and is not warranted

July 15, 2019 Project 201942

Ms. Kelley Owens Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street Providence, RI 02908

RE: Release Notification

Residential Property 32 & 33 Exchange Street Plat 85/1, Lots 87 & 382

East Greenwich, Rhode Island 02818

Dear Ms. Owens:

Redwood Environmental Group, LLC (Redwood), on behalf of Grenier Properties, Inc., has completed the attached Rhode Island Department of Environmental Management (RI DEM) Office of Waste Management Hazardous Material Release Notification Form for the address listed above (the Site). This notification includes the following documents:

- RI DEM Hazardous Material Release Notification Form
- Letter Report with Laboratory Data Sheets (June 16, 2019)

As part of a redevelopment of the property as condominiums and the fact that vehicles had been parked on the Site from at least the 1960's through the early 2000's, the Site owner requested that Redwood perform a cursory soil sampling of surficial soils to verify the soil quality with respect to metals. Redwood collected four (4) soil samples approximately equal distance from each other (refer to Figure 1 attached). Lead was identified above RI DEM Method 1 Residential Direct Exposure Criteria of 150 milligrams per kilograms (mg/kg) in two locations. Soil sample SS2 and SS3 were identified with concentrations of 424 mg/kg and 197 mg/kg, respectively. The two other samples analyzed, SS1 and SS4, had concentrations of 80 mg/kg and 119 mg/kg, respectively. No other RCRA-8 metals were identified with concentrations exceeding regulatory standards applicable to the Site.

With the submittal of the above documents, Grenier Properties, LLC is making formal notification to RI DEM. Redwood proposes to perform additional investigation to determine the vertical and lateral extent of the lead confirmation. As the future use of the Site will be residential condominiums, it is expected that much of the contamination will be removed from the Site and properly disposed at the Rhode Island Resource Recovery Corporation landfill in Johnston.

If you have any questions regarding this submittal, please call me at (401) 270-7000.

Sincerely,

REDWOOD ENVIRONMENTAL GROUP, LLC

Gary S. Kaufman

Gary S. Raufman

Principal

Appendix C

OFFICE OF WASTE MANAGEMENT – SITE REMEDIATION SECTION HAZARDOUS MATERIAL RELEASE NOTIFICATION FORM

THIS FORM IS NOT TO BE USED TO REPORT AN IMMINENT HAZARD

1.	Notifier Information
	Name: GARY KAUFMAN, Redwood Environmental Group, LC Address: 10 ELMGROVE AUR, Providence, RI 02906
	Phone: 401-270-7000
	Email: g Kaufman @ Redwood Env. com
	Status: Environmental ProfessionalOwnerOperatorSecured CreditorVoluntary
	If Environmental Professional is selected, please supply the follow information for your client below:
	Name: Tim Grenier, Granier Properties, LC Address: 3 Cale Circle, EAST Greenwich, RI02818
	Phone: 401-527-0524
	Email: greniergroup@cox, Net
	Status: OwnerOperatorSecured CreditorVoluntary
2.	Property Information Residential Property Name of Site: 33 Exchange ST, EAST Greenwich, RI 02818
	Name of Site: 33 Exchange ST, EAST Greenwich, RI 02818 Site Address:
	Plat/Lot Numbers: Plat 85/1, LOT 382
	Approximate Acreage of Property: 0.287
	Latitude/Longitude: 41° 39' 41"N 71° 26' 52"W
	Site Land Usage Type: X Residential Industrial/Commercial
	Location of Release: middle of Site, See Attached Sampling
	(Attach site sketch as necessary) Plan,
3.	Release Information
	Date of Discovery: 6/14/2019 Source: LAB Awalysis Release Media: 501L
	· · · · · · · · · · · · · · · · · · ·
	Hazardous Materials and Concentrations: Load 197my/kg 4 494mg/kg (Attach certificates of analysis as necessary)
	Extent of Contamination: 12-18" deep.
	Approximate acreage of Contaminated Area:

4.	Resource Information		
	Site Land Usage:	Industrial/Commercial	Residential
	Adjacent Land Usage:	Industrial/Commercial	$\frac{\sum}{\sum}$ Residential
	Site Groundwater Class:	GA/GAA	χ _{GB}
	Adjacent Groundwater Class: (if different than site groundwater classific	GA/GAA ation within 500 feet)	<u>X</u> GB
	Nearest Surface Water or Wetlan	d: Greenwich Cov	e
		Less Than 500 Feet	X Greater Than 500 Feet
		Potential for adverse impact	Yes No
5.	Potentially Responsible Parties	•	
	Name Grenia Address: 3 cole Carc	er Properties, LLC le, East Greenu	.ch, RI 02818
	Status: X Owner Operat		, ,
	Name: Address:		
	Status:OwnerOperat	tor Other:	
6.	Measures Taken or Proposed to b		nation
	2. Remove in	npacted Soil.	
	Check all that apply:Site Invo	estigationShort-Term/Emergency _	_EXPRESSDig & Haul
7.		t Release (Will a background determinat Velease From Stor Vaa:	A
	Signature: Gay F	Raufman De Réducot Environnesse	te <u>7/15</u> 19 tal Group, UC

June 16, 2019 Project 201942

Tim Grenier Grenier Group 3 Cole Circle East Greenwich, RI 02818

Re: Letter Report

Soil Sampling Results-RCRA 8 Metals

Residential Property 32 & 33 Exchange Street East Greenwich, RI 02818

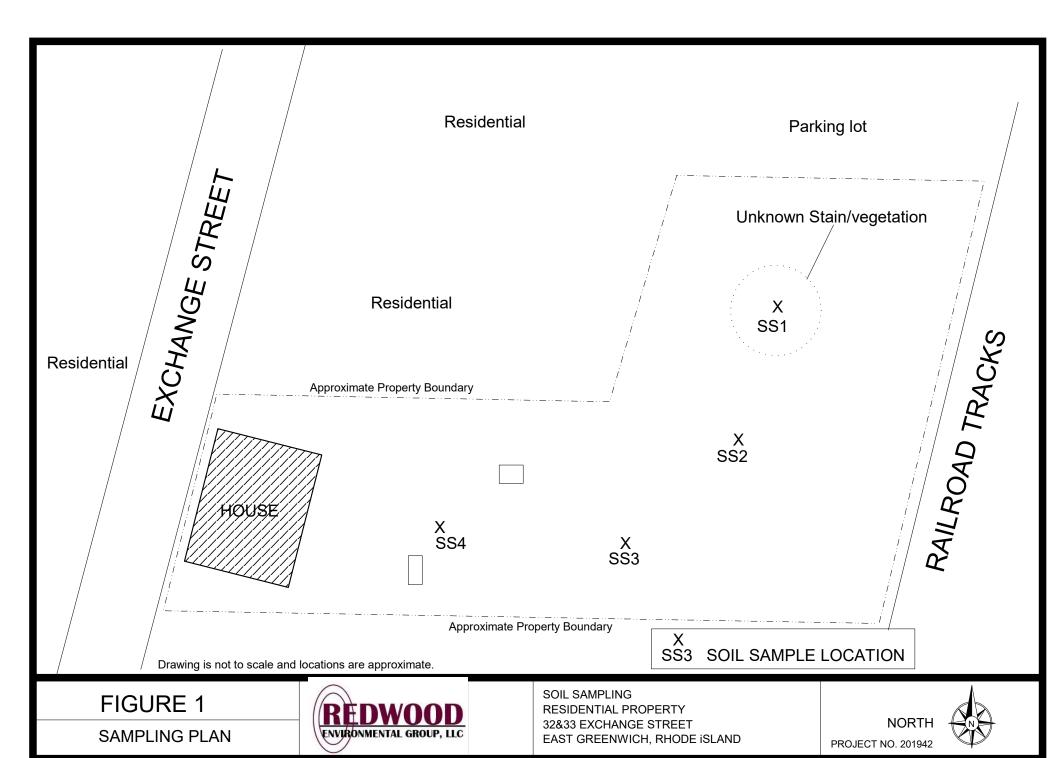
Dear Mr. Grenier:

Redwood Environmental Group, LLC (Redwood) has completed limited soil sampling at the address above (the Site) as requested by Grenier Group. Redwood arbitrarily selected 4 points across the Site and using a shovel, dug down approximately 12 to 18 inches into the soil. Soils were then collected from the sidewalls of the hole and placed in laboratory glassware. The soils were delivered to a Rhode Island Certified laboratory for RCRA-8 Metal analysis by U.S. EPA Method 6010. An orange flag was placed in each sample location. Figure 1 provides an approximate location of the sample points.

RCRA-8 metals include Arsenic, Barium, Cadmium, Chromium, Lead, Mercury, Selenium and Silver. Table 1 attached shows the results as compared to the Rhode Island Department of Environment Management (RI DEM) Residential Direct Exposure Criteria (RDEC) applicable to the Site. Only lead was identified above the RDEC of 150 milligrams per kilograms (mg/kg). Soil samples 201942-SS2-060419 and 201942-SS3-060419 were identified with lead at concentrations of 424 mg/kg and 197 mg/kg, respectively. All other metals listed above were either identified with low level concentrations or concentrations below the laboratory reporting limits for that metal.

If you have any questions regarding this report, please call me at (401) 270-7000. Thank you for the opportunity to provide environmental assessment services.

Sincerely,


REDWOOD ENVIRONMENTAL GROUP, LLC

Gary S. Kaufman

Gary S. Kaufman

Principal/Senior Project Manager

Attachments Figure 1 Table 1

Laboratory Sample Designation Sample Designation Sample Date Total Metals		RES DEC	19F0164 201942-SS1 06/04/20	-060419	19F0164 201942-SS2 06/04/2	-060419	19F016- 201942-SS3 06/04/2	-060419	19F0164 201942-SS4 06/04/2	-060419
Arsenic	mg/kg	7	2.46	U	2.89	-	2.50	-	2.35	-
Barium	mg/kg	5500	38.9	-	74.8	-	61.8	-	35.5	-
Cadmium	mg/kg	39	1.31	-	1.99	-	1.27	-	0.85	-
Chromium	mg/kg	1400	7.99	-	12.3	-	8.42	-	8.29	-
Lead	mg/kg	150	80.0	-	424	-	197	-	119	-
Mercury	mg/kg	23	0.064	-	0.102	-	0.071	-	0.068	-
Selenium	mg/kg	390	4.93	U	3.93	U	4.36	U	4.55	U
Silver	mg/kg	200	0.49	U	0.39	U	0.44	U	0.46	U

Qualifier	Description
U	Undetected
Bold	Constituent identified above RI DEM Residential Direct Exposure Criteri

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Gary Kaufman Redwood Environmental Group 10 Elmgrove Avenue Providence, RI 02906

RE: Exchange Street (201942)

ESS Laboratory Work Order Number: 19F0164

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director REVIEWED

By ESS Laboratory at 7:03 pm, Jun 14, 2019

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0164

SAMPLE RECEIPT

The following samples were received on June 06, 2019 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	Sample Name	Matrix	Analysis
19F0164-01	201942-SS1-060419	Soil	6010C, 7471B
19F0164-02	201942-SS2-060419	Soil	6010C, 7471B
19F0164-03	201942-SS3-060419	Soil	6010C, 7471B
19F0164-04	201942-SS4-060419	Soil	6010C, 7471B

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0164

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0164

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS1-060419

Date Sampled: 06/04/19 14:30

Percent Solids: 94

ESS Laboratory Work Order: 19F0164 ESS Laboratory Sample ID: 19F0164-01

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	ND (2.46)		6010C		1	KJK	06/12/19 17:42	2.16	100	CF90741
Barium	38.9 (2.46)		6010C		1	KJK	06/12/19 17:42	2.16	100	CF90741
Cadmium	1.31 (0.49)		6010C		1	KJK	06/12/19 17:42	2.16	100	CF90741
Chromium	7.99 (0.99)		6010C		1	KJK	06/12/19 17:42	2.16	100	CF90741
Lead	80.0 (4.93)		6010C		1	KJK	06/12/19 17:42	2.16	100	CF90741
Mercury	0.064 (0.026)		7471B		1	MKS	06/11/19 9:39	0.8	40	CF90742
Selenium	ND (4.93)		6010C		1	KJK	06/12/19 17:42	2.16	100	CF90741
Silver	ND (0.49)		6010C		1	KJK	06/12/19 17:42	2.16	100	CF90741

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS2-060419

Date Sampled: 06/04/19 14:45

Percent Solids: 94

ESS Laboratory Work Order: 19F0164 ESS Laboratory Sample ID: 19F0164-02

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Analyte Arsenic	Results (MRL) 2.89 (1.97)	<u>MDL</u>	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 06/12/19 18:14	<u>I/V</u> 2.71	<u>F/V</u> 100	Batch CF90741
Barium	74.8 (1.97)		6010C		1	KJK	06/12/19 18:14	2.71	100	CF90741
Cadmium	1.99 (0.39)		6010C		1	KJK	06/12/19 18:14	2.71	100	CF90741
Chromium	12.3 (0.79)		6010C		1	KJK	06/12/19 18:14	2.71	100	CF90741
Lead	424 (3.93)		6010C		1	KJK	06/12/19 18:14	2.71	100	CF90741
Mercury	0.102 (0.029)		7471B		1	MKS	06/11/19 9:53	0.72	40	CF90742
Selenium	ND (3.93)		6010C		1	KJK	06/12/19 18:14	2.71	100	CF90741
Silver	ND (0.39)		6010C		1	KJK	06/12/19 18:14	2.71	100	CF90741

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS3-060419

Date Sampled: 06/04/19 15:00

Percent Solids: 94

ESS Laboratory Work Order: 19F0164 ESS Laboratory Sample ID: 19F0164-03

Sample Matrix: Soil

Units: mg/kg dry

Extraction Method: 3050B

Analyte Arsenic	Results (MRL) 2.50 (2.18)	<u>MDL</u>	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 06/12/19 18:33	<u>I/V</u> 2.43	<u>F/V</u> 100	Batch CF90741
Barium	61.8 (2.18)		6010C		1	KJK	06/12/19 18:33	2.43	100	CF90741
Cadmium	1.27 (0.44)		6010C		1	KJK	06/12/19 18:33	2.43	100	CF90741
Chromium	8.42 (0.87)		6010C		1	KJK	06/12/19 18:33	2.43	100	CF90741
Lead	197 (4.36)		6010C		1	KJK	06/12/19 18:33	2.43	100	CF90741
Mercury	0.071 (0.031)		7471B		1	MKS	06/11/19 10:03	0.67	40	CF90742
Selenium	ND (4.36)		6010C		1	KJK	06/12/19 18:33	2.43	100	CF90741
Silver	ND (0.44)		6010C		1	KJK	06/12/19 18:33	2.43	100	CF90741

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street Client Sample ID: 201942-SS4-060419

Date Sampled: 06/04/19 15:15

Percent Solids: 94

ESS Laboratory Work Order: 19F0164 ESS Laboratory Sample ID: 19F0164-04

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Analyte Arsenic	Results (MRL) 2.35 (2.28)	MDL	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 06/12/19 18:37	<u>I/V</u> 2.33	$\frac{\mathbf{F/V}}{100}$	Batch CF90741
Barium	35.5 (2.28)		6010C		1	KJK	06/12/19 18:37	2.33	100	CF90741
Cadmium	0.85 (0.46)		6010C		1	KJK	06/12/19 18:37	2.33	100	CF90741
Chromium	8.29 (0.91)		6010C		1	KJK	06/12/19 18:37	2.33	100	CF90741
Lead	119 (4.55)		6010C		1	KJK	06/12/19 18:37	2.33	100	CF90741
Mercury	0.068 (0.025)		7471B		1	MKS	06/11/19 10:05	0.83	40	CF90742
Selenium	ND (4.55)		6010C		1	KJK	06/12/19 18:37	2.33	100	CF90741
Silver	ND (0.46)		6010C		1	KJK	06/12/19 18:37	2.33	100	CF90741

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street

ESS Laboratory Work Order: 19F0164

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			Total Meta	ıls						
Batch CF90741 - 3050B										
Blank										
Arsenic	ND	2.50	mg/kg wet							
Barium	ND	2.50	mg/kg wet							
Cadmium	ND	0.50	mg/kg wet							
Chromium	ND	1.00	mg/kg wet							
Lead	ND	5.00	mg/kg wet							
Selenium	ND	5.00	mg/kg wet							
Silver	ND	0.50	mg/kg wet							
.cs										
Arsenic	132	9.26	mg/kg wet	128.0		104	80-120			
Barium	509	9.26	mg/kg wet	536.0		95	80-120			
Cadmium	89.2	1.85	mg/kg wet	99.00		90	80-120			
Chromium	116	3.70	mg/kg wet	116.0		100	80-120			
Lead	273	18.5	mg/kg wet	277.0		99	80-120			
Selenium	237	18.5	mg/kg wet	242.0		98	80-120			
Silver	61.8	1.85	mg/kg wet	64.30		96	80-120			
.CS Dup			3, 3							
Arsenic	138	9.80	mg/kg wet	128.0		108	80-120	4	20	
Barium	556	9.80	mg/kg wet	536.0		104	80-120	9	20	
Cadmium	92.2	1.96	mg/kg wet	99.00		93	80-120	3	20	
Chromium	115	3.92	mg/kg wet	116.0		99	80-120	0.4	20	
.ead	279	19.6	mg/kg wet	277.0		101	80-120	2	20	
Selenium	244	19.6	mg/kg wet	242.0		101	80-120	3	20	
Silver	61.5	1.96	mg/kg wet	64.30		96	80-120	0.5	20	
Reference			3, 3							
Barium	509	8.77	mg/kg wet	500.0		102	70-130			
Cadmium	516	1.75	mg/kg wet	500.0		103	70-130			
Chromium	541	3.51	mg/kg wet	500.0		108	70-130			
Lead	540	17.5	mg/kg wet	500.0		108	70-130			
Silver	140	1.75	mg/kg wet	500.0		28	70-130			
Batch CF90742 - 7471B										
Blank										
Mercury	ND	0.033	mg/kg wet							
LCS										
Mercury	12.5	0.868	mg/kg wet	16.80		75	51-105			
			5,							
LCS Dup Mercury	11.0	0.900	mg/kg wet	16.80		66	51-105	13	20	
	11.0	0.300	mg/kg wet	10.00		00	31-103	13	20	
Reference			-							
Mercury	0.981	0.168	mg/kg wet	1000		0.1	0-200			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0164

Notes and Definitions

U Analyte included in the analysis, but not detected
--

D Diluted.

F/V

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

Sample results reported on a dry weight basis dry

Relative Percent Difference **RPD MDL** Method Detection Limit **MRL** Method Reporting Limit LOD Limit of Detection Limit of Quantitation LOQ **Detection Limit** DL Initial Volume I/V

Final Volume

Subcontracted analysis; see attached report §

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg

Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit MF Membrane Filtration MPN Most Probably Number **TNTC** Too numerous to Count **CFU** Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Exchange Street ESS Laboratory Work Order: 19F0164

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

ESS Laboratory Sample and Cooler Receipt Checklist

	Neuwood	<u> Environmer</u>	ntal Group - K	(PB/EO		ESS Project		19F0164 6/6/2019	
Shipped/De	elivered Via:	E	SS Courier			Date Receiv	eu ate:	6/13/2019	
	•					Days for Proj	ect:	5 Day	
	anifest prese			No		6. Does COC match			Yes
2 Mere cu	stody seals p	resent?	Г	No]		7. Is COC complete	and correct?		Yes
	ion count <10			Yes		8. Were samples red			Yes
			_	Van		9. Were labs inform	ed about <u>sh</u>	ort holds & rushes?	Yes / Nov. NA
	ler Present? 5,7	lced with: _	lce	Yes j		10. Were any analy	ses received	outside of hold time?	Yes / No
5. Was CO	C signed and	dated by clie	ent?	Yes					
	bcontracting i Sample IDs: Analysis: TAT:		Yes /			12. Were VOAs reco a. Air bubbles in aq b. Does methanol c	ueous VOAs		Yes / No Yes / No Yes / No / NA
a. If metals	e samples pro s preserved u rel VOA vials	pon receipt:	red? (Yes / No Date: Date:		Time:	_	By: By:	
Sample Re	ceiving Notes	s:							
	nere a need to ere a need to contacted?			? Date:	Yes / No Yes No	/ Time:		By:	
a. Was the	ere a need to	contact the c			Yes (No		Preservative	Record pH (C	Cyanide and 608 ticides)
Sample Number	Container ID 353158	Proper Container	Air Bubbles Present NA	Sufficient Volume Yes	Yes (No	er Type	Preservative NP	Record pH (C	Cyanide and 608
a. Was the Who was c	container	Proper Container	Air Bubbles Present	Date: Sufficient Volume	Yes (No	er Type - Unpres - Unpres - Unpres - Unpres	Preservative	Record pH (C	Cyanide and 608

ESS Laboratory HAIN OF CUSTODY Division of Thielsch Engineering, Inc. Turn Time ESS LAB PROJECT ID Reporting Limits 185 Frances Avenue, Cranston, RI 02910-2211 If faster than 5 days, prior approval by laboratory is required # Res. State where samples were collected from: Tel. (401) 461-7181 Fax (401) 461-4486 MA (RI CT NH NJ NY Other Electronic Deliverable www.esslaboratory.com Is this project for any of the following:

MA-MCP Navy USACE Other Format: Excel __ Access __ PDF __ Other __ Co. Name Project Name (20 Char, or less) Project # Write Required Analysis 201942 City Zip Type of Containers Telephone # Fax # Email Address ESS LAB Date Collection MATRIX GRAB Sample Identification (20 Char. or less) Sample # Time 6/4/19 2:30 201942-551-060419 6 2:45 201942-552-060419 2 G 3 201942-553-060419 3:00 6 201942-554-060419 4 3:15 G Container Type: P-Poly G-Glass S-Sterile V-VOA | Matrix: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filters Yes ___ No Cooler Present Internal Use Only Preservation Code 1- NP, 2- HC1, 3- H2SO4, 4- HNO3, 5- NaOH, 6- MeOH, 7- Asorbic Acid, 8- ZnAct, 9-___Yes ___No NA: / [] Pickup Sampled by: Cosh Seals Intact Cooler Temp: 5.7 Live Scu Comments: on ice Prior to Lab delivery Technicians ___ Relinquished by: (Signature) Date/Time Received by: (Signature) Date/Time Relinquished by: (Signature) Date/Time Received by: (Signature) Date/Time 6 Yumm 6/1919: 14 Relinguished by: (Signature) Date/Time Received by: (Signature) Date/Time Relinquished by: (Signature) Date/Time Received by: (Signature) Date/Time

^{*}By circling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A

Engineer:	esider 2 & 33	ntial Proper	-4. ,					
Engineer:	2 & 33		ιγ			Project No.:	201942	
Engineer:	ast Gr	3 Excahnge	Street			Date:	11/6/2019	
Depth in	40. 0.	reenwich, F	Rhode Islan	ıd		Well Size:	1-inch	
Depth in		GSK		Time:		Drilling Method	GeoProbe	
Depth in Feet Sa								
	ample	PID	Recovery (inches)		Description		Well Design	
1								Cover
2 X								
3		0.5	39/60	layer of dark dens	d to brown medium sa se fine sand to brown dry, Lab Analysis-SVO	coarse sand trace		
4				graver, no odor, c	iry, Lab Arialysis-3VO	Cs		
5								
6								Riser
7				Brown loose coar	rse sand to loose coar	ee eand and		
8 X		0.7	43/60		Iry, Lab Analysis-VOC			
9								
10								
11								
13		_			e sand and gravel to l	brown fine sand		
14		0	55/60	WET @ 14 feet.				Water Table
15								
16								
17								Well Screen
18								
19								
20			-					
		Set well wit	th casing @) 20-feet, screen 7	10-20, riser 0-10			

APPENDIX B LABORATORY DATA SHEETS

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Gary Kaufman Redwood Environmental Group 10 Elmgrove Avenue Providence, RI 02906

RE: Grenier (201942)

ESS Laboratory Work Order Number: 19K0159

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

ESS Laboratory Work Order: 19K0159 Client Project ID: Grenier

SAMPLE RECEIPT

The following samples were received on November 06, 2019 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
19K0159-01	201942-MW1-110619	Soil	EPH8270, MADEP-EPH, MA-VPH-2.1
19K0159-02	201942-MW2-110619	Soil	EPH8270, MADEP-EPH, MA-VPH-2.1
19K0159-03	201942-MW3-110619	Soil	EPH8270, MADEP-EPH, MA-VPH-2.1

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

ESS Laboratory Work Order: 19K0159 Client Project ID: Grenier

PROJECT NARRATIVE

MADEP-EPH Extractable Petroleum Hydrocarbons

Continuing Calibration %Diff/Drift is above control limit (CD+). C9K0243-CCV2

Benzo(g,h,i)perylene (26% @ 20%), Dibenzo(a,h)Anthracene (22% @ 20%), Indeno(1,2,3-cd)Pyrene

(24% @ 20%), Phenanthrene (22% @ 20%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0159

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Dependability

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW1-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 96 Initial Volume: 24.4 Final Volume: 1

A malusta

Extraction Method: 3546

ESS Laboratory Work Order: 19K0159 ESS Laboratory Sample ID: 19K0159-01

Sample Matrix: Soil Units: mg/kg dry

Prepared: 11/6/19 20:47

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) ND (16.0)	<u>MDL</u>	<u>Method</u> Madep-eph	<u>Limit</u>	<u>DF</u>	Analyst CAD	<u>Analyzed</u> 11/09/19 4:00	Sequence C9K0051	<u>Batch</u> CK90614
C19-C36 Aliphatics1	ND (16.0)		MADEP-EPH		1	CAD	11/09/19 4:00	C9K0051	CK90614
C11-C22 Unadjusted Aromatics1	ND (16.0)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
C11-C22 Aromatics1,2	ND (16.0)		EPH8270			ZLC	11/14/19 13:23		[CALC]
2-Methylnaphthalene	ND (0.21)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Acenaphthene	ND (0.43)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Naphthalene	ND (0.43)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Phenanthrene	ND (0.43)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Acenaphthylene	ND (0.21)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Anthracene	ND (0.43)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Benzo(a)anthracene	ND (0.43)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Benzo(a)pyrene	ND (0.43)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Benzo(b)fluoranthene	ND (0.43)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Benzo(g,h,i)perylene	ND (0.43)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Benzo(k)fluoranthene	ND (0.43)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Chrysene	ND (0.43)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Dibenzo(a,h)Anthracene	ND (0.21)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Fluoranthene	ND (0.43)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Fluorene	ND (0.43)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Indeno(1,2,3-cd)Pyrene	ND (0.43)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
Pyrene	ND (0.43)		EPH8270		1	ZLC	11/14/19 13:23	C9K0243	CK90614
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		<i>59 %</i>		40-140					
Surrogate: 2-Bromonaphthalene		117 %		40-140					

	%kecovery	Qualifier	Limits
Surrogate: 1-Chlorooctadecane	59 %		40-140
Surrogate: 2-Bromonaphthalene	117 %		40-140
Surrogate: 2-Fluorobiphenyl	113 %		40-140
Surrogate: O-Terphenyl	<i>79</i> %		40-140

Desults (MDI)

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW1-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 96 Initial Volume: 27.1 Final Volume: 15

Extraction Method: 5035

Column Type: Restek RTX-502.2 - 3µ film thickness 0.53mm X 105m

ESS Laboratory Work Order: 19K0159 ESS Laboratory Sample ID: 19K0159-01

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

Trap Type: Supelco K Vocarb 3000 Trap

MADEP-VPH Volatile Petroleum Hydrocarbon

<u>Analyte</u>	Results (MRL)	MDL Method	<u>Limit</u> <u>DF</u>	Analyzed	Sequence	Batch
C9-C10 Aromatics	ND (6.13)	MA-VPH-2.1	1	11/07/19 20:25	C9K0135	CK90759
C5-C8 Aliphatics1,2	ND (6.40)	MA-VPH-2.1	1	11/07/19 20:25		[CALC]
C9-C12 Aliphatics2,3	ND (12.7)	MA-VPH-2.1	1	11/07/19 20:25		[CALC]
Benzene	ND (0.12)	MA-VPH-2.1	1	11/07/19 20:25	C9K0135	CK90759
Ethylbenzene	ND (0.12)	MA-VPH-2.1	1	11/07/19 20:25	C9K0135	CK90759
Methyl tert-Butyl Ether	ND (0.03)	MA-VPH-2.1	1	11/07/19 20:25	C9K0135	CK90759
Naphthalene	ND (0.12)	MA-VPH-2.1	1	11/07/19 20:25	C9K0135	CK90759
Toluene	ND (0.12)	MA-VPH-2.1	1	11/07/19 20:25	C9K0135	CK90759
Xylene O	ND (0.12)	MA-VPH-2.1	1	11/07/19 20:25	C9K0135	CK90759
Xylene P,M	ND (0.25)	MA-VPH-2.1	1	11/07/19 20:25	C9K0135	CK90759
1:1 Methanol/Soil Ratio %D	81 (N/A)	MA-VPH-2.1		11/07/19 7:40		CK90759
Preservative:	MeOH - covered	MA-VPH-2.1				CK90759

	%Recovery	Qualifier	Limits
Surrogate: 2,5-Dibromotoluene - FID	80 %		70-130
Surrogate: 2,5-Dibromotoluene - PID	84 %		70-130
Surrogate: Trifluorotoluene - FID	113 %		70-130
Surrogate: Trifluorotoluene - PID	116 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW2-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 95 Initial Volume: 25.3 Final Volume: 1

A malusta

Extraction Method: 3546

ESS Laboratory Work Order: 19K0159 ESS Laboratory Sample ID: 19K0159-02

Sample Matrix: Soil Units: mg/kg dry

Prepared: 11/6/19 20:47

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) ND (15.7)	<u>MDL</u>	<u>Method</u> Madep-eph	<u>Limit</u>	<u>DF</u>	Analyst CAD	<u>Analyzed</u> 11/09/19 4:47	Sequence C9K0051	<u>Batch</u> CK90614
C19-C36 Aliphatics1	ND (15.7)		MADEP-EPH		1	CAD	11/09/19 4:47	C9K0051	CK90614
C11-C22 Unadjusted Aromatics1	ND (15.7)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
C11-C22 Aromatics1,2	ND (15.7)		EPH8270			ZLC	11/14/19 14:00		[CALC]
2-Methylnaphthalene	ND (0.21)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Acenaphthene	ND (0.42)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Naphthalene	ND (0.42)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Phenanthrene	ND (0.42)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Acenaphthylene	ND (0.21)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Anthracene	ND (0.42)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Benzo(a)anthracene	ND (0.42)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Benzo(a)pyrene	ND (0.42)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Benzo(b)fluoranthene	ND (0.42)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Benzo(g,h,i)perylene	ND (0.42)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Benzo(k)fluoranthene	ND (0.42)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Chrysene	ND (0.42)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Dibenzo(a,h)Anthracene	ND (0.21)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Fluoranthene	ND (0.42)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Fluorene	ND (0.42)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Indeno(1,2,3-cd)Pyrene	ND (0.42)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
Pyrene	ND (0.42)		EPH8270		1	ZLC	11/14/19 14:00	C9K0243	CK90614
		%Recovery	Qualifier	Limits					_
Surrogate: 1-Chlorooctadecane		51 %		40-140					
Surrogate: 2-Bromonaphthalene		116 %		40-140					

	%Recovery	Qualifier	Limits
Surrogate: 1-Chlorooctadecane	51 %		40-140
Surrogate: 2-Bromonaphthalene	116 %		40-140
Surrogate: 2-Fluorobiphenyl	111 %		40-140
Surrogate: O-Terphenyl	67 %		40-140

Desults (MDI)

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW2-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 95 Initial Volume: 28.7 Final Volume: 15

Extraction Method: 5035

Column Type: Restek RTX-502.2 - 3µ film thickness 0.53mm X 105m

ESS Laboratory Work Order: 19K0159 ESS Laboratory Sample ID: 19K0159-02

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

Trap Type: Supelco K Vocarb 3000 Trap

MADEP-VPH Volatile Petroleum Hydrocarbon

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
C9-C10 Aromatics	ND (6.11)	MA-VPH-2.1		1	11/07/19 20:59	C9K0135	CK90759
C5-C8 Aliphatics1,2	ND (6.38)	MA-VPH-2.1		1	11/07/19 20:59		[CALC]
C9-C12 Aliphatics2,3	ND (12.7)	MA-VPH-2.1		1	11/07/19 20:59		[CALC]
Benzene	ND (0.12)	MA-VPH-2.1		1	11/07/19 20:59	C9K0135	CK90759
Ethylbenzene	ND (0.12)	MA-VPH-2.1		1	11/07/19 20:59	C9K0135	CK90759
Methyl tert-Butyl Ether	ND (0.03)	MA-VPH-2.1		1	11/07/19 20:59	C9K0135	CK90759
Naphthalene	ND (0.12)	MA-VPH-2.1		1	11/07/19 20:59	C9K0135	CK90759
Toluene	ND (0.12)	MA-VPH-2.1		1	11/07/19 20:59	C9K0135	CK90759
Xylene O	ND (0.12)	MA-VPH-2.1		1	11/07/19 20:59	C9K0135	CK90759
Xylene P,M	ND (0.24)	MA-VPH-2.1		1	11/07/19 20:59	C9K0135	CK90759
1:1 Methanol/Soil Ratio %D	91 (N/A)	MA-VPH-2.1			11/07/19 7:40		CK90759
Preservative:	MeOH - covered	MA-VPH-2.1					CK90759

	%Recovery	Qualifier	Limits
Surrogate: 2,5-Dibromotoluene - FID	80 %		70-130
Surrogate: 2,5-Dibromotoluene - PID	84 %		70-130
Surrogate: Trifluorotoluene - FID	111 %		70-130
Surrogate: Trifluorotoluene - PID	113 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW3-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 99 Initial Volume: 24.9 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 19K0159 ESS Laboratory Sample ID: 19K0159-03

Sample Matrix: Soil Units: mg/kg dry

Prepared: 11/6/19 20:47

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte	Results (MRL)	MDL Method MADEP-EPH	<u>Limit</u>	<u>DF</u>	Analyst CAD	Analyzed 11/09/19 5:34	Sequence C9K0051	Batch CK90614
C9-C18 Aliphatics 1	ND (15.3)	MADEP-EPH		1	CAD	11/09/19 5:34		CK90614 CK90614
C19-C36 Aliphatics1	ND (15.3)			1			C9K0051	
C11-C22 Unadjusted Aromatics1	ND (15.3)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
C11-C22 Aromatics1,2	ND (15.3)	EPH8270			ZLC	11/14/19 14:37		[CALC]
2-Methylnaphthalene	ND (0.20)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Acenaphthene	ND (0.41)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Naphthalene	ND (0.41)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Phenanthrene	ND (0.41)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Acenaphthylene	ND (0.20)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Anthracene	ND (0.41)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Benzo(a)anthracene	ND (0.41)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Benzo(a)pyrene	ND (0.41)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Benzo(b)fluoranthene	ND (0.41)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Benzo(g,h,i)perylene	ND (0.41)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Benzo(k)fluoranthene	ND (0.41)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Chrysene	ND (0.41)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Dibenzo(a,h)Anthracene	ND (0.20)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Fluoranthene	ND (0.41)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Fluorene	ND (0.41)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Indeno(1,2,3-cd)Pyrene	ND (0.41)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
Pyrene	ND (0.41)	EPH8270		1	ZLC	11/14/19 14:37	C9K0243	CK90614
	9	6Recovery Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		57 04	40-140					

	%Recovery	Qualiner	LIMITS
Surrogate: 1-Chlorooctadecane	<i>57</i> %		40-140
Surrogate: 2-Bromonaphthalene	120 %		40-140
Surrogate: 2-Fluorobiphenyl	119 %		40-140
Surrogate: O-Terphenyl	84 %		40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW3-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 99 Initial Volume: 26.9 Final Volume: 15

Extraction Method: 5035

Column Type: Restek RTX-502.2 - 3µ film thickness 0.53mm X 105m

ESS Laboratory Work Order: 19K0159 ESS Laboratory Sample ID: 19K0159-03

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

Trap Type: Supelco K Vocarb 3000 Trap

MADEP-VPH Volatile Petroleum Hydrocarbon

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
C9-C10 Aromatics	ND (5.80)	MA-VPH-2.1		1	11/07/19 21:33	C9K0135	CK90759
C5-C8 Aliphatics1,2	ND (6.06)	MA-VPH-2.1		1	11/07/19 21:33		[CALC]
C9-C12 Aliphatics2,3	ND (12.1)	MA-VPH-2.1		1	11/07/19 21:33		[CALC]
Benzene	ND (0.12)	MA-VPH-2.1		1	11/07/19 21:33	C9K0135	CK90759
Ethylbenzene	ND (0.12)	MA-VPH-2.1		1	11/07/19 21:33	C9K0135	CK90759
Methyl tert-Butyl Ether	ND (0.03)	MA-VPH-2.1		1	11/07/19 21:33	C9K0135	CK90759
Naphthalene	ND (0.12)	MA-VPH-2.1		1	11/07/19 21:33	C9K0135	CK90759
Toluene	ND (0.12)	MA-VPH-2.1		1	11/07/19 21:33	C9K0135	CK90759
Xylene O	ND (0.12)	MA-VPH-2.1		1	11/07/19 21:33	C9K0135	CK90759
Xylene P,M	ND (0.23)	MA-VPH-2.1		1	11/07/19 21:33	C9K0135	CK90759
1:1 Methanol/Soil Ratio %D	79 (N/A)	MA-VPH-2.1			11/07/19 7:40		CK90759
Preservative:	MeOH - covered	MA-VPH-2.1					CK90759

	%Recovery	Qualifier	Limits
Surrogate: 2,5-Dibromotoluene - FID	81 %		70-130
Surrogate: 2,5-Dibromotoluene - PID	<i>85</i> %		70-130
Surrogate: Trifluorotoluene - FID	110 %		70-130
Surrogate: Trifluorotoluene - PID	111 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0159

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Batch CK90614 - 3546							
Blank							
C19-C36 Aliphatics1	ND	15.0	mg/kg wet				
C9-C18 Aliphatics1	ND	15.0	mg/kg wet				
Decane (C10)	ND	0.5	mg/kg wet				
Pocosane (C22)	ND	0.5	mg/kg wet				
Podecane (C12)	ND	0.5	mg/kg wet				
cicosane (C20)	ND	0.5	mg/kg wet				
lexacosane (C26)	ND	0.5	mg/kg wet				
lexadecane (C16)	ND	0.5	mg/kg wet				
Hexatriacontane (C36)	ND	0.5	mg/kg wet				
Nonadecane (C19)	ND	0.5	mg/kg wet				
Ionane (C9)	ND	0.5	mg/kg wet				
Octacosane (C28)	ND	0.5	mg/kg wet				
Octadecane (C18)	ND	0.5	mg/kg wet				
Tetracosane (C24)	ND	0.5	mg/kg wet				
Fetradecane (C14)	ND	0.5	mg/kg wet				
Triacontane (C30)	ND	0.5	mg/kg wet				
Surrogate: 1-Chlorooctadecane	1.52		mg/kg wet	2.020	<i>75</i>	40-140	
Blank							
-Methylnaphthalene	ND	0.20	mg/kg wet				
cenaphthene	ND	0.40	mg/kg wet				
cenaphthylene	ND	0.20	mg/kg wet				
nthracene	ND	0.40	mg/kg wet				
Benzo(a)anthracene	ND	0.40	mg/kg wet				
denzo(a)pyrene	ND	0.40	mg/kg wet				
Benzo(b)fluoranthene	ND	0.40	mg/kg wet				
Benzo(g,h,i)perylene	ND	0.40	mg/kg wet				
enzo(k)fluoranthene	ND	0.40	mg/kg wet				
C11-C22 Unadjusted Aromatics1	ND	15.0	mg/kg wet				
Chrysene	ND	0.40	mg/kg wet				
Dibenzo(a,h)Anthracene	ND	0.20	mg/kg wet				
luoranthene	ND	0.40	mg/kg wet				
luorene	ND	0.40	mg/kg wet				
ndeno(1,2,3-cd)Pyrene	ND	0.40	mg/kg wet				
Naphthalene	ND	0.40	mg/kg wet				
Phenanthrene	ND	0.40	mg/kg wet				
Pyrene	ND	0.40	mg/kg wet				
Surrogate: 2-Bromonaphthalene	56.6		mg/L	50.00	113	40-140	
Surrogate: 2-Fluorobiphenyl	58.0		mg/L	50.00	116	40-140	
Surrogate: O-Terphenyl	1.64		mg/kg wet	2.008	82	40-140	
.cs							
C19-C36 Aliphatics1	13.2	15.0	mg/kg wet	16.00	82	40-140	
C9-C18 Aliphatics1	6.8	15.0	mg/kg wet	12.00	57	40-140	
Decane (C10)	0.8	0.5	mg/kg wet	2.000	42	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0159

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

	MAD	EP-EPH Ext	actable Petro	oleum Hydrod	carbons				
Batch CK90614 - 3546									
Docosane (C22)	1.5	0.5	mg/kg wet	2.000	74	40-140			
Dodecane (C12)	0.9	0.5	mg/kg wet	2.000	47	40-140			
Eicosane (C20)	1.4	0.5	mg/kg wet	2.000	72	40-140			
Hexacosane (C26)	1.5	0.5	mg/kg wet	2.000	73	40-140			
Hexadecane (C16)	1.3	0.5	mg/kg wet	2.000	67	40-140			
Hexatriacontane (C36)	1.7	0.5	mg/kg wet	2.000	87	40-140			
Nonadecane (C19)	1.4	0.5	mg/kg wet	2,000	72	40-140			
Nonane (C9)	0.7	0.5	mg/kg wet	2.000	33	30-140			
Octacosane (C28)	1.5	0.5	mg/kg wet	2.000	73	40-140			
Octadecane (C18)	1.4	0.5	mg/kg wet	2.000	71	40-140			
etracosane (C24)	1.5	0.5	mg/kg wet	2.000	74	40-140			
Fetradecane (C14)	1.1	0.5	mg/kg wet	2.000	54	40-140			
Triacontane (C30)	1.5	0.5	mg/kg wet	2.000	73	40-140			
Surrogate: 1-Chlorooctadecane	1.51		mg/kg wet	2.020	<i>75</i>	40-140			
cs									
-Methylnaphthalene	1.55	0.20	mg/kg wet	2.000	78	40-140			
cenaphthene	1.46	0.40	mg/kg wet	2.000	73	40-140			
cenaphthylene	1.40	0.20	mg/kg wet	2.000	70	40-140			
anthracene	1.57	0.40	mg/kg wet	2.000	79	40-140			
Benzo(a)anthracene	1.57	0.40	mg/kg wet	2.000	79	40-140			
Benzo(a)pyrene	1.59	0.40	mg/kg wet	2.000	80	40-140			
Benzo(b)fluoranthene	1.52	0.40	mg/kg wet	2.000	76	40-140			
Benzo(g,h,i)perylene	1.48	0.40	mg/kg wet	2.000	74	40-140			
Benzo(k)fluoranthene	1.63	0.40	mg/kg wet	2.000	81	40-140			
C11-C22 Unadjusted Aromatics1	25.8	15.0	mg/kg wet	34.00	76	40-140			
Chrysene	1.58	0.40	mg/kg wet	2.000	79	40-140			
Dibenzo(a,h)Anthracene	1.47	0.20	mg/kg wet	2,000	74	40-140			
·luoranthene	1.58	0.40	mg/kg wet	2.000	79	40-140			
·luorene	1.48	0.40	mg/kg wet	2.000	74	40-140			
ndeno(1,2,3-cd)Pyrene	1.46	0.40	mg/kg wet	2.000	73	40-140			
laphthalene	1.43	0.40	mg/kg wet	2.000	71	40-140			
henanthrene	1.55	0.40	mg/kg wet	2.000	78	40-140			
Pyrene	1.61	0.40	mg/kg wet	2.000	80	40-140			
Surrogate: 2-Bromonaphthalene	55.8		mg/L	50.00	112	40-140			
Surrogate: 2-Fluorobiphenyl	57.6		mg/L	50.00	115	40-140			
Surrogate: O-Terphenyl	1.50		mg/kg wet	2.008	<i>75</i>	40-140			
cs									
-Methylnaphthalene Breakthrough	0.0		%			0-5			
laphthalene Breakthrough	0.0		%			0-5			
CS Dup									
C19-C36 Aliphatics1	14.0	15.0	mg/kg wet	16.00	88	40-140	6	25	
9-C18 Aliphatics1	7.5	15.0	mg/kg wet	12.00	63	40-140	9	25	
Decane (C10)	0.9	0.5	mg/kg wet	2.000	46	40-140	10	25	
Docosane (C22)	1.6	0.5	mg/kg wet	2.000	80	40-140	7	25	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486

◆ Service

Result

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

%REC

83

88

84

82

80

87

91

110

114

84

40-140

40-140

40-140

40-140

40-140

40-140

40-140

40-140

0-5

0-5

12

12

12

12

11

11

13

30

30

30

30

30

30

30

200

200

%REC

Limits

RPD

Qualifier

RPD

Limit

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Analyte

Client Project ID: Grenier ESS Laboratory Work Order: 19K0159

MRL

Quality Control Data

Units

Spike

Leve

Source

Result

	MAD	EP-EPH Ext	ractable Petro	oleum Hydroca	arbons				
Batch CK90614 - 3546									
Dodecane (C12)	1.0	0.5	mg/kg wet	2.000	52	40-140	11	25	
Eicosane (C20)	1.6	0.5	mg/kg wet	2.000	78	40-140	7	25	
Hexacosane (C26)	1.6	0.5	mg/kg wet	2.000	79	40-140	7	25	
Hexadecane (C16)	1.5	0.5	mg/kg wet	2.000	73	40-140	8	25	
Hexatriacontane (C36)	1.9	0.5	mg/kg wet	2.000	93	40-140	7	25	
Nonadecane (C19)	1.5	0.5	mg/kg wet	2.000	77	40-140	8	25	
Nonane (C9)	0.7	0.5	mg/kg wet	2.000	36	30-140	8	25	
Octacosane (C28)	1.6	0.5	mg/kg wet	2.000	78	40-140	8	25	
Octadecane (C18)	1.5	0.5	mg/kg wet	2.000	76	40-140	8	25	
Tetracosane (C24)	1.6	0.5	mg/kg wet	2.000	79	40-140	7	25	
Tetradecane (C14)	1.2	0.5	mg/kg wet	2.000	60	40-140	10	25	
Triacontane (C30)	1.6	0.5	mg/kg wet	2,000	79	40-140	7	25	
Surrogate: 1-Chlorooctadecane	1.60		mg/kg wet	2.020	<i>79</i>	40-140			
LCS Dup									
2-Methylnaphthalene	1.76	0.20	mg/kg wet	2.000	88	40-140	13	30	
Acenaphthene	1.67	0.40	mg/kg wet	2.000	83	40-140	13	30	
Acenaphthylene	1.59	0.20	mg/kg wet	2.000	80	40-140	13	30	
Anthracene	1.76	0.40	mg/kg wet	2.000	88	40-140	11	30	
Benzo(a)anthracene	1.78	0.40	mg/kg wet	2,000	89	40-140	12	30	
Benzo(a)pyrene	1.79	0.40	mg/kg wet	2.000	89	40-140	12	30	
Benzo(b)fluoranthene	1.71	0.40	mg/kg wet	2.000	86	40-140	12	30	
Benzo(g,h,i)perylene	1.66	0.40	mg/kg wet	2,000	83	40-140	11	30	
Benzo(k)fluoranthene	1.87	0.40	mg/kg wet	2.000	93	40-140	14	30	
C11-C22 Unadjusted Aromatics1	29.0	15.0	mg/kg wet	34.00	85	40-140	12	25	
Chrysene	1.77	0.40	mg/kg wet	2.000	88	40-140	11	30	

MADEP-VPH Volatile Petroleum Hydrocarbon

mg/kg wet

mg/L

mg/L

mg/kg wet

2.000

2.000

2.000

2.000

2.000

2.000

2,000

50.00

50.00

2.008

Batch CK90759 - 5035

Naphthalene Breakthrough

Dibenzo(a,h)Anthracene

Indeno(1,2,3-cd)Pyrene

Surrogate: 2-Bromonaphthalene

2-Methylnaphthalene Breakthrough

Surrogate: 2-Fluorobiphenyl

Surrogate: O-Terphenyl

Fluoranthene

Naphthalene

Phenanthrene

Pyrene

LCS Dup

Fluorene

 Benzene
 ND
 0.20
 mg/kg wet

 C5-C8 Unadjusted Aliphatics
 ND
 10.0
 mg/kg wet

1.65

1.77

1.67

1.65

1.59

1.73

1.83

55.2

56.8

1.68

0.0

0.0

0.20

0.40

0.40

0.40

0.40

0.40

0.40

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Fax: 401-461-4486 http://www.ESSLaboratory.com

Dependability •

Quality

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0159

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Batch CK90759 - 5035									
C9-C10 Aromatics	ND	10.0	mg/kg wet						
C9-C12 Unadjusted Aliphatics	ND	10.0	mg/kg wet						
Ethylbenzene	ND	0.20	mg/kg wet						
Methyl tert-Butyl Ether	ND	0.05	mg/kg wet						
Naphthalene	ND	0.20	mg/kg wet						
Toluene	ND	0.20	mg/kg wet						
Kylene O	ND	0.20	mg/kg wet						
Xylene P,M	ND	0.40	mg/kg wet						
Surrogate: 2,5-Dibromotoluene - FID	4.01		mg/kg wet	5.000	80	70-130			
Surrogate: 2,5-Dibromotoluene - PID	4.27		mg/kg wet	5.000	<i>85</i>	70-130			
Surrogate: Trifluorotoluene - FID	5.21		mg/kg wet	5.333	98	70-130			
Surrogate: Trifluorotoluene - PID	5.25		mg/kg wet	5.333	98	70-130			
LCS									
Benzene	4.93	0.20	mg/kg wet	5.000	99	70-130			
C5-C8 Unadjusted Aliphatics	42.4	10.0	mg/kg wet	40.00	106	70-130			
C9-C10 Aromatics	10.6	10.0	mg/kg wet	10.00	106	70-130			
C9-C12 Unadjusted Aliphatics	26.0	10.0	mg/kg wet	30.00	87	70-130			
Ethylbenzene	5.14	0.20	mg/kg wet	5.000	103	70-130			
lethyl tert-Butyl Ether	14.7	0.05	mg/kg wet	15.00	98	70-130			
laphthalene	9.35	0.20	mg/kg wet	10.00	93	70-130			
oluene	15.7	0.20	mg/kg wet	15.00	105	70-130			
Kylene O	9.99	0.20	mg/kg wet	10.00	100	70-130			
(ylene P,M	20.3	0.40	mg/kg wet	20.00	102	70-130			
Surrogate: 2,5-Dibromotoluene - FID	4.52		mg/kg wet	5.000	90	70-130			
Surrogate: 2,5-Dibromotoluene - PID	4.80		mg/kg wet	5.000	96	70-130			
Surrogate: Trifluorotoluene - FID	5.40		mg/kg wet	5.333	101	70-130			
Surrogate: Trifluorotoluene - PID	5.50		mg/kg wet	5.333	103	70-130			
.CS Dup									
Benzene	4.93	0.20	mg/kg wet	5.000	99	70-130	0.03	25	
C5-C8 Unadjusted Aliphatics	41.1	10.0	mg/kg wet	40.00	103	70-130	3	25	
C9-C10 Aromatics	10.4	10.0	mg/kg wet	10.00	104	70-130	2	25	
C9-C12 Unadjusted Aliphatics	24.7	10.0	mg/kg wet	30.00	82	70-130	5	25	
Ethylbenzene	5.09	0.20	mg/kg wet	5.000	102	70-130	0.9	25	
Methyl tert-Butyl Ether	15.0	0.05	mg/kg wet	15.00	100	70-130	2	25	
Naphthalene	9.64	0.20	mg/kg wet	10.00	96	70-130	3	25	
Foluene	15.6	0.20	mg/kg wet	15.00	104	70-130	0.4	25	
Kylene O	9.86	0.20	mg/kg wet	10.00	99	70-130	1	25	
(ylene P,M	20.1	0.40	mg/kg wet	20.00	101	70-130	1	25	
Surrogate: 2,5-Dibromotoluene - FID	4.53		mg/kg wet	5.000	91	70-130			
Surrogate: 2,5-Dibromotoluene - PID	4.76		mg/kg wet	5.000	<i>95</i>	70-130			
Surrogate: Trifluorotoluene - FID	5.18		mg/kg wet	5.333	<i>97</i>	70-130			
Junogace, miliuorotoluene - FID			J J	5.333	98	70-130			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0159

Notes and Definitions

Z- 04	MeOH - covered
U	Analyte included in the analysis, but not detected
D	Diluted.
CD+	Continuing Calibration %Diff/Drift is above control limit (CD+).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection

LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume
F/V Final Volume

§ Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit
MF Membrane Filtration
MPN Most Probably Number
TNTC Too numerous to Count
CFU Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0159

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

• Service

ESS Laboratory Sample and Cooler Receipt Checklist

Client	: Redwood	I Environme	ntal Group - I	(PB/HDM	-	ESS P	roject ID:	19K0159	
Shipped/F	Delivered Via:		ESS Courier			Date h	Received: Due Date:	11/6/2019 11/13/2019	
отпрресст	schvered vid.		LOG GOGNET		-	Days fo	r Project:	5 Day	
	nanifest prese		[No]	6. Does COC r	match bottles?		Yes
2. Were c	ustody seals p	resent?		No	1	7. Is COC com	plete and correct?	,	No
3. Is radia	tion count <10	10 CPM?	Г	Yes	1	8. Were sampl	les received intact	?	Yes
	oler Present?		r		1	9. Were labs i	nformed about <u>st</u>	nort holds & rushes?	Yes / No (NA)
	: 3.2	iced with:	lce	Yes	3	10. Were any	analyses received	outside of hold time?	Yes (No)
5. Was Co	OC signed and	dated by c	lient? [Yes]				
	ibcontracting i Sample IDs: Analysis: TAT:		Yes	•	- -		s received? in aqueous VOAs anol cover soil con		Yes / No Yes / No Yes / No / NA
a. If metal	e samples pro s preserved u vel VOA vials	pon receipt:	ved?	Yes / No Date: Date:		_ Time: Time:		By: By:	<u> </u>
Sample Re	eceiving Notes	ı:							
Collection	times not lis	ted on COC	<u> </u>						
	nere a need to ere a need to contacted?				Yes / (No Yes / (No	_ Time:		Ву:	
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Contain	er Type	Preservative		vanide and 608
01	409877	Yes	NA	Yes	VOA Vial -	Methanol	MeOH		
01	409880	Yes	NA	Yes	8 oz. Jar	•	NP		
02 02	409876 409879	Yes Yes	NA NA	Yes Yes	VOA Vial - 8 oz. Jar		MeOH NP		
03	409875	Yes	NA	Yes	VOA Vial -	•	MeOH		
03	409878	Yes	NA	Yes	8 oz. Jar	- Unpres	NP		
Are barcod Are all Flas Are all Hex Are all QC	w ontainers sca le labels on co hpoint sticker Chrome stick stickers attache tickers attache	rrect contains attached/c ers attached ers attached ned?	ners? container ID # d?	circled?		Yes / No Yes / No / NA Yes / No / NA Yes / No / NA Yes / No / NA			
Completed By: Reviewed By:]		Date & Time:		14/9	14:32	

ESS Laboratory

Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston, RI 02910-2211 Tel. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com

other checker ESSTAB PROJECT ID

PLOKA Page 1 of Circle and/or Write Required Analysis Format: Excel_ Access_PDF_ Residential Electronic Deliverable Reporting Limits CHAIN OF CUSTODY Turn Time X Standard Other

If faster than 5 days, prior approval by laboratory is required # Is this project for any of the following:
MA-MCP Navy USACE State where samples were collected from:
MA (RI) CT NH NJ NY ME Project Name (20 Chargor less)

Co. Name		(I'roject #	<u>.</u>	Project Mame (20 Chargor less)					Circle	and/or v	Vrite Rec	Circle and/or Write Required Analysis	lysis	
	ledwood tro	1.485		777102) 	Svah.(er			<u> </u>		°		£27	Œ		
Contact Person	uo			Address				S	524.2	HdA	4 Djesej Ebh	94 84 PAH 0728	JAT EI	8 _{H/} /		
City		State		Zip		PO#		rənican	ners	2015 S015 S015	*HY	Pesitoid Pesitoid		MCP-MI		
Telephone #		Fax #			Email	Email Address		oD 30 1			A/PA			(£1.		·
ESS LAB Sample#	Date	Collection Time	CRAB		mple Identil	Sample Identification (20 Char. or less)	sər¶ əboƏ	Numbe	Type of	208 NIBTM	W/o PAH RPH	8081 Pesticides 80870	RCRAS	WELVE?		
	61/9/11		5 1	201942 - MW	- MWW	1-110619				~	4					
7			7							×	×					
8	\		×	1 - 245102	N. I.	P10011 - 5WM				*	ネ					
				P	Chest	Start as)			THE PROPERTY OF THE PROPERTY O			-			
			-					5								
							_									
	a															
			-													
			-			iga ataga sagg		,								
						. He										
Container	Container Type: P-Poly G-Glass	S-Sterile	V-VOA Matrix:	S-Soil	-Q PiloS-QS	D-Sludge WW-Waste Water	1 1	GW-Ground Water		SW-Surface Water		W-Drinki	DW-Drinking Water	0-0	W-Wipes F	F-Filters
Cooler Present	sent	No	Internal	Internal Use Only	Preservat	Preservation Code: 1- NP, 2- HCl, 3- H.SO., 4- HNOs, 5- NaOH, 6- McOH, 7- Asorbic Acid, 8- ZnAct, 9-	3- H.SO.	, 4- HNC)s, 5- Nz	OH, 6- M	еОН, 7-	Asorbic	Acid, 8-	ZnAct, 9-		
Seals Intact	Yes	No NA:	[] Pickup	kup	Sampled by:	by: Cr.	der Som graffster					`				
Cooler Ten	Cooler Temp: 4cc3,		[] Tecl] Technicians	Comments:	ts: Deliveral to	ं ठ	S	7	4)		, MA	<i>-</i>		5/	
Relinquist	Relinquished by: (Signature).	, Date/Time	Roce	Received by: (Signature)	()	Date/Time Relin	Relinquished by: (Signature)	y: (Signat	ture)	Date/Time	υu	Receive	Received by: (Signature)	nature)	Date/Time	Time

Date/Time

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

011 3/1 Date/Time

eceived by: (Signature)

1 [M] MA

Relinquished by: (Signature)

^{*}By circling MA-MCP, client acknowledges samples were collected

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Gary Kaufman Redwood Environmental Group 10 Elmgrove Avenue Providence, RI 02906

RE: Grenier (201942)

ESS Laboratory Work Order Number: 19K0160

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

SAMPLE RECEIPT

The following samples were received on November 06, 2019 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
19K0160 - 01	201942-MW1-110619	Soil	8100M, 8260B, 8270D
19K0160 - 02	201942-MW2-110619	Soil	8082A, 8100M, 8260B
19K0160-03	201942-MW3-110619	Soil	8100M, 8260B, 8270D
19K0160-04	Trip Blank	Soil	8260B

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Qualit

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

PROJECT NARRATIVE

5035/8260B Volatile Organic Compounds / Methanol

19K0160-02 Surrogate recovery(ies) above upper control limit (S+).

1,2-Dichloroethane-d4 (131% @ 70-130%), 4-Bromofluorobenzene (144% @ 70-130%),

Dibromofluoromethane (132% @ 70-130%), Toluene-d8 (140% @ 70-130%)

C9K0156-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

Acetone (102% @ 30%), Trichlorofluoromethane (54% @ 30%)

CK90829-BS1 Blank Spike recovery is above upper control limit (B+).

Acetone (211% @ 70-130%), Trichlorofluoromethane (152% @ 70-130%)

CK90829-BSD1 Blank Spike recovery is above upper control limit (B+).

Acetone (189% @ 70-130%), Trichlorofluoromethane (158% @ 70-130%)

8270D Semi-Volatile Organic Compounds

C9K0110-CCV1 <u>Calibration required quadratic regression (Q).</u>

2,4-Dinitrophenol (61% @ 80-120%), 4,6-Dinitro-2-Methylphenol (87% @ 80-120%), Benzoic Acid (56%

@ 80-120%), Pentachlorophenol (102% @ 80-120%)

C9K0110-CCV1 Continuing Calibration %Diff/Drift is below control limit (CD-).

4-Nitrophenol (34% @ 20%), Benzoic Acid (44% @ 20%), N-Nitrosodimethylamine (33% @ 20%)

C9K0114-CCV1 Calibration required quadratic regression (Q).

2,4-Dinitrophenol (72% @ 80-120%), 4,6-Dinitro-2-Methylphenol (87% @ 80-120%), Benzoic Acid (75%

@ 80-120%), Di-n-octylphthalate (100% @ 80-120%), Pentachlorophenol (96% @ 80-120%)

C9K0114-CCV1 Continuing Calibration %Diff/Drift is below control limit (CD-).

2,4-Dinitrophenol (28% @ 20%), 2-Nitroaniline (23% @ 20%), 4-Nitrophenol (33% @ 20%), Benzoic

Acid (25% @ 20%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW1-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 93 Initial Volume: 28.1 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-01

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.129)	MDL 0.0129	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/08/19 15:10	Sequence C9K0156	<u>Batch</u> CK90829
1,1,1-Trichloroethane	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,1,2,2-Tetrachloroethane	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,1,2-Trichloroethane	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,1-Dichloroethane	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,1-Dichloroethene	ND (0.129)	0.0386	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,1-Dichloropropene	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,2,3-Trichlorobenzene	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,2,3-Trichloropropane	ND (0.129)	0.0386	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,2,4-Trichlorobenzene	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,2,4-Trimethylbenzene	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,2-Dibromo-3-Chloropropane	ND (0.644)	0.129	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,2-Dibromoethane	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,2-Dichlorobenzene	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,2-Dichloroethane	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,2-Dichloropropane	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,3,5-Trimethylbenzene	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,3-Dichlorobenzene	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,3-Dichloropropane	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,4-Dichlorobenzene	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
1,4-Dioxane - Screen	ND (25.8)	24.5	8260B		1	11/08/19 15:10	C9K0156	CK90829
1-Chlorohexane	ND (0.129)	0.0515	8260B		1	11/08/19 15:10	C9K0156	CK90829
2,2-Dichloropropane	ND (0.129)	0.0386	8260B		1	11/08/19 15:10	C9K0156	CK90829
2-Butanone	ND (0.644)	0.438	8260B		1	11/08/19 15:10	C9K0156	CK90829
2-Chlorotoluene	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
2-Hexanone	ND (0.644)	0.193	8260B		1	11/08/19 15:10	C9K0156	CK90829
4-Chlorotoluene	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
4-Isopropyltoluene	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
4-Methyl-2-Pentanone	ND (0.644)	0.206	8260B		1	11/08/19 15:10	C9K0156	CK90829
Acetone	ND (0.644)	0.348	8260B		1	11/08/19 15:10	C9K0156	CK90829
Benzene	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
Bromobenzene	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW1-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 93 Initial Volume: 28.1 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-01

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

<u>Analyte</u>	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Bromochloromethane	ND (0.129)	0.0386	8260B		1	11/08/19 15:10	C9K0156	CK90829
Bromodichloromethane	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
Bromoform	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
Bromomethane	ND (0.129)	0.0515	8260B		1	11/08/19 15:10	C9K0156	CK90829
Carbon Disulfide	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
Carbon Tetrachloride	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
Chlorobenzene	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
Chloroethane	ND (0.129)	0.0515	8260B		1	11/08/19 15:10	C9K0156	CK90829
Chloroform	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
Chloromethane	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
cis-1,2-Dichloroethene	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
cis-1,3-Dichloropropene	ND (0.129)	0.0386	8260B		1	11/08/19 15:10	C9K0156	CK90829
Dibromochloromethane	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
Dibromomethane	ND (0.129)	0.0386	8260B		1	11/08/19 15:10	C9K0156	CK90829
Dichlorodifluoromethane	ND (0.129)	0.0386	8260B		1	11/08/19 15:10	C9K0156	CK90829
Diethyl Ether	ND (0.129)	0.0386	8260B		1	11/08/19 15:10	C9K0156	CK90829
Di-isopropyl ether	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
Ethyl tertiary-butyl ether	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
Ethylbenzene	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
Hexachlorobutadiene	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
Isopropylbenzene	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
Methyl tert-Butyl Ether	ND (0.129)	0.0386	8260B		1	11/08/19 15:10	C9K0156	CK90829
Methylene Chloride	ND (0.258)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
Naphthalene	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
n-Butylbenzene	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
n-Propylbenzene	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
sec-Butylbenzene	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
Styrene	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
tert-Butylbenzene	ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
Tertiary-amyl methyl ether	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
Tetrachloroethene	ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
Tetrahydrofuran	ND (0.644)	0.206	8260B		1	11/08/19 15:10	C9K0156	CK90829
•	` /							

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW1-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 93 Initial Volume: 28.1 Final Volume: 15

Surrogate: Toluene-d8

Extraction Method: 5035

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-01

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Results (MRL)	$\underline{\mathbf{MDL}}$	<u>Method</u>	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	<u>Sequence</u>	Batch
ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
ND (0.129)	0.0386	8260B		1	11/08/19 15:10	C9K0156	CK90829
ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
ND (0.129)	0.0515	8260B		1	11/08/19 15:10	C9K0156	CK90829
ND (0.129)	0.0644	8260B		1	11/08/19 15:10	C9K0156	CK90829
ND (0.129)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
ND (0.129)	0.0129	8260B		1	11/08/19 15:10	C9K0156	CK90829
ND (0.258)	0.0258	8260B		1	11/08/19 15:10	C9K0156	CK90829
ND (0.258)		8260B		1	11/08/19 15:10		[CALC]
	%Recovery	Qualifier	Limits				
	107 %		70-130				
	117 %		70-130				
	111 %		70-130				
	ND (0.129) ND (0.129) ND (0.129) ND (0.129) ND (0.129) ND (0.129) ND (0.129) ND (0.129) ND (0.129) ND (0.129)	ND (0.129) 0.0129 ND (0.129) 0.0386 ND (0.129) 0.0258 ND (0.129) 0.0258 ND (0.129) 0.0515 ND (0.129) 0.0644 ND (0.129) 0.0258 ND (0.129) 0.0129 ND (0.129) 0.0129 ND (0.258) 0.0258 ND (0.258) **Recovery** 107 % 117 %	ND (0.129) 0.0129 8260B ND (0.129) 0.0386 8260B ND (0.129) 0.0258 8260B ND (0.129) 0.0258 8260B ND (0.129) 0.0515 8260B ND (0.129) 0.0644 8260B ND (0.129) 0.0258 8260B ND (0.129) 0.0129 8260B ND (0.258) 0.0258 8260B ND (0.258) 8260B **Recovery** Qualifier** ***Recovery** Qualifier** ****117 %	ND (0.129) 0.0129 8260B ND (0.129) 0.0386 8260B ND (0.129) 0.0258 8260B ND (0.129) 0.0258 8260B ND (0.129) 0.0515 8260B ND (0.129) 0.0644 8260B ND (0.129) 0.0258 8260B ND (0.129) 0.0129 8260B ND (0.258) 0.0258 8260B ND (0.258) 8260B ND (0.258) 8260B	ND (0.129) 0.0129 8260B 1 ND (0.129) 0.0386 8260B 1 ND (0.129) 0.0258 8260B 1 ND (0.129) 0.0258 8260B 1 ND (0.129) 0.0515 8260B 1 ND (0.129) 0.0644 8260B 1 ND (0.129) 0.0258 8260B 1 ND (0.129) 0.0129 8260B 1 ND (0.258) 0.0258 8260B 1 ND (0.258) 8260B 1 ND (0.258) 70-130 1	ND (0.129) 0.0129 8260B 1 11/08/19 15:10 ND (0.129) 0.0386 8260B 1 11/08/19 15:10 ND (0.129) 0.0258 8260B 1 11/08/19 15:10 ND (0.129) 0.0258 8260B 1 11/08/19 15:10 ND (0.129) 0.0515 8260B 1 11/08/19 15:10 ND (0.129) 0.0644 8260B 1 11/08/19 15:10 ND (0.129) 0.0258 8260B 1 11/08/19 15:10 ND (0.129) 0.0258 8260B 1 11/08/19 15:10 ND (0.129) 0.0129 8260B 1 11/08/19 15:10 ND (0.258) 0.0258 8260B 1 11/08/19 15:10 ND (0.258) 0.0258 8260B 1 11/08/19 15:10 ND (0.258) 0.0258 8260B 1 11/08/19 15:10 ND (0.258) 0.0258 8260B 1 11/08/19 15:10	ND (0.129)

113 %

70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW1-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 93 Initial Volume: 19.5 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-01

Sample Matrix: Soil Units: mg/kg dry Analyst: CAD

Prepared: 11/6/19 20:47

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) ND (41.2)	MDL	Method 8100M	Limit	<u>DF</u>	<u>Analyzed</u> 11/07/19 14:27	Sequence C9K0122	Batch CK90613
	%	Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		90 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

211 Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW1-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 93 Initial Volume: 14.7 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-01

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 11/6/19 20:47

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.364)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/07/19 19:47	Sequence C9K0114	Batch CK90612
1,2,4-Trichlorobenzene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
1,2-Dichlorobenzene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
1,3-Dichlorobenzene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
1,4-Dichlorobenzene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
2,3,4,6-Tetrachlorophenol	ND (1.83)		8270D		1	11/07/19 19:47	C9K0114	CK90612
2,4,5-Trichlorophenol	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
2,4,6-Trichlorophenol	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
2,4-Dichlorophenol	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
2,4-Dimethylphenol	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
2,4-Dinitrophenol	ND (1.83)		8270D		1	11/07/19 19:47	C9K0114	CK90612
2,4-Dinitrotoluene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
2,6-Dinitrotoluene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
2-Chloronaphthalene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
2-Chlorophenol	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
2-Methylnaphthalene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
2-Methylphenol	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
2-Nitroaniline	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
2-Nitrophenol	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
3,3'-Dichlorobenzidine	ND (0.730)		8270D		1	11/07/19 19:47	C9K0114	CK90612
3+4-Methylphenol	ND (0.730)		8270D		1	11/07/19 19:47	C9K0114	CK90612
3-Nitroaniline	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
4,6-Dinitro-2-Methylphenol	ND (1.83)		8270D		1	11/07/19 19:47	C9K0114	CK90612
4-Bromophenyl-phenylether	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
4-Chloro-3-Methylphenol	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
4-Chloroaniline	ND (0.730)		8270D		1	11/07/19 19:47	C9K0114	CK90612
4-Chloro-phenyl-phenyl ether	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
4-Nitroaniline	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
4-Nitrophenol	ND (1.83)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Acenaphthene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Acenaphthylene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Acetophenone	ND (0.730)		8270D		1	11/07/19 19:47	C9K0114	CK90612

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

1-/181 Quality Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW1-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 93 Initial Volume: 14.7 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-01

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 11/6/19 20:47

8270D Semi-Volatile Organic Compounds

Analyte Aniline	Results (MRL) ND (0.730)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/07/19 19:47	Sequence C9K0114	Batch CK90612
Anthracene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Azobenzene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Benzo(a)anthracene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Benzo(a)pyrene	ND (0.183)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Benzo(b)fluoranthene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Benzo(g,h,i)perylene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Benzo(k)fluoranthene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Benzoic Acid	ND (1.83)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Benzyl Alcohol	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
bis(2-Chloroethoxy)methane	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
bis(2-Chloroethyl)ether	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
bis(2-chloroisopropyl)Ether	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
bis(2-Ethylhexyl)phthalate	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Butylbenzylphthalate	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Carbazole	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Chrysene	ND (0.183)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Dibenzo(a,h)Anthracene	ND (0.183)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Dibenzofuran	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Diethylphthalate	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Dimethylphthalate	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Di-n-butylphthalate	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Di-n-octylphthalate	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Fluoranthene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Fluorene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Hexachlorobenzene	ND (0.183)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Hexachlorobutadiene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Hexachlorocyclopentadiene	ND (1.83)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Hexachloroethane	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Indeno(1,2,3-cd)Pyrene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Isophorone	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Naphthalene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

• Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW1-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 93 Initial Volume: 14.7 Final Volume: 0.5

Surrogate: p-Terphenyl-d14

Extraction Method: 3546

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-01

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 11/6/19 20:47

8270D Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	$\underline{\mathbf{MDL}}$	Method	<u>Limit</u>	$\overline{\mathbf{DF}}$	Analyzed	Sequence	Batch
Nitrobenzene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
N-Nitrosodimethylamine	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
N-Nitroso-Di-n-Propylamine	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
N-nitrosodiphenylamine	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Pentachlorophenol	ND (1.83)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Phenanthrene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Phenol	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Pyrene	ND (0.364)		8270D		1	11/07/19 19:47	C9K0114	CK90612
Pyridine	ND (1.83)		8270D		1	11/07/19 19:47	C9K0114	CK90612
	9	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		<i>78</i> %		30-130				
Surrogate: 2,4,6-Tribromophenol		94 %		30-130				
Surrogate: 2-Chlorophenol-d4		83 %		30-130				
Surrogate: 2-Fluorobiphenyl		<i>75</i> %		30-130				
Surrogate: 2-Fluorophenol		79 %		30-130				
Surrogate: Nitrobenzene-d5		73 %		30-130				
Surrogate: Phenol-d6		83 %		30-130				

Service

30-130

87 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW2-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 89 Initial Volume: 24.9 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-02

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.162)	MDL 0.0162	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/08/19 15:36	Sequence C9K0156	Batch CK90829
1,1,1-Trichloroethane	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,1,2,2-Tetrachloroethane	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,1,2-Trichloroethane	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,1-Dichloroethane	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,1-Dichloroethene	ND (0.162)	0.0485	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,1-Dichloropropene	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,2,3-Trichlorobenzene	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,2,3-Trichloropropane	ND (0.162)	0.0485	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,2,4-Trichlorobenzene	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,2,4-Trimethylbenzene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,2-Dibromo-3-Chloropropane	ND (0.809)	0.162	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,2-Dibromoethane	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,2-Dichlorobenzene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,2-Dichloroethane	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,2-Dichloropropane	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,3,5-Trimethylbenzene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,3-Dichlorobenzene	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,3-Dichloropropane	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,4-Dichlorobenzene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
1,4-Dioxane - Screen	ND (32.3)	30.7	8260B		1	11/08/19 15:36	C9K0156	CK90829
1-Chlorohexane	ND (0.162)	0.0647	8260B		1	11/08/19 15:36	C9K0156	CK90829
2,2-Dichloropropane	ND (0.162)	0.0485	8260B		1	11/08/19 15:36	C9K0156	CK90829
2-Butanone	ND (0.809)	0.550	8260B		1	11/08/19 15:36	C9K0156	CK90829
2-Chlorotoluene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
2-Hexanone	ND (0.809)	0.243	8260B		1	11/08/19 15:36	C9K0156	CK90829
4-Chlorotoluene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
4-Isopropyltoluene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
4-Methyl-2-Pentanone	ND (0.809)	0.259	8260B		1	11/08/19 15:36	C9K0156	CK90829
Acetone	ND (0.809)	0.437	8260B		1	11/08/19 15:36	C9K0156	CK90829
Benzene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
Bromobenzene	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW2-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 89 Initial Volume: 24.9 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-02

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte Bromochloromethane	Results (MRL) ND (0.162)	MDL 0.0485	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/08/19 15:36	Sequence C9K0156	Batch CK90829
Bromodichloromethane	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
Bromoform	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
Bromomethane	ND (0.162)	0.0647	8260B		1	11/08/19 15:36	C9K0156	CK90829
Carbon Disulfide	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
Carbon Tetrachloride	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
Chlorobenzene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
Chloroethane	ND (0.162)	0.0647	8260B		1	11/08/19 15:36	C9K0156	CK90829
Chloroform	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
Chloromethane	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
cis-1,2-Dichloroethene	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
cis-1,3-Dichloropropene	ND (0.162)	0.0485	8260B		1	11/08/19 15:36	C9K0156	CK90829
Dibromochloromethane	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
Dibromomethane	ND (0.162)	0.0485	8260B		1	11/08/19 15:36	C9K0156	CK90829
Dichlorodifluoromethane	ND (0.162)	0.0485	8260B		1	11/08/19 15:36	C9K0156	CK90829
Diethyl Ether	ND (0.162)	0.0485	8260B		1	11/08/19 15:36	C9K0156	CK90829
Di-isopropyl ether	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
Ethyl tertiary-butyl ether	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
Ethylbenzene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
Hexachlorobutadiene	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
Isopropylbenzene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
Methyl tert-Butyl Ether	ND (0.162)	0.0485	8260B		1	11/08/19 15:36	C9K0156	CK90829
Methylene Chloride	ND (0.323)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
Naphthalene	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
n-Butylbenzene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
n-Propylbenzene	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
sec-Butylbenzene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
Styrene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
tert-Butylbenzene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
Tertiary-amyl methyl ether	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
Tetrachloroethene	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
Tetrahydrofuran	ND (0.809)	0.259	8260B		1	11/08/19 15:36	C9K0156	CK90829

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW2-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 89 Initial Volume: 24.9 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-02

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
Toluene	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
trans-1,2-Dichloroethene	ND (0.162)	0.0485	8260B		1	11/08/19 15:36	C9K0156	CK90829
trans-1,3-Dichloropropene	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
Trichloroethene	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
Trichlorofluoromethane	ND (0.162)	0.0647	8260B		1	11/08/19 15:36	C9K0156	CK90829
Vinyl Acetate	ND (0.162)	0.0809	8260B		1	11/08/19 15:36	C9K0156	CK90829
Vinyl Chloride	ND (0.162)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
Xylene O	ND (0.162)	0.0162	8260B		1	11/08/19 15:36	C9K0156	CK90829
Xylene P,M	ND (0.323)	0.0323	8260B		1	11/08/19 15:36	C9K0156	CK90829
Xylenes (Total)	ND (0.323)		8260B		1	11/08/19 15:36		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		131 %	S+	70-130				
Surrogate: 4-Bromofluorobenzene		144 %	S+	70-130				
Surrogate: Dibromofluoromethane		132 %	S+	70-130				
Surrogate: Toluene-d8		140 %	S+	70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW2-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 89 Initial Volume: 20.8 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-02

Sample Matrix: Soil Units: mg/kg dry Analyst: MJV

Prepared: 11/7/19 15:45

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.05)		8082A		1	11/12/19 9:17		CK90702
Aroclor 1221	ND (0.05)		8082A		1	11/12/19 9:17		CK90702
Aroclor 1232	ND (0.05)		8082A		1	11/12/19 9:17		CK90702
Aroclor 1242	ND (0.05)		8082A		1	11/12/19 9:17		CK90702
Aroclor 1248	ND (0.05)		8082A		1	11/12/19 9:17		CK90702
Aroclor 1254	ND (0.05)		8082A		1	11/12/19 9:17		CK90702
Aroclor 1260	ND (0.05)		8082A		1	11/12/19 9:17		CK90702
Aroclor 1262	ND (0.05)		8082A		1	11/12/19 9:17		CK90702
Aroclor 1268	ND (0.05)		8082A		1	11/12/19 9:17		CK90702
	9	%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		58 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		67 %		30-150				
Surrogate: Tetrachloro-m-xylene		70 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		77 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW2-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 89 Initial Volume: 19.5 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-02

Sample Matrix: Soil Units: mg/kg dry Analyst: CAD

Prepared: 11/6/19 20:47

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) ND (43.4)	<u>MDL</u>	Method 8100M	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/07/19 14:59	Sequence C9K0122	Batch CK90613
	%	Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		91 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW3-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 99 Initial Volume: 27.9 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-03

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.112)	MDL 0.0112	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/08/19 16:03	Sequence C9K0156	<u>Batch</u> CK90829
1,1,1-Trichloroethane	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,1,2,2-Tetrachloroethane	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,1,2-Trichloroethane	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,1-Dichloroethane	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,1-Dichloroethene	ND (0.112)	0.0336	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,1-Dichloropropene	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,2,3-Trichlorobenzene	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,2,3-Trichloropropane	ND (0.112)	0.0336	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,2,4-Trichlorobenzene	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,2,4-Trimethylbenzene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,2-Dibromo-3-Chloropropane	ND (0.561)	0.112	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,2-Dibromoethane	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,2-Dichlorobenzene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,2-Dichloroethane	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,2-Dichloropropane	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,3,5-Trimethylbenzene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,3-Dichlorobenzene	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,3-Dichloropropane	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,4-Dichlorobenzene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
1,4-Dioxane - Screen	ND (22.4)	21.3	8260B		1	11/08/19 16:03	C9K0156	CK90829
1-Chlorohexane	ND (0.112)	0.0448	8260B		1	11/08/19 16:03	C9K0156	CK90829
2,2-Dichloropropane	ND (0.112)	0.0336	8260B		1	11/08/19 16:03	C9K0156	CK90829
2-Butanone	ND (0.561)	0.381	8260B		1	11/08/19 16:03	C9K0156	CK90829
2-Chlorotoluene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
2-Hexanone	ND (0.561)	0.168	8260B		1	11/08/19 16:03	C9K0156	CK90829
4-Chlorotoluene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
4-Isopropyltoluene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
4-Methyl-2-Pentanone	ND (0.561)	0.179	8260B		1	11/08/19 16:03	C9K0156	CK90829
Acetone	ND (0.561)	0.303	8260B		1	11/08/19 16:03	C9K0156	CK90829
Benzene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
Bromobenzene	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW3-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 99 Initial Volume: 27.9 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-03

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte Bromochloromethane	Results (MRL) ND (0.112)	MDL 0.0336	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/08/19 16:03	Sequence C9K0156	Batch CK90829
Bromodichloromethane	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
Bromoform	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
Bromomethane	ND (0.112)	0.0448	8260B		1	11/08/19 16:03	C9K0156	CK90829
Carbon Disulfide	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
Carbon Tetrachloride	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
Chlorobenzene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
Chloroethane	ND (0.112)	0.0448	8260B		1	11/08/19 16:03	C9K0156	CK90829
Chloroform	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
Chloromethane	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
cis-1,2-Dichloroethene	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
cis-1,3-Dichloropropene	ND (0.112)	0.0336	8260B		1	11/08/19 16:03	C9K0156	CK90829
Dibromochloromethane	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
Dibromomethane	ND (0.112)	0.0336	8260B		1	11/08/19 16:03	C9K0156	CK90829
Dichlorodifluoromethane	ND (0.112)	0.0336	8260B		1	11/08/19 16:03	C9K0156	CK90829
Diethyl Ether	ND (0.112)	0.0336	8260B		1	11/08/19 16:03	C9K0156	CK90829
Di-isopropyl ether	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
Ethyl tertiary-butyl ether	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
Ethylbenzene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
Hexachlorobutadiene	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
Isopropylbenzene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
Methyl tert-Butyl Ether	ND (0.112)	0.0336	8260B		1	11/08/19 16:03	C9K0156	CK90829
Methylene Chloride	ND (0.224)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
Naphthalene	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
n-Butylbenzene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
n-Propylbenzene	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
sec-Butylbenzene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
Styrene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
tert-Butylbenzene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
Tertiary-amyl methyl ether	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
Tetrachloroethene	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
Tetrahydrofuran	ND (0.561)	0.179	8260B		1	11/08/19 16:03	C9K0156	CK90829

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW3-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 99 Initial Volume: 27.9 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-03

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

<u>Analyte</u>	Results (MRL)	$\underline{\mathbf{MDL}}$	Method	<u>Limit</u>	$\overline{\mathbf{DF}}$	<u>Analyzed</u>	Sequence	Batch
Toluene	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
trans-1,2-Dichloroethene	ND (0.112)	0.0336	8260B		1	11/08/19 16:03	C9K0156	CK90829
trans-1,3-Dichloropropene	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
Trichloroethene	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
Trichlorofluoromethane	ND (0.112)	0.0448	8260B		1	11/08/19 16:03	C9K0156	CK90829
Vinyl Acetate	ND (0.112)	0.0561	8260B		1	11/08/19 16:03	C9K0156	CK90829
Vinyl Chloride	ND (0.112)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
Xylene O	ND (0.112)	0.0112	8260B		1	11/08/19 16:03	C9K0156	CK90829
Xylene P,M	ND (0.224)	0.0224	8260B		1	11/08/19 16:03	C9K0156	CK90829
Xylenes (Total)	ND (0.224)		8260B		1	11/08/19 16:03		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		100 %		70-130				
Surrogate: 4-Bromofluorobenzene		110 %		70-130				
Surrogate: Dibromofluoromethane		103 %		70-130				
Surrogate: Toluene-d8		107 %		70-130				

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW3-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 99 Initial Volume: 19 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-03

Sample Matrix: Soil Units: mg/kg dry Analyst: CAD

Prepared: 11/7/19 13:58

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) ND (40.1)	<u>MDL</u>	Method 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 11/07/19 20:55	Sequence C9K0122	Batch CK90708
	9	6Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		77 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW3-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 99 Initial Volume: 15.4 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-03

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 11/6/19 20:47

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.329)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/07/19 20:14	Sequence C9K0114	Batch CK90612
1,2,4-Trichlorobenzene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
1,2-Dichlorobenzene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
1,3-Dichlorobenzene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
1,4-Dichlorobenzene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
2,3,4,6-Tetrachlorophenol	ND (1.65)		8270D		1	11/07/19 20:14	C9K0114	CK90612
2,4,5-Trichlorophenol	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
2,4,6-Trichlorophenol	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
2,4-Dichlorophenol	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
2,4-Dimethylphenol	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
2,4-Dinitrophenol	ND (1.65)		8270D		1	11/07/19 20:14	C9K0114	CK90612
2,4-Dinitrotoluene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
2,6-Dinitrotoluene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
2-Chloronaphthalene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
2-Chlorophenol	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
2-Methylnaphthalene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
2-Methylphenol	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
2-Nitroaniline	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
2-Nitrophenol	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
3,3'-Dichlorobenzidine	ND (0.659)		8270D		1	11/07/19 20:14	C9K0114	CK90612
3+4-Methylphenol	ND (0.659)		8270D		1	11/07/19 20:14	C9K0114	CK90612
3-Nitroaniline	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
4,6-Dinitro-2-Methylphenol	ND (1.65)		8270D		1	11/07/19 20:14	C9K0114	CK90612
4-Bromophenyl-phenylether	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
4-Chloro-3-Methylphenol	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
4-Chloroaniline	ND (0.659)		8270D		1	11/07/19 20:14	C9K0114	CK90612
4-Chloro-phenyl-phenyl ether	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
4-Nitroaniline	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
4-Nitrophenol	ND (1.65)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Acenaphthene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Acenaphthylene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Acetophenone	ND (0.659)		8270D		1	11/07/19 20:14	C9K0114	CK90612

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW3-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 99 Initial Volume: 15.4 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-03

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 11/6/19 20:47

8270D Semi-Volatile Organic Compounds

Analyte Aniline	Results (MRL) ND (0.659)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/07/19 20:14	Sequence C9K0114	Batch CK90612
Anthracene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Azobenzene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Benzo(a)anthracene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Benzo(a)pyrene	ND (0.165)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Benzo(b)fluoranthene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Benzo(g,h,i)perylene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Benzo(k)fluoranthene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Benzoic Acid	ND (1.65)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Benzyl Alcohol	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
bis(2-Chloroethoxy)methane	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
bis(2-Chloroethyl)ether	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
bis(2-chloroisopropyl)Ether	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
bis(2-Ethylhexyl)phthalate	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Butylbenzylphthalate	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Carbazole	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Chrysene	ND (0.165)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Dibenzo(a,h)Anthracene	ND (0.165)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Dibenzofuran	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Diethylphthalate	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Dimethylphthalate	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Di-n-butylphthalate	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Di-n-octylphthalate	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Fluoranthene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Fluorene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Hexachlorobenzene	ND (0.165)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Hexachlorobutadiene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Hexachlorocyclopentadiene	ND (1.65)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Hexachloroethane	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Indeno(1,2,3-cd)Pyrene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Isophorone	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Naphthalene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW3-110619

Date Sampled: 11/06/19 00:00

Percent Solids: 99 Initial Volume: 15.4 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-03

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 11/6/19 20:47

8270D Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	$\underline{\mathbf{MDL}}$	Method	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
Nitrobenzene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
N-Nitrosodimethylamine	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
N-Nitroso-Di-n-Propylamine	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
N-nitrosodiphenylamine	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Pentachlorophenol	ND (1.65)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Phenanthrene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Phenol	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Pyrene	ND (0.329)		8270D		1	11/07/19 20:14	C9K0114	CK90612
Pyridine	ND (1.65)		8270D		1	11/07/19 20:14	C9K0114	CK90612
	9	%Recovery	Qualifier	Limits				

Surrogate: 1,2-Dichlorobenzene-d4	79 %	30-130
Surrogate: 2,4,6-Tribromophenol	78 %	30-130
Surrogate: 2-Chlorophenol-d4	78 %	30-130
Surrogate: 2-Fluorobiphenyl	76 %	30-130
Surrogate: 2-Fluorophenol	70 %	30-130
Surrogate: Nitrobenzene-d5	74 %	30-130
Surrogate: Phenol-d6	76 %	30-130
Surrogate: p-Terphenyl-d14	86 %	30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier Client Sample ID: Trip Blank Date Sampled: 11/06/19 00:00

Percent Solids: N/A Initial Volume: 15 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-04

Sample Matrix: Soil

Units: mg/kg Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.200)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/08/19 12:32	Sequence C9K0156	<u>Batch</u> CK90829
1,1,1-Trichloroethane	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,1,2,2-Tetrachloroethane	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,1,2-Trichloroethane	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,1-Dichloroethane	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,1-Dichloroethene	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,1-Dichloropropene	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,2,3-Trichlorobenzene	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,2,3-Trichloropropane	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,2,4-Trichlorobenzene	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,2,4-Trimethylbenzene	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,2-Dibromo-3-Chloropropane	ND (1.00)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,2-Dibromoethane	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,2-Dichlorobenzene	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,2-Dichloroethane	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,2-Dichloropropane	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,3,5-Trimethylbenzene	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,3-Dichlorobenzene	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,3-Dichloropropane	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,4-Dichlorobenzene	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1,4-Dioxane - Screen	ND (40.0)		8260B		1	11/08/19 12:32	C9K0156	CK90829
1-Chlorohexane	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
2,2-Dichloropropane	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
2-Butanone	ND (1.00)		8260B		1	11/08/19 12:32	C9K0156	CK90829
2-Chlorotoluene	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
2-Hexanone	ND (1.00)		8260B		1	11/08/19 12:32	C9K0156	CK90829
4-Chlorotoluene	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
4-Isopropyltoluene	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
4-Methyl-2-Pentanone	ND (1.00)		8260B		1	11/08/19 12:32	C9K0156	CK90829
Acetone	ND (1.00)		8260B		1	11/08/19 12:32	C9K0156	CK90829
Benzene	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
Bromobenzene	ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier Client Sample ID: Trip Blank Date Sampled: 11/06/19 00:00

Percent Solids: N/A Initial Volume: 15 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-04

Sample Matrix: Soil

Units: mg/kg Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte Bromochloromethane	Results (MRL) ND (0.200)	MDL <u>Method</u> 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/08/19 12:32	Sequence C9K0156	Batch CK90829
Bromodichloromethane	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Bromoform	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Bromomethane	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Carbon Disulfide	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Carbon Tetrachloride	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Chlorobenzene	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Chloroethane	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Chloroform	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Chloromethane	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
cis-1,2-Dichloroethene	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
cis-1,3-Dichloropropene	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Dibromochloromethane	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Dibromomethane	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Dichlorodifluoromethane	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Diethyl Ether	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Di-isopropyl ether	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Ethyl tertiary-butyl ether	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Ethylbenzene	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Hexachlorobutadiene	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Isopropylbenzene	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Methyl tert-Butyl Ether	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Methylene Chloride	ND (0.400)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Naphthalene	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
n-Butylbenzene	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
n-Propylbenzene	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
sec-Butylbenzene	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Styrene	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
tert-Butylbenzene	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Tertiary-amyl methyl ether	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Tetrachloroethene	ND (0.200)	8260B		1	11/08/19 12:32	C9K0156	CK90829
Tetrahydrofuran	ND (1.00)	8260B		1	11/08/19 12:32	C9K0156	CK90829

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier Client Sample ID: Trip Blank Date Sampled: 11/06/19 00:00

Percent Solids: N/A Initial Volume: 15 Final Volume: 15

Surrogate: Toluene-d8

Extraction Method: 5035

ESS Laboratory Work Order: 19K0160 ESS Laboratory Sample ID: 19K0160-04

Sample Matrix: Soil

Units: mg/kg Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Results (MRL)	<u>MDL</u>	<u>Method</u>	<u>Limit</u>	$\overline{\mathbf{DF}}$	<u>Analyzed</u>	<u>Sequence</u>	Batch
ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
ND (0.200)		8260B		1	11/08/19 12:32	C9K0156	CK90829
ND (0.400)		8260B		1	11/08/19 12:32	C9K0156	CK90829
ND (0.600)		8260B		0	11/08/19 12:32	C9K0156	CK90829
	%Recovery	Qualifier	Limits				
	106 %		70-130				
	120 %		70-130				
	108 %		70-130				
	ND (0.200) ND (0.200) ND (0.200) ND (0.200) ND (0.200) ND (0.200) ND (0.200) ND (0.200) ND (0.200) ND (0.400)	ND (0.200) ND (0.200) ND (0.200) ND (0.200) ND (0.200) ND (0.200) ND (0.200) ND (0.200) ND (0.200) ND (0.400) ND (0.600) **Recovery** 106 % 120 %	ND (0.200) 8260B ND (0.200) 8260B ND (0.200) 8260B ND (0.200) 8260B ND (0.200) 8260B ND (0.200) 8260B ND (0.200) 8260B ND (0.200) 8260B ND (0.400) 8260B ND (0.600) 8260B **ND (0.600) 8260B	ND (0.200) 8260B ND (0.200) 8260B ND (0.200) 8260B ND (0.200) 8260B ND (0.200) 8260B ND (0.200) 8260B ND (0.200) 8260B ND (0.200) 8260B ND (0.400) 8260B ND (0.600) 8260B MRecovery Qualifier Limits 106 % 70-130 120 % 70-130	ND (0.200) 8260B 1 ND (0.200) 8260B 1 ND (0.200) 8260B 1 ND (0.200) 8260B 1 ND (0.200) 8260B 1 ND (0.200) 8260B 1 ND (0.200) 8260B 1 ND (0.200) 8260B 1 ND (0.400) 8260B 1 ND (0.600) 8260B 0	ND (0.200) 8260B 1 11/08/19 12:32 ND (0.200) 8260B 1 11/08/19 12:32 ND (0.200) 8260B 1 11/08/19 12:32 ND (0.200) 8260B 1 11/08/19 12:32 ND (0.200) 8260B 1 11/08/19 12:32 ND (0.200) 8260B 1 11/08/19 12:32 ND (0.200) 8260B 1 11/08/19 12:32 ND (0.200) 8260B 1 11/08/19 12:32 ND (0.400) 8260B 1 11/08/19 12:32 ND (0.600) 8260B 0 11/08/19 12:32 ND (0.600) 8260B 0 11/08/19 12:32	ND (0.200)

116 %

70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Batch CK90829 - 5035

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Organic Compounds / Methanol

Batch CK90829 - 5035			
Blank			
1,1,1,2-Tetrachloroethane	ND	0.200	mg/kg wet
1,1,1-Trichloroethane	ND	0.200	mg/kg wet
1,1,2,2-Tetrachloroethane	ND	0.200	mg/kg wet
1,1,2-Trichloroethane	ND	0.200	mg/kg wet
1,1-Dichloroethane	ND	0.200	mg/kg wet
1,1-Dichloroethene	ND	0.200	mg/kg wet
1,1-Dichloropropene	ND	0.200	mg/kg wet
1,2,3-Trichlorobenzene	ND	0.200	mg/kg wet
1,2,3-Trichloropropane	ND	0.200	mg/kg wet
1,2,4-Trichlorobenzene	ND	0.200	mg/kg wet
L,2,4-Trimethylbenzene	ND	0.200	mg/kg wet
1,2-Dibromo-3-Chloropropane	ND	1.00	mg/kg wet
1,2-Dibromoethane	ND	0.200	mg/kg wet
L,2-Dichlorobenzene	ND	0.200	mg/kg wet
.,2-Dichloroethane	ND	0.200	mg/kg wet
L,2-Dichloropropane	ND	0.200	mg/kg wet
1,3,5-Trimethylbenzene	ND	0.200	mg/kg wet
,,3-Dichlorobenzene	ND	0.200	mg/kg wet
,3-Dichloropropane	ND	0.200	mg/kg wet
,4-Dichlorobenzene	ND	0.200	mg/kg wet
,4-Dioxane - Screen	ND	40.0	mg/kg wet
-Chlorohexane	ND	0.200	mg/kg wet
,2-Dichloropropane	ND	0.200	mg/kg wet
-Butanone	ND	1.00	mg/kg wet
-Chlorotoluene	ND	0.200	mg/kg wet
-Hexanone	ND	1.00	mg/kg wet
-Chlorotoluene	ND	0.200	mg/kg wet
-Isopropyltoluene	ND	0.200	mg/kg wet
-Methyl-2-Pentanone	ND	1.00	mg/kg wet
Acetone	ND	1.00	mg/kg wet
Benzene	ND	0.200	mg/kg wet
Bromobenzene	ND	0.200	mg/kg wet
romochloromethane	ND	0.200	mg/kg wet
Bromodichloromethane	ND	0.200	mg/kg wet
Bromoform	ND	0.200	mg/kg wet
romomethane	ND	0.200	mg/kg wet
Carbon Disulfide	ND	0.200	mg/kg wet
Carbon Tetrachloride	ND	0.200	mg/kg wet
thlorobenzene	ND	0.200	mg/kg wet
Chloroethane	ND	0.200	mg/kg wet
Chloroform	ND	0.200	mg/kg wet
Chloromethane	ND	0.200	mg/kg wet
is-1,2-Dichloroethene	ND	0.200	mg/kg wet
is-1,3-Dichloropropene	ND	0.200	mg/kg wet
	HD.	3.200	ייי כיי וכיי

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Batch CK90829 - 5035

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

	5035	/8260B	Volatile	Organic	Compounds	/ Methan
--	------	--------	----------	---------	-----------	----------

Batch CK90829 - 5035							
Dibromochloromethane	ND	0.200	mg/kg wet				
Dibromomethane	ND	0.200	mg/kg wet				
Dichlorodifluoromethane	ND	0.200	mg/kg wet				
Diethyl Ether	ND	0.200	mg/kg wet				
Di-isopropyl ether	ND	0.200	mg/kg wet				
Ethyl tertiary-butyl ether	ND	0.200	mg/kg wet				
Ethylbenzene	ND	0.200	mg/kg wet				
Hexachlorobutadiene	ND	0.200	mg/kg wet				
Isopropylbenzene	ND	0.200	mg/kg wet				
Methyl tert-Butyl Ether	ND	0.200	mg/kg wet				
Methylene Chloride	ND	0.400	mg/kg wet				
Naphthalene	ND	0.200	mg/kg wet				
n-Butylbenzene	ND	0.200	mg/kg wet				
n-Propylbenzene	ND	0.200	mg/kg wet				
sec-Butylbenzene	ND	0.200	mg/kg wet				
Styrene	ND	0.200	mg/kg wet				
tert-Butylbenzene	ND	0.200	mg/kg wet				
Tertiary-amyl methyl ether	ND	0.200	mg/kg wet				
Tetrachloroethene	ND	0.200	mg/kg wet				
Tetrahydrofuran	ND	1.00	mg/kg wet				
Toluene	ND	0.200	mg/kg wet				
trans-1,2-Dichloroethene	ND	0.200	mg/kg wet				
trans-1,3-Dichloropropene	ND	0.200	mg/kg wet				
Trichloroethene	ND	0.200	mg/kg wet				
Trichlorofluoromethane	ND	0.200	mg/kg wet				
Vinyl Acetate	ND	0.200	mg/kg wet				
Vinyl Chloride	ND	0.200	mg/kg wet				
Xylene O	ND	0.200	mg/kg wet				
Xylene P,M	ND	0.400	mg/kg wet				
Surrogate: 1,2-Dichloroethane-d4	4.73		mg/kg wet	5.000	95	70-130	
Surrogate: 4-Bromofluorobenzene	5.11		mg/kg wet	5.000	102	70-130	
Surrogate: Dibromofluoromethane	4.74		mg/kg wet	5.000	95	70-130	
Surrogate: Toluene-d8	5.07		mg/kg wet	5.000	101	70-130	
LCS							
1,1,1,2-Tetrachloroethane	1.99	0.200	mg/kg wet	2,000	100	70-130	
1,1,1-Trichloroethane	1.91	0.200	mg/kg wet	2.000	96	70-130	
1,1,2,2-Tetrachloroethane	1.88	0.200	mg/kg wet	2,000	94	70-130	
1,1,2-Trichloroethane	1.97	0.200	mg/kg wet	2.000	99	70-130	
1,1-Dichloroethane	1.96	0.200	mg/kg wet	2.000	98	70-130	
1,1-Dichloroethene	2.04	0.200	mg/kg wet	2.000	102	70-130	
1,1-Dichloropropene	2.02	0.200	mg/kg wet	2.000	101	70-130	
1,2,3-Trichlorobenzene	1.99	0.200	mg/kg wet	2,000	100	70-130	
1,2,3-Trichloropropane	1.73	0.200	mg/kg wet	2.000	87	70-130	
1,2,4-Trichlorobenzene	2.08	0.200	mg/kg wet	2.000	104	70-130	
1,2,4-Trimethylbenzene	2.11	0.200	mg/kg wet	2.000	105	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

	5035	/8260B	Volatile	Organic	Compounds	/ Methand
--	------	--------	----------	---------	-----------	-----------

Batch CK90829 - 5035							
1,2-Dibromo-3-Chloropropane	2,03	1.00	mg/kg wet	2.000	102	70-130	
1,2-Dibromoethane	2.04	0.200	mg/kg wet	2.000	102	70-130	
,2-Dichlorobenzene	1.95	0.200	mg/kg wet	2.000	97	70-130	
,2-Dichloroethane	1.87	0.200	mg/kg wet	2.000	93	70-130	
,2-Dichloropropane	1.96	0.200	mg/kg wet	2.000	98	70-130	
.,3,5-Trimethylbenzene	2.05	0.200	mg/kg wet	2.000	102	70-130	
.,3-Dichlorobenzene	1.98	0.200	mg/kg wet	2.000	99	70-130	
,3-Dichloropropane	1.95	0.200	mg/kg wet	2.000	98	70-130	
,4-Dichlorobenzene	1.99	0.200	mg/kg wet	2.000	100	70-130	
,4-Dioxane - Screen	54.6	40.0	mg/kg wet	40.00	137	44-241	
-Chlorohexane	1.93	0.200	mg/kg wet	2.000	97	70-130	
,2-Dichloropropane	1.90	0.200	mg/kg wet	2.000	95	70-130	
-Butanone	9.15	1.00	mg/kg wet	10.00	92	70-130	
-Chlorotoluene	1.90	0.200	mg/kg wet	2.000	95	70-130	
-Hexanone	9.65	1.00	mg/kg wet	10.00	96	70-130	
-Chlorotoluene	1.98	0.200	mg/kg wet	2.000	99	70-130	
-Isopropyltoluene	2.07	0.200	mg/kg wet	2.000	103	70-130	
-Methyl-2-Pentanone	9.31	1.00	mg/kg wet	10.00	93	70-130	
cetone	21.1	1.00	mg/kg wet	10.00	211	70-130	B+
enzene	1.92	0.200	mg/kg wet	2.000	96	70-130	
romobenzene	2.08	0.200	mg/kg wet	2.000	104	70-130	
romochloromethane	1.86	0.200	mg/kg wet	2.000	93	70-130	
romodichloromethane	1.92	0.200	mg/kg wet	2.000	96	70-130	
romoform	2,09	0.200	mg/kg wet	2.000	104	70-130	
romomethane	2.12	0.200	mg/kg wet	2.000	106	70-130	
arbon Disulfide	2,01	0.200	mg/kg wet	2.000	100	70-130	
arbon Tetrachloride	1.94	0.200	mg/kg wet	2.000	97	70-130	
Chlorobenzene	1.91	0.200	mg/kg wet	2.000	95	70-130	
Chloroethane	1.51	0.200	mg/kg wet	2.000	75	70-130	
hloroform	1.95	0.200	mg/kg wet	2.000	98	70-130	
Chloromethane	2.16	0.200	mg/kg wet	2.000	108	70-130	
is-1,2-Dichloroethene	1.93	0.200	mg/kg wet	2.000	97	70-130	
is-1,3-Dichloropropene	1.97	0.200	mg/kg wet	2.000	99	70-130	
Dibromochloromethane	2.08	0.200	mg/kg wet	2.000	104	70-130	
ibromomethane	1.92	0.200	mg/kg wet	2.000	96	70-130	
Dichlorodifluoromethane	1.48	0.200	mg/kg wet	2.000	74	70-130	
Diethyl Ether	2.48	0.200	mg/kg wet	2,000	124	70-130	
i-isopropyl ether	1.97	0.200	mg/kg wet	2.000	99	70-130	
thyl tertiary-butyl ether	1.93	0.200	mg/kg wet	2.000	96	70-130	
ithylbenzene	1.94	0.200	mg/kg wet	2.000	97	70-130	
, lexachlorobutadiene	2,17	0.200	mg/kg wet	2.000	109	70-130	
sopropylbenzene	1.98	0.200	mg/kg wet	2.000	99	70-130	
lethyl tert-Butyl Ether	1.99	0.200	mg/kg wet	2.000	100	70-130	
lethylene Chloride	1.77	0.400	mg/kg wet	2.000	88	70-130	
laphthalene	2.02	0.200	mg/kg wet	2.000	101	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Organic Compounds / Methano

D-1-1 CV00020 F02F									
Batch CK90829 - 5035	2.04	0.300		2.000	102	70 120			
n-Butylbenzene	2.04	0.200	mg/kg wet	2.000	102	70-130			
n-Propylbenzene	1.97	0.200	mg/kg wet	2.000	99	70-130			
sec-Butylbenzene	1.94	0.200	mg/kg wet	2.000	97	70-130			
Styrene	1.96	0.200	mg/kg wet	2.000	98	70-130			
ert-Butylbenzene	2.01	0.200	mg/kg wet	2.000	101	70-130			
Tertiary-amyl methyl ether	2.05	0.200	mg/kg wet	2.000	102	70-130			
Tetrachloroethene	1.71	0.200	mg/kg wet	2.000	85	70-130			
Tetrahydrofuran	1.94	1.00	mg/kg wet	2.000	97	70-130			
Foluene	1.90	0.200	mg/kg wet	2.000	95	70-130			
rans-1,2-Dichloroethene	1.97	0.200	mg/kg wet	2.000	99	70-130			
rrans-1,3-Dichloropropene	1.91	0.200	mg/kg wet	2.000	96	70-130			
Trichloroethene	1.92	0.200	mg/kg wet	2.000	96	70-130			
Frichlorofluoromethane	3.05	0.200	mg/kg wet	2.000	152	70-130			B+
Vinyl Acetate	2.07	0.200	mg/kg wet	2.000	104	70-130			
Vinyl Chloride	1.93	0.200	mg/kg wet	2.000	96	70-130			
Kylene O	2,06	0.200	mg/kg wet	2.000	103	70-130			
Xylene P,M	3.94	0.400	mg/kg wet	4.000	98	70-130			
Surrogate: 1,2-Dichloroethane-d4	4.49		mg/kg wet	5.000	90	70-130			
Surrogate: 4-Bromofluorobenzene	5.10		mg/kg wet	5.000	102	70-130			
Surrogate: Dibromofluoromethane	4.51		mg/kg wet	5.000	90	70-130			
Surrogate: Toluene-d8	4.88		mg/kg wet	5.000	98	70-130			
			3, 3						
LCS Dup 1,1,1,2-Tetrachloroethane	1.97	0.200	mg/kg wet	2.000	99	70-130	0.9	25	
.,1,1-Trichloroethane	2.02	0.200		2.000	101	70-130	5	25	
			mg/kg wet						
I,1,2,2-Tetrachloroethane	1.91	0.200	mg/kg wet	2,000	96	70-130	1	25	
1,1,2-Trichloroethane	1.91	0.200	mg/kg wet	2.000	95	70-130	3	25	
I,1-Dichloroethane	2.00	0.200	mg/kg wet	2,000	100	70-130	2	25	
1,1-Dichloroethene	2.11	0.200	mg/kg wet	2.000	106	70-130	3	25	
1,1-Dichloropropene	2.15	0.200	mg/kg wet	2.000	107	70-130	6	25	
1,2,3-Trichlorobenzene	1.95	0.200	mg/kg wet	2.000	98	70-130	2	25	
1,2,3-Trichloropropane	1.74	0.200	mg/kg wet	2.000	87	70-130	0.2	25	
1,2,4-Trichlorobenzene	2.07	0.200	mg/kg wet	2,000	104	70-130	0.3	25	
1,2,4-Trimethylbenzene	2.16	0.200	mg/kg wet	2.000	108	70-130	2	25	
1,2-Dibromo-3-Chloropropane	1.86	1.00	mg/kg wet	2.000	93	70-130	9	25	
1,2-Dibromoethane	2.02	0.200	mg/kg wet	2.000	101	70-130	1	25	
1,2-Dichlorobenzene	2.00	0.200	mg/kg wet	2.000	100	70-130	3	25	
1,2-Dichloroethane	1.93	0.200	mg/kg wet	2.000	96	70-130	3	25	
1,2-Dichloropropane	1.84	0.200	mg/kg wet	2.000	92	70-130	6	25	
1,3,5-Trimethylbenzene	2.07	0.200	mg/kg wet	2.000	104	70-130	1	25	
1,3-Dichlorobenzene	2.04	0.200	mg/kg wet	2.000	102	70-130	3	25	
L,3-Dichloropropane	1.98	0.200	mg/kg wet	2.000	99	70-130	1	25	
1,5 Dichioroproparic		0.000	mg/kg wet	2,000	100	70-130	0.4	25	
	2.00	0.200	mg/kg wee						
1,4-Dichlorobenzene	2 . 00 51.2	40.0	mg/kg wet	40.00	128	44-241	6	200	
1,4-Dichlorobenzene 1,4-Dioxane - Screen 1-Chlorohexane							6 6		

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

	5035	/8260B	Volatile	Organic	Compounds	/ Methand
--	------	--------	----------	---------	-----------	-----------

Batch CK90829 - 5035									
2-Butanone	8.89	1.00	mg/kg wet	10.00	89	70-130	3	25	
2-Chlorotoluene	1.98	0.200	mg/kg wet	2.000	99	70-130	4	25	
2-Hexanone	9.03	1.00	mg/kg wet	10.00	90	70-130	7	25	
4-Chlorotoluene	2.01	0.200	mg/kg wet	2.000	100	70-130	2	25	
4-Isopropyltoluene	2.09	0.200	mg/kg wet	2.000	104	70-130	1	25	
4-Methyl-2-Pentanone	8.65	1.00	mg/kg wet	10.00	86	70-130	7	25	
Acetone	18.9	1.00	mg/kg wet	10.00	189	70-130	11	25	B+
Benzene	1.93	0.200	mg/kg wet	2.000	97	70-130	0.8	25	
Bromobenzene	2.19	0.200	mg/kg wet	2.000	109	70-130	5	25	
Bromochloromethane	1.94	0.200	mg/kg wet	2.000	97	70-130	4	25	
Bromodichloromethane	1.98	0.200	mg/kg wet	2.000	99	70-130	3	25	
Bromoform	2.04	0.200	mg/kg wet	2.000	102	70-130	2	25	
Bromomethane	2.27	0.200	mg/kg wet	2.000	114	70-130	7	25	
Carbon Disulfide	1.98	0.200	mg/kg wet	2.000	99	70-130	1	25	
Carbon Tetrachloride	2.07	0.200	mg/kg wet	2.000	104	70-130	7	25	
Chlorobenzene	1.96	0.200	mg/kg wet	2.000	98	70-130	3	25	
Chloroethane	1.65	0.200	mg/kg wet	2.000	82	70-130	9	25	
Chloroform	1.97	0.200	mg/kg wet	2.000	98	70-130	0.9	25	
Chloromethane	2,20	0.200	mg/kg wet	2.000	110	70-130	2	25	
cis-1,2-Dichloroethene	1.99	0.200	mg/kg wet	2.000	100	70-130	3	25	
cis-1,3-Dichloropropene	1.96	0.200	mg/kg wet	2.000	98	70-130	0.7	25	
Dibromochloromethane	2.06	0.200	mg/kg wet	2.000	103	70-130	1	25	
Dibromomethane	1.96	0.200	mg/kg wet	2.000	98	70-130	2	25	
Dichlorodifluoromethane	1.53	0.200	mg/kg wet	2.000	77	70-130	3	25	
Diethyl Ether	2.47	0.200	mg/kg wet	2.000	124	70-130	0.3	25	
, Di-isopropyl ether	1.93	0.200	mg/kg wet	2.000	96	70-130	2	25	
Ethyl tertiary-butyl ether	2.01	0.200	mg/kg wet	2.000	100	70-130	4	25	
Ethylbenzene	2.03	0.200	mg/kg wet	2.000	102	70-130	5	25	
Hexachlorobutadiene	2.16	0.200	mg/kg wet	2.000	108	70-130	0.6	25	
Isopropylbenzene	2.06	0.200	mg/kg wet	2,000	103	70-130	4	25	
Methyl tert-Butyl Ether	1.95	0.200	mg/kg wet	2.000	97	70-130	2	25	
Methylene Chloride	1.90	0.400	mg/kg wet	2.000	95	70-130	7	25	
Naphthalene	1.93	0.200	mg/kg wet	2.000	97	70-130	5	25	
n-Butylbenzene	2.04	0.200	mg/kg wet	2.000	102	70-130	0.3	25	
n-Propylbenzene	2.02	0.200	mg/kg wet	2,000	101	70-130	2	25	
sec-Butylbenzene	2.04	0.200	mg/kg wet	2.000	102	70-130	5	25	
Styrene	2.03	0.200	mg/kg wet	2.000	102	70-130	4	25	
ert-Butylbenzene	2.06	0.200	mg/kg wet	2.000	103	70-130	2	25	
•		0.200		2.000	98		4	25	
Fertiary-amyl methyl ether Fetrachloroethene	1.96 1.77	0.200	mg/kg wet	2.000	98 88	70-130 70-130	4	25 25	
			mg/kg wet		93				
Tetrahydrofuran	1.87	1.00	mg/kg wet	2.000		70-130	4	25	
Toluene	1.93	0.200	mg/kg wet	2,000	97	70-130	2	25	
trans-1,2-Dichloroethene	2.02	0.200	mg/kg wet	2.000	101	70-130	2	25	
rans-1,3-Dichloropropene	2.03	0.200	mg/kg wet	2.000	101	70-130	6	25	
Trichloroethene	1.92	0.200	mg/kg wet	2.000	96	70-130	0	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Organic Compounds / Methanol

Batch CK90829 - 5035									
Trichlorofluoromethane	3.16	0.200	mg/kg wet	2.000	158	70-130	3	25	B+
Vinyl Acetate	2.07	0.200	mg/kg wet	2.000	104	70-130	0	25	
Vinyl Chloride	2.03	0.200	mg/kg wet	2.000	102	70-130	5	25	
Xylene O	2.06	0.200	mg/kg wet	2.000	103	70-130	0.3	25	
Kylene P,M	4.11	0.400	mg/kg wet	4.000	103	70-130	4	25	
Surrogate: 1,2-Dichloroethane-d4	4.58		mg/kg wet	5.000	92	70-130			
Surrogate: 4-Bromofluorobenzene	5.37		mg/kg wet	5.000	107	70-130			
Surrogate: Dibromofluoromethane	4.75		mg/kg wet	5.000	95	70-130			
Surrogate: Toluene-d8	5.05		mg/kg wet	5.000	101	70-130			

8082A Polychlorinated Biphenyls (PCB)

Batch CK90702 - 3540C							
Blank							
Aroclor 1016	ND	0.05	mg/kg wet				
Aroclor 1016 [2C]	ND	0.05	mg/kg wet				
Aroclor 1221	ND	0.05	mg/kg wet				
Aroclor 1221 [2C]	ND	0.05	mg/kg wet				
Aroclor 1232	ND	0.05	mg/kg wet				
Aroclor 1232 [2C]	ND	0.05	mg/kg wet				
Aroclor 1242	ND	0.05	mg/kg wet				
Aroclor 1242 [2C]	ND	0.05	mg/kg wet				
Aroclor 1248	ND	0.05	mg/kg wet				
Aroclor 1248 [2C]	ND	0.05	mg/kg wet				
Aroclor 1254	ND	0.05	mg/kg wet				
Aroclor 1254 [2C]	ND	0.05	mg/kg wet				
Aroclor 1260	ND	0.05	mg/kg wet				
Aroclor 1260 [2C]	ND	0.05	mg/kg wet				
Aroclor 1262	ND	0.05	mg/kg wet				
Aroclor 1262 [2C]	ND	0.05	mg/kg wet				
Aroclor 1268	ND	0.05	mg/kg wet				
Aroclor 1268 [2C]	ND	0.05	mg/kg wet				
Surrogate: Decachlorobiphenyl	0.0182		mg/kg wet	0.02500	<i>73</i>	30-150	
Surrogate: Decachlorobiphenyl [2C]	0.0202		mg/kg wet	0.02500	81	30-150	
Surrogate: Tetrachloro-m-xylene	0.0167		mg/kg wet	0.02500	67	30-150	
Surrogate: Tetrachloro-m-xylene [2C]	0.0180		mg/kg wet	0.02500	<i>72</i>	30-150	
LCS							
Aroclor 1016	0.4	0.05	mg/kg wet	0.5000	82	40-140	
Aroclor 1016 [2C]	0.4	0.05	mg/kg wet	0.5000	87	40-140	
Aroclor 1260	0.4	0.05	mg/kg wet	0.5000	77	40-140	
Aroclor 1260 [2C]	0.4	0.05	mg/kg wet	0.5000	83	40-140	
Surrogate: Decachlorobiphenyl	0.0184		mg/kg wet	0.02500	74	30-150	
Surrogate: Decachlorobiphenyl [2C]	0.0199		mg/kg wet	0.02500	80	30-150	
Surrogate: Tetrachloro-m-xylene	0.0171		mg/kg wet	0.02500	68	30-150	

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486

• Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8082A Polychlorinated Biphenyls (PCB)

Batch CK90702 - 3540C									
Surrogate: Tetrachloro-m-xylene [2C]	0.0174		mg/kg wet	0.02500	69	30-150			
LCS Dup									
Aroclor 1016	0.4	0.05	mg/kg wet	0.5000	86	40-140	5	30	
Aroclor 1016 [2C]	0.5	0.05	mg/kg wet	0.5000	91	40-140	4	30	
Aroclor 1260	0.4	0.05	mg/kg wet	0.5000	82	40-140	5	30	
Aroclor 1260 [2C]	0.4	0.05	mg/kg wet	0.5000	88	40-140	6	30	
Surrogate: Decachlorobiphenyl	0.0196		mg/kg wet	0.02500	<i>78</i>	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0212		mg/kg wet	0.02500	<i>85</i>	30-150			
Surrogate: Tetrachloro-m-xylene	0.0179		mg/kg wet	0.02500	71	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0182		mg/kg wet	0.02500	<i>73</i>	30-150			

8100M Total Petroleum Hydrocarbons

Batch CK90613 - 3546							
Blank							
Decane (C10)	ND	0.2	mg/kg wet				
Docosane (C22)	ND	0.2	mg/kg wet				
Dodecane (C12)	ND	0.2	mg/kg wet				
Eicosane (C20)	ND	0.2	mg/kg wet				
Hexacosane (C26)	ND	0.2	mg/kg wet				
Hexadecane (C16)	ND	0.2	mg/kg wet				
Nonadecane (C19)	ND	0.2	mg/kg wet				
Nonane (C9)	ND	0.2	mg/kg wet				
Octacosane (C28)	ND	0.2	mg/kg wet				
Octadecane (C18)	ND	0.2	mg/kg wet				
Tetracosane (C24)	ND	0.2	mg/kg wet				
Tetradecane (C14)	ND	0.2	mg/kg wet				
Total Petroleum Hydrocarbons	ND	37 . 5	mg/kg wet				
Triacontane (C30)	ND	0.2	mg/kg wet				
Surrogate: O-Terphenyl	4.21		mg/kg wet	5.000	84	40-140	
LCS							
Decane (C10)	1.8	0.2	mg/kg wet	2.500	71	40-140	
Docosane (C22)	2.3	0.2	mg/kg wet	2,500	91	40-140	
Dodecane (C12)	1.8	0.2	mg/kg wet	2.500	74	40-140	
Eicosane (C20)	2,2	0.2	mg/kg wet	2.500	89	40-140	
Hexacosane (C26)	2.3	0.2	mg/kg wet	2.500	91	40-140	
Hexadecane (C16)	2.0	0.2	mg/kg wet	2.500	79	40-140	
Nonadecane (C19)	2.4	0.2	mg/kg wet	2,500	96	40-140	
Nonane (C9)	1.6	0.2	mg/kg wet	2.500	63	30-140	
Octacosane (C28)	2,3	0.2	mg/kg wet	2.500	91	40-140	
Octadecane (C18)	2.1	0.2	mg/kg wet	2,500	84	40-140	
Tetracosane (C24)	2.3	0.2	mg/kg wet	2.500	91	40-140	
Tetradecane (C14)	1.9	0.2	mg/kg wet	2,500	77	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Resu l t	%REC	%REC Limits	RPD	RPD Limit	Qualifier
•			al Petroleum							
Batch CK90613 - 3546	20.7	27.5	are the same	25.00		٥٢	40.140			
Total Petroleum Hydrocarbons	29.7	37.5	mg/kg wet	35.00		85	40-140			
Triacontane (C30)	2.3	0.2	mg/kg wet	2,500		92	40-140			
Surrogate: O-Terphenyl	4.16		mg/kg wet	5.000		83	40-140			
LCS Dup										
Decane (C10)	1.8	0.2	mg/kg wet	2.500		72	40-140	1	25	
Docosane (C22)	2.3	0.2	mg/kg wet	2.500		92	40-140	1	25	
Dodecane (C12)	1.9	0.2	mg/kg wet	2.500		77	40-140	4	25	
Eicosane (C20)	2.3	0.2	mg/kg wet	2.500		90	40-140	2	25	
Hexacosane (C26)	2.3	0.2	mg/kg wet	2,500		92	40-140	1	25	
Hexadecane (C16)	2.1	0.2	mg/kg wet	2.500		83	40-140	6	25	
Nonadecane (C19)	2.5	0.2	mg/kg wet	2.500		99	40-140	3	25	
Nonane (C9)	1.6	0.2	mg/kg wet	2.500		63	30-140	0.4	25	
Octacosane (C28)	2.3	0.2	mg/kg wet	2.500		93	40-140	2	25	
Octadecane (C18)	2.2	0.2	mg/kg wet	2,500		87	40-140	4	25	
Tetracosane (C24)	2.3	0.2	mg/kg wet	2.500		92	40-140	1	25	
Tetradecane (C14)	2.0	0.2	mg/kg wet	2.500		81	40-140	5	25	
Total Petroleum Hydrocarbons	30.4	37 . 5	mg/kg wet	35.00		87	40-140	2	25	
Triacontane (C30)	2.3	0.2	mg/kg wet	2.500		93	40-140	1	25	
Surrogate: O-Terphenyl	4.24		mg/kg wet	5.000		<i>85</i>	40-140			
Batch CK90708 - 3546										
Blank										
Decane (C10)	ND	0.2	mg/kg wet							
Docosane (C22)	ND	0.2	mg/kg wet							
Dodecane (C12)	ND	0.2	mg/kg wet							
Eicosane (C20)	ND	0.2	mg/kg wet							
Hexacosane (C26)	ND	0.2	mg/kg wet							
Hexadecane (C16)	ND	0.2	mg/kg wet							
Nonadecane (C19)	ND	0.2	mg/kg wet							
Nonane (C9)	ND	0.2	mg/kg wet							
Octacosane (C28)	ND	0.2	mg/kg wet							
Octadecane (C18)	ND	0.2	mg/kg wet							
Tetracosane (C24)	ND	0.2	mg/kg wet							
Tetradecane (C14)	ND	0.2	mg/kg wet							
Total Petroleum Hydrocarbons	ND	37.5	mg/kg wet							
Triacontane (C30)	ND	0.2	mg/kg wet							
Surrogate: O-Terphenyl	4.34		mg/kg wet	5.000		87	40-140			
LCS										
Decane (C10)	2.0	0.2	mg/kg wet	2,500		80	40-140			
Docosane (C22)		0.2	mg/kg wet	2.500		93	40-140			
	2.3									
Dodecane (C12)	2.1	0.2	mg/kg wet	2.500		84	40-140			
Eicosane (C20)	2.3	0.2	mg/kg wet	2.500		92	40-140			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		8100M Tot	al Petroleum	Hydroca	rbons					
Batch CK90708 - 3546										
Hexadecane (C16)	2,2	0.2	mg/kg wet	2.500		89	40-140			
Nonadecane (C19)	2.5	0.2	mg/kg wet	2.500		102	40-140			
Nonane (C9)	1.8	0.2	mg/kg wet	2.500		71	30-140			
Octacosane (C28)	2.3	0.2	mg/kg wet	2.500		94	40-140			
Octadecane (C18)	2.3	0.2	mg/kg wet	2.500		91	40-140			
Fetracosane (C24)	2.3	0.2	mg/kg wet	2.500		93	40-140			
Fetradecane (C14)	2.2	0.2	mg/kg wet	2,500		87	40-140			
Total Petroleum Hydrocarbons	31.5	37.5	mg/kg wet	35.00		90	40-140			
Friacontane (C30)	2.3	0.2	mg/kg wet	2.500		94	40-140			
Surrogate: O-Terphenyl	4.49		mg/kg wet	5.000		90	40-140			
.CS Dup										
Decane (C10)	2.1	0.2	mg/kg wet	2.500		82	40-140	3	25	
Pocosane (C22)	2.5	0.2	mg/kg wet	2.500		98	40-140	6	25	
Podecane (C12)	2.2	0.2	mg/kg wet	2.500		88	40-140	4	25	
Eicosane (C20)	2.4	0.2	mg/kg wet	2.500		97	40-140	6	25	
Hexacosane (C26)	2.5	0.2	mg/kg wet	2.500		98	40-140	6	25	
Hexadecane (C16)	2.4	0.2	mg/kg wet	2.500		94	40-140	6	25	
lonadecane (C19)	2.7	0.2	mg/kg wet	2.500		107	40-140	6	25	
lonane (C9)	1.8	0.2	mg/kg wet	2.500		73	30-140	2	25	
Octacosane (C28)	2.5	0.2	mg/kg wet	2.500		100	40-140	6	25	
Octadecane (C18)	2.4	0.2	mg/kg wet	2.500		97	40-140	6	25	
Tetracosane (C24)	2.5	0.2	mg/kg wet	2.500		98	40-140	6	25	
Fetradecane (C14)	2.3	0.2	mg/kg wet	2.500		92	40-140	5	25	
Total Petroleum Hydrocarbons	33.3	37 . 5	mg/kg wet	35.00		95	40-140	5	25	
Triacontane (C30)	2.5	0.2	mg/kg wet	2.500		100	40-140	6	25	
Surrogate: O-Terphenyl	4.70		mg/kg wet	5.000		94	40-140			

Batch CK90612 - 3546				
Blank				
1,1-Biphenyl	ND	0.333	mg/kg wet	
1,2,4-Trichlorobenzene	ND	0.333	mg/kg wet	
1,2-Dichlorobenzene	ND	0.333	mg/kg wet	
1,3-Dichlorobenzene	ND	0.333	mg/kg wet	
1,4-Dichlorobenzene	ND	0.333	mg/kg wet	
2,3,4,6-Tetrachlorophenol	ND	1.67	mg/kg wet	
2,4,5-Trichlorophenol	ND	0.333	mg/kg wet	
2,4,6-Trichlorophenol	ND	0.333	mg/kg wet	
2,4-Dichlorophenol	ND	0.333	mg/kg wet	
2,4-Dimethylphenol	ND	0.333	mg/kg wet	
2,4-Dinitrophenol	ND	1.67	mg/kg wet	
2,4-Dinitrotoluene	ND	0.333	mg/kg wet	
2,6-Dinitrotoluene	ND	0.333	mg/kg wet	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability Quality Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile Organic Compounds

Batch CK90612 - 3546			
2-Chloronaphthalene	ND	0.333	mg/kg wet
2-Chlorophenol	ND	0.333	mg/kg wet
2-Methylnaphthalene	ND	0.333	mg/kg wet
2-Methylphenol	ND	0.333	mg/kg wet
2-Nitroaniline	ND	0.333	mg/kg wet
2-Nitrophenol	ND	0.333	mg/kg wet
3,3´-Dichlorobenzidine	ND	0.333	mg/kg wet
3+4-Methylphenol	ND	0.667	mg/kg wet
3-Nitroaniline	ND	0.333	mg/kg wet
4,6-Dinitro-2-Methylphenol	ND	1.67	mg/kg wet
4-Bromophenyl-phenylether	ND	0.333	mg/kg wet
4-Chloro-3-Methylphenol	ND	0.333	mg/kg wet
4-Chloroaniline	ND	0.667	mg/kg wet
4-Chloro-phenyl-phenyl ether	ND	0.333	mg/kg wet
4-Nitroaniline	ND	0.333	mg/kg wet
4-Nitrophenol	ND	1.67	mg/kg wet
Acenaphthene	ND	0.333	mg/kg wet
Acenaphthylene	ND	0.333	mg/kg wet
Acetophenone	ND	0.667	mg/kg wet
Aniline	ND	0.667	mg/kg wet
Anthracene	ND	0.333	mg/kg wet
Azobenzene	ND	0.333	mg/kg wet
Benzo(a)anthracene	ND	0.333	mg/kg wet
Benzo(a)pyrene	ND	0.167	mg/kg wet
Benzo(b)fluoranthene	ND	0.333	mg/kg wet
Benzo(g,h,i)perylene	ND	0.333	mg/kg wet
Benzo(k)fluoranthene	ND	0.333	mg/kg wet
Benzoic Acid	ND	1.67	mg/kg wet
Benzyl Alcohol	ND	0.333	mg/kg wet
pis(2-Chloroethoxy)methane	ND	0.333	mg/kg wet
bis(2-Chloroethyl)ether	ND	0.167	mg/kg wet
ois(2-chloroisopropyl)Ether	ND	0.333	mg/kg wet
bis(2-Ethylhexyl)phthalate	ND	0.333	mg/kg wet
Butylbenzylphthalate	ND	0.333	mg/kg wet
Carbazole	ND	0.333	mg/kg wet
Chrysene	ND	0.167	mg/kg wet
Dibenzo(a,h)Anthracene	ND	0.167	mg/kg wet
Dibenzofuran	ND	0.333	mg/kg wet
Diethylphthalate	ND	0.333	mg/kg wet
Dimethylphthalate	ND	0.333	mg/kg wet
Di-n-butylphthalate	ND	0.333	mg/kg wet
Di-n-octylphthalate	ND	0.333	mg/kg wet
Fluoranthene	ND	0.333	mg/kg wet
Fluorene	ND	0.333	mg/kg wet
Hexachlorobenzene	ND	0.167	mg/kg wet

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

ESS Laboratory Work Order: 19K0160 **Quality Control Data**

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile Organic Compounds

Batch CK90612 - 3546							
Hexachlorobutadiene	ND	0.333	mg/kg wet				
Hexachlorocyclopentadiene	ND	1.67	mg/kg wet				
Hexachloroethane	ND	0.333	mg/kg wet				
indeno(1,2,3-cd)Pyrene	ND	0.333	mg/kg wet				
sophorone	ND	0.333	mg/kg wet				
Naphthalene	ND	0.333	mg/kg wet				
Vitrobenzene	ND	0.333	mg/kg wet				
N-Nitrosodimethylamine	ND	0.333	mg/kg wet				
I-Nitroso-Di-n-Propylamine	ND	0.333	mg/kg wet				
I-nitrosodiphenylamine	ND	0.333	mg/kg wet				
rentachlorophenol	ND	1.67	mg/kg wet				
Phenanthrene	ND	0.333	mg/kg wet				
henol	ND	0.333	mg/kg wet				
yrene	ND	0.333	mg/kg wet				
yridine	ND ND	1.67	mg/kg wet				
	2.11	1.0/	mg/kg wet	3.333	63	30-130	
iurrogate: 1,2-Dichlorobenzene-d4	2.11 4.45		mg/kg wet	5.000	89	<i>30-130</i>	
Surrogate: 2,4,6-Tribromophenol	3.28		mg/kg wet	5.000	66	<i>30-130</i>	
iurrogate: 2-Chlorophenol-d4	2.08		mg/kg wet	3.333	<i>62</i>	30-130	
urrogate: 2-Fluorobiphenyl	3.20		mg/kg wet	5.000	64	30-130	
urrogate: 2-Fluorophenol	1.96		mg/kg wet	3.333	<i>59</i>	30-130	
ourrogate: Nitrobenzene-d5	3.07		mg/kg wet	5.000	61	30-130	
iurrogate: Phenol-d6	3.16		mg/kg wet	3.333	95	30-130	
Gurrogate: p-Terphenyl-d14			g, ng mee				
CS ,1-Biphenyl	2.25	0.333	ma/ka wot	3.333	68	40-140	
			mg/kg wet			40-140	
2,4-Trichlorobenzene	2.05	0.333	mg/kg wet	3.333	61		
,2-Dichlorobenzene	1.87	0.333	mg/kg wet	3.333	56	40-140	
,3-Dichlorobenzene	1.77	0.333	mg/kg wet	3.333	53	40-140	
,4-Dichlorobenzene	1.80	0.333	mg/kg wet	3.333	54	40-140	
,3,4,6-Tetrachlorophenol	2.90	1.67	mg/kg wet	3.333	87	30-130	
,4,5-Trichlorophenol	2.71	0.333	mg/kg wet	3.333	81	30-130	
,4,6-Trichlorophenol	2.61	0.333	mg/kg wet	3.333	78	30-130	
,4-Dichlorophenol	2.26	0.333	mg/kg wet	3.333	68	30-130	
4-Dimethylphenol	2.05	0.333	mg/kg wet	3.333	61	30-130	
,4-Dinitrophenol	2.38	1.67	mg/kg wet	3.333	72	30-130	
,4-Dinitrotoluene	2.89	0.333	mg/kg wet	3.333	87	40-140	
,6-Dinitrotoluene	2.62	0.333	mg/kg wet	3.333	79	40-140	
-Chloronaphthalene	2.25	0.333	mg/kg wet	3.333	68	40-140	
-Chlorophenol	1.98	0.333	mg/kg wet	3.333	60	30-130	
-Methylnaphthalene	2.12	0.333	mg/kg wet	3.333	64	40-140	
-Methylphenol	2.11	0.333	mg/kg wet	3.333	63	30-130	
-Nitroaniline	2.25	0.333	mg/kg wet	3.333	68	40-140	
-Nitrophenol	1.77	0.333	mg/kg wet	3.333	53	30-130	
,3´-Dichlorobenzidine	2.06	0.333	mg/kg wet	3.333	62	40-140	
+4-Methylphenol	4.37	0.667	mg/kg wet	6.667	66	30-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile Organic Compounds

atch CK90612 - 3546						
Nitroaniline	2.40	0.333	mg/kg wet	3.333	72	40-140
6-Dinitro-2-Methylphenol	2.68	1.67	mg/kg wet	3.333	81	30-130
Bromophenyl-phenylether	2.96	0.333	mg/kg wet	3.333	89	40-140
Chloro-3-Methylphenol	2.34	0.333	mg/kg wet	3.333	70	30-130
Chloroaniline	1.39	0.667	mg/kg wet	3.333	42	40-140
Chloro-phenyl-phenyl ether	2.70	0.333	mg/kg wet	3.333	81	40-140
Nitroaniline	2.14	0.333	mg/kg wet	3.333	64	40-140
Nitrophenol	2.14	1.67	mg/kg wet	3.333	64	30-130
enaphthene	2.36	0.333	mg/kg wet	3.333	71	40-140
enaphthylene	2.40	0.333	mg/kg wet	3.333	72	40-140
etophenone	1.93	0.667	mg/kg wet	3.333	58	40-140
iline	1.44	0.667	mg/kg wet	3.333	43	40-140
thracene	2.77	0.333	mg/kg wet	3.333	83	40-140
obenzene	2.17	0.333	mg/kg wet	3.333	65	40-140
nzo(a)anthracene	2.98	0.333	mg/kg wet	3.333	89	40-140
enzo(a)pyrene	2,56	0.167	mg/kg wet	3.333	77	40-140
nzo(b)fluoranthene	3.02	0.333	mg/kg wet	3.333	91	40-140
nzo(g,h,i)perylene	3.19	0.333	mg/kg wet	3.333	96	40-140
nzo(k)fluoranthene	2.76	0.333	mg/kg wet	3.333	83	40-140
nzoic Acid	1.68	1.67	mg/kg wet	3.333	51	40-140
nzyl Alcohol	1.48	0.333	mg/kg wet	3.333	45	40-140
(2-Chloroethoxy)methane	1.92	0.333	mg/kg wet	3.333	58	40-140
(2-Chloroethyl)ether	1.81	0.167	mg/kg wet	3.333	54	40-140
(2-chloroisopropyl)Ether	1.82	0.333	mg/kg wet	3.333	55	40-140
(2-Ethylhexyl)phthalate	2.50	0.333	mg/kg wet	3.333	75	40-140
tylbenzylphthalate	2.36	0.333	mg/kg wet	3.333	71	40-140
rbazole	2.67	0.333	mg/kg wet	3.333	80	40-140
rysene	2.84	0.167	mg/kg wet	3.333	85	40-140
penzo(a,h)Anthracene	2.90	0.167	mg/kg wet	3.333	87	40-140
penzofuran	2.52	0.333	mg/kg wet	3.333	76	40-140
ethylphthalate	2.83	0.333	mg/kg wet	3.333	85	40-140
methylphthalate	2.82	0.333	mg/kg wet	3.333	84	40-140
-n-butylphthalate	2.37	0.333	mg/kg wet	3.333	71	40-140
n-octylphthalate	2.65	0.333	mg/kg wet	3.333	79	40-140
uoranthene	2.80	0.333	mg/kg wet	3.333	84	40-140
uorene	2.57	0.333	mg/kg wet	3.333	77	40-140
exachlorobenzene	2.95	0.167	mg/kg wet	3.333	88	40-140
exachlorobutadiene	2.03	0.333	mg/kg wet	3.333	61	40-140
xachlorocyclopentadiene	1.62	1.67	mg/kg wet	3.333	49	40-140
xachloroethane	1.74	0.333	mg/kg wet	3.333	52	40-140
deno(1,2,3-cd)Pyrene	2.88	0.333	mg/kg wet	3.333	86	40-140
ophorone	1.70	0.333	mg/kg wet	3.333	51	40-140
phthalene	1.94	0.333	mg/kg wet	3.333	58	40-140
trobenzene	1.73	0.333	mg/kg wet	3.333	52 52	40-140
JODGIEGIG	1./3	0.333	mg/kg wet	J.J.J.	JZ	10 410

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile Organic Compou	nc	ls
------------------------------------	----	----

Batch CK90612 - 3546									
N-Nitroso-Di-n-Propylamine	2.09	0.333	mg/kg wet	3.333	63	40-140			
N-nitrosodiphenylamine	2.70	0.333	mg/kg wet	3.333	81	40-140			
Pentachlorophenol	2.91	1.67	mg/kg wet	3.333	87	30-130			
Phenanthrene	2.67	0.333	mg/kg wet	3.333	80	40-140			
Phenol	1.90	0.333	mg/kg wet	3.333	57	30-130			
Pyrene	2.58	0.333	mg/kg wet	3.333	77	40-140			
Pyridine	1.67	1.67	mg/kg wet	3.333	50	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	2.00		mg/kg wet	3.333	60	30-130			
Surrogate: 2,4,6-Tribromophenol	5.08		mg/kg wet	5.000	102	30-130			
Surrogate: 2-Chlorophenol-d4	3.25		mg/kg wet	5.000	65	30-130			
Surrogate: 2-Fluorobiphenyl	2.56		mg/kg wet	3.333	<i>77</i>	30-130			
Surrogate: 2-Fluorophenol	3.23		mg/kg wet	5.000	65	30-130			
Surrogate: Nitrobenzene-d5	1.97		mg/kg wet	3.333	59	30-130			
Surrogate: Phenol-d6	3.36		mg/kg wet	5.000	67	30-130			
Gurrogate: p-Terphenyl-d14	3.00		mg/kg wet	3.333	90	30-130			
.CS Dup									
.,1-Biphenyl	2.30	0.333	mg/kg wet	3.333	69	40-140	2	30	
,2,4-Trichlorobenzene	2.26	0.333	mg/kg wet	3.333	68	40-140	10	30	
,2-Dichlorobenzene	2.21	0.333	mg/kg wet	3.333	66	40-140	17	30	
,3-Dichlorobenzene	2.08	0.333	mg/kg wet	3.333	63	40-140	16	30	
,4-Dichlorobenzene	2.11	0.333	mg/kg wet	3,333	63	40-140	16	30	
,3,4,6-Tetrachlorophenol	2.92	1.67	mg/kg wet	3.333	88	30-130	0.7	30	
,4,5-Trichlorophenol	2.71	0.333	mg/kg wet	3.333	81	30-130	0.1	30	
,4,6-Trichlorophenol	2.57	0.333	mg/kg wet	3.333	77	30-130	2	30	
,4-Dichlorophenol	2.46	0.333	mg/kg wet	3.333	74	30-130	8	30	
,4-Dimethylphenol	2.10	0.333	mg/kg wet	3,333	63	30-130	3	30	
,4-Dinitrophenol	2.52	1.67	mg/kg wet	3.333	76	30-130	5	30	
,4-Dinitrotoluene	3.00	0.333	mg/kg wet	3.333	90	40-140	4	30	
,6-Dinitrotoluene	2.71	0.333	mg/kg wet	3.333	81	40-140	4	30	
-Chloronaphthalene	2.31	0.333	mg/kg wet	3.333	69	40-140	3	30	
-Chlorophenol	2.28	0.333	mg/kg wet	3,333	68	30-130	14	30	
-Methylnaphthalene	2.21	0.333	mg/kg wet	3.333	66	40-140	4	30	
-Methylphenol	2.25	0.333	mg/kg wet	3.333	67	30-130	6	30	
-Nitroaniline	2.27	0.333	mg/kg wet	3.333	68	40-140	0.9	30	
-Nitrophenol	1.94	0.333	mg/kg wet	3.333	58	30-130	10	30	
,3´-Dichlorobenzidine	2.32	0.333	mg/kg wet	3,333	70	40-140	12	30	
+4-Methylphenol	4.58	0.667	mg/kg wet	6.667	69	30-130	5	30	
-Nitroaniline	2.49	0.333	mg/kg wet	3.333	75	40-140	3	30	
,6-Dinitro-2-Methylphenol	2.99	1.67	mg/kg wet	3.333	90	30-130	11	30	
-Bromophenyl-phenylether	2.95	0.333	mg/kg wet	3.333	88	40-140	0.6	30	
-Chloro-3-Methylphenol	2.42	0,333	mg/kg wet	3,333	73	30-130	3	30	
-Chloroaniline	1.60	0.667	mg/kg wet	3.333	48	40-140	14	30	
I-Chloro-phenyl-phenyl ether	2.81	0.333	mg/kg wet	3.333	84	40-140	4	30	
-Nitroaniline	2.39	0.333	mg/kg wet	3.333	72	40-140	11	30	
-Nitrophenol	2.11	1.67	mg/kg wet	3.333	63	30-130	1	30	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

• Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile Organic Compou	nc	ls
------------------------------------	----	----

Batch CK90612 - 3546									
cenaphthene	2.43	0.333	mg/kg wet	3.333	73	40-140	3	30	
cenaphthylene	2.46	0.333	mg/kg wet	3.333	74	40-140	3	30	
cetophenone	2.06	0.667	mg/kg wet	3.333	62	40-140	7	30	
niline	1.73	0.667	mg/kg wet	3.333	52	40-140	19	30	
nthracene	2.77	0.333	mg/kg wet	3.333	83	40-140	0.2	30	
zobenzene	2.32	0.333	mg/kg wet	3.333	69	40-140	6	30	
enzo(a)anthracene	3.06	0.333	mg/kg wet	3.333	92	40-140	3	30	
enzo(a)pyrene	2.60	0.167	mg/kg wet	3.333	78	40-140	1	30	
enzo(b)fluoranthene	2.98	0.333	mg/kg wet	3.333	90	40-140	1	30	
enzo(g,h,i)perylene	3.21	0.333	mg/kg wet	3.333	96	40-140	0.6	30	
enzo(k)fluoranthene	2.86	0.333	mg/kg wet	3.333	86	40-140	4	30	
enzoic Acid	2.01	1.67	mg/kg wet	3.333	60	40-140	18	30	
enzyl Alcohol	1.91	0.333	mg/kg wet	3.333	57	40-140	25	30	
is(2-Chloroethoxy)methane	2.01	0.333	mg/kg wet	3.333	60	40-140	5	30	
s(2-Chloroethyl)ether	2.12	0.167	mg/kg wet	3.333	64	40-140	16	30	
is(2-chloroisopropyl)Ether	2.08	0.333	mg/kg wet	3.333	62	40-140	13	30	
s(2-Ethylhexyl)phthalate	2.73	0.333	mg/kg wet	3.333	82	40-140	9	30	
utylbenzylphthalate	2.49	0.333	mg/kg wet	3.333	75	40-140	5	30	
arbazole	2.88	0.333	mg/kg wet	3.333	86	40-140	7	30	
hrysene	2.98	0.167	mg/kg wet	3.333	89	40-140	5	30	
ibenzo(a,h)Anthracene	2.98	0.167	mg/kg wet	3.333	89	40-140	3	30	
ibenzofuran	2.41	0.333	mg/kg wet	3.333	72	40-140	5	30	
iethylphthalate	2.96	0.333	mg/kg wet	3.333	89	40-140	4	30	
imethylphthalate	2.88	0.333	mg/kg wet	3.333	86	40-140	2	30	
i-n-butylphthalate	2.48	0.333	mg/kg wet	3.333	74	40-140	5	30	
i-n-octylphthalate	2.79	0.333	mg/kg wet	3.333	84	40-140	5	30	
uoranthene	2.97	0.333	mg/kg wet	3.333	89	40-140	6	30	
uorene	2.68	0.333	mg/kg wet	3.333	81	40-140	4	30	
exachlorobenzene	3.04	0.167	mg/kg wet	3.333	91	40-140	3	30	
exachlorobutadiene	2.27	0.333	mg/kg wet	3.333	68	40-140	11	30	
exachlorocyclopentadiene	1.80	1.67	mg/kg wet	3.333	54	40-140	10	30	
exachloroethane	2.08	0.333	mg/kg wet	3.333	62	40-140	18	30	
ndeno(1,2,3-cd)Pyrene	2.97	0.333	mg/kg wet	3.333	89	40-140	3	30	
ophorone	1.82	0.333	mg/kg wet	3.333	55	40-140	7	30	
aphthalene	2.12	0.333	mg/kg wet	3.333	64	40-140	9	30	
itrobenzene	1.93	0.333	mg/kg wet	3.333	58	40-140	11	30	
-Nitrosodimethylamine	1.64	0.333	mg/kg wet	3.333	49	40-140	13	30	
-Nitroso-Di-n-Propylamine	2.17	0.333	mg/kg wet	3.333	65	40-140	4	30	
-nitrosodiphenylamine	2.87	0.333	mg/kg wet	3.333	86	40-140	6	30	
entachlorophenol	2.91	1.67	mg/kg wet	3.333	87	30-130	0.03	30	
nenanthrene	2.72	0.333	mg/kg wet	3.333	82	40-140	2	30	
nenol	2.09	0.333	mg/kg wet	3.333	63	30-130	9	30	
vrene	2.89	0.333	mg/kg wet	3.333	87	40-140	12	30	
ridine	1.83	1.67	mg/kg wet	3.333	55	40-140	9	30	
	2.28	2107	mg/kg wet	3.333	68	30-130	-		

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

• Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Resu l t	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	8	270D Semi-\	/olatile Org	anic Com	pounds					

Batch CK90612 - 3546					
Surrogate: 2,4,6-Tribromophenol	5.06	mg/kg wet	5.000	101	30-130
Surrogate: 2-Chlorophenol-d4	3.60	mg/kg wet	5.000	<i>72</i>	30-130
Surrogate: 2-Fluorobiphenyl	2.48	mg/kg wet	3.333	<i>75</i>	30-130
Surrogate: 2-Fluorophenol	3.51	mg/kg wet	5.000	70	30-130
Surrogate: Nitrobenzene-d5	2.12	mg/kg wet	3.333	64	30-130
Surrogate: Phenol-d6	3.60	mg/kg wet	5.000	<i>72</i>	30-130
Surrogate: p-Terphenyl-d14	3.17	mg/kg wet	3.333	<i>95</i>	30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

Notes and Definitions

U	Analyte included in the analysis, but not detected
S+	Surrogate recovery(ies) above upper control limit (S+).
0	Calibration required quadratic regression (O).

D Diluted.

CD+ Continuing Calibration %Diff/Drift is above control limit (CD+).
CD- Continuing Calibration %Diff/Drift is below control limit (CD-).

B+ Blank Spike recovery is above upper control limit (B+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference Method Detection Limit MDL MRL Method Reporting Limit LOD Limit of Detection LOQ Limit of Quantitation **Detection Limit** DL I/V Initial Volume F/V Final Volume

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit
MF Membrane Filtration
MPN Most Probably Number
TNTC Too numerous to Count
CFU Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0160

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Redwood	Environmer	ntal Group - K	(PB/HDM		ESS Pr	oject ID:	19	K0160	
Ohione d/D	ativanad Viiav		ECC Couries			Date Re	eceived: ue Date:	11/	6/2019 3/2019	
Shipped/De	elivered via:		ESS Courier		•		Project:		Day	
	anifest prese			No]	6. Does COC m				Yes
	stody seals p			No	1	7. Is COC comp	olete and correc	it?		No
	on count <10			Yes)]	8. Were sample	s received inta	ct?		Yes
J. ISTAGIAN	on count sie	O OI WI:	_	1.00		9. Were labs in	formed about	short hold	s & rushes?	Yes / No / NA
	ler Present? 3.2	lced with:	[_ [Yes	j	10. Were any a	analyses receiv	ed outside o	of hold time?	Yes 7No
5. Was CO	C signed and	dated by cl	ient?	Yes]					
	ocontracting i Sample IDs: Analysis: TAT:		Yes		-	12. Were VOAs a. Air bubbles i b. Does metha	n aqueous VO			Yes / No Yes / No Yes / No / NA
a. If metals	samples pro preserved u el VOA vials	pon receipt:	ved? (Yes / No Date: Date:		Time: _ Time:		By: By:		
Sample Red	ceiving Notes	5 :								
									 	
	re a need to		oject Manager client?	Date:	Yes / No Yes / No	Time:		Ву:		
										•
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Contair	ner Type	Preservativ	re		yanide and 608 icides)
01	409883	Yes	NA	Yes	VOA Vial	- Methanol	MeOH			
01	409886	Yes	NA	Yes		- Unpres	NP			
01	409889 409882	Yes Yes	NA NA	Yes Yes	4 oz. Jar	· - Unpres - Methanol	NP MeOH			
02 02	409885	Yes	NA NA	Yes		- Unpres	NP			
02	409888	Yes	NA	Yes		- Unpres	NP			
03	409881	Yes	NA	Yes		- Methanol	MeOH			
03	409884	Yes	NA	Yes		- Unpres	NP			
03 04	409887 409923	Yes Yes	NA NA	Yes Yes		- Unpres - Methanol	NP MeOH			
2nd Review						.				
			storage/lab?		Initials	Ves/No				
	e labels on co booint sticker		ners? container ID#	circled?		Yes / No / NA				
	Chrome stick			S. 0.00 :		Yes / No / NA				
Are all QC	stickers attac	hed?				Yes / No// NA				
Are VOA st	ickers attach	ed/if bubbles	noted?			Yes / Nol/ NA/				
	//	/					1	1	1.	
Completed By:	Y				Date & Time	:	[[/b]	//9	14:31	

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Redwood Environmental Group - KPB/HDM		ESS Project ID: Date Received:	19K0160 11/6/2019	
Reviewed By:	214	Date & Time:	1/4/19	1520	
Delivered By:			11/6/19	1500	

ESS Laboratory

Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston, RI 02910-2211 Tel. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com

CHAIN OF CUSTODY

Jof_ Page___ Format: Excel_ Access_PDF_ form, Ros dentral Electronic Deliverable Reporting Limits Turn Time A Standard Other
If faster than 5 days, prior approval by laboratory is required # Other Other Is this project for any of the following:
MA-MCP
Navy
USACE NJ NY ME State where samples were collected from: H

Other chacked

Co. Name		(1)				Project #	Project Name (20 Chargor less)					Circle	and/or	Circle and/or Write Required Analysis	equire	d Anal	ysis		
	07 200)	2000	(122	Orenie R				۱	_	7	€7	Ļ		\vdash		
Contact Person	uo					Address				524.2	HdV HqV	Diesel EPH	854) so HA	3 TAL	(EI) STVI	8 _H			
Ciry		State			1	Zip	PO#	eronicae			015 015 015	s s s	S B Pesticida 608	144 8	NCP-MEC	1///			
Telephone #		Fax#	*		٠		Email Address	100 to			S X3T	EPH EPH	29 8085 8085	RCRA	<u>'</u>	(6			
ESS LAB Sample#	Date	Collection Time	COMP	CKVB	XIRTAM	Sample	Sample Identification (20 Chat or less)	Pres Code Number	to odyl	\$28 \$28	T <u>C</u> 08 Bairm	HV4 0/M HdB	8081 Pesticides 8270 8270	RCRAS	ISR-9.1ST -9SM -128 IATHM	METALS (1			
	11/0/11			4	5	-2hbloc	919011-1mm-24619			×	メ		×				-		
2				X	5	-24Plas	- mwz- 110619			'n	*		×						
2	/			7	3	301942	9011-5mm-240106			シ	<u> </u>		×						
ב						TR.	TRIP Blank			×								,	
	: :							9											-
													-						
	. }																		
									_										
							in the the						-						
																	-		
Container I	Container Type: P-Poly G-Glass	S-Sterile	V-VO	A N	datrix	V-VOA Matrix: 5-Soil SD-Solid	D-Sludge WW-Waste Water	GW-Ground Water	Water	SW-Su	SW-Surface Water		/-Drink	DW-Drinking Water		o-oil w	W-Wipes	F-Filters	sıs
Cooler Present	, les	°Z		Inter	nal U	Internal Use Only Pre	Preservation Code: 1- NP, 2- HCl, 3- HsSO, 4- HNO, 5- NaOH, 6- McOH, 7- Asorbic Acid, 8- ZnAct, 9-	H.SO., 4- F	INO, 5	- NaOF	, 6- Me	ОН, 7-	Asorbic	Acid 8	8- ZnA	ct, 9.			
Seals Intact	Yes	Yes No NA:			[] Pickup		Sampled by: (L.)	jeko.											

1 (White) Lab Copy 2 (Yellow)Page416 Regept

Date/Time

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

Date/Time

(eceived by: (Signature)

Date/Time

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

lah on ice

Comments: Delvuerad

[] Techyicians

Cooler Temp: [16], 2

Regeived by: (Signature)

14114 Date/Time

Relinquished by: (Signature)

Date/Time

Relinquished by: (Signature)

^{*}By circling MA-MCP, client acknowledges samples were collected

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Gary Kaufman Redwood Environmental Group 10 Elmgrove Avenue Providence, RI 02906

RE: Grenier (201942)

ESS Laboratory Work Order Number: 19K0206

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

ESS Laboratory Work Order: 19K0206 Client Project ID: Grenier

SAMPLE RECEIPT

The following samples were received on November 07, 2019 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
19K0206-01	201942-MW1-110719	Ground Water	EPH8270, MADEP-EPH, MA-VPH-2.1
19K0206-02	201942-MW2-110719	Ground Water	EPH8270, MADEP-EPH, MA-VPH-2.1
19K0206-03	201942-MW3-110719	Ground Water	EPH8270, MADEP-EPH, MA-VPH-2.1

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0206

PROJECT NARRATIVE

MADEP-EPH Extractable Petroleum Hydrocarbons

CK90802-BS1 Blank Spike recovery is below lower control limit (B-).

Decane (C10) (35% @ 40-140%), Nonane (C9) (26% @ 30-140%)

CK90802-BSD1 Blank Spike recovery is below lower control limit (B-).

Decane (C10) (38% @ 40-140%), Nonane (C9) (29% @ 30-140%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0206

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW1-110719

Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 1070

Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 19K0206 ESS Laboratory Sample ID: 19K0206-01

Sample Matrix: Ground Water

Units: ug/L

Prepared: 11/8/19 12:03

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	<u>Analyst</u>		Sequence	Batch
C9-C18 Aliphatics1	ND (93)	MADEP - EPH		1	CAD	11/09/19 14:58	C9K0052	CK90802
C19-C36 Aliphatics1	ND (93)	MADEP-EPH		1	CAD	11/09/19 14:58	C9K0052	CK90802
C11-C22 Unadjusted Aromatics1	ND (93.5)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
C11-C22 Aromatics1,2	ND (93.5)	EPH8270			VSC	11/09/19 16:21		[CALC]
2-Methylnaphthalene	ND (4.7)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Acenaphthene	ND (4.7)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Naphthalene	ND (9.3)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Phenanthrene	ND (4.7)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Acenaphthylene	ND (4.7)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Anthracene	ND (4.7)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Benzo(a)anthracene	ND (4.7)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Benzo(a)pyrene	ND (9.3)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Benzo(b)fluoranthene	ND (4.7)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Benzo(g,h,i)perylene	ND (9.3)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Benzo(k)fluoranthene	ND (9.3)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Chrysene	ND (9.3)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Dibenzo(a,h)Anthracene	ND (4.7)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Fluoranthene	ND (9.3)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Fluorene	ND (4.7)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Indeno(1,2,3-cd)Pyrene	ND (4.7)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Pyrene	ND (4.7)	EPH8270		1	VSC	11/09/19 16:21	C9K0143	CK90802
Preservative:	pH <= 2	MADEP-EPH			CAD			CK90802

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C	
Surrogate: 1-Chlorooctadecane	62 %		40-140
Surrogate: 2-Bromonaphthalene	108 %		40-140
Surrogate: 2-Fluorobiphenyl	116 %		40-140
Surrogate: O-Terphenyl	<i>87</i> %		40-140

Qualifier

Limits

%Recovery

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW1-110719

Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B Column Type: Restek RTX-502.2 - 3μ film thickness 0.53mm X 105m ESS Laboratory Work Order: 19K0206 ESS Laboratory Sample ID: 19K0206-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MEK

Trap Type: Supelco K Vocarb 3000 Trap

MADEP-VPH Volatile Petroleum Hydrocarbon

<u>Analyte</u>	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
C9-C10 Aromatics	ND (100)	MA-VPH-2.1		1	11/11/19 17:31	C9K0179	CK91128
C5-C8 Aliphatics1,2	ND (158)	MA-VPH-2.1		1	11/11/19 17:31		[CALC]
C9-C12 Aliphatics2,3	ND (270)	MA-VPH-2.1		1	11/11/19 17:31		[CALC]
Benzene	ND (1.5)	MA-VPH-2.1		1	11/11/19 17:31	C9K0179	CK91128
Ethylbenzene	ND (5.0)	MA-VPH-2.1		1	11/11/19 17:31	C9K0179	CK91128
Methyl tert-Butyl Ether	ND (1.5)	MA-VPH-2.1		1	11/11/19 17:31	C9K0179	CK91128
Naphthalene	ND (5.0)	MA-VPH-2.1		1	11/11/19 17:31	C9K0179	CK91128
Toluene	ND (5.0)	MA-VPH-2.1		1	11/11/19 17:31	C9K0179	CK91128
Xylene O	ND (5.0)	MA-VPH-2.1		1	11/11/19 17:31	C9K0179	CK91128
Xylene P,M	ND (10.0)	MA-VPH-2.1		1	11/11/19 17:31	C9K0179	CK91128
Preservative:	pH <= 2	MA-VPH-2.1					CK91128

Qualifier

Limits

 Surrogate: 2,5-Dibromotoluene - FID
 88 %
 70-130

 Surrogate: 2,5-Dibromotoluene - PID
 91 %
 70-130

%Recovery

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW2-110719

Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 19K0206 ESS Laboratory Sample ID: 19K0206-02

Sample Matrix: Ground Water

Units: ug/L

Prepared: 11/8/19 12:03

MADEP-EPH Extractable Petroleum Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	Sequence	Batch
C9-C18 Aliphatics l	ND (93)	MADEP-EPH		1	CAD	11/09/19 15:45	C9K0052	CK90802
C19-C36 Aliphatics1	ND (93)	MADEP-EPH		1	CAD	11/09/19 15:45	C9K0052	CK90802
C11-C22 Unadjusted Aromatics1	ND (93.5)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
C11-C22 Aromatics1,2	ND (93.5)	EPH8270			VSC	11/09/19 17:04		[CALC]
2-Methylnaphthalene	ND (4.7)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Acenaphthene	ND (4.7)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Naphthalene	ND (9.3)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Phenanthrene	ND (4.7)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Acenaphthylene	ND (4.7)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Anthracene	ND (4.7)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Benzo(a)anthracene	ND (4.7)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Benzo(a)pyrene	ND (9.3)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Benzo(b)fluoranthene	ND (4.7)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Benzo(g,h,i)perylene	ND (9.3)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Benzo(k)fluoranthene	ND (9.3)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Chrysene	ND (9.3)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Dibenzo(a,h)Anthracene	ND (4.7)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Fluoranthene	ND (9.3)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Fluorene	ND (4.7)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Indeno(1,2,3-cd)Pyrene	ND (4.7)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Pyrene	ND (4.7)	EPH8270		1	VSC	11/09/19 17:04	C9K0143	CK90802
Preservative:	pH <= 2	MADEP-EPH			CAD			CK90802
	9/	hecovery Qualifier	Limits					

	,	
Surrogate: 1-Chlorooctadecane	<i>52</i> %	40-140
Surrogate: 2-Bromonaphthalene	112 %	40-140
Surrogate: 2-Fluorobiphenyl	116 %	40-140
Surrogate: O-Terphenyl	83 %	40-140

Service

Column Type: Restek RTX-502.2 - 3µ film thickness 0.53mm X 105m

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW2-110719

Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 19K0206 ESS Laboratory Sample ID: 19K0206-02

Sample Matrix: Ground Water

Units: ug/L Analyst: MEK

Trap Type: Supelco K Vocarb 3000 Trap

MADEP-VPH Volatile Petroleum Hydrocarbon

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
C9-C10 Aromatics	ND (100)	MA-VPH-2.1		1	11/11/19 18:05	C9K0179	CK91128
C5-C8 Aliphatics1,2	ND (158)	MA-VPH-2.1		1	11/11/19 18:05		[CALC]
C9-C12 Aliphatics2,3	ND (270)	MA-VPH-2.1		1	11/11/19 18:05		[CALC]
Benzene	ND (1.5)	MA-VPH-2.1		1	11/11/19 18:05	C9K0179	CK91128
Ethylbenzene	ND (5.0)	MA-VPH-2.1		1	11/11/19 18:05	C9K0179	CK91128
Methyl tert-Butyl Ether	ND (1.5)	MA-VPH-2.1		1	11/11/19 18:05	C9K0179	CK91128
Naphthalene	ND (5.0)	MA-VPH-2.1		1	11/11/19 18:05	C9K0179	CK91128
Toluene	ND (5.0)	MA-VPH-2.1		1	11/11/19 18:05	C9K0179	CK91128
Xylene O	ND (5.0)	MA-VPH-2.1		1	11/11/19 18:05	C9K0179	CK91128
Xylene P,M	ND (10.0)	MA-VPH-2.1		1	11/11/19 18:05	C9K0179	CK91128
Preservative:	pH <= 2	MA-VPH-2.1					CK91128

Surrogate: 2,5-Dibromotoluene - FID 87 % 70-130
Surrogate: 2,5-Dibromotoluene - PID 90 % 70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW3-110719

Date Sampled: 11/07/19 00:00

Percent Solids: N/A
Initial Volume: 1070

Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 19K0206 ESS Laboratory Sample ID: 19K0206-03

Sample Matrix: Ground Water

Units: ug/L

Prepared: 11/8/19 12:03

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) ND (93)	MDL Method MADEP-EPH	Limit D	F Analys CAD	<u>Analyzed</u> 11/09/19 16:32	Sequence C9K0052	Batch CK90802
C19-C36 Aliphatics1	ND (93)	MADEP-EPH	1	CAD	11/09/19 16:32	C9K0052	CK90802
C11-C22 Unadjusted Aromatics1	ND (93.5)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
C11-C22 Aromatics1,2	ND (93.5)	EPH8270		VSC	11/09/19 17:47		[CALC]
2-Methylnaphthalene	ND (4.7)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Acenaphthene	ND (4.7)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Naphthalene	ND (9.3)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Phenanthrene	ND (4.7)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Acenaphthylene	ND (4.7)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Anthracene	ND (4.7)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Benzo(a)anthracene	ND (4.7)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Benzo(a)pyrene	ND (9.3)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Benzo(b)fluoranthene	ND (4.7)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Benzo(g,h,i)perylene	ND (9.3)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Benzo(k)fluoranthene	ND (9.3)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Chrysene	ND (9.3)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Dibenzo(a,h)Anthracene	ND (4.7)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Fluoranthene	ND (9.3)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Fluorene	ND (4.7)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Indeno(1,2,3-cd)Pyrene	ND (4.7)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Pyrene	ND (4.7)	EPH8270	1	VSC	11/09/19 17:47	C9K0143	CK90802
Preservative:	pH <= 2	MADEP-EPH		CAD			CK90802

	,	· · · · · · · · · · · · · · · · · · ·	
Surrogate: 1-Chlorooctadecane	51 %		40-140
Surrogate: 2-Bromonaphthalene	109 %		40-140
Surrogate: 2-Fluorobiphenyl	113 %		40-140
Surrogate: O-Terphenyl	83 %		40-140

Qualifier

Limits

%Recovery

Column Type: Restek RTX-502.2 - 3µ film thickness 0.53mm X 105m

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW3-110719

Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 19K0206 ESS Laboratory Sample ID: 19K0206-03

Sample Matrix: Ground Water

Units: ug/L Analyst: MEK

Trap Type: Supelco K Vocarb 3000 Trap

MADEP-VPH Volatile Petroleum Hydrocarbon

<u>Analyte</u>	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
C9-C10 Aromatics	ND (100)	MA-VPH-2.1		1	11/11/19 18:38	C9K0179	CK91128
C5-C8 Aliphatics1,2	ND (158)	MA-VPH-2.1		1	11/11/19 18:38		[CALC]
C9-C12 Aliphatics2,3	ND (270)	MA-VPH-2.1		1	11/11/19 18:38		[CALC]
Benzene	ND (1.5)	MA-VPH-2.1		1	11/11/19 18:38	C9K0179	CK91128
Ethylbenzene	ND (5.0)	MA-VPH-2.1		1	11/11/19 18:38	C9K0179	CK91128
Methyl tert-Butyl Ether	ND (1.5)	MA-VPH-2.1		1	11/11/19 18:38	C9K0179	CK91128
Naphthalene	ND (5.0)	MA-VPH-2.1		1	11/11/19 18:38	C9K0179	CK91128
Toluene	ND (5.0)	MA-VPH-2.1		1	11/11/19 18:38	C9K0179	CK91128
Xylene O	ND (5.0)	MA-VPH-2.1		1	11/11/19 18:38	C9K0179	CK91128
Xylene P,M	ND (10.0)	MA-VPH-2.1		1	11/11/19 18:38	C9K0179	CK91128
Preservative:	pH <= 2	MA-VPH-2.1					CK91128

Qualifier

Limits

Surrogate: 2,5-Dibromotoluene - FID 90 % 70-130 Surrogate: 2,5-Dibromotoluene - PID 94 % 70-130

%Recovery

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Batch CK90802 - 3510C

Client Project ID: Grenier ESS Laboratory Work Order: 19K0206

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

M/	ADEP	-EPH	Extractable	Petroleum	Hyc	irocar	bons
----	-------------	------	-------------	-----------	-----	--------	------

Datcii CK30002 - 3310C								
Blank								
C19-C36 Aliphatics1	ND	100	ug/L					
C9-C18 Aliphatics1	ND	100	ug/L					
Decane (C10)	ND	5	ug/L					
Docosane (C22)	ND	5	ug/L					
Dodecane (C12)	ND	5	ug/L					
Eicosane (C20)	ND	5	ug/L					
Hexacosane (C26)	ND	5	ug/L					
Hexadecane (C16)	ND	5	ug/L					
Hexatriacontane (C36)	ND	5	ug/L					
Nonadecane (C19)	ND	5	ug/L					
Nonane (C9)	ND	5	ug/L					
Octacosane (C28)	ND	5	ug/L					
Octadecane (C18)	ND	5	ug/L					
Tetracosane (C24)	ND	5	ug/L					
Tetradecane (C14)	ND	5	ug/L					
Triacontane (C30)	ND	5	ug/L					
Surrogate: 1-Chlorooctadecane	39.0		ug/L	50.50	77	40-140		
Blank								
2-Methylnaphthalene	ND	5.0	ug/L					
Acenaphthene	ND	5.0	ug/L					
Acenaphthylene	ND	5.0	ug/L					
Anthracene	ND	5.0	ug/L					
Benzo(a)anthracene	ND	5.0	ug/L					
Benzo(a)pyrene	ND	10.0	ug/L					
Benzo(b)fluoranthene	ND	5.0	ug/L					
Benzo(g,h,i)perylene	ND	10.0	ug/L					
Benzo(k)fluoranthene	ND	10.0	ug/L					
C11-C22 Unadjusted Aromatics1	ND	100	ug/L					
Chrysene	ND	10.0	ug/L					
Dibenzo(a,h)Anthracene	ND	5.0	ug/L					
Fluoranthene	ND	10.0	ug/L					
Fluorene	ND	5.0	ug/L					
Indeno(1,2,3-cd)Pyrene	ND	5.0	ug/L					
Naphthalene	ND	10.0	ug/L					
Phenanthrene	ND	5.0	ug/L					
Pyrene	ND	5.0	ug/L					
Surrogate: 2-Bromonaphthalene	53.6		mg/L	50.00	107	40-140		
Surrogate: 2-Fluorobiphenyl	56.6		mg/L	50.00	113	40-140		
Surrogate: O-Terphenyl	41.7		ug/L	50.20	83	40-140		
LCS								
C19-C36 Aliphatics1	325	100	ug/L	400.0	81	40-140		
C9-C18 Aliphatics1	181	100	ug/L	300.0	60	40-140		
Decane (C10)	17	5	ug/L	50.00	35	40-140	E	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0206

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

MADEP-EPH	Extractable	Petroleum	Hydrocarbons

Batch CK90802 - 3510C									
Docosane (C22)	38	5	ug/L	50.00	76	40-140			
Dodecane (C12)	23	5	ug/L	50.00	46	40-140			
Eicosane (C20)	37	5	ug/L	50.00	74	40-140			
Hexacosane (C26)	37	5	ug/L	50.00	75	40-140			
Hexadecane (C16)	35	5	ug/L	50.00	71	40-140			
Hexatriacontane (C36)	45	5	ug/L	50.00	90	40-140			
Nonadecane (C19)	37	5	ug/L	50.00	74	40-140			
Nonane (C9)	13	5	ug/L	50.00	26	30-140			В-
Octacosane (C28)	37	5	ug/L	50.00	75	40-140			
Octadecane (C18)	36	5	ug/L	50.00	72	40-140			
Tetracosane (C24)	38	5	ug/L	50.00	75	40-140			
Tetradecane (C14)	30	5	ug/L	50.00	60	40-140			
Triacontane (C30)	38	5	ug/L	50.00	76	40-140			
Surrogate: 1-Chlorooctadecane	38.2		ug/L	50.50	76	40-140			
LCS									
2-Methylnaphthalene	39.4	5.0	ug/L	50.00	79	40-140			
Acenaphthene	37.6	5.0	ug/L	50.00	75	40-140			
Acenaphthylene	36.6	5.0	ug/L	50.00	73	40-140			
Anthracene	39.4	5.0	ug/L	50.00	79	40-140			
Benzo(a)anthracene	38.4	5.0	ug/L	50.00	77	40-140			
Benzo(a)pyrene	40.0	10.0	ug/L	50.00	80	40-140			
Benzo(b)fluoranthene	37.4	5.0	ug/L	50.00	75	40-140			
Benzo(g,h,i)perylene	38.7	10.0	ug/L	50.00	77	40-140			
Benzo(k)fluoranthene	40.3	10.0	ug/L	50.00	81	40-140			
C11-C22 Unadjusted Aromatics1	669	100	ug/L	850.0	79	40-140			
Chrysene	37.8	10.0	ug/L	50.00	76	40-140			
Dibenzo(a,h)Anthracene	38.3	5.0	ug/L	50.00	77	40-140			
Fluoranthene	38.6	10.0	ug/L	50.00	77	40-140			
Fluorene	37.1	5.0	ug/L	50.00	74	40-140			
Indeno(1,2,3-cd)Pyrene	37.6	5.0	ug/L	50.00	75	40-140			
Naphthalene	36.2	10.0	ug/L	50.00	72	40-140			
Phenanthrene	38.4	5.0	ug/L	50.00	77	40-140			
Pyrene	40.3	5.0	ug/L	50.00	81	40-140			
Surrogate: 2-Bromonaphthalene	56.4		mg/L	50.00	113	40-140			
Surrogate: 2-Fluorobiphenyl	<i>58.5</i>		mg/L	50.00	117	40-140			
Surrogate: 0-Terphenyl	39.6		ug/L	50.20	<i>79</i>	40-140			
LCS									
2-Methylnaphthalene Breakthrough	0.0		%			0-5			
Naphthalene Breakthrough	0.0		%			0-5			
LCS Dup	330	100	ug/l	400.0	82	40_140	1	25	
C19-C36 Aliphatics1	330 172		ug/L	300.0	82 57	40-140	5	25 25	
C9-C18 Aliphatics1 Decane (C10)		100	ug/L	50.00		40-140 40-140	8	25 25	В-
Decane (C10)	19	5	ug/L	30 . 00	38	40-140	O	۷۵	D-

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

• Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Benzene

C5-C8 Unadjusted Aliphatics

Client Project ID: Grenier ESS Laboratory Work Order: 19K0206

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
niaiyte							LIHIUS	ערט	LITTIL	Quaimer
	MAD	EP-EPH Extr	actable Peti	roleum Hy	yurocarbo	IIS				
Batch CK90802 - 3510C										
Dodecane (C12)	25	5	ug/L	50.00		50	40-140	8	25	
Eicosane (C20)	38	5	ug/L	50.00		76	40-140	2	25	
Hexacosane (C26)	38	5	ug/L	50.00		76	40-140	2	25	
Hexadecane (C16)	36	5	ug/L	50.00		72	40-140	2	25	
Hexatriacontane (C36)	46	5	ug/L	50.00		92	40-140	2	25	
Nonadecane (C19)	38	5	ug/L	50.00		75	40-140	1	25	
Nonane (C9)	15	5	ug/L	50.00		29	30-140	10	25	B-
Octacosane (C28)	38	5	ug/L	50.00		76	40-140	2	25	
Octadecane (C18)	37	5	ug/L	50.00		73	40-140	1	25	
Tetracosane (C24)	38	5	ug/L	50.00		77	40-140	2	25	
Tetradecane (C14)	32	5	ug/L	50.00		63	40-140	5	25	
Triacontane (C30)	39	5	ug/L	50.00		77	40-140	2	25	
Surrogate: 1-Chlorooctadecane	37.3		ug/L	50.50		74	40-140			
LCS Dup										
2-Methylnaphthalene	41.8	5.0	ug/L	50.00		84	40-140	6	20	
Acenaphthene	39.6	5.0	ug/L	50.00		79	40-140	5	20	
Acenaphthylene	38.9	5.0	ug/L	50.00		78	40-140	6	20	
Anthracene	42.4	5.0	ug/L	50.00		85	40-140	7	20	
Benzo(a)anthracene	40.8	5.0	ug/L	50.00		82	40-140	6	20	
Benzo(a)pyrene	42.1	10.0	ug/L	50.00		84	40-140	5	20	
Benzo(b)fluoranthene	39.2	5.0	ug/L	50.00		78	40-140	5	20	
Benzo(g,h,i)perylene	39.7	10.0	ug/L	50.00		79	40-140	3	20	
Benzo(k)fluoranthene	42.3	10.0	ug/L	50.00		85	40-140	5	20	
C11-C22 Unadjusted Aromatics1	690	100	ug/L	850.0		81	40-140	3	25	
Chrysene	40.6	10.0	ug/L	50.00		81	40-140	7	20	
Dibenzo(a,h)Anthracene	38.8	5.0	ug/L	50.00		78	40-140	1	20	
Fluoranthene	41.4	10.0	ug/L	50.00		83	40-140	7	20	
Fluorene	39.7	5.0	ug/L	50.00		79	40-140	7	20	
Indeno(1,2,3-cd)Pyrene	39.7	5.0	ug/L	50.00		79	40-140	5	20	
Naphthalene	38.4	10.0	ug/L	50.00		77	40-140	6	20	
Phenanthrene	41.4	5.0	ug/L	50.00		83	40-140	7	20	
Pyrene	42.9	5.0	ug/L	50.00		86	40-140	6	20	
Surrogate: 2-Bromonaphthalene	56.2		mg/L	50.00		112	40-140			
Surrogate: 2-Fluorobiphenyl	58.0		mg/L	50.00		116	40-140			
Surrogate: 0-Terphenyl	39.9		ug/L	50.20		79	40-140			
LCS Dup										
2-Methylnaphthalene Breakthrough	0.0		%				0-5		200	
Naphthalene Breakthrough	0.0		%				0-5		200	
•		ADEP-VPH V		leum Hyd	drocarbon					
Batch CK91128 - 5030B										
Blank										

ug/L

ug/L

1.5

150

ND

ND

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

ESS Laboratory Work Order: 19K0206

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Resu l t	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	MA	ADEP-VPH V	olatile Petro	leum Hyc	Irocarbon					
Batch CK91128 - 5030B										
C9-C10 Aromatics	ND	100	ug/L							
C9-C12 Unadjusted Aliphatics	ND	150	ug/L							
Ethylbenzene	ND	5.0	ug/L							
Methyl tert-Butyl Ether	ND	1.5	ug/L							
Naphthalene	ND	5.0	ug/L							
Toluene	ND	5.0	ug/L							
Xylene O	ND	5.0	ug/L							
Xylene P,M	ND	10.0	ug/L							
Surrogate: 2,5-Dibromotoluene - FID	43.7		ug/L	50.00		87	70-130			
Surrogate: 2,5-Dibromotoluene - PID	45.6		ug/L	50.00		91	70-130			
LCS										
Benzene	52.5		ug/L	50.00		105	70-130			
C5-C8 Unadjusted Aliphatics	436		ug/L	400.0		109	70-130			
C9-C10 Aromatics	108		ug/L	100.0		108	70-130			
C9-C12 Unadjusted Aliphatics	272		ug/L	300.0		91	70-130			
Ethylbenzene	53 . 7		ug/L	50.00		107	70-130			
Methyl tert-Butyl Ether	153		ug/L	150.0		102	70-130			
Naphthalene	95.0		ug/L	100.0		95	70-130			
Toluene	165		ug/L	150.0		110	70-130			
Xylene O	104		ug/L	100.0		104	70-130			
Xylene P,M	214		ug/L	200.0		107	70-130			
Surrogate: 2,5-Dibromotoluene - FID	<i>45.6</i>		ug/L	50.00		91	70-130			
Surrogate: 2,5-Dibromotoluene - PID	48.2		ug/L	50.00		96	70-130			
LCS Dup										
Benzene	52.9		ug/L	50.00		106	70-130	0.7	25	
C5-C8 Unadjusted Aliphatics	433		ug/L	400.0		108	70-130	0.7	25	
C9-C10 Aromatics	108		ug/L	100.0		108	70-130	0.8	25	
C9-C12 Unadjusted Aliphatics	269		ug/L	300.0		90	70-130	1	25	
Ethylbenzene	54.1		ug/L	50.00		108	70-130	0.7	25	
Methyl tert-Butyl Ether	158		ug/L	150.0		105	70-130	3	25	
Naphthalene	102		ug/L	100.0		102	70-130	7	25	
Toluene	166		ug/L	150.0		111	70-130	0.5	25	
Xylene O	104		ug/L	100.0		104	70-130	0.4	25	
Xylene P,M	214		ug/L	200.0		107	70-130	0.04	25	
Surragata: 2.5-Dibramatalyana EID	47.1		ug/L	50.00		94	70-130			
Surrogate: 2,5-Dibromotoluene - FID	49.3		ug/L	50.00		99	70-130			
Surrogate: 2,5-Dibromotoluene - PID	73.3		ug/ L	50.00		22	70 150			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0206

Notes and Definitions

	Notes and Definitions
Z- 06	$pH \le 2$
U	Analyte included in the analysis, but not detected
B-	Blank Spike recovery is below lower control limit (B-).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume

Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

F/V

[CALC] Calculated Analyte

Final Volume

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit
MF Membrane Filtration
MPN Most Probably Number
TNTC Too numerous to Count
CFU Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0206

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental-health/environmental-laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client	:Redwood	d Environme	ental Group -	KPB/EO			roject ID:			
Shipped/D	elivered Via:		ESS Courier			Date R Project D	eceived: ue Date:	11/7/2019 11/14/2019		_
Oppoo.is			EGG GGGIIG			Days for	Project:			_ _
	nanifest prese		[No		6. Does COC n	natch bottles?			Yes
2 10/252 2	intodic nonlo n	raaant?		No		7. Is COC comp	plete and corre	ct?		Yes
z. vvere cu	ustody seals p	resent?	_	NO		8. Were sample	es received inta	act?		Yes
3. Is radiat	ion count <10	0 CPM?	[Yes		O More John is	formed about	t abort bolda 9 rua	han?	Yes / No /(ÑA
	oler Present?	lced with:	[Yes				t <u>short holds & rus</u> /ed outside of hold t		Yes / 160
5. Was CC	OC signed and	dated by c	lient?	Yes						
•	bcontracting n Sample IDs: Analysis: TAT:		Yes			12. Were VOAs a. Air bubbles b. Does metha	in aqueous VC			Yes / No Yes / KOO Yes / No / NA
a. If metals	e samples pro s preserved up vel VOA vials	oon receipt:		Yes / No Date: Date:		_ Time: Time:		Ву: Ву:		
Sample Re	ceiving Notes	:								
	nere a need to dere a need to decontacted?				Yes / No Yes / No	Time:		Ву:		_
Sample	Container	Proper	Air Bubbles	Sufficient	Contain	er Type	Preservati	ve Reco	rd pH (Cyani	
Number	ID	Container	Present	Volume		· ·		·	Pesticide	:5)
01	411097	Yes	No	Yes	VOA Vi		HCI			
01	411098	Yes	No	Yes	VOA VI	al-HCI	HCI			

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
01	411097	Yes	No	Yes	VOA Vial - HCI	HCI	
01	411098	Yes	No	Yes	VOA Vial - HCI	HCI	
01	411099	Yes	No	Yes	VOA Vial - HCI	HCI	
01	411104	Yes	NA	Yes	1L Amber - HCl	HCI	
01	411105	Yes	NA	Yes	1L Amber - HCl	HCI	
02	411094	Yes	No	Yes	VOA Vial - HCI	HCI	
02	411095	Yes	No	Yes	VOA Vial - HCI	HCI	
02	411096	Yes	No	Yes	VOA Vial - HCI	HCI	
02	411102	Yes	NA	Yes	1L Amber - HCl	HCI	
02	411103	Yes	NA	Yes	1L Amber - HCl	HCI	
03	411091	Yes	No	Yes	VOA Vial - HCI	HCI	
03	411092	Yes	No	Yes	VOA Vial - HCI	HCI	
03	411093	Yes	No	Yes	VOA Vial - HCI	HCI	
03	411100	Yes	NA	Yes	1L Amber - HCl	HCI	
03	411101	Yes	NA	Yes	1L Amber - HCI	HCI	

2nd Review

Were all containers scanned into storage/lab?

Are barcode labels on correct containers?

Are all Flashpoint stickers attached/container ID # circled?

Are all Hex Chrome stickers attached?

Are all QC stickers attached?

ESS Laboratory Sample and Cooler Receipt Checklist

Client: _	Redwood Environmental Group	- KPB/EO	ESS Project ID:	19K0206	
		······································	Date Received:	11/7/2019	
Are VOA stic	kers attached if bubbles noted?	Yes	/ No /(NA)		
Completed			r r		
By:	() all the	Date & Time:	11/19	2135	
Reviewed By:		Date & Time:	N/2/19	2256	
Delivered By:	<u> </u>	(M)	Mola	2257	
		. <i>k</i>	•		

ESS Laboratory

Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston, RI 02910-2211 Tel. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com

>	_
	۲
)
CHO	4
5	, N
L	~
[]	J
)
-	
H	4
OHU)
	_
Z	<u>.</u>
<u> </u>	ì
1	1
_	1
	i
ノエン)
_	,

Made 1980206 Format: Excel Access PDF Reporting Limits GW~ BO DEP Electronic Deliverable 3 Turn Time X Standard Other If faster than 5 days, prior approval by laboratory is required # Other Other Is this project for any of the following: MA-MCP Navy USACE State where samples were collected from:
MA (BL) CT NH NJ NY ME

Other Checker Container Type: P-Poly G-Glass S-Sterile V-VOA | Matrix: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filters Preservation Code 1- NP, 2- HC1, 3- H2SO., 4- HNO., 5- NaOH, 6- McOH, 7- Asorbic Acid, 8- ZnAct, 9-Write Required Analysis MADED Comments: Delivered to ray on * BUTTE જ Number of Containers Pres Project Name (20 Char. or less) Grande of 201942-MIN3-110719 61617 - 2 mon - 246107 20A42- MW/ - 116719 Sample Identification (20 Char. or less) (S) Email Address PO# Sampled by: 201942 Zip Project # Address Internal Use Only ط/اه _ [] Pickup MATRIX SKAB Reduced Ens, Fax # No NA: Collection Contact Person

Contact Person

Contact Person

Ser Time ž 1/2 Kes 27-12 Date Cooler Temp: 12 22 8 Cooler Present Telephone # Co. Name Sample # ESS LAB Seals Intact N 3

*By circling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A

Please fax all changes to Chain of Custody in writing.

1 (White) Lab Copy 2 (Yellow) Client Receipt

Date/Time

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

Acceived by: (Signature)

6101 61/2/1

Date/Time

Relinquished by: (Signature)

6 Kampun

Date/Time

Relinquished by: (Signature)

Page 19 of 19

[], Technicians_

Date/Time

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

Date/Time

Received by: (Signature)

10/26/04 A

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Gary Kaufman Redwood Environmental Group 10 Elmgrove Avenue Providence, RI 02906

RE: Grenier (201942)

ESS Laboratory Work Order Number: 19K0207

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laurel Stoddard
Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0207

SAMPLE RECEIPT

The following samples were received on November 07, 2019 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
19K0207-01	201942-MW1-110719	Ground Water	8260B
19K0207 - 02	201942-MW2-110719	Ground Water	8260B
19K0207-03	201942-MW3-110719	Ground Water	8260B
19K0207-04	Trip Blank	Aqueous	8260B

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0207

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0207

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW1-110719

Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 19K0207 ESS Laboratory Sample ID: 19K0207-01

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1,2-Tetrachloroethane	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,1,1-Trichloroethane	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,1,2,2-Tetrachloroethane	ND (0.0005)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,1,2-Trichloroethane	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,1-Dichloroethane	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,1-Dichloroethene	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,1-Dichloropropene	ND (0.0020)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,2,3-Trichlorobenzene	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,2,3-Trichloropropane	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,2,4-Trichlorobenzene	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,2,4-Trimethylbenzene	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,2-Dibromo-3-Chloropropane	ND (0.0050)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,2-Dibromoethane	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,2-Dichlorobenzene	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,2-Dichloroethane	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,2-Dichloropropane	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,3,5-Trimethylbenzene	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,3-Dichlorobenzene	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,3-Dichloropropane	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,4-Dichlorobenzene	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1,4-Dioxane - Screen	ND (0.500)		8260B		1	11/08/19 16:23	C9K0155	CK90828
1-Chlorohexane	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
2,2-Dichloropropane	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
2-Butanone	ND (0.0100)		8260B		1	11/08/19 16:23	C9K0155	CK90828
2-Chlorotoluene	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
2-Hexanone	ND (0.0100)		8260B		1	11/08/19 16:23	C9K0155	CK90828
4-Chlorotoluene	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
4-Isopropyltoluene	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
4-Methyl-2-Pentanone	ND (0.0250)		8260B		1	11/08/19 16:23	C9K0155	CK90828
Acetone	ND (0.0100)		8260B		1	11/08/19 16:23	C9K0155	CK90828
Benzene	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
Bromobenzene	ND (0.0020)		8260B		1	11/08/19 16:23	C9K0155	CK90828

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW1-110719

Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 19K0207 ESS Laboratory Sample ID: 19K0207-01

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	Results (MRL) ND (0.0010)	 Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 11/08/19 16:23	Sequence C9K0155	<u>Batch</u> CK90828
Bromodichloromethane	ND (0.0006)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Bromoform	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Bromomethane	ND (0.0020)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Carbon Disulfide	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Carbon Tetrachloride	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Chlorobenzene	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Chloroethane	ND (0.0020)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Chloroform	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Chloromethane	ND (0.0020)	8260B		1	11/08/19 16:23	C9K0155	CK90828
cis-1,2-Dichloroethene	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
cis-1,3-Dichloropropene	ND (0.0004)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Dibromochloromethane	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Dibromomethane	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Dichlorodifluoromethane	ND (0.0020)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Diethyl Ether	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Di-isopropyl ether	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Ethyl tertiary-butyl ether	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Ethylbenzene	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Hexachlorobutadiene	ND (0.0006)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Hexachloroethane	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Isopropylbenzene	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Methyl tert-Butyl Ether	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Methylene Chloride	ND (0.0020)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Naphthalene	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
n-Butylbenzene	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
n-Propylbenzene	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
sec-Butylbenzene	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Styrene	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
tert-Butylbenzene	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Tertiary-amyl methyl ether	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828
Tetrachloroethene	ND (0.0010)	8260B		1	11/08/19 16:23	C9K0155	CK90828

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW1-110719

Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 19K0207 ESS Laboratory Sample ID: 19K0207-01

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrahydrofuran	ND (0.0050)		8260B		1	11/08/19 16:23	C9K0155	CK90828
Toluene	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/08/19 16:23	C9K0155	CK90828
Trichloroethene	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
Vinyl Acetate	ND (0.0050)		8260B		1	11/08/19 16:23	C9K0155	CK90828
Vinyl Chloride	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
Xylene O	ND (0.0010)		8260B		1	11/08/19 16:23	C9K0155	CK90828
Xylene P,M	ND (0.0020)		8260B		1	11/08/19 16:23	C9K0155	CK90828
Xylenes (Total)	ND (0.00200)		8260B		1	11/08/19 16:23		[CALC]
	ç	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		95 %		70-130				
Surrogate: 4-Bromofluorobenzene		96 %		70-130				
Surrogate: Dibromofluoromethane		96 %		70-130				
Surrogate: Toluene-d8		98 %		70-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW2-110719

Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 19K0207 ESS Laboratory Sample ID: 19K0207-02

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	MDL Method 8260B	<u>0F</u>	<u>Analyzed</u> 11/08/19 16:49	Sequence C9K0155	Batch CK90828
1,1,1-Trichloroethane	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,1,2-Trichloroethane	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,1-Dichloroethane	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,1-Dichloroethene	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,1-Dichloropropene	ND (0.0020)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,2,3-Trichlorobenzene	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,2,3-Trichloropropane	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,2,4-Trichlorobenzene	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,2,4-Trimethylbenzene	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,2-Dibromoethane	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,2-Dichlorobenzene	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,2-Dichloroethane	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,2-Dichloropropane	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,3,5-Trimethylbenzene	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,3-Dichlorobenzene	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,3-Dichloropropane	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,4-Dichlorobenzene	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1,4-Dioxane - Screen	ND (0.500)	8260B	1	11/08/19 16:49	C9K0155	CK90828
1-Chlorohexane	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
2,2-Dichloropropane	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
2-Butanone	ND (0.0100)	8260B	1	11/08/19 16:49	C9K0155	CK90828
2-Chlorotoluene	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
2-Hexanone	ND (0.0100)	8260B	1	11/08/19 16:49	C9K0155	CK90828
4-Chlorotoluene	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
4-Isopropyltoluene	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
4-Methyl-2-Pentanone	ND (0.0250)	8260B	1	11/08/19 16:49	C9K0155	CK90828
Acetone	ND (0.0100)	8260B	1	11/08/19 16:49	C9K0155	CK90828
Benzene	ND (0.0010)	8260B	1	11/08/19 16:49	C9K0155	CK90828
Bromobenzene	ND (0.0020)	8260B	1	11/08/19 16:49	C9K0155	CK90828

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW2-110719

Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 19K0207 ESS Laboratory Sample ID: 19K0207-02

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	Results (MRL) ND (0.0010)	MDL Method 8260B	<u>l Limit D</u>		Sequence C9K0155	Batch CK90828
Bromodichloromethane	ND (0.0006)	8260B		11/08/19 16:49	C9K0155	CK90828
Bromoform	ND (0.0010)	8260B	-	11/08/19 16:49	C9K0155	CK90828
Bromomethane	ND (0.0020)	8260B		11/08/19 16:49	C9K0155	CK90828
Carbon Disulfide	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
Carbon Tetrachloride	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
Chlorobenzene	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
Chloroethane	ND (0.0020)	8260B		11/08/19 16:49	C9K0155	CK90828
Chloroform	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
Chloromethane	ND (0.0020)	8260B		11/08/19 16:49	C9K0155	CK90828
cis-1,2-Dichloroethene	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
cis-1,3-Dichloropropene	ND (0.0004)	8260B		11/08/19 16:49	C9K0155	CK90828
Dibromochloromethane	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
Dibromomethane	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
Dichlorodifluoromethane	ND (0.0020)	8260B		11/08/19 16:49	C9K0155	CK90828
Diethyl Ether	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
Di-isopropyl ether	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
Ethyl tertiary-butyl ether	ND (0.0010)	8260B	-	11/08/19 16:49	C9K0155	CK90828
Ethylbenzene	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
Hexachlorobutadiene	ND (0.0006)	8260B	:	11/08/19 16:49	C9K0155	CK90828
Hexachloroethane	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
Isopropylbenzene	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
Methyl tert-Butyl Ether	ND (0.0010)	8260B	-	11/08/19 16:49	C9K0155	CK90828
Methylene Chloride	ND (0.0020)	8260B		11/08/19 16:49	C9K0155	CK90828
Naphthalene	ND (0.0010)	8260B	-	11/08/19 16:49	C9K0155	CK90828
n-Butylbenzene	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
n-Propylbenzene	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
sec-Butylbenzene	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
Styrene	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
tert-Butylbenzene	ND (0.0010)	8260B	-	11/08/19 16:49	C9K0155	CK90828
Tertiary-amyl methyl ether	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828
Tetrachloroethene	ND (0.0010)	8260B		11/08/19 16:49	C9K0155	CK90828

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW2-110719

Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 19K0207 ESS Laboratory Sample ID: 19K0207-02

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
Tetrahydrofuran	ND (0.0050)		8260B		1	11/08/19 16:49	C9K0155	CK90828
Toluene	ND (0.0010)		8260B		1	11/08/19 16:49	C9K0155	CK90828
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/08/19 16:49	C9K0155	CK90828
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/08/19 16:49	C9K0155	CK90828
Trichloroethene	ND (0.0010)		8260B		1	11/08/19 16:49	C9K0155	CK90828
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/08/19 16:49	C9K0155	CK90828
Vinyl Acetate	ND (0.0050)		8260B		1	11/08/19 16:49	C9K0155	CK90828
Vinyl Chloride	ND (0.0010)		8260B		1	11/08/19 16:49	C9K0155	CK90828
Xylene O	ND (0.0010)		8260B		1	11/08/19 16:49	C9K0155	CK90828
Xylene P,M	ND (0.0020)		8260B		1	11/08/19 16:49	C9K0155	CK90828
Xylenes (Total)	ND (0.00200)		8260B		1	11/08/19 16:49		[CALC]
		%Recovery	Qualifier	Limits				
		,	•					
Surrogate: 1,2-Dichloroethane-d4		95 %		70-130				
Surrogate: 4-Bromofluorobenzene		96 %		70-130				
Surrogate: Dibromofluoromethane		96 %		70-130				
Surrogate: Toluene-d8		98 %		70-130				

Tel: 401-461-7181

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW3-110719

Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 19K0207 ESS Laboratory Sample ID: 19K0207-03

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	MDL	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/08/19 17:1		Batch CK90828
1,1,1-Trichloroethane	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,1,2,2-Tetrachloroethane	ND (0.0005)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,1,2-Trichloroethane	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,1-Dichloroethane	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,1-Dichloroethene	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,1-Dichloropropene	ND (0.0020)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,2,3-Trichlorobenzene	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,2,3-Trichloropropane	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,2,4-Trichlorobenzene	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,2,4-Trimethylbenzene	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,2-Dibromo-3-Chloropropane	ND (0.0050)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,2-Dibromoethane	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,2-Dichlorobenzene	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,2-Dichloroethane	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,2-Dichloropropane	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,3,5-Trimethylbenzene	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,3-Dichlorobenzene	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,3-Dichloropropane	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,4-Dichlorobenzene	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1,4-Dioxane - Screen	ND (0.500)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
1-Chlorohexane	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
2,2-Dichloropropane	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
2-Butanone	ND (0.0100)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
2-Chlorotoluene	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
2-Hexanone	ND (0.0100)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
4-Chlorotoluene	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
4-Isopropyltoluene	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
4-Methyl-2-Pentanone	ND (0.0250)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
Acetone	ND (0.0100)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
Benzene	ND (0.0010)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828
Bromobenzene	ND (0.0020)		8260B		1	11/08/19 17:1	5 C9K0155	CK90828

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW3-110719

Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 19K0207 ESS Laboratory Sample ID: 19K0207-03

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	Results (MRL) ND (0.0010)		lethod 260B	<u>Limit</u>	<u>DF</u>	<u>Analyz</u> 11/08/19 1		Sequence C9K0155	Batch CK90828
Bromodichloromethane	ND (0.0006)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Bromoform	ND (0.0010)	8:	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Bromomethane	ND (0.0020)	8:	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Carbon Disulfide	ND (0.0010)	83	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Carbon Tetrachloride	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Chlorobenzene	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Chloroethane	ND (0.0020)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Chloroform	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Chloromethane	ND (0.0020)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
cis-1,2-Dichloroethene	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
cis-1,3-Dichloropropene	ND (0.0004)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Dibromochloromethane	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Dibromomethane	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Dichlorodifluoromethane	ND (0.0020)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Diethyl Ether	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Di-isopropyl ether	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Ethyl tertiary-butyl ether	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Ethylbenzene	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Hexachlorobutadiene	ND (0.0006)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Hexachloroethane	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Isopropylbenzene	ND (0.0010)	8.	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Methyl tert-Butyl Ether	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Methylene Chloride	ND (0.0020)	83	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Naphthalene	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
n-Butylbenzene	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
n-Propylbenzene	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
sec-Butylbenzene	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Styrene	ND (0.0010)	8:	260B		1	11/08/19 1	7:15	C9K0155	CK90828
tert-Butylbenzene	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Tertiary-amyl methyl ether	ND (0.0010)	82	260B		1	11/08/19 1	7:15	C9K0155	CK90828
Tetrachloroethene	ND (0.0010)	83	260B		1	11/08/19 1	7:15	C9K0155	CK90828

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Client Sample ID: 201942-MW3-110719

Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Surrogate: Toluene-d8

Extraction Method: 5030B

ESS Laboratory Work Order: 19K0207 ESS Laboratory Sample ID: 19K0207-03

Sample Matrix: Ground Water

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	Sequence COV 0155	Batch
Tetrahydrofuran	ND (0.0050)		8260B		1	11/08/19 17:15	C9K0155	CK90828
Toluene	ND (0.0010)		8260B		1	11/08/19 17:15	C9K0155	CK90828
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/08/19 17:15	C9K0155	CK90828
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/08/19 17:15	C9K0155	CK90828
Trichloroethene	ND (0.0010)		8260B		1	11/08/19 17:15	C9K0155	CK90828
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/08/19 17:15	C9K0155	CK90828
Vinyl Acetate	ND (0.0050)		8260B		1	11/08/19 17:15	C9K0155	CK90828
Vinyl Chloride	ND (0.0010)		8260B		1	11/08/19 17:15	C9K0155	CK90828
Xylene O	ND (0.0010)		8260B		1	11/08/19 17:15	C9K0155	CK90828
Xylene P,M	ND (0.0020)		8260B		1	11/08/19 17:15	C9K0155	CK90828
Xylenes (Total)	ND (0.00200)		8260B		1	11/08/19 17:15		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		96 %		70-130				
Surrogate: 4-Bromofluorobenzene		96 %		70-130				
Surrogate: Dibromofluoromethane		96 %		70-130				

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-4

 Fax: 401-461-4486

◆ Service

70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier Client Sample ID: Trip Blank Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 19K0207 ESS Laboratory Sample ID: 19K0207-04

Sample Matrix: Aqueous

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/08/19 12:54	Sequence C9K0155	Batch CK90828
1,1,1-Trichloroethane	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,1,2,2-Tetrachloroethane	ND (0.0005)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,1,2-Trichloroethane	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,1-Dichloroethane	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,1-Dichloroethene	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,1-Dichloropropene	ND (0.0020)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,2,3-Trichlorobenzene	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,2,3-Trichloropropane	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,2,4-Trichlorobenzene	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,2,4-Trimethylbenzene	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,2-Dibromo-3-Chloropropane	ND (0.0050)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,2-Dibromoethane	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,2-Dichlorobenzene	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,2-Dichloroethane	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,2-Dichloropropane	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,3,5-Trimethylbenzene	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,3-Dichlorobenzene	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,3-Dichloropropane	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,4-Dichlorobenzene	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1,4-Dioxane - Screen	ND (0.500)		8260B		1	11/08/19 12:54	C9K0155	CK90828
1-Chlorohexane	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
2,2-Dichloropropane	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
2-Butanone	ND (0.0100)		8260B		1	11/08/19 12:54	C9K0155	CK90828
2-Chlorotoluene	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
2-Hexanone	ND (0.0100)		8260B		1	11/08/19 12:54	C9K0155	CK90828
4-Chlorotoluene	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
4-Isopropyltoluene	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
4-Methyl-2-Pentanone	ND (0.0250)		8260B		1	11/08/19 12:54	C9K0155	CK90828
Acetone	ND (0.0100)		8260B		1	11/08/19 12:54	C9K0155	CK90828
Benzene	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
Bromobenzene	ND (0.0020)		8260B		1	11/08/19 12:54	C9K0155	CK90828

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier Client Sample ID: Trip Blank Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 19K0207 ESS Laboratory Sample ID: 19K0207-04

Sample Matrix: Aqueous

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	Results (MRL) ND (0.0010)	MDL Method 8260B	Limit DF	<u>Analyzed</u> 11/08/19 12:54	Sequence C9K0155	Batch CK90828
Bromodichloromethane	ND (0.0006)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Bromoform	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Bromomethane	ND (0.0020)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Carbon Disulfide	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Carbon Tetrachloride	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Chlorobenzene	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Chloroethane	ND (0.0020)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Chloroform	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Chloromethane	ND (0.0020)	8260B	1	11/08/19 12:54	C9K0155	CK90828
cis-1,2-Dichloroethene	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
cis-1,3-Dichloropropene	ND (0.0004)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Dibromochloromethane	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Dibromomethane	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Dichlorodifluoromethane	ND (0.0020)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Diethyl Ether	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Di-isopropyl ether	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Ethyl tertiary-butyl ether	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Ethylbenzene	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Hexachlorobutadiene	ND (0.0006)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Hexachloroethane	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Isopropylbenzene	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Methyl tert-Butyl Ether	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Methylene Chloride	ND (0.0020)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Naphthalene	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
n-Butylbenzene	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
n-Propylbenzene	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
sec-Butylbenzene	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Styrene	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
tert-Butylbenzene	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Tertiary-amyl methyl ether	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828
Tetrachloroethene	ND (0.0010)	8260B	1	11/08/19 12:54	C9K0155	CK90828

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier Client Sample ID: Trip Blank Date Sampled: 11/07/19 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 19K0207 ESS Laboratory Sample ID: 19K0207-04

Sample Matrix: Aqueous

Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrahydrofuran	ND (0.0050)		8260B		1	11/08/19 12:54	C9K0155	CK90828
Toluene	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/08/19 12:54	C9K0155	CK90828
Trichloroethene	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
Vinyl Acetate	ND (0.0050)		8260B		1	11/08/19 12:54	C9K0155	CK90828
Vinyl Chloride	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
Xylene O	ND (0.0010)		8260B		1	11/08/19 12:54	C9K0155	CK90828
Xylene P,M	ND (0.0020)		8260B		1	11/08/19 12:54	C9K0155	CK90828
	9	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		95 %		70-130				
Surrogate: 4-Bromofluorobenzene		97 %		70-130				
Surrogate: Dibromofluoromethane		96 %		70-130				
Surrogate: Toluene-d8		99 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

ESS Laboratory Work Order: 19K0207

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compounds

Batch CK90828 - 5030B				
Blank				
1,1,1,2-Tetrachloroethane	ND	0.0010	mg/L	
1,1,1-Trichloroethane	ND	0.0010	mg/L	
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L	
1,1,2-Trichloroethane	ND	0.0010	mg/L	
1,1-Dichloroethane	ND	0.0010	mg/L	
1,1-Dichloroethene	ND	0.0010	mg/L	
1,1-Dichloropropene	ND	0.0020	mg/L	
1,2,3-Trichlorobenzene	ND	0.0010	mg/L	
1,2,3-Trichloropropane	ND	0.0010	mg/L	
1,2,4-Trichlorobenzene	ND	0.0010	mg/L	
1,2,4-Trimethylbenzene	ND	0.0010	mg/L	
1,2-Dibromo-3-Chloropropane	ND	0.0050	mg/L	
1,2-Dibromoethane	ND	0.0010	mg/L	
1,2-Dichlorobenzene	ND	0.0010	mg/L	
1,2-Dichloroethane	ND	0.0010	mg/L	
1,2-Dichloropropane	ND	0.0010	mg/L	
1,3,5-Trimethylbenzene	ND	0.0010	mg/L	
1,3-Dichlorobenzene	ND	0.0010	mg/L	
1,3-Dichloropropane	ND	0.0010	mg/L	
1,4-Dichlorobenzene	ND	0.0010	mg/L	
1,4-Dioxane - Screen	ND	0.500	mg/L	
1-Chlorohexane	ND	0.0010	mg/L	
2,2-Dichloropropane	ND	0.0010	mg/L	
2-Butanone	ND	0.0100	mg/L	
2-Chlorotoluene	ND	0.0010	mg/L	
2-Hexanone	ND	0.0100	mg/L	
4-Chlorotoluene	ND	0.0010	mg/L	
4-Isopropyltoluene	ND	0.0010	mg/L	
4-Methyl-2-Pentanone	ND	0.0250	mg/L	
Acetone	ND	0.0100	mg/L	
Benzene	ND	0.0010	mg/L	
Bromobenzene	ND	0.0020	mg/L	
Bromochloromethane	ND	0.0010	mg/L	
Bromodichloromethane	ND	0.0016	mg/L	
Bromoform	ND	0.0010	mg/L	
Bromomethane	ND ND	0.0010	mg/L	
Carbon Disulfide	ND ND	0.0020		
Carbon Tetrachloride	ND ND	0.0010	mg/L	
Chlorobenzene	ND ND	0.0010	mg/L mg/L	
Chloroethane	ND ND	0.0010	mg/L	
Chloroform		0.0020		
	ND ND		mg/L	
Chloromethane cis-1,2-Dichloroethene	ND ND	0.0020	mg/L	
,	ND	0.0010	mg/L	
cis-1,3-Dichloropropene	ND	0.0004	mg/L	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

ESS Laboratory Work Order: 19K0207

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile	Organic	Compounds
		•

Batch CK90828 - 5030B						
Dibromochloromethane	ND	0.0010	mg/L			
Dibromomethane	ND	0.0010	mg/L			
Dichlorodifluoromethane	ND	0.0020	mg/L			
Diethyl Ether	ND	0.0010	mg/L			
Di-isopropyl ether	ND	0.0010	mg/L			
Ethyl tertiary-butyl ether	ND	0.0010	mg/L			
Ethylbenzene	ND	0.0010	mg/L			
Hexachlorobutadiene	ND	0.0006	mg/L			
Hexachloroethane	ND	0.0010	mg/L			
Isopropylbenzene	ND	0.0010	mg/L			
Methyl tert-Butyl Ether	ND	0.0010	mg/L			
Methylene Chloride	ND	0.0020	mg/L			
Naphthalene	ND	0.0010	mg/L			
n-Butylbenzene	ND	0.0010	mg/L			
n-Propylbenzene	ND	0.0010	mg/L			
sec-Butylbenzene	ND	0.0010	mg/L			
Styrene	ND	0.0010	mg/L			
tert-Butylbenzene	ND	0.0010	mg/L			
Tertiary-amyl methyl ether	ND	0.0010	mg/L			
Tetrachloroethene	ND	0.0010	mg/L			
Tetrahydrofuran	ND	0.0050	mg/L			
Toluene	ND	0.0010	mg/L			
trans-1,2-Dichloroethene	ND	0.0010	mg/L			
trans-1,3-Dichloropropene	ND	0.0004	mg/L			
Trichloroethene	ND	0.0010	mg/L			
Trichlorofluoromethane	ND	0.0010	mg/L			
Vinyl Acetate	ND	0.0050	mg/L			
Vinyl Chloride	ND	0.0010	mg/L			
Xylene O	ND	0.0010	mg/L			
Xylene P,M	ND	0.0020	mg/L			
Surrogate: 1,2-Dichloroethane-d4	0.0237		mg/L	0.02500	<i>95</i>	70-130
Surrogate: 4-Bromofluorobenzene	0.0242		mg/L	0.02500	97	70-130
Surrogate: Dibromofluoromethane	0.0240		mg/L	0.02500	96	70-130
Surrogate: Toluene-d8	0.0248		mg/L	0.02500	99	70-130
LCS						
1,1,1,2-Tetrachloroethane	9.51		ug/L	10.00	95	70-130
1,1,1-Trichloroethane	9.72		ug/L	10.00	97	70-130
1,1,2,2-Tetrachloroethane	10.3		ug/L	10.00	103	70-130
1,1,2-Trichloroethane	9.94		ug/L	10.00	99	70-130
1,1-Dichloroethane	10.2		ug/L	10.00	102	70-130
1,1-Dichloroethene	11.0		ug/L	10.00	110	70-130
1,1-Dichloropropene	9.81		ug/L	10.00	98	70-130
1,2,3-Trichlorobenzene	10.6		ug/L	10.00	106	70-130
1,2,3-Trichloropropane	9.39		ug/L	10.00	94	70-130
1,2,4-Trichlorobenzene	10.3		ug/L	10.00	103	70-130

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486

• Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0207

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compounds

Batch CK90828 - 5030B					
1,2,4-Trimethylbenzene	10.6	ug/L	10.00	106	70-130
,2-Dibromo-3-Chloropropane	8.90	ug/L	10.00	89	70-130
1,2-Dibromoethane	9.34	ug/L	10.00	93	70-130
1,2-Dichlorobenzene	10.3	ug/L	10.00	103	70-130
1,2-Dichloroethane	9.67	ug/L	10.00	97	70-130
1,2-Dichloropropane	9.71	ug/L	10.00	97	70-130
.,3,5-Trimethylbenzene	10.5	ug/L	10.00	105	70-130
1,3-Dichlorobenzene	10.4	ug/L	10.00	104	70-130
1,3-Dichloropropane	10.0	ug/L	10.00	100	70-130
,4-Dichlorobenzene	10.5	ug/L	10.00	105	70-130
,4-Dioxane - Screen	213	ug/L	200.0	107	0-332
l-Chlorohexane	9 . 35	ug/L	10.00	94	70-130
,2-Dichloropropane	9.73	ug/L	10.00	97	70-130
l-Butanone	48.0		50.00	96	70-130
2-Chlorotoluene	10.4		10.00	104	70-130
2-Hexanone	47.2		50.00	94	70-130
-Chlorotoluene	10.3		10.00	103	70-130
-Isopropyltoluene	10.2	_	10.00	102	70-130
-Methyl-2-Pentanone	47.7		50.00	95	70-130
cetone	43.9	- -	50.00	88	70-130
enzene	10.2		10.00	102	70-130
romobenzene	10.4	- -	10.00	104	70-130
romochloromethane	9.72	- -	10.00	97	70-130
omodichloromethane	9.80		10.00	98	70-130
omoform	9.21	- -	10.00	92	70-130
omomethane	10.5	_	10.00	105	70-130
rbon Disulfide	9.68		10.00	97	70-130
arbon Tetrachloride	9.91	_	10.00	99	70-130
hlorobenzene	9.99		10.00	100	70-130
nloroethane	9.28	- -	10.00	93	70-130
hloroform	10.2	_	10.00	102	70-130
hloromethane	8.86	- -	10.00	89	70-130
is-1,2-Dichloroethene	10.1	- -	10.00	101	70-130
s-1,3-Dichloropropene	9.68		10.00	97	70-130
ibromochloromethane	9.07	- -	10.00	91	70-130
ibromomethane	9 . 85		10.00	98	70-130
richlorodifluoromethane	8.28		10.00	83	70-130
Diethyl Ether	9.36		10.00	94	70-130
Di-isopropyl ether	9 . 87		10.00	99	70-130
thyl tertiary-butyl ether	9.47		10.00	95	70-130
Ethylbenzene	10.0		10.00	100	70-130
Eurylbenzene Hexachlorobutadiene		- -			70-130 70-130
	10.0	_	10.00	100	
Hexachloroethane	9.76	- -	10.00	98	70-130
Isopropylbenzene	10.3	- -	10.00	103	70-130
lethyl tert-Butyl Ether	10.3	ug/L	10.00	103	70-130

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Batch CK90828 - 5030B

ESS Laboratory Work Order: 19K0207

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8260B Vol	atile Organi	c Compoi	unds					

Batch CK90828 - 5030B								
Methylene Chloride	10.1	ug/L	10.00	101	70-130			
Naphthalene	10.1	ug/L	10.00	101	70-130			
n-Butylbenzene	10.3	ug/L	10.00	103	70-130			
n-Propylbenzene	10.2	ug/L	10.00	102	70-130			
sec-Butylbenzene	9.98	ug/L	10.00	100	70-130			
Styrene	9.80	ug/L	10.00	98	70-130			
tert-Butylbenzene	10.3	ug/L	10.00	103	70-130			
Tertiary-amyl methyl ether	10.1	ug/L	10.00	101	70-130			
Tetrachloroethene	9.11	ug/L	10.00	91	70-130			
Tetrahydrofuran	9.44	ug/L	10.00	94	70-130			
Toluene	10.3	ug/L	10.00	103	70-130			
trans-1,2-Dichloroethene	10.5	ug/L	10.00	105	70-130			
trans-1,3-Dichloropropene	9.43	ug/L	10.00	94	70-130			
Trichloroethene	9.88	ug/L	10.00	99	70-130			
Trichlorofluoromethane	10.4	ug/L	10.00	104	70-130			
Vinyl Acetate	11.0	ug/L	10.00	110	70-130			
Vinyl Chloride	8.29	ug/L	10.00	83	70-130			
Xylene O	10.0	ug/L	10.00	100	70-130			
Xylene P,M	20.2	ug/L	20.00	101	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.0237	mg/L	0.02500	95	70-130			
Surrogate: 4-Bromofluorobenzene	0.0240	mg/L	0.02500	96	70-130			
Surrogate: Dibromofluoromethane	0.0245	mg/L	0.02500	98	70-130			
Surrogate: Toluene-d8	0.0245	mg/L	0.02500	98	70-130			
LCS Dup								
1,1,1,2-Tetrachloroethane	9.57	ug/L	10.00	96	70-130	0.6	25	
1,1,1-Trichloroethane	9.57	ug/L	10.00	96	70-130	2	25	
1,1,2,2-Tetrachloroethane	10.6	ug/L	10.00	106	70-130	3	25	
1,1,2-Trichloroethane	9.81	ug/L	10.00	98	70-130	1	25	
1,1-Dichloroethane	9.94	ug/L	10.00	99	70-130	2	25	
1,1-Dichloroethene	10.9	ug/L	10.00	109	70-130	1	25	
1,1-Dichloropropene	9.64	ug/L	10.00	96	70-130	2	25	
1,2,3-Trichlorobenzene	10.6	ug/L	10.00	106	70-130	0.09	25	
1,2,3-Trichloropropane	9.55	ug/L	10.00	96	70-130	2	25	
1,2,4-Trichlorobenzene	10.4	ug/L	10.00	104	70-130	1	25	
1,2,4-Trimethylbenzene	10.5	ug/L	10.00	105	70-130	0.7	25	
1,2-Dibromo-3-Chloropropane	9.42	ug/L	10.00	94	70-130	6	25	
1,2-Dibromoethane	9.43	ug/L	10.00	94	70-130	1	25	
1,2-Dichlorobenzene	10.2	ug/L	10.00	102	70-130	0.8	25	
1,2-Dichloroethane	9.50	ug/L	10.00	95	70-130	2	25	
1,2-Dichloropropane	9.60	ug/L	10.00	96	70-130	1	25	
1,3,5-Trimethylbenzene	10.3	ug/L	10.00	103	70-130	2	25	
1,3-Dichlorobenzene	10.2	ug/L	10.00	102	70-130	2	25	
1,3-Dichloropropane	10.3	ug/L	10.00	103	70-130	3	25	
1,4-Dichlorobenzene 1,4-Dioxane - Screen	10.4 215	ug/L ug/L	10.00 200.0	104 108	70-130 0-332	1 0.9	25 200	

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Batch CK90828 - 5030B

Client Project ID: Grenier ESS Laboratory Work Order: 19K0207

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

82	260E	3 V	olatile	Organic	Compound	S
----	------	-----	---------	---------	----------	---

Batch CK90828 - 5030B							
l-Chlorohexane	9.41	ug/L	10.00	94	70-130	0.6	25
2,2-Dichloropropane	9.49	ug/L	10.00	95	70-130	2	25
2-Butanone	48.4	ug/L	50.00	97	70-130	0.7	25
2-Chlorotoluene	10.2	ug/L	10.00	102	70-130	2	25
2-Hexanone	48.9	ug/L	50.00	98	70-130	4	25
1-Chlorotoluene	10.1	ug/L	10.00	101	70-130	2	25
1-Isopropyltoluene	10.0	ug/L	10.00	100	70-130	2	25
1-Methyl-2-Pentanone	49.6	ug/L	50.00	99	70-130	4	25
Acetone	44.4	ug/L	50.00	89	70-130	1	25
Benzene	10.1	ug/L	10.00	101	70-130	1	25
Bromobenzene	10.3	ug/L	10.00	103	70-130	1	25
Bromochloromethane	9.83	ug/L	10.00	98	70-130	1	25
Bromodichloromethane	9.74	ug/L	10.00	97	70-130	0.6	25
Bromoform	9.30	ug/L	10.00	93	70-130	1	25
Bromomethane	10.2	ug/L	10.00	102	70-130	3	25
Carbon Disulfide	9.54	ug/L	10.00	95	70-130	1	25
Carbon Tetrachloride	9.69	ug/L	10.00	97	70-130	2	25
Chlorobenzene	9.96	ug/L	10.00	100	70-130	0.3	25
Chloroethane	9.09	ug/L	10.00	91	70-130	2	25
hloroform	9.96	ug/L	10.00	100	70-130	3	25
hloromethane	8.67	ug/L	10.00	87	70-130	2	25
is-1,2-Dichloroethene	10.1	ug/L	10.00	101	70-130	0.4	25
is-1,3-Dichloropropene	9.52	ug/L	10.00	95	70-130	2	25
ibromochloromethane	9.26	ug/L	10.00	93	70-130	2	25
Dibromomethane	10.0	ug/L	10.00	100	70-130	2	25
pichlorodifluoromethane	8.09	ug/L	10.00	81	70-130	2	25
Diethyl Ether	9.34	ug/L	10.00	93	70-130	0.2	25
Di-isopropyl ether	9.78	ug/L	10.00	98	70-130	0.9	25
ithyl tertiary-butyl ether	9.27	ug/L	10.00	93	70-130	2	25
thylbenzene	10.0	ug/L	10.00	100	70-130	0.3	25
lexachlorobutadiene	10.2	ug/L	10.00	102	70-130	2	25
lexachloroethane	9.58	ug/L	10.00	96	70-130	2	25
sopropylbenzene	10.1	ug/L	10.00	101	70-130	2	25
lethyl tert-Butyl Ether	10.3	ug/L	10.00	103	70-130	0.1	25
lethylene Chloride	10.1	ug/L	10.00	101	70-130	0.3	25
laphthalene	10.0	ug/L	10.00	100	70-130	0.3	25
-Butylbenzene	10.2	ug/L	10.00	102	70-130	2	25
-Propylbenzene	10.0	ug/L	10.00	100	70-130	2	25
ec-Butylbenzene	9.79	ug/L	10.00	98	70-130	2	25
tyrene	9.86	ug/L	10.00	99	70-130	0.6	25
ert-Butylbenzene	10.1	ug/L	10.00	101	70-130	2	25
ertiary-amyl methyl ether	10.0	ug/L	10.00	100	70-130	0.5	25
etrachloroethene	9.01	ug/L	10.00	90	70-130	1	25
etrahydrofuran	10.3	ug/L	10.00	103	70-130	9	25
oluene	10.1	ug/L	10.00	101	70-130	2	25

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 19K0207

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compounds

Batch CK90828 - 5030B							
trans-1,2-Dichloroethene	10.1	ug/L	10.00	101	70-130	3	25
trans-1,3-Dichloropropene	9.32	ug/L	10.00	93	70-130	1	25
Trichloroethene	9.65	ug/L	10.00	96	70-130	2	25
Trichlorofluoromethane	10.1	ug/L	10.00	101	70-130	2	25
Vinyl Acetate	11.2	ug/L	10.00	112	70-130	2	25
Vinyl Chloride	8.13	ug/L	10.00	81	70-130	2	25
Xylene O	10.0	ug/L	10.00	100	70-130	0.1	25
Xylene P,M	20.2	ug/L	20.00	101	70-130	0.3	25
Surrogate: 1,2-Dichloroethane-d4	0.0237	mg/L	0.02500	<i>95</i>	70-130		
Surrogate: 4-Bromofluorobenzene	0.0242	mg/L	0.02500	97	70-130		
Surrogate: Dibromofluoromethane	0.0242	mg/L	0.02500	97	70-130		
Surrogate: Toluene-d8	0.0247	mg/L	0.02500	99	70-130		

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0207

Notes and Definitions

U	Analyte included in the analysis, but not detected
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

F/V

[CALC] Calculated Analyte

Final Volume

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit
MF Membrane Filtration
MPN Most Probably Number
TNTC Too numerous to Count
CFU Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Redwood Environmental Group

Client Project ID: Grenier ESS Laboratory Work Order: 19K0207

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client	: Redwoo	od Environn	nental Group -	KPB/EO	_	ES:	S Project ID:	19K0207	
Shipped/E	Delivered Via:		Client		- .	Proje	te Received: ct Due Date: s for Project:	11/14/2019	
	nanifest pres			No		6. Does CO	C match bottles?		Yes
	ustody seals tion count <16			No Yes]		complete and correct mples received inta		Yes
	oler Present?		ı: <u>lçe</u>	Yes]			short holds & rushed	^
5. Was Co	DC signed an	d dated by	client?	Yes]				
	bcontracting Sample IDs: Analysis: TAT:		Yes	Ø	- -	a. Air bubb	OAs received? les in aqueous VO/ ethanol cover soil co		Yes / No Yes / No / NA
a. If metals	e samples pro s preserved ε vel VOA vials	ipon receipt		(es) / No Date:		_ Time:		By: By:	
Sample Re	ceiving Notes	s:		- 3.1.2					
· · · · · · · · · · · · · · · · · · ·							···		
	ere a need to		oject Manage client?		Yes / 🚧 Yes / No	_ Time:		Ву:	
			 -						
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Contain	er Type	Preservative	Record	pH (Cyanide and 608 Pesticides)
01	411115	Yes	No	Yes	VOA Vi	al - HCl	HCI		
01	411116	Yes	No	Yes		al - HCi	HCI		
01 02	411117 411112	Yes Yes	No No	Yes Yes		al - HCI al - HCI	HCI HCI		
02	411113	Yes	No	Yes		al - HCI	HCI		
02 03	411114 411109	Yes Yes	No No	Yes Yes		al - HCI al - HCI	HCI HCI		
03	411110	Yes	No	Yes	VOA Via		HCI		
03 04	411111 411106	Yes Yes	No No	Yes Yes	VOA Via VOA Via	ai - HCI	HCI HCI		
Are barcode Are all Flas Are all Hex Are all QC:	ontainers sca e labels on co	orrect contains attached/ sers attached hed?	container ID # d?	circled?	Initials	Yes / No / No Yes / No / No Yes / No / No Yes / No / No Yes / No / No	A A		
Completed Bv:			L		Date & Time	1887140714		Just	

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Redwood Environmental Group - KPB/EO	ESS Project ID: 19K0207	
Reviewed By: Delivered By:		* Time: Date Received: 11/7/2019	

ESS LAB PROJECT ID Page of Reporting Limits CHAIN OF CUSTODY

Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston, RI 02910-2211 Tel. (401) 461-7181 Fax (401) 461-4486 ESS Laboratory www.esslaboratory.com

TO THE POSSIBLE OF THE PARTY OF THE PARTY OF THE PARTY.

PDF_Other_Checker 19K0202 Format: Excel __ Access. Electronic Deliverable \$ Turn Time V Standard Other If faster than 5 days, prior approval by laboratory is required #_ Other Is this project for any of the following:

MA-MCP

Navy

OSACE

Other State where samples were collected from:
MA (RI) CT NH NJ NY ME

		MA-MCF		-			- A-A-A		Amelonia			
Co. Name		Project #	Project Name (20 Char. or less)		_		WE	Write Kequirea Analysis	Ananysis			Т
Reduced En	7	246102	Oremer	\neg	l						<u>. </u>	
Contact Person		Address		S		09						<u> </u>
City	State	Zip	PO#	antain) උ 2						<u></u>
Telephone #	Fax #		Email Address	Co. Co.	isanoDì	3 70						
ESS LAB Date Sample #	Collection Time COMP		Sample Identification (20 Char. or less)	Pres Code Numbe)/\						
1 11/2/19	X	-246105 6	- mw1 -110719	10	7	X	-		*			
7	×	-		7	2	X		-	_			T
3	X		2- mw3-110719	3	>	×				-	-	
h			Trip Blank					+		-	_	
									-		-	
												_
						-						
					-							
					-				-			
	A CVIV. St	rriv. C. Soil SD-Solic	D-Sludge WW-Waste Water GW-Ground Water	W-Ground	1 Water	SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filters	/ater DW	Drinking W	Vater O-O	il W-Wip	es F-F	ilters
Container Type: P-Poly G-G1488 5-5ternic V-VOA Infanta: 5000 5000 5000 5000 5000 5000 5000 50	No Inferna	LUse Only Pr	Preservation Code 1- NP, 2- HC1, 3- H,SO,, 4- HNO,, 5- NaOH, 6- McOH, 7- Asorbic Acid, 8- ZnAct, 9-	H ₂ SO ₄ , 4	HNO,	5- NaOH, 6-	McOH, 7-	Asorbic Aci	id, 8- ZnAc	t, 9-		
Coole Frescin	Z.	Offe Pickup Sa	Sampled by: 25K									
1,7		1	Comments:	Ĵ	7 0 7	do La La	م ن -	,				
Cooler temp:	/, ,		Velimeray	2 3	3	7 5)	Deceived by (Signature)	ionature		Date/Time	یا

*By citcling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A

Please fax all changes to Chain of Custody in writing.

1 (White) Lab Copy 2 (Yellow) Client Receipt Page 27 8627

Date/Time

Received by: (Signature)

Date/Time ξ

Relinquished by: (Signature)

MG 1 67/4 Date/Time

Date/Time

Raceived by: (Signature)

Received by: (Signature)

b107 61/4/11 Date/Time

Relinquished by: (Signature) 4 Kanhoner Relinquished by: (Signature)

Date/Time

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

APPENDIX C CERTIFICATION STATEMENTS

Appendix C

CERTIFICATIONS

In accordance with the Remediation Regulations, the certification expressed below shall apply to the SIR compiled and submitted to RI DEM by Redwood.

I hereby certify that completeness and accuracy of the information contained in the above referenced documents to the best of my knowledge.

Gang S. Kanfman	Principal	January 15, 2020	
Signature of Redwood Environmental	Title	Date	

I hereby certify that this document is a complete and accurate representation of the contaminated Site and the release and contain all available facts surrounding the release to the best of my knowledge.

Signature of Performing Party

President

1/17/2020

Date

APPENDIX D ENVIRONMENTAL PROFESSIONAL QUALIFICATIONS

QUALIFICATIONS

Redwood Environmental Group, LLC (Redwood) provides high quality environmental consulting services to commercial and industrial clients throughout the Southern New England area. Redwood focuses on due diligence assessments, regulatory closures of underground storage tanks (USTs) and underground injection control (UIC) structures and remedial design and implementation.

Gary S. Kaufman, Principal/Senior Project Manager

Mr. Kaufman has over 20+ years of experience in the environmental industry at ESS Group, Ransom Environmental Inc., and Redwood Environmental Group, LLC. He has extensive due diligence experience, conducting and preparing Phase I and Phase II Environmental Site Assessments, performing regulatory closures of USTs and UICs, and designing and implementing remedial action work plans. Mr. Kaufman works with major banking and lending institutions, developers and property owners, successfully managing and completing hundreds of due diligence risk assessments at industrial and commercial sites throughout Rhode Island and neighboring areas. He has excellent working relationships with local regulatory agencies. Mr. Kaufman is experienced in all aspects of soil and groundwater sampling, the identification of contamination sources, and delineating the extent and impact of contamination upon the site.

Mr. Kaufman was responsible for the management of a 2-year remediation project of a former manufactured gas plant (MGP), which included the oversight of regulatory closures of underground structures and the proper disposal of hundreds of yards of contaminated soils. Working closely with the developer in the new construction of a commercial bank, Mr. Kaufman managed the remediation of hundreds of cubic yards of arsenic impacted soils through excavation and disposal offsite. Mr. Kaufman has also managed numerous UST closures, from gasoline stations to industrial and commercial facilities.

Mr. Kaufman earned a B.S. in Environmental Management from the University of Rhode Island and a B.A., *cum laude*, in Criminal Justice from Northeastern University.

I declare that, to the best of my professional knowledge and belief, I meet the definition of Environmental Professional as defined in §312.10 of 40 CFR 312. I have the specific qualification based on education, training and experience to assess a property of the nature, history and setting of the subject property. I have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Gary S. Kaufman

Principal/Senior Project Manager

Gary S. Kanfman

October 17, 2019

Date