

engineering and constructing a better tomorrow

April 3, 2008

Mr. Joseph T. Martella II, Senior Engineer RIDEM Office of Waste Management Site Remediation Program 235 Providence Street Providence, RI 02908

RE: Building N Underground Storage Tanks Closure Report Former Gorham Manufacturing Facility 333 Adelaide Avenue, Providence, Rhode Island MACTEC Project No. 3650050041.15

Dear Mr. Martella:

This letter summarizes the recent investigations and closure activities of the Building N Underground Storage Tanks (USTs) conducted at the Former Gorham Manufacturing Facility, 333 Adelaide Avenue, Providence, Rhode Island (the Site) in January 2008. This work was done in direct coordination with Rhode Island Department of Environmental Management (RIDEM) and as proposed in MACTEC Engineering and Consulting, Inc. (MACTEC) letter to RIDEM, dated January 8, 2008.

PREVIOUS WORK ACTIVITIES

Investigations conducted in December 2007 identified two USTs associated with former Building N, located approximately 20-25 feet below the ground surface (bgs), north of the existing retail building (Figure 1). During this investigation a sample was collected from the east UST and from soils adjacent to both USTs and analyzed for volatile organic compounds (VOCs). Analytical results for the water in the east UST identified low levels of VOCs below RIDEM Category GA groundwater standards (and U.S. Environmental Protection Agency (USEPA) Risk-Based Concentrations), which was consistent with 1995 investigation results of the eastern UST (Appendix C). Also, low levels of VOCs were detected in soil adjacent to the USTs below RIDEM residential direct exposure criteria.

WORK ACTIVITIES CONDUCTED

MACTEC and Clean Harbors Environmental Services (Clean Harbors) mobilized to the Site on January 14, 2008 and gained access to the work area by temporarily removing approximately 60 feet of chain link fencing installed by the City of Providence along the border of the Park Parcel and behind (north of) the retail buildings. Clean Harbors staked haybales downgradient of the USTs, small diameter trees and brush were cleared, and the two USTs were partially uncovered (approximately 5 linear feet of the USTs were exposed) with a PC-200 excavator.

A 2" diameter hole was drilled into the northern end of the west UST, and a water sample was collected. The water from the UST was under pressure since the UST was full and slightly lower at the north end. Thus, the water in the UST flowed out of the 2" hole and was collected in sample bottles. This hole was immediately plugged with a J-plug, which is commonly used to plug monitoring wells. The sample was labeled "West UST" and submitted under chain of custody to ESS Laboratory of Cranston, Rhode Island for 24 hour turn-around analysis of VOCs by EPA Method 8260 and semi-volatile organic compounds (SVOCs) by Method 8270C. The SVOC analysis was included in the analysis because the water from the west UST was discolored, and had a petroleum odor.

The analytical results for the water sample from the west UST are discussed further in the "Laboratory Analytical Results" section below; however, the results were similar to the east UST (detected concentrations were below RIDEM Category GA groundwater standards). Thus, Clean Harbors mobilized a vactor truck (3,000 gallon capacity) and frac tank (Baker Tank, 20,000 gallon capacity) to pump out and containerize the contents of the USTs (Appendix A). On January 17 and January 18, approximately 5,610 gallons of water were pumped out from the east UST, and approximately 8,745 gallons of water were pumped out from the west UST. The water from the USTs was transferred from the vactor truck to the frac tank on-site (Appendix A). Then, Clean Harbors transferred the water from the frac tank to a trailer on-site (Appendix A), and transported the water to the Clean Harbors disposal facility in South Portland, Maine. Bills of lading for this water are included in Appendix B.

Clean Harbors tested the air in the USTs for oxygen, lower explosion limit (LEL), hydrogen sulfide, and VOCs with a 5-gas meter. Once the concentration of oxygen was between 19.5% and 23.5% and the LEL was 0% inside the USTs, Clean Harbors cut 2 ft diameter holes at the north end of both USTs. Clean Harbors personnel entered the USTs with a full-face respirator to clean the inside of the USTs. Clean Harbors followed their site-specific confined space procedure.

The USTs were cleaned with a pressure washer, and a squeegee was used to push the solids and water into the suction line of the vactor truck for removal. The sidewalls of the west UST were covered with an oily film, and the sidewalls of the east UST had surface pitting/scaling. However, both USTs appeared to be in good condition, and no visual or olfactory evidence of impacted soil was detected in the soil around the USTs. Both USTs were cleaned on January 18, 2008. Both USTs were confirmed to be 7 ft diameter steel tanks, 3/8" thick, and 30 ft long (approximately 8,800 gallons each). Tank bottom sludge (617 gallons) from the cleaning of the two USTs was transported by trailer to the Clean Harbors disposal facility in Braintree, Massachusetts. The bill of lading is included in Appendix B.

CONFIRMATORY TESTING AT USTS AND WORK ACTIVITIES CONDUCTED AT BRICK STRUCTURE

On January 21, 2008, Clean Harbors excavated soil from the north side of both USTs, exposing the entire downgradient side of the USTs. MACTEC accessed the soil beneath the USTs using a hand core with extension rods to collect representative soil samples from the USTs, consistent with RIDEM UST regulations. Soil samples were collected 2' south of the north end of each UST immediately below the bottom of the USTs (Appendix A). The soil sample collected below the west UST was labeled "SBWest00" and the soil sample collected below the east UST was labeled "SBEast00". The soil samples were submitted under chain of custody to ESS Laboratory for 24 hour turn-around analysis for VOCs. There was no visual or olfactory evidence of impacted soil surrounding the USTs and below the USTs, and groundwater was not encountered in the excavation at the bottom of the USTs.

Clean Harbors contracted Consolidated Concrete Corporation of East Providence, Rhode Island to fill the USTs with flowable fill (concrete slurry) on January 22, 2008. In accordance with RIDEM UST Closure Regulations, approximately 80 cubic yards (CY) of flowable fill were placed in the USTs to fill both of them. An additional 10 CY of flowable fill were placed over the USTs to fully seal the access points of the USTs. On-site soil was placed over the flowable fill, and the area was graded (Appendix A).

On January 21, 2008, MACTEC directed Clean Harbors to conduct an additional excavation east of the eastern UST to investigate the manway identified during the December 2007 UST investigations. The brick structure was located and determined that it was not a manway to the USTs. This structure was found fully intact with a solid brick cover over the top and had a concrete base. The brick structure appeared to be a former oil/water separator with piping and valves (Appendix A). There was soil inside the structure which had a petroleum odor and was stained black. MACTEC collected a soil sample from inside the brick structure (labeled "Brickpit"), and it was submitted under chain of custody to ESS Laboratory for 24 hour turn-around analysis for VOCs, SVOCs, and total petroleum hydrocarbons (TPH).

Based on the analytical results of the soil from within the brick structure, Clean Harbors excavated the soil from the brick structure, as well as most of the brick structure, on January 23, 2008 and loaded it into two 25 CY roll-offs on-site. The roll-offs were transported to ESMI, Loudon, New Hampshire, for recycling of 38.66 tons of soil (Appendix B).

The bottom of the brick structure was concrete, and it was intact. The bottom was broken by the excavator, and a confirmatory soil sample (labeled "Brickconfirm") was collected in the 2 ft thick soil layer below the bottom of the brick structure and above the groundwater table (approximately 30 ft bgs). The soil sample was submitted under chain of custody to ESS Laboratory for standard turn-around analysis for SVOCs and TPH. Soil outside of the brick structure did not appear to be impacted based on visual and olfactory evidence.

The remains of the brick structure, at the south end of the structure, could not be removed because it was supporting approximately 20 ft of the hillside immediately below the City of Providence chain link fence. The excavation was backfilled with on-site soil, and the entire disturbed area (including area above the USTs) was re-graded with on-site soil.

LABORATORY ANALYTICAL RESULTS

The laboratory report for the liquid sample (water) for the west UST (West UST) is included in Appendix C. These results were similar to the analytical results of the east UST – the sample was water, with trace levels of VOCs and SVOCs below RIDEM GA standards. The four VOCs detected in the water sample included naphthalene, O-xylene, and 1,2,4- and 1,3,5- trimethylbenzene. The detected concentrations and associated RIDEM Category GA Groundwater Standards (drinking-water standards) are shown in Table 1 for both USTs:

There are no drinking water standards for trimethylbenzene. However, the USEPA Region III tap water Risk-Based Concentration is 0.330 milligrams per liter (mg/L). It should also be noted that

the east UST water sample collected in December 2007 was in contact with surrounding soil and may explain the detection of tetrachloroethene.

SVOCs detected in the west UST were 2-methylnaphthalene (0.03 mg/L), acenaphthene (0.00032 mg/L), fluorene (0.00052 mg/L), naphthalene (0.00317 mg/L), and phenanthrene (0.00046 mg/L). Of these detected compounds, only naphthalene has a RIDEM Category GA Groundwater Standard (0.02 mg/L).

The laboratory results for the two soil samples collected below the USTs are included in Appendix C. The soil sample collected below the east UST (SBEast00) had a trace concentration of tetrachloroethene (0.0057 milligrams per kilogram (mg/kg)), which was below the RIDEM residential direct exposure criteria for tetrachloroethene (12 mg/kg). There were no detected VOCs in the soil sample collected below the west UST (SBWest00).

Lastly, the laboratory results for the soil sample collected from inside the brick structure and the confirmatory soil sample below the brick structure are also included in Appendix C. The analytical summary of the brick structure (Brickpit) is as follows: six VOCs were detected, and all compounds were below RIDEM residential direct exposure criteria; eighteen SVOCs were detected, eleven compounds were above RIDEM residential direct exposure criteria; and four compounds were above RIDEM industrial/commercial direct exposure criteria; and TPH (3440 mg/kg) exceeded the RIDEM industrial/commercial direct exposure criteria (2500 mg/kg). This soil was removed from the site for recycling at ESMI in New Hampshire. The confirmatory soil sample collected below the brick structure (Brickconfirm) was non-detect for all SVOCs and TPH. Table 2 summarizes detected compounds in soil samples SBEast00, SBWest00, Brickpit, and Brickconfirm.

CONCLUSIONS

The USTs at the former Building N were closed consistent with RIDEM UST regulations. The water within both USTs met RIDEM GA standards and were pumped out and disposed off-site. Then, both USTs were filled with flowable fill. Based on the analytical results of the soil samples collected adjacent to and below the USTs, the soil met RIDEM residential direct exposure criteria and was not impacted. Soil from within a brick structure located to the east of the USTs was impacted, and the soil was removed and disposed off-site for recycling. Based on the analytical

results of the soil samples collected below the brick structure, the soil met RIDEM residential direct exposure criteria and was not impacted. The area has been re-graded.

PROPOSED ACTIONS

This area is located within the Phase I Cap for the Park Parcel; thus, no other restoration activities will be performed at this time. This site will receive additional soil cover and grading to support the final grades for the recreational use of the Park Parcel. The draft Remedial Action Work Plan (RAWP) for the Phase I Cap was submitted to RIDEM in July 2007. This RAWP will be finalized, and a public meeting held pending review comments from RIDEM. In addition, groundwater samples will be collected downgradient of the USTs as part of a site-wide groundwater investigation.

Please contact either Greg Simpson of Textron (401) 457-2635 or Dave Heislein at (781) 245-6606 with any questions on the investigation activities that were conducted in January 2008 or the planned Phase I Cap.

Sincerely, MACTEC Engineering and Consulting, Inc.

Philip J. Muller Project Engineer

CC:

David E. Heislein Principal Engineer

Attachments:	Tables
	Figures
	Appendix A – Photographs
	Appendix B – Bills of Lading and Disposal Facility Weight Slips
	Appendix C – ESS Laboratory Reports (March 1995 UST Report and 2008)

T. Deller, City of Providence
P. Grivers, EA Engineering, Science, and Technology
T. Regan, EA Engineering, Science, and Technology
G. Simpson, Textron, Inc.
G. Wilson, Kimco Realty Corporation (including tenants)
J. Morgan, The Stop & Shop Supermarket Co. LLC
Knight Memorial Library Repository
MACTEC Project File [P:/TEXTRON/GORHAM/Building N USTs/Building N USTs completion letter.doc]

Tables

Table 1 Summary of Detected Compounds in UST Liquid Contents Former Gorham Manufacturing Facility 333 Adelaide Avenue Providence, Rhode Island

Compound	RIDEM GA Drinking Water Standard (mg/L)	West UST (1/15/08) Detected Conc. (mg/L)	East UST (12/17/07) Detected Conc. (mg/L)	East UST (2/24/95) Detected Conc. (mg/L)
Naphthalene	0.02	0.0079	0.0040	NOT ANALYZED
Tetrachloroethene	0.005	< 0.0010	0.0014	< 0.005
Xylene, O	10	0.0016	0.0017	NOT ANALYZED
Xylenes, Total	10	< 0.0030	0.0053	< 0.010
1,2,4- trimethylbenzene	0.330	0.0070	0.0043	NOT ANALYZED
1,3,5- trimethylbenzene	0.330	0.0012	0.0067	NOT ANALYZED

Prepared by: PJM APMM, Checked by: ARM

Notes:

RIDEM - Rhode Island Department of Environmental Management mg/L - Milligrams per Liter UST - Underground Storage Tank

P:\TEXTRON\GORHAM\Building N USTs\Building N Table 1.doc

Table 2 Summary of Detected Compounds in Soil Analytical Results - Building N UST Closure January 2008 Former Gorham Manufacturing Facility 333 Adelaide Avenue Providence, Rhode Island

	Rhode Direct Expo	e Island	SBEast00	SBWest00	Brickpit1	Brick Confirm
	Direct Expo	sure Criteria	0001239-02	0801239-01	0001239-03	0801264-01
	Residential	Commercial	1/21/2008	1/21/2008	1/21/2008	1/23/2008
Volatile Organics by Low Level (m	ig/Kg)					
1,2,4-Trimethylbenzene			0.0042 U	0.0054 U	0.0224	
1,3,5-Trimethylbenzene			0.0042 U	0.0054 U	0.0064	
4-Isopropyltoluene			0.0042 U	0.0054 U	0.0193	
Isopropylbenzene	27	10000	0.0042 U	0.0054 U	0.0064	
Naphthalene	54	10000	0.0042 U	0.0054 U	0.379 E	
sec-Butylbenzene		1	0.0042 U	0.0054 U	0.0077	
Tetrachloroethene	12	110	0.0057	0.0054 U	0.006 U	
Volatile Organics (mg/Kg)						
1,2,4-Trimethylbenzene					0.0932	
1,3,5-Trimethylbenzene					0.0392 J	
4-Isopropyltoluene					0.0719 J	
Naphthalene	54	10000			2.92	
Semivolatile Organics (mg/Kg)						
2-Methylnaphthalene	123	10000			4.41	0.377 U
Acenaphthene	43	10000			8.71	0.377 U
Anthracene	35	10000			14	0.377 U
Benzo(a)anthracene	0.9	7.8			34.7	0.377 U
Benzo(a)pyrene	0.4	0.8			23.7	0.189 U
Benzo(b)fluoranthene	0.9	7.8			35.7	0.377 U
Benzo(g,h,i)perylene	0.8	10000			4.38	0.377 U
Benzo(k)fluoranthene	0.9	78			23.8	0.377 U
Carbazole				-	5.64	0.377 U
Chrysene	0.4	780			28.8	0.189 U
Dibenz(a,h)anthracene	0.4	0.8			2.94	0.189 U
Dibenzofuran ⁽¹⁾	160	4100			7.24	0.377 U
Fluoranthene	20	10000			85.1 D	0.377 U
Fluorene	28	10000			10.8	0.377 U
Indeno(1,2,3-cd)pyrene	0.9	7.8			5.23	0.377 U
Naphthalene	54	10000			7.85	0.377 U
Phenanthrene	40	10000			85.2 D	0.377 U
Pyrene	13	10000			76 D	0.377 U
TPH (mg/Kg)						
Total Petroleum Hydrocarbons	500	2500			3440	39.1 U

Notes:

(1) Dibenzofuran value calculated.

Prepared by / Date:

Checked by / Date:

KJC 01/30/08 PJM 01/31/08

PSM

Bold value indicates compound detected. Shaded criteria indicates a detection above the criteria.

mg/kg - milligrams per kilogram

E - Reported above the quanitation limit; Estimated value.

U - Not detected, value is the detection limit.

D - Diluted.

J - Estimated value.

Figures

Document: P:\TEXTRON\GORHAM\GIS\MapDocuments\StopShopVI.mxd PDF: P:\TEXTRON\GORHAM\GIS\Figures\Location of USTs.pdf 04/04/2008 12:41 PM bjroden

Appendix A

Photographs

Photo 1: East and West USTs uncovered, facing south.

Photo 2: West UST pump-out.

Photo 3: Vactor Truck.

Photo 4: Vactor Truck pump-out to Frac Tank.

P:\TEXTRON\GORHAM\Building N USTs\Building N UST Completion.ppt

Photo 5: Frac Tank pump-out to Trailer for transport.

Photo 6: West UST after cleaning with pressure washer.

Photo 7: Soil sample collected below east UST.

Photo 8: Filling USTs with flowable fill.

Photo 9: Flowable fill completely covering USTs.

Photo 10: Brick Structure east of USTs.

Photo 11: Soil excavation at Brick Structure.

Photo 12: Site grading.

Appendix B

Bills of Lading and Disposal Facility Weight Slips

C	an # CARE	25329						
	R693	3-25	2				RI174	11303
	DOCUMENT NO.	113864	STRAI	GHT BILL C	F LADING	WORK ORD	ER NO	13 03
	TRANSPORTER 1	Clean Harbors	Fnv. be	rvices,	Inc.	_ VEHICLE ID #	450	
	EPA ID #	MAD039322250				TRANS. 1 PHON	E 781-798-60	0
37500 (TRANSPORTER 2	Clean Host	Dors Env	ironentu	Services	VEHICLE ID #	400 41	31

81/

792-5000

73

EPA ID #	MAD 24222200				CT.	
	FIR DESISPERS	and a second	TRANS	2 PHONE	7	Ì

DESIGNATED	FACILITY				SHIPPER		
FACILITY FR	ESMI	OF N			5		
FACILITY EPA	AID #			1	SHIPPER EPA ID #		
	N/A				N/3	ية بيرين والمنظول الم ^{يري} ة (ما يعني المراجع). المراجع (ما يعني المراجع) المراجع (ما يعني المراجع) المراجع (م	Strange - Barris Strategy of
ADDRESS	.67 In	terna	tional u	Drive	ADDRESS	aido Arranue	
CITY	ໂດຍຕີດເ	ri	STATE VH	ZIP 03307	CITY Providence	STATE	ZIP
NO. & SIZE	TYPE	нм		DESCRIPTI	ON OF MATERIALS		UNIT
12254	CM		A. MON	MOT REGUL	ATED SOIL	20	V
		18	В.	1			
		i.	C.	7			
			D.		8	1	
			E.				
			F. 🗡				
			G.				6
	-		H.		14		
PECIAL HANK	DUNG INS	TRUCT	ONG				
I LOIAL HAN	JUNG INS	HUCH	UNS				
1	3,35	1tr	7				

SHIPPERS CERTIFICATION: This is to certify that the above named materials are properly classified, described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

SHIPPER	SIGN	DATE
TRANSPORTER 1 Agricana Brita	SIGN AT THE	2/26/08 DATE 2/26/08
TRANSPORTER 2 Charlis Filesarp/1	SIGN	\$75/08
RECEIVED BY ESTAIL KSmith	SIGN, SIGN,	DATE 3/05/8
CHI 107		

. et	1 Com# A 693-0	75
DOCUMENT NO.	113866 STRAIGHT BILL OF LADING	WORK ORDER NO. E11741303
TRANSPORTER 1	-Clean Marbors FWv. Services, Inc.	VEHICLE ID # 460
EPA ID #	MAD039322250	TRANS. 1 PHONE 781-792-
TRANSPORTER 2	Clean Hubres Enu Sacrices, Inu	VEHICLE ID # 460
EPA ID #	MAD639322250	TRANS. 2 PHONE 781/747-5000

DESIGNATED	SMT OF	NTER		SHIPPER		
FACILITY EP	AID#			SHIPPER EPA ID #		
67	Interna	tioaa	1 Drive	ADDRESS		
Lou	don		STATE ZIP NH 03307	CITY Providence	STATE Z	ZIP
NO. & SIZE	TYPE	НМ	DESCRIPTIO	N OF MATERIALS	TOTAL QUANTITY	
¥25y	CM		A. NON DOT PECULAT	FD SOIL	20	Y
			В.		i.	
<i>•</i> .			C. ESK	M A GOUND		
			D.	TOAS		
			E	2-29-08		
			F	7.79.72		
			G.	a a a a a a a a a a a a a a a a a a a	-	
			Н.	14 C M		

SHIPPERS CERTIFICATION: This is to certify that the above named materials are properly classified, described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

PRINT SIGN SHIPPER PRI SIGN TRANSPORTER 1 PRI SIGN TRANSPORTER 2 ĎA 8 PRIN SIGN DA RECEIVED BY CHI 107

CHPT 25729

DOCUMEN	т но. 11392	21	l,		WORK	ORDER NO.	RE174130
TRANSPOR	TER 1 _C Laga	SI Line Co	RAIGHT BIL	L OF LADING			
EPA ID #	MADO	3432025	V. Jerviers	Tur	VEHICLE ID)#	60
TRANSPOR	TER 2	21210120			TRANS. 1 P	HONE 701	792 5000
EPA ID #					VEHICLE ID	# .	
				1	RANS 2 PH		
DESIGNATE	ED FACILITY						
FACILITY E	PAID#			SHIPPER			
ADDRESS	117			SHIPPER EPA ID	#		
CITY.	International	DAIVE		ADDRESS	1 0		
000	lon	STATE Z	(IP	CITY _D	plaide	ALEN LE	710
NO. & SIZE	S TYPE HM			Priovi deng	é l	121	ZIP
1725	CM	A	SCRIPTION	OF MATERIALS		QUANTITY	UNIT WT/VOL
		B.	Jost Raiju	uted Soil		20	X
		C.					
		D		\			
		5.					
1		ESIM	UKSmi	H.		-	
		F. 3/	06/08				
		G.	13/6-				
		H.	a/10				
SPECIAL HAN	DLING INSTRUCT	IONS			-		
"Long	dues ranzer	- portil 1	ord rol	and tustion	11	1 77 . 1.	
SHIP desc the a	PPERS CERTIFICA ribed, packaged, m pplicable regulatio	TION: This is to cer narked and labeled ns of the Departme	B.O.L rtify that the a and are in pr ent of Transp	bove named materia oper condition for tra portation.	als are prope ansportation	rly classified, according to	<u>}</u>
	PRINT		2	Vitigent for Te	1 hear		
SHIPPER C	PRINT	+r		Chiftle The	her "	DATE 36	-08
RANSPORTER	11 Advice	2 Britz	S	Aperison I	Bala	DATE	6-08
	PHINT R 2		S		/	DATE	-
	ESMI/ 1	Sinth	S	IGN A State	-	JAIL 3/	06/08
LULIVED			5				
407			(රු			2	

	(603) 782-0228 Ticket No : 242145 Date : 2/29/2008 Max Acceptable Scul 200.00	Job No 5596 Textron 333 Adelaide Aue Providence RI Firming Townage, 7.29	Tare: 54040 MMN WT In 5:03:15PM Tare: 49450 3cale 1 Out 5:24:21PM Net: 14550 1b Net: 14560 1b	Meterial 5 Delvery 5 Misc 5 Tax 5 Total 5
ESMI of N.H.	67 Internspional Drive Loudon, NH 03307 Customer CHeo	CLEAN HARBORS INC. (PROV., FI) 8 DEXTER RUAD EAST PROVIDENCE, FI 02914 Trucker	CH460 Clean Harbors #460 Gr WO01 WkSTE OIL	Briver: Autolu 2 MGELZ Briver: Autolu 2 Muto Remarks: Thank You For Your Business 7.29

	603) 783-0228	Ticket No : 242195	
ESMI of N.H. 67 International Drive		Date : 2/5/2008	
Loudon, NH 03307		Max. Acceptable Soil 200.00	
		Job No 5395	
CUSTOREY: CHOU CLEAN HARBORS INC. (PROV., RI) 8 DEXTER ROAD		Textrux 333 Adelaide Ave Providence Ri	
EAST PROVIDENCE, RI 02914		Running I cruisge. 20 cm	
Trucker CHE4131 CLEAN HARBORS #4131	Gross : Tare :	guido Scale 1 In 2:49:28FW 83450 Scale 1 Out - 2459,359M	1
WOOL WASTE OIL	Nat :	26700 lb 3.350	
Weigh Master: ANGELA		Material \$ Delvry \$	
DITUER: NON PU		Misc 5 Tax 5	
Remarks: Thank You For Your Business	2	Total \$	
20.04			1

CUSCO 4155 \$

WORK ORDE	ER NO	RIITY	1303
			10

DOCUMENT NO. 78246 STRAIGHT BILL OF LADING		
TRANSPORTER 1 Clean Harbors Environmental Services In	<vehicle #<="" id="" td=""><td>MA 62908</td></vehicle>	MA 62908
EPA ID #	TRANS. 1 PHONE	791-792-5000
TRANSPORTER 2 CLEUN Hanbons EN J. SUNVICES INC.	VEHICLE ID #	MA-62901
EPAID# MADU39322250	TRANS, 2 PHONE	781.792.5000-

DESIGNATED	FACILITY			SHIPPER			
clean Hach	ors of B	waint	rop The	Texton			
FACILITY EPA	ID #	Il series	The base and the	SHIPPER EPA ID #			
MAD 053452637 ADDRESS				RIDOO119	5015		1
				ADDRESS		1.1	and a street
1 Hill Avenue				40 westri	nster	St.	
CITY			STATE ZIP	CITY	-	STATE ZI	P
Brai	ntree	r	1A 02184	Providence	KI	029	03
NO. & SIZE	TYPE	НМ	DESCRIP	TION OF MATERIALS		QUANTITY	WT/VOL
1	11		A. N/A, NON DUT	Regulated Material,		617	G
			В.	<u> </u>			
	$\sum_{i=1}^{n-1} a_i \sum_{i=1}^{n-1} a_i \cdots \sum_{i=1}^{n-1} a_i \cdots a_i$		C.		1 1		
		10	D.				
-			E.				
· ·			F.		-		
	A MARCES	Start	G.		-	e inget so too	
	A CONTRACTOR		H.				

SHIPPERS CERTIFICATION: This is to certify that the above named materials are properly classified, described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

	As Agent of Textro	n	
SHIPPER	PRINT Philip S. Miller	SIGN Real ster	DATE 118.08
TRANSPORTER 1	PRINT Kevin Hurst	SIGN Kurst Aust	DATE 1-08
TRANSPORTER 2	DAUTO A BLINKLOW	Stor ARA	DATE 1/2208
RECEIVED BY	PRINT Krithl. Deusyshille	SIGN/LIN-ph	0/22-08
	5		
CHI 107			And the second second

Date - 1.2 2.0 8	H.W.F. Clear Hanbors of Buchwiner 1471 AUC BOOGFOTATE MA	45180 lb 07:35 01/22/2008 41260 lb 08:11 01/22/2008	122	Recorded
aintree, Inc. 18184	STARFT	Gross TARE NET	NKHONN	Driver ON DFF
Clean Harbors of Br <i>1 Hill Avent</i> Braintree, MA (Generator - TexTAON Www.rtm.trastr	CUSCO Trailer #/Can # 4155 Bor 2 # Manitest # 782 46	Drivers Name - Co # O B C	SW RJ 1741303

14			VACH 3	28	Site Address 333 Adelaide / Providence , R	Avenue RI 02905	
		2 ² 74		2. 	WORK O	RDER NO	PPW 11/28/200 RI1741303-00
OCUMENT N	o. 113'	723	STRAIGHT BILL	OF LADING			
RANSPORTE	R1 (Clean Har	bors Environmental Services Inc	1	VEHICLE ID	· G14	118-M
	ĥ	ADO	39322250	е х ,	TRANS, 1 PH	ONE	(781) 792-50
BANSPORTE	82		<u>.</u>	2 X	VEHICLE ID	#	
			2	4 55 1	TRANS 2 PH	ONE	
	-	÷.		2	- 110110 111		
	FACILITY	esine		SHIPPER	3		7
FACILITY EP	A ID #	0.0-		SHIPPER EPA	ID #	× 1	
ADDRESS	Deed Contract	0 2		ADDRESS			
CITY			STATE ZIP	CITY	ael Dissi	STATE	ZIP
South Portia	ind _	-	ME 04108	Providence		TOTAL	U2903
NO. & SIZE	TYPE	HM	A. N/A, NON DOT REGUL	OF MATERIAL	S (WASTEWATER)	QUANTITY	WT/VOL
X600D	TT	-	B. NONE (BOT	H COMPA	ATMYNTS)	5,400	G
			C.		×	-	r
			D.	e			
			E.				
		e	F.	· · · · · · · · · · · · · · · · · · ·		2	
			G.				
(1 -)*			H.			(4	
SPECIAL HAN A: CH29215	UDLING INS	TRUCT	IONS EMERGENCY PHONE #	(800) 483-3718			
SH des the	PPERS CEI cribed, paci applicable	RTIFICA kaged, r regulatio	TION: This is to certify that th narked and labeled and are in ons of the Department of Tra	e above named r proper condition nsportation.	materials are pr n for transporta	operly classif tion accordin	ied, g to
SHIPPERG	REGORY	ITL.	Surpson	SIGNAL	A	-	ATE 19.08
	ER 1 DE	UIL	A BLINKhow	SIGN	JA.B	Liller	1-19 '08 ATE
TRANSPORT	PRIM					1	
TRANSPORT TRANSPORT	ER 2 Y PRIN	IT	JANI	SIGN	al		ATE -18-08
TRANSPORT TRANSPORT RECEIVED B	PRIM ER 2 PBIN Y Th	nt omas	JParl 21	SIGN Shin J.	hl	C	ATE-18-08

	UUL		FRONT	REAR	37 Run South Portl 207-7 MED98	nery Road and, Maine 72-2201 0672182	
MANIFEST # BOX GENERATOR	11376	33	328		DATE:	41303	
j		Con	ideore (k	27-	1-19-0	30	
TRANSPORTE	R		1.		DRIVER		
Clean Harbo 358 Quincy A Braintree, M	rs Environ Lve. A 02184	amental Serv	ices Inc.		Phuc B	linkhorn	C
H 2	RIPTION:				SAMPLEB		1 -
					<u></u>		1.
TOTAL CALLONS	OIL TA	NK# WA	TER TANK#	TYPE OF OIL	SOLIDS	TYPE OF ACT	IVITY
5400		540	7 00			FFLOAD)
CENTRIFUCE	OIL%		Mil SI	ED%:	RAG%	ANALYST]
ANALYSIS PARAMETER	MLD.L. (mg/kg)	RESULT (mg/kg)	DATE	ACCEPTANCE	METHOD & REF#	ANALYST	c-1/50
CADMIUM	0.005			1.0 mg/kg	EPA213.1	6.7	1 Standard
CHROMIUM	0.05			S.0 mg/kg	EPA218.1	1	14-0,3
LEAD	0.1			5.0 mg/kg	EPA239.1		
SILVER	0.01			5.0 mg/kg	EPA272.1		indepets -
*NICKEL	0.01	- <u> </u>	<u>.</u>	N/A N/A	EPAZZO.I		1.
*ZINC	0.005			N/A	EPA2891		
рЦ	N/A	17	1.1878	2.0-12.5			
FLASH POINT	N/A	142	12.10 41	> 140" F	ASTM 1010-C		
РСВа		00		< 2.0 mg/l			· · ·
		This load i	's recommended	for acceptan			· · · ·
OMMENTS:			P / Hazardous Wastel	mits: acceptability ba	sed on treatability	· · · ·	
DOMMENTS: be waste oil that l' ish bazardous wast l waste oil collecto	we have rocci e. <u>I/we also he</u> <u>1</u>	* No EPA TCL vod or gaurated, 1 ereby acknowledg	to the best of my/our ke to the requirement to pe	owledge, meets the ab y = \$0.01 per gallon fo	pove waste oil specifica on to the MAINE HAZ	tions and has not been ARDOUS WASTE F	UND on
COMMENTS: be waste oil that I/ ith bazardou's wast I waste oil collecto	we have recei e. <u>I/we also he</u> d.	* No EPA TCI vod or generatod, i ereby acknowledg	to the best of my/our ke to the requirement to pe	iowledge, meets the ab <u>y a \$0,03 per gation k</u>	we to the MAINE HAZ	tions and has not been ARDOUS WASTE F	indzed <u>UND on</u> signsture
COMMENTS: be waste oil that li ith bazarduus was it waste oil collecto	we have rocei e. <u>I/we also he</u> <u>d</u>	* No EPA TCI vod or generated, 1 ereby acknowledg	to the best of my/our ka to the requirement to pa	iowlodge, meets the at <u>y a \$0,01 per gallon fe</u>	Nove waste oil specifics on the MAINE HAZ	tions and has not been ARDOUS WASTE F CHI suthorized	indood IND on ignature
COMMENTS: be waste oil that l' ith bazardous wast I waste oil collecto	we have receiv e. <u>L've also he</u> <u>d</u>	* No EPA TCI vod or generatod, i steby acknowledg	to the best of my/our ke to the requirement to pe	iowlodge, meets the at <u>y a \$0,0} per gallon fe</u>	Nove waste oil specifics to the MAINE HAZ	tions and has not been ARDOAS WASTE F CHI sutherized	intzed <u>ND og</u> ilgnsture
COMMENTS: be wate oil that IA its hazardous wast I waste oil collecto	we have rooci e. <u>I/we also he</u> <u>d</u>	* No EPA TCI vod or generated, sreby acknowledg	to the best of my/our ka to the requirement to pa	iowlodge, mosts the at <u>y a \$0,0} per gallon fe</u>	Nove waste oil specifics to the MAINE HAZ	tions and has not been ARDOAS WASTE F CHI authorized	indzed <u>ND 92</u> ilgnature
COMMENTS: be waste oil that If ith bazardous wast I waste oil collecto	we have roosi e. <u>Live also he</u> <u>d</u>	* No EPA TCI vod or generated, i stypy acknowledg	to the best of my/our ke to the requirement to pe	iowlodge, mosts the at <u>Y 8 \$0,0} per gallon fe</u>	Nove waste oil specifics to the MAINE HAZ	tions and has not been ARDOALS WASTE F CHI suthorized	infized <u>ND en</u> iignsture
COMMENTS: be waste oil that I/ ith bazardous wast I waste oil collecto	we have rooti e. <u>Live</u> sloo hi <u>d</u>	* No EPA TCI vod or generated, i strby acknowlodg	to the best of my/our ke to the requirement to pe	iowlodge, mosts the at <u>Y 8 \$0.0} per galion f</u>	ove waste oil specifics to the MAINE HAZ	tions and has not been ARDOALS WASTE F CHI suthorized	infized <u>ND on</u> ignsture
COMMENTS: be waste oil that li iti bazardous wast i waste oil collecto	we have rocei e. <u>Lvre siso h</u> d	* No EPA TCI vod or generated, i <u>strby acknowlode</u>	to the best of my/our ke se the requirement to pe	iowlodge, mosts the at <u>Y 8 \$0.03 per galion f</u>	bove waste oil specifics to the MAINE HAZ X	tions and has not been ARDOAS WASTE F	infized <u>IND ea</u> signature

1

R

Ξ,

					333 Adelaide A Providence , R	venue 1 02905				
		700			WORK OF	P RDER NO	PW 11/28/200 RI1741303-00			
OCUMENT NO	113	122	STRAIGHT BILL	OF LADING			3			
RANSPORTER	1	lean Harl	ors Environmental Services Inc		VEHICLE ID #	614	118 M			
PAID#	N	ADO	39322250	а.	_ TRANS. 1 PH	ONE	17812 799-58f			
ANSPORTER	2				VEHICLE ID #	i. Fra				
PAID #			10 N	1	TRANS, 2 PH	ONE				
				1		3				
Clean Harbor	FACILITY	sinc		SHIPPER	i i	······				
ACILITY EPA	ID #	0.0		SHIPPER EPA	ID#					
DDRESS				ADDRESS	the Chronet					
37 Rumery Ro)ad		STATE ZIP	CITY	Ster Street	STATE 2				
South Portland	1		ME 04108	Providence	·	TOTAL	U2903			
NO. & SIZE	TYPE	HM	DESCRIPTION A. N/A. NON DOT REGULA	OF MATERIAL	S WASTEWATER)	QUANTITY	WT/VOL			
× 6000	TT		NONE (BOTH	COMPANT	Menuts]	5100	61			
			C.				·			
		3	D							
			E.							
			F				·			
		-	G.							
			H.	······			-			
PECIAL HAND A: CH292151	DLING INS	TRUCTI	ONS EMERGENCY PHONE #	(800) 483-3718						
SHIF desc the a	PERS CER ribed, pack pplicable r	RTIFICA aged, m regulatio	TION: This is to certify that th arked and labeled and are in ns of the Department of Tra	e above named proper conditio nsportation.	materials are pro n for transportat	operly classifie ion according	d, to			
	EGORY		Supsal	SIGN MR	1	DA	15 00			
RANSPORTE	AIDA	UID	A. BLINKhond	Danie	MA.B	Let 1	118/08			
RANSPORTE	R 2			SIGN	2	DA	TE			
RECEIVED BY	The	was_	1 Min/	SIGN	Al	DA	F-18-08			
1 107		a 8 a	5	V						
LIF	allna	TUO	ß	I	RONT	# <u>308</u> (REAR)	S	37 Run South Port 207-7 MED98	nery Road land, Maine 72-2201 20672182	
-----	--	---------------------------------	---	---	--	--	--	---	---	---
	GENERATOR	113	122 Tex	tron	308	5	DATE:	T 17' 18-C	41303	
	TRANSPORT Clean Harb 358 Quincy Braintree, I	er ors Env Ave. MA 021	iroumental 84	Services	Inc.		DF	NC (Blinkhorn	C
	H20	CRIPTIO	A: -				SASIE	B		
V s	TOTAL CALLONS	OIL	TANK #	WATER	TANK	# TYPE OF OIL	SOLI	DS	TYPE OF ACT	ΤΥΤΥ
	5100			5100	う				A LONAU	
	CENTRIFUG ANALYSIS	Е ОЦ	.%	H20%	7%	SED%	RAG%		ANALYST CB]
	ANALYSIS PARAMETER	MLD. (mg/l	L RI kg) (1	SULT	DATE ANALYZ	ED ACCEPTAT	NCE MI	REF#	ANALYST	ca/se
	CADMIUM	0.00	15			1.0 mg/k	E	PA213.1	107	MANA SO
	CHROMIUM	0.0	5			5.0 mg/k	E E	PA218.1	1	
	LEAD	0.1				5.0 mg/k	E E	PA239.1	N.	
	SILVER	0.01	I			5.0 mg/k	E	PA272.1		11
q	*COPPER	0.01	2	:		N/A	E	PA220.1	1.1	
	*NICKEL	0.04	1			N/A	E	PA249.1		1. 2.
8.2	*ZINC	0.00	5		•	N/A	E	PA289.1		
	PU	N/I	1 2			2.0 - 12.5			1	a start
	POINT	N//	14	ú		> 140° F		ASTM 1010-C	е. 1910 — 1910 — 1910 — 1910 — 1910 — 1910 — 1910 — 1910 — 1910 — 1910 — 1910 — 1910 — 1910 — 1910 — 1910 — 1910 —	
	PCB		A	2	[:]	< 2.0 mg/	1			
	COMMENTS:		This l	rad is re	commen	ded for accep	tance			,
	The waste oil that with bazardonis w all waste oil collect	I've have	• No El received or gan lso hereby ackg	PATCLP/IL crated, to the lowlodge the	izardous Wa best of my/o requirement (ste limits: acceptabili ur knowledge, meds o pay a \$0,01 per ga	ty based on tr the above was lion fee to the	estability de oil specific MAINE HA	ations and has not been CARDOUS WASTE F	mixed UND on
			2 3					*		
	6.1 1027	2 °	19. V				X_		CHI authorized	signature
	2.223								4	
									• • •	· · · · · · · · · · · · · · · · · · ·
· .										1 K K K K K K K K K K K K K K K K K K K
					¥.)					
							8		1	
					•					
					ν.	۵.	. ;		8 1 3	
					*.		':•			
					*.	20			*	

			VAC # 321	8	Site Address: 333 Adelaide A Providence , R	venue 02905	
			2 <u>8</u>		WORK OF	P	PW 11/28/200 RI1741303-00
COUNTRY NO	113	724	CTRAICHT BILL				E.
		lean Har	bors Environmental Services Inc	OF ERDING		614	118
RANSPOHIER	11 <u> </u>	ADD	39322250		TRANS 1 PH	ONE	(781) 792-500
PA 10 #		/					
HANSPUHIER	12				TRANS OF	ONE	52
PAID #					_ THANS. 2 PH	ONE	· · ·
DESIGNATED	FACILITY		· · · · · · · · · · · · · · · · · · ·	SHIPPER	0		1
Clean Harbor	ID #	es inc	· · · ·	SHIPPER EPA		· · · · · · · · · · · · · · · · · · ·	
MED98 ADDRESS	06721	8 2		ADDRESS	1195415		
37 Rumery R	load		STATE ZIP	40 Westmins CITY	ter Street	STATE 2	ZIP
South Portlar	nd	 T	ME 04106	Providence	· · · · ·	RI	02903
NO. & SIZE	TYPE	НМ			S WASTEWATERI	QUANTITY	WT/VOL
1×6000	TT		NONE (BATH	COMPANTM	INTS)	3800	G
			в.				
97 1. m	*		C.	-	-		
		x.	D.				
			E		2		
			F.	2 		1	
			G.		-	1.	
			H.				
SPECIAL HAN	DLING INS	STRUCT	IONS EMERGENCY PHONE #.	(800) 483-3718			1
A: CH292101							14
SHI des the	PPERS CE cribed, pac applicable	RTIFICA kaged, r regulatio	TION: This is to certify that th narked and labeled and are in ons of the Department of Tra	e above named n proper conditio nsportation.	materials are pr n for transporta	operly classifie tion according	ed, to
SHIPPER G	REGORY	TL-	Supson	SIGN	et-	- 9	19.08
TRANSPORTE	RIDA	TI	A. BLENKHONN	(SIGN Curry	XR	DI PA	TE .08
TRANSPORT	PRI	NT		SIGN	\wedge	DA	TE
RECEIVED BY	PE	T	least	SIGN	NIE	ml DA	TE 2/-09
			21				
HI 107	4		7		÷		
A Distances							

LIF	annar	UU	US.	E (F	RONT A	REAR	3 Sout M	7 Rum h Portl 207-77 fED98	ery Road and, Maine 72-2201 0672182	
	GENERATOR	13.	DY Tex	RMA tron	398	RI	DATE:	974 97	1303 D8	GWT
	TRANSPORTE Clean Harb 358 Quincy Braintree, N	CR ors En Ave. 1A 02	vironmenta 184	l Services L	nc. 7	8	DRIVER	C(Blinkhorn	C
	SAMPLE DESC		ON:	8	2		TR.			
i ng	TOTAL CALLONS	OIL	TANK #	WATER	TANK #	TYPE OF OIL	SOLIDS	-	TYPE OF ACT	IVITY
	CENTRIFUGI	E O	Ц%	H20%	SE /	D%	RAC%	6 t	ANALYST	<u>se</u>
	ANALYSIS PARAMETER	MLI (m)	D.L. R. 1/41) (1	ESULT me/kg)	DATE	ACCEPTANC	E METH REI	OD &	ANALYST	
	CADMIUM CHROMIUM LEAD	0.0	05			1.0 mg/kg 5.0 mg/kg 5.0 mg/kg	EPA2 EPA2 EPA2	13.1 18.1 39.1		
	SILVER *COPPER *NICKEL	0. 0. 0.	01 02 04	:		5.0 mg/kg N/A N/A	EPA2 EPA2 EPA2	72.1 20.1 49.1	· · · · · · · · · · · · · · · · · · ·	1 tota so
. •	*ZINC PH FLASH POINT	0.0 Ni			1-19.05	N/A 2.0-12.5 >140* F	EPA2 AST. 1010	89.1 M -C	<u> </u>	
-	PCB ₉		0	0		< 2.0 mg/1		1		
	COMMENTS: The wase oil that with hazardous wa all wase oil collect	live have	"No E "No E e received or ga also hereby ack	PATCLP/IIA nerated, to the b	cardous Waste li est of any/our ka quirement to par	for acceptability owlodge, mode the re \$0.01 per pallor	based on treatat above waste of a for to the MAI	bility Ispecific NE HAZ	stions and has not been ARDOUS WASTE FL	mixed ND on
*			en en		2	×	x	±:	CHI sutherized s	ignalure.
			u O				':		e a x a	
					а - с	5 x		-		

Appendix C

ESS Laboratory Reports

(March 1995 UST Report and 2008)

1528109

March 27, 1995

PN: 09111.09

Mr. Dan Russell Rhode Island Department of Environmental Management Division of Waste Management - UST Section 291 Promenade Street Providence, Rhode Island 02908-5767

Subject: Underground Storage Tanks 333 Adelaide Avenue, Providence

MAR 30 1995

Dear Mr. Russell:

This letter presents the findings of ABB Environmental Services, Inc.'s (ABB-ES) investigation of the two underground storage tanks (USTs) located behind Building N on the 333 Adelaide Avenue property in Providence, Rhode Island. As you are aware, the tanks were scheduled to be excavated on February 27, 1995 under a closure permit granted by Rhode Island Department of Environmental Management (RIDEM) UST Section. However, prior to commencing tank removal activities, ABB-ES undertook exploratory excavation to determine tank size, orientation and contents.

Results of Tank Investigation

On February 24, 1995, ABB-ES personnel and its subcontractor, Franklin Environmental Services, Inc. (Franklin) were on site to excavate soil surrounding the tanks to expose the tops of the tanks and manways. Results of this investigation showed that there are two USTs located behind (north of) Building N (see attached figure). The tanks are located side by side, with the long axis of the two tanks oriented north/south. An unknown length of the tanks appears to extend beneath the building. Each tank is approximately 30 feet long and 8 feet in diameter with an estimated capacity of approximately 15,000 gallons.

During excavation activities, the excavated soils were field screened with a portable photoionization detector (PID) for volatile organic compounds. PID readings were non-detectable.

No access ports were observed on the excavated portions of the tanks. However, a manway providing access to the eastern tank (Tank 1) was observed inside Building N. This manway had a pump and piping, and one of the pipes leads to an aboveground steel storage tank. An access port to Tank 2 was not found, either within the building or along the excavated top of the tank.

The manway on the eastern tank was opened and the tank appeared to be entirely full of water. No sheen was observed on the water surface. PID readings taken in the manway were nondetectable. A sample of the water collected for headspace analysis was also non-detectable. A sample of the water was collected for analysis of VOCs by EPA Method 8240 at a Rhode Island certified laboratory. No VOC's were detected in this aqueous sample. Laboratory analytical reports are attached.

ABB Environmental Services, Inc.

Corporate Place 128 107 Audubon Road Wakelield, MA 01880 Telephone (617) 245-6606 Fax (617) 246-5060

Mr. Dan Russell March 27, 1995 Page 2

A site-wide Remedial Investigation is currently being undertaken, and a groundwater table map has been developed for the property. The USTs are located above the water table indicating that the tanks are not submerged in groundwater, and that the material housed in the tanks was not the result of groundwater infiltration. Recently, the basement of Building N has flooded due to pipe breaks, and a leaking roof and floor boards. This water may have entered the tanks through gaps in piping or the manway. If oil had been originally contained in the tanks, the water in the basement would have forced oil out of the tank. However, no oil or staining was observed on the basement floor, the manway or the piping.

No vent or fill pipes were identified in the vicinity of the tanks or Building N, offering additional \times evidence that these tanks were not used for oil storage. Furthermore, Building N did not accommodate a furnace or a boiler.

Upon completion of the tank investigation activities, the excavation around the tanks was backfilled and the site restored to previous conditions. RIDEM was verbally notified of our findings and tank closure activities planned for February 27, 1995 were canceled.

Conclusions

Based on the information obtained, ABB-ES concludes that the tanks were likely used for water storage for firefighting purposes, and not for the storage of fuel oil or hazardous materials. Since the USTs located behind Building N do not contain petroleum products or hazardous materials, they are not regulated under RIDEM regulations (DEM-DWM-UST05-93, Section 5.03). Because they are not used for fuel or hazardous material storage, and because they extend under the building, we do not propose to remove or close the tanks at this time.

Sincerely,

cc:

ABB ENVIRONMENTAL SERVICES, INC.

Kachleen Donovan

Kathleen Donovan Scientist

Ellen Ø. Cool, Ph.D. Regional Project Director

R. Brayley, Textron, Inc.
J. Palmieri, City of Providence, Department of Planning
J. Teverow, Esq.
G. Benik, McGovern, Noel, & Benik, Esq.
M. Dennen, RIDEM

Invin

In Response To The Future

March 9, 1995

Ms. Ellen Cool ABB Environmental Services Corporate Place 128 Bldg. 3 107 Audubon Road Wakefield, MA 01880

Dear Ms. Cool:

Enclosed is the data report of laboratory test results for the analyses of the samples which were received at ESS on February 24, 1995 as part of your Gorham/Textron project number 09111-09.

This letter authorizes the release of your analytical results and should be considered a part of this report. This report should not be copied except in full without the approval of the laboratory.

The Project Invoice for this data report is being forwarded to your Accounts Payable Department. If you have any questions please feel free to call.

son Laboratory Director

Enclosure

Environmental Science Services An Equal Opportunity Employer 532 Arwells Avenue, Providence, Rhode Island 02909 (401) 421-0398 Fax (401) 421-5731

LERTIFICATE OF ANALYSIS

In Response To The Future

VOLATILE ORGANICS Method 8240

Client: ABB Environmental Services Client Project ID: Gorham/Textron ESS Project ID: 950858 Client Sample ID: Gorham/Textron 2/24 ESS Sample ID: 950858-01 Date Sampled: 2/24/95 Dilution Factor: 1x Date Analyzed: 3/8/95 Units: ug/L

Result MRL Parameter ND Chloromethane 10 Vinyl Chloride ND 10 ND Bromomethane 10 ND 10 Chloroethane ND 5 Trichlorofluoromethane 5 ND 1,1-Dichloroethene Acetone 50 ND 5 ND Carbon Disulfide 5 Methylene Chloride ND Methyl tert-Butyl Ether ND 10 5 Trans-1,2-Dichloroethene ND 5 ND 1,1-Dichloroethane 5 ND Cis-1,2-Dichloroethene Methyl Ethyl Ketone ND 50 5 ND Chloroform 5 ND 1,1,1-Trichloroethane 5 Carbon Tetrachloride ND 5 ND Benzene 5 1,2-Dichloroethane ND 5 Trichloroethene ND 5 1,2-Dichloropropane ND 5 ND Bromodichloromethane 5 Cis-1,3-Dichloropropene Methyl Isobutyl Ketone ND 50 ND 5 ND Toluene 5 ND Trans-1, 3-Dichloropropene 5 ND 1,1,2-Trichloroethane 5 ND Tetrachloroethene 50 ND 2-Hexanone 5 ND Dibromochloromethane 5 ND Chlorobenzene 5 ND Ethylbenzene 10 ND Xylenes (Total) 5 ND Styrene 5 ND Bromoform 5 1,1,2,2-Tetrachloroethane ND 10 ND Dichlorobenzene (Total)

ND = Not Detected above Method Reporting Limit (MRL)

Approved by: 3/1 hall

3/4/45 Date:

CHALITY SYSTEM REGISTRATION

Environmental Science Services

532 Atwells Avenue, Providence, Rhode Island 02909 (401) 421-0398 Fax. (401) 421-5731

QUALITY CONTROL SECTION

CERTIFICATE OF ANALYSIS

In Response To The Future

VOA AQUEOUS SURROGATE RECOVERY

Client: ABB Environmental Services

Client Project ID: Gorham/Textron

Date Sample Analyzed: 3/8/95

ESS Project ID: 950858

SAMPLE ID	1,2 DICHLOROETHANE-D4 (76-114%)*	TOLUENE-D8 (86-110%)*	BFB (86-115%)*
 V0308B1	77%	97%	97%
950858-01	77	96	95

* Acceptance criteria

11le Approved by: Environmental Science Services

Date: 3/4/45

QUALITY SYSTEM REGISTRATION

532 Atwells Avenue, Providence, Rhode Island 02909 (401) 421-0398 Fax. (401) 421-5731

ERTIFICATE OF ANALYS!

In Response To The Future

VOLATILE ORGANICS Method 8240

Client: ABB Environmental Services Client Project ID: Gorham\Textron Client Sample ID: Method Blank Date Sampled: N/A Date Analyzed: 3/8/95

ESS Project ID: 950858 ESS Sample ID: V0308B1 Dilution Factor: 1x Units: ug/L

Parameter	Result	MRL
Chloromethane	ND	10
Vinvl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ND	10
Trichlorofluoromethane	ND	5
1.1-Dichloroethene	ND	5
Acetone	ND	50
Carbon Disulfide	ND	5
Methylene Chloride	ND	5
Methyl tert-Butyl Ether	ND	10
Trans-1,2-Dichloroethene	ND	5
1.1-Dichloroethane	ND	5
Cis-1,2-Dichloroethene	ND	5
Methyl Ethyl Ketone	ND	50
Chloroform	ND	5
1.1.1-Trichloroethane	ND	5
Carbon Tetrachloride	ND	5
Benzene	ND	5
1.2-Dichloroethane	ND	5
Trichloroethene	ND	5
1.2-Dichloropropane	ND	5
Bromodichloromethane	ND	5
Cis-1.3-Dichloropropene	ND	5
Methyl Isobutyl Ketone	ND	50
Toluene	ND	5
Trans-1, 3-Dichloropropene	ND	5
1.1.2-Trichloroethane	ND	5
Tetrachloroethene	ND	5
2-Hexanone	ND	50
Dibromochloromethane	ND	5
Chlorobenzene	ND	5
Ethylbenzene	ND	5
Xvlenes (Total)	ND	10
Styrene	ND	5
Bromoform	ND	5
1 1 2 2-Tetrachloroethane	ND	5
Dichlorobenzene (Total)	ND	10

N/A = Not ApplicableND = Not Detected above Method Reporting Limit (MRL)

Approved by: All She

Date: 3/9/95

Environmental Science Services 532 Atwells Avenue, Providence, Rhode Island 02909 (401) 421-0398 Fax. (401) 421-5731

QUALITY SYSTEM

REGISTRATION

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

PROJECT NARRATIVE

David Heislein MACTEC Engineering & Consulting, Inc. 107 Audubon Road Wakefield, MA 01880

RE: Providence Gorham Site ESS Laboratory Work Order Number: 0801152

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this Project Narrative, the entire report has been paginated. The ESS Laboratory Certifications sheet is the final report page. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been mailed. If you have any questions or concerns, please feel free to call our Customer Service Department.

-Lamel Hold

Laurel Stoddard Laboratory Director Date: January 16, 2008

1

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration may be used instead of automated integration because it produces more accurate results. All ICP Metals were analyzed using the established linear dynamic range to determine acceptable analytical results.

ESS Laboratory certifies that the test results meet the requirements of NELAC, except where noted within this project narrative.

Sample Receipt

The following sample(s) were received on January 15, 2008 for the analyses specified on the enclosed Chain of Custody Record.

Laboratory IDMatrix0801152-01Ground Water

Client SampleID West UST

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801152

PROJECT NARRATIVE

8260B Volatile Organic Compounds

BA81511-BS1 Blank Spike recovery is above upper control limit. tert-Butylbenzene, Vinyl Chloride

8270C Semi-Volatile Organic Compounds

- BA81509-BS1 Blank Spike recovery is below lower control limit. Benzoic Acid
- BA81509-BSD1 Blank Spike recovery is below lower control limit.
- Benzoic Acid
- BA81509-BSD1 Relative percent difference for duplicate is outside of criteria. 2,4-Dinitrophenol, N-Nitrosodimethylamine, Pyridine
- BRA0141-CCV1 Continuing Calibration recovery is below lower control limit. 2,4-Dinitrophenol

8270C(SIM) Polynuclear Aromatic Hydrocarbons

0801152-01 Reported above the quantitation limit; Estimated value. 2-Methylnaphthalene

No other observations noted.

End of Project Narrative.

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: West UST Date Sampled: 01/15/08 10:30 Percent Solids: N/A Initial Volume: 10 Final Volume: 10 Extraction Method: 5030B

ESS Laboratory Work Order: 0801152 ESS Laboratory Sample ID: 0801152-01 Sample Matrix: Ground Water Analyst: RES

8260B Volatile Organic Compounds

				RI - GA		
Analyte 1,1,1,2-Tetrachloroethane	Results ND	Units mg/L	MRL 0.0010	Limit	$\frac{\mathbf{DF}}{1}$	Analyzed 01/15/08
1,1,1-Trichloroethane	ND	mg/L	0.0010	0.2	1	01/15/08
1,1,2,2-Tetrachloroethane	ND	mg/L	0.0005		1	01/15/08
1,1,2-Trichloroethane	ND	mg/L	0.0010	0.005	1	01/15/08
1,1-Dichloroethane	ND	mg/L	0.0010		1	01/15/08
1,1-Dichloroethene	ND	mg/L	0.0010	0.007	1	01/15/08
1,1-Dichloropropene	ND	mg/L	0.0020		1	01/15/08
1,2,3-Trichlorobenzene	ND	mg/L	0.0010		1	01/15/08
1,2,3-Trichloropropane	ND	mg/L	0.0010		1	01/15/08
1,2,4-Trichlorobenzene	ND	mg/L	0.0010	0.07	1	01/15/08
1,2,4-Trimethylbenzene	0.0070	mg/L	0.0010		1	01/15/08
1,2-Dibromo-3-Chloropropane	ND	mg/L	0.0050	0.0002	1	01/15/08
1,2-Dibromoethane	ND	mg/L	0.0010	0.00005	1	01/15/08
1,2-Dichlorobenzene	ND	mg/L	0.0010	0.6	1	01/15/08
1,2-Dichloroethane	ND	mg/L	0.0010	0.005	1	01/15/08
1,2-Dichloropropane	ND	mg/L	0.0010	0.005	1	01/15/08
1,3,5-Trimethylbenzene	0.0012	mg/L	0.0010		1	01/15/08
1,3-Dichlorobenzene	ND	mg/L	0.0010	0.6	1	01/15/08
1,3-Dichloropropane	ND	mg/L	0.0010		1	01/15/08
1,4-Dichlorobenzene	ND	mg/L	0.0010	0.075	1	01/15/08
1,4-Dioxane - Screen	ND	mg/L	0.500		1	01/15/08
1-Chlorohexane	ND	mg/L	0.0010		1	01/15/08
2,2-Dichloropropane	ND	mg/L	0.0010		1	01/15/08
2-Butanone	ND	mg/L	0.0250		1	01/15/08
2-Chlorotoluene	ND	mg/L	0.0010		1	01/15/08
2-Hexanone	ND	mg/L	0.0100		1	01/15/08
4-Chlorotoluene	ND	mg/L	0.0010		1	01/15/08
4-Isopropyltoluene	ND	mg/L	0.0010		1	01/15/08
4-Methyl-2-Pentanone	ND	mg/L	0.0250		1	01/15/08
Acetone	ND	mg/L	0.0250		1	01/15/08
Benzene	ND	mg/L	0.0010	0.005	1	01/15/08
Bromobenzene	ND	mg/L	0.0020		1	01/15/08
Bromochloromethane	ND	mg/L	0.0010		1	01/15/08
Bromodichloromethane	ND	mg/L	0.0006		1	01/15/08
Bromoform	ND	mg/L	0.0010		1	01/15/08
185 Frances Avenue, Cranston	, RI 02910-2211 Dene	Tel: 40 ndability)1-461-7181 • Ouality	Fax: 401-461-4486 • Service	http://ww	w.ESSLaboratory.com

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: West UST Date Sampled: 01/15/08 10:30 Percent Solids: N/A Initial Volume: 10 Final Volume: 10 Extraction Method: 5030B

ESS Laboratory Work Order: 0801152 ESS Laboratory Sample ID: 0801152-01 Sample Matrix: Ground Water Analyst: RES

8260B Volatile Organic Compounds

Bromomethane	ND	mg/L	0.0020		1	01/15/08
Carbon Disulfide	ND	mg/L	0.0010		1	01/15/08
Carbon Tetrachloride	ND	mg/L	0.0010	0.005	1	01/15/08
Chlorobenzene	ND	mg/L	0.0010	0.1	1	01/15/08
Chloroethane	ND	mg/L	0.0020		1	01/15/08
Chloroform	ND	mg/L	0.0010		1	01/15/08
Chloromethane	ND	mg/L	0.0020		1	01/15/08
cis-1,2-Dichloroethene	ND	mg/L	0.0010	0.07	1	01/15/08
cis-1,3-Dichloropropene	ND	mg/L	0.0004		1	01/15/08
Dibromochloromethane	ND	mg/L	0.0010		1	01/15/08
Dibromomethane	ND	mg/L	0.0010		1	01/15/08
Dichlorodifluoromethane	ND	mg/L	0.0020		1	01/15/08
Diethyl Ether	ND	mg/L	0.0010		1	01/15/08
Di-isopropyl ether	ND	mg/L	0.0010		I	01/15/08
Ethyl tertiary-butyl ether	ND	mg/L	0.0010		1	01/15/08
Ethylbenzene	ND	mg/L	0.0010	0.7	1	01/15/08
Hexachlorobutadiene	ND	mg/L	0.0006		1	01/15/08
Hexachloroethane	ND	mg/L	0.0010		1	01/15/08
lsopropylbenzene	ND	mg/L	0.0010		1	01/15/08
Methyl tert-Butyl Ether	ND	mg/L	0.0010	0.04	1	01/15/08
Methylene Chloride	ND	mg/L	0.0040	0.005	1	01/15/08
Naphthalene	0.0079	mg/L	0.0010	0.02	1	01/15/08
n-Butylbenzene	ND	mg/L	0.0010		1	01/15/08
n-Propylbenzene	ND	mg/L	0.0010		1	01/15/08
sec-Butylbenzene	ND	mg/L	0.0010		1	01/15/08
Styrene	ND	mg/L	0.0010	0.1	1	01/15/08
tert-Butylbenzene	ND	mg/L	0.0010		1	01/15/08
Tertiary-amyl methyl ether	ND	mg/L	0.0010		1	01/15/08
Tetrachloroethene	ND	mg/L	0.0010	0.005	1	01/15/08
Tetrahydrofuran	ND	mg/L	0.0050		1	01/15/08
Toluene	ND	mg/L	0.0010	1	1	01/15/08
trans-1,2-Dichloroethene	ND	mg/L	0.0010	0.1	1	01/15/08
trans-1,3-Dichloropropene	ND	mg/L	0.0005		1	01/15/08
Trichloroethene	ND	mg/L	0.0010	0.005	1	01/15/08
Trichlorofluoromethane	ND	mg/L	0.0010		1	01/15/08
Vinyl Acetate	ND	mg/L	0.0050		1	01/15/08

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181 Fax Dependability + Ouality +

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: West UST Date Sampled: 01/15/08 10:30 Percent Solids: N/A Initial Volume: 10 Final Volume: 10 Extraction Method: 5030B

ESS Laboratory Work Order: 0801152 ESS Laboratory Sample ID: 0801152-01 Sample Matrix: Ground Water Analyst: RES

8260B Volatile Organic Compounds

Vinyl Chloride	ND	mg/L	0.0010	0.002	1	01/15/08
Xylene O	0.0016	mg/L	0.0010	10	1	01/15/08
Xylene P,M	ND	mg/L	0.0020	10	1	01/15/08
Xylenes (Total)	ND	mg/L	0.0030	10	1	01/15/08
Trihalomethanes (Total)	ND	mg/L	0.0036	0.1		01/15/08

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	89 %		70-130
Surrogate: 4-Bromofluorobenzene	99 %		70-130
Surrogate: Dibromofluoromethane	99 %		70-130
Surrogate: Toluene-d8	99 %		70-130

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: West UST Date Sampled: 01/15/08 10:30 Percent Solids: N/A Initial Volume: 950 Final Volume: 1 Extraction Method: 3520C

ESS Laboratory Work Order: 0801152 ESS Laboratory Sample ID: 0801152-01 Sample Matrix: Ground Water Analyst: VSC Prepared: 01/15/08

8270C Semi-Volatile Organic Compounds

				RI - GA		
Analyte 1,1-Biphenyl	Results ND	Units mg/L	MRL 0.01	Limit	$\frac{\mathbf{DF}}{1}$	Analyzed 01/16/08
1,2,4-Trichlorobenzene	ND	mg/L	0.01	0.07	1	01/16/08
1,2-Dichlorobenzene	ND	mg/L	0.01	0.6	1	01/16/08
1,3-Dichlorobenzene	ND	mg/L	0.01	0.6	1	01/16/08
1,4-Dichlorobenzene	ND	mg/L	0.01	0.075	1	01/16/08
2,3,4,6-Tetrachlorophenol	ND	mg/L	0.05		1	01/16/08
2,4,5-Trichlorophenol	ND	mg/L	0.01		1	01/16/08
2,4,6-Trichlorophenol	ND	mg/L	0.01		1	01/16/08
2,4-Dichlorophenol	ND	mg/L	0.01		1	01/16/08
2,4-Dimethylphenol	ND	mg/L	0.05		1	01/16/08
2,4-Dinitrophenol	ND	mg/L	0.05		1	01/16/08
2,4-Dinitrotoluene	ND	mg/L	0.01		1	01/16/08
2,6-Dinitrotoluene	ND	mg/L	0.01		1	01/16/08
2-Chloronaphthalene	ND	mg/L	0.01		1	01/16/08
2-Chlorophenol	ND	mg/L	0.01		1	01/16/08
2-Methylnaphthalene	0.03	mg/L	0.01		1	01/16/08
2-Methylphenol	ND	mg/L	0.01		1	01/16/08
2-Nitroaniline	ND	mg/L	0.01		1	01/16/08
2-Nitrophenol	ND	mg/L	0.01		1	01/16/08
3,3'-Dichlorobenzidine	ND	mg/L	0.02		1	01/16/08
3+4-Methylphenol	ND	mg/L	0.02		1	01/16/08
3-Nitroaniline	ND	mg/L	0.01		1	01/16/08
4,6-Dinitro-2-Methylphenol	ND	mg/L	0.05		1	01/16/08
4-Bromophenyl-phenylether	ND	mg/L	0.01		1	01/16/08
4-Chloro-3-Methylphenol	ND	mg/L	0.01		1	01/16/08
4-Chloroaniline	ND	mg/L	0.02		1	01/16/08
4-Chloro-phenyl-phenyl ether	ND	mg/L	0.01		1	01/16/08
4-Nitroaniline	ND	mg/L	0.01		1	01/16/08
4-Nitrophenol	ND	mg/L	0.05		1	01/16/08
Acetophenone	ND	mg/L	0.01		1	01/16/08
Aniline	ND	mg/L	0.01		1	01/16/08
Azobenzene	ND	mg/L	0.02		1	01/16/08
Benzoic Acid	ND	mg/L	0.1		1	01/16/08
Benzyl Alcohol	ND	mg/L	0.01		1	01/16/08
bis(2-Chloroethoxy)methane	ND	mg/L	0.01		1	01/16/08
185 Frances Avenue Cranston J	RI 02910-2211	Tel: 40	01-461-7181	Fax: 401-461-4486	http://w	ww.ESSLaboratory.co

Dependability

Quality

Service

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: West UST Date Sampled: 01/15/08 10:30 Percent Solids: N/A Initial Volume: 950 Final Volume: 1 Extraction Method: 3520C

ESS Laboratory Work Order: 0801152 ESS Laboratory Sample ID: 0801152-01 Sample Matrix: Ground Water Analyst: VSC Prepared: 01/15/08

8270C Semi-Volatile Organic Compounds

bis(2-Chloroethyl)ether	ND	mg/L	0.01			1	01/16/08
bis(2-chloroisopropyl)Ether	ND	mg/L	0.01			1	01/16/08
bis(2-Ethylhexyl)phthalate	ND	mg/L	0.006		0.006	1	01/16/08
Butylbenzylphthalate	ND	mg/L	0.01			1	01/16/08
Carbazole	ND	mg/L	0.01			1	01/16/08
Dibenzofuran	ND	mg/L	0.01			1	01/16/08
Diethylphthalate	ND	mg/L	0.01			1	01/16/08
Dimethylphthalate	ND	mg/L	0.01			1	01/16/08
Di-n-butylphthalate	ND	mg/L	0.01			1	01/16/08
Di-n-octylphthalate	ND	mg/L	0.01]	01/16/08
Hexachlorobenzene	ND	mg/L	0.01		0.001	1	01/16/08
Hexachlorobutadiene	ND	mg/L	0.01			1	01/16/08
Hexachlorocyclopentadiene	ND	mg/L	0.05			1	01/16/08
Hexachloroethane	ND	mg/L	0.005			1	01/16/08
Isophorone	ND	mg/L	0.01			1	01/16/08
Nitrobenzene	ND	mg/L	0.01			1	01/16/08
N-Nitrosodimethylamine	ND	mg/L	0.01			1	01/16/08
N-Nitroso-Di-n-Propylamine	ND	mg/L	0.01			1	01/16/08
N-nitrosodiphenylamine	ND	mg/L	0.02			1	01/16/08
Pentachlorophenol	ND	mg/L	0.05		0.001	1	01/16/08
Phenol	ND	mg/L	0.01			I	01/16/08
Pyridine	ND	mg/L	0.1			1	01/16/08
	%R	ecovery	Qualifier	Limits	-		
Surrogate: 1,2-Dichlorobenzene-d4		71 %		30-130			
Surrogate: 2,4,6-Tribromophenol		81 %		15-110			
Surrogate: 2-Chlorophenol-d4		67 %		15-110			
Surrogate: 2-Fluorobiphenyl		79 %		30-130			
Surrogate: 2-Fluorophenol		65 %		15-110			
Surrogate: Nitrobenzene-d5		80 %		30-130			
Surrogate: Phenol-d6		69 %		15-110			
Surrogate: p-Terphenyl-d14		83 %		30-130			

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: West UST Date Sampled: 01/15/08 10:30 Percent Solids: N/A Initial Volume: 910 Final Volume: 0.25 Extraction Method: 3510C

ESS Laboratory Work Order: 0801152 ESS Laboratory Sample ID: 0801152-01 Sample Matrix: Ground Water Analyst: VSC Prepared: 01/15/08

8270C(SIM) Polynuclear Aromatic Hydrocarbons

					RI - GA		
<u>Analyte</u> 2-Methylnaphthalene	E	Results 0.0196	Units mg/L	MRL 0.00022	Limit	$\frac{\mathbf{DF}}{1}$	Analyzed 01/16/08
Acenaphthene		0.00032	mg/L	0.00022		1	01/16/08
Acenaphthylene		ND	mg/L	0.00022		1	01/16/08
Anthracene		ND	mg/L	0.00022		1	01/16/08
Benzo(a)anthracene		ND	mg/L	0.00005		1	01/16/08
Benzo(a)pyrene		ND	mg/L	0.00005	0.0002	1	01/16/08
Benzo(b)fluoranthene		ND	mg/L	0.00005		1	01/16/08
Benzo(g,h,i)perylene		ND	mg/L	0.00022		1	01/16/08
Benzo(k)fluoranthene		ND	mg/L	0.00005		1	01/16/08
Chrysene		ND	mg/L	0.00005		1	01/16/08
Dibenzo(a,h)Anthracene		ND	mg/L	0.00005		1	01/16/08
Fluoranthene		ND	mg/L	0.00022		1	01/16/08
Fluorene		0.00052	mg/L	0.00022		1	01/16/08
Iexachlorobenzene		ND	mg/L	0.00022	0.001	1	01/16/08
ndeno(1,2,3-cd)Pyrene		ND	mg/L	0.00005		1	01/16/08
Naphthalene		0.00317	mg/L	0.00022	0.02	1	01/16/08
Phenanthrene		0.00046	mg/L	0.00022		1	01/16/08
Pyrene		ND	mg/L	0.00022		1	01/16/08
		%Re	covery	Qualifier	Limits		* **

Surrogate: 1,2-Dichlorobenzene-d4	42 %	30-130
Surrogate: 2,4,6-Tribromophenol	80 %	15-110
Surrogate: 2-Fluorobiphenyl	64 %	30-130
Surrogate: Nitrobenzene-d5	51 %	30-130
Surrogate: p-Terphenyl-d14	76 %	30-130

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801152

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
L	8	260B Vola	tile Orgar	nic Com	pounds					
Batch BA81511 - 5030B										
Blank				1.8.5				11 P - 1 P - 1		
1,1,1,2-Tetrachloroethane	ND	0.0010	mg/L							
1,1,1-Trichloroethane	ND	0.0010	mg/L							
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L							
1,1,2-Trichloroethane	ND	0.0010	mg/L							
1,1-Dichloroethane	ND	0.0010	mg/L							
1,1-Dichloroethene	ND	0.0010	mg/L							
1,1-Dichloropropene	ND	0.0020	mg/L							
1,2,3-Trichlorobenzene	ND	0.0010	mg/L							
1,2,3-Trichloropropane	ND	0.0010	mg/L							
1,2,4-Trichlorobenzene	ND	0.0010	mg/L							
1,2,4-Trimethylbenzene	ND	0.0010	mg/L							
1,2-Dibromo-3-Chloropropane	ND	0.0050	mg/L							
1,2-Dibromoethane	ND	0.0010	mg/L							
1.2-Dichlorobenzene	ND	0.0010	mg/L							
1,2-Dichloroethane	ND	0.0010	mg/L							
1.2-Dichloropropane	ND	0.0010	mg/L							
1,3,5-Trimethylbenzene	ND	0.0010	mg/L							
1.3-Dichlorobenzene	ND	0.0010	mg/L							
1.3-Dichloropropane	ND	0.0010	mg/L							
1.4-Dichlorobenzene	ND	0.0010	mg/L							
1.4-Dloxane - Screen	ND	0.500	mg/L							
1-Chlorohexane	ND	0.0010	mg/L							
2.2-Dichloropropane	ND	0.0010	mg/L							
2-Butanone	ND	0.0250	ma/L							
2-Chlorotoluene	ND	0.0010	mg/L							
2-Hexanone	ND	0.0100	mg/L							
4-Chlorotoluene	ND	0.0010	mg/L							
4-Isopropyltoluene	ND	0.0010	mg/L							
4-Methyl-2-Pentanone	ND	0.0250	mg/L							
Acetone	ND	0.0250	mg/L							
Benzene	ND	0.0010	mg/L						£)	
Bromobenzene	ND	0.0020	mg/L							
Bromochloromethane	ND	0.0010	mg/L							
Bromodichloromethane	ND	0.0006	mg/L							
Bromoform	ND	0.0010	mg/L							
Bromomethane	ND	0.0020	mg/L							
Carbon Disulfide	ND	0.0010	mg/L							
Carbon Tetrachloride	ND	0.0010	mg/L							
Chlorobenzene	ND	0.0010	mg/L							
Chloroethane	ND	0.0020	mg/L							
Chloroform	ND	0.0010	mg/L							
Chloromethane	ND	0.0020	mg/L							
cis-1,2-Dichloroethene	ND	0.0010	mg/L							
cis-1,3-Dichloropropene	ND	0.0004	mg/L							
Dibromochloromethane	ND	0.0010	mg/L							

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801152

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	8	260B Volat	tile Organ	nic Com	pounds			0		
Batch BA81511 - 5030B							-			
Dibromomethane	ND	0.0010	mg/L							
Dichlorodifluoromethane	ND	0.0020	mg/L							
Diethyl Ether	ND	0.0010	mg/L							
Di-Isopropyl ether	ND	0.0010	mg/L							
thyl tertiary-butyl ether	ND	0.0010	mg/L							
thylbenzene	ND	0.0010	mg/L							
lexachlorobutadiene	ND	0.0006	mg/L							
lexachloroethane	ND	0.0010	mg/L							
sopropylbenzene	ND	0.0010	mg/L							
1ethyl tert-Butyl Ether	ND	0.0010	mg/L							
tethylene Chloride	ND	0.0040	mg/L							
laphthalene	ND	0.0010	mg/L							
-Butylbenzene	ND	0.0010	mg/L							
-Propylbenzene	ND	0.0010	mg/L							
ec-Butylbenzene	ND	0.0010	mg/L							
tyrene	ND	0.0010	mg/L							
ert-Butylbenzene	ND	0.0010	mg/L							
ertiary-amyl methyl ether	ND	0.0010	mg/L							
etrachloroethene	ND	0.0010	mg/L							
etrahvdrofuran	ND	0.0050	mg/L							
oluene	ND	0.0010	mg/L							
rans-1.2-Dichloroethene	ND	0.0010	mg/L							
rans-1.3-Dichloropropene	ND	0.0005	mg/L							
richloroethene	ND	0.0010	mg/L							
richlorofluoromethane	ND	0.0010	mg/L							
/invl Acetate	ND	0.0050	mg/L							
finvl Chloride	ND	0.0010	mg/L							
(viene O	ND	0.0010	ma/L							
(vlene P.M	ND	0.0020	ma/L							
Current 1 2 Dichloraothana dd	20.6		ua/L	25.00		82	70-130			
Surrogate: 1,2-Dichloroboozene	24.5		ug/L	25.00		98	70-130			
Surrogate. 4-bromofilioropenzene	24.4		ug/L	25.00		97	70-130			
Surrogate: Toluene-dR	24.9		ug/L	25.00		100	70-130			
re										
1.1.2-Tetrachloroethane	10.3		ua/L	10.00		103	70-130			-
1.1-Trichloroethane	10.4		ua/L	10.00		104	70-130			
1.2.2-Tetrachloroethane	9.36		ua/L	10.00		94	70-130			
1.2-Trichloroethane	9.44		ua/L	10.00		94	70-130			
1-Dichloroethane	11.1		ua/L	10.00		111	70-130			
1-Dichloroetheae	12.2		ug/L	10.00		122	70-130			
1-Dichloropropene	10.8		ug/L	10.00		108	70-130			
2 3-Trichlorobenzene	10.2		ua/L	10.00		102	70-130			
2 3-Trichloropropage	9.47		vo/L	10.00		95	70-130			
2 4-Trichlorobenzene	10.7		ug/1	10.00		107	70-130			
1.2.4-Trimethylbenzene	12.7		ug/1	10.00		122	70-130			
1,2,7- Thineury Denzene	14.4		ug/L	10.00		95	70-130			
185 Frances Avenue, Cr	ranston, RI 02910	-2211 Te	: 401-461-	7181	Fax: 401-	461-4486	http:	://www.E	SSLaboral	ory.con

Quality

Service

Dependability

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801152

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
1	8	260B Vola	atile Organ	nic Com	oounds					
Batch BA81511 - 5030B										
1,2-Dibromoethane	9.44		ug/L	10.00		94	70-130			
1,2-Dichlorobenzene	10.9		ug/L	10.00		109	70-130			
1,2-Dichloroethane	9.16		ug/L	10.00		92	70-130			
1,2-Dichloropropane	10.6		ug/L	10.00		106	70-130			
1,3,5-Trimethylbenzene	11.8		ug/L	10.00		118	70-130			
1,3-Dichlorobenzene	11.3		ug/L	10.00		113	70-130			
1,3-Dichloropropane	9.63		ug/L	10.00		96	70-130			
1,4-Dichlorobenzene	11.1		ug/L	10.00		111	70-130			
1,4-Dioxane - Screen	628		ug/L	200.0		314	0-332			
1-Chlorohexane	11.9		ug/L	10.00		119	70-130			
2,2-Dichloropropane	11.5		ug/L	10.00		115	70-130			
2-Butanone	57.8		ug/L	50.00		116	70-130			
2-Chlorotoluene	11.0		ug/L	10.00		110	70-130			
2-Hexanone	56.2		ug/L	50.00		112	70-130			
4-Chlorotoluene	11.4		ug/L	10.00		114	70-130			
4-Isopropyltoluene	11.9		ug/L	10.00		119	70-130			
4-Methyl-2-Pentanone	48.5		ug/L	50.00		97	70-130			
Acetone	61.4		ug/L	50.00		123	70-130			
Benzene	10.9		ug/L	10.00		109	70-130			
Bromobenzene	10.7		ug/L	10.00		107	70-130			
Bromochloromethane	9.73		ug/L	10.00		97	70-130			
Bromodichloromethane	10.7		ug/L	10.00		107	70-130			
Bromoform	8.76		ug/L	10.00		88	70-130			
Bromomethane	11.0		ug/L	10.00		110	70-130			
Carbon Disulfide	12.3		ug/L	10.00		123	70-130			
Carbon Tetrachloride	10.7		ug/L	10.00		107	70-130			
Chlorobenzene	10.6		ug/L	10.00		106	70-130			
Chloroethane	11.8		ug/L	10.00		118	70-130			
Chloroform	10.6		ug/L	10.00		106	70-130			
Chloromethane	9.94		ug/L	10.00		99	70-130			
cis-1,2-Dichloroethene	11.6		ug/L	10.00		116	70-130			
cis-1,3-Dichloropropene	10.1		ug/L	10.00		101	70-130			
Dibromochloromethane	9.89		ug/L	10.00		99	70-130			
Dibromomethane	9.24		ug/L	10.00		92	70-130			
Dichlorodifluoromethane	8.35		ug/L	10.00		84	70-130			
Diethyl Ether	9.86		ug/L	10.00		99	70-130			
Di-isopropyl ether	10.9		ug/L	10.00		109	70-130			
Ethyl tertiary-butyl ether	9,89		ug/L	10.00		99	70-130			
Ethylbenzene	10.8		ug/L	10.00		108	70-130			
Hexachlorobutadiene	12.9		ug/L	10.00		129	70-130			
Isopropylbenzene	10.6		ug/L	10.00		106	70-130			
Methyl tert-Butyl Ether	9.89		ug/L	10.00		99	70-130			
Methylene Chloride	11.2		ug/L	10.00		112	70-130			
Naphthalene	10.9		ug/L	10.00		109	70-130			
n-Butylbenzene	12.9		ug/L	10.00		129	70-130	10		
n-Propylbenzene	12.1		ug/L	10.00		121	70-130			

185 Frances Avenue, Cranston, RI 02910-2211

Dependability • Quality • Service

Tel: 401-461-7181 Fax: 401-461-4486

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801152

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
h	8	260B Vola	tile Orgar	nic Comp	oounds					
Batch BA81511 - 5030B										
sec-Butylbenzene	12.5		ug/L	10.00		125	70-130			
Styrene	10.7		ug/L	10.00		107	70-130			
tert-Butylbenzene	13.4		ug/L	10.00		134	70-130			B+
Tertiary-amyl methyl ether	9.90		ug/L	10.00		99	70-130			
Tetrachloroethene	8.10		ug/L	10.00		81	70-130			
Tetrahydrofuran	10.8		ug/L	10.00		108	70-130			
Toluene	10.7		ug/L	10.00		107	70-130			
trans-1,2-Dichloroethene	11.7		ug/L	10.00		117	70-130			
trans-1,3-Dichloropropene	8.51		ug/L	10.00		85	70-130			
Frichloroethene	10.6		ug/L	10.00		106	70-130			
Frichlorofluoromethane	10.0		ug/L	10.00		100	70-130			
Vinyl Acetate	10.2		ug/L	10.00		102	70-130			
/inyl Chloride	13.1		ug/L	10.00		131	70-130			B+
Kylene O	11.2		ug/L	10.00		112	70-130			
Kylene P,M	22.4		ug/L	20.00		112	70-130			
Surrogate: 1,2-Dichloroethane-d4	20.8		ug/L	25.00		83	70-130			
Surrogate: 4-Bromofluorobenzene	24.2		ug/L	25.00		97	70-130			
Surrogate: Dibromofluoromethane	24.1		ug/L	25.00		96	70-130			
Surrogate: Toluene-d8	26.0		ug/L	25.00		104	70-130			
LCS Dup					-					
1,1,1,2-Tetrachloroethane	9.80		ug/L	10.00		98	70-130	5	20	
1,1,1-Trichloroethane	9.86		ug/L	10.00		99	70-130	6	20	
1,1,2,2-Tetrachloroethane	9.64		ug/L	10.00		96	70-130	3	20	
1,1,2-Trichloroethane	9.63		ug/L	10.00		96	70-130	2	20	
1,1-Dichloroethane	10.4		ug/L	10.00		104	70-130	6	20	
1,1-Dichloroethene	11.6		ug/L	10.00		116	70-130	5	20	
1,1-Dichloropropene	10.1		ug/L	10.00		101	70-130	6	20	
1,2,3-Trichlorobenzene	9.51		ug/L	10.00		95	70-130	7	20	
1,2,3-Trichloropropane	9.59		ug/L	10.00		96	70-130	1	20	
1,2,4-Trichlorobenzene	9.97		ug/L	10.00		100	70-130	7	20	
1,2,4-Trimethylbenzene	10.8		ug/L	10.00		108	70-130	13	20	
1,2-Dibromo-3-Chloropropane	9.35		ug/L	10.00		94	70-130	2	20	
1,2-Dibromoethane	9.64		ug/L	10.00		96	70-130	2	20	
1,2-Dichlorobenzene	10.2		ug/L	10.00		102	70-130	7	20	
1,2-Dichloroethane	9.41		ug/L	10.00		94	70-130	3	20	
1,2-Dichloropropane	9.94		ug/L	10.00		99	70-130	6	20	
L,3,5-Trimethyibenzene	10.4		ug/L	10.00		104	70-130	13	20	
1,3-Dichlorobenzene	10.2		ug/L	10.00		102	70-130	10	20	
1,3-Dichloropropane	9.59		ug/L	10.00		96	70-130	0.4	20	
1,4-Dichlorobenzene	10.3		ug/L	10.00		103	70-130	8	20	
1,4-Dioxane - Screen	460		ug/L	200.0		230	0-332	31	200	
1-Chlorohexane	11.0		ug/L	10.00		110	70-130	8	20	
2,2-Dichloropropane	10.6		ug/L	10.00		106	70-130	8	20	
2-Butanone	61.2		ug/L	50.00		122	70-130	6	20	
2-Chlorotoluene	10.3		ug/L	10.00		103	70-130	б	20	

Quality

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801152

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Oualifier
	8	260B Vola	atile Organ	nic Com	pounds					
Batch BA81511 - 5030B	10.2		110/1	10.00	· · · · · · · · · · · · · · · · · · ·	102	70,120	11	20	
4-Isopropultaluene	10.2		Ug/L	10.00		102	70-130	12	20	
4-Motbyl-2-Bentanone	52.5		ug/L	50.00		105	70-130	8	20	
Acatone	54.5		ug/L	50.00		120	70-130	5	20	
Bonzone	10.1		ug/L	10.00		101	70-130	8	20	
Bromobenzone	0.06		ug/L	10.00		100	70-130	7	20	
Bromochloromothana	9.50		ug/L	10.00		07	70-130	0.1	20	
Bromodichloromethane	10.5		ug/L	10.00		105	70-130	2	20	
Bromoform	10.5		ug/L	10.00		105	70-130		20	
Bromomothano	9.20		ug/L	10.00		92	70-130	5	20	
Cashan Digulfida	10.4		ug/L	10.00		104	70-130	5	20	
Carbon Disulide	11.5		ug/L	10.00		115	70-130	c	20	
Carbon Tetrachionde	9.99		ug/L	10.00		100	70-130	6	20	
Chlorobenzene	9.99		ug/L	10.00		100	70-130	0	20	
Chloroethane	11.4		ug/L	10.00		114	70-130	4	20	
Chlorororm	9.83		ug/L	10.00		98	70-130	10	20	
	9.02		ug/L	10.00		90	70-130	10	20	
cis-1,2-Dichloroethene	10.9		ug/L	10.00		109	70-130	0	20	
cis-1,3-Dichioropropene	9,71		ug/L	10.00		97	70-130	4	20	
Dibromocnioromethane	9.80		ug/L	10.00		98	70-130	0.9	20	
Dibromomethane	9.32		Ug/L	10.00		93	70-130	0.9	20	
Dichlorodifuoromethane	7.95		ug/L	10.00		80	70-130	5	20	
Diethyl Ether	9.80		ug/L	10.00		98	70-130	0.6	20	
Di-isopropyi ether	10.5		ug/L	10.00		105	70-130	3	20	
Etnyi tertiary-butyi etner	9.90		ug/L	10.00		99	70-130	0.1	20	
Ethylbenzene	10.0		ug/L	10.00		100	70-130	8	20	
Hexachlorobutadiene	10.8		ug/L	10.00		108	70-130	18	20	
Isopropylbenzene	9.43		ug/L	10.00		94	70-130	12	20	
Methyl tert-Butyl Ether	10.2		ug/L	10.00		102	70-130	3	20	
Methylene Chloride	10.8		ug/L	10.00		108	70-130	4	20	
Naphthalene	10.1		ug/L	10.00		101	70-130	7	20	
n-Butyloenzene	11.1		ug/L	10.00		111	70-130	15	20	
n-Propylbenzene	10.7		ug/L	10.00		107	70-130	13	20	
sec-Butylbenzene	10.9		ug/L	10.00		109	70-130	14	20	
Styrene	10.1		ug/L	10.00		101	70-130	6	20	
tert-Butylbenzene	11.9		ug/L	10.00		119	70-130	12	20	
Tertiary-amyl methyl ether	10.1		ug/L	10.00		101	70-130	2	20	
Tetrachloroethene	7.70		ug/L	10.00		77	70-130	5	20	
Tetrahydrofuran	11.1		ug/L	10.00		111	70-130	2	20	
Toluene	10.1		ug/L	10.00		101	70-130	6	20	
trans-1,2-Dichloroethene	10.8		ug/L	10.00		108	70-130	8	20	
trans-1,3-Dichloropropene	8.55		ug/L	10.00		86	70-130	0.5	20	
Trichloroethene	9.88		ug/L	10.00		99	70-130	7	20	
Trichlorofluoromethane	9.61		ug/L	10.00		96	70-130	4	20	
Vinyl Acetate	10.2		ug/L	10.00		102	70-130	0.4	20	
Vinyl Chloride	12.1		ug/L	10.00		121	70-130	8	20	
Xylene O	10.3		ug/L	10.00		103	70-130	9	20	
185 Frances Avenue	, Cranston, RI 02910-	2211 T	el: 401-461-7	7181	Fax: 401-	461-4486	http:/	//www.ES	SLaborat	ory.com

Dependability

+

Quality

٠

Service

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801152

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
L	8	260B Vola	tile Organ	nic Com	pounds					
Batch BA81511 - 5030B										
Xylene P,M	20.8		ug/L	20.00		104	70-130	7	20	
Surrogate: 1,2-Dichloroethane-d4	22.2		ug/L	25.00		89	70-130			
Surrogate: 4-Bromofluorobenzene	24.9		ug/L	25.00		99	70-130			
Surrogate: Dibromofluoromethane	24.8		ug/L	25.00		99	70-130			
Surrogate: Toluene-d8	25.6		ug/L	25.00		102	70-130			
	827	0C Semi-V	olatile Or	ganic Co	ompoun	ds				
Batch BA81509 - 3520C										
Blank										
1,1-Biphenyl	ND	0.01	mg/L							
1,2,4-Trichlorobenzene	ND	0.01	mg/L							
1,2-Dichlorobenzene	ND	0.01	mg/L							
1,3-Dichlorobenzene	ND	0.01	mg/L							
1,4-Dichlorobenzene	ND	0.01	mg/L							
2,3,4,6-Tetrachlorophenol	ND	0.05	mg/L							
2,4,5-Trichlorophenol	ND	0.01	mg/L							
2,4,6-Trichlorophenol	ND	0.01	mg/L							
2,4-Dichlorophenol	ND	0.01	mg/L							
2,4-Dimethylphenol	ND	0.05	mg/L							
2,4-Dinitrophenol	ND	0.05	mg/L							
2,4-Dinitrotoluene	ND	0.01	mg/L							
2,6-Dinitrotoluene	ND	0.01	mg/L							
2-Chloronaphthalene	ND	0.01	mg/L							
2-Chlorophenol	ND	0.01	mg/L							
2-Methylnaphthalene	ND	0.01	mg/L							
2-Methylphenol	ND	0.01	mg/L							
2-Nitroaniline	ND	0.01	mg/L							
2-Nitropheno!	ND	0.01	mg/L							
3,3 '-Dichlorobenzidine	ND	0.02	mg/L							
3+4-Methylphenol	ND	0.02	mg/L							
3-Nitroaniline	ND	0.01	mg/L							
4,6-Dinitro-2-Methylphenol	ND	0.05	mg/L							
4-Bromophenyl-phenylether	ND	0.01	mg/L							
4-Chloro-3-Methylphenol	ND	0.01	mg/L							
4-Chloroaniline	ND	0.02	mg/L							
4-Chloro-phenyl-phenyl ether	ND	0.01	mg/L							
4-Nitroaniline	ND	0.01	mg/L							
4-Nitrophenol	ND	0.05	mg/L							
Acetophenone	ND	0.01	mg/L							
Aniline	ND	0.01	mg/L							
Azobenzene	ND	0.02	mg/L							
Benzoic Acid	ND	0.1	mg/L							
Benzyl Alcohol	ND	0.01	mg/L							
bis(2-Chloroethoxy)methane	ND	0.01	mg/L							
bis(2-Chloroethyl)ether	ND	0.01	ma/L							

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801152

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
1	827	0C Semi-V	olatile Org	ganic Co	mpoun	ds				
Batch BA81509 - 3520C										
is(2-chlorolsopropyl)Ether	ND	0.01	mg/L							
bis(2-Ethylhexyl)phthalate	ND	0.006	mg/L							
utylbenzylphthalate	ND	0.01	mg/L							
arbazole	ND	0.01	mg/L							
ibenzofuran	ND	0.01	mg/L							
lethylohthalate	ND	0.01	mg/L							
imethylphthalate	ND	0.01	mg/L							
)i-n-butvlphthalate	ND	0.01	ma/L							
i-n-octylphthalate	ND	0.01	ma/L							
lexachlorobenzene	ND	0.01	ma/L							
lexachlorobutadiene	ND	0.01	ma/L							
lexachlorocyclopentadiene	ND	0.05	mg/L							
lexachloroethane	ND	0.005	mg/L							
sophorone	ND	0.01	mg/L							
litrobenzene	ND	0.01	mg/L							
-Nitrosodimethylamine	ND	0.01	ma/L							
-Nitroso-Di-n-Propylamine	ND	0.01	ma/L							
-nitrosodiphenvlamine	ND	0.02	mg/L							
entachlorophenol	ND	0.05	mg/L							
benol	ND	0.01	mg/L							
vridine	ND	0.1	mg/L							
urrogate: 1 2-Dichlornbenzene-d4	0.0766		mg/L	0.1000		77	30-130			
Surrogate: 2.4.6-Tribromonhenol	0.101		mg/L	0.1500		68	15-110			
urrogate: 2-Chlorophenol-d4	0.106		mg/L	0.1500		70	15-110			
urrogate: 2-Eluorobinhenvl	0.0801		mg/L	0.1000		80	30-130			
Surrogate: 2-Fluorophenol	0.0929		mg/L	0.1500		62	15-110			
Surrogate: Nitrobenzene-d5	0.0832		mg/L	0.1000		83	30-130			
Surrogate: Phenol-d6	0.0994		mg/L	0.1500		66	15-110			
Surrogate: p-Terphenyl-d14	0.0868		mg/L	0.1000		87	30-130			
cs										
,1-Biphenyl	0.09	0.01	mg/L	0.1000		88	40-140			
,2,4-Trichlorobenzene	0.08	0.01	mg/L	0.1000		75	40-140			
,2-Dichlorobenzene	0.06	0.01	mg/L	0.1000		63	40-140			
,3-Dichlorobenzene	0.06	0.01	mg/L	0.1000		62	40-140			
,4-Dichlorobenzene	0.06	0.01	mg/L	0.1000		59	40-140			
,3,4,6-Tetrachlorophenol	0.08	0.05	mg/L	0.1000		81	40-140			
,4,5-Trichlorophenol	0.1	0.01	mg/L	0.1000		95	30-130			
1,4,6-Trichlorophenol	0.09	0.01	mg/L	0.1000		95	30-130			
,4-Dichlorophenol	0.09	0.01	mg/L	0.1000		86	30-130			
2,4-Dimethylphenol	0.08	0.05	mg/L	0.1000		78	30-130			
,4-Dinitrophenol	0.04	0.05	mg/L	0.1000		44	30-130			
2,4-Dinitrotoluene	0.09	0.01	mg/L	0.1000		86	40-140			
2,6-Dinitrotoluene	0.08	0.01	mg/L	0.1000		83	40-140			
2-Chloronaphthalene	0.07	0.01	mg/L	0.1000		69	40-140			
2-Chlorophenol	0.07	0.01	mg/L	0.1000		74	30-130			
2-Methylnaphthalene	0.08	0.01	mg/L	0.1000		78	-40-140			

Dependability +

Quality

٠

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801152

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC	RPD	Limit	Qualifier
	. 8270	OC Semi-V	olatile Or	ganic Co	mpoun	ds				
Batch BA81509 - 3520C										1 82
2-Methylphenol	0.08	0.01	mg/L	0.1000		77	30-130			
2-Nitroanlline	0.1	0.01	mg/L	0.1000		101	40-140			
Nitrophenol	0.08	0.01	mg/L	0.1000		81	30-130			
,3'-Dichlorobenzidine	0.08	0.02	mg/L	0.1000		82	40-140			
+4-Methylphenol	0.2	0.02	mg/L	0.2000		76	30-130			
Nitroaniline	0.09	0.01	mg/L	0.1000		85	40-140			
,6-Dinitro-2-Methylphenol	0.08	0.05	mg/L	0.1000		82	30-130			
-Bromophenyl-phenylether	0.1	0.01	mg/L	0.1000		98	40-140			
-Chloro-3-Methylphenol	0.08	0.01	mg/L	0.1000		84	30-130			
-Chloroaniline	0.07	0.02	mg/L	0.1000		67	40-140			
-Chloro-phenyl-phenyl ether	0.08	0.01	ma/L	0.1000		82	40-140			
Nitroaniline	0.09	0.01	mg/L	0.1000		90	40-140			
Nitrophenol	0.08	0.05	mg/L	0.1000		82	30-130			
cetophenone	0.08	0.01	mg/L	0.1000		80	40-140			
villine	0.05	0.01	mg/L	0.1000		51	40-140			
zobenzene	0.1	0.02	mg/L	0.1000		96	40-140			
Benzoic Acid	0.02	0.1	mg/L	0.1000		24	40-140			B-
Benzyi Alcohol	0.09	0.01	mg/L	0.1000		92	40-140			
is(2-Chloroethoxy)methane	0.08	0.01	mg/L	0.1000		79	40-140			
is(2-Chloroethyl)ether	0.07	0.01	mg/L	0.1000		75	40-140			
is(2-chloroisopropyl)Ether	0.07	0.01	mg/L	0.1000		67	40-140			
ois(2-Ethylhexyl)phthalate	0.09	0.006	mg/L	0.1000		92	40-140			
Butylbenzylphthalate	0.09	0.01	mg/L	0.1000		89	40-140			
Carbazole	0.09	0.01	mg/L	0.1000		87	40-140			
Dibenzofuran	0.08	0.01	mg/L	0.1000		84	40-140			
Diethylphthalate	0.09	0.01	mg/L	0.1000		85	40-140			
Dimethylphthalate	0.08	0.01	mg/L	0.1000		84	40-140			
Di-n-butylphthalate	0.09	0.01	mg/L	0.1000		86	40-140			
Di-n-octvlphthalate	0.1	0.01	mg/L	0.1000		104	40-140			
lexachlorobenzene	0.09	0.01	mg/L	0.1000		92	40-140			
lexachlorobutadiene	0.07	0.01	mg/L	0.1000		72	40-140			
Hexachlorocyclopentadiene	0.05	0.05	mg/L	0.1000		50	40-140			
lexachloroethane	0.06	0.005	mg/L	0.1000		57	40-140			
sophorone	0.08	0.01	mg/L	0.1000		79	40-140			
Vitrobenzene	0.08	0.01	mg/L	0.1000		77	40-140			
N-Nitrosodimethylamine	0.08	0.01	mg/L	0.1000		78	40-140			
N-Nitroso-Di-n-PropylamIne	0.08	0.01	mg/L	0.1000		75	40-140			
N-nitrosodiphenylamine	0.09	0.02	mg/L	0.1000		95	40-140			
Pentachlorophenol	0.07	0.05	mg/L	0.1000		72	30-130			
Phenol	0.07	0.01	mg/L	0.1000		66	30-130			
Pyridine	0.05	0.1	mg/L	0.1000		51	40-140			
Surrogate: 1.2-Dichlorohenzene-d4	0.0702		mg/L	0.1000		70	30-130			
Surrogate: 2.4.6-Tribromonhenol	0.127		mg/L	0.1500		84	15-110			
Surrogate: 2-Chlorophenol-d4	0.111		mg/L	0.1500		74	15-110			
Surrogate: 2-Fluorobiohenvl	0.0851		mg/L	0.1000		85	30-130			
Surmate: 2-Eluorophenol	0.106		ma/L	0.1500		71	15-110			

Dependability • Quality

.

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801152

Quality Control Data

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	827	OC Semi-V	olatile Or	ganic Co	mpoun	ds				
3atch BA81509 - 3520C										
Surrogate: Nitrobenzene-d5	0.0774		mg/L	0.1000		77	30-130			
Surrogate: Phenol-d6	0.108		mg/L	0.1500		72	15-110			
Surrogate: p-Terphenyl-d14	0.0862		mg/L	0.1000		86	30-130			
-CS Dup										
I,1-Biphenyl	0.09	0.01	mg/L	0.1000		86	40-140	2	20	
,2,4-Trichlorobenzene	0.07	0.01	mg/L	0.1000		74	40-140	1	20	
,2-Dichlorobenzene	0.06	0.01	mg/L	0.1000		61	40-140	4	20	
I,3-Dichlorobenzene	0.06	0.01	mg/L	0.1000		57	40-140	8	20	
,4-Dichlorobenzene	0.06	0.01	mg/L	0.1000		60	40-140	2	20	
2,3,4,6-Tetrachlorophenol	0.09	0.05	mg/L	0.1000		87	40-140	7	20	
2,4,5-Trichlorophenol	0.1	0.01	mg/L	0.1000		96	30-130	0.5	20	
2,4,6-Trichlorophenol	0.1	0.01	mg/L	0.1000		96	30-130	2	20	
2.4-Dichlorophenol	0.09	0.01	mg/L	0.1000		87	30-130	1	20	
2,4-Dimethylphenol	0.08	0.05	mg/L	0.1000		80	30-130	1	20	
2,4-Dinitrophenol	0.05	0.05	mg/L	0.1000		55	30-130	23	20	D+
,4-Dinitrotoluene	0.09	0.01	mg/L	0.1000		93	40-140	8	20	
2,6-Dinitrotoluene	0.09	0.01	mg/L	0.1000		90	40-140	8	20	
-Chloronaphthalene	0.07	0.01	mg/L	0.1000		68	40-140	2	20	
2-Chlorophenol	0.07	0.01	mg/L	0.1000		73	30-130	0.7	20	
-Methylnaphthalene	0.08	0.01	mg/L	0.1000		79	40-140	1	20	
-Methylphenol	0.07	0.01	mg/L	0.1000		75	30-130	3	20	
2-Nitroaniline	0.1	0.01	mg/L	0.1000		106	40-140	5	20	
2-Nitrophenol	0.08	0.01	mg/L	0.1000		83	30-130	2	20	
3.3'-Dichlorobenzidine	0.09	0.02	ma/L	0.1000		93	40-140	13	20	
3+4-Methylphenol	0.1	0.02	mg/L	0.2000		71	30-130	6	20	
3-Nitroaniline	0.09	0.01	mg/L	0.1000		92	40-140	8	20	
4.6-Dinitro-2-Methylphenol	0.09	0.05	mg/L	0.1000		86	30-130	5	20	
4-Bromophenyl-phenylether	0.08	0.01	mg/L	0.1000		84	40-140	16	20	
4-Chloro-3-Methylphenol	0.09	0.01	mg/L	0.1000		89	30-130	5	20	
1-Chloroaniline	0.07	0.02	mg/L	0.1000		69	40-140	2	20	
4-Chloro-phenyl-phenyl ether	0.09	0.01	mg/L	0.1000		89	40-140	8	20	
4-Nitroaniline	0.09	0.01	mg/L	0.1000		93	40-140	2	20	
4-Nitrophenol	0.1	0.05	mg/L	0.1000		100	30-130	19	20	
Acetophenone	0.08	0.01	ma/L	0.1000		82	40-140	2	20	
Aniline	0.05	0.01	mg/L	0.1000		50	40-140	2	20	
Azobenzene	0.09	0.02	mg/L	0.1000		92	40-140	4	20	
Benzoic Acid	0.03	0.1	mg/L	0.1000		29	40-140	19	20	B-
Benzyl Alcohol	0.09	0.01	mg/L	0.1000		85	40-140	8	20	
bis(2-Chloroethoxy)methane	0.08	0.01	mg/L	0.1000		82	40-140	4	20	
bis(2-Chloroethyl)ether	0.07	0.01	mg/L	0.1000		73	40-140	3	20	
bis(2-chloroisopropyl)Ether	0.07	0.01	mg/L	0.1000		65	40-140	3	20	
bis(2-Ethylhexyl)phthalate	0.1	0.006	mg/L	0.1000		96	40-140	3	20	
Butvibenzvlohthalate	0.09	0.01	mg/L	0.1000		90	40-140	0.6	20	
Carbazole	0.09	0.01	ma/L	0.1000		88	40-140	1	20	
Dibeozofuran	0.08	0.01	ma/l	0.1000		83	40-140	0.5	20	

Dependability

٠

Quality

.

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801152

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	827	0C Semi-V	olatile Or	ganic Co	ompoun	ds				
Batch BA81509 - 3520C										
Diethylphthalate	0.09	0.01	mg/L	0.1000		90	40-140	5	20	
Dimethylphthalate	0.08	0.01	mg/L	0.1000		82	40-140	2	20	
Di-n-butylphthalate	0.09	0.01	mg/L	0.1000		86	40-140	0.3	20	
Di-n-octylphthalate	0.1	0.01	mg/L	0.1000		100	40-140	3	20	
Hexachlorobenzene	0.09	0.01	mg/L	0.1000		90	40-140	2	20	
Hexachlorobutadiene	0.07	0.01	mg/L	0.1000		71	40-140	2	20	
Hexachlorocyclopentadiene	0.05	0.05	mg/L	0.1000		49	40-140	2	20	
Hexachloroethane	0.06	0.005	mg/L	0.1000		57	40-140	0.9	20	
Isophorone	0.08	0.01	mg/L	0.1000		80	40-140	1	20	
Nitrobenzene	0.08	0.01	mg/L	0.1000		80	40-140	4	20	
N-Nitrosodimethylamine	0.1	0.01	mg/L	0.1000		98	40-140	22	20	D+
N-Nitroso-DI-n-Propylamine	0.07	0.01	mg/L	0.1000		71	40-140	6	20	
N-nitrosodiphenylamine	0.09	0.02	mg/L	0.1000		92	40-140	3	20	
Pentachlorophenol	0.08	0.05	mg/L	0.1000		78	30-130	7	20	
Phenol	0.06	0.01	mg/L	0.1000		59	30-130	12	20	
Pyridine	0.07	0.1	mg/L	0.1000		70	40-140	30	20	D+
Surrogate: 1.2-Dichlorobenzene-d4	0.0688		mg/L	0.1000		69	30-130			
Surrogate: 2,4,6-Tribromophenol	0.130		mg/L	0.1500		87	15-110			
Surrogate: 2-Chlorophenol-d4	0.107		mg/L	0.1500		71	15-110			
Surrogate: 2-Fluorobiphenyl	0.0806		mg/L	0.1000		81	30-130			
Surrogate: 2-Fluorophenol	0.102		mg/L	0.1500		68	15-110			
Surrogate: Nitrobenzene-d5	0.0789		mg/L	0.1000		79	30-130			
Surrogate: Phenol-d6	0.103		mg/L	0.1500		69	15-110			
Surrogate: p-Terphenyl-d14	0.0874		mg/L	0.1000		87	30-130			
	8270C(SIM) Polyr	nuclear Ar	omatic	Hydroca	arbons				

Batch BA81521 - 3510C						
Blank						
2-Methylnaphthalene	ND	0.00020	mg/L	8		
Acenaphthene	ND	0.00020	mg/L			
Acenaphthylene	ND	0.00020	mg/L			
Anthracene	ND	0.00020	mg/L			
Benzo(a)anthracene	ND	0.00005	mg/L			
Benzo(a)pyrene	ND	0.00005	mg/L			
Benzo(b)fluoranthene	ND	0.00005	mg/L			
Benzo(g,h,i)perylene	ND	0.00020	mg/L			
Benzo(k)fluoranthene	ND	0.00005	mg/L			
Chrysene	ND	0.00005	mg/L			
Dibenzo(a,h)Anthracene	ND	0.00005	mg/L			
Fluoranthene	ND	0.00020	mg/L			
Fluorene	ND	0.00020	mg/L			
Hexachlorobenzene	ND	0.00020	mg/L			
Indeno(1,2,3-cd)Pyrene	ND	0.00005	mg/L			
Naphthalene	ND	0.00020	mg/L			
Phenanthrene	ND	0.00020	mg/L			

Quality

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801152

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
/ # # # # # # # # # # # # # # # #	8270C(SIM) Polyn	uclear Ar	romatic H	lydroca	rbons				
Batch BA81521 - 3510C										
yrene	ND	0.00020	mg/L		-					
Surrogate: 1.2-Dichlorobenzene-d4	0.000318		mg/L	0.0006250		51	30-130			
Surrogate: 2.4.6-Tribromophenol	0.000498		mg/L	0.0009375		53	15-110			
Surrogate: 2-Fluorobiphenvl	0.000402		mg/L	0.0006250		64	30-130			
Surrogate: Nitrobenzene-d5	0.000338		mg/L	0.0006250		54	30-130			
Surrogate: p-Terphenvl-d14	0.000428		mg/L	0.0006250		68	30-130			
cs										
-Methylnaphthalene	0.00036	0.00020	ma/L	0.0005000	7.00 - T	72	40-140			
cenaphthene	0.00037	0.00020	ma/l	0.0005000		74	40-140			
cenaphthylene	0.00036	0.00020	mg/L	0.0005000		72	40-140			
othracene	0.00040	0.00020	ma/l	0.0005000		81	40-140			
enzo(a)anthracene	0.00041	0.00005	mg/L	0.0005000		82	40-140			
enzo(a)pyrene	0.00039	0.00005	mo/t	0.0005000		78	40-140			
Senzo(b)fluoranthene	0.00042	0.00005	mo/l	0.0005000		83	40-140			
Senzo(a h i)pendero	0.00034	0.000000	mg/L	0.0005000		67	40-140			
enzo(k)fluorantheno	0.00034	0.00020	mg/L	0.0005000		88	40-140			
barsana	0.00043	0.00005	ma/l	0.0005000		84	40-140			
han ysene	0.00042	0.00005	mg/c	0.0005000		67	40-140			
Juoranthene	0.00031	0.00000	mg/L	0.0005000		99	40-140			
lucropo	0.00039	0.00020	mg/L	0.0005000		75	40-140			
	0.00038	0.00020	mg/L	0.0005000		75	40-140			
ndene(1, 2, 2, cd)Durner	0.00038	0.00020	mg/L	0.0005000		70 65	40-140			
Indeno(1,2,3-cd)Pyrene	0.00032	0.00003	mg/L	0.0005000		60	40-140			
vapntnalene	0.00034	0.00020	mg/L	0.0005000		70	40-140			
nenanchrene	0.00040	0.00020	mg/L	0.0005000		79	40-140			
yrene	0.00039	0.00020	mg/L	0.0005000		78	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	0.000345		mg/L	0.0006250		55	30-130			
Surrogate: 2,4,6-Tribromophenol	0.000610		mg/L	0.0009375		05	15-110			
Surrogate: 2-Fluorobiphenyl	0.000462		mg/L	0.0006250		14	20 120			
Surrogate: Nitrobenzene-d5	0.000390		mg/L	0.0006250		62	20 120			
Surrogate: p-Terphenyl-d14	0.000402		mg/L	0.0006250		64	30-130			
LCS Dup						11 m m				
2-Methylnaphthalene	0.00032	0.00020	mg/L	0.0005000		65	40-140	10	20	
Acenaphthene	0.00033	0.00020	mg/L	0.0005000		66	40-140	13	20	
Acenaphthylene	0.00032	0.00020	mg/L	0.0005000		63	40-140	13	20	
Anthracene	0.00036	0.00020	mg/L	0.0005000		71	40-140	12	20	
Benzo(a)anthracene	0.00036	0.00005	mg/L	0.0005000		71	40-140	14	20	
Benzo(a)pyrene	0.00034	0.00005	mg/L	0.0005000		67	40-140	15	20	
Benzo(b)fluoranthene	0.00035	0.00005	mg/L	0.0005000		70	40-140	16	20	
Benzo(g,h,i)perylene	0.00030	0.00020	mg/L	0.0005000		60	40-140	11	20	
Benzo(k)fluoranthene	0.00038	0.00005	mg/L	0.0005000		75	40-140	15	20	
Chrysene	0.00037	0.00005	mg/L	0.0005000		74	40-140	13	20	
Dibenzo(a,h)Anthracene	0.00028	0.00005	mg/L	0.0005000		56	40-140	8	20	
Fluoranthene	0.00036	0.00020	mg/L	0.0005000		72	40-140	20	20	
Fluorene	0.00032	0.00020	mg/L	0.0005000		64	40-140	15	20	
Hexachlorobenzene	0.00034	0.00020	mg/L	0.0005000		67	40-140	12	20	
Indeno(1,2,3-cd)Pyrene	0.00029	0.00005	mg/L	0.0005000		58	40-140	12	20	

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801152

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	8270C(SIM) Polyn	uclear A	romatic I	Hydroca	rbons				
Batch BA81521 - 3510C										
Naphthalene	0.00032	0.00020	mg/L	0.0005000		64	40-140	8	20	
Phenanthrene	0.00034	0.00020	mg/L	0.0005000		68	40-140	15	20	
Pyrene	0.00036	0.00020	mg/L	0.0005000	E.	72	40-140	7	20	
Surrogate: 1,2-Dichlorobenzene-d4	0.000348		mg/L	0.0006250	2	56	30-130			
Surrogate: 2,4,6-Tribromophenol	0.000610		mg/L	0.0009375	5	65	15-110			
Surrogate: 2-Fluorobiphenyl	0.000465		mg/L	0.0006250	7	74	30-130			
Surrogate: Nitrobenzene-d5	0.000395		mg/L	0.0006250	2	63	30-130			
Surrogate: p-Terphenyl-d14	0.000432		mg/L	0.0006250	2	69	30-130			

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801152

)

21

Notes and Definitions

- U Analyte included in the analysis, but not detected
- E Reported above the quantitation limit; Estimated value.
- D+ Relative percent difference for duplicate is outside of criteria.
- C- Continuing Calibration recovery is below lower control limit.
- B+ Blank Spike recovery is above upper control limit.
- B- Blank Spike recovery is below lower control limit.
- ND Analyte NOT DETECTED above the detection limit
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- MDL Method Detection Limit
- MRL Method Reporting Limit
- I/V Initial Volume
- F/V Final Volume
- § Subcontracted analysis; see attached report
- 1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
- 2 Range result excludes concentrations of target analytes eluting in that range.
- 3 Range result excludes the concentration of the C9-C10 aromatic range.
- Avg Results reported as a mathematical average.

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801152

ESS LABORATORY CERTIFICATIONS

U.S. Army Corps of Engineers Soil and Water

Navy Installation Restoration QA Program Soil and Water

Rhode Island: A-179

Connecticut: PH-0750

Maine: RI002

Massachusetts: M-RI002

New Hampshire (NELAP accredited): 242405 Potable Water Non Potable Water

New York (NELAP accredited): 11313 Potable Water Non Potable Water Solid and Hazardous Waste

United States Department of Agriculture Soil Permit: S-54210

New Jersey (NELAP accredited): RI002 Potable Water Non Potable Water Soil and Hazardous Waste

> Maryland: 301 Potable Water

Number Numer Number Number Number <th>n of Thielsch Engineering, Inc. ances Avenue, Cranston, RI 02910-2211 If faster than 5 di</th> <th>Standard Ot ys, prior approval by laborate des were collected from:</th> <th>her ZH-h/ ory is required #</th> <th>Reporting Li</th> <th>mits ESS LA</th> <th>B PROJECT ID</th>	n of Thielsch Engineering, Inc. ances Avenue, Cranston, RI 02910-2211 If faster than 5 di	Standard Ot ys, prior approval by laborate des were collected from:	her ZH - h / ory is required #	Reporting Li	mits ESS LA	B PROJECT ID
Name Topics: Project Man Description Mark 13-7 Accord/action Service Action Mark 21-7 Accord/action Service Action Mark 21-7 Service Service Action Mark 21-7 Service Service Action State 21-7 Service 25 State 21-7 25 Service Mark 21-7 25 24 Mark 25 24 Mark <th>01) 461-7181 Fax (401) 461-4480 MA RID CT sslaboratory.com Is this project for MA-MCP</th> <th>NH NJ NY ME any of the following: Navy USACE</th> <th>Other Other</th> <th>Electronic Do Format: Ex</th> <th>eliverable Access PDF Vo</th> <th>/ No her</th>	01) 461-7181 Fax (401) 461-4480 MA RID CT sslaboratory.com Is this project for MA-MCP	NH NJ NY ME any of the following: Navy USACE	Other Other	Electronic Do Format: Ex	eliverable Access PDF Vo	/ No her
MACTEL Stoopsent (1) Understand Stoopsent (1) Understand List Fram Degon Kurk K/AN Matters 137 Round Matters Internet Bare MAC Bare Matters 137 Round Matters Internet Annotation Bare Matters 137 Round Matters Internet Annotation Bare Matters 137 Round Matters Internet Bare Matters Bare Matters Bare Internet Bare Matters Bare Matters Bare Internet Data Bare Matters Bare Matters Internet Data Bare Matters Bare Matters Internet Data Bare Matters Bare Matters Internet Internet Bare Statist Matters Statist Internet Lips Data Statist Matters Statist Matters Internet Lips Data Statist Matters Matters Matters Internet Lips Data Data Matters Matters Matters Internet Data	1c Project # Proj	ect Name (20 Char. or less)			Write Required Analysis	
Interferen Degon Kurkul AN Addres 1/3 Audres 1/3 Audres Multe Site Mult Zip Cist Find Maters Cist	MACTEC 36005a41713 (whya				
Wurkung M. Size Warkung M. Size Warkung M. Phone Fixe Warkung M. Fixe Warkung M. Phone Fixe Zanda Fixe Zanda Barn Time Barn Barn Sample fleatification on curve ons. Zanda Barn Time Barn Sample fleatification on curve ons. Zanda Zanda Barn Time Barn Sample fleatification on curve ons. Zanda Zanda Contraction Barn Contraction Zanda Zanda Zanda Contraction Barn Contraction Zanda Zanda Zanda Contraction Barn Contraction Zanda Zanda Zanda Contraction Contraction Zanda Zanda Zanda Zanda Contraction Contraction Contraction Contraction Zanda Zanda Contraction Contraction Contract	Person DARON KURKJIAN Address 127 AUD	1Bow	S			
Photome # Tay. Life Date Text Life Date Text Life Date Text Life Date Date </td <td>Waled State MA Zip 01 370</td> <td>PO#</td> <td>ntainer iners</td> <td></td> <td></td> <td></td>	Waled State MA Zip 01 370	PO#	ntainer iners			
SLAB Date Collection B Scanple Identification (no.cur of sol 1) SLAP WEJT MJT T Stample Identification (no.cur of sol 2) Stample	ne# 231-245-66.06 Fax # 246-5060 Ema	I Address	f r of Co ita	٢		
IIIIC/08 1930 X.F.W. WEST M.T 5 5. W.X IIIIC/08 1930 X.F.W. WEST M.T 5 5. W.X IIIIC/08 1930 X.F.W. WEST M.T 5 5. M.X IIIIC/08 1930 X.F.W. WEST M.T 5 5. M.X IIIIC/08 1000 M.E.Stender M.T. 5 5 0. M.Y IIIIC/08 2 X.F.W. WEST 0. M.Y 0. M.Y IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	B Date Collection Time Cokep Sample Identific	ation (20 Char. or less)	Type of Numbe Code Pres	TONS		
Image: The properties of the pr	1/1C/08 1030 XEW WEST US]		X 71-7 5 1	X		
Image: Type: P-Poly G-Glass S-Stenite V-VOA Innier Type: P-No N-N P-LT, 3-HSO, 4-HNO, 5. MOH, 6. MoOH, 7. Asorbio. Acid, 8. ZinAct, 9- Innier Type: M-MOH Signature) Danoffine P-MOH Innier Ty						/
Indirer Type: P-Poly G-Glass S-Stachte V-VOA Matrix: S-Soil SD-Solid D-Siloige WW-Waate Water GW-Ground Water SW-Surface Water Ovol Matrix: S-Soil SD-Solid D-Siloige WW-Waate Water GW-Ground Water SW-Surface Water Ovol Matrix: S-Soil SD-Solid D-Siloige WW-Waate Water GW-Ground Water SW-Surface Water Ovol Wilford P-Filler Transition and the frame of the f						
Indianer The Properties Indianer Type: Propertie Properties Indianer Type: Properties Schreife V. VOA Matrix: Schreife V.VOA Matrix: S.Solid Der Present Vest No NA: Schreife V.VOA Matrix: S.Solid Der Present Vest No NA: Internal Use Only Preservation Code: Internal Use Internal Use Internal Use No Internal Use No Internal Use No Internal Use No Internal Use Preservation Code: Internal Use Preservation Code: Internal Use No Internal Use Preservation Code: Internal Use Preservation Code: Internal Use Preservation Code: Internal Use Preservation Code: Internal Use No Internal Use Preservation Code: Internal Use Preservation Code: Internal Use Preservation Code: Internal Use Preservation Code: Internal Use						
hainer Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Sludge WW-Waate Water GW-Ground Water SW-Surface Water O-Oil W-Wipes F-Filter nainer Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Sludge WW-Waate Water GW-Ground Water SW-Surface Water O-Oil W-Wipes F-Filter nainer Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Sludge WW-Waate Water GW-Ground Water SW-Surface Water O-Oil W-Wipes F-Filter nainer Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Sludge WW-Waate Water GW-Ground Water SW-Surface Water O-Oil W-Wipes F-Filter nainer Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Sludge WW-Waate Water GW-Ground Water SW-Surface Water O-Oil W-Wipes F-Filter nainer Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Sludge WW-Waate Water GW-Ground Water SW-Surface Water O-Oil W-Wipes F-Filter nainer Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Sludge WW-Waate Water GW-Ground Water SW-Surface Water O-Oil W-Wipes F-Filter nainer Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Sludge WW-Waater GW-Ground Water SW-Surface Water O-Oil W-Wipes F-Filter International D-Steriline Received Dy: (Signature) Date/Time Received by: (Signature) Dat						
nainer Type: P.Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Studge WW-Waste Water GW-Ground Water SW-Surface Water O-Oil W-Wipes F-Filter nainer Type: P.Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Studge WW-Waste Water GW-Ground Water SW-Surface Water O-Oil W-Wipes F-Filter Net Present	A TOTAL			(
ntainer Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Studge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter Internet Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Studge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter Is Internet Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Studge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter Is Internet Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Studge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter Is Internet Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Studge WY-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter Is Internet Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Studge WY-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter Is Internet Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Studyer D-Sterile W-Diater Time Received by: (Signature) Date/Time Rece	0					
Indiner Type: P-Poly G-Glass S-Sterile V.VOA Matrix: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-OI W/ipes F-Filte namer Type: P-Poly G-Glass S-Sterile V.VOA Matrix: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water SW-Surface Water O-OI W/ipes F-Filte Is Internal Use On Internal Use Sampled by: S-HISO, 4+ HNO, 5- NaOH, 6- MeOH, 7- Asorbic Acid, 8- ZnAct, 9- Is Intext				11		
ntainer Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filte oler Present Yes No Internal Use Only Preservation Code: 1- NP, 2- HCI, 3- H,SO, 4- HNO,, 5- NaOH, 6- MeOH, 7- Asorbic Acid, 8- ZnAct, 9- Is Intact Yes No NA: []Pickup Sampled by: Is Intact Yes No NA: []Pickup Comments: []Technicians						
ntainer Type: P-poly G-Glass S-Sterile V-VOA Matrix: S-Soiid D-Sludge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W.Wipes F-Filte Oler Preservation Code: 1-NP, 2-HCI, 3-H:SO., 4+HNO., 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9-			~			
$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	er Type: P-Poly G-Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-	ludge WW-Waste Water G	W-Ground Water SV	V-Surface Water DV	W-Drinking Water O-Oil W	/-Wipes F-Filter
ls Intact Yes No NA: [] Pickup Sampled by: cler Temp: H 2 (] Technicians Comments: I] Technicians Comments: I] Technicians Date/Time Received by (Signature) Date/Time Received by: (Signa	PresentYesNo Internal Use Only Preservati	on Code: 1- NP, 2- HCI, 3- H	2504, 4- HNO3, 5- N	aOH, 6- MeOH, 7	Asorbic Acid, 8- ZnAct, 9-	
Dist Temp: J J I J Technicians Comments: Distribution Date/Time Received by (Signature) Date/Time Received by: (Signature) Date/Time Date/Time Distribution I/U/U/I/I/:3- Comments: Date/Time Received by: (Signature) Date/Time Received by: (Signature) Date/Time Date/Time Received by: (Signature) Date/Time Relinquished by: (Signature) Date/Time Date/Time Date/Time	tactYesNo NA: [] Pickup Sampled t	y:			2	
And Signature) Date/Time Received by (Signature) Date/Time Received by (Signature) Date/Time Received by: (Signature) Date/Time Inquished by: (Signature) Date/Time Received by: (Signature) Date/Time Received by: (Signature) Date/Time	Technicians Comment					
linquished by: (Signature) Date/Time Received by: (Signature) Date/Time Received by: (Signature) Date/Time Received by: (Signature) Date/Time	inshed by Bigmature) Date/Time Received by (Signature)	Detertime Relinquish	ed by: (Signature)	Date/Time	Received by: (Signature)	Date/Time
	nisbéd by: (Signature) Date/Time Received by: (Signature)	Date/Time Relinquish	ed by: (Signature)	Date/Time	Received by: (Signature)	Date/Time

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

PROJECT NARRATIVE

David Heislein MACTEC Engineering & Consulting, Inc. 107 Audubon Road Wakefield, MA 01880

RE: Providence Gorham Site ESS Laboratory Work Order Number: 0801239

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this Project Narrative, the entire report has been paginated. The ESS Laboratory Certifications sheet is the final report page. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been mailed. If you have any questions or concerns, please feel free to call our Customer Service Department.

-Lame lattadad

Laurel Stoddard Laboratory Director Date: January 22, 2008

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration may be used instead of automated integration because it produces more accurate results. All ICP Metals were analyzed using the established linear dynamic range to determine acceptable analytical results.

ESS Laboratory certifies that the test results meet the requirements of NELAC, except where noted within this project narrative.

Sample Receipt

The following sample(s) were received on January 21, 2008 for the analyses specified on the enclosed Chain of Custody Record.

 Laboratory ID
 Matrix

 0801239-01
 Soil

 0801239-02
 Soil

 0801239-03
 Soil

Client SampleID SBWest00 SBEast00 Brickpit1

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Dependability • Ouality Fax: 401-461-4486

http://www.ESSLaboratory.com

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

PROJECT NARRATIVE

5035/8260B Volatile Organic Compounds / Low Level

0801239-03Internal Standard(s) outside of criteria. Sample was reanalyzed to confirm.0801239-03Reported above the quantitation limit; Estimated value.
Naphthalene

5035/8260B Volatile Organic Compounds / Methanol

BRA0175-CCV1 Continuing Calibration recovery is below lower control limit. 2-Butanone, 2-Hexanone, Tetrahydrofuran

8270C Semi-Volatile Organic Compounds

- 0801239-03Internal Standard(s) outside of criteria due to matrix (UCM/coelution is present).BA82115-BS1Blank Spike recovery is below lower control limit.
2,4-Dinitrophenol, 4-Chloroaniline, Benzoic Acid, Hexachlorocyclopentadiene, Pyridine
- BA82115-BSD1 Blank Spike recovery is below lower control limit.

3+4-Methylphenol, 4-Chloroaniline, Benzoic Acid, Hexachlorocyclopentadiene, Pyridine BA82115-BSD1 Relative percent difference for duplicate is outside of criteria.

2,4-Dinitrophenol, 3+4-Methylphenol, 4,6-Dinitro-2-Methylphenol, Benzoic Acid

No other observations noted.

End of Project Narrative.

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: SBWest00 Date Sampled: 01/21/08 08:40 Percent Solids: 89 Initial Volume: 5.2 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-01 Sample Matrix: Soil Analyst: MD

3

5035/8260B Volatile Organic Compounds / Low Level

				RI - RES DI	DEC		
Analyte 1,1,1,2-Tetrachloroethane	Results ND	Units mg/kg dry	MRL 0.0054	Limit 2.2	$\frac{\mathbf{DF}}{1}$	Analyzed 01/21/08	
1,1,1-Trichloroethane	ND	mg/kg dry	0.0054	540	1	01/21/08	
1,1,2,2-Tetrachloroethane	ND	mg/kg dry	0.0054	1.3	1	01/21/08	
1,1,2-Trichloroethane	ND	mg/kg dry	0.0054	3.6	1	01/21/08	
I,I-Dichloroethane	ND	mg/kg dry	0.0054	920	1	01/21/08	
1,1-Dichloroethene	ND	mg/kg dry	0.0054	0.2	1	01/21/08	
1,1-Dichloropropene	ND	mg/kg dry	0.0054		1	01/21/08	
1,2,3-Trichlorobenzene	ND	mg/kg dry	0.0054		1	01/21/08	
1,2,3-Trichloropropane	ND	mg/kg dry	0.0054		1	01/21/08	
1,2,4-Trichlorobenzene	ND	mg/kg dry	0.0054	96	1	01/21/08	
1,2,4-Trimethylbenzene	ND	mg/kg dry	0.0054		1	01/21/08	
1,2-Dibromo-3-Chloropropane	ND	mg/kg dry	0.0054	0.5	1	01/21/08	
1,2-Dibromoethane	ND	mg/kg dry	0.0054	0.01	1	01/21/08	
1,2-Dichlorobenzene	ND	mg/kg dry	0.0054	510	1	01/21/08	
1,2-Dichloroethane	ND	mg/kg dry	0.0054	0.9	1	01/21/08	
1,2-Dichloropropane	ND	mg/kg dry	0.0054	1.9	1	01/21/08	
1,3,5-Trimethylbenzene	ND	mg/kg dry	0.0054		1	01/21/08	
1,3-Dichlorobenzene	ND	mg/kg dry	0.0054	430	1	01/21/08	
1,3-Dichloropropane	ND	mg/kg dry	0.0054		1	01/21/08	
1,4-Dichlorobenzene	ND	mg/kg dry	0.0054	27	1	01/21/08	
1,4-Dioxane - Screen	ND	mg/kg dry	0.270		1	01/21/08	
1-Chlorohexane	ND	mg/kg dry	0.0054		1	01/21/08	
2,2-Dichloropropane	ND	mg/kg dry	0.0054		1	01/21/08	
2-Butanone	ND	mg/kg dry	0.0540	10000	1	01/21/08	
2-Chlorotoluene	ND	mg/kg dry	0.0054		1	01/21/08	
2-Hexanone	ND	mg/kg dry	0.0540		1	01/21/08	
4-Chlorotoluene	ND	mg/kg dry	0.0054		1	01/21/08	
4-Isopropyltoluene	ND	mg/kg dry	0.0054		1	01/21/08	
4-Methyl-2-Pentanone	ND	mg/kg dry	0.0540	1200	1	01/21/08	
Acetone	ND	mg/kg dry	0.0540	7800	1	01/21/08	
Benzene	ND	mg/kg dry	0.0054	2.5	1	01/21/08	
Bromobenzene	ND	mg/kg dry	0.0054		1	01/21/08	
Bromochloromethane	ND	mg/kg dry	0.0054		1	01/21/08	
Bromodichloromethane	ND	mg/kg dry	0.0054	10	1	01/21/08	
Bromoform	ND	mg/kg dry	0.0054	81	1	01/21/08	
185 Frances Avenue, Cranston, R	I 02910-2211 Depe	Tel: 40 endability	1-461-7181 • Ouality	Fax: 401-461-4486	http://ww	ww.ESSLaboratory.com	

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: SBWest00 Date Sampled: 01/21/08 08:40 Percent Solids: 89 Initial Volume: 5.2 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-01 Sample Matrix: Soil Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

Bromomethane	ND	mg/kg dry	0.0108	0.8	1	01/21/08
Carbon Disulfide	ND	mg/kg dry	0.0054		1	01/21/08
Carbon Tetrachloride	ND	mg/kg dry	0.0054	1.5	1	01/21/08
Chlorobenzene	ND	mg/kg dry	0.0054	210	1	01/21/08
Chloroethane	ND	mg/kg dry	0.0108		1	01/21/08
Chloroform	ND	mg/kg dry	0.0054	1.2	1	01/21/08
Chloromethane	ND	mg/kg dry	0.0108		1	01/21/08
cis-1,2-Dichloroethene	ND	mg/kg dry	0.0054	630	1	01/21/08
cis-1,3-Dichloropropene	ND	mg/kg dry	0.0054		1	01/21/08
Dibromochloromethane	ND	mg/kg dry	0.0054	7.6	1	01/21/08
Dibromomethane	ND	mg/kg dry	0.0054		1	01/21/08
Dichlorodifluoromethane	ND	mg/kg dry	0.0108		1	01/21/08
Diethyl Ether	ND	mg/kg dry	0.0054		1	01/21/08
Di-isopropyl ether	ND	mg/kg dry	0.0054		1	01/21/08
Ethyl tertiary-butyl ether	ND	mg/kg dry	0.0054		1	01/21/08
Ethylbenzene	ND	mg/kg dry	0.0054	71	1	01/21/08
Hexachlorobutadiene	ND	mg/kg dry	0.0054	8.2	1	01/21/08
Isopropylbenzene	ND	mg/kg dry	0.0054	27	1	01/21/08
Methyl tert-Butyl Ether	ND	mg/kg dry	0.0054	390	1	01/21/08
Methylene Chloride	ND	mg/kg dry	0.0270	45	1	01/21/08
Naphthalene	ND	mg/kg dry	0.0054	54	1	01/21/08
n-Butylbenzene	ND	mg/kg dry	0.0054		1	01/21/08
n-Propylbenzene	ND	mg/kg dry	0.0054		1	01/21/08
sec-Butylbenzene	ND	mg/kg dry	0.0054		1	01/21/08
Styrene	ND	mg/kg dry	0.0054	13	1	01/21/08
tert-Butylbenzene	ND	mg/kg dry	0.0054		1	01/21/08
Tertiary-amyl methyl ether	ND	mg/kg dry	0.0054		1	01/21/08
Tetrachloroethene	ND	mg/kg dry	0.0054	12	1	01/21/08
Tetrahydrofuran	ND	mg/kg dry	0.0054		1	01/21/08
Toluene	ND	mg/kg dry	0.0054	190	1	01/21/08
trans-1,2-Dichloroethene	ND	mg/kg dry	0.0054	1100	1	01/21/08
trans-1,3-Dichloropropene	ND	mg/kg dry	0.0054		1	01/21/08
Trichloroethene	ND	mg/kg dry	0.0054	13	1	01/21/08
Trichlorofluoromethane	ND	mg/kg dry	0.0054		1	01/21/08
Vinyl Acetate	ND	mg/kg dry	0.0054		1	01/21/08
Vinyl Chloride	ND	mg/kg dry	0.0108	0.02	ł	01/21/08

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181

Dependability +

Fax: 401-461-4486 • Service

Quality

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: SBWest00 Date Sampled: 01/21/08 08:40 Percent Solids: 89 Initial Volume: 5.2 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-01 Sample Matrix: Soil Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

Xylene O	ND	mg/kg dry	0.0054		110	1	01/21/08
Xylene P,M	ND	mg/kg dry	0.0108		110	1	01/21/08
Xylenes (Total)	ND	mg/kg dry	0.0162		110	0	01/21/08
	%	Recovery	Qualifier	Limits			
Surrogate: 1,2-Dichloroethane-d4		104 %	70-130				
Surrogate: 4-Bromofluorobenzene		84 %		70-130			
Surrogate: Dibromofluoromethane	95 %			70-130			
Surrogate: Toluene-d8		102 %		70-130			

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: SBEast00 Date Sampled: 01/21/08 09:45 Percent Solids: 95 Initial Volume: 6.3 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-02 Sample Matrix: Soil Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

				RI - RES DE	RI - RES DEC			
Analyte 1,1,1,2-Tetrachloroethane	Results ND	<u>Units</u> mg/kg dry	MRL 0.0042	Limit 2.2	$\frac{\mathbf{DF}}{\mathbf{I}}$	Analyzed 01/21/08		
1,1,1-Trichloroethane	ND	mg/kg dry	0.0042	540	1	01/21/08		
1,1,2,2-Tetrachloroethane	ND	mg/kg dry	0.0042	1.3	1	01/21/08		
1,1,2-Trichloroethane	ND	mg/kg dry	0.0042	3.6	1	01/21/08		
1,1-Dichloroethane	ND	mg/kg dry	0.0042	920	1	01/21/08		
1,1-Dichloroethene	ND	mg/kg dry	0.0042	0.2	1	01/21/08		
1,1-Dichloropropene	ND	mg/kg dry	0.0042		1	01/21/08		
1,2,3-Trichlorobenzene	ND	mg/kg dry	0.0042		1	01/21/08		
1,2,3-Trichloropropane	ND	mg/kg dry	0.0042		1	01/21/08		
1,2,4-Trichlorobenzene	ND	mg/kg dry	0.0042	96	1	01/21/08		
1,2,4-Trimethylbenzene	ND	mg/kg dry	0.0042		1	01/21/08		
1,2-Dibromo-3-Chloropropane	ND	mg/kg dry	0.0042	0.5	1	01/21/08		
1,2-Dibromoethane	ND	mg/kg dry	0.0042	0.01	1	01/21/08		
1,2-Dichlorobenzene	ND	mg/kg dry	0.0042	510	1	01/21/08		
1,2-Dichloroethane	ND	mg/kg dry	0.0042	0.9	1	01/21/08		
1,2-Dichloropropane	ND	mg/kg dry	0.0042	1.9	1	01/21/08		
1,3,5-Trimethylbenzene	ND	mg/kg dry	0.0042		1	01/21/08		
1,3-Dichlorobenzene	ND	mg/kg dry	0.0042	430	1	01/21/08		
1,3-Dichloropropane	ND	mg/kg dry	0.0042		1	01/21/08		
1,4-Dichlorobenzene	ND	mg/kg dry	0.0042	27	1	01/21/08		
1,4-Dioxane - Screen	ND	mg/kg dry	0.209		1	01/21/08		
1-Chlorohexane	ND	mg/kg dry	0.0042		1	01/21/08		
2,2-Dichloropropane	ND	mg/kg dry	0.0042		1	01/21/08		
2-Butanone	ND	mg/kg dry	0.0418	10000	1	01/21/08		
2-Chlorotoluene	ND	mg/kg dry	0.0042		1	01/21/08		
2-Hexanone	ND	mg/kg dry	0.0418		1	01/21/08		
4-Chlorotoluene	ND	mg/kg dry	0.0042		1	01/21/08		
4-lsopropyltoluene	ND	mg/kg dry	0.0042		1	01/21/08		
4-Methyl-2-Pentanone	ND	mg/kg dry	0.0418	1200	1	01/21/08		
Acetone	ND	mg/kg dry	0.0418	7800	I	01/21/08		
Benzene	ND	mg/kg dry	0.0042	2.5	1	01/21/08		
Bromobenzene	ND	mg/kg dry	0.0042		1	01/21/08		
Bromochloromethane	ND	mg/kg dry	0.0042		1	01/21/08		
Bromodichloromethane	ND	mg/kg dry	0.0042	10	1	01/21/08		
Bromoform	ND	mg/kg dry	0.0042	81	1	01/21/08		
185 Frances Avenue, Cranston, R	02910-2211 Depe	Tel: 40 ndability	1-461-7181 Quality	Fax: 401-461-4486	http://wv	vw.ESSLaboratory.com		

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: SBEast00 Date Sampled: 01/21/08 09:45 Percent Solids: 95 Initial Volume: 6.3 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-02 Sample Matrix: Soil Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

Bromomethane	ND	mg/kg dry	0.0084	0.8	I	01/21/08
Carbon Disulfide	ND	mg/kg dry	0.0042		1	01/21/08
Carbon Tetrachloride	ND	mg/kg dry	0.0042	1.5	1	01/21/08
Chlorobenzene	ND	mg/kg dry	0.0042	210	1	01/21/08
Chloroethane	ND	mg/kg dry	0.0084		1	01/21/08
Chloroform	ND	mg/kg dry	0.0042	1.2	1	01/21/08
Chloromethane	ND	mg/kg dry	0.0084		1	01/21/08
cis-1,2-Dichloroethene	ND	mg/kg dry	0.0042	630	1	01/21/08
cis-1,3-Dichloropropene	ND	mg/kg dry	0.0042		1	01/21/08
Dibromochloromethane	ND	mg/kg dry	0.0042	7.6	I	01/21/08
Dibromomethane	ND	mg/kg dry	0.0042		Ι	01/21/08
Dichlorodifluoromethane	ND	mg/kg dry	0.0084		1	01/21/08
Diethyl Ether	ND	mg/kg dry	0.0042		1	01/21/08
Di-isopropyl ether	ND	mg/kg dry	0.0042		1	01/21/08
Ethyl tertiary-butyl ether	ND	mg/kg dry	0.0042		1	01/21/08
Ethylbenzene	ND	mg/kg dry	0.0042	71	1	01/21/08
Hexachlorobutadiene	ND	mg/kg dry	0.0042	8.2	1	01/21/08
Isopropylbenzene	ND	mg/kg dry	0.0042	27	1	01/21/08
Methyl tert-Butyl Ether	ND	mg/kg dry	0.0042	390	1	01/21/08
Methylene Chloride	ND	mg/kg dry	0.0209	45	1	01/21/08
Naphthalene	ND	mg/kg dry	0.0042	54	1	01/21/08
n-Butylbenzene	ND	mg/kg dry	0.0042		1	01/21/08
n-Propylbenzene	ND	mg/kg dry	0.0042		1	01/21/08
sec-Butylbenzene	ND	mg/kg dry	0.0042		1	01/21/08
Styrene	ND	mg/kg dry	0.0042	13	1	01/21/08
tert-Butylbenzene	ND	mg/kg dry	0.0042		1	01/21/08
Tertiary-amyl methyl ether	ND	mg/kg dry	0.0042		1	01/21/08
Tetrachloroethene	0.0057	mg/kg dry	0.0042	12	1	01/21/08
Tetrahydrofuran	ND	mg/kg dry	0.0042		1	01/21/08
Toluene	ND	mg/kg dry	0.0042	190	1	01/21/08
trans-1,2-Dichloroethene	ND	mg/kg dry	0.0042	1100	1	01/21/08
trans-1,3-Dichloropropene	ND	mg/kg dry	0.0042		1	01/21/08
Trichloroethene	ND	mg/kg dry	0.0042	13	1	01/21/08
Trichlorofluoromethane	ND	mg/kg dry	0.0042		1	01/21/08
Vinyl Acetate	ND	mg/kg dry	0.0042		1	01/21/08
Vinyl Chloride	ND	mg/kg dry	0.0084	0.02	1	01/21/08

185 Frances Avenue, Cranston, RI 02910-2211

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: SBEast00 Date Sampled: 01/21/08 09:45 Percent Solids: 95 Initial Volume: 6.3 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-02 Sample Matrix: Soil Analyst: MD

8

5035/8260B Volatile Organic Compounds / Low Level

Xylene O	ND	mg/kg dry	0.0042		110	1	01/21/08
Xylene P,M	ND	mg/kg dry	0.0084		110	1	01/21/08
Xylenes (Total)	ND	mg/kg dry	0.0125		110	0	01/21/08
		%Recovery		Limits			
Surrogate: 1,2-Dichloroethane-d4		108 %	70-130	70-130			
Surrogate: 4-Bromofluorobenzene		88 %		70-130			
Surrogate: Dibromofluoromethane		100 % 105 %		70-130			
Surrogate: Toluene-d8				70-130			

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: Brickpit1 Date Sampled: 01/21/08 11:45 Percent Solids: 74 Initial Volume: 5.6 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-03 Sample Matrix: Soil Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

				RI - RES DE	EC			
Analyte 1,1,1,2-Tetrachloroethane	Results ND	Units mg/kg dry	MRL 0.0060	Limit 2.2	$\frac{\mathbf{DF}}{1}$	Analyzed 01/21/08		
1,1,1-Trichloroethane	ND	mg/kg dry	0.0060	540	1	01/21/08		
1,1,2,2-Tetrachloroethane	ND	mg/kg dry	0.0060	1.3	1	01/21/08		
1,1,2-Trichloroethane	ND	mg/kg dry	0.0060	3.6	1	01/21/08		
1,1-Dichloroethane	ND	mg/kg dry	0.0060	920	1	01/21/08		
1,1-Dichloroethene	ND	mg/kg dry	0.0060	0.2	1	01/21/08		
1,1-Dichloropropene	ND	mg/kg dry	0.0060		I	01/21/08		
1,2,3-Trichlorobenzene	ND	mg/kg dry	0.0060		1	01/21/08		
1,2,3-Trichloropropane	ND	mg/kg dry	0.0060		1	01/21/08		
1,2,4-Trichlorobenzene	ND	mg/kg dry	0.0060	96	1	01/21/08		
1,2,4-Trimethylbenzene	0.0224	mg/kg dry	0.0060		1	01/21/08		
1,2-Dibromo-3-Chloropropane	ND	mg/kg dry	0.0060	0.5	1	01/21/08		
1,2-Dibromoethane	ND	mg/kg dry	0.0060	0.01	1	01/21/08		
1,2-Dichlorobenzene	ND	mg/kg dry	0.0060	510	1	01/21/08		
1,2-Dichloroethane	ND	mg/kg dry	0.0060	0.9	1	01/21/08		
1,2-Dichloropropane	ND	mg/kg dry	0.0060	1.9	1	01/21/08		
1,3,5-Trimethylbenzene	0.0064	mg/kg dry	0.0060		1	01/21/08		
1,3-Dichlorobenzene	ND	mg/kg dry	0.0060	430	Ι	01/21/08		
1,3-Dichloropropane	ND	mg/kg dry	0.0060		1	01/21/08		
1,4-Dichlorobenzene	ND	mg/kg dry	0.0060	27	1	01/21/08		
1,4-Dioxane - Screen	ND	mg/kg dry	0.302		I	01/21/08		
1-Chlorohexane	ND	mg/kg dry	0.0060		1	01/21/08		
2,2-Dichloropropane	ND	mg/kg dry	0.0060		1	01/21/08		
2-Butanone	ND	mg/kg dry	0.0603	10000	T	01/21/08		
2-Chlorotoluene	ND	mg/kg dry	0.0060		1	01/21/08		
2-Hexanone	ND	mg/kg dry	0.0603		1	01/21/08		
4-Chlorotoluene	ND	mg/kg dry	0.0060		1	01/21/08		
4-Isopropyltoluene	0.0193	mg/kg dry	0.0060		1	01/21/08		
4-Methyl-2-Pentanone	ND	mg/kg dry	0.0603	1200	1	01/21/08		
Acetone	ND	mg/kg dry	0.0603	7800	1	01/21/08		
Benzene	ND	mg/kg dry	0.0060	2.5	I	01/21/08		
Bromobenzene	ND	mg/kg dry	0.0060		1	01/21/08		
Bromochloromethane	ND	mg/kg dry	0.0060		1	01/21/08		
Bromodichloromethane	ND	mg/kg dry	0.0060	10	1	01/21/08		
Bromoform	ND	mg/kg dry	0.0060	81	1	01/21/08		
185 Frances Avenue, Cranston, R	I 02910-2211 Depe	Tel: 40 ndability	1-461-7181 • Quality	Fax: 401-461-4486 Service	http://www	.ESSLaboratory.com		

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: Brickpit1 Date Sampled: 01/21/08 11:45 Percent Solids: 74 Initial Volume: 5.6 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-03 Sample Matrix: Soil Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

Carbon Disulfide ND mg/kg dry 0.0060 1 Carbon Tetrachloride ND mg/kg dry 0.0060 1.5 1 Chlorobenzene ND mg/kg dry 0.0060 210 1 Chloroethane ND mg/kg dry 0.0121 1 Chloromethane ND mg/kg dry 0.0121 1 chloroethane ND mg/kg dry 0.0121 1 chloromethane ND mg/kg dry 0.0121 1	01/21/08 01/21/08 01/21/08 01/21/08 01/21/08
Carbon Tetrachloride ND mg/kg dry 0.0060 1.5 1 Chlorobenzene ND mg/kg dry 0.0060 210 1 Chloroethane ND mg/kg dry 0.0121 1 Chloroform ND mg/kg dry 0.0060 1.2 1 Chloromethane ND mg/kg dry 0.0121 1 Chloromethane ND mg/kg dry 0.0121 1 cis-1,2-Dichloroethene ND mg/kg dry 0.0060 630 1	01/21/08 01/21/08 01/21/08 01/21/08
Chlorobenzene ND mg/kg dry 0.0060 210 1 Chloroethane ND mg/kg dry 0.0121 1 Chloroform ND mg/kg dry 0.0060 1.2 1 Chloromethane ND mg/kg dry 0.0121 1 1 cis-1,2-Dichloroethene ND mg/kg dry 0.0060 630 1	01/21/08 01/21/08 01/21/08
Chloroethane ND mg/kg dry 0.0121 1 Chloroform ND mg/kg dry 0.0060 1.2 1 Chloromethane ND mg/kg dry 0.0121 1 cis-1,2-Dichloroethene ND mg/kg dry 0.0060 630 1	01/21/08 01/21/08
Chloroform ND mg/kg dry 0.0060 1.2 1 Chloromethane ND mg/kg dry 0.0121 1 cis-1,2-Dichloroethene ND mg/kg dry 0.0060 630 1	01/21/08
Chloromethane ND mg/kg dry 0.0121 1 cis-1,2-Dichloroethene ND mg/kg dry 0.0060 630 1	
cis-1,2-Dichloroethene ND mg/kg dry 0.0060 630 1	01/21/08
	01/21/08
cis-1,3-Dichloropropene ND mg/kg dry 0.0060 1	01/21/08
Dibromochloromethane ND mg/kg dry 0.0060 7.6 1	01/21/08
Dibromomethane ND mg/kg dry 0.0060 1	01/21/08
Dichlorodifluoromethane ND mg/kg dry 0.0121 1	01/21/08
Diethyl Ether ND mg/kg dry 0.0060 1	01/21/08
Di-isopropyl ether ND mg/kg dry 0.0060 1	01/21/08
Ethyl tertiary-butyl ether ND mg/kg dry 0.0060 [01/21/08
Ethylbenzene ND mg/kg dry 0.0060 71 1	01/21/08
Hexachlorobutadiene ND mg/kg dry 0.0060 8,2 1	01/21/08
Isopropylbenzene 0.0064 mg/kg dry 0.0060 27 1	01/21/08
Methyl tert-Butyl Ether ND mg/kg dry 0.0060 390 1	01/21/08
Methylene Chloride ND mg/kg dry 0.0302 45 1	01/21/08
Naphthalene E 0.379 mg/kg dry 0.0060 54 1	01/21/08
n-Butylbenzene ND mg/kg dry 0.0060 1	01/21/08
n-Propylbenzene ND mg/kg dry 0.0060 1	01/21/08
sec-Butylbenzene 0.0077 mg/kg dry 0.0060 1	01/21/08
Styrene ND mg/kg dry 0.0060 13 1	01/21/08
tert-Butylbenzene ND mg/kg dry 0.0060 1	01/21/08
Tertiary-amyl methyl ether ND mg/kg dry 0.0060 1	01/21/08
Tetrachloroethene ND mg/kg dry 0.0060 12 1	01/21/08
Tetrahydrofuran ND mg/kg dry 0.0060 1	01/21/08
Toluene ND mg/kg dry 0.0060 190 1	01/21/08
trans-1,2-Dichloroethene ND mg/kg dry 0.0060 1100 1	01/21/08
trans-1,3-Dichloropropene ND mg/kg dry 0.0060 1	01/21/08
Trichloroethene ND mg/kg dry 0.0060 13 1	01/21/08
Trichlorofluoromethane ND mg/kg dry 0.0060 1	01/21/08
Vinyl Acetate ND mg/kg dry 0.0060 1	01/21/08
Vinyl Chloride ND mg/kg dry 0.0121 0.02 1	01/01/00

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181 Dependability • Quality

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: Brickpit1 Date Sampled: 01/21/08 11:45 Percent Solids: 74 Initial Volume: 5.6 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-03 Sample Matrix: Soil Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

Xylene O	ND	mg/kg dry	0.0060		110	1	01/21/08
Xylene P,M	ND	mg/kg dry	0.0121		110	1	01/21/08
Xylenes (Total)	ND mg/kg		0.0181		110	0	01/21/08
	%	Recovery	Qualifier	Limits			
Surrogate: 1,2-Dichloroethane-d4		111 %	70-13	70-130			
Surrogate: 4-Bromofluorobenzene		73 %		70-130			
Surrogate: Dibromofluoromethane	99 %			70-130			
Surrogate: Toluene-d8		111 %		70-130			

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: Brickpit1 Date Sampled: 01/21/08 11:45 Percent Solids: 74 Initial Volume: 15.8 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-03 Sample Matrix: Soil Analyst: RES

5035/8260B Volatile Organic Compounds / Methanol

		RI - RES DEC								
Analyte 1,1,1,2-Tetrachloroethane		Results ND	Units mg/kg dry	MRL 0.163	MDL 0.0539	Limit 2.2	$\frac{\mathbf{DF}}{1}$	Analyzed 01/21/08		
1,1,1-Trichloroethane		ND	mg/kg dry	0.0817	0.0212	540	1	01/21/08		
1,1,2,2-Tetrachloroethane		ND	mg/kg dry	0.0817	0.0245	1.3	1	01/21/08		
1,1,2-Trichloroethane		ND	mg/kg dry	0.0817	0.0261	3.6	1	01/21/08		
1,1-Dichloroethane		ND	mg/kg dry	0.0817	0.0229	920	1	01/21/08		
1,1-Dichloroethene		ND	mg/kg dry	0.0817	0.0196	0.2	1	01/21/08		
1,1-Dichloropropene		ND	mg/kg dry	0.0817	0.0212		1	01/21/08		
1,2,3-Trichlorobenzene		ND	mg/kg dry	0.0817	0.0245		1	01/21/08		
1,2,3-Trichloropropane		ND	mg/kg dry	0.0817	0.0245		1	01/21/08		
1,2,4-Trichlorobenzene		ND	mg/kg dry	0.0817	0.0180	96	1	01/21/08		
1,2,4-Trimethylbenzene		0.0932	mg/kg dry	0.0817	0.0196		1	01/21/08		
1,2-Dibromo-3-Chloropropane		ND	mg/kg dry	0.490	0.163	0.5	1	01/21/08		
1,2-Dibromoethane		ND	mg/kg dry	0.0817	0.0180	0.01	1	01/21/08		
1,2-Dichlorobenzene		ND	mg/kg dry	0.0817	0.0180	510	1	01/21/08		
1,2-Dichloroethane		ND	mg/kg dry	0.0817	0.0180	0.9	1	01/21/08		
1,2-Dichloropropane		ND	mg/kg dry	0.0817	0.0229	1.9	1	01/21/08		
1,3,5-Trimethylbenzene	J	0.0392	mg/kg dry	0.0817	0.0212		1	01/21/08		
1,3-Dichlorobenzene		ND	mg/kg dry	0.0817	0.0196	430	1	01/21/08		
1,3-Dichloropropane		ND	mg/kg dry	0.0817	0.0163		I	01/21/08		
1,4-Dichlorobenzene		ND	mg/kg dry	0.0817	0.0212	27	1	01/21/08		
I,4-Dioxane - Screen		ND	mg/kg dry	8.17	4.09		1	01/21/08		
1-Chlorohexane		ND	mg/kg dry	0.0817	0.0212		1	01/21/08		
2,2-Dichloropropane		ND	mg/kg dry	0.163	0.0409		1	01/21/08		
2-Butanone		ND	mg/kg dry	2.04	0.409	10000	1	01/21/08		
2-Chlorotoluene		ND	mg/kg dry	0.0817	0.0245		1	01/21/08		
2-Hexanone		ND	mg/kg dry	0.817	0.114		1	01/21/08		
4-Chlorotoluene		ND	mg/kg dry	0.0817	0.0196		1	01/21/08		
4-Isopropyltoluene	J	0.0719	mg/kg dry	0.0817	0.0212		1	01/21/08		
4-Methyl-2-Pentanone		ND	mg/kg dry	0.817	0.114	1200	1	01/21/08		
Acetone		ND	mg/kg dry	2.04	0.654	7800	1	01/21/08		
Benzene		ND	mg/kg dry	0.0817	0.0245	2.5	1	01/21/08		
Bromobenzene		ND	mg/kg dry	0.0817	0.0180		1	01/21/08		
Bromochloromethane		ND	mg/kg dry	0.0817	0.0245		1	01/21/08		
Bromodichloromethane		ND	mg/kg dry	0.0817	0.0229	10	1	01/21/08		
Bromoform		ND	mg/kg dry	0.0817	0.0261	81	1	01/21/08		
185 Frances Avenue, 0	Cranston, R	I 02910-2211 Depe	Tel: 40 endability	1-461-7181 • Quality	Fax: 40	1-461-4486 Service	http://ww	ww.ESSLaboratory.com 12		

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: Brickpit1 Date Sampled: 01/21/08 11:45 Percent Solids: 74 Initial Volume: 15.8 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-03 Sample Matrix: Soil Analyst: RES

5035/8260B Volatile Organic Compounds / Methanol

Bromomethane	ND	mg/kg dry	0.163	0.0409	0.8	1	01/21/08
Carbon Disulfide	ND	mg/kg dry	0.0817	0.0196		1	01/21/08
Carbon Tetrachloride	ND	mg/kg dry	0.0817	0.0229	1.5	1	01/21/08
Chlorobenzene	ND	mg/kg dry	0.0817	0.0180	210	1	01/21/08
Chloroethane	ND	mg/kg dry	0.163	0.0539		1	01/21/08
Chloroform	ND	mg/kg dry	0.0817	0.0196	1.2	1	01/21/08
Chloromethane	ND	mg/kg dry	0.163	0.0261		1	01/21/08
cis-1,2-Dichloroethene	ND	mg/kg dry	0.0817	0.0245	630	1	01/21/08
cis-1,3-Dichloropropene	ND	mg/kg dry	0.0817	0.0180		1	01/21/08
Dibromochloromethane	ND	mg/kg dry	0.0817	0.0163	7.6	1	01/21/08
Dibromomethane	ND	mg/kg dry	0.0817	0.0245		1	01/21/08
Dichlorodifluoromethane	ND	mg/kg dry	0.0817	0.0196		1	01/21/08
Diethyl Ether	ND	mg/kg dry	0.0817	0.0245		1	01/21/08
Di-isopropyl ether	ND	mg/kg dry	0.0817	0.0196		1	01/21/08
Ethyl tertiary-butyl ether	ND	mg/kg dry	0.0817	0.0163		1	01/21/08
Ethylbenzene	ND	mg/kg dry	0.0817	0.0196	71	1	01/21/08
Hexachlorobutadiene	ND	mg/kg dry	0.0817	0.0261	8.2	1	01/21/08
Isopropylbenzene	ND	mg/kg dry	0.0817	0.0180	27	1	01/21/08
Methyl tert-Butyl Ether	ND	mg/kg dry	0.0817	0.0196	390	1	01/21/08
Methylene Chloride	ND	mg/kg dry	0.409	0.0327	45	1	01/21/08
Naphthalene	2.92	mg/kg dry	0.0817	0.0245	54	1	01/21/08
n-Butylbenzene	ND	mg/kg dry	0.0817	0.0196		1	01/21/08
n-Propylbenzene	ND	mg/kg dry	0.0817	0.0212		1	01/21/08
sec-Butylbenzene	ND	mg/kg dry	0.0817	0.0212		1	01/21/08
Styrene	ND	mg/kg dry	0.0817	0.0212	13	1	01/21/08
tert-Butylbenzene	ND	mg/kg dry	0.0817	0.0196		1	01/21/08
Tertiary-amyl methyl ether	ND	mg/kg dry	0.0817	0.0245		1	01/21/08
Tetrachloroethene	ND	mg/kg dry	0.0817	0.0261	12	1	01/21/08
Tetrahydrofuran	ND	mg/kg dry	0.817	0.212		1	01/21/08
Toluene	ND	mg/kg dry	0.0817	0.0229	190	1	01/21/08
trans-1,2-Dichloroethene	ND	mg/kg dry	0.0817	0.0261	1100	1	01/21/08
trans-1,3-Dichloropropene	ND	mg/kg dry	0.0817	0.0196		1	01/21/08
Trichloroethene	ND	mg/kg dry	0.0817	0.0196	13	1	01/21/08
Trichlorofluoromethane	ND	mg/kg dry	0.0817	0.0229		1	01/21/08
Vinyl Acetate	ND	mg/kg dry	0.409	0.0327		1	01/21/08
Vinyl Chloride	ND	mg/kg dry	0.0817	0.0196	0.02	1	01/21/08

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Dependability Quality Fax: 401-461-4486 Service

٠

http://www.ESSLaboratory.com

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: Brickpit1 Date Sampled: 01/21/08 11:45 Percent Solids: 74 Initial Volume: 15.8 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-03 Sample Matrix: Soil Analyst: RES

5035/8260B Volatile Organic Compounds / Methanol

			_					
Xylene O	ND	mg/kg dry	0.0817	0.0163	110	1	01/21/08	
Xylene P,M	ND	mg/kg dry	0.163	0.0409	110	1	01/21/08	
Xylenes (Total)	ND	mg/kg dry	0.245		110	1	01/21/08	
	-	%Recovery		Limits				
Surrogate: 1,2-Dichloroethane-d4		98 %		70-130				
Surrogate: 4-Bromofluorobenzene		93 %		70-130				
Surrogate: Dibromofluoromethane		112 %		70-130				
Surrogate: Toluene-d8		95 %			70-130			

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: Brickpit1 Date Sampled: 01/21/08 11:45 Percent Solids: 74 Initial Volume: 20.2 Final Volume: 2 Extraction Method: 3541

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-03 Sample Matrix: Soil Analyst: SEP Prepared: 01/21/08

RI - RES DEC Analyte Results Units MRL Limit DF Analyzed **Total Petroleum Hydrocarbons** 3440 mg/kg dry 100 500 01/21/08 1 %Recovery Qualifier Limits Surrogate: O-Terphenyl 88 % 40-140

8100M Total Petroleum Hydrocarbons

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: Brickpit1 Date Sampled: 01/21/08 11:45 Percent Solids: 74 Initial Volume: 15.1 Final Volume: 2 Extraction Method: 3541

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-03 Sample Matrix: Soil Analyst: SEP Prepared: 01/21/08

8270C Semi-Volatile Organic Compounds

				RI - RES DE		
Analyte 1,1-Biphenyl	Results ND	<u>Units</u> mg/kg dry	MRL 1.79	$\frac{\text{Limit}}{0.8}$	$\frac{\mathbf{DF}}{1}$	Analyzed 01/21/08
1,2,4-Trichlorobenzene	ND	mg/kg dry	1.79	96	1	01/21/08
1,2-Dichlorobenzene	ND	mg/kg dry	1.79	510	1	01/21/08
1,3-Dichlorobenzene	ND	mg/kg dry	1.79	430	1	01/21/08
1,4-Dichlorobenzene	ND	mg/kg dry	1.79	27	1	01/21/08
2,3,4,6-Tetrachlorophenol	ND	mg/kg dry	8.97		1	01/21/08
2,4,5-Trichlorophenol	ND	mg/kg dry	1.79	330	1	01/21/08
2,4,6-Trichlorophenol	ND	mg/kg dry	1.79	58	1	01/21/08
2,4-Dichlorophenol	ND	mg/kg dry	1.79	30	1	01/21/08
2,4-Dimethylphenol	ND	mg/kg dry	1.79	1400	1	01/21/08
2,4-Dinitrophenol	ND	mg/kg dry	8.97	160	1	01/21/08
2,4-Dinitrotoluene	ND	mg/kg dry	1.79	0.9	1	01/21/08
2,6-Dinitrotoluene	ND	mg/kg dry	1.79		1	01/21/08
2-Chloronaphthalene	ND	mg/kg dry	1.79		1	01/21/08
2-Chlorophenol	ND	mg/kg dry	1.79	50	1	01/21/08
2-Methylnaphthalene	4.41	mg/kg dry	1.79	123	1	01/21/08
2-Methylphenol	ND	mg/kg dry	1.79		1	01/21/08
2-Nitroaniline	ND	mg/kg dry	1.79		1	01/21/08
2-Nitrophenol	ND	mg/kg dry	1.79		1	01/21/08
3,3'-Dichlorobenzidine	ND	mg/kg dry	3.58	1.4	1	01/21/08
3+4-Methylphenol	ND	mg/kg dry	3.58		1	01/21/08
3-Nitroaniline	ND	mg/kg dry	1.79		1	01/21/08
4,6-Dinitro-2-Methylphenol	ND	mg/kg dry	8.97		1	01/21/08
4-Bromophenyl-phenylether	ND	mg/kg dry	I.79		1	01/21/08
4-Chloro-3-Methylphenol	ND	mg/kg dry	1.79		1	01/21/08
4-Chloroaniline	ND	mg/kg dry	3.58	310	1	01/21/08
4-Chloro-phenyl-phenyl ether	ND	mg/kg dry	1.79		1	01/21/08
4-Nitroaniline	ND	mg/kg dry	1.79		1	01/21/08
4-Nitrophenol	ND	mg/kg dry	8.97		1	01/21/08
Acenaphthene	8.71	mg/kg dry	1.79	43	1	01/21/08
Acenaphthylene	ND	mg/kg dry	1.79	23	1	01/21/08
Acetophenone	ND	mg/kg dry	3.58		1	01/21/08
Aniline	ND	mg/kg dry	8.97		1	01/21/08
Anthracene	14.0	mg/kg dry	1.79	35	1	01/21/08
Azobenzene	ND	mg/kg dry	1.79		I	01/21/08
185 Frances Avenue, Cranston, I	RI 02910-2211 Depe	Tel: 40 endability	1-461-7181 • Ouality	Fax: 401-461-4486	http://ww	ww.ESSLaboratory.com 16

Quality

Service

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Con	sulting, Inc.
Client Project ID: Providence Gorham Site	0,
Client Sample ID: Brickpit1	
Date Sampled: 01/21/08 11:45	
Percent Solids: 74	
Initial Volume: 15.1	
Final Volume: 2	
Extraction Method: 3541	

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-03 Sample Matrix: Soil Analyst: SEP Prepared: 01/21/08

8270C Semi-Volatile Organic Compounds

Benzo(a)anthracene	34.7	mg/kg dry	1.79	0.9	1	01/21/08
Benzo(a)pyrene	23.7	mg/kg dry	0.897	0.4	1	01/21/08
Benzo(b)fluoranthene	35.7	mg/kg dry	1.79	0.9	1	01/21/08
Benzo(g,h,i)perylene	4.38	mg/kg dry	1,79	0.8	1	01/21/08
Benzo(k)fluoranthene	23.8	mg/kg dry	1.79	0.9	1	01/21/08
Benzoic Acid	ND	mg/kg dry	8.97		1	01/21/08
Benzyl Alcohol	ND	mg/kg dry	1.79		1	01/21/08
bis(2-Chloroethoxy)methane	ND	mg/kg dry	1.79		1	01/21/08
bis(2-Chloroethyl)ether	ND	mg/kg dry	1.79	0.6	1	01/21/08
bis(2-chloroisopropyl)Ether	ND	mg/kg dry	1.79	9.1	1	01/21/08
bis(2-Ethylhexyl)phthalate	ND	mg/kg dry	1.79	46	1	01/21/08
Butylbenzylphthalate	ND	mg/kg dry	1.79		1	01/21/08
Carbazole	5.64	mg/kg dry	1.79		1	01/21/08
Chrysene	28.8	mg/kg dry	0.897	0.4	1	01/21/08
Dibenzo(a,h)Anthracene	2.94	mg/kg dry	0.897	0.4	1	01/21/08
Dibenzofuran	7.24	mg/kg dry	1.79		1	01/21/08
Diethylphthalate	ND	mg/kg dry	1.79	340	1	01/21/08
Dimethylphthalate	ND	mg/kg dry	1.79	1900	1	01/21/08
Di-n-butylphthalate	ND	mg/kg dry	1.79		1	01/21/08
Di-n-octylphthalate	ND	mg/kg dry	1.79		Ι	01/21/08
Fluoranthene	85.1	mg/kg dry	8.94	20	5	01/22/08
Fluorene	10.8	mg/kg dry	1.79	28	1	01/21/08
Hexachlorobenzene	ND	mg/kg dry	0.897	0.4	1	01/21/08
Hexachlorobutadiene	ND	mg/kg dry	1.79	8.2	1	01/21/08
Hexachlorocyclopentadiene	ND	mg/kg dry	8.97		1	01/21/08
Hexachloroethane	ND	mg/kg dry	1.79	46	1	01/21/08
Indeno(1,2,3-cd)Pyrene	5.23	mg/kg dry	1.79	0.9	1	01/21/08
Isophorone	ND	mg/kg dry	1.79		1	01/21/08
Naphthalene	7.85	mg/kg dry	1.79	54	1	01/21/08
Nitrobenzene	ND	mg/kg dry	1.79		1	01/21/08
N-Nitrosodimethylamine	ND	mg/kg dry	1.79		1	01/21/08
N-Nitroso-Di-n-Propylamine	ND	mg/kg dry	1.79		1	01/21/08
N-nitrosodiphenylamine	ND	mg/kg dry	1.79		1	01/21/08
Pentachlorophenol	ND	mg/kg dry	8.97	5.3	1	01/21/08
Phenanthrene	85.2	mg/kg dry	8.94	40	5	01/22/08
Phenol	ND	mg/kg dry	1.79	6000	1	01/21/08

185 Frances Avenue, Cranston, RI 02910-2211

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: Brickpit1 Date Sampled: 01/21/08 11:45 Percent Solids: 74 Initial Volume: 15.1 Final Volume: 2 Extraction Method: 3541

ESS Laboratory Work Order: 0801239 ESS Laboratory Sample ID: 0801239-03 Sample Matrix: Soil Analyst: VSC Prepared: 01/21/08

8270C Semi-Volatile Organic Compounds

mg/kg dry	8.94		13	5	01/22/08
mg/kg dry	8.97			1	01/21/08
%Recovery	Qualifier	Limits			
50 %		30-130			
71 %		30-130			
59 %		30-130			
74 %		30-130			
52 %		30-130			
64 %		30-130			
67 %		30-130			
120 %		30-130			
	mg/kg dry mg/kg dry 50 % 71 % 59 % 74 % 52 % 64 % 67 % 120 %	mg/kg dry 8.94 mg/kg dry 8.97 %Recovery Qualifier 50 % 71 % 59 % 74 % 52 % 64 % 67 % 120 %	mg/kg dry 8.94 mg/kg dry 8.97 %Recovery Qualifier Limits 50 % 30-130 71 % 30-130 59 % 30-130 52 % 30-130 64 % 30-130 67 % 30-130 120 % 30-130	mg/kg dry 8.94 13 mg/kg dry 8.97 13 %Recovery Qualifier Limits 50 % 30-130 71 % 30-130 59 % 30-130 52 % 30-130 64 % 30-130 67 % 30-130 120 % 30-130	mg/kg dry 8.94 13 5 mg/kg dry 8.97 1 %Recovery Qualifier Limits 50 % 30-130 71 % 30-130 59 % 30-130 52 % 30-130 64 % 30-130 67 % 30-130 120 % 30-130

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	5035/826	OB Volatile	e Organic C	Compou	nds / Lo	ow Leve	2			
Batch BA82120 - 5035										
Blank								211.2		
1,1,1,2-Tetrachloroethane	ND	0.0050	ma/ka wet							
1,1,1-Trichloroethane	ND	0.0050	ma/ka wet							
1,1,2,2-Tetrachloroethane	ND	0.0050	mg/kg wet							
1,1,2-Trichloroethane	ND	0.0050	ma/ka wet							
1,1-Dichloroethane	ND	0.0050	mg/kg wet							
1,1-Dichloroethene	ND	0.0050	ma/ka wet							
1,1-Dichloropropene	ND	0.0050	ma/ka wet							
1,2,3-Trichlorobenzene	ND	0.0050	mg/kg wet							
1,2,3-Trichloropropane	ND	0.0050	mg/kg wet							
1,2,4-Trichlorobenzene	ND	0.0050	ma/ka wet							
1.2.4-Trimethylbenzene	ND	0.0050	ma/ko wet							
1.2-Dibromo-3-Chloropropane	ND	0.0050	ma/ko wet							
1.2-Dibromoethane	ND	0.0050	ma/ka wet							
1.2-Dichlorobenzene	ND	0.0050	ma/ka wet							
1.2-Dichloroethane	ND	0.0050	ma/ka wet							
1.2-Dichloropropane	ND	0.0050	mg/kg wet							
1,3,5-Trimethylbenzene	ND	0.0050	ma/ka wet							
1,3-Dichlorobenzene	ND	0.0050	ma/ka wet							
1.3-Dichloropropane	ND	0.0050	ma/ka wet							
1,4-Dichlorobenzene	ND	0.0050	ma/ka wet							
1,4-Dioxane - Screen	ND	0.250	ma/ka wet							
1-Chlorohexane	ND	0.0050	ma/ka wet							
2.2-Dichloropropane	ND	0.0050	ma/ka wet							
2-Butanone	ND	0.0500	ma/ka wet							
2-Chlorotoluene	ND	0.0050	ma/ka wet							
2-Hexanone	ND	0.0500	ma/ka wet							
4-Chlorotoluene	ND	0.0050	ma/ka wet							
4-Isopropyltoluene	ND	0.0050	ma/ka wet							
4-Methyl-2-Pentanone	ND	0.0500	ma/ka wet							
Acetone	ND	0.0500	ma/ka wet							
Benzene	ND	0.0050	ma/ka wet							
Bromobenzene	ND	0.0050	mo/ko wet							
Bromochloromethane	ND	0.0050	ma/ka wet							
Bromodichloromethane	ND	0.0050	mg/kg wet							
Bromoform	ND	0.0050	ma/ka wet							
Bromomethane	ND	0.0100	ma/ka wet							
Carbon Disulfide	ND	0.0050	mg/kg wet							
Carbon Tetrachloride	ND	0.0050	mg/kg wet							
Chlorobenzene	ND	0.0050	ma/ka wet							
Chloroethane	ND	0.0100	mg/kg wet							
Chloroform	ND	0.0050	ma/ka wet							
Chloromethane	ND	0.0100	ma/ka wet							
cis-1,2-Dlchloroethene	ND	0.0050	ma/ka wet							
cis-1,3-Dichloropropene	ND	0.0050	ma/ka wet							
Dibromochloromethane	ND	0.0050	ma/ka wet							

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486 Service

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
5035/826	OB Volatile	e Organic C	ompou	inds / Lo	w Leve	[
ND	0.0050	mg/kg wet							
ND	0.0100	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0250	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0100	mg/kg wet							
ND	0.0050	mg/kg wet							
ND	0.0100	mg/kg wet							
24.8		ug/L	25.00		99	70-130			
22.1		ug/L	25.00		88	70-130			
24.2		ug/L	25.00		97	70-130			
24.9		ug/L	25.00		100	70-130			
21.9		ug/L	25.00	10 M 10 10	88	70-130			
20.9		ug/L	25.00		84	70-130			
21.3		ug/L	25.00		85	70-130			
21.9		ua/L	25.00		87	70-130			
22.9		ua/L	25.00		92	70-130			
25.0		ug/L	25.00		100	70-130			
23.0		ua/L	25.00		92	70-130			
21.1		ug/L	25.00		84	70-130			
21.2		Vo/L	25.00		85	70-130			
21.2		uo/L	25.00		85	70-130			
21.9		uo/L	25.00		88	70-130			
19.1		uo/L	25.00		76	70-130			
21.5		uo/l	25.00		86	70-130			
21.4		Up/1	25.00		86	70-130			
Acres 1		2314	20.00		00	10 100			
	Result 5035/8260 ND 21.9	Result MRL 5035/8260B Volatile ND 0.0050 ND 0.0050	Result MRL Units 5035/8260B Volatile Organic O ND 0.0050 mg/kg wet ND 0.0050	Result MRL Units Level 5035/8260B Volatile Organic Compout ND 0.0050 mg/kg wet ND ND 0.0100 mg/kg wet ND ND 0.0050 mg/kg wet ND ND 0.0050 <td>Spike Source Result MRL Units Level Result 5035/8260B Volatile Organic Compounds / Lo ND 0.0050 mg/kg wet ND 0.0050 ND 0.0050 mg/kg wet ND 0.0050</td> <td>Result MRL Units Level Result %REC 5035/8260B Volatile Organic Compounds / Low Level ND 0.0050 mg/kg wet ND 0.0050 mg/kg wet ND 0.0050 mg/kg wet ND</td> <td>Result MRL Units Level Result %REC Limits 5035/8260B Volatile Organic Compounds / Low Level Limits ND 0.0050 mg/kg wet ND Low Level ND 0.0100 mg/kg wet ND Low Level ND 0.0050 mg/kg wet ND Low Level ND 0.0050</td> <td>Result MRL Units Level Result %REC Limits RPD 5035/8260B Volatile Organic Compounds / Low Level Limits RPD 5035/8260B 0.0050 mg/kg wet </td> <td>Result MRL Units Spike Source YakeC Limits RPD Limit 5035/8260B Volatile Organic Compounds / Low Level Limits RPD Limit Limit Limit Limit Limit Limit </td>	Spike Source Result MRL Units Level Result 5035/8260B Volatile Organic Compounds / Lo ND 0.0050 mg/kg wet ND 0.0050 ND 0.0050 mg/kg wet ND 0.0050	Result MRL Units Level Result %REC 5035/8260B Volatile Organic Compounds / Low Level ND 0.0050 mg/kg wet ND 0.0050 mg/kg wet ND 0.0050 mg/kg wet ND	Result MRL Units Level Result %REC Limits 5035/8260B Volatile Organic Compounds / Low Level Limits ND 0.0050 mg/kg wet ND Low Level ND 0.0100 mg/kg wet ND Low Level ND 0.0050 mg/kg wet ND Low Level ND 0.0050	Result MRL Units Level Result %REC Limits RPD 5035/8260B Volatile Organic Compounds / Low Level Limits RPD 5035/8260B 0.0050 mg/kg wet	Result MRL Units Spike Source YakeC Limits RPD Limit 5035/8260B Volatile Organic Compounds / Low Level Limits RPD Limit Limit Limit Limit Limit Limit

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	5035/8260	B Volatile	e Organic	Compou	inds / Lo	ow Leve	2			
Batch B482120 - 5035										
1,2-Dichloroethane	21.8		ug/L	25.00		87	70-130			
1,2-Dichloropropane	22.4		ug/l	25.00		89	70-130			
1,3,5-Trimethylbenzene	20.2		ug/L	25.00		81	70-130			
1,3-Dichlorobenzene	20.8		ug/L	25.00		83	70-130			
1,3-Dichloropropane	21.6		ug/L	25.00		86	70-130			
1,4-Dichlorobenzene	20.3		ug/L	25.00		81	70-130			
1,4-Dioxane - Screen	400		ug/L	500.0		80	44-241			
1-Chlorohexane	24.8		Ug/L	25.00		99	70-130			
2,2-Dichloropropane	22.5		ug/L	25.00		90	70-130			
2-Butanone	120		ug/L	125.0		96	70-130			
2-Chlorotoluene	21.7		ug/L	25.00		87	70-130			
2-Hexanone	115		ug/L	125.0		92	70-130			
4-Chlorotoluene	21.1		ug/L	25.00		85	70-130			
4-Isopropyltoluene	21.1		ug/L	25.00		85	70-130			
4-Methyl-2-Pentanone	108		ug/L	125.0		86	70-130			
Acetone	115		ug/L	125.0		92	70-130			
Benzene	21.8		ug/L	25.00		87	70-130			
Bromobenzene	21.2		ug/L	25.00		85	70-130			
Bromochloromethane	20.8		ug/L	25.00		83	70-130			
Bromodichloromethane	24.2		ug/L	25.00		97	70-130			
Bromoform	22.4		ug/L	25.00		89	70-130			
Bromomethane	25.4		ug/L	25.00		102	70-130			
Carbon Disulfide	23.7		ug/L	25.00		95	70-130			
Carbon Tetrachloride	22.5		ug/L	25.00		90	70-130			
Chlorobenzene	21.1		ug/L	25.00		85	70-130			
Chloroethane	22.7		ug/L	25.00		91	70-130			
Chloroform	22.1		ug/L	25.00		89	70-130			
Chloromethane	18.0		ug/L	25.00		72	70-130			
cis-1,2-Dichloroethene	24.4		ug/L	25.00		98	70-130			
cis-1,3-Dichloropropene	22.9		ug/L	25.00		92	70-130			
Dibromochloromethane	23.5		ug/L	25.00		94	70-130			
Dibromomethane	20.9		ug/L	25.00		84	70-130			
Dichlorodifluoromethane	18.0		ug/L	25.00		72	70-130			
Diethyl Ether	22.4		ug/L	25.00		90	70-130			
Di-isopropyl ether	25.0		ug/L	25.00		100	70-130			
Ethyl tertiary-butyl ether	23.6		ug/L	25.00		94	70-130			
Ethylbenzene	22.3		ug/L	25.00		89	70-130			
Hexachlorobutadiene	20.2		ug/L	25.00		81	70-130			
Isopropylbenzene	20.2		ug/L	25.00		81	70-130			
Methyl tert-Butyl Ether	23.4		ug/L	25.00		94	70-130			
Methylene Chloride	22.2		ug/L	25.00		89	70-130			
Naphthalene	21.2		ug/L	25.00		85	70-130			
n-Butylbenzene	22.2		ug/L	25.00		89	70-130			
n-Propylbenzene	21.4		ug/L	25.00		86	70-130			
sec-Butylbenzene	22.4		ug/L	25.00		90	70-130			
Styrene	22.0		ug/L	25.00		88	70-130			

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Dependability +

Fax: 401-461-4486 ٠ Service

Quality

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Oualifier
	5035/8260)B Volatile	e Organic (Compou	inds / Lo	ow Leve	1			quanter
Batch BA82120 - 5035				25.00						
tert-Butylbenzene	21.8		ug/L	25.00		87	70-130			
Tertiary-amyl methyl ether	24.2		ug/L	25.00		97	70-130			
Tetrachloroethene	19.6		ug/L	25.00		78	70-130			
Tetrahydrofuran	21.2		ug/L	25.00		85	70-130			
Toluene	21.1		ug/L	25.00		84	70-130			
trans-1,2-Dichloroethene	24.1		ug/L	25.00		96	70-130			
trans-1,3-Dichloropropene	20.8		ug/L	25.00		83	70-130			
Trichloroethene	22.2		ug/L	25.00		89	70-130			
Vinyl Acetate	22.2		ug/L	25.00		89	70-130			
Vinyl Chloride	27.0		ug/L	25.00		108	70-130			
Xylene O	21.5		ug/L	25.00		86	70-130			
Xylene P,M	43.0		ug/L	50.00		86	70-130			
Surrogate: 1,2-Dichloroethane-d4	24.0		ug/L	25.00		96	70-130			
Surrogate: 4-Bromofluorobenzene	23.2		ug/L	25.00		93	70-130			
Surrogate: Dibromofluoromethane	24.2		ug/L	25.00		97	70-130			
Surrogate: Toluene-d8	24.6		ug/L	25.00		98	70-130			
LCS Dup										
1,1,1,2-Tetrachloroethane	22.2		ug/L	25.00		89	70-130	1	20	
1,1,1-Trichloroethane	22.8		ug/L	25.00		91	70-130	8	20	
1,1,2,2-Tetrachloroethane	20.5		ug/L	25.00		82	70-130	4	20	
1,1,2-Trichloroethane	21.6		ug/L	25.00		87	70-130	1	20	
1,1-Dichloroethane	23.1		ug/L	25.00		93	70-130	1	20	
1,1-Dichloroethene	25.6		ug/L	25.00		103	70-130	2	20	
1,1-Dichloropropene	23.8		ug/L	25.00		95	70-130	3	20	
1,2,3-Trichlorobenzene	21.1		ug/L	25.00		84	70-130	0.2	20	
1,2,3-Trichloropropane	20.0		ug/L	25.00		80	70-130	6	20	
1,2,4-Trichlorobenzene	21.7		ug/L	25.00		87	70-130	2	20	
1,2,4-Trimethylbenzene	22.1		ug/L	25.00		88	70-130	0.9	20	
1,2-Dibromo-3-Chloropropane	18.5		ug/L	25.00		74	70-130	3	20	
1,2-Dibromoethane	20.9		ug/L	25.00		84	70-130	3	20	
1,2-Dichlorobenzene	21.1		ug/L	25.00		85	70-130	1	20	
1,2-Dichloroethane	22.2		ug/L	25.00		89	70-130	2	20	
1,2-Dichloropropane	22.5		ug/L	25.00		90	70-130	0.8	20	
1,3,5-Trimethylbenzene	20.4		ug/L	25.00		82	70-130	1	20	
1,3-Dichlorobenzene	21.0		ug/L	25.00		84	70-130	1	20	
1,3-Dichloropropane	21.8		ug/L	25.00		87	70-130	0.8	20	
1,4-Dichlorobenzene	20.5		ug/L	25.00		82	70-130	0.7	20	
1,4-Dioxane - Screen	392		ug/L	500.0		78	44-241	2	200	
1-Chlorohexane	25.5		ug/L	25.00		102	70-130	3	20	
2,2-Dichloropropane	23.7		ug/L	25.00		95	70-130	5	20	
2-Butanone	121		ug/L	125.0		97	70-130	0.9	20	
2-Chlorotoluene	22.1		ug/L	25.00		89	70-130	2	20	
2-Hexanone	117		ug/L	125.0		94	70-130	2	20	
4-Chlorotoluene	21.4		ua/L	25.00		86	70-130	1	20	
4-Isopropyltoluene	21.3		uq/L	25.00		85	70-130	0.9	20	
4-Methyl-2-Pentanone	108		ug/L	125.0		86	70-130	0.1	20	
185 Frances Avenue, C	-2211 1	fel: 401-461-7	181	Fax: 401-	461-4486	http:/	//www.Es	SLaborat	ory.com	

Dependability Quality Fax: 401-461-4486 Service +

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	5035/8260	B Volatile	e Organic (Compou	inds / Lo	ow Leve				
Patch BA03130 - F035										
Acetone	136		100/1	125.0		100	70 120	16	20	
Renzene	130		ug/L	125.0		109	70-130	16	20	
Bromobenzene	22.5		ug/L	25.00		00	70-130	2	20	
Bromochloromethane	21.9		ug/L	25.00		00	70-130	4	20	
Bromodichloromethane	21.0		ug/L	25.00		07	70-130	5	20	
Bromoform	24.5		ug/L	25.00		97	70-130	0.2	20	
Bromomethage	21.8		ug/L	25.00		105	70-130	3	20	
Carbon Disulfide	20.1		ug/L	25.00		105	70-130	3	20	
Carbon Disunde	24.0		ug/L	25.00		96	70-130	1	20	
Chlorobopzopo	23.4		ug/L	25.00		93	70-130	4	20	
Chloroothana	21.7		ug/L	25.00		87	70-130	3	20	
Chloroform	22.1		ug/L	25.00		88	70-130	3	20	
Chlorotorm	10.7		ug/L	25.00		91	70-130	2	20	
chioromethane	18.2		ug/L	25.00		73	70-130	0.7	20	
cis-1,2-Dichloropropage	24.4		ug/L	25.00		98	70-130	0.04	20	
Cis-1,3-Dichloropropene	23.2		ug/L	25.00		93	/0-130	1	20	
Dibromocritoromethane	23.3		ug/L	25.00		93	/0-130	0.9	20	
Dioromomethane	21.0		ug/L	25.00		84	70-130	0.5	20	
Dichlorodilluorometnane	17.5		ug/L	25.00		70	70-130	3	20	
Dietriyi Ether	23.4		ug/L	25.00		94	/0-130	4	20	
Di-isopropyi etter	25.1		ug/L	25.00		100	/0-130	0.5	20	
Ethyl tertiary-outyl ether	24.2		ug/L	25.00		97	70-130	3	20	
Ethyloenzene	22.8		ug/L	25.00		91	70-130	2	20	
Hexachioroputaciene	21.3		ug/L	25.00		85	70-130	5	20	
Isopropyidenzene	20.4		ug/L	25.00		82	70-130	1	20	
Methyl tert-Butyl Ether	23.9		ug/L	25.00		96	70-130	2	20	
Methylene Chloride	25.1		ug/L	25.00		100	70-130	12	20	
Naphthalene	21.7		ug/L	25.00		87	70-130	2	20	
n-butyloenzene	22.8		ug/L	25.00		91	70-130	2	20	
n-propyidenzene	21.5		ug/L	25.00		86	70-130	0.5	20	
Sec-Butybenzene	23.1		ug/L	25.00		92	70-130	3	20	
tort Bublicastone	22.4		ug/L	25.00		89	70-130	2	20	
Tortian, and mathid other	22.3		Ug/L	25.00		89	70-130	2	20	
Teruary-amyl methyl ether	24.3		ug/L	25.00		97	70-130	0.5	20	
Tetrachioroethene	20.0		ug/L	25.00		80	70-130	2	20	
Tetranydrosuran	20.0		ug/L	25.00		80	70-130	6	20	
Toluene	21.6		ug/L	25.00		86	70-130	3	20	
trans-1,2-Dichloroethene	25.0		ug/L	25.00		100	70-130	4	20	
trans-1,3-Dichloropropene	20.7		ug/L	25.00		83	70-130	0.5	20	
Inchoroethene	23.0		ug/L	25.00		92	70-130	4	20	
Vinyi Acetate	22.6		ug/L	25.00		90	70-130	2	20	
Vinyi Chloride	26.8		ug/L	25.00		107	70-130	0.7	20	
Xylene D M	21.4		ug/L	25.00		85	70-130	0.7	20	
Ayiene P,M	44.0		ug/L	50.00		88	70-130	2	20	
Surrogate: 1,2-Dichloroethane-d4	23.0		ug/L	25.00		92	70-130			
Surrogate: 4-Bromofluorobenzene	23.4		ug/L	25.00		94	70-130			
Surrogate: Dibromofluoromethane	23.1		ug/L	25.00		95	/0-130			

185 Frances Avenue, Cranston, RI 02910-2211

10-2211 Tel: 401-461-7181 Dependability + Quality

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	5035/8260	B Volatile	Organic (Compou	inds / Lo	ow Leve				
Batch BA82120 - 5035										-
Surrogate: Toluene-d8	^{24.3} 5035/8260)B Volatile	ug/L e Organic	<i>25.00</i> Compou	unds / M	97 Iethano	70-130			
Batch BA82108 - 5035										
Blank							•			
1,1,1,2-Tetrachloroethane	ND	0.100	mg/kg wet					· · · · · · · · · · · ·		
1,1,1-Trichloroethane	ND	0.0500	mg/kg wet							
1,1,2,2-Tetrachloroethane	ND	0.0500	mg/kg wet							
1,1,2-Trichloroethane	ND	0.0500	mg/kg wet							
1,1-Dichloroethane	ND	0.0500	mg/kg wet							
1,1-Dichloroethene	ND	0.0500	mg/kg wet							
1,1-Dichloropropene	ND	0.0500	mg/kg wet							
1,2,3-Trichlorobenzene	ND	0.0500	mg/kg wet							
1,2,3-Trichloropropane	ND	0.0500	mg/kg wet							
1,2,4-Trichlorobenzene	ND	0.0500	mg/kg wet							
1,2,4-Trimethylbenzene	ND	0.0500	mg/kg wet							
1,2-Dibromo-3-Chloropropane	ND	0.300	mg/kg wet							
1,2-Dibromoethane	ND	0.0500	mg/kg wet							
1,2-Dichlorobenzene	ND	0.0500	mg/kg wet							
1,2-Dichloroethane	ND	0.0500	mg/kg wet							
1,2-Dichloropropane	ND	0.0500	mg/kg wet							
1,3,5-Trimethylbenzene	ND	0.0500	mg/kg wet							
1,3-Dichlorobenzene	ND	0.0500	mg/kg wet							
1,3-Dichloropropane	ND	0.0500	mg/kg wet							
1,4-Dichlorobenzene	ND	0.0500	mg/kg wet							(10)
1,4-Dioxane - Screen	ND	5.00	mg/kg wet							
1-Chlorohexane	ND	0.0500	mg/kg wet							
2,2-Dichloropropane	ND	0.100	mg/kg wet							
2-Butanone	ND	1.25	ma/ka wet							
2-Chlorotoluene	ND	0.0500	ma/ka wet							
2-Hexanone	ND	0.500	ma/ka wet							
4-Chlorotoluene	ND	0.0500	mg/kg wet							
4-Isopropyltoluene	ND	0.0500	ma/ka wet							
4-Methyl-2-Pentanone	ND	0.500	ma/ka wet							
Acetone	ND	1.25	ma/ka wet							
Benzene	ND	0.0500	ma/kg wet							
Bromobenzene	ND	0.0500	ma/ka wet							
Bromochioromethane	ND	0.0500	mg/kg wet							
Bromodichloromethane	ND	0.0500	mg/kg wet							
Bromoform	ND	0.0500	mg/kg wet							
Bromomethane	ND	0.100	mg/kg wet							
Carbon Disulfide	ND	0,0500	ma/ka wet							
Carbon Tetrachloride	ND	0.0500	ma/ka wet							
Chlorobenzene	ND	0,0500	ma/ka wet							
Chloroethane	ND	0.100	mg/kg wet							

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	5035/826	0B Volati	ile Organic (Compou	unds / M	lethano	1			
Batch BA82108 - 5035										
Chloroform	ND	0.0500	mg/kg wet							
Chloromethane	ND	0.100	mg/kg wet							
cis-1,2-Dichloroethene	ND	0.0500	mg/kg wet							
cis-1,3-Dichloropropene	ND	0.0500	mg/kg wet							
Dibromochloromethane	ND	0.0500	mg/kg wet							
Dibromomethane	ND	0.0500	mg/kg wet							
Dichlorodifluoromethane	ND	0.0500	mg/kg wet							
Diethyl Ether	ND	0.0500	mg/kg wet							
Di-Isopropyl ether	ND	0.0500	mg/kg wet							
Ethyl tertiary-butyl ether	ND	0.0500	mg/kg wet							
Ethylbenzene	ND	0.0500	mg/kg wet							
Hexachlorobutadiene	ND	0.0500	mg/kg wet							
Isopropylbenzene	ND	0.0500	mg/kg wet							
Methyl tert-Butyl Ether	ND	0.0500	mg/kg wet							
Methylene Chloride	ND	0.250	ma/ka wet							
Naphthalene	ND	0.0500	ma/ka wet							
n-Butylbenzene	ND	0.0500	ma/ka wet							
n-Propylbenzene	ND	0.0500	ma/ka wet							
sec-Butylbenzene	ND	0.0500	ma/ka wet							
Styrene	ND	0.0500	ma/ka wet							
tert-Butylbenzene	ND	0.0500	ma/ka wet							
Tertiary-amyl methyl ether	ND	0.0500	ma/ka wet							
Tetrachloroethene	ND	0.0500	mg/kg wet							
Tetrahvdrofuran	ND	0.500	ma/ka wet							
Toluene	ND	0.0500	ma/ka wet							
trans-1.2-Dichloroethene	ND	0.0500	mg/kg wet							
trans-1.3-Dichloropropene	ND	0.0500	mg/kg wet							
Trichloroethene	ND	0.0500	mg/kg wet							
Vinvi Acetate	ND	0.0500	mg/kg wet							
Vinyl Chloride	ND	0.250	mg/kg wet							
Xvlene O	ND	0.0500	mg/kg wet							
Xviene P M	ND	0.100	mg/kg wet							
Conservation 1.2 Dicklassetters dd	2 30	0.100	mg/kg wet	2 500		0E	70 120			
Surrogate: 1,2-Dicnioroethane-d4	2.55		mg/kg wet	2.500		93	70-130			
Surrogate: 4-Bromofluoropenzene	2.55		mg/kg wet	2.500		102	70-130			
Surrogate: Dibromonuorometnane	2.62		mg/kg wet	2.500		105	70-130			
Surrogate: Towene-us			ing/kg wet	2.300		105	70-150			
	27.4									
1,1,1,2-Techorochanc	23.4		ug/L	25.00		94	70-130			
	25.1		ug/L	25.00		100	70-130			
1,1,2,2-Tetrachloroethane	19.5		ug/L	25.00		78	70-130			
	20.8		ug/L	25.00		83	70-130			
1,1-Dichloroethane	24.0		ug/L	25.00		96	70-130			
1,1-Dichlerenzone	28,5		ug/L	25.00		114	70-130			
1,1-Dichloropropene	24.8		ug/L	25.00		99	70-130			
1,2,3-trichloropropage	24.9		ug/L	25.00		100	70-130			
1,2,3-Trichloropropane	20.7		ug/L	25.00		83	70-130			
185 Frances Avenue, C	-2211	Tel: 401-461-7	181	Fax: 401-4	461-4486	http:/	/www.ES	SLaborato	vrv com	

Quality

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	5035/8260	OB Volatile	e Organic	Compou	unds / M	lethano				
Batch BA82108 - 5035										
1,2,4-Trichlorobenzene	25.8	-	ug/L	25.00		103	70-130			
1,2,4-Trimethylbenzene	25.7		ug/L	25.00		103	70-130			
1,2-Dibromo-3-Chloropropane	19.6		ug/L	25.00		79	70-130			
1,2-Dibromoethane	20.6		ug/L	25.00		82	70-130			
1,2-Dichlorobenzene	23.6		ug/L	25.00		94	70-130			
1,2-Dichloroethane	22.3		ug/L	25.00		89	70-130			
1,2-Dichloropropane	22.8		ug/L	25.00		91	70-130			
1,3,5-Trimethylbenzene	25.0		ug/L	25.00		100	70-130			
1,3-Dichlorobenzene	24.6		ug/L	25.00		98	70-130			
1,3-Dichloropropane	20.9		ug/L	25.00		83	70-130			
1,4-Dichlorobenzene	24.2		ug/L	25.00		97	70-130			
1,4-Dloxane - Screen	499		Ug/L	500.0		100	44-241			
1-Chlorohexane	24.7		ug/L	25.00		99	70-130			
2,2-Dichloropropane	25.0		ug/L	25.00		100	70-130			
2-Butanone	107		ug/L	125.0		86	70-130			
2-Chlorotoluene	24.1		ug/L	25.00		97	70-130			
2-Hexanone	99.0		ug/L	125.0		79	70-130			
4-Chlorotoluene	24.3		ug/L	25.00		97	70-130			
4-Isopropyltoluene	25.0		ug/L	25.00		100	70-130			
4-Methyl-2-Pentanone	96.7		ug/L	125.0		77	70-130			
Acetone	119		ug/L	125.0		95	70-130			
Benzene	23.4		ug/L	25.00		94	70-130			
Bromobenzene	23.8		ug/L	25.00		95	70-130			
Bromochloromethane	21.0		ug/L	25.00		84	70-130			
Bromodichloromethane	25.3		ug/L	25.00		101	70-130			
Bromoform	21.9		ug/L	25.00		88	70-130			
Bromomethane	29.8		ug/L	25.00		119	70-130			
Carbon Disulfide	26.6		ug/L	25.00		107	70-130			
Carbon Tetrachloride	26.3		ug/L	25.00		105	70-130			
Chlorobenzene	24.1		ug/L	25.00		96	70-130			
Chloroethane	31.5		ug/L	25.00		126	70-130			
Chloroform	23.9		ug/L	25.00		96	70-130			
Chloromethane	22.7		ug/L	25.00		91	70-130			
cis-1,2-Dichloroethene	26.4		ug/L	25.00		106	70-130			
cis-1,3-Dichloropropene	22.7		ug/L	25.00		91	70-130	1		
Dibromochloromethane	23.5		ug/L	25.00		94	70-130			
Dibromomethane	20.5		ug/L	25.00		82	70-130			
Dichlorodifluoromethane	20.5		ug/L	25.00		82	70-130			
Diethyl Ether	21.8		ug/L	25.00		87	70-130			
Di-isopropyl ether	23.3		ug/L	25.00		93	70-130			
Ethyl tertiary-butyl ether	21.8		ug/L	25.00		87	70-130			
Ethylbenzene	24.2		ug/L	25.00		97	70-130			
Hexachlorobutadiene	29.4		ug/L	25.00		117	70-130			
Isopropylbenzene	22.5		ug/L	25.00		90	70-130			
Metnyl tert-Butyl Ether	21.4		ug/L	25.00		85	70-130			
Methylene Chloride	24.3		ug/L	25.00		97	70-130			

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181

Dependability + Quality

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	5035/826	OB Volatil	e Organic (Compou	inds / M	lethanol				
Batch BA82108 - 5035										
Naphthalene	20.6		ug/L	25.00		82	70-130			
n-Butylbenzene	27.1		ug/L	25.00		108	70-130			
n-Propylbenzene	26.4		ug/L	25.00		106	70-130			
ec-Butylbenzene	26.1		ug/L	25.00		104	70-130			
Styrene	24.1		ug/L	25.00		96	70-130			
ert-Butylbenzene	26.5		ug/L	25.00		106	70-130			
Fertiary-amyl methyl ether	21.8		ug/L	25.00		87	70-130			
Fetrachloroethene	23.0		ug/L	25.00		92	70-130			
fetrahydrofuran	17.8		ug/L	25.00		71	70-130			
foluene	24.0		ug/L	25.00		96	70-130			
rans-1,2-Dichloroethene	26.5		ug/L	25.00		106	70-130			
rans-1,3-Dichloropropene	19.8		ug/L	25.00		79	70-130			
Trichloroethene	24.3		ug/L	25.00		97	70-130			
/inyl Acetate	20.8		ug/L	25.00		83	70-130			
/inyl Chloride	28.8		ug/L	25.00		115	70-130			
(ylene O	24.4		ug/L	25.00		98	70-130			
(ylene P,M	49.1		ug/L	50.00		98	70-130			
Surrogate: 1,2-Dichloroethane-d4	2.30		mg/kg wet	2.500		92	70-130			
Surrogate: 4-Bromofluorobenzene	2.52		mg/kg wet	2.500		101	70-130			
Surrogate: Dibromofluoromethane	2.63		mg/kg wet	2.500		105	70-130			
Surrogate: Toluene-d8	2.68		mg/kg wet	2.500		107	70-130			
LCS Dup	11 m i									
1,1,1,2-Tetrachloroethane	24.1		ug/L	25.00		96	70-130	3	20	
1,1,1-Trichloroethane	25.6		ug/L	25.00		102	70-130	2	20	
,1,2,2-Tetrachloroethane	21.1		ug/L	25.00		84	70-130	8	20	
1,1,2-Trichloroethane	22.4		ug/L	25.00		90	70-130	7	20	
1,1-Dichloroethane	24.4		ug/L	25.00		98	70-130	1	20	
I,1-Dichloroethene	28.4		ug/L	25.00		114	70-130	0.2	20	
1,1-Dichloropropene	25.3		ug/L	25.00		101	70-130	2	20	
1,2,3-Trichlorobenzene	26.2		ug/L	25.00		105	70-130	5	20	
1,2,3-Trichloropropane	22.0		ug/L	25.00		88	70-130	6	20	
,2,4-Trichlorobenzene	26.7		ug/L	25.00		107	70-130	3	20	
1,2,4-Trimethylbenzene	25.7		ug/L	25.00		103	70-130	0.1	20	
1,2-Dibromo-3-Chloropropane	22.0		ug/L	25.00		88	70-130	12	20	
1,2-Dibromoethane	22.0		ug/L	25.00		88	70-130	7	20	
1,2-Dichlorobenzene	24.2		ug/L	25.00		97	70-130	2	20	
1,2-Dichloroethane	23.4		ug/L	25.00		94	70-130	5	20	
1,2-Dichloropropane	23.4		ug/L	25.00		94	70-130	3	20	
1,3,5-Trimethylbenzene	24.8		ug/L	25.00		99	70-130	0.8	20	
1,3-Dichlorobenzene	24.7		ug/L	25.00		99	70-130	0.6	20	
1,3-Dichloropropane	22.3		ug/L	25.00		89	70-130	7	20	
1,4-Dichlorobenzene	24.3		ug/L	25.00		97	70-130	0.7	20	
1,4-Dioxane - Screen	564		ug/L	500.0		113	44-241	12	200	
I-Chlorohexane	24.8		ug/L	25.00		99	70-130	0.5	20	
2,2-Dichloropropane	26.8		ug/L	25.00		107	70-130	7	20	
Butanone	110		110/1	175.0		05	70 120	10	20	

Dependability

Quality

Service

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	5035/8260	B Volatil	e Organic	Compou	unds / M	lethano				
Batch BA82108 - 5035						_				
2-Chlorotoluene	24.6		ug/L	25.00		98	70-130	2	20	
2-Hexanone	111		ug/L	125.0		88	70-130	11	20	
4-Chlorotoluene	24.3		ug/L	25.00		97	70-130	0.08	20	
4-Isopropyltoluene	24.9		ug/L	25.00		100	70-130	0.6	20	
4-Methyl-2-Pentanone	108		ug/L	125.0		86	70-130	11	20	
Acetone	135		ug/L	125.0		108	70-130	12	20	
Benzene	23.8		ug/L	25.00		95	70-130	2	20	
Bromobenzene	24.3		ug/L	25.00		97	70-130	2	20	
Bromochloromethane	22.2		ug/L	25.00		89	70-130	5	20	
Bromodichloromethane	26.4		ug/L	25.00		106	70-130	4	20	
Bromoform	23.7		ug/L	25.00		95	70-130	8	20	
Bromomethane	30.2		ug/L	25.00		121	70-130	1	20	
Carbon Disulfide	27.3		ug/L	25.00		109	70-130	2	20	
Carbon Tetrachloride	26.9		ug/L	25.00		108	70-130	2	20	
Chlorobenzene	24.4		ug/L	25.00		97	70-130	1	20	
Chloroethane	28.6		ug/L	25.00		114	70-130	10	20	
Chloroform	24.5		ug/L	25.00		98	70-130	2	20	
Chloromethane	22.9		ug/L	25.00		91	70-130	0.6	20	
cis-1,2-Dichloroethene	26.6		ug/L	25.00		106	70-130	0.7	20	
cis-1,3-Dichloropropene	23.9		ug/L	25.00		96	70-130	5	20	
Dibromochloromethane	24.8		ug/L	25.00		99	70-130	5	20	
Dibromomethane	22.3		ug/L	25.00		89	70-130	8	20	
Dichlorodifluoromethane	21.0		ug/L	25.00		84	70-130	2	20	
Dlethyl Ether	23.4		ug/L	25.00		93	70-130	7	20	
Di-isopropyl ether	24.2		ug/L	25.00		97	70-130	4	20	
Ethyl tertiary-butyl ether	23.2		ug/L	25.00		93	70-130	6	20	
Ethylbenzene	24.4		ug/L	25.00		97	70-130	0.7	20	
Hexachlorobutadlene	29.2		ug/L	25.00		117	70-130	0.5	20	
Isopropylbenzene	22.2		ug/L	25.00		89	70-130	1	20	
Methyl tert-Butyl Ether	23.2		ug/L	25.00		93	70-130	8	20	
Methylene Chloride	24.9		ug/L	25.00		99	70-130	2	20	
Naphthalene	22.4		ug/L	25.00		90	70-130	9	20	
n-Butylbenzene	27.1		ug/L	25.00		108	70-130	0.1	20	
n-Propylbenzene	26.0		ug/L	25.00		104	70-130	2	20	
sec-Butylbenzene	25.8		ug/L	25.00		103	70-130	1	20	
Styrene	24.5		ug/L	25.00		98	70-130	2	20	
tert-Butylbenzene	27.0		ug/L	25.00		108	70-130	2	20	
Tertiary-amyl methyl ether	23.2		ug/L	25.00		93	70-130	6	20	
Tetrachloroethene	21.8		ug/L	25.00		87	70-130	6	20	
Tetrahydrofuran	19.5		ug/L	25.00		78	70-130	9	20	
Toluene	24.7		ug/L	25.00		99	70-130	3	20	
trans-1,2-Dichloroethene	27.0		ug/L	25.00		108	70-130	2	20	
trans-1,3-Dichloropropene	21.2		ug/L	25.00		85	70-130	7	20	
Trichloroethene	24.6		ug/L	25.00		98	70-130	1	20	
Vinyl Acetate	22.1		ug/L	25.00		88	70-130	6	20	
Vinyl Chloride	29.7		ug/L	25.00		119	70-130	3	20	

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Dependability .

Fax: 401-461-4486 Service ٠

Quality

http://www.ESSLaboratory.com

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

				Snike	Source		%DEC		ppp	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	5035/826	OB Volatil	e Organic (Compou	unds / M	lethanc	bl			
Batch BA82108 - 5035										
Xylene O	24.6		ug/L	25.00		98	70-130	0.8	20	
Xylene P,M	49.5		ug/L	50.00		99	70-130	0.7	20	
Surrogate: 1,2-Dichloroethane-d4	2.45		mg/kg wet	2.500		98	70-130			
Surrogate: 4-Bromofluorobenzene	2.58		mg/kg wet	2.500		103	70-130			
Surrogate: Dibromofluoromethane	2.70		mg/kg wet	2.500		108	70-130			
Surrogate: Toluene-d8	2.69		mg/kg wet	2.500		107	70-130			
	81	00M Tota	I Petroleun	n Hydro	ocarbons	;				
Batch BA82102 - 3541										
Blank		**************************************							CT 10	
Decane (C10)	ND	0.25	mg/kg wet							
Docosane (C22)	ND	0.25	mg/kg wet							
Dodecane (C12)	ND	0.25	mg/kg wet							
Eicosane (C20)	ND	0.25	mg/kg wet							
Hexacosane (C26)	ND	0.25	mg/kg wet							
Hexadecane (C16)	ND	0.25	mg/kg wet							
Nonadecane (C19)	ND	0.25	mg/kg wet							
Nonane (C9)	ND	0.25	mg/kg wet							
Octacosane (C28)	ND	0.25	mg/kg wet							
Octadecane (C18)	ND	0.25	mg/kg wet							
Tetracosane (C24)	ND	0.25	mg/kg wet							
Tetradecane (C14)	ND	0.25	mg/kg wet							
Total Petroleum Hydrocarbons	ND	37.5	mg/kg wet							
Triacontane (C30)	ND	0.25	mg/kg wet							
Surrogate: O-Terphenyl	3.55		mg/kg wet	5.000		71	40-140			
LCS										
Decane (C10)	1.75	0.25	mg/kg wet	2.500		70	40-140			
Docosane (C22)	2.25	0.25	mg/kg wet	2.500		90	40-140			
Dodecane (C12)	1.89	0.25	mg/kg wet	2.500		76	40-140			
Elcosane (C20)	2.22	0.25	mg/kg wet	2.500		89	40-140			
Hexacosane (C26)	2.26	0.25	mg/kg wet	2.500		90	40-140			
Hexadecane (C16)	2.07	0.25	mg/kg wet	2.500		83	40-140			
Nonadecane (C19)	2.26	0.25	mg/kg wet	2.500		90	40-140			
Nonane (C9)	1.45	0.25	mg/kg wet	2.500		58	30-140			
Octacosane (C28)	2.30	0.25	mg/kg wet	2.500		92	40-140			
Octadecane (C18)	2.21	0.25	mg/kg wet	2.500		89	40-140			
Tetracosane (C24)	2.42	0.25	mg/kg wet	2.500		97	40-140			
Tetradecane (C14)	1.99	0.25	mg/kg wet	2.500		79	40-140			
Triacontane (C30)	2.32	0.25	mg/kg wet	2.500		93	40-140			
Surrogate: O-Terphenyl	3.99		mg/kg wet	5.000		80	40-140			
LCS Dup										
Decane (C10)	1.58	0.25	mg/kg wet	2.500		63	40-140	10	50	
Docosane (C22)	1.97	0.25	mg/kg wet	2.500		79	40-140	13	50	

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 40

2910-2211 Tel: 401-461-7181 Dependability + Quality http://www.ESSLaboratory.com 29

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	81	00M Tota	l Petroleun	n Hydro	carbons	5		_		
Batch BA82102 - 3541										
Dodecane (C12)	1.69	0.25	mg/kg wet	2.500		67	40-140	11	50	
Eicosane (C20)	1.95	0.25	mg/kg wet	2.500		78	40-140	13	50	
Hexacosane (C26)	1.97	0.25	mg/kg wet	2.500		79	40-140	14	50	
Hexadecane (C16)	1.83	0.25	mg/kg wet	2.500		73	40-140	12	50	
Nonadecane (C19)	2.00	0.25	mg/kg wet	2.500		80	40-140	12	50	
Nonane (C9)	1.31	0.25	mg/kg wet	2.500		52	30-140	10	50	
Octacosane (C28)	2.00	0.25	mg/kg wet	2.500		80	40-140	14	50	
Octadecane (C18)	1.96	0.25	mg/kg wet	2.500		78	40-140	12	50	
Tetracosane (C24)	2.12	0.25	mg/kg wet	2.500		85	40-140	14	50	
Tetradecane (C14)	1.76	0.25	mg/kg wet	2.500		70	40-140	12	50	
Triacontane (C30)	2.02	0.25	mg/kg wet	2.500		81	40-140	14	50	
Surrogate: O-Terphenyl	3.52		mg/kg wet	5.000		70	40-140			
	827	OC Semi-	/olatile Org	anic Co	ompoun	ds				
Batch BA82115 - 3541	an nénénénénéné. A tél.	*						CH107-13-1777-		
1 1-Binhenvi	ND	0.250	ma/ka wat							
1.2.4-Trichlorohenzene	ND	0.250	mg/kg wet							
1 2-Dichlorohenzene	ND	0.250	mg/kg wet							
1 3-Dichlorobenzene	ND	0.250	mg/kg wet							
1 4-Dichlorobenzene	ND	0.250	mg/kg wet							
2 3 4 6-Tetrachlorophenol	ND	1.25	mg/kg wet							
2 4 5-Trichlorophenol	ND	0.250	mg/kg wet							
2.4.6-Trichlorophenol	ND	0.250	mg/kg wet							
2.4-Dichlorophenol	ND	0.250	mg/kg wet							
2 4-Dimethylphenol	ND	0.250	mg/kg wet							
2.4-Dinitrophenol	ND	1 25	mg/kg wet							
2.4-Dinitrotoluene	ND	0.250	mg/kg wet							
2.6-Dinitrotoluene	ND	0.250	mg/kg wet							
2-Chloronaphthalene	ND	0.250	mg/kg wet							
2-Chlorophenol	ND	0.250	mg/kg wet							
2-Methylpaphthalene	ND	0.250	mg/kg wet							
2-Methylinbenol	ND	0.250	mg/kg wet							
2-Nitroaniline	ND	0.250	mg/kg wet							
2-Nitronbenol	ND	0.250	mg/kg wet							
3.3 '-Dichlorohenzidine	ND	0.500	mg/kg wet							
3+4-Methylphenol	ND	0.500	mg/kg wet							
3-Nitroaniline	ND	0.250	mg/kg wet							
4.6-Dinitro-2-Methylphenol	ND	1.25	mg/kg wet							
4-Bromophenyl-phenylether	ND	0.250	ma/ka wet							
4-Chloro-3-Methylphenol	ND	0.250	mo/ko wet							
4-Chloroanlline	ND	0.500	mg/kg wet							
4-Chloro-phenyl-phenyl ether	ND	0.250	ma/ka wet							
4-Nitroaniline	ND	0.250	mg/kg wet							
4-Nitrophenol	NO	1 25	mg/kg wet							
185 Frances Avenue	ranston RI 02010.	2211 Т	al 101 161 71	91	For ADI A	61 1196	http://	Union ES	CI abarata	

Dependability +

Quality

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	827	OC Semi-V	/olatile Org	anic Co	mpoun	ds				
Batch BA82115 - 3541				····						
Acenaphthene	ND	0.250	mg/kg wet							
Acenaphthylene	ND	0.250	mg/kg wet							
Acetophenone	ND	0.500	mg/kg wet							
Aniline	ND	1.25	mg/kg wet							
Anthracene	ND	0.250	mg/kg wet							
Azobenzene	ND	0.250	mg/kg wet							
Benzo(a)anthracene	ND	0.250	mg/kg wet							
Benzo(a)pyrene	ND	0.125	mg/kg wet							
Benzo(b)fluoranthene	ND	0.250	mg/kg wet							
Benzo(g,h,i)perylene	ND	0.250	mg/kg wet							
Benzo(k)fluoranthene	ND	0.250	mg/kg wet							
Benzoic Acid	ND	1.25	mg/kg wet							
Benzyl Alcohol	ND	0.250	mg/kg wet							
bis(2-Chloroethoxy)methane	ND	0.250	mg/kg wet							
bis(2-Chloroethyl)ether	ND	0.250	ma/ka wet							
bis(2-chlorolsopropyl)Ether	ND	0.250	mg/kg wet							
bis(2-Ethylhexyl)phthalate	ND	0.250	mg/kg wet							
Butylbenzylphthalate	ND	0.250	mg/kg wet							
Carbazole	ND	0.250	mg/kg wet							
Chrysene	ND	0.125	mg/kg wet							
Dibenzo(a,h)Anthracene	ND	0.125	ma/ka wet							
Dibenzofuran	ND	0.250	ma/ka wet							
Diethylphthalate	ND	0.250	ma/ka wet							
Dimethylphthalate	ND	0.250	mg/kg wet							
Di-n-butylphthalate	ND	0.250	mg/kg wet							
Di-n-octylphthalate	ND	0.250	mg/kg wet							
Fluoranthene	ND	0.250	mg/kg wet							
Fluorene	ND	0.250	ma/ka wet							
Hexachlorobenzene	ND	0,125	ma/ka wet							
Hexachlorobutadiene	ND	0.250	mg/kg wet							
Hexachlorocyclopentadiene	ND	1.25	mg/kg wet							
Hexachloroethane	ND	0.250	mg/kg wet							
Indeno(1,2,3-cd)Pyrene	ND	0.250	mg/kg wet							
Isophorone	ND	0.250	mg/kg wet							
Naphthalene	ND	0.250	mg/kg wet							
Nitrobenzene	ND	0.250	mg/kg wet							
N-Nitrosodimethylamine	ND	0.250	mg/kg wet							
N-Nitroso-Di-n-Propylamine	ND	0.250	mg/ka wet							
N-nitrosodiphenylamine	ND	0.250	mg/kg wet							
Pentachlorophenol	ND	1.25	mg/kg wet							
Phenanthrene	ND	0.250	mg/kg wet							
Phenol	ND	0.250	mg/kg wet							
Pyrene	ND	0.250	mg/ka wet							
Pyridine	ND	1.25	mg/kg wet							
Surrogate: 1,2-Dichlorobenzene-d4	1.92		mg/kg wet	2.500		77	30-1.30			
Surronate: 2.4.6-Tribromonhanol	2.34		ma/ka wet	3 750		62	30-130			

185 Frances Avenue, Cranston, RI 02910-2211 Tel Dependability

Tel: 401-461-7181 Fax: 401-461-4486

.

Service

Quality

+

52 30-130

http://www.ESSLaboratory.com 31

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	827	OC Semi-\	/olatile Org	janic Co	ompoun	ds				
Batch BA82115 - 3541										
Surrogate: 2-Chlorophenol-d4	2.31		mg/kg wet	3.750		62	30-130			
Surrogate: 2-Fluorobiphenyl	1.72		mg/kg wet	2.500		69	30-130			
Surrogate: 2-Fluorophenol	2.41		mg/kg wet	3.750		64	30-130			
Surrogate: Nitrobenzene-d5	1.78		mg/kg wet	2.500		71	30-130			
Surrogate: Phenol-d6	3.09		mg/kg wet	3.750		82	30-130			
Surrogate: p-Terphenyl-d14	1.96		mg/kg wet	2.500		78	30-130			
LCS										
1,1-Biphenyl	1.48	0.250	mg/kg wet	2.500	1	59	40-140			
1,2,4-Trichlorobenzene	1.26	0.250	mg/kg wet	2.500		50	40-140			
1,2-Dichlorobenzene	1.28	0.250	mg/kg wet	2.500		51	40-140			
1,3-Dichlorobenzene	1.22	0.250	mg/kg wet	2.500		49	40-140			
1,4-Dichlorobenzene	1.21	0.250	mg/kg wet	2.500		49	40-140			
2,3,4,6-Tetrachlorophenol	1.83	1.25	mg/kg wet	2.500		73	30-130			
2,4,5-Trichlorophenol	1.64	0.250	mg/kg wet	2.500		66	30-130			
2,4,6-Trichlorophenol	1.53	0.250	mg/kg wet	2.500		61	30-130			
2,4-Dichlorophenol	1.45	0.250	mg/kg wet	2.500		58	30-130			
2,4-Dimethylphenol	1.30	0.250	mg/kg wet	2.500		52	30-130			
2,4-Dinitrophenol	0.535	1.25	mg/kg wet	2.500		21	30-130			B-
2,4-Dinitrotoluene	1.68	0.250	mg/kg wet	2.500		67	40-140			
2,6-Dinitrotoluene	1.52	0.250	mg/kg wet	2.500		61	40-140			
2-Chloronaphthalene	1.10	0.250	mg/kg wet	2.500		44	40-140			
2-Chlorophenol	1.23	0.250	mg/kg wet	2.500		49	30-130			
2-Methylnaphthalene	1.29	0.250	mg/kg wet	2.500		52	40-140			
2-Methylphenol	1.40	0.250	mg/kg wet	2.500		56	30-130			
2-Nitroaniline	1.02	0.250	mg/kg wet	2,500		41	40-140			
2-Nitrophenol	1.25	0.250	mg/kg wet	2.500		50	30-130			
3,3 -Dichlorobenzidine	1.87	0.500	mg/kg wet	2.500		75	40-140			
3+4-Methylphenol	2.34	0.500	mg/kg wet	5.000		47	30-130			
3-Nitroaniline	1.62	0.250	mg/kg wet	2.500		65	40-140			
4,6-Dinitro-2-Methylphenol	0.964	1.25	mg/kg wet	2.500		39	30-130			
4-Bromophenyl-phenylether	1.49	0.250	mg/kg wet	2.500		60	40-140			
4-Chloro-3-Methylphenol	1.55	0.250	mg/kg wet	2.500		62	30-130			
4-Chloroanillne	0.822	0.500	mg/kg wet	2.500		33	40-140			B-
4-Chloro-phenyl-phenyl ether	1.55	0.250	mg/kg wet	2.500		62	40-140			
4-Nitroaniline	1.72	0.250	mg/kg wet	2.500		69	40-140			
4-Nitrophenol	1.79	1.25	mg/kg wet	2.500		72	30-130			
Acenaphthene	1.41	0.250	mg/kg wet	2.500		56	40-140			
Acenaphthylene	1.37	0.250	mg/kg wet	2.500		55	40-140 .			
Acetophenone	1.32	0.500	mg/kg wet	2.500		53	40-140			
Aniline	0.768	1.25	mg/kg wet	2.500		31	40-140			В-
Anthracene	1.55	0.250	mg/kg wet	2.500		62	40-140			
Azobenzene	1.44	0.250	mg/kg wet	2.500		58	40-140			
Benzo(a)anthracene	1.90	0.250	mg/kg wet	2.500		76	40-140			
Benzo(a)pyrene	1.75	0.125	mg/kg wet	2.500		70	40-140			
Benzo(b)fluoranthene	1.84	0.250	mg/kg wet	2.500		74	40-140			

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181

Dependability + Quality

Fax: 401-461-4486 * Service

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
· · · · · · · · · · · · · · · · · · ·	827	OC Semi-\	olatile Org	anic Co	mpound	ls				11
Batch BA82115 - 3541										
Benzo(g,h,i)perylene	1.86	0.250	mg/kg wet	2.500		74	40-140			
Benzo(k)fluoranthene	1.87	0.250	mg/kg wet	2.500		75	40-140			
Benzoic Acld	ND	1.25	mg/kg wet	2.500			40-140			B-
Benzyl Alcohol	1.33	0.250	mg/kg wet	2.500		53	40-140			
bis(2-Chloroethoxy)methane	1.11	0.250	mg/kg wet	2.500		44	40-140			
bis(2-Chloroethyl)ether	1.38	0.250	mg/kg wet	2.500		55	40-140			
bis(2-chloroisopropyl)Ether	1.16	0.250	mg/kg wet	2.500		46	40-140			
bis(2-Ethylhexyl)phthalate	1.90	0.250	mg/kg wet	2.500		76	40-140			
Butylbenzylphthalate	1.86	0.250	mg/kg wet	2.500		74	40-140			
Carbazole	1.79	0.250	mg/kg wet	2.500		72	40-140			
Chrysene	1.87	0.125	mg/kg wet	2.500		75	40-140			
Dibenzo(a,h)Anthracene	1.83	0.125	mg/kg wet	2.500		73	40-140			
Dibenzofuran	1.44	0.250	mg/kg wet	2,500		58	40-140			
Diethylphthalate	1.47	0.250	mg/kg wet	2.500		59	40-140			
Dimethylphthalate	1.56	0.250	mg/kg wet	2.500		62	40-140			
Di-n-butylphthalate	1.71	0.250	mg/kg wet	2.500		68	40-140			
Di-n-octylphthalate	1.73	0.250	mg/kg wet	2.500		69	40-140			
Fluoranthene	1.82	0.250	mg/kg wet	2.500		73	40-140			
Fluorene	1.39	0.250	mg/kg wet	2.500		55	40-140			
Hexachlorobenzene	1.43	0.125	mg/kg wet	2.500		57	40-140			
Hexachlorobutadiene	1.21	0.250	mg/kg wet	2.500		48	40-140			
Hexachlorocyclopentadiene	0.768	1.25	mg/kg wet	2.500		31	40-140			8-
Hexachloroethane	1.19	0.250	mg/kg wet	2.500		48	40-140			
Indeno(1,2,3-cd)Pyrene	1.85	0.250	mg/kg wet	2.500		74	40-140			
Isophorone	1.24	0.250	mg/kg wet	2.500		49	40-140			
Naphthalene	1.18	0.250	mg/kg wet	2.500		47	40-140			
Nitrobenzene	1.18	0.250	mg/kg wet	2.500		47	40-140			
N-Nitrosodimethylamine	1.12	0.250	mg/kg wet	2.500		45	40-140			
N-Nitroso-Di-n-Propylamine	1.05	0.250	mg/kg wet	2.500		42	40-140			
N-nitrosodiphenylamine	1.56	0.250	mg/kg wet	2.500		62	40-140			
Pentachlorophenol	1.90	1.25	mg/kg wet	2.500		76	30-130			
Phenanthrene	1.57	0.250	mg/kg wet	2.500		63	40-140			
Phenol	1.33	0.250	mg/kg wet	2.500		53	30-130			
Pyrene	1.78	0.250	mg/kg wet	2.500		71	40-140			
Pyridine	0.940	1.25	mg/kg wet	2.500		38	40-140			B-
Surrogate: 1,2-Dichlorobenzene-d4	1.17		mg/kg wet	2.500		47	30-130			
Surrogate: 2,4,6-Tribromophenol	2.22		mg/kg wet	3.750		59	30-130			
Surrogate: 2-Chlorophenol-d4	1.73		mg/kg wet	3.750		46	30-130			
Surrogate: 2-Fluoroblphenyl	1.31		mg/kg wet	2.500		52	30-130			
Surrogate: 2-Fluorophenol	1.75		mg/kg wet	3.750		47	30-130			
Surrogate: Nitrobenzene-d5	1.19		mg/kg wet	2.500		48	30-130			
Surrogate: Phenol-d6	2.15		mg/kg wet	3.750		57	30-130			
Surrogate: p-Terphenyl-d14	1.75		mg/kg wet	2.500		70	30-130			
LCS Dup			19							
1,1-Biphenyl	1.73	0.250	mg/kg wet	2.500		69	40-140	16	30	
1.2.4-Trichlorobenzene	1.37	0.250	ma/ka wet	2,500		55	40-140	9	30	

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	827	0C Semi-\	/olatile Org	anic Co	ompoun	ds				
Batch BA82115 - 3541										
1,2-Dichlorobenzene	1.30	0.250	mg/kg wet	2.500		52	40-140	2	30	
1,3-Dichlorobenzene	1.25	0.250	mg/kg wet	2.500		50	40-140	2	30	
1,4-Dichlorobenzene	1.31	0.250	mg/kg wet	2.500		53	40-140	8	30	
2,3,4,6-Tetrachlorophenol	1.97	1.25	mg/kg wet	2.500		79	30-130	7	30	
2,4,5-Trichlorophenol	1.79	0.250	mg/kg wet	2.500		72	30-130	9	30	
2,4,6-Trichlorophenol	1.71	0.250	mg/kg wet	2.500		68	30-130	11	30	
2,4-Dichlorophenol	1.59	0.250	mg/kg wet	2.500		64	30-130	9	30	
2,4-Dimethylphenol	1.48	0.250	mg/kg wet	2.500		59	30-130	13	30	
2,4-Dinitrophenoi	0.804	1.25	mg/kg wet	2,500		32	30-130	40	30	D+
2,4-Dinitrotoluene	1.95	0.250	mg/kg wet	2.500		78	40-140	15	30	
2,6-Dinitrotoluene	1.75	0.250	mg/kg wet	2.500		70	40-140	14	30	
2-Chloronaphthalene	1.23	0.250	mg/kg wet	2.500		49	40-140	12	30	
2-Chlorophenol	1.30	0.250	mg/kg wet	2.500		52	30-130	6	30	
2-Methylnaphthalene	1.45	0.250	mg/kg wet	2.500		58	40-140	11	30	
2-Methylphenol	1.55	0.250	mg/kg wet	2.500		62	30-130	10	30	
2-Nitroaniline	1.01	0.250	mg/kg wet	2.500		41	40-140	1	30	
2-Nitrophenol	1.45	0.250	mg/kg wet	2.500		58	30-130	15	30	
3,3 '-Dichlorobenzidine	2.00	0.500	mg/kg wet	2.500		80	40-140	7	30	
3+4-Methylphenol	1.39	0.500	mg/kg wet	5.000		28	30-130	51	30	B-, D+
3-Nitroaniline	1.85	0.250	mg/kg wet	2.500		74	40-140	13	30	
4,6-Dinitro-2-Methylphenol	1.46	1.25	mg/kg wet	2.500		58	30-130	41	30	D+
4-Bromophenyl-phenylether	1.68	0.250	mg/kg wet	2.500		67	40-140	12	30	
4-Chloro-3-Methylphenol	1.73	0.250	mg/kg wet	2.500		69	30-130	11	30	
4-Chloroaniline	0.905	0.500	mg/kg wet	2.500		36	40-140	10	30	B-
4-Chloro-phenyl-phenyl ether	1.73	0.250	mg/kg wet	2.500		69	40-140	11	30	
4-Nitroaniline	1.91	0.250	mg/kg wet	2.500		77	40-140	11	30	
4-Nitrophenol	1.95	1.25	mg/kg wet	2.500		78	30-130	9	30	
Acenaphthene	1.60	0.250	mg/kg wet	2.500		64	40-140	13	30	
Acenaphthylene	1.49	0.250	mg/kg wet	2.500		60	40-140	9	30	
Acetophenone	1.48	0.500	mg/kg wet	2.500		59	40-140	11	30	
Aniline	0.828	1.25	mg/kg wet	2.500		33	40-140	8	30	B-
Anthracene	1.72	0.250	mg/kg wet	2.500		69	40-140	11	30	
Azobenzene	1.64	0.250	mg/kg wet	2.500		66	40-140	13	30	
Benzo(a)anthracene	2.02	0.250	mg/kg wet	2.500		81	40-140	6	30	
Benzo(a)pyrene	1.87	0.125	mg/kg wet	2.500		75	40-140	7	30	
Benzo(b)fluoranthene	2.05	0.250	mg/kg wet	2.500		82	40-140	10	30	
Benzo(g,h,I)perylene	1.92	0.250	mg/kg wet	2,500		77	40-140	3	30	
Benzo(k)fluoranthene	1.94	0.250	mg/kg wet	2.500		78	40-140	4	30	
Benzoic Acid	0.271	1.25	mg/kg wet	2.500		11	40-140	200	30	B-, D+
Benzyl Alcohol	1.44	0.250	ma/ka wet	2.500		58	40-140	9	30	- /
bis(2-Chloroethoxy)methane	1.21	0.250	mg/kg wet	2.500		48	40-140	9	30	
bis(2-Chioroethyl)ether	1.50	0.250	mg/kg wet	2.500		60	40-140	8	30	
bis(2-chlorolsopropyl)Ether	1.29	0.250	mg/kg wet	2.500		52	40-140	11	30	
bis(2-Ethylhexyl)phthalate	2.02	0.250	mg/kg wet	2.500		81	40-140	6	30	
Butylbenzylphthalate	1.99	0.250	mg/kg wet	2.500		80	40-140	7	30	
Carbazole	1.93	0.250	mg/kg wet	2.500		77	40-140	7	30	

185 Frances Avenue, Cranston, RI 02910-2211

Fax: 401-461-4486 Service

http://www.ESSLaboratory.com 34

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Quality Control Data

	D	MOL		Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	827	0C Semi-V	/olatile Org	anic Co	mpoun	ds				
Batch BA82115 - 3541				87						
Chrysene	1.96	0.125	mg/kg wet	2.500		78	40-140	5	30	
Dibenzo(a,h)Anthracene	1.96	0.125	mg/kg wet	2.500		78	40-140	7	30	
Dibenzofuran	1.59	0.250	mg/kg wet	2.500		63	40-140	10	30	
Diethylphthalate	1.67	0.250	mg/kg wet	2.500		67	40-140	13	30	
Dimethylphthalate	1.74	0.250	mg/kg wet	2.500		70	40-140	11	30	
Di-n-butylphthalate	1.86	0.250	mg/kg wet	2.500		74	40-140	9	30	
Di-n-octylphthalate	1.83	0.250	mg/kg wet	2.500		73	40-140	5	30	
Fluoranthene	1.97	0.250	mg/kg wet	2.500		79	40-140	8	30	
Fluorene	1.57	0.250	mg/kg wet	2.500		63	40-140	12	30	
Hexachlorobenzene	1.65	0.125	mg/kg wet	2.500		66	40-140	14	30	
Hexachlorobutadlene	1.34	0.250	mg/kg wet	2.500		54	40-140	10	30	
Hexachlorocyclopentadiene	0.835	1.25	mg/kg wet	2.500		33	40-140	8	30	B-
Hexachloroethane	1.25	0.250	mg/kg wet	2.500		50	40-140	5	30	
Indeno(1,2,3-cd)Pyrene	1.95	0.250	mg/kg wet	2.500		78	40-140	5	30	
Isophorone	1.32	0.250	mg/kg wet	2.500		53	40-140	6	30	
Naphthalene	1.34	0.250	mg/kg wet	2.500		54	40-140	12	30	
Nitrobenzene	1.35	0.250	mg/kg wet	2.500		54	40-140	14	30	
N-Nitrosodimethylamine	1.18	0.250	mg/kg wet	2.500		47	40-140	5	30	
N-Nitroso-Di-n-Propylamine	1.18	0.250	mg/kg wet	2.500		47	40-140	12	30	
N-nitrosodiphenylamine	1.76	0.250	mg/kg wet	2.500		71	40-140	12	30	
Pentachlorophenol	2.24	1.25	mg/kg wet	2.500		90	30-130	16	30	
Phenanthrene	1.79	0.250	mg/kg wet	2.500		71	40-140	13	30	
Phenol	1.38	0.250	mg/kg wet	2.500		55	30-130	3	30	
Pyrene	1.85	0.250	mg/kg wet	2.500		74	40-140	4	30	
Pyridine	0.976	1.25	mg/kg wet	2.500		39	40-140	4	30	B-
Surrogate: 1.2-Dichlorobenzene-d4	1.24		mg/kg wet	2.500		50	30-130			
Surrogate: 2,4,6-Tribromophenol	2.59		mg/kg wet	3.750		69	30-130			
Surrogate: 2-Chlorophenol-d4	1.91		mg/kg wet	3.750		51	30-130			
Surrogate: 2-Fluorobiphenyl	1.42		mg/kg wet	2.500		57	30-130			
Surrogate: 2-Fluorophenol	1.89		mg/kg wet	3.750		50	30-130			
Surrogate: Nitrobenzene-d5	1.33		mg/kg wet	2.500		53	30-130			
Surrogate: Phenol-d6	2.42		mg/kg wet	3.750		65	30-130			
Surrogate: p-Terphenyl-d14	1.91		mg/kg wet	2.500		77	30-130			

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

Notes and Definitions

- U Analyte included in the analysis, but not detected
- Q Calibration required quadratic regression.
- J Reported between MDL and MRL; Estimated value.
- IM Internal Standard(s) outside of criteria due to matrix (UCM/coelution is present).
- IC Internal Standard(s) outside of criteria. Sample was reanalyzed to confirm.
- E Reported above the quantitation limit; Estimated value.
- D+ Relative percent difference for duplicate is outside of criteria.
- D Diluted.
- C- Continuing Calibration recovery is below lower control limit.
- B- Blank Spike recovery is below lower control limit.
- ND Analyte NOT DETECTED above the detection limit
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- MDL Method Detection Limit
- MRL Method Reporting Limit
- I/V Initial Volume
- F/V Final Volume
- § Subcontracted analysis; see attached report
- 1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
- 2 Range result excludes concentrations of target analytes eluting in that range.
- 3 Range result excludes the concentration of the C9-C10 aromatic range.
- Avg Results reported as a mathematical average.

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801239

ESS LABORATORY CERTIFICATIONS

U.S. Army Corps of Engineers Soil and Water

Navy Installation Restoration QA Program Soil and Water

Rhode Island: A-179

Connecticut: PH-0750

Maine: RI002

Massachusetts: M-RI002

New Hampshire (NELAP accredited): 242405 Potable Water Non Potable Water

New York (NELAP accredited): 11313 Potable Water Non Potable Water Solid and Hazardous Waste

United States Department of Agriculture Soil Permit: S-54210

New Jersey (NELAP accredited): RI002 Potable Water Non Potable Water Soil and Hazardous Waste

> Maryland: 301 Potable Water
| STODY Page I of I Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT ID ESS LAB PROJECT ID Reporting Limits ESS LAB PROJECT | -70/5
HdL
5/?!?5 % × × | | W-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filters
NaOH, 6- MeOH, 7- Asorbic Acid, 8- ZnAct, 9-
Date/Time Received by: (Signature) Date/Time Date/Time Date/Time Received by: (Signature) Date/Time |
|--|--|---------------------|---|
| CHAIN OF CU: Turn Time Standard Other 24 hvvr If faster than 5 days, prior approval by laboratory is required # State where samples were collected from: MA Or Other 24 hvvr Is this project for any of the following: MA-MCP Other Other Other | 365055 oct. For ham 365055 oct. For ham Address Address Is 7 Avdv vs.n Kd. Suitz 301 Dis 2 Avdv vs.n PO# Zip PO# Dis 2 Avdv vs.n PO# Zip PO# Simple Identification (20 Char. or tess) Preside Sumple Identification (20 Char. or tess) Preside SBWESTOC 6 4 SBEASTOC 6 4 | Brickpit2 6 4 1/4 7 | :: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water S se Only Preservation Code: 1- NP, 2- HCI, 3- H:SO., 4- HNO., 5-1 p Sampled by: p Sampled by: p Comments: cons Date/Time cons Pate/Time cons Pate/Time cons Pate/Time cons Pate/Time cons Date/Time |
| ESS Laboratory
<i>Division of Thielsch Engineering, Inc.</i>
185 Frances Avenue, Cranston, RI 02910-2211
Tel. (401) 461-7181 Fax (401) 461-4486
www.esslaboratory.com | Contact Person Dave Heis levin
Contact Person Dave Heis levin
City Wake Fie 1d State MA
Telephone #
Telephone #
Telep | 3 1.21.08 1145 X S | Container Type: P-Poly G/Glass S-Sterile V-VOA Matrix Cooler Present Les No Internal Ui Seals Intact Yes No NA: []] Seals Intact Yes No NA: []] Cooler Temp: Y-2 []] 1 Cooler Temp: Y-2 []] 1 Relinquished by: (Signature) Date/Time Reprive Relinquished by: (Signature) Date/Time Receive |

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

PROJECT NARRATIVE

David Heislein MACTEC Engineering & Consulting, Inc. 107 Audubon Road Wakefield, MA 01880

RE: Providence Gorham Site ESS Laboratory Work Order Number: 0801264

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this Project Narrative, the entire report has been paginated. The ESS Laboratory Certifications sheet is the final report page. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been mailed. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Date: January 28, 2008

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration may be used instead of automated integration because it produces more accurate results. All ICP Metals were analyzed using the established linear dynamic range to determine acceptable analytical results.

ESS Laboratory certifies that the test results meet the requirements of NELAC, except where noted within this project narrative.

Sample Receipt

The following sample(s) were received on January 23, 2008 for the analyses specified on the enclosed Chain of Custody Record.

Laboratory ID 0801264-01

Matrix Soil

Client SampleID Brick Confirm

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801264

PROJECT NARRATIVE

8270C Semi-Volatile Organic Compounds

BA82325-BS1	Blank Spike recovery is below lower control limit.
	1,1-Biphenyl, Benzoic Acid, Pyridine
BA82325-BSD1	Blank Spike recovery is below lower control limit.
	1,1-Biphenyl, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Aniline, Benzoic Acid,
	bis(2-Chloroethoxy)methane, bis(2-Chloroethyl)ether, bis(2-chloroisopropyl)Ether, Hexachlorobutadiene,
	Hexachlorocyclopentadiene, Hexachloroethane, N-Nitrosodimethylamine, Pyridine
BA82325-BSD1	Relative percent difference for duplicate is outside of criteria.
	1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Benzoic Acid, bis(2-Chloroethyl)ether,
	Hexachloroethane, N-Nitrosodimethylamine, Pyridine
BA82325-MS1	Matrix Spike recovery is below lower control limit.
	1,1-Biphenyl, Benzoic Acid, Pyridine
BA82325-MSD1	Matrix Spike recovery is below lower control limit.
	Benzoic Acid, Pyridine
BRA0208-CCV1	Continuing Calibration recovery is below lower control limit.
	Benzoic Acid

No other observations noted.

End of Project Narrative.

2

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: Brick Confirm Date Sampled: 01/23/08 11:10 Percent Solids: 94 Initial Volume: 20.4 Final Volume: 1 Extraction Method: 3541

ESS Laboratory Work Order: 0801264 ESS Laboratory Sample ID: 0801264-01 Sample Matrix: Soil Analyst: SEP Prepared: 01/23/08

RI - RES DEC Analyte Results Units MRL Limit <u>DF</u> Analyzed Total Petroleum Hydrocarbons ND 39.1 500 mg/kg dry 01/24/08 1 Qualifier %Recovery Limits Surrogate: O-Terphenyl 90 % 40-140

8100M Total Petroleum Hydrocarbons

ESS Laboratory Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: Brick Confirm Date Sampled: 01/23/08 11:10 Percent Solids: 94 Initial Volume: 14.1 Final Volume: 0.5 Extraction Method: 3541

ESS Laboratory Work Order: 0801264 ESS Laboratory Sample ID: 0801264-01 Sample Matrix: Soil Analyst: VSC Prepared: 01/23/08

4

8270C Semi-Volatile Organic Compounds

				RI - RES DE	C	
Analyte 1,1-Biphenyl	Results ND	<u>Units</u> mg/kg dry	MRL 0.377	$\frac{\text{Limit}}{0.8}$	$\frac{\mathbf{DF}}{1}$	Analyzed 01/24/08
1,2,4-Trichlorobenzene	ND	mg/kg dry	0.377	96	1	01/24/08
1,2-Dichlorobenzene	ND	mg/kg dry	0.377	510	1	01/24/08
1,3-Dichlorobenzene	ND	mg/kg dry	0.377	430	1	01/24/08
1,4-Dichlorobenzene	ND	mg/kg dry	0.377	27	1	01/24/08
2,3,4,6-Tetrachlorophenol	ND	mg/kg dry	1.89		1	01/24/08
2,4,5-Trichlorophenol	ND	mg/kg dry	0.377	330	1	01/24/08
2,4,6-Trichlorophenol	ND	mg/kg dry	0.377	58	1	01/24/08
2,4-Dichlorophenol	ND	mg/kg dry	0.377	30	1	01/24/08
2,4-Dimethylphenol	ND	mg/kg dry	0.377	1400	1	01/24/08
2,4-Dinitrophenol	ND	mg/kg dry	1.89	160	1	01/24/08
2,4-Dinitrotoluene	ND	mg/kg dry	0.377	0.9	1	01/24/08
2,6-Dinitrotoluene	ND	mg/kg dry	0.377		1	01/24/08
2-Chloronaphthalene	ND	mg/kg dry	0.377		1	01/24/08
2-Chlorophenol	ND	mg/kg dry	0.377	50	1	01/24/08
2-Methylnaphthalene	ND	mg/kg dry	0.377	123	1	01/24/08
2-Methylphenol	ND	mg/kg dry	0.377		1	01/24/08
2-Nitroaniline	ND	mg/kg dry	0.377		1	01/24/08
2-Nitrophenol	ND	mg/kg dry	0.377		1	01/24/08
3,3'-Dichlorobenzidine	ND	mg/kg dry	0.755	1.4	1	01/24/08
3+4-Methylphenol	ND	mg/kg dry	0.755		1	01/24/08
3-Nitroaniline	ND	mg/kg dry	0.377		1	01/24/08
4,6-Dinitro-2-Methylphenol	ND	mg/kg dry	1.89		1	01/24/08
4-Bromophenyl-phenylether	ND	mg/kg dry	0.377		1	01/24/08
4-Chloro-3-Methylphenol	ND	mg/kg dry	0.377		1	01/24/08
4-Chloroaniline	ND	mg/kg dry	0.755	310	I	01/24/08
4-Chloro-phenyl-phenyl ether	ND	mg/kg dry	0.377		1	01/24/08
4-Nitroaniline	ND	mg/kg dry	0.377		1	01/24/08
4-Nitrophenol	ND	mg/kg dry	1.89		1	01/24/08
Acenaphthene	ND	mg/kg dry	0.377	43	1	01/24/08
Acenaphthylene	ND	mg/kg dry	0.377	23	1	01/24/08
Acetophenone	ND	mg/kg dry	0.755		1	01/24/08
Aniline	ND	mg/kg dry	1.89		1	01/24/08
Anthracene	ND	mg/kg dry	0.377	35	1	01/24/08
Azobenzene	ND	mg/kg dry	0.377		1	01/24/08
185 Frances Avenue, Cranston, RI	02910-2211 Depe	Tel: 40 ndability	1-461-7181 • Quality	Fax: 401-461-4486	http://ww	w.ESSLaboratory.com

Banzo(a)anthracana

ESS Laboratory

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site Client Sample ID: Brick Confirm Date Sampled: 01/23/08 11:10 Percent Solids: 94 Initial Volume: 14.1 Final Volume: 0.5 Extraction Method: 3541

ESS Laboratory Work Order: 0801264 ESS Laboratory Sample ID: 0801264-01 Sample Matrix: Soil Analyst: VSC Prepared: 01/23/08

8270C Semi-Volatile Organic Compounds

Benzo(a)anthracene	ND	mg/kg dry	0.377	0.9	1	01/24/08
Benzo(a)pyrene	ND	mg/kg dry	0.189	0.4	1	01/24/08
Benzo(b)fluoranthene	ND	mg/kg dry	0.377	0.9	1	01/24/08
Benzo(g,h,i)perylene	ND	mg/kg dry	0.377	0.8	1	01/24/08
Benzo(k)fluoranthene	ND	mg/kg dry	0.377	0.9	1	01/24/08
Benzoic Acid	ND	mg/kg dry	1.89		1	01/24/08
Benzyl Alcohol	ND	mg/kg dry	0.377		1	01/24/08
bis(2-Chloroethoxy)methane	ND	mg/kg dry	0.377		1	01/24/08
bis(2-Chloroethyl)ether	ND	mg/kg dry	0.377	0.6	1	01/24/08
bis(2-chloroisopropyl)Ether	ND	mg/kg dry	0.377	9.1	1	01/24/08
bis(2-Ethylhexyl)phthalate	ND	mg/kg dry	0.377	46	1	01/24/08
Butylbenzylphthalate	ND	mg/kg dry	0.377		1	01/24/08
Carbazole	ND	mg/kg dry	0.377		1	01/24/08
Chrysene	ND	mg/kg dry	0.189	0.4	1	01/24/08
Dibenzo(a,h)Anthracene	ND	mg/kg dry	0.189	0.4	1	01/24/08
Dibenzofuran	ND	mg/kg dry	0.377		1	01/24/08
Diethylphthalate	ND	mg/kg dry	0.377	340	1	01/24/08
Dimethylphthalate	ND	mg/kg dry	0.377	1900	1	01/24/08
Di-n-butylphthalate	ND	mg/kg dry	0.377		1	01/24/08
Di-n-octylphthalate	ND	mg/kg dry	0.377		1	01/24/08
Fluoranthene	ND	mg/kg dry	0.377	20	1	01/24/08
Fluorene	ND	mg/kg dry	0.377	28	1	01/24/08
Hexachlorobenzene	ND	mg/kg dry	0.189	0.4	1	01/24/08
Hexachlorobutadiene	ND	mg/kg dry	0.377	8.2	1	01/24/08
Hexachlorocyclopentadiene	ND	mg/kg dry	1.89		1	01/24/08
Hexachloroethane	ND	mg/kg dry	0.377	46	1	01/24/08
Indeno(1,2,3-cd)Pyrene	ND	mg/kg dry	0.377	0.9	1	01/24/08
Isophorone	ND	mg/kg dry	0.377		1	01/24/08
Naphthalene	ND	mg/kg dry	0.377	54	I	01/24/08
Nitrobenzene	ND	mg/kg dry	0.377		1	01/24/08
N-Nitrosodimethylamine	ND	mg/kg dry	0.377		1	01/24/08
N-Nitroso-Di-n-Propylamine	ND	mg/kg dry	0.377		1	01/24/08
N-nitrosodiphenylamine	ND	mg/kg dry	0.377		1	01/24/08
Pentachlorophenol	ND	mg/kg dry	1.89	5.3	1	01/24/08
Phenanthrene	ND	mg/kg dry	0.377	40	1	01/24/08
Phenol	ND	mg/kg dry	0.377	6000	1	01/24/08

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability Quality .

Fax: 401-461-4486 Service .

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc.	
Client Project ID: Providence Gorham Site	ESS Laboratory Work Order: 0801264
Client Sample ID: Brick Confirm	ESS Laboratory Sample ID: 0801264-01
Date Sampled: 01/23/08 11:10	Sample Matrix: Soil
Percent Solids: 94	Analyst: VSC
Initial Volume: 14.1	Prepared: 01/23/08
Final Volume: 0.5	
Extraction Method: 3541	

	021000	VALAA Y UILL	une org	anne con	apound	3	
Pyrene	ND	mg/kg dry	0.377		13	1	01/24/08
Pyridine	ND	mg/kg dry	1.89			1	01/24/08
	9	6Recovery	Qualifier	Limits			
Surrogate: 1,2-Dichlorobenzene-d4		56 %		30-130			
Surrogate: 2,4,6-Tribromophenol		57 %		30-130			
Surrogate: 2-Chlorophenol-d4		50 96		20,120			
Surrogate: 2-Fluoroblphenyl		57 %		20 120			
Surrogate: 2-Fluorophenol		J7 70		30-130			
Surrogate: Nitrobenzene-d5		70 70		30-130			
Surrogate: Phenol-d6		50 %		30-130			
Surrogata: c-Tamband d14		67%		30-130			
Surogale. preipitenyrai4		73 %		30-130			

8270C Semi-Volatile Organic Compounds

6

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801264

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	810	00M Total	Petroleum	Hydro	ocarbons		0.000			
Batch BA82324 - 3541				4			····			
Blank										
Decane (C10)	ND	0.25	mg/kg wet							
Docosane (C22)	ND	0.25	mg/kg wet							
Dodecane (C12)	ND	0.25	mg/kg wet							
Eicosane (C20)	ND	0.25	mg/kg wet							
Hexacosane (C26)	ND	0.25	mg/kg wet							
Hexadecane (C16)	ND	0.25	mg/kg wet							
Nonadecane (C19)	ND	0.25	mg/kg wet							
Nonane (C9)	ND	0.25	mg/kg wet							
Octacosane (C28)	ND	0.25	mg/kg wet							
Octadecane (C18)	ND	0.25	mg/kg wet							
Tetracosane (C24)	ND	0.25	mg/kg wet							
Fetradecane (C14)	ND	0.25	mg/kg wet							
Fotal Petroleum Hydrocarbons	ND	37.5	mg/kg wet							
Triacontane (C30)	ND	0.25	mg/kg wet				0			
Surrogate: O-Terphenyl	4.34		mg/kg wet	5.000		87	40-140			
.CS					_					-
Decane (C10)	1.84	0.25	mg/kg wet	2.500		73	40-140			
Docosane (C22)	2.45	0.25	mg/kg wet	2.500		98	40-140			
Dodecane (C12)	2.09	0.25	mg/kg wet	2.500		84	40-140			
Elcosane (C20)	2.43	0.25	mg/kg wet	2.500		97	40-140			
lexacosane (C26)	2.44	0.25	mg/kg wet	2.500		98	40-140			
Hexadecane (C16)	2.33	0.25	mg/kg wet	2.500		93	40-140			
Vonadecane (C19)	2.52	0.25	mg/kg wet	2,500		101	40-140			
Nonane (C9)	1.40	0.25	mg/kg wet	2.500		56	30-140			
Octacosane (C28)	2.44	0.25	mg/kg wet	2.500		98	40-140			
Octadecane (C18)	2.40	0.25	mg/kg wet	2.500		96	40-140			
Tetracosane (C24)	2.58	0.25	mg/kg wet	2.500		103	40-140			
Tetradecane (C14)	2.22	0.25	mg/kg wet	2.500		89	40-140			
Triacontane (C30)	2.47	0.25	mg/kg wet	2.500		99	40-140			
Surrogate: O-Terphenyl	4.39		mg/kg wet	5.000		88	40-140			
.CS Dup										
Decane (C10)	1.92	0.25	mg/kg wet	2.500		77	40-140	5	50	
Docosane (C22)	2.46	0.25	mg/kg wet	2.500		98	40-140	0.3	50	
Dodecane (C12)	2.19	0.25	mg/kg wet	2.500		88	40-140	5	50	
Elcosane (C20)	2.46	0.25	mg/kg wet	2.500		98	40-140	1	50	
lexacosane (C26)	2.42	0.25	mg/kg wet	2.500		97	40-140	0.5	50	
lexadecane (C16)	2.35	0.25	mg/kg wet	2.500		94	40-140	1	50	
Nonadecane (C19)	2.53	0.25	mg/kg wet	2.500		101	40-140	0.4	50	
lonane (C9)	1.49	0.25	mg/kg wet	2,500		60	30-140	6	50	
Octacosane (C28)	2.45	0.25	mg/kg wet	2.500		98	40-140	0.3	50	
Octadecane (C18)	2.44	0.25	mg/kg wet	2.500		98	40-140	2	50	
fetracosane (C24)	2.50	0.25	mg/kg wet	2.500		100	40-140	3	50	
etradecane (C14)	2.29	0.25	mg/kg wet	2.500		92	40-140	3	50	
185 Frances Avenue, Cr	anston, RI 02910-2 I	211 Te Dependability	el: 401-461-71	81 ality	Fax: 401-40	51-4486 vice	http:/	/www.ES	SLaborato	ry.com

1 - 1

ESS Laboratory

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801264

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie	er
	81	.00M Tota	l Petroleum	Hydro	carbon	5					
Batch BA82324 - 3541											_
Triacontane (C30)	2.46	0.25	mg/kg wet	2.500		98	40-140	0.6	50		_
C	4.21			5 000							_
Surrogate: U-Terphenyi	4.21	0C Semi-\	Volatile Org	anic Co	mpoun	ds	40-140				
Batch BA82325 - 3541											_
Blank											
1,1-Biphenyl	ND	0.250	mg/kg wet								-
1,2,4-Trichlorobenzene	ND	0.250	mg/kg wet								
1,2-Dichlorobenzene	ND	0.250	mg/kg wet								
1,3-Dichlorobenzene	ND	0.250	mg/kg wet								
1,4-Dichlorobenzene	ND	0.250	mg/kg wet								
2,3,4,6-Tetrachlorophenol	ND	1.25	mg/kg wet								
2,4,5-Trichlorophenol	ND	0.250	mg/kg wet								
2,4,6-Trichlorophenol	ND	0.250	mg/kg wet								
2,4-Dichlorophenol	ND	0.250	mg/kg wet								
2,4-Dimethylphenol	ND	0.250	mg/kg wet								
2,4-Dinitrophenol	ND	1.25	mg/kg wet								
2,4-Dinitrotoluene	ND	0.250	mg/kg wet								
2,6-Dinitrotoluene	ND	0.250	mg/kg wet								
2-Chloronaphthalene	ND	0.250	mg/kg wet								
2-Chlorophenol	ND	0.250	mg/kg wet								
2-Methylnaphthalene	ND	0.250	mg/kg wet								
2-Methylphenol	ND	0.250	mg/kg wet								
2-Nitroaniline	ND	0.250	mg/kg wet								
2-Nitrophenol	ND	0.250	mg/kg wet								
3,3 '-Dichlorobenzidine	ND	0,500	mg/kg wet								
3+4-Methylphenol	ND	0.500	mg/kg wet								
3-Nitroaniline	ND	0.250	mg/kg wet								
4,6-Dinitro-2-Methylphenol	ND	1,25	mg/kg wet								
1-Bromophenyl-phenylether	ND	0.250	mg/kg wet								
4-Chloro-3-Methylphenol	ND	0.250	mg/kg wet								
4-Chloroaniline	ND	0.500	mg/kg wet								
4-Chloro-phenyl-phenyl ether	ND	0.250	mg/kg wet								
4-Nitroaniline	ND	0.250	mg/kg wet								
1-Nitrophenol	ND	1.25	mg/kg wet								
Acenaphthene	ND	0.250	mg/kg wet								
Acenaphthylene	ND	0.250	mg/kg wet								
Acetophenone	ND	0.500	mg/kg wet								
Aniline	ND	1.25	mg/kg wet								
Anthracene	ND	0.250	mg/kg wet								
Azobenzene	ND	0.250	mg/kg wet								
Benzo(a)anthracene	ND	0.250	mg/kg wet								
Benzo(a)pyrene	ND	0.125	mg/kg wet								
Benzo(b)fluoranthene	ND	0.250	mg/kg wet								
Benzo(g,h,i)perylene	ND	0.250	mg/kg wet								
185 Frances Avenue, C	ranston, RI 02910-	2211 Tenendability	el: 401-461-71	81 F	ax: 401-4	61-4486	http://	www.ES	SLaborator	y.com	8

Quality

Service

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801264

Analyte	Result	MRL	Units	Level	Result	%REC	WREC Limits	RPD	RPD Limit	Qualifi
	8270	OC Semi-V	olatile Org	anic Co	mpound	ds			1.110.00	-
Batch BA82325 - 3541										
Benzo(k)fluoranthene	ND	0.250	mg/kg wet			0			-	
Benzoic Acid	ND	1.25	mg/kg wet							
Benzyl Alcohol	ND	0.250	ma/kg wet							
is(2-Chloroethoxy)methane	ND	0.250	mg/kg wet							
is(2-Chloroethyl)ether	ND	0.250	ma/ka wet							
is(2-chlorolsopropyl)Ether	ND	0.250	ma/ka wet							
is(2-Ethylhexyl)phthalate	ND	0.250	ma/ka wet							
utylbenzylphthalate	ND	0.250	ma/ka wet							
arbazole	ND	0.250	mo/ka wet							
hrvsene	ND	0.125	ma/ka wet							
benzo(a,h)Anthracene	ND	0.125	mo/ko wet							
Vibenzofuran	ND	0.250	ma/ka wet							
iethylphthalate	ND	0.250	mo/kn wet							
imethylphthalate	ND	0.250	mg/kg wet							
i-n-butviphthalate	ND	0.250	mg/kg wet							
l-n-octvlohthalate	ND	0.250	mg/kg wet							
luoranthene	ND	0.250	mg/kg wet							
	ND	0.250	mg/kg wet							
avachlerebenzene	ND	0.250	mg/kg wet							
exactionoberizerie	ND	0.125	mg/kg wet							
exactionopulatione	ND	0.250	mg/kg wet							
exactiorocyclopentadiene	ND	1.25	mg/kg wet							
	ND	0.250	mg/kg wet							
ideno(1,2,3-cd)Pyrene	ND	0.250	mg/kg wet							
aphthalana	ND	0.250	mg/kg wet							
Itrobasses	ND	0.250	mg/kg wet							
Nitro and in other land	ND	0.250	mg/kg wet							
	ND	0.250	mg/kg wet							
-Nitroso-Di-n-Propylamine	ND	0.250	mg/kg wet							
-nitrosodipnenylamine	ND	0.250	mg/kg wet							
entachiorophenol	ND	1.25	mg/kg wet							
henanthrene	ND	0.250	mg/kg wet							
nenol	ND	0.250	mg/kg wet							
yrene	ND	0.250	mg/kg wet							
yridine	ND	1.25	mg/kg wet							
urrogate: 1,2-Dichlorobenzene-d4	1.73		mg/kg wet	2.500		69	30-130			
Surrogate: 2,4,6-Tribromophenol	2.14		mg/kg wet	3.750		57	30-130			
Surrogate: 2-Chlorophenol-d4	2.14		mg/kg wet	3.750		57	30-130			
Surrogate: 2-Fluorobiphenyl	1.47		mg/kg wet	2.500		59	30-130			
Turrogate: 2-Fluorophenol	2.15		mg/kg wet	3.750		57	30-130			
urrogate: Nitrobenzene-d5	1.47		mg/kg wet	2.500		59	30-130			
urrogate: Phenol-d6	2.91		mg/kg wet	3.750		78	30-130			
urrogate: p-Terphenyl-d14	1.79		mg/kg wet	2.500		72	30-130			
cs			100			2				
,1-Biphenyl	0.916	0.250	mg/kg wet	2.500		37	40-140			B-
.,2,4-Trichlorobenzene	1.32	0.250	mg/kg wet	2.500		53	40-140			
.2-Dichlorobenzene	1.27	0.250	ma/ka wet	2 500		51	40-140			

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801264

Analyte	Result	MRL	Units	Spike	Source	%REC	%REC	RPD	RPD Limit	Quali	ifier
	827	OC Semi-\	/olatile Org	anic Co	ompound	S	CITIIG			Quali	nel
3atch BA82325 - 3541											
A Dichlorobenzene	1.18	0.250	mg/kg wet	2.500		47	40-140				
	1.21	0.250	mg/kg wet	2.500		49	40-140				
4 5-Trichlerophonol	2.15	1.25	mg/kg wet	2.500		86	30-130				
4 6 Trichlorophenol	1.99	0.250	mg/kg wet	2.500		80	30-130				
4-Dichlorophenol	1.86	0.250	mg/kg wet	2.500		75	30-130				
	1.65	0.250	mg/kg wet	2.500		66	30-130				
	1.58	0.250	mg/kg wet	2.500		63	30-130				
	1.93	1.25	mg/kg wet	2.500		77	30-130				
	2.14	0.250	mg/kg wet	2.500		86	40-140				
,,o-Dinitrotoluene	1.97	0.250	mg/kg wet	2.500		79	40-140				
Chioronaphonalene	1.50	0.250	mg/kg wet	2.500		60	40-140				
-chiorophenoi	1.31	0.250	mg/kg wet	2.500		52	30-130				
-metnyinaphthalene	1.53	0.250	mg/kg wet	2.500		61	40-140				
-Methylphenol	1.58	0.250	mg/kg wet	2.500		63	30-130				
-Nitroaniline	1.74	0.250	mg/kg wet	2.500		70	40-140				
Nitrophenol	1.41	0.250	mg/kg wet	2.500		57	30-130				
,3 -Dichlorobenzidine	2.08	0.500	mg/kg wet	2.500		83	40-140				
+4-Methylphenol	2.72	0.500	mg/kg wet	5.000		54	30-130				
I-Nitroaniline	2.11	0.250	mg/kg wet	2.500		84	40-140				
,6-Dinitro-2-Methylphenol	2.23	1.25	mg/kg wet	2.500		89	30-130				
-Bromophenyl-phenylether	1.85	0.250	mg/kg wet	2.500		74	40-140				
-Chloro-3-Methylphenol	1.90	0.250	mg/kg wet	2.500		76	30-130				
-Chloroaniline	1.39	0.500	mg/kg wet	2.500		56	40-140				
-Chloro-phenyl-phenyl ether	2.00	0.250	mg/kg wet	2.500		80	40-140				
Nitroanlline	2.10	0.250	mg/kg wet	2.500		84	40-140				
-Nitrophenol	2.09	1.25	mg/kg wet	2.500		84	30-130				
cenaphthene	1.79	0.250	mg/kg wet	2.500		72	40-140				
cenaphthylene	1.76	0.250	mg/kg wet	2.500		70	40-140				
cetophenone	1.48	0.500	mg/kg wet	2.500		59	40-140				
niline	1.15	1.25	mg/kg wet	2.500		46	40-140				
nthracene	1.91	0.250	mg/kg wet	2.500		76	40-140				
zobenzene	1.82	0.250	mg/kg wet	2.500		73	40-140				
lenzo(a)anthracene	2.13	0.250	mg/kg wet	2.500		85	40-140				
enzo(a)pyrene	1.96	0.125	mg/kg wet	2.500		79	40-140				
enzo(b)fluoranthene	2.15	0.250	mg/kg wet	2.500		86	40-140				
enzo(g,h,i)perylene	1.96	0.250	mg/kg wet	2.500		79	40-140				
enzo(k)fluoranthene	2.01	0.250	mg/kg wet	2.500		80	40-140				
enzoic Acid	0.288	1.25	mg/kg wet	2.500		12	40-140			B-	
enzyi Alcohol	1.57	0.250	mg/kg wet	2.500		63	40-140			2	
is(2-Chloroethoxy)methane	1.13	0.250	mg/kg wet	2.500		45	40-140				
is(2-Chloroethyl)ether	1.25	0.250	mg/kg wet	2.500		50	40-140				
is(2-chloroisopropyl)Ether	1.19	0.250	mg/kg wet	2.500		48	40-140				
is(2-Ethylhexyl)phthalate	2.18	0.250	mg/kg wet	2.500		87	40-140				
utylbenzylphthalate	2.13	0.250	ma/ka wet	2.500		85	40-140				
arbazole	2.08	0.250	mg/kg wet	2,500		83	40-140				
hrysene	2.14	0.125	mg/kg wet	2.500		86	40-140				
185 Frances Avenue, C	ranston, RI 02910-2	2211 To	el: 401-461-71	81	Fax: 401-46	1-4486	http://	www.ESS	Laborato	ry.com	1(

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801264

Analyte	Result	MRL	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Qualifier
	827	0C Semi-\	/olatile Org	janic Co	ompounds				
Batch BA82325 - 3541		· · · · · · · · · · · · · · · · · · ·							
Dibenzo(a,h)Anthracene	1.97	0.125	mg/kg wet	2.500	79	40-140			1000
Dibenzofuran	1.83	0.250	mg/kg wet	2.500	73	40-140			
Diethylphthalate	1.99	0.250	mg/kg wet	2.500	80	40-140			
Dimethylphthalate	2.02	0.250	mg/kg wet	2.500	81	40-140			
DI-n-butylphthalate	1.97	0.250	mg/kg wet	2.500	79	40-140			
Di-n-octylphthalate	1.94	0.250	mg/kg wet	2.500	77	40-140			
luoranthene	2.10	0.250	mg/kg wet	2.500	84	40-140			
luorene	1.79	0.250	mg/kg wet	2.500	72	40-140			
lexachlorobenzene	1.80	0.125	mg/kg wet	2.500	72	40-140			
lexachlorobutadiene	1.25	0.250	mg/kg wet	2.500	50	40-140			
lexachlorocyclopentadiene	1.13	1.25	mg/kg wet	2.500	45	40-140			
lexachloroethane	1.16	0.250	mg/kg wet	2.500	47	40-140			
ndeno(1,2,3-cd)Pyrene	1.95	0.250	mg/kg wet	2.500	78	40-140			
sophorone	1.47	0.250	mg/kg wet	2,500	59	40-140			
laphthalene	1.32	0.250	mg/kg wet	2,500	53	40-140			
litrobenzene	1.23	0.250	mg/kg wet	2,500	49	40-140			
I-Nitrosodimethylamine	1.11	0.250	ma/ka wet	2,500	45	40-140			
I-Nitroso-DI-n-Propylamine	1.12	0.250	ma/ka wet	2,500	45	40-140			
I-nitrosodiphenylamine	1.95	0.250	ma/ka wet	2.500	78	40-140			
entachlorophenol	2,48	1.25	ma/ka wet	2.500	99	30-130			
henanthrene	1.91	0.250	ma/ka wet	2.500	76	40-140			
rhenol	1.32	0.250	ma/ka wet	2.500	53	30-130			
Vrene	2.03	0.250	ma/ka wet	2 500	81	40-140			
vridine	0.434	1.25	ma/ka wet	2,500	17	40-140			R.
Surrageta: 1.3 Dicklarabenzana da	1.22	212.9	mo/ka wet	2 500	40	30-130			D-
Surroasta: 2 4 6-Tribromonhenol	2.83		ma/ka wet	3.750	75	30-130			
Surranste: 2.Chlorophenol.dd	1.86		ma/ka wet	3.750	49	30-130			
Surronate: 2-Elunrohinhenvl	1.63		ma/ka wet	2.500	65	30-130			
Surronate: 2-Fluoronbenol	1.77		ma/ka wet	3.750	47	30-130			
Surmate: Nitrobenzene-d5	1.33		ma/ka wet	2.500	53	30-130			
Surrogate, Phenol-d6	2.39		ma/ka wet	3.750	64	30-130			
Surrogate: n-Terphenvl-d14	2.07		mg/kg wet	2.500	83	30-130			
.CS Dup									1
,1-Biphenyi	0.780	0.250	mg/kg wet	2.500	31	40-140	16	30	B-
,2,4-Trichlorobenzene	1.04	0.250	mg/kg wet	2.500	42	40-140	23	30	-
,2-Dichlorobenzene	0.857	0.250	ma/ka wet	2.500	34	40-140	39	30	B-, D+
,3-Dichlorobenzene	0.804	0.250	mg/kg wet	2.500	32	40-140	38	30	B- D+
,4-Dichlorobenzene	0.842	0.250	mg/kg wet	2.500	34	40-140	36	30	B D+
.3,4,6-Tetrachlorophenol	1.83	1.25	mg/kg wet	2,500	73	30-130	16	30	-101
4,5-Trichlorophenol	1.83	0.250	mg/kg wet	2,500	73	30-130	8	30	
,4,6-Trichlorophenol	1.62	0.250	mg/kg wet	2,500	65	30-130	14	30	
,4-Dichlorophenol	1.42	0.250	mg/kg wet	2,500	57	30-130	16	30	
,4-Dimethylphenol	1.34	0.250	ma/ka wet	2.500	54	30-130	16	30	
,4-Dinitrophenol	1.55	1.25	mg/kg wet	2.500	62	30-130	22	30	
,4-Dinitrotoluene	1.85	0,250	mg/kg wet	2,500	74	40-140	15	30	
,6-Dinitrotoluene	1.70	0.250	mg/kg wet	2.500	68	40-140	15	30	
185 Frances Avenue, Cra	inston, RI 02910-	2211 T Dependability	el: 401-461-71	81	Fax: 401-461-4486	http:/	/www.ES	SLaborato	ory.com

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801264

Analyte	Result	MRL	Units	Spike	Source	%REC	%REC	RPD	RPD Limit	Oualifier
	827	OC Semi-\	/olatile Ord	anic C	ompoun	ds		14.0	Latine	Quantici
Batch BA82325 - 3541										
Chierenhand	1.28	0.250	mg/kg wet	2.500		51	40-140	16	30	
Chiorophenol	0.972	0.250	mg/kg wet	2.500		39	30-130	29	30	
Methylabarol	1.27	0.250	mg/kg wet	2.500		51	40-140	18	30	
- Methylphenol	1.28	0.250	mg/kg wet	2.500		51	30-130	21	30	
-wiroanine	1.45	0.250	mg/kg wet	2,500		58	40-140	19	30	
	1.13	0.250	mg/kg wet	2.500		45	30-130	22	30	
	1.80	0.500	mg/kg wet	2.500		72	40-140	14	30	
Nitroppiling	2.25	0.500	mg/kg wet	5.000		45	30-130	19	30	
- Nicroanine	1.83	0.250	mg/kg wet	2.500		73	40-140	14	30	
Remembered abasedath ar	1.87	1.25	mg/kg wet	2.500		75	30-130	17	30	
-Bromophenyl-phenylether	1.60	0.250	mg/kg wet	2.500		64	40-140	15	30	
-Chioro-3-Methylphenol	1.66	0.250	mg/kg wet	2.500		66	30-130	14	30	
-Chioroannine	1.15	0.500	mg/kg wet	2.500		46	40-140	19	30	
-Chioro-phenyi-phenyi ether	1.70	0.250	mg/kg wet	2.500		68	40-140	16	30	
-Nitroaniline	1.85	0.250	mg/kg wet	2.500		74	40-140	13	30	
	1.79	1.25	mg/kg wet	2.500		72	30-130	16	30	
kcenaphthele	1.55	0.250	mg/kg wet	2.500		62	40-140	14	30	
kcenaphthylene	1.51	0.250	mg/kg wet	2.500		60	40-140	16	30	
acetophenone	1.14	0.500	mg/kg wet	2.500		46	40-140	26	30	
Antine	0.862	1.25	mg/kg wet	2.500		34	40-140	29	30	B-
Anthracene	1.64	0.250	mg/kg wet	2.500		65	40-140	15	30	
Azobenzene	1.59	0.250	mg/kg wet	2.500		64	40-140	13	30	
Senzo(a)anthracene	1.86	0.250	mg/kg wet	2.500		74	40-140	14	30	
senzo(a)pyrene	1.70	0.125	mg/kg wet	2.500		68	40-140	15	30	
Senzo(D)nuoranthene	1.69	0.250	mg/kg wet	2.500		68	40-140	24	30	
senzo(g,n,I)perviene	1.67	0.250	mg/kg wet	2.500		67	40-140	16	30	
senzo(K)fluorantnene	1.89	0.250	mg/kg wet	2.500		76	40-140	6	30	
	0.176	1.25	mg/kg wet	2.500		7	40-140	48	30	B-, D+
senzyi Alconol	1.24	0.250	mg/kg wet	2.500		50	40-140	23	30	
as(2-Chloroethoxy)methane	0.838	0.250	mg/kg wet	2.500		34	40-140	30	30	B-
ols(2-chloroethyl)ether	0.910	0.250	mg/kg wet	2.500		36	40-140	31	30	B-, D+
ns(2-chlorolsopropy)/chler	0.904	0.250	mg/kg wet	2.500		36	40-140	28	30	B-
ns(2-eurymexyr)phulalate	1.93	0.250	mg/kg wet	2.500		77	40-140	12	30	
Sachazala	1.86	0.250	mg/kg wet	2.500		74	40-140	14	30	
Carbazole	1.80	0.250	mg/kg wet	2.500		72	40-140	14	30	
Nikoza(a k) Astherena	1.89	0.125	mg/kg wet	2.500		75	40-140	13	30	
Ndenzo(a,n)Anthracene	1.72	0.125	mg/kg wet	2.500		69	40-140	13	30	
Noenzoluran	1.59	0.250	mg/kg wet	2.500		64	40-140	14	30	
Vicentylphilade	1.72	0.250	mg/kg wet	2.500		69	40-140	14	30	
	1.73	0.250	mg/kg wet	2.500		69	40-140	16	30	
	1.70	0.250	mg/kg wet	2.500		68	40-140	14	30	
Augraphene	1.6/	0.250	mg/kg wet	2.500		67	40-140	15	30	
	1.81	0.250	mg/kg wet	2.500		72	40-140	15	30	
luorene	1.57	0.250	mg/kg wet	2.500		63	40-140	13	30	
nexachlorobenzene	1.57	0.125	mg/kg wet	2.500		63	40-140	14	30	
iexaciiiorobuladiene	0.954	0.250	mg/kg wet	2.500		38	40-140	27	30	В-
185 Frances Avenue, (Cranston, RI 02910-2	2211 To Dependability	el: 401-461-71	81 uality	Fax: 401-4	61-4486 vice	http://	/www.ES	SLaborato	ry.com 12

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801264

Quality Control Data

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	8270	C Semi-	/olatile Org	janic Co	ompoun	ds				
Batch BA82325 - 3541										
Hexachlorocyclopentadiene	0.898	1.25	mg/kg wet	2.500		36	40-140	23	30	B-
Hexachloroethane	0.812	0.250	mg/kg wet	2.500		32	40-140	36	30	B-, D+
Indeno(1,2,3-cd)Pyrene	1.68	0.250	mg/kg wet	2.500		67	40-140	15	30	
isophorone	1.25	0.250.	mg/kg wet	2.500		50	40-140	17	30	
Naphthalene	1.05	0.250	mg/kg wet	2.500		42	40-140	22	30	
Vitrobenzene	0.994	0.250	mg/kg wet	2.500		40	40-140	21	30	
N-Nitrosodimethylamine	0.735	0.250	mg/kg wet	2.500		29	40-140	41	30	B-, D+
N-Nitroso-DI-n-Propylamine	1.01	0.250	mg/kg wet	2.500		40	40-140	11	30	
N-nitrosodiphenylamine	1.68	0.250	mg/kg wet	2.500		67	40-140	15	30	
Pentachlorophenol	2.13	1.25	mg/kg wet	2.500		85	30-130	15	30	
Phenanthrene	1.62	0.250	mg/kg wet	2.500		65	40-140	16	30	
henol	1.02	0.250	mg/kg wet	2.500		41	30-130	26	30	
уrene	1.79	0.250	mg/kg wet	2.500		72	40-140	12	30	
yrldine	0.270	1.25	ma/kg wet	2.500		11	40-140	47	30	B-, D+
Surrogate: 1.2-Dichlorobenzene-d4	0.836		ma/ko wet	2.500		33	30-130			- /
Surrogate: 2.4.6-Tribromonhenol	2.43		mg/kg wet	3.750		65	30-130			
Surrogate: 2-Chlorophenol-d4	1.43		mg/kg wet	3.750		38	30-130			
Surrogate: 2-Fluorobiphenvl	1.44		mg/kg wet	2.500		57	30-130			
Surrogate: 2-Fluorophenol	1.31		mg/kg wet	3.750		35	30-130			
Surrogate: Nitrobenzene-d5	1.04		mg/kg wet	2.500		42	30-130			
Surrogate: Phenol-d6	1.91		mg/kg wet	3.750		51	30-130			
Surrogate: p-Terphenyl-d14	1.85		mg/kg wet	2.500		74	30-130			
Matrix Spike Source: 0801264-01				1. 10.						
1,1-Biphenyi	1.40	0.357	ma/ka drv	3.570	ND	39	40-140			M-
1,2,4-Trichlorobenzene	2.16	0.357	ma/ka drv	3,570	ND	61	40-140			
1,2-Dichlorobenzene	2.13	0.357	mg/kg dry	3.570	ND	60	40-140			
1,3-Dichlorobenzene	1.93	0.357	ma/ka dry	3.570	ND	54	40-140			
1,4-Dichlorobenzene	1.99	0.357	mg/kg dry	3.570	ND	56	40-140			
2,3,4,6-Tetrachlorophenol	2.76	1.79	ma/ka dry	3.570	ND	77	30-130			
2,4,5-Trichlorophenol	2.92	0.357	mg/kg dry	3.570	ND	82	30-130			
2,4,6-Trichlorophenol	2.77	0.357	ma/ka dry	3.570	ND	77	30-130			
2,4-Dichlorophenol	2.63	0.357	mg/kg dry	3.570	ND	74	30-130			
2,4-Dimethylphenol	2.41	0.357	mg/kg dry	3.570	ND	67	30-130			
2,4-Dinitrophenol	1.45	1.79	mg/kg dry	3.570	ND	41	30-130			
2,4-Dinitrotoluene	3.05	0.357	mg/kg dry	3.570	ND	85	40-140			
2,6-Dinitrotoluene	2.83	0.357	mg/kg dry	3.570	ND	79	40-140			
2-Chloronaphthalene	2.27	0.357	ma/ka drv	3.570	ND	64	40-140			
2-Chlorophenol	2.11	0.357	ma/ka drv	3.570	ND	59	30-130			
2-Methylnaphthalene	2.45	0.357	ma/ka dry	3.570	ND	69	40-140			
2-Methylphenol	2.54	0.357	ma/ka dry	3.570	ND	71	30-130			
2-Nitroaniline	2.78	0.357	mg/kg dry	3.570	ND	78	40-140			
2-Nitrophenol	2.27	0.357	ma/ka drv	3.570	ND	64	30-130			
3,3'-Dichlorobenzidine	3.18	0.714	mg/kg dry	3,570	ND	89	40-140			
3+4-Methylphenol	3.93	0.714	ma/ka dry	7.140	ND	55	30-130			
3-Nitroanlline	3.09	0.357	ma/ka dry	3.570	ND	87	40-140			
4,6-Dinitro-2-Methylphenol	2.48	1.79	mg/kg dry	3.570	ND	70	30-130			
106 D	DI COOLO		1 401 141 -		D 101					
165 Frances Avenue, Cransto	m, KI 02910-2	Dependability	el: 401-461-7.	uality	 rax: 401-4 Sei 	+01-4486 rvice	http:/	/www.ES	SLaborato	ory.com

Service

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801264

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Qualifier
	827	OC Semi-	Volatile Ord	anic Co	ompoun	ds			Chrine	Quanter
			-							
Batch BA82325 - 3541					-					
4-Bromophenyl-phenylether	2.64	0.357	mg/kg dry	3.570	ND	74	40-140			
4-Chloro-3-Methylphenol	2.86	0.357	mg/kg dry	3.570	ND	80	30-130			
4-Chloroanline	2.25	0.714	mg/kg dry	3.570	ND	63	40-140			
4-Chloro-phenyl-phenyl ether	2.92	0.357	mg/kg dry	3.570	ND	82	40-140			
4-Nitroaniline	2.99	0.357	mg/kg dry	3.570	ND	84	40-140			
4-Nitrophenol	2.84	1.79	mg/kg dry	3.570	ND	80	30-130			
Acenaphthene	2.68	0.357	mg/kg dry	3.570	ND	75	40-140			
Acenaphthylene	2.63	0.357	mg/kg dry	3.570	ND	74	40-140			
Acetophenone	2.39	0.714	mg/kg dry	3.570	ND	67	40-140			
Aniline	1.83	1.79	mg/kg dry	3.570	ND	51	40-140			
Anthracene	2.70	0.357	mg/kg dry	3.570	ND	76	40-140			
Azobenzene	2.64	0.357	mg/kg dry	3.570	ND	74	40-140			
Benzo(a)anthracene	3.05	0.357	mg/kg dry	3.570	ND	85	40-140			
Benzo(a)pyrene	2.78	0.179	mg/kg dry	3.570	ND	78	40-140			
Benzo(b)fluoranthene	3.08	0.357	mg/kg dry	3.570	ND	86	40-140			
Benzo(g,h,i)perylene	2.77	0.357	mg/kg dry	3.570	ND	78	40-140			
Benzo(k)fluoranthene	2.72	0.357	mg/kg dry	3.570	ND	76	40-140			
Benzolc Acid	ND	1.79	mg/kg dry	3.570	ND		40-140			M-
Benzyl Alcohol	2.46	0.357	mg/kg dry	3.570	ND	69	40-140			
bis(2-Chloroethoxy)methane	1.83	0.357	mg/kg dry	3.570	ND	51	40-140			
bis(2-Chloroethyl)ether	2.34	0.357	mg/kg dry	3.570	ND	66	40-140			
bis(2-chlorolsopropyl)Ether	1.90	0.357	mg/kg dry	3.570	ND	53	40-140			
bis(2-Ethylhexyl)phthalate	3.08	0.357	mg/kg dry	3.570	ND	86	40-140			
Butylbenzylphthalate	3.01	0.357	mg/kg dry	3.570	ND	84	40-140	1		
Carbazole	2.93	0.357	mg/kg dry	3.570	ND	82	40-140			
Chrysene	3.04	0.179	mg/kg dry	3.570	ND	85	40-140			
Dibenzo(a,h)Anthracene	2.81	0.179	mg/kg dry	3.570	ND	79	40-140			
Dibenzofuran	2.74	0.357	mg/kg dry	3.570	ND	77	40-140			
Diethylphthalate	2.76	0.357	mg/kg dry	3.570	ND	77	40-140			
Dimethylphthalate	2.88	0.357	mg/kg dry	3.570	ND	81	40-140			
Di-n-butylphthalate	2.79	0.357	mg/kg dry	3.570	ND	78	40-140			
Di-n-octylphthalate	2.80	0.357	mg/kg dry	3.570	ND	78	40-140			
Fluoranthene	2.95	0.357	mg/kg dry	3.570	ND	83	40-140			
Fluorene	2.58	0.357	mg/kg dry	3.570	ND	72	40-140			
Hexachlorobenzene	2.60	0.179	mg/kg dry	3.570	ND	73	40-140			
Hexachlorobutadiene	2.05	0.357	mg/kg dry	3.570	ND	57	40-140			
Hexachlorocyclopentadiene	1.78	1.79	mg/kg dry	3.570	ND	50	40-140			
Hexachloroethane	1.89	0.357	mg/kg dry	3.570	ND	53	40-140			
Indeno(1,2,3-cd)Pyrene	2.80	0.357	mg/kg dry	3.570	ND	78	40-140			
Isophorone	2.31	0.357	mg/kg dry	3.570	ND	65	40-140			
Naphthalene	2.07	0.357	mg/kg dry	3.570	ND	58	40-140			
Nitrobenzene	2.11	0.357	mg/kg dry	3.570	ND	59	40-140			
N-Nitrosodimethylamine	1.82	0.357	mg/kg dry	3.570	ND	51	40-140			
N-Nitroso-Di-n-Propylamine	2.01	0.357	mg/kg dry	3.570	ND	56	40-140			
N-nitrosodiphenylamine	2.78	0.357	mg/kg dry	3.570	ND	78	40-140			
Pentachlorophenol	2.73	1.79	mg/kg dry	3.570	ND	76	30-130			
185 Frances Avenue, (Cranston, RI 02910-2	2211 T	el: 401-461-71	81	Fax: 401-4	61-4486	http://	/www.ES	SLaborato	^{ry.com} 14

Dependability

Quality

٠

Service

+

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801264

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC	RPD	Limit	Qualifier
······	827	OC Semi-V	olatile Org	anic Co	ompoun	ds				
Batch BA82325 - 3541										
Phenanthrene	2.70	0.357	mg/kg dry	3.570	ND	76	40-140			
Phenol	2.48	0.357	mg/kg dry	3.570	ND	69	30-130			
Pyrene	2.88	0.357	mg/kg dry	3.570	ND	81	40-140			
Pyrldine	0.748	1.79	mg/kg dry	3.570	ND	21	40-140			M-
Surrogate: 1.2-Dichlorobenzene-d4	1.98		mg/kg dry	3.570		56	30-130			
Surrogate: 2,4,6-Tribromonhenol	3.89		mg/kg dry	5.355		73	30-130			
Surrogate: 2-Chlorophenol-d4	2.93		mg/kg dry	5.355		55	30-130			
Surrogate: 2-Fluorobiohenvl	2.44		mg/kg dry	3.570		68	30-130			
Surrogate: 2-Fluorophenol	2.83		mg/kg dry	5.355		53	30-130			
Surrogate: Nítrobenzene-d5	2.08		mg/kg dry	3.570		58	30-130			
Surrogate: Phenol-d6	3.69		mg/kg dry	5.355		69	30-130			
Surrogate: p-Terphenyl-d14	2.89		mg/kg dry	3.570		81	30-130			
Matrix Spike Dup Source: 0801264-01										
1,1-Biphenyl	1.47	0,364	mg/kg drv	3,643	ND	40	40-140	3	30	
1.2.4-Trichlorobenzene	2.34	0.364	ma/ka dry	3.643	ND	64	40-140	6	30	
1.2-Dichlorobenzene	2.30	0.364	ma/ka dry	3.643	ND	63	40-140	6	30	
1.3-Dichlorobenzene	2.09	0.364	ma/ka dry	3.643	ND	57	40-140	6	30	
1.4-Dichlorobenzene	2.19	0.364	mg/kg dry	3 643	ND	60	40-140	8	30	
2.3.4.6-Tetrachlorophenol	3.05	1.83	ma/ka dry	3,643	ND	84	30-130	8	30	
2.4.5-Trichlorophenol	3.06	0.364	ma/ka dry	3.643	ND	84	30-130	3	30	
2.4.6-Trichlorophenol	2.91	0.364	ma/ka dry	3 643	ND	80	30-130	3	30	
2.4-Dichlorophenol	2.72	0.364	mg/kg dry	3 643	ND	75	30-130	1	30	
2.4-Dimethylphenol	2.45	0.364	ma/ka dry	3 643	ND	67	30-130	0.03	30	
2.4-Dinitrophenol	1.84	1.83	ma/ka dry	3 643	ND	51	30-130	22	30	
2.4-Dinitrotoluene	3 25	0 364	mg/kg dry	3 643	ND	80	40-140	4	30	
2.6-Dinitrotoluene	3.05	0.364	mg/kg dry	3 643	ND	84	40-140	5	30	
2-Chloronaphthalene	2 34	0.364	mg/kg dry	3 643	ND	64	40-140	0.7	30	
2-Chlorophenol	2.01	0.364	mg/kg dry	3 643	ND	61	30-130	3	30	
2-Methylpaphthalene	2 59	0.364	mg/kg dry	3 643	ND	71	40-140	3	30	
2-Methylphenol	2.70	0.364	mg/kg dry	3 643	ND	74	30-130	4	30	
2-Nitroaniline	2.00	0.364	mg/kg dry	3 643	ND	80	40-140	3	30	
2-Nitrophenol	2.52	0.364	mg/kg dry	3 643	ND	67	30-130	6	30	
3.3'-Dicblorobenzidine	3 78	0 729	mg/kg dry	3 643	ND	00	40-140	1	30	
3+4-Methylphenol	4.06	0.729	mg/kg dry	7 287	ND	56	30-130	1	30	
3-Nitroaniline	3 19	0.725	mg/kg dry	7.207	ND	20	40.140	1	30	
4.6-Dinitro-2-Methylphenol	2 95	1.82	ma/ka day	3.043	ND	00	30-120	15	20	
4-Bromonbenvl-nhenvlether	2.95	0.364	mg/kg dry	3 642	ND	70	40-140	E	20	
4-Chloro-3-Methylphenol	2.89	0.364	ma/ka day	3 643	ND	79	30-130	2	30	
4-Chloroaniline	2,00	0.720	mg/kg dry	2 642	ND	67	40-140	2	20	
4-Chioro-pheovi-pheovi ether	3.05	0.729	mg/kg dry	3 643	ND	02	40-140	2	20	
4-Nitroaniline	3.03	0.304	mg/kg dry	3.043	ND	04	40-140	E	30	
4-Nitrophenol	3.04	1 92	mg/kg dry	3.043	ND	00	20 120	5	30	
Acenaphthene	2.80	0.264	mg/kg ury	3.043	ND	04 77	30-130	2	30	
Acenanhthylene	2.00	0.304	mg/kg dry	3.043	ND	76	40-140	2	30	
Acetonhenone	2.77	0.304	mg/kg ary	3.043	ND	76	40-140	5	30	
Aniline	2.58	1.02	mg/kg ary	3.643	ND	/1	40-140	5	30	
Alimite	1'32	1.83	mg/kg ary	3.643	ND	53	40-140	4	30	

Dependability

Quality

.

Service

15

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801264

Analyte	Result	MRL	Units	Level	Result	%REC	WREC Limits	RPD	Limit	Qualifi	ier
	827	0C Semi-	/olatile Org	janic C	ompoun	ds					
Batch BA82325 - 3541											
Anthracene	2,90	0.364	ma/ka dry	3 643	ND	80	40-140	5	20		
Azobenzene	2.80	0.364	ma/ka dry	3 643	ND	77	40-140	4	30		
Benzo(a)anthracene	3.13	0.364	ma/ka dry	3 643	ND	86	40-140		30		
Benzo(a)pyrene	2.83	0.183	ma/ka dry	3 643	ND	78	40-140	0.5	20		
Benzo(b)fluoranthene	3.13	0.364	mg/kg dry	3 643	ND	86	40-140	0.09	30		
Senzo(g,h,i)perviene	2.90	0.364	mg/kg dry	3 643	ND	80	40-140	0.7	30		
Senzo(k)fluoranthene	2.98	0.364	ma/ka day	3 643	ND	82	40.140	3	30		
Senzoic Acid	ND	1.83	mg/kg dry	3 643	ND	02	40-140	/	30		
Senzyl Alcohol	2.58	0.364	mg/kg dry	3 643	ND	71	40-140	3	30	[v]-	
vis(2-Chloroethoxy)methane	1 99	0.364	mg/kg dry	3 643	ND	71	40 140	5	30		
ols(2-Chloroethyl)ether	2.22	0.364	mg/kg dry	3.643	ND	55	40-140	0	30		
is(2-chloroisopropyl)Ether	2.08	0.364	mg/kg dry	3.043	ND	61	40-140	-	30		
is(2-Ethylhexyl)phthalate	3 18	0 364	mg/kg dry	3.643	ND	37	40-140		30		
Sutvibenzviohthalate	3.11	0.364	mg/kg dry	3.043	ND	8/	40-140	1	30		
athazole	2.07	0.364	mg/kg dry	3.043	ND	85	40-140	1	30		
Thrysene	3.07	0.192	mg/kg dry	3.043	ND	84	40-140	2	30		
2ibenzo(a b)Anthracene	3.15	0.103	mg/kg dry	3.043	ND	87	40-140	2	30		
libenzofuran	2.09	0.105	mg/kg dry	3.643	ND	79	40-140	0.9	30		
liethvinhthalate	2.05	0.304	mg/kg dry	3.643	ND	78	40-140	2	30		
Imethylohthalate	2.90	0.304	mg/kg dry	3.643	ND	80	40-140	3	30		
b-n-bub/inbthalate	3.01	0.364	mg/kg dry	3.643	ND	83	40-140	2	30		
	2.95	0.364	mg/kg dry	3.643	ND	81	40-140	4	30		
	2.86	0.364	mg/kg dry	3.643	ND	79	40-140	0.2	30		
	3.08	0.364	mg/kg dry	3.643	ND	85	40-140	2	30		
lavashlarahansana	2.72	0.364	mg/kg dry	3.643	ND	75	40-140	3	30		
lexachioropenzene	2.72	0.183	mg/kg dry	3.643	ND	75	40-140	3	30		
lexachiorobutadiene	2.22	0.364	mg/kg dry	3.643	ND	61	40-140	6	30		
lexachiorocyclopentadiene	2.03	1.83	mg/kg dry	3.643	ND	56	40-140	11	30		
lexachioroethane	2.07	0.364	mg/kg dry	3.643	ND	57	40-140	7	30		
ndeno(1,2,3-cd)Hyrene	2.90	0.364	mg/kg dry	3.643	ND	80	40-140	1	30		
sophorone	2.49	0.364	mg/kg dry	3.643	ND	68	40-140	5	30		
laphthalene	2.21	0.364	mg/kg dry	3.643	ND	61	40-140	4	30		
litrobenzene	2.31	0.364	mg/kg dry	3.643	ND	63	40-140	7	30		
I-Nitrosodimethylamine	1.98	0.364	mg/kg dry	3.643	ND	54	40-140	6	30		
I-Nitroso-DI-n-Propylamine	2.23	0.364	mg/kg dry	3.643	ND	61	40-140	9	30		
I-nitrosodiphenylamine	2.92	0.364	mg/kg dry	3.643	ND	80	40-140	3	30		
rentachlorophenol	3.35	1.83	mg/kg dry	3.643	ND	92	30-130	18	30		
henanthrene	2.88	0.364	mg/kg dry	3.643	ND	79	40-140	4	30		
henol	2.75	0.364	mg/kg dry	3.643	ND	75	30-130	8	30		
yrene	2.99	0.364	mg/kg dry	3.643	ND	82	40-140	2	30		
yridine	0.823	1.83	mg/kg dry	3.643	ND	23	40-140	8	30	M-	
urrogate: 1,2-Dichlorobenzene-d4	2.08		mg/kg dry	3.643		57	30-130				
urrogate: 2,4,6-Tribromophenol	4.09		mg/kg dry	5.465		75	30-130				
urrogate: 2-Chlorophenol-d4	3.15		mg/kg dry	5.465		58	30-130				
urrogate: 2-Fluorobiphenyl	2.56		mg/kg dry	3.643		70	30-130				
urrogate: 2-Fluorophenol	3.11		mg/kg dry	5.465		57	30-130				
urrogate: Nitrobenzene-d5	2.25		mg/kg dry	3.643		62	30-130				
185 Frances Avenue, Crai	nston, RI 02910-2	211 Te Dependability	el: 401-461-71	81 ality	Fax: 401-4	61-4486 vice	http://	www.ES	SLaborato	ry.com	1

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801264

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	827	0C Semi-V	olatile Org	anic Co	ompoun	ds				
Batch BA82325 - 3541										
Surrogate: Phenol-d6	3.84		mg/kg dry	5.465		70	30-130			
Surrogate: p-Terphenyl-d14	2.95		mg/kg dry	3.643		81	30-130			

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801264

Notes and Definitions

- U Analyte included in the analysis, but not detected
- M- Matrix Spike recovery is below lower control limit.
- D+ Relative percent difference for duplicate is outside of criteria.
- C- Continuing Calibration recovery is below lower control limit.
- B- Blank Spike recovery is below lower control limit.
- ND Analyte NOT DETECTED above the detection limit
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- MDL Method Detection Limit
- MRL Method Reporting Limit
- I/V Initial Volume
- F/V Final Volume
- § Subcontracted analysis; see attached report
- 1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
- 2 Range result excludes concentrations of target analytes eluting in that range.
- 3 Range result excludes the concentration of the C9-C10 aromatic range.
- Avg Results reported as a mathematical average.

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: MACTEC Engineering & Consulting, Inc. Client Project ID: Providence Gorham Site

ESS Laboratory Work Order: 0801264

ESS LABORATORY CERTIFICATIONS

U.S. Army Corps of Engineers Soil and Water

Navy Installation Restoration QA Program Soil and Water

Rhode Island: A-179

Connecticut: PH-0750

Maine: RI002

Massachusetts: M-RI002

New Hampshire (NELAP accredited): 242405 Potable Water Non Potable Water

New York (NELAP accredited): 11313 Potable Water Non Potable Water Solid and Hazardous Waste

United States Department of Agriculture Soil Permit: S-54210

New Jersey (NELAP accredited): RI002 Potable Water Non Potable Water Soil and Hazardous Waste

> Maryland: 301 Potable Water

*By circl in accord	Relinqui	Seals Inti Cooler Te	Cooler P	Containe									ESS LA Sample	Telepho	City	Gentact	4	Co. Nan	www.e	185 Fr	ES
ing MA-Mi lance with	shed by: ()	mp: S.	resent	r Type: P								1.2	# B	181 24	Wake	Person	ave H	re Conti	sslabora	ances A	SLa
CP, client ac MADEP C.	Signature)	2Yes	V Yes	-Poly G-((40	3.08	Date	15 660	field	AACTE AACTE	eislein	ict	tory.com	venue, C	bor
knowledge AM VII A	Da 1.23.08 Da	No	No	ilass S-St								1110	Collec Tin	6		c Eng			1 44 (10)	ranston	ato
s samples v	le/Time	NA:		erile V-V	•		_						COMP	Fax #	State M	inedrina			./	, RI 029	ŗy
vere collect	Ready	[] Picka [] Tech	Internal L	OA Matri		_			_			s X	GRAB MATRIX		A	م			100	910-221 1486	
ed	edby: (Sig	ııp nicians	Jse Only	k: S-Soil			-					Br.			N	Address	36500	Project #		<u> </u>	-
Plea	inature)	Cor	Pre	SD-Solid								ck cont	Sample I		81 C	107 1	500 ft. 15	t total and	Is this pro	If faster the State whe	3
se fax all ch	1-2302	npled by: nments:	servation (D-Slud								in	dentificatio	Email A	80 H	tudu be	4	Project	ject for an	han 5 days Ye samples	0
hanges to C	ste/Time	Phil	Code: 1- N	ge WW-V)N (20 Char. or	islein (°0#	i Ri	rham	Name (20 C	NH NJ y of the fo	, prior app	HA
hain of Cus	C) Reling	Multer	P, 2- HCI,	laste Water									less)	mac		- 500		har. or less)	llowing:	oval by lat	E
tody in writ	uished by: uished by:		3- H2SO4, 4	GW-Gro		-		_				NP	Pres Code	ec-iom		12 30:		NCE OU	ME O	poratory is	OF
ing.	(Signature) (Signature)		- HNO ₃ , 5	and Water								1 4	Numbe Type o	er of Co f Conta	ontainer iners	'S		Iva n	her	required #	CU
	Date Date		- NaOH, 6	SW-Surfa		_		-			1	XX	SVI	ec t			-				IST
	Time		- MeOH,	ce Water													_		Electronic Format:	RE	OD
1 (Whi	Received		7- Asorbic	DW-Drinki		_	_	_										Write B	Excel	Residen	Y
te) Lab Co	l by: (Signa l by: (Signa		Acid, 8- Z	ing Water				_										equired A	le	hal	
py 2 (Yel	ature) ature)		nAct, 9	0-0il W				_									and and	nalveic	PDF 0	080	Page
low) Clien	Date/I Date/I			-Wipes F			_								<u>.</u>	2			No ther Equ	12C	of
Receipt 10/26/04 A	ime			Filters										_			_		S EZ E)	4	-