APPENDIX H

Screening Level Ecological Risk Assessment

Mashapaug Cove 333 Adelaide Avenue Providence, RI

Prepared by MACTEC

July 2006

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 PROBLEM FORMULATION	3
2.1 Site Background	3
2.2 Environmental Setting	3
2.2.1 Methodology	3
2.2.2 Natural Communities and Wildlife	4
2 2 3 Threatened and Endangered Species	7
2.3 Exposure Pathways	7
2.4 Historical Investigations and Data Used in the SLERA	9
2.5 Ecotoxicity	10
2.6 Initial Ecological Concentual Model	10
2.5 Initial Deological Conception Wooder	11
	1 1
3.0 SCREENING BENCHMARKS	12
3.1 Surface Water Screening Criteria	12
3.2 Sediment Screening Criteria	13
 4.0 SCREENING LEVEL EXPOSURE ESTIMATE AND RISK CALCULATION 4.1 Hazard Quotients 	14 15
4.2 Screening Results	16
4.2.1 Cove Study Area	
4.2.2 Property Line	17
4 3 Additional Evaluations	17
4 3 1 AVS-SEM	17
4 3 2 Sum-PAH (Σ PAH) Method	19
4 3 3 TEO Evaluation	20
1.5.5 1.5.2 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	= 0
5.0 RISK CHARACTERIZATION, UNCERTAINTY, AND CONCLUSIONS	21
5.1 Risk Characterization	21
5.2 Uncertainties	25
5.3 Conclusions	26
6.0 REFERENCES	28
FIGURES	
Figure 1 Site Locus Man	
Figure 2 Supplemental SI Pond Sampling Locations	
Figure 2. Magnured Water Donths at Sodiment Sempling Locations in Machanaus C	

Figure 3. Measured Water Depths at Sediment Sampling Locations in Mashapaug Cove Figure 4. Site Ecological Conceptual Model

TABLES

- Table 3.1.
 Surface Water Screening Values
- Table 3.2. Sediment Screening Values
- Table 4.1. Selection of Chemicals of Potential Concern -Cove Study Area Surface Water
- Table 4.2
 Selection of Chemicals of Potential Concern -Cove Study Area Sediment
- Table 4.3Selection of Chemicals of Potential Concern Property Line Study AreaSurface Water
- Table 4.4
 Selection of Chemicals of Potential Concern Property Line Study Area

 Sediment
- Table 4.5 AVS-SEM Data
- Table 4.6 Summary of Sediment ΣPAH Calculations
- Table 4.7 Summary of Sediment TEQ Calculations
- Table 4.8 Summary of Surface Water TEQ Calculations
- Table 5.1 Comparison of VOC COPCs Between the Eastern and Western Portions of the Inner Cove

ATTACHMENT A: ECOTOXICOLOGICAL PROFILES ATTACHMENT B: CALCULATIONS FOR ΣΡΑΗ MODELS ATTACHMENT C: TEQ CALCULATIONS

1.0 INTRODUCTION

This Screening Level Ecological Risk Assessment (SLERA) evaluates Mashapaug Cove as required by the April 5, 2006 Amended Notice of Responsibility issued by the Rhode Island Department of Environmental Management (RIDEM) to Textron, Inc. and the City of Providence (RIDEM, 2006). The Amended Notice of Responsibility requires that a Site Investigation Report (SIR) be prepared for Mashapaug Cove. The ecological risk assessment is a component of the Supplemental SIR (MACTEC, 2006).

This SLERA is being performed in accordance with the following regulations and guidelines:

- Rhode Island Department of Environmental Management Remediation Regulations, as amended, February 2004
- Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. EPA 540-R-97-006. June 1997
- Framework for Ecological Risk Assessment. EPA-630-R-92-001. February, 1992
- Guidance for Ecological Risk Assessment. EPA-630-R-95-002F. April, 1998

This SLERA addresses surface water and sediment within Mashapaug Cove. In accordance with §8.05 of the Rhode Island Remediation Regulation (RIDEM, 2004) and following the definition of "environmentally sensitive areas" in §3.16, this SLERA does not evaluate soil in upland areas surrounding the Cove. These upland areas are not "environmentally sensitive areas" for which an ecological risk assessment would be required.

As described in the 1997 USEPA Guidance, the purpose of the SLERA is to identify all complete exposure pathways and to conduct a conservative assessment of all chemicals of potential concern (COPCs), and carry to a Baseline Ecological Risk Assessment

(BERA) only those site related chemicals for which risk cannot be ruled out. The results of the SLERA are used to determine whether the available information is adequate to make risk management decisions. Based on the SLERA, it may be concluded either:

- There is a negligible ecological risk and therefore the Site or components of the site require no further study
- There is (or might be) a risk of adverse ecological effects, and the ecological risk assessment process will continue with a baseline ecological risk assessment
- The information is not adequate to make a decision, but the ecological assessment process will continue.

Thus, in accordance with the 1997 USEPA guidance, this SLERA:

- Summarizes site data
- Characterizes the site conditions
- Provides screening level problem formulation, screening level effects evaluation, exposure estimate, and risk calculation
- Identifies which contaminants found at the site can be eliminated from further consideration and which should be evaluated further, as part of a BERA

2.0 PROBLEM FORMULATION

2.1 Site Background

The former Gorham Manufacturing Facility is situated on a 37 acre parcel at 333 Adelaide Avenue in Providence, Rhode Island (Figure 1) Between 1890 and 1986, sterling silver and plated silverware, as well as bronze castings, were manufactured onsite. Operations including casting, rolling, polishing, lacquering, forging, plating, annealing, soldering, degreasing, machining, and melting.

The former manufacturing facility has been improved with a retail complex on Parcel A, a high school is under construction on Parcel B, and the Greater Providence YMCA is planning to construct a facility on Parcel C. The former manufacturing site is bordered by a parking lot and supermarket to the east and Adelaide Avenue and a residential neighborhood to the south. The 333 Adelaide Avenue property slopes downward toward Mashapaug Cove and Mashapaug Pond. Figure 2 shows the location of Mashapaug Cove.

The 2006 Amended Notice of Responsibility requires an assessment of Mashapaug Cove. Mashapaug Cove has an area slightly larger than four acres and is within the property line of 333 Adelaide Avenue as shown on Figure 2. The southern half of Mashapaug Cove is herein referred to as the Inner Cove and the northern half up to the property line referred to as the Outer Cove. Mashapaug Cove is located in the northeast corner of Mashapaug Pond.

2.2 Environmental Setting

2.2.1 Methodology

On June 20, 2006, a MACTEC biologist visited the Cove to conduct a reconnaissance level habitat assessment. The habitat assessment occurred following a prolonged period of rain thus recorded observations reflect high water conditions. Wetland and shore-line habitats were qualitatively characterized in terms of their dominant plant species, vegetative strata, presence of invasive species, and presence of human disturbance or

alteration. During the field visit, mammals, birds, herpetiles, and benthic organisms observed by direct observation (sight) or sign were recorded. Along the Cove shoreline, a dip net was used to collect aquatic macroinvertebrates from sediment and from habitat provided by submerged plants and logs. Specimens were sorted and identified in the field down to the lowest possible taxa.

2.2.2 Natural Communities and Wildlife

Terrestrial Shoreline. The shoreline along the Cove is characterized by a deciduous woodland community. The tree canopy is dominated by black birch (*Betula lenta*) and red maple (*Acer rubrum*), and also contains cottonwood (*Populus deltoides*), grey birch (*Betula populifolia*), oak (*Quercus* sp.), black locust (*Robinia pseudoacacia*), catalpa (*Catalpa* sp.), and mulberry (*Morus* sp.). The tree canopy reaches approximately 30 feet in height, and provides 100 percent cover. The largest trees have a diameter at breast height (dbh) of approximately 7 inches. The shrub slayer is dominated by poison ivy (*Toxicodendron radicans*), highbush blueberry (*Vaccinium corymbosum*), lowbush blueberry (*Vaccinium angustifolium*), greenbrier (*Smilax rotundifolia*), arrowwood (*Vibermun dentatum*), mountain laurel (*Kalmia latifolia*), honeysuckle (*Lonicera japonica*), and knotweed (*Polygonum cuspidatum*). The herbaceous layer is dominated by poison ivy, with frequent occurrences of Japanese barberry (*Berberis thunbergii*) and sweet-pepper bush (*Clethra alnifoliaea*). Although vegetation along the shoreline is relatively dense, there are occasional small breaks which give direct access to the water.

Tree cavities, logs, brush piles, and pond overhangs provide nesting and perching habitat for redwing blackbirds (*Agelaius phoeniceus*), black capped chickadee (*Poecile atricapillus*), goldfinch (*Carduelis tristis*), and mourning doves (*Zenaida macroura*), which were observed on-site. A pair of swans (*Cygnus* sp.) were observed nesting on the western peninsula. Raccoon (*Procyon lotor*) tracks were also observed along the shoreline and eastern grey squirrels (*Sciurus carolinensis*) were observed in the woods.

Topography along the western peninsula slopes up gently from the water's edge, rising to approximately 5 feet above the high water line. Topography along the eastern side of the

Cove is steeper, with a hill rising approximately thirty feet to overlook the Cove and Pond. Soil is covered by a thin organic leafy layer less than 1 cm in thickness. Soil is sandy, and is classified by the Natural Resource Conservation Service (NRCS) as Hinckley gravelly sandy loam (HkC). This soil series is excessively drained soil occurring on terraces, outwash plains, kames, and eskers. Typically the surface layer is dark brown gravelly sandy loam about 6 inches thick. The subsoil is 11 inches thick; the upper 4 inches of the subsoil is yellowish brown gravelly sandy loam, and the lower 7 inches is light yellowish brown gravelly loamy sand. The substratum is light brownish gray very gravelly sand to a depth of 60 inches or more (NRCS, 2006). The permeability of this soil is rapid in the surface layer and subsoil and very rapid in the substratum. Available water capacity is low, and runoff is slow. The soil is extremely acid through medium acid (NRCS, 2006).

Portions of the shoreline habitat show signs of anthropogenic disturbance, but there are no visible signs of plant stress. Exotic invasive plants species, such as honeysuckle, barberry, and knotweed are common within the terrestrial shoreline community. The nesting swans are also exotic and invasive species. The ground surface is heavily littered. Approximately five concrete structures (former groundwater wells) occur near the pond. The shoreline habitat is segmented by an overgrown or abandoned dirt road/pathway adjacent to the Cove perimeter along the western shoreline. Bordering the terrestrial shoreline community to the south is a shopping mall parking lot.

Groundwater beneath the terrestrial area is classified by RIDEM as GB. GB groundwater is designated to be not suitable for public or private drinking water use. GB groundwater areas are typically located beneath highly urbanized areas, permanent waste disposal areas, and the area immediately surrounding the permanent waste disposal areas (RIDEM, 1996 cited in Fuss & O'Neil, 2006).

<u>Aquatic community</u>. The Cove consists largely of open water, approximately 4 acres in area, and is characterized as eutrophic. At the time of the habitat survey water temperature was 26 C and the water column was turbid with visibility to approximately

1-foot depth. There are no emergent plant communities except very close to shore during periods of floods or high water when the waterline rises to encompass terrestrial shoreline plants. Rooted vegetation, consisting of water lilies (*Nymphaea odorata*), were observed in several groupings within the Cove. Submerged logs and branches also create habitat stratification suitable for fish cover. In the summer, massive amounts of rooted and floating aquatic vegetation choke the water column.

Substrate along the shoreline is typically sand with trace gravel overlain by a thin (less than 1 inch) detrital layer. Water boatmen (*Cymatia* sp.), backswimmers (*Notonecta* sp.), and water striders (*Limnogonus fossarum*) were observed in the water column. Dragon fly and damselfly larvae (Odonata), amphipods, and oligocheates were identified in dip net samples collected from substrate in sandier areas. Amphipods, leaches, chironomids, and dragonfly larva were observed in the center of the shoreline among rooted vegetation and thicker detrital layer. Away from the shoreline but still within the Inner Cove the substrate is an organic silt layer approximately 3 feet deep.

Juvenile fish were observed along the shoreline but could not be identified, and fish observed jumping in the center of the Cove were tentatively identified as carp. No amphibians were observed and none were heard calling. Mallard ducks, as well as one of the nesting pairs of swans were observed foraging within the Cove.

Water depth in the Cove appears to be shallower than in the rest of the pond. Bathymetric data collected in June 2006 (MACTEC, 2006) show that within the Inner Cove, water depth averages between 3 feet and 3.5 feet under high water conditions (Figure 3). In the Outer Cove, water depth increases to approximately 10 feet to 11 feet in the vicinity of the property line.

Mashapaug Pond has been classified as Class B surface water (RIDEM, 2006). Class B waters are designated for fish and wildlife habitat and primary and secondary contact recreational activities. They should be suitable for compatible industrial process and

cooling, hydropower, aquacultural uses, navigation, and irrigation and other agricultural uses. These waters should have good aesthetic value.

2.2.3 Threatened and Endangered Species

The RIDEM Geographic Data Viewer was used to determine the presence of rare species habitat. Based on the available maps, no rare species habitat were identified in the vicinity of the project site.

2.3 Exposure Pathways

Investigations of the former Gorham Manufacturing Facility and the remainder of the property at 333 Adelaide Avenue have identified evidence of releases of hazardous materials to soils and groundwater. Many of the sources have been addressed though remedial actions, and no longer represent a source from which hazardous material could migrate.

The 1995 RI Report indicated that six categories of release, or potential release had been identified. These include: oil from removed and out-of-service underground storage tanks (USTs); volatile organic compounds (VOCs) in soil and groundwater from above-ground storage tanks (ASTs), production activities (particularly in the areas of Buildings W and T), or incidental disposal; fill material of the West Parking and North Bank Areas; surface soils containing PCBs near the transformer pad and Building N; releases of oil from machines to building basements; and possible contaminants conveyed from the site in stormwater runoff. Subsequent to the RI Report, an additional source was identified; a slag pile located immediately south of Mashapaug Cove appears to have been accumulated from smelter operations that were performed in Building V of the former facility. The slag pile consisted of very dense, metals-containing solid material that was present in chunks ranging in diameter between one inch and ten inches. The slag pile was excavated and removed from the property in July 2006.

Bronze casting, silverware manufacturing, and plating activities have resulted releases of metals (especially lead and copper) to soils on Parcels A, B, and C. Chlorinated VOCs

have been detected in groundwater in the areas of former Buildings W and T. The Building W area is a probable source area for tetrachloroethylene (PCE) in groundwater. However, the specific source or point of release of PCE in the vadose zone soil or in the shallow groundwater has not been identified. Free floating product (fuel oil) and petroleum contaminated soils were identified at the former location of the two former 19,000-gallon USTs.

The specific source of the dioxins and furans is not known. However, the distribution of dioxin and furan homolog groups in soil and sediment appears to be consistent with the signature associated with municipal waste incineration (MACTEC, 2006).

Investigations to date indicate that metals and polycyclic aromatic hydrocarbons (PAHs) and other persistent materials in surficial soils and fill material have the potential to migrate with soil material via overland flow during and immediately after precipitation events. It appears that historically and recently, soils from the former facility area and along the filled area immediately to the south of Mashapaug Cove have been subjected to this mechanism and a number of drainage swales have been identified between the higher elevation former facility area and the shoreline of Mashapaug Cove. Leachate containing metals from the former slag pile might have discharged directly into the Cove, or it may have first infiltrated into groundwater and been subsequently transported into the Cove.

There is a plume of chlorinated VOCs in groundwater which flows in a northerly direction from the higher elevation former facility area in the direction of Mashapaug Cove. The groundwater appears to discharge into Mashapaug Cove, passing through the sediments of the cove in the process. Available data indicate that minimal transfer of chlorinated VOCs from groundwater to surface water is occurring. The available sediment quality data suggest that the highly organic sediments of the Cove may be acting as a sink for VOCs in groundwater that passes through the sediment. This has not been confirmed, and direct historical discharge of VOC-containing materials to the Cove has also not been ruled out as a possible explanation of sediment quality.

2.4 Historical Investigations and Data Used in the SLERA

The Supplemental Site Investigation Report (MACTEC, 2006) provides a full description of historical site investigations as well as recent (2005 and 2006) investigations of the Cove. Data used in the SLERA are summarized below, and sampling locations are shown on Figure 2.

Five sediment locations (SD-1001 through SD-1005) were sampled by RIDEM in December 2005. Samples were analyzed for priority pollutant metals plus barium (Method 6010B/7470A), pesticides (Method 8081A), PCBs (Method 8082), total petroleum hydrocarbons (TPH) (Method 8100), VOCs (Method 8260B), SVOCs (Method 8270C), dioxins and furans (Method 8290), and total cyanide (Method 9012A). Samples were collected from the 0-foot to 2-foot sediment interval. Data were validated using a modified Tier II protocol. Metals, some VOCs (acetone, 1,1-dichloroethene, cis-1,2-dichloroethene, naphthalene, 1,1,1,2-trichloroethane, trichloroethylene (TCE), and vinyl chloride), PAHs (acenapthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, di-n-butylphthalate, fluoranthene, fluorene, indeno(1,2,3cd)pyrene, phenanthrene, and pyrene), and dioxins and furans were detected in the RIDEM sediment samples.

Supplemental SI surface water and sediment samples were collected by MACTEC from the Cove and along the property line in June 2006 (locations SED-10 through SED-32 and SW-10 through SW-27). Surface water samples were analyzed for VOCs (Method 8260b), PAHs (Method 8270c; 3 samples), total and dissolved Priority Pollutant Metals (Methods 6010B, 7041, 7060a, 7421, and 7470A), dioxins and furans (Method 8290; 3 samples), pesticides/PCBs (Method 8081A/8082; 3 samples), and hardness (Method 6010B). Chemicals identified in surface water included trace VOCs, trace PAHs, trace pesticides, and dioxins. No metals were detected in the filtered samples; chromium, copper, lead, silver, and zinc were detected in trace amounts in the unfiltered samples.

Supplemental SI surficial sediment samples were analyzed for VOCs (Method 8260b), PAHs (Method 8270c), priority pollutant metals (Methods 6010B, 7060a, SW7471a, and 7841), dioxins and furans (Method 8290), pesticides/PCBs (Method 8081A/8082), TPH (Method M8100), AVS-SEM (Allen and Fu), and total organic carbon (TOC) (Method 9060). Deeper sediment samples were analyzed for VOCs, PAHs, and priority pollutant metals. Chemicals identified in sediments included VOCs, PAHs, metals, trace pesticides, trace PCBs, dioxins, and metals, and were similar to chemicals identified in the RIDEM data set.

Supplemental SI and RIDEM samples described above were pooled for evaluation in this SLERA. Historical data collected by HLA (now MACTEC) in 1999 and the University of Rhode Island (URI) in 1986 were not included in the SLERA because they may not be representative of current site conditions. Data from sediment samples collected in the Cove by Mr. Robert Dorr in 2005 were also not included in the SLERA. However, the Supplemental SI data appear to be consistent with data from Mr. Dorr's samples.

2.5 Ecotoxicity

Toxicological profiles of the families of compounds subject to evaluation in this SLERA (VOCs, SVOCs, metals, and dioxins and furans) are summarized in Attachment A.

2.6 Initial Ecological Conceptual Model

The initial ecological conceptual model illustrates initial estimates of contaminant fate and transport mechanisms, complete exposure pathways, and primary and secondary receptors. Generic assessment and measurement endpoints were used, as discussed in Section 2.7. The initial ecological conceptual model is based on the current understanding of the site conditions, and serves as a framework for evaluating ecological exposure and risk.

The initial ecological conceptual model for the site is shown in Figure 4 and illustrates:

• The source area (i.e. the former facility area and potentially the slag pile)

- Transport mechanisms (processes that partition chemicals among various environmental media or move chemicals within a medium)
- Exposure to media (those environmental media from which organisms may be exposed to chemicals).

Based on site information, it appears complete exposure pathways exist for organisms inhabiting surface water and sediment habitats in Mashapaug Cove. Fauna feeding on aquatic plants, benthic macroinvertebrates, and fish may also be exposed.

2.7 Assessment and Measurement Endpoints

Endpoints are used in the ecological risk assessment to define the ecological attributes to be protected (assessment endpoints) and to define measurable characteristics of those attributes that can be used to gauge the degree of impact that may occur (measurement endpoints). Assessment endpoints most often relate to attributes of biological populations or communities. They contain an entity (e.g., invertebrate population) and an attribute of that entity (e.g., survival rate).

Assessment endpoints for the SLERA are based on generic assessment endpoints associated with screening ecotoxicity endpoints. The endpoints are considered generic because they are based on a variety of organisms and are therefore considered to be representative of entire communities.

Assessment and measurement endpoints for the SLERA are:

Assessment Endpoint	Measurement Endpoint	
Sustainability (survival, growth, reproduction) of local populations of aquatic organisms (e.g. aquatic plants, invertebrates, fish, aquatic birds and mammals) in surface water	Comparison of surface water concentrations to surface water quality benchmarks	
Sustainability (survival, growth, reproduction) of local populations of benthic invertebrates in sediment	Comparison of sediment concentrations to sediment quality benchmarks	

SLERA Assessment and Measurement Endpoints

3.0 SCREENING BENCHMARKS

Screening benchmarks (also called screening values or benchmark values) represent conservative thresholds for adverse ecological effects. Screening values were based on conservative assumptions and represent no-observed-adverse-effect-levels (NOAELs) for chronic exposures to a toxicant when available. The screening level assessment used ecotoxicological screening benchmarks from various sources to assess the potential for ecological risk due to exposure of receptors in surface water, and sediment.

3.1 Surface Water Screening Criteria

Surface water benchmarks are summarized in Table 3.1. The following sources were used in the order presented as benchmarks for screening surface water for potential ecotoxicity:

- Rhode Island Ambient Water Quality Criteria (RI AWQC) (RIDEM, 2006)
- National Ambient Water Quality Criteria (NAWQC) (USEPA, 2002; 2004)
- Secondary Chronic Values (SCVs) for aquatic biota developed by Oak Ridge National Laboratory (Suter & Tsao, 1996)
- USEPA Region V Ecological Screening Levels (USEPA, 2003a)

The RI AWQC are the preferred surface water benchmarks for aquatic organisms because they are based on single chemical chronic toxicity tests with numerous species. RI AWQC for arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc are published as dissolved metal concentrations because the dissolved fraction represents the most bioavailable form. Benchmarks for these metals were identified but were not used because these metals were not identified in filtered samples. RI AWQC for antimony, beryllium, selenium, and thallium are published as total concentrations. Because antimony, beryllium, selenium, and thallium were not detected in either the filtered or unfiltered samples, benchmarks for these metals were not used. Benchmarks for metals were therefore not presented on Table 3.1. NAWQC were used for chemicals if RI AWQC were not identified. NAWQC are also based on single chemical chronic toxicity tests with numerous species.

Oak Ridge National Laboratory (ORNL) Secondary Chronic Values (SCVs) are derived using methods similar to the AWQC but using a fewer number of species. These are used only when no RI AWQC or NAWQC are available.

Ecological screening benchmarks were also selected from USEPA Region V Ecological Screening Levels (ESLs) for surface water (USEPA, 2003a). Region V ESLs are appropriate for screening because they are based on chronic no-observed-adverse-effectlevels (NOAELs).

3.2 Sediment Screening Criteria

Sediment benchmarks are summarized in Table 3.2. The following sources were used in the order presented as benchmarks for screening sediment for potential ecotoxicity:

- MacDonald et al. (2000) Threshold Effects Concentrations (TECs)
- Oak Ridge National Laboratory Tier II Secondary Chronic Screening Values (Jones, Suter, and Hull, 1997)
- Ontario Ministry of Environment and Energy (OMEE) Lowest Effects Levels (LELs) (Persaud *et al.*, 1993)
- Washington State Sediment Quality Values (SQVs) (Cubbage, et al., 1997)
- USEPA Region V Ecological Screening Levels (USEPA, 2003a)

Threshold Effects Concentrations (TECs) are sediment quality assessment values that were developed using matching biological and chemical data (i.e. sediment chemistry and toxicity data provided for the same samples) from modeling, laboratory, and field studies performed with freshwater sediment throughout North America (MacDonald, 1994); MacDonald, *et al.*, 2000). The authors used the matching data to associate chemical concentrations in sediment with the absence or occurrence of adverse effects. They established an "effect" and "no effect" data set and based their derivation of the TECs on both of these datasets. The TECs represent chemical concentrations above which effects frequently occurred in the laboratory tests. TECs were derived for 8 metals, 10 PAHs, total PCBs, and 8 pesticides.

Oak Ridge National Laboratory (ORNL) developed sediment screening benchmarks for nonionic organics (such as acetone) called secondary chronic values (SCVs) which are protective of sediment communities. SCVs are normalized to 1% TOC.

Ontario Ministry of the Environmental (OMOE) Provincial Sediment Quality Guideline Lowest Effect Levels (LELs) indicate a level of sediment contaminant at which most benthic organisms are unaffected. OMOE benchmarks are also normalized to 1% TOC.

Washington State Sediment Quality Values (SQVs) for sediment were created based on toxicity studies used to derive probable apparent effects thresholds (PAETs). Test organisms conducted *Hyalella azteca*, a sensitive sediment receptor. WA SCVs are normalized to 1% TOC.

Ecological screening benchmarks were also selected from USEPA Region V Ecological Screening Levels (ESLs) for sediment (USEPA, 2003a). Region V ESLs are appropriate for screening because they are based on chronic no-observed-adverse-effect-levels (NOAELs).

4.0 SCREENING LEVEL EXPOSURE ESTIMATE AND RISK CALCULATION

For the SLERA, maximum detected concentrations of pooled Supplemental RI and RIDEM data were used as exposure point concentrations. Maximum concentrations were compared to medium-specific screening values for surface water and sediment. Analytes with a frequency of detection (FOD) of 5 percent or less (by exposure area and medium) were eliminated from further screening. Analytes with maximum concentrations exceeding benchmark screening values were identified as chemicals of potential concern (COPCs). Analytes that did not have screening benchmarks were also identified as COPCs.

Calcium, magnesium, potassium, and sodium, which are nutrients and occur naturally at high concentrations and are not site related, were eliminated from further consideration.

The SLERA divided the Cove into two exposure areas in order to facilitate risk characterization. One exposure area, herein referred to as the Cove Study Area included the Inner Cove and the portion of the Outer Cove within the 333 Adelaide Avenue property boundary and consisted of sample locations SD-1001 though SD-1005, SED13 through SED32, and SW16 through SW27. The second exposure area consisted of sample locations near the property line (SW/SED-10, SW/SED-11, and SW/SED-12.) and is herein referred to as the Property Boundary Study Area.

4.1 Hazard Quotients

A hazard quotient (HQ) was used to calculate screening level risk estimate for each COPC:

Table 4.1 through Table 4.4 summarize the screening process, present analytes which were identified as COPCs, and show the HQ calculated for each COPC. An HQ could not be calculated for COPCs which lacked benchmark values. An HQ less than or equal to 1 indicates that the analyte alone is unlikely to cause adverse ecological effects. However, an HQ > 1 does not in itself represent an unacceptable risk; an HQ >1 in the SLERA indicates the *potential* for adverse ecological risks. Other site-specific factors (e.g., bioavailability) present at the site may affect actual risk.

Because the screening-level risk calculation is meant to be a conservative estimate, the calculation assumes an area-use factor of 100 percent, bioavailability of 100 percent, that

the exposed receptor life stage is the most sensitive stage, dietary composition is 100 percent, and that body weight and food ingestion rates are conservative.

4.2 Screening Results

4.2.1 Cove Study Area

Surface Water

One VOC (1,2,4-trimethyl benzene) was identified as a COPC because it lacked a benchmark (Table 4.1). Two SVOCs (benzo(a)anthracene and benzo(a)pyrene) were identified as COPCs because they exceeded benchmarks. The HQ for benzo(a)anthracene was 7 and the HQ for benzo(a)pyrene was 17. Two SVOCs (chrysene and dibenz(a,h)anthracene) were identified as COPCs because they lacked benchmarks. Dioxins were identified as COPCs using the TEQ calculation (see Section 4.3.3). No pesticides, PCBs, or dissolved or total metals were identified as COPCs in Cove Study Area surface water. Maximum detected concentrations generally occurred within the eastern part of the Inner Cove.

Sediment

Ten VOCs were identified as COPCs in the Inner Cove Study Area sediment because maximum concentrations exceeded benchmarks (Table 4.2); HQs for VOCs were generally 100 or more. One VOC (s-butylbenzene) was identified as a COPC because it lacked a benchmark. Seventeen PAHs were identified as COPCs in sediment because maximum concentrations exceeded benchmarks; HQs were generally between 10 and 100. One pesticide (DDD) and one PCB (Arcolor-1254) were identified as COPCs because maximum concentrations exceeded screening benchmarks. The HQ for DDD was 6 and the HQ for Aroclor-1254 was 9. Dioxins were identified as COPCs using the TEQ calculation (see Section 4.3.3). Nine inorganics were identified as COPCs because they exceeded benchmarks, and four were retained because they lacked benchmarks. HQs for inorganics were generally one order of magnitude above benchmarks. Maximum concentrations generally occurred within the eastern part of the Inner Cove, except dioxins for which maximum concentrations occurred most frequently at SD-18.

4.2.2 Property Line

Surface Water

No VOCs or SVOCs were detected in surface water samples collected from the Property Line Study Area and thus were not identified as COPCs (Table 4.3). DDT was identified as a COPC because it exceeded its screening benchmark (HQ=80). No total or dissolved metals were identified as surface water COPCs along the property line area. Dioxins were identified as COPCs using the TEQ calculation (see Section 4.3.3).

Sediment

One VOC (acetone) was identified as a COPC in sediment samples collected from the property line (Table 4.4) because it exceeded its benchmark; the HQ for acetone was 75. No other VOCs were detected in property line sediment samples. Thirteen PAHs were identified as COPCs because they exceeded benchmarks; HQs ranged from 1 to 6. DDD was identified as a COPC in property line sediment because it exceeded its benchmark, with an HQ of 4. No PCBs were detected in property line sediment samples. Dioxins were identified as COPCs using the TEQ calculation (see Section 4.3.3). Seven metals were identified as COPCs because they exceeded screening benchmarks; two metals were identified as COPCs because they lacked screening benchmarks. Inorganic HQs ranged between of 3 to 59. Maximum detections of PAHs occurred at SED12 and maximum detections of metals and most dioxins occurred at SD11.

4.3 Additional Evaluations

This section uses additional tools to evaluate COPCs. AVS-SEM data were evaluated to better understand bioavailability of metals in sediment. Bioavailability of PAHs was also further evaluated using the Σ PAH method. Dioxins and furans were evaluated using the toxicity equivalents (TEQ) calculation.

4.3.1 AVS-SEM

In June 2006, acid-volatile sulfide-simultaneously extractable metals (AVS-SEM) analysis was conducted for samples within Mashapaug Cove at locations SED15, SED20, SED22, SED24, and SED26 (USEPA, 2005; *Procedures for the Derivation of*

Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures).

The bioavailability of metals in sediment can significantly affect their potential toxicity to benthic organisms. Bioavailability of certain divalent metals (antimony, copper, lead, silver, and zinc) is influenced by the amount of sulfide contained within the substrate. If the amount of acid-volatile sulfide (AVS) exceeds the amount of simultaneously extracted metals (SEM), then the divalent metals are considered unavailable for leaching from the substrate into pore water or the overlying water column. The comparison between SEM and AVS consisted of calculating the amount of SEM and AVS in units of umol/g, subtracting the AVS value from the SEM value, and then normalizing this difference by the amount of organic carbon (expressed as a fraction) in the sediment (USEPA, 2005):

Normalized Value =
$$(SEM-AVS)$$
 (Equation 2)
 F_{oc}

Where

Normalized Value = umol/g_{OC} SEM=measured concentration of SEM metals (umol/g) AVS=measured concentrations of AVS (umol/g) F_{oc} =fraction of organic carbon in sediment (g_{OC}/g_{sed})

Per USEPA Guidance (USEPA, 2005), if the normalized value is less than 130 umol/ g_{OC} , then divalent metals in the sample are unlikely to be bioavailable. If the normalized value is between 130 umol/ g_{OC} and 3,000 umol/ g_{OC} , then sample bioavailability is uncertain. If the normalized value exceeds 3,000 umol/ g_{OC} , then samples are likely to be bioavailable. A negative value indicates that AVS exceeds SEM, thus the divalent metals are unavailable for leaching into pore water or the overlying water column. Examination of AVS-SEM data normalized to sediment organic carbon content (Table 4.5) indicates that at SED15, located between the Outer Cove and the property line, the normalized value (107 umol/ g_{OC}) is below 130 umol/ g_{OC} , and thus divalent metals in sediment from this sample are categorized as unlikely to be bioavailable. The remaining

sediment samples were between 130 umol/ g_{OC} and 3,000 umol/ g_{OC} , indicating that bioavailability is uncertain. Based on one sample, the data suggest that metals beyond the Inner Cove could be unlikely to be bioavailable. Within the Inner Cove, bioavailability of metals is uncertain. Additional evaluation is required to evaluate bioavailability and toxicity of the divalent metals in sediment more conclusively.

4.3.2 Sum-PAH (ΣPAH) Method

The bioavailability of PAHs in sediment can significantly affect their potential toxicity to benthic organisms. Bioavailability of PAHs is influenced by the amount of total organic carbon within the substrate and depends on the properties of the individual PAH constituents. The bioavailability of PAHs was further assessed using the Σ PAH method (USEPA, 2003b; *Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures*). This model calculates equilibrium partitioning sediment concentrations of 34 individual PAHs and site-specific TOC concentrations. The individual toxicity quotients are summed to calculate the sediment benchmark toxic unit (Σ ESBTU_{fev}). Freshwater sediments with a Σ ESBTU_{fev} ≤1.0 are considered protective of benthic organisms. If the Σ ESBTU_{fev} >1.0, sensitive benthic organisms may be potentially affected. Thus, the Σ PAH model is useful for predicting lack of toxicity. This method cannot be applied to sediment having ≤ 0.2% TOC by dry weight.

 Σ PAH calculations are summarized in Table 4.6 and shown in detail in Attachment B. Because only a subset of the 34 recommended PAHs were analyzed, a correction factor was applied to the calculation to achieve a 90th confidence percentile in accordance with USEPA guidance (USEPA, 2003b). When an individual PAH was not detected, one-half of the detection limit was used in the calculation. Samples SD-1001 though SD-1005 were not evaluated because site specific TOC data were not available for these samples. Location SED10 was not evaluated because the TOC associated with that samples was less than 0.2 percent. The Σ PAH calculations indicate that PAH concentrations in the western part of the Inner Cove (SED16, SED18, SED21, SED22, SED23) plus SED17, SED19, SED24, SED26, and SED27 in the eastern part of the Inner Cove would be unlikely to be toxic to benthic organisms. The Σ PAH calculations could not rule out PAH toxicity at the eastern end of the Inner Cove (SED20, SED25, SED28, SED29, SED30, SED31, and SED32). In the Outer Cove and along the property line (SED11, SED12, SED14, and SED15), Σ PAH calculations also indicate a likely lack of toxicity to benthic organisms. Although Table 4.6 shows a Σ ESBTU_{fev} >1.0 for SED13, toxicity may be ruled out because no PAHs were detected at this location (the calculated value is based entirely on one-half detection limit for all PAHs).

4.3.3 TEQ Evaluation

Most dioxins, furans, and dioxin-like compounds lack individual screening benchmarks. However, the congener-specific dioxin and furan data can be consolidated into a single measure, called the toxic equivalence (TEQ) of the sample. The TEQ is calculated by multiplying the concentrations of each congener or congener containing chlorine at the 2,3,7, and 8 positions in a sample by a toxicity equivalence factor (TEF) and summing those products. The TEF normalizes the toxicity of those congeners to the toxicity of the 2,3,7,8-TCDD congener, generally considered to be the most toxic of the dioxin, furan, and dioxin-like compounds. In effect, the TEQ indicates the concentration of 2,3,7,8-TCDD that would have the same toxicity as the mixture of dioxins and furans being evaluated. Congeners that do not contain chlorine at the 2,3,7 and 8 positions are not assigned a TEF because they do not have the same stereochemistry as the 2,3,7,8-TCDD congener. All OCDD and OCDF congeners have chlorine at the 2,3,7, and 8 positions. The TEFs used in this SELRA reference the World health Organization values for mammals, birds, and fish (Van den Berg *et al.*, 1998).

TEQ calculations are summarized in Table 4.7 (sediment) and Table 4.8 (surface water) and presented in full in Attachment C. The TEQ for each exposure area (i.e. the Cove Study Area and the Property Line Study Area) was compared to the ecological screening

benchmarks of 0.0000072mg/kg for sediment (Cubbage, 1997) and 0.00000001mg/L for surface water (USEPA, 2004) to calculate a hazard quotient.

In Cove Study Area sediment samples dioxin TEQs for mammals, birds, or fish exceeded screening benchmarks at SD-1001 though SD-1005, SED14, SED16 through SED20, SED22, and SED24 through SED32. The highest HQ (944, for birds) occurred at SED18, which also corresponds to the highest TOC concentrations (115,000 mg/kg). Only two Cove Study Area surface water samples were analyzed for dioxin (SW19 and SW27) and TEQs at both locations exceeded the benchmarks for mammals, birds and fish with the maximum HQ (7.1) occurring at SW27, for birds.

In Property Line Study Area sediment samples, dioxin TEQs for mammals, birds, or fish exceeded screening benchmarks at SD11, with a maximum HQ of 66, for birds, and at SD12, with a maximum HQ of 1.6 for mammals and birds. In the one property line surface water sample which was analyzed for dioxin (SW11), the dioxin TEQ exceeded the screening benchmark with a maximum HQ of 1.6, for birds.

5.0 RISK CHARACTERIZATION, UNCERTAINTY, AND CONCLUSIONS

This section evaluates the results of the screening level exposure estimates and other lines of evidence used to identify and to eliminate chemicals from further review, considers uncertainties, and summarizes final conclusions and recommendations.

5.1 Risk Characterization

5.1.1 Cove Study Area

One VOC (1,2,4-trimethyl benzene) was identified as a COPC in the inner cove surface water because it lacked a benchmark; however it was not identified as a site related chemical in soil or groundwater in the vicinity of the Cove and thus not considered to be a site related chemical (MACTEC, 2006). Because it was detected in only two of twelve samples, does not bioaccumulate, and is not site related, it is recommended that 1,2,4-trimethyl benzene be eliminated from further review in surface water in the Cove Study Area.

Benzo(a)anthracene, benzo(a)pyrene, chrysene, and dibenz(a,h)anthracene were identified as surface water COPCs. However, each of these PAHs were detected only once in twelve samples, and all occurred at SW19. Additionally, SW19 is associated with SED19; the Σ PAH model concluded that at SED19 PAHs are likely bound to sediment and are not likely to be bioavailable in the water column(Σ PAH <1). It is therefore recommended that PAHs be eliminated from further review of surface water in the Cove Study Area.

In the two surface water samples collected from the Cove Study Area and analyzed for dioxin (SED19, SED27), the TEQ exceeded the screening benchmark with a maximum HQ of 7 (for birds), suggesting that dioxins in surface water cannot be ruled out using screening tools and should receive further investigation.

No dissolved or total metals were identified as COPCs in surface water from the Cove Study Area. Thus, no further evaluation of metals in surface water is recommended.

One pesticide (DDD) and one PCB (Aroclor-1254) were identified as sediment COPCs from the Cove Study Area. However, there is no evidence that DDD is site-related. Furthermore, DDD commonly occurs in the environment. Given the low concentration at which it was detected (0.03 mg/kg), is likely consistent with background concentrations, since it was detected in only two of twenty-five samples, and is not site related (MACTEC, 2006), DDT should be eliminated from further evaluation. Likewise, Arochlor-1254 was detected in only two of twenty-five samples at relatively low concentrations, and is not a site-related compound (MACTEC, 2006) and thus Arochlor-1254 should also be eliminated from further evaluation.

Eleven VOCs, seventeen PAHs, nine inorganics, and dioxins were identified as COPCs in sediment from the Cove Study Area. However, acetone, s-butylbenzene, and carbon disulfide are not considered site-related (MACTEC, 2006) and should be eliminated from further evaluation. Maximum detected concentrations of VOCs and metals generally

occurred within the eastern portion of the Inner Cove; a majority of the maximum concentrations occurred at SED19. Maximum PAH concentrations appear to correlate with the discharge point for the stormwater retention pond near SED20. The highest concentrations of VOCs, SVOCs, and metals therefore appear to be located in the eastern portion of the inner cove sediment.

Further examination of patters within the data suggest that VOCs, PAHs, and metals in sediment could pose less risk to ecological receptors in the western part of the Inner Cove than the eastern part of the Inner Cove. The Σ PAH data indicate that sediment PAHs in the eastern part of the Inner Cove cannot be ruled out as COPCs, but in the western part of the Inner Cove and in the Outer Cove, measured PAH concentrations are unlikely to be associated with toxicity to benthic communities. With the exception of acetone (which is not considered a site-specific chemical) and one low detection of PCE (1.0 mg/kg versus a benchmark of 0.99 mg/kg), VOCs were not detected in sediment samples collected in the western part of the inner cove (Table 5.1). VOCs tend to occur in the center of the Inner Cove in the vicinity of SED19, where many of the maximum detections occur, and at SED27. AVS-SEM data were generally inconclusive but suggest that metals may not be bioavailable in the Outer Cove, but could be limited to the shoreline within the Inner Cove.

Dioxin TEQs exceeded screening benchmarks throughout the Cove Study Area. The highest dioxin concentrations are generally associated with sediment samples with high TOC, which indicates that dioxins are sorbed to organic material in depositional areas.

Based on the available lines of evidence, risk to aquatic receptors from dioxins in surface water could not be ruled out for the Cove Study Area. Risk to benthic invertebrates from VOCs, PAHs, metals, and dioxins in sediment could not be ruled out for the Cove Study Area. Based on patterns in the data, COPCs could pose less of a risk to benthic and aquatic receptors in the Outer Cove and western part of the Inner Cove than in the eastern part of the Inner Cove.

5.2.2 Property Line

DDT and dioxins were identified as COPCs in Property Line Study Area surface water. DDT had an HQ of 80. However, there is no evidence that DDT is a site-related chemical. Furthermore, DDT commonly occurs in the environment as a persistent remnant of historical use in the ambient environment. Given the low concentration at which it was detected (0.080 ug/l), it is likely consistent with background concentrations and should be eliminated from further review. In the one property line surface water sample which was analyzed for dioxin (SW11), the dioxin TEQ exceeded the screening benchmark with a maximum HQ of 1.6, for birds and mammals, suggesting that risk from dioxins is almost negligible, but given the small sample size should receive further investigation in surface water near the property line.

One VOC (acetone), thirteen PAHs, DDD, nine metals, and dioxins were identified as COPCs in property line sediment. Acetone and DDD are not considered site-related (MACTEC, 2006) and should not be eliminated from further evaluation. Although individual PAHs exceeded benchmarks, the Σ PAH models indicate that sediment samples along the property line are unlikely to be toxic.

No AVS-SEM analyses were conducted with samples collected from along the property line. Although priority pollutant metals occurred at low detection frequencies, and except for silver (HQ=52 but detected in only 1 of 3 samples) had relatively low HQs (below 5 for zinc, nickel, chromium, and cadmium; 13 for copper, and 16 for lead; barium and beryllium lacked benchmarks), metals could not be ruled out using screening tools

Based on the available lines of evidence, risk to aquatic receptors from dioxins in surface water could not be ruled to for the Property Line Study Area. Risk to benthic invertebrates from metals could not be conclusively ruled out, and risk from dioxin could not be ruled out in property line sediment.

5.2 Uncertainties

Although there are some clear concentration gradients for a number of COPCs in sediment, background concentrations for sediments of Mashapaug Pond have not been determined. Therefore, the horizontal extent of sediment impacts in the Cove have not been completely delineated. In addition, for some COPCs, it has not been established definitively that observed concentration in the Cove are site-related.

Based on the AVS-SEM data in the Inner Cove, the potential bioavailability and toxicity of metals in sediments at several locations requires further evaluation. In addition, AVS-SEM data may also vary seasonally, with AVS concentrations typically higher in the warmer seasons and lower in colder months.

Risk associated with some chemicals could not be ruled out based on ecological screening because they lacked benchmarks. However, chemicals which lacked benchmarks, such as some individual PAHs and dioxins, were evaluated by other tools, such as Σ PAH models and TEQs.

Organic carbon content of sediment is important because it binds organic COPCs, making them less bioavailable. A higher TOC value means less COPC bioavailability. TOC values throughout the study areas generally ranged between 1 and 11 percent. However, sediment ecological screening benchmarks do not incorporate site-specific levels of organic carbon, and were normalized to 1 percent TOC. Although adjusting the benchmarks to site-specific concentrations would not change the list of sediment COPCs, the HQs associated with these COPCs are likely overestimated.

RIDEM sediment samples were collected from the 0-foot to 2-foot interval. Typically, the zone of biological activity is limited to the top six inches in sediment. Sediment samples collected from intervals deeper than six inches may not represent bioavailable concentrations.

Conservative assumptions were made about exposure factors. The screening level risk calculation assumes an area-use factor of 100 percent, bioavailability of 100 percent, that the receptor life stage is the most sensitive stage, dietary composition is 100 percent, and that body weight and food ingestion rates are conservative. This likely overestimates risk.

TPH data were not assessed for ecological risk for several reasons. First, a review of the scientific literature did not produce a suitable screening level benchmark for these data. Additionally, chemical compositions vary considerably from site to site and study to study, and analytical methods and targeted analytes vary between laboratories (Irwin, 1997). Even if a benchmark were identified, comparison to concentrations detected at the Adelaide Avenue site would be impeded by unquantifiable uncertainty. However, the primary hazards from TPH typically relate to PAHs or BTEX (Irwin, 1997), thus any risk from PAHs or BTEX would have been evaluated against individual chemical benchmarks or the Σ PAH model.

The TEQ methodology provides a mechanism to estimate potential health or ecological effects of exposure to a complex mixture of dioxins and dioxin-like compounds. However, the TEQ method must be used with an understanding of its limitations. This methodology estimates the dioxin-like effects of a mixture by assuming dose-additivity and describes the mixture in terms of an equivalent mass of 2,3,7,8-TCDD. Although the mixture may have the toxicological potential of 2,3,7,8-TCDD it should not be assumed that individual congeners follow the same environmental fate and transport mechanisms as 2,3,7,8-TCDD. Different congeners have different physical properties such as rate of photolysis, binding affinity to organic mater, and water solubility. Consequently, the makeup of the mixture will change as the congeners move through the environment (USEPA, 2000).

5.3 Conclusions

As summarized in the table below, the SLERA concludes that in Mashapaug Cove surface water, VOCs, PAHs, pesticides, PCBs, and metals pose negligible risk and thus

do not require further evaluation. However, potential risk from dioxins in surface water cannot be ruled out using screening tools and should be further investigated.

The SLERA also concludes that in Mashapaug Cove sediment, pesticides and PCBs pose negligible risk and thus do not require further evaluation. However, potential risk from VOCs, PAHs, metals and dioxins in sediment cannot be ruled out using screening tools and should be further investigated.

Based on patterns in the data, COPCs could pose less of a risk to benthic and aquatic receptors along the property boundary, in the Outer Cove and in the western part of the Inner Cove than in the eastern part of the Inner Cove.

The source of PAHs appears to be the stormwater discharge from the stormwater retention pond near SED20. VOCs may be associated with a groundwater plume discharging into the pond.

This SLERA finally recommends that because there might be a risk of adverse ecological effects, the ecological risk assessment process continue, and that a workplan be developed to address future investigation.

Conclusion	Surface Water	Sediment
Eliminate from further	VOC, PAHs, pesticides,	Pesticides, PCBs
investigation	PCBs, metals	
Retain for further	dioxins	VOCs, PAHs, metals,
investigation		dioxins

SLERA Conclusions for Surface Water and Sediment in Mashapaug Pond

6.0 REFERENCES

- Cubbage, J., *et al.* 1997. Creation and Analysis of Freshwater Sediment Quality Values in Washington State. Washington State Department of Ecology, Olympia, WA. July, 1997.
- Fuchsman, PC. 2003. Modification of the equilibrium partitioning approach for volatile organic compounds in sediment. *Environmental Toxicology and Chemistry* 22:1532-1534.
- Fuss & O'Neill. 2006. Supplemental Site Investigation, Former Gorham Manufacturing Property and Mashapaug Cove. Prepared for the Rhode Island Department of Environmental Management, April 2006.
- Irwin, R.J. 1997. Environmental Contaminants Encyclopedia: Total Petroleum Hydrocarbons. National Park Service, Water-Resources Division, Fort Collins, CO. July 1, 1997.
- MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Archives of Environmental Contamination and Toxicology 39:20-31.
- MACTEC. 2006. Supplemental Site Investigation Report. July, 2006.
- National Resource Conservation Service (NRCS). 2006. Soil Survey for Providence County, RI. Accessed on-line at http://www.nrcs.usda.gov, July 5, 2006.
- Persaud, D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Water Resources Branch, Ontario Ministry of the Environment. Toronto. *Cited in* Jones, Suter and Hull, 1997.
- Rhode Island Department of Environmental Management (RIDEM). 2006. Water Quality Regulations Ambient Water Quality Guidelines for Toxic Pollutants. July 2006.
- RIDEM. 2004. Rhode Island Remediation Regulation: Rules and Regulations for the Investigation and Remediation of Hazardous Materials Releases. DEM-DSR-01-93. February 2004.
- Staples, C.A. 2000. A screening level examination of the potential risks of acetone in aquatic and terrestrial environments using multi-media modeling. *Chemosphere* 41: 1529-1533.
- Suter, G.W, and C.L. Tsao. 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects of Aquatic Biota: 1996 Revision. Prepared for the U.S. Department of Energy. ES/ER/TM-96/R2. June 1996.
- United States Environmental Protection Agency (USEPA). 2005. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures. Office of Research and Development. EPA-600-R-02-011. January, 2005.

- USEPA. 2004. Nationally Recommended Water Quality Criteria: 2004. Office of Science and Technology. Doc. No. 4304T.
- USEPA. 2003a. U.S. EPA, Region V, RCRA Ecological Screening Levels. August 22, 2003.
- USEPA. 2003b. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. Office of Research and Development. EPA-600-R-02-013. November, 2003.
- USEPA. 2002. Nationally Recommended Water Quality Criteria: 2002. Office of Water, Science and Technology. Doc. No. EPA-822-R-02-047.
- USEPA. 2000. Exposure and Human Health Reassessment of 2,3,7,8- TCDD and Related Compounds. National Center for Environmental Assessment, Office of Research and Development. NCEA-I-0836. September, 2000.
- USEPA. 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. EPA 540-R-97-006. June 1997.
- USEPA. 1998. Guidelines for Ecological Risk Assessment. Office of Research and Development. EPA-630-R-95-002F. April, 1998.
- USEPA. 1992. Framework for Ecological Risk Assessment. EPA-630-R-92-001. February, 1992.

FIGURES

Document: P:\Projects\TEXTRON\gorham\GIS\MapDocuments\SI Report_11x17P.mxd PDF: P:\Projects\TEXTRON\gorham\GIS\Figures\SI Report\Figure3.2.pdf 07/27/2006 5:08 PM brpeters

Document: P:W2-mfg/TEXTRON/GORHAM/GISI/MapDocuments/RiskAssessmentCove2006.mxd PDF: P:W2-mfg/TEXTRON/GORHAM/GISI/Figures/Supplemental SI/WaterDepths.pdf 07/27/2006 11:56 AM birode

TABLES

Table 3.1 Surface Water Screening Values

333 Adelaide Avenue Providence, Rhode Island

Parameter	RIDEM AWQC [a]	NAWQC [b]	ORNL Tier II SCV [c]	Region V ESLs [d]	Final Selected Benchmark
Volatile Organics (mg/L)					
1,1,1-Trichloroethane	0.043				0.043
1,1-Dichloroethane	0.131				0.131
1,2,4-Trimethylbenzene					NA
cis-1,2-Dichloroethene			0.59		0.59
Ethylbenzene	0.036				0.036
Tetrachloroethene	0.0053				0.0053
Toluene	0.014				0.014
Trichloroethene	0.043				0.043
Vinyl chloride				0.93	0.93
Xylene, M&P-	0.003				0.003
Xylene, O-	0.003				0.003
Xylenes, Total	0.003				0.003
Semivolatile Organics (mg/L)					
Benzo(a)anthracene			0.000027		0.000027
Benzo(a)pyrene			0.000014		0.000014
Benzo(g,h,i)perylene				0.00764	0.00764
Chrysene				1	NA
Dibenz(a,h)anthracene					NA
Naphthalene	0.0026				0.0026
Pesticides/PCBs (mg/L)					
4.4'-DDT	0.000001				0.000001
Inorganics (mg/L) [e, f]				1	[
Chromium				1	NA
Copper				1	NA
Lead					NA
Silver			0.00036		0.00036
Zinc					NA
Metals, Dissolved (mg/L) [e]					
Dioxins/Furans (mg/L)					
Dioxin TEQ as 2.3.7.8-TCDD		0.00000001 [1]		1	0.00000001

Table 3.1 Surface Water Screening Values

333 Adelaide Avenue Providence, Rhode Island

	RIDEM AWQC		ORNL	Region V ESLs	Final Selected
Parameter	[a]	NAWQC [b]	Tier II SCV [c]	[d]	Benchmark

Benchmarks selected from the following sources in the order presented:

- [a] Rhode Island Department of Environmental Managements. 2006. RIDEM Ambient Water Quality Criteria and Guidelines for Toxic Pollutants. July, 2006.
- [b] Federal Chronic Ambient Water Quality Criteria for Freshwater (AWQC) (USEPA, 2004). An estimate of the highest concentration of a material in surface water to which an aquatic community can be exposed indefinitely without resulting in an unacceptable effect. Value is equal to the 4-day average concentration that should not be exceeded more than once every 3 years.

1. Chronic Lowest Observed Effect Level.

- [c] Oak Ridge National Laboratory (ORNL) Toxicological Benchmarks for Screening Potential Contaminants of Concern (COCs) for effects on aquatic biota (Suter and Tsao, 1996). Value presented is secondary chronic value.
- [d] USEPA. 2003. Region V Ecological Screening Levels. August 22. (www.epa.gov/Region5/rcraca/edql.htm)
- [e] Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Silver, and Zinc benchmarks are based on the dissolved fraction. Because no dissolved metals were detected in surface water samples, no benchmarks were needed and therefore are not shown.
- [f] Benchmarks for Antimony, Beryllium, Selenium, and Thallium are based on the total fraction. Because these metals were not detected in either the dissolved or total fraction, no benchmarks were needed and therefore are not shown.

mg/L = milligrams per liter

Table 3.2 Sediment Screening Values

333 Adelaide Avenue Providence, Rhode Island

_					USEPA Region V	Final Selected
Parameter	TEC [a]	ORNL SCV [b]	OMOE LEL [c]	WA SCV [d]	ESL [e]	Benchmark
Volatile Organics (mg/kg)						111111110000000000000000000000000000000
1,1,1-Trichloroethane		0.03				0.03
1,1-Dichloroethane	Į	0.027				0.027
1,1-Dichloroethene		0.031				0.031
Acetone		0.0087				0.0087
Carbon Disulfide		0.00085				0.00085
cis-1,2-Dichloroethene		0.4				0.4
Isopropyl Benzene						NA
s-Butylbenzene						NA
Tetrachloroethene					0.99	0.99
Toluene		0.05				0.05
trans-1,2-Dichloroethene		0.4				0.4
Trichloroethene		0.22				0.22
Vinyl chloride					0.202	0.202
Semivolatile Organics (mg/kg)						
Acenaphthene			0.19 [1]			0.19
Acenaphthylene			0.19 [1]			0.19
Anthracene	0.0572					0.0572
Benzo(a)anthracene	0.108					0.108
Benzo(a)pyrene	0.15					0.15
Benzo(b)fluoranthene			0.24			0.24
Benzo(a.h.i)pervlene			0.17		İ	0.17
Benzo(k)fluoranthene			0.24			0.24
Chrysene	0.166					0.166
Dibenzo(a h)an/hracene			0.06			0.06
Di-n-butylohthalate	1		0.1			0.1
Fluoranthene	0.423					0.423
Fluorene	0.0774		1			0.0774
Indeno(1.2.3-cd)nyrene			0.2			0.2
Nanhthalene	0 176					0 176
Phenanthrene	0.204					0.204
Pyrene	0.195					0 195
Pesticides/PCBs (mg/kg)	0.100					0.100
A ALDOD	0.00488					0 00488
4.4'DDE	0.00316					0.00316
	0.00010					0.00416
Fridin kalana	0.00410		0.003			0.00410
Araplar 1254			0.000			0.005
Arador 1260			0.00			0.005
Inormanice (ma/ka)			0,000			0.005
Antimony						ΝA
Anumony	0.70					0.70
Parlum	9.79					5.15
Danum						NA NA
Cadalum	0.00					NA 0.00
Caumium	0.99					0.99
Chromium	43.4					43.4
Copper	31.6					31.6
Lead	35.8					35.8
Mercury	0.18					0.18
Nickel	22.7					22.7
Selenium						NA
Silver			0.5			0.5
Zinc	121					121
Dioxins/Furans (mg/kg)			[]			
Dioxin TEQ as 2.3,7,8-TCDD	1			0.0000072	1	0.0000072

Table 3.2 Sediment Screening Values

333 Adelaide Avenue Providence, Rhode Island

			-		USEPA Region V	Final Selected
Parameter	TEC [a]	ORNL SCV [b]	OMOE LEL [c]	WA SCV [d]	ESL [e]	Benchmark

Notes:

Units in mg/kg (milligram per kilogram [dry weight]).

Benchmarks selected from the following sources in the order presented:

[a] TEC - Threshold Effect Concentrations, levels below which harmful effects are unlikely to be observed; values as presented in MacDonald, et al., 2000a,b.
 [b] Sediment screening benchmarks derived using equilibrium partitioning assumptions and based on Chronic Tier II values; values as summarized in
 Levent 4, 2020, Levent and the control of the control o

Jones et al., 1997. Normalized to 1% TOC.

[c] Ontario Ministry of the Environment Lowest Effect Level (LELs) Provincial Sediment Quality Guidelines as presented in Persaud et al., 1993.

LELs are levels of sediment contamination that can be tolerated by the majority of benthic organisms. For organic compounds, generally based on the

5th percentile of the Screening Level Concentration (SLC). Normalized to 1% TOC.

[1] Value for fluorene used as a surrogate for acenaphthene and acenaphthylene. Value for benzo(k)/fluoranthene used as a surrogate for benzo(b)/fluoranthene.

[d] Washington State Sediment Qualty Values (SCVs) probable apparent effects thresholds (PAETs) for Hyalella azteca

normalized to 1% TOC, as presented in Cubbage, et al. 1997.

[e] USEPA. 2003. Region V Ecological Screening Levels. August 22. (www.epa.gov/Region5/rcraca/edql.htm)

References:

MacDonald, D.D., C.G. Ingersoll, and T. Berger, 2000a. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems; Arch. Environ. Contam. Toxicol. 39:20-31.

MacDonald, D.D., L.M. DiPinto, J. Field, C.G. Ingersoll, E.R. Long, and R.C. Swartz, 2000b. Development and evaluation of consensus-based

sediment effect concentrations for polychlorinated biphenyls (PCBs); Environ. Toxicol. Chem. 19:1403-1413. Jones, D.S., G.W. Suter II, and R.N. Hull, 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment-Associated Biota:

1997 Revision; Oak Ridge National Laboratories (ES/ER/TM-95/R4); November 1997.

Persaud, D., R. Jaagumagi, and A. Hayton, 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario; Ontario Ministry of Environment and Energy; ISBN 0-7778-9248-7; August, 1993. Table 4.1 Selection of Chemicals of Potential Concern - Cove Study Area Surface Water

333 Adelaide Avenue Providence, Rhode Island

Tcy of I
12 0.001 - 0.001 0.
12 0.001 - 0.001
12 0.001 - 0.001
12
12 0.001 - 0.001
12 0.001 - 0.001
12
12 0.001 - 0.001
12 0.001 - 0.001
12 0.002 - 0.002
12 0.001 - 0.001
12 0.003 - 0.003
12 0.0002 - 0.0002
12 0.0002 - 0.0002
12 0.0002 - 0.0002
12 0.0002 - 0.0002
12 0.0002 - 0.0002
12 0.0002 - 0.0002
2 0.000050 - 0.000050
3
2 1E-08 - 1E-08
2 1E-08 - 1E-08
2 1E-08 - 1E-08
2 2E-09 - 2E-09
2 2E-09 - 2E-09
2
2
2
2 1E-08 - 1E-08
2 1E-08 - 1E-08
2 1E-08 - 1E-08
2 2E-09 - 2E-09
2

Prepared by: KJC Checked by: AMR 7/28/2006

> P:IW2-mfg/TEXTRONIGORHAMISupplementSI 2006ISLERAI SurfaceWater.xls, COPC-Cove

Page 1 of 2

Maximum HQ [d]			ired by: KJC ced by: AMR
Rationale [c]	ark cted in surface 3n, no		Preps Check
COPC? [c]	aning benchm als were dete or total fractic		
Number of Benchmark Exceedances	mark or a scree o dissolved met		
Final Selected Benchmark [b]	reening benct or COPCs. n. Because n		
Average (arithmetic mean) [a]	s, and fish. ter than the sc y calculated fo ssolved fractio		
Location of Maximum Detection	or mammals, bird centration is grea nark. HQs are on e based on the di cause these met		
Range of Detected Concentrations	imit for non detects. ty Equivalence (TEQs) f maximum detected con oy the screening benchn and Zinc benchmarks ar wn.	β.	
Range of Non Detects	ng one-half the detection I 33.1 .3.7,8-TCDD using Toxici ital concern (COPC) if the (FOD) is less than 5%. ed concentration divided t benchmark not available. . Mercury, Nickel, Silver, and therefore are not sho m, and Thallium are based of shown.		
Frequency of Detection	as calculated usir found on Table 3 dis evaluated as 2 aminant of poten ency of detection l m, Copper, Lead ks were needed eryllium, Seleniur d therefore are n		3SIL EPAN
Parameter	Notes: [a] Average (arithmethic mean) wi [b] Screening benchmarks can be TEQ - Dioxin-related compound [c] Chemical is selected as a cont is unavailable, unless the frequi ASL - Above Screening Level NSL - No Screening Level NSL - No Screening Level NSL - No Screening Level ND - Not Detected [d] Hazard quotient (HQ) is the NA - Hazard quotient not calk [e] Arsenic, Cadmium, Chromiu water samples, no benchmar [f] Benchmarks were needed an benchmarks were needed an	mg/L - miligrams per liter	P:WZ-mig/TEXTRON/GORHAM/SupplementSI 2006
	Final Final Frequency of Exequency of Parameter Detection Range of Non Detects Concentrations Detection Rationale [c]	Image of Detected Location of Maximum Final Contentiation Final Benchmark Final Benchmark Final Benchmark Final Benchmark Final Benchmark Final Benchmark Mumber of Benchmark Maximum Benchmark Maximum Benchmark Mumber of Benchmark Mumber of Benchmark Maximum Benchmark Maximum Benchmark More and Benchmark Exceedances COPC7 [c] Rational [c] Maximum Benchmark Notes: Id Id <td>Image of the parameter Frequency of the parameter Location of the parameter Average of the parameter Number f Number of the parameter <</td>	Image of the parameter Frequency of the parameter Location of the parameter Average of the parameter Number f Number of the parameter <

Table 4.1 Selection of Chemicals of Potential Concern - Cove Study Area Surface Water

Page 2 of 2

	y Area Sediment
Table 4.2	Chemicals of Potential Concern - Cove Study Ar
	Selection of

333 Adelaide Avenue Providence, Rhode Island

Parameter	Frequency of Detection	Range of Non Detects	Range of Detected Concentrations	Location of Maximum Detection	Average (arithmetic mean) [a]	Final Selected Benchmark [b]	Number of Benchmark Exceedances	COPC? [c]	Rationale [d]	Maximum HQ [e]
Volatile Organics (mg/kg)			-							
1,1,1-Trichloroethane	5 / 25	0.0041 - 0.15	0.3 - 1.3	SD-1003	0.16	0.03	5	Yes	ASL	43
1,1-Dichloroethane	9 / 25	0.0041 - 1.1	0.011 - 7.92	SED19	0.72	0.027	7	Yes	ASL	293
1,1-Dichloroethene	5 / 25	0.0041 - 1.1	0.014 - 11.3	SED19	0.58	0.031	4	Yes	ASL	365
Acetone	12 / 25	0.039 - 4.6	0.0856 - 1.9	SED18	0.33	0.0087	12	Yes	ASL	218
Carbon Disulfide	6 / 25	0.0041 - 1.1	0.0046 - 0.0576	SED19	0.036	0.00085	9	Yes	ASL	68
cis-1,2-Dichloroethene	9 / 25	0.0043 - 1.1	0.0091 - 175	SED19	12.1	0.4	5	Yes	ASL	438
Isopropyl Benzene	1 / 25	0.0041 - 1.1	0.0514 - 0.0514	SED28	0.033	AN		No	FOD	
s-Butylbenzene	2 / 25	0.0041 - 1.1	0.0197 - 0.0303	SED28	0.033	AN		Yes	NSL	NA
Tetrachloroethene	4 / 25	0.0043 - 1.1	0.0081 - 18.1	SED19	0.80	0.99	2	Yes	ASL	18
Toluene	1 / 25	0.0041 - 1.1	1.92 - 1.92	SED31	0.108	0.05		Ñ	FOD	
trans-1,2-Dichloroethene	3 / 25	0.0041 - 1.1	0.0053 - 3.62	SED27	0.29	0.4	2	Yes	ASL	9.1
Trichloroethene	9 / 25	0.0043 - 0.15	0.176 - 58.4	SED19	3.3	0.22	7	Yes	ASL	265
Vinyl chloride	7 / 25	0.0081 - 2.3	0.0218 - 24.8	SED25	1.9	0.202	4	Yes	ASL	123
Semivolatile Organics (mg/kg)										
Acenaphthene	5 / 25	0.03 - 0.183	0.024 - 0.26	SD-1002	0.063	0.19	2	Yes	ASL	-
Acenaphthylene	3 / 25	0.0079 - 0.183	0.026 - 0.781	SED20	0.067	0.19	-	Yes	ASL	4
Anthracene	12 / 25	0.0315 - 0.183	0.04 - 3.09	SED20	0.26	0.0572	;	Yes	ASL	54
Benzo(a)anthracene	17 / 25	0.0315 - 0.183	0.0896 - 15.1	SED20	0.95	0.108	15	Yes	ASL	140
Benzo(a)pyrene	16 / 25	0.0315 - 0.183	0.0707 - 7.87	SED20	0.60	0.15	12	Yes	ASL	52
Benzo(b)fluoranthene	19 / 25	0.0315 - 0.183	0.0378 - 14.8	SED20	1.0	0.24	14	Yes	ASL	62
Benzo(g,h,i)perylene	13 / 25	0.0315 - 0.183	0.046 - 2.54	SED20	0.22	0.17	9	Yes	ASL	15
Benzo(k)fluoranthene	11 / 25	0.0315 - 0.183	0.065 - 5.1	SED20	0.37	0.24	7	Yes	ASL	21
Chrysene	16 / 25	0.0315 - 0.183	0.0896 - 8.94	SED20	0.71	0.166	13	Yes	ASL	54
Dibenzo(a,h)anthracene	5 / 25	0.0079 - 0.183	0.0404 - 1.45	SED20	0.104	0.06	4	Yes	ASL	24
Di-n-butylphthalate	2 / 5	0.2 - 0.74	0.48 - 1.1	SD-1003	0.44	0.1	2	Yes	ASL	1
Fluoranthene	21 / 25	0.0315 - 0.035	0.0833 - 28.8	SED20	2.0	0.423	12	Yes	ASL	68
Fluorene	8 / 25	0.018 - 0.183	0.022 - 0.863	SED20	0.083	0.0774	5	Yes	ASL	1
Indeno(1,2,3-cd)pyrene	12 / 25	0.03 - 0.183	0.046 - 2.47	SED20	0.22	0.2	9	Yes	ASL	12
Naphthalene	5 / 25	0.03 - 0.183	0.0342 - 0.28	SD-1002	0.056	0.176	2	Yes	ASL	2
Phenanthrene	18 / 25	0.0315 - 0.183	0.0333 - 11.8	SED20	÷	0.204	13	Yes	ASL	58
Pyrene	20 / 25	0.0315 - 0.0794	0.0513 - 15.2	SED20	1.3	0.195	16	Yes	ASL	78
Pesticides/PCBs (mg/kg)										
4,4'-DDD	2 / 25	0.00081 - 0.0481	0.0292 - 0.0301	SED32	0.010	0.00488	2	Yes	ASL	9
4,4'-DDE	1 / 25	0.00081 - 0.0481	0.0109 - 0.0109	SED32	0.0084	0.00316		Ŷ	FOD	
4,4'-DDT	1 / 25	0.00081 - 0.0481	0.0635 - 0.0635	SED32	0.010	0.00416		Ŷ	FOD	
Endrin ketone	1 / 25	0.00081 - 0.0481	0.0431 - 0.0431	SED19	0.0093	0.003		Ŷ	FOD	
Aroclor-1254	2 / 25	0.016 - 0.404	0.207 - 0.528	SED30	0.093	0.06	2	Yes	ASL	თ
Aroclor-1260	1 / 25	0.016 - 0.404	0.605 - 0.605	SED19	0.086	0.005		No	FOD	

Prepared by: KJC Checked by: AMR 7/28/2006

> P:W2-mfgTEXTRONIGORHAM/SupplementSI 2006/SLERAI Sediment.xfs, COPC-Cove

Page 1 of 3

	_								Final				
Parameter	Freq	uency of tection	Range of h	Von Detects	Range of I Concent	Detected rations	Location of Maximum Detection	Average (arithmetic mean) [a]	Selected Benchmark [b]	Number of Benchmark Exceedances	COPC? [c]	Rationale [d]	Maximum HQ [e]
Inorganics (mg/kg)				-									
Antimony	2	/ 25	0.54	- 25.7	- 1.6	. 2.7	SD-1001	5.8	NA		Yes	NSL	AN
Arsenic	21	/ 25	0.4	- 1.8	2.1 -	- 47.6	SED14	18.6	9.79	17	Yes	ASL	5
Barium	25	/ 25			9.7 -	- 466	SED26	130	AA		Yes	NSL	NA
Beryllium	20	/ 25	0.07	- 0.13	0.075 -	. 3.5	SD-1004	0.58	AN		Yes	NSL	NA
Cadmium	19	/ 25	0.66	- 1.31	0.14 -	. 7.11	SED19	2.7	0.99	15	Yes	ASL	7
Chromium	25	/ 25			2.9 -	. 640	SED18	206	43.4	16	Yes	ASL	15
Copper	25	/ 25			5.3 -	. 2670	SED32	1052	31.6	19	Yes	ASL	84
Lead	22	/ 25	6.6	- 7.4	12.2 -	- 1120	SED31	383	35.8	18	Yes	ASL	31
Mercury	17	/ 25	0.04	- 0.12	0.031 -	. 2.52	SED19	0.45	0.18	10	Yes	ASL	14
Nickel	23	/ 25	3.7	- 6.6	5.7 -	. 853	SED27	144	22.7	16	Yes	ASL	38
Selenium	3	/ 25	0.54	- 25.7	1.8 -	. 17.9	SED26	6.4	NA		Yes	NSL	NA
Silver	21	/ 25	0.66	- 1.31	2.77 -	- 227	SED18	74.2	0.5	21	Yes	ASL	454
Zinc	25	/ 25			9.2 -	- 1940	SED18	850	121	18	Yes	ASL	16
Dioxins/Furans (mg/kg)													
1,2,3,4,6,7,8-HpCDD	23	/ 25	0.00000068	- 0.0000008	0.0000022	- 0.00064	SED18	0.000157	TEQ				
1,2,3,4,6,7,8-HpCDF	22	/ 25	0.00000068	- 0.0000008	0.0000059 -	- 0.001	SED18	0.00023	TEQ				
1,2,3,4,7,8,9-HpCDF	21	/ 25	0.00000068	- 0.0000014	0.0000012	- 0.00017	SED18	0.000042	TEQ				
1,2,3,4,7,8-HxCDD	16	/ 25	0.00000068	- 0.000021	0.0000013	- 0.000074	SED18	0.0000157	TEQ				
1,2,3,4,7,8-HxCDF	21	1 25	0.00000068	- 0.0000017	0.0000024	- 0.00067	SED18	0.000133	τeo				
1,2,3,6,7,8-HxCDD	22	/ 25	0.00000068	- 0.0000008	0.0000013 -	- 0.00019	SED18	0.000044	TEQ				
1,2,3,6,7,8-HxCDF	21	/ 25	0.00000068	- 0.0000014	0.0000073	- 0.0013	SED18	0.00022	TEQ				
1,2,3,7,8,9-HxCDD	19	/ 25	0.00000068	- 0.000018	0.0000017 -	- 0.000097	SED18	0.000022	TEQ				
1,2,3,7,8,9-HxCDF	17	/ 25	0.00000068	- 0.0000071	0.0000024 -	- 0.00042	SED31	0.0000809	TEQ				
1,2,3,7,8-PeCDD	20	/ 25	0.00000068	- 0.000003	0.00000095	- 0.00012	SED31	0.000028	TEQ				
1,2,3,7,8-PeCDF	12	/ 25	0.00000068	- 0.000018	0.0000023 -	- 0.00023	SED31	0.000021	TEQ				
2,3,4,6,7,8-HxCDF	21	/ 25	0.00000068	- 0.0000014	0.000012 -	- 0.00091	SED18	0.00018	TEQ				
2,3,4,7,8-PeCDF	23	/ 25	0.00000068	- 0.0000008	0.00000086	- 0.0062	SED18	0.000917	TEQ				
2,3,7,8-TCDD	20	/ 25	0.00000014	- 2.8E-07	0.00000052	- 0.000033	SED31	0.0000083	TEQ				
2,3,7,8-TCDF	19	/ 25	0.00000014	- 0.0000042	0.00000019	- 0.00012	SED18	0.000026	TEQ				
ocdd	25	/ 25			0.0000035	- 0.0029	SED28	0.00075	TEQ				
OCDF	23	/ 25	0.0000014	- 0.0000016	0.0000016	- 0.0003	SED18	0.00009	TEQ				
TOTAL HPCDD	23	/ 25	0.00000068	- 0.0000008	0.0000039	- 0.0013	SED18	0.00032	TEQ				
TOTAL HPCDF	23	/ 25	0.00000068	- 0.0000008	0.0000011 -	- 0.0028	SED18	0.00059	ΤΕΩ				
TOTAL HxCDD	22	/ 25	0.00000068	- 0.0000008	0.000013 -	- 0.0026	SED18	0.00056	TEQ				
TOTAL HxCDF	25	/ 25			0.0000011 -	- 0.025	SED31	0.0055	TEQ				
TOTAL PeCDD	22	/ 25	0.00000068	- 0.0000008	0.0000081	- 0.002	SED18	0.00041	TEQ				
TOTAL PeCDF	25	1 25			0.0000031	- 0.04	SED31	0.0066	TEQ				

Selection of Chemicals of Potential Concern - Cove Study Area Sediment Table 4.2

Page 2 of 3

	Cove Study Area Sediment
Table 4.2	of Potential Concern - C
	election of Chemicals

Providence, Rhode Island 333 Adelaide Avenue

Parameter	Frequency of Detection	Range of Non Detects	Range of Detected Concentrations	Location of Maximum Detection	Average (arithmetic mean) [a]	Final Selected Benchmark [b]	Number of Benchmark Exceedances	COPC? [c]	Rationale [d]	Maximum HQ [e]
TOTAL TCDD	22 / 25	0.00000014 - 1.6E-07	0.000036 - 0.0008	SED18	0.000178	TEQ				
TOTAL TCDF	25 / 25		0.0000012 - 0.015	SED31	0.00296	TEQ				
TEQ-Mammal			8.5E-07 - 3.6E-03	SED18		7.2E-06	25	Yes	ASL	503
TEQ-Bird			1.1E-06 - 6.8E-03	SED18		7.2E-06	25	Yes	ASL	945
TEQ-Fish			9.2E-07 - 3.6E-03	SED18		7.2E-06	25	Yes	ASL	502

Notes:

[a] Average (arithmethic mean) was calculated using one-half the detection limit for non detects.
 [b] Screening benchmarks can be found on Table 3.2 TEQ - Dioxin-related compounds evaluated as 2,3,7,8-TCDD using Toxicity Equivalence (TEQs) for mammals, birds, and fish.
 [c] Chemical is selected as a contaminant of potential concern (COPC) if the maximum detected concentration is greater than the screening benchmark or a screening benchmark is unavailable, unless the frequency of detection (FOD) is less than 5%.

ASL - Above Screening Level

BSL - Below Screening Level

NSL - No Screening Level

FOD - Frequency of Detection is less than 5%

[d] Hazard quotient (HQ) is the maximum detected concentration divided by the screening benchmark. HQs are only calculated for COPCs.

NA - HQ not calculated because no screening level benchmark was available.

mg/Kg - milligrams per kilogram

	Area Surface Water
Table 4.3	on of Chemicals of Potential Concern - Property Line Study A
	Select

333 Adelaide Avenue Providence, Rhode Island

	Frequency o			Range of D	letected	Location of Maximum	Average (arithmetic	Final Selected Benchmark	Number of Benchmark			Maximum
Parameter	Detection	Range of N	Jon Detects	Concentr	ations	Detection	mean) [a]	[q]	Exceedances	COPC? [c]	Rationale [c]	HQ [d]
Volatile Organics (mg/L)				-								
1,1,1-Trichloroethane	0 / 3	0.001	- 0.001				0.0005	0.043		No	g	
1,1-Dichloroethane	0 / 3	0.001	- 0.001				0.00050	0.131		٩	g	
1,2,4-Trimethylbenzene	0 / 3	0.001	- 0.001				0.00050	NA		No No	9	
cis-1,2-Dichloroethene	3 / 3			0.0015 -	0.0108	SW11	0.0048	0.59		٩	BSL	
Ethylbenzene	0 / 3	0.0005	- 0.0005				0.00025	0.036		No	Q	
Tetrachloroethene	0 / 3	0.001	- 0.001				0.00050	0.0053		٥N	g	
Toluene	0 / 3	0.001	- 0.001				0.0005	0.014		8	9	
Trichloroethene	0 / 3	0.001	- 0.001				0.0005	0.043		°	9	
Vinyl chloride	0 / 3	0.001	- 0.001				0.0005	0.93		٩	Q	
Xylene, M&P-	0 / 3	0.002	- 0.002					0.003		٩	Q	
Xylene, O-	0 / 3	0.001	- 0.001					0.003		٩	Q	
Xylenes, Total	0 / 3	0.003	- 0.003				0.0030	0.003		٥N	Q	
Semivolatile Organics (mg/L)												
Benzo(a)anthracene	0 / 3	0.0002	- 0.0002				0.00010	0.000027		No	Q	
Benzo(a)pyrene	0 / 3	0.0002	- 0.0002				0.00010	0.000014		No	9	
Benzo(g,h,i)perylene	0 / 3	0.0002	- 0.0002				0.00010	0.00764		No	g	
Chrysene	0 / 3	0.0002	- 0.0002				0.00010	AN		٩	Ð	
Dibenz(a,h)anthracene	0 / 3	0.0002	- 0.0002				0.00010	NA		٩	9	
Naphthalene	0 / 3	0.0002	- 0.0002				0.0001	0.0026		Ŷ	9	
Pesticides/PCBs (mg/L)												
4,4'-DDT	1 / 1			0:000080 -	0.000080	SW11	0.000080	0.000001	L	Yes	ASL	80
Inorganics (mg/L) [e, f]												
Dioxins/Furans (mg/L)												
1,2,3,4,6,7,8-HpCDD	1 / 1			2.4E-08 -	2.4E-08	SW11	0.000000024	TEQ				
1,2,3,6,7,8-HxCDD	0 / 1	1E-08	- 1E-08				0.0000000050	TEQ				
1,2,3,7,8,9-HxCDD	0 / 1	1E-08	- 1E-08				0.0000000050	TEQ				
1,2,3,7,8-PeCDD	0 / 1	1E-08	- 1E-08				0.0000000050	TEQ				
2,3,7,8-TCDD	0 / 1	2.1E-09	- 2.1E-09				0.0000000011	TEQ				
2,3,7,8-TCDF	0 / 1	2.1E-09	- 2.1E-09				0.0000000011	TEQ				
OCDD	1 / 1			1.8E-07 -	1.8E-07	SW11	0.00000018	TEQ				
Total HpCDD	1 / 1			4.3E-08 -	4.3E-08	SW11	0.000000043	TEQ				
Total HpCDF	1 / 1			1.2E-08 -	1.2E-08	SW11	0.000000012	τεα				
Total HxCDD	0 / 1	1E-08	- 1E-08				0.0000000050	TEQ				
Total PeCDD	0 / 1	1E-08	- 1E-08		2		0.0000000050	TEQ				
Total PeCDF	0 / 1	1E-08	- 1E-08				0.0000000050	TEQ				
Total TCDD	0 / 1	2.1E-09	- 2.1E-09				0.0000000011	TEQ				
Total TCDF	0 / 1	2.1E-09	- 2.1E-09				0.000000001	TEQ				
TEQ-Mammal		4.			1.3E-08 S	SW11		3E-12	-	Yes	ASL	-
TEQ-Bird					1.6E-08 S	3W11		3E-12	-	Yes	ASL	7
TEQ-Fish					1.4E-08 S	3W11		3E-12	-	Yes	ASL	٢

	Maximum [c] HQ [d]	face				
	Rationale	ark cted in su				
	COPC? [c]	ening benchm tals were dete				
	Number of Benchmark Exceedances	mark or a scre o dissolved me				
	Final Selected Benchmark [b]	creening bench for COPCs. on. Because n				
	Average (arithmetic mean) [a]	ds, and fish. ater than the s nly calculated dissolved fracti				
aide Avenue , Rhode Island	Location of Maximum Detection	for mammals, bir ncentration is gre mark. HQs are o re based on the d				
333 Adel Providence	Range of Detected Concentrations	limit for non detects. sity Equivalence (TEQs) e maximum detected co by the screening bench and Zinc benchmarks a own.				
	Range of Non Detects	ng one-half the detection 3.1,8-TCDD using Toxic ,3.7,8-TCDD using Toxic fial concern (COPC) if th (FOD) is less than 5%. FOD) is less than 5%. Mercury, Nickel, Silver, and therefore are not sho m, and Thallium are base of shown.				
	Frequency of Detection	as calculated usir found on Table 3 is evaluated as 2 aminant of potent ency of detection In is less than 5% in is less than 5% maximum detect wwere needed ks were needed therefore are n d therefore are n				
	Parameter	Notes: [a] Average (arithmethic mean) wi [b] Screening benchmarks can be TEQ - Dioxin-related compound [c] Chemical is selected as a cont is unavailable, unless the frequing ASL - Above Screening Level BSL - Below Screening Level FOD - Frequency of Detectio ND - Not Detected [d] Hazard quotient (HQ) is the NA - Hazard quotient not calk [e] Arsenic, Cadmium, Chromiu water samples, no benchmar [f] Benchmarks for Antimory, Bé benchmarks were needed an	mg/L - milligrams per liter			

Table 4.3 Selection of Chemicals of Potential Concern - Property Line Study Area Surface Water

Darameter	Frequency of Detection	Ranne of Non Daterts	Range of Detected Concentrations	Location of Maximum Detection	Average (arithmetic mean) [a]	Final Selected Benchmark Ibì	Number of Benchmark Exceedances	COPC? [c]	Rationale Idl	Maximum HO fe1
Volatile Organics (mo/kg)					[n] fumani	Ξ		5	5	5
1.1.1-Trichloroethane	0 / 3	0.004 - 0.0427			0.0088	0.03		No	Q	
1.1-Dichloroethane	0 / 3	0.004 - 0.0427			0.0088	0.027		No	Q	
1,1-Dichloroethene	0 / 3	0.004 - 0.0427			0.0088	0.031		No	9	
Acetone	2 / 3	0.0403 - 0.0403	0.0757 - 0.649	SED11	0.25	0.0087	2	Yes	ASL	75
Carbon Disulfide	0 / 3	0.004 - 0.0427			0.0088	0.00085		No	Q	
cis-1,2-Dichloroethene	0 / 3	0.004 - 0.0427			0.0088	0.4		No	QN	
Isopropyl Benzene	0 / 3	0.004 - 0.0427			0.0088	NA		Ño	QN	
s-Butylbenzene	0 / 3	0.004 - 0.0427			0.0088	AN		No	QN	
Tetrachloroethene	0 / 3	0.004 - 0.0427			0.0088	0.99		٩	Q	
Toluene	0 / 3	0.004 - 0.0427			0.0088	0.05		δ	QN	
trans-1,2-Dichloroethene	0 / 3	0.004 - 0.0427			0.0088	0.4		٩	QN	
Trichloroethene	0 / 3	0.004 - 0.0427			0.0088	0.22		No	ND	
Vinyl chloride	0 / 3	0.0081 - 0.0855			0.018	0.202		No	QN	
Semivolatile Organics (mg/kg)										
Acenaphthene	1 / 3	0.0305 - 0.163	0.0564 - 0.0564	SED12	0.051	0.19		Ŷ	BSL	
Acenaphthylene	0 / 3	0.0305 - 0.163			0.041	0.19		No	Q	
Anthracene	1 / 3	0.0305 - 0.163	0.276 - 0.276	SED12	0.12	0.0572	-	Yes	ASL	5
Benzo(a)anthracene	1 / 3	0.0305 - 0.163	0.685 - 0.685	SED12	0.26	0.108	L	Yes	ASL	9
Benzo(a)pyrene	1/3	0.0305 - 0.163	0.862 - 0.862	SED12	0.32	0.15	F	Yes	ASL	9
Benzo(b)fluoranthene	2 / 3	0.0305 - 0.0305	0.245 - 1.41	SED12	0.56	0.24	2	Yes	ASL	g
Benzo(g,h,i)perylene	1 / 3	0.0305 - 0.163	0.244 - 0.244	SED12	0.11	0.17	1	Yes	ASL	1
Benzo(k)fluoranthene	1/3	0.0305 - 0.163	0.636 - 0.636	SED12	0.24	0.24	F	Yes	ASL	e
Chrysene	1/3	0.0305 - 0.163	0.625 - 0.625	SED12	0.24	0.166		Yes	ASL	4
Dibenzo(a,h)anthracene	1/3	0.0305 - 0.163	0.0807 - 0.0807	SED12	0.059	0.06	÷	Yes	ASL	-
Di-n-butylphthalate			201			0.1		٩	ANP	
Fluoranthene	2 / 3	0.0305 - 0.0305	0.327 - 1.92	SED12	0.75	0.423	•	Yes	ASL	Q
Fluorene	1 / 3	0.0305 - 0.163	0.107 - 0.107	SED12	0.068	0.0774	4	Yes	ASL	-
Indeno(1,2,3-cd)pyrene	1 / 3	0.0305 - 0.163	0.259 - 0.259	SED12	0.12	0.2	-	Yes	ASL	~
Naphthalene	0 / 3	0.0305 - 0.163			0.041	0.176		٩	Q	
Phenanthrene	1 / 3	0.0305 - 0.163	1.14 - 1.14	SED12	0.41	0.204	-	Yes	ASL	9
Pyrene	2 / 3	0.0305 - 0.0305	0.258 - 1.01	SED12	0.43	0.195	2	Yes	ASL	5
Pesticides/PCBs (mg/kg)										
4,4'-DDD	1 / 3	0.0056 - 0.0351	0.0214 - 0.0214	SED12	0.014	0.00488	-	Yes	ASL	4
4,4'-DDE	0 / 3	0.0056 - 0.0351			0.0087	0.00316	1912	٩	Q	
4,4'-DDT	0 / 3	0.0056 - 0.0351			0.0087	0.00416		٩	9	
Endrin ketone	0 / 3	0.0056 - 0.0351			0.0087	0.003		٩	9	
Aroclor-1254	0 / 3	0.056 - 0.351			0.087	0.06		Ŷ	9	
Aroclor-1260	0 / 3	0.056 - 0.351			0.087	0.005		No	DN	

Table 4.4 Selection of Chemicals of Potential Concern - Property Line Study Area Sediment

333 Adelaide Avenue Providence, Rhode Island Prepared by: KJC Checked by: AMR 7/28/2006

> P:WZ-mfg/TEXTRON/GORHAM/SupplementSI 2006/SLERA/ Sedimentxls, COPCs-PropertyLine

Page 1 of 3

Table 4.4
 Selection of Chemicals of Potential Concern - Property Line Study Area Sediment

P
a
5
÷
온
Ľ,
8
6
id
é
ā

Parameter	Frequency of Detection	Range of N	Jon Detects	Range o Concei	f Detected	Location of Maximum Detection	Average (arithmetic mean) [a]	Final Selected Benchmark [b]	Number of Benchmark Exceedances	COPC? [c]	Rationale [d]	Maximum HQ [e]
Inorganics (mg/kg)		-						1. And the second s				
Antimony	0 / 3	6.5	- 25.7			+	7.4	AN		No	Q	
Arsenic	1 / 3	0.3	<u>е</u>	4.8	- 4.8	SED11	2.2	9.79	0	No	BSL	
Barium	3/3			10.2	- 156	SED11	66.4	AN		Yes	NSL	A
Bervllium	2 / 3	0.07	- 0.07	0.31	- 0.47	SED11	0.27	NA		Yes	NSL	NA
Cadmium	1/3	0.65	- 1.19	3.24	- 3.24	SED11	1.4	0.99	ł	Yes	ASL	в
Chromium	3 / 3			3	- 213	SED11	74.3	43.4	-	Yes	ASL	5
Copper	3 / 3			4.1	- 423	SED11	147	31.6	F	Yes	ASL	13
Lead	2 / 3	6.5	- 6.5	20.7	- 590	SED11	205	35.8	÷	Yes	ASL	16
Mercury	0/3	0.035	- 0.208				0.052	0.18	0	٩	Q	
Nickel	2/3	5.9	- 5.9	3.6	- 85.7	SED11	30.8	22.7	-	Yes	ASL	4
Selenium	0 / 3	6.5	- 25.7				7.4	NA		٩	Q	
Silver	1 / 3	0.65	- 1.19	29.7	- 29.7	SED11	10.2	0.5	-	Yes	ASL	59
Zinc	3 / 3			28.1	- 620	SED11	228	121	t.	Yes	ASL	5
Dioxins/Furans (mg/kg)												
1,2,3,4,6,7,8-HpCDD	2 / 3	0.00000075	- 0.00000075	0.0000074	- 0.00028	SED11	0.000096	TEQ				
1,2,3,4,6,7,8-HpCDF	2 / 3	0.00000075	- 0.00000075	0.000002	- 0.00014	SED11	0.00005	TEQ				
1,2,3,4,7,8,9-HpCDF	1 / 3	0.00000071	- 0.00000075	0.000018	- 0.000018	SED11	0.000006	TEQ				
1,2,3,4,7,8-HxCDD	1/3	0.00000071	- 0.00000075	0.0000095	- 0.0000095	SED11	0.0000034	TEQ				
1,2,3,4,7,8-HxCDF	1 / 3	0.00000071	- 0.00000075	0.000036	- 0.000036	SED11	0.000012	TEQ				
1,2,3,6,7,8-HxCDD	1 / 3	0.00000071	- 0.00000075	0.000025	- 0.000025	SED11	0.000009	TEQ				
1,2,3,6,7,8-HxCDF	1 / 3	0.00000071	- 0.00000075	0.000086	- 0.000086	SED11	0.00003	TEQ				
1,2,3,7,8,9-HxCDD	1 / 3	0.00000071	- 0.00000075	0.000017	- 0.000017	SED11	0.000006	TEQ				
1,2,3,7,8,9-HxCDF	1 / 3	0.00000071	- 0.00000075	0.00003	- 0.00003	SED11	0.0000102	TEQ				
1,2,3,7,8-PeCDD	1 / 3	0.00000071	- 0.00000075	0.000011	- 0.000011	SED11	0.000004	τεα				
1,2,3,7,8-PeCDF	1 / 3	0.00000071	- 0.00000075	0.000032	- 0.000032	SED11	0.000011	TEQ				
2,3,4,6,7,8-HxCDF	1 / 3	0.00000071	- 0.00000075	0.00008	- 0.00008	SED11	0.00003	TEQ				
2,3,4,7,8-PeCDF	2 / 3	0.00000075	- 0.00000075	0.00000073	- 0.00043	SED11	0.000144	TEQ				
2,3,7,8-TCDD	1 / 3	0.00000014	- 0.00000015	0.0000042	- 0.0000042	SED11	0.0000014	TEQ				
2,3,7,8-TCDF	1 / 3	0.00000015	- 0.00000057	0.00000024	- 0.00000024	SED12	0.000000	TEQ				
OCDD	3 / 3			0.0000044	- 0.0018	SED11	0.00062	TEQ				
OCDF	2 / 3	0.0000015	- 0.0000015	0.0000031	- 0.000087	SED11	0.00003	TEQ				
TOTAL HPCDD	2 / 3	0.00000075	- 0.00000075	0.000013	- 0.00063	SED11	0.00021	TEQ				
TOTAL HPCDF	2 / 3	0.00000075	- 0.00000075	0.000002	- 0.00033	SED11	0.00011	TEQ				
TOTAL HxCDD	2 / 3	0.00000075	- 0.00000075	0.0000011	- 0.0003	SED11	0.00010	TEQ				
TOTAL HxCDF	2 / 3	0.00000075	- 0.00000075	0.0000039	- 0.0023	SED11	0.0008	TEQ				
TOTAL PeCDD	1 / 3	0.00000071	- 0.00000075	0.00014	- 0.00014	SED11	0.00005	TEQ				
TOTAL PeCDF	2 / 3	0.00000075	- 0.00000075	0.0000056	- 0.0055	SED11	0.0018	TEQ				

Page 2 of 3

	Study Area Sediment
	Property Line
Table 4.4	I Concern -
	of Potentia
	Chemicals
	Selection of

Providence, Rhode Island 333 Adelaide Avenue

									Final				
							Location of	Average	Selected	Number of			
	Frequer	ncv of			Range o	of Detected	Maximum	(arithmetic	Benchmark	Benchmark		Rationale	Maximum
Parameter	Detec	ction	Range of I	Non Detects	Conce	ntrations _	Detection	mean) [a]	[q]	Exceedances	COPC? [c]	[d]	HQ [e]
TOTAL TCDD	2 /	3	0.00000015	- 0.00000015	0.00000031	- 0.000089	SED11	0.000030	TEQ		•		
TOTAL TCDF	2 /	. 3	0.00000015	- 0.00000015	0.0000037	- 0.0016	SED11	0.00053	TEQ				
TEQ-Mammal					9.4E-07	- 2.6E-04	SED11		7.2E-06	e	Yes	ASL	37
TEQ-Bird					1.2E-06	- 4.8E-04	SED11		7.2E-06	ę	Yes	ASL	66
TEQ-Fish					1.0E-06	- 2.6E-04	SED11		7.2E-06	З	Yes	ASL	36

Notes:

[a] Average (arithmethic mean) was calculated using one-half the detection limit for non detects.
 [b] Screening benchmarks can be found on Table 3
 TEQ - Dioxin-related compounds evaluated as 2,3,7,8-TCDD using Toxicity Equivalence (TEQs) for mammals, birds, and fish.
 [c] Chemical is selected as a contaminant of potential concern (COPC) if the maximum detected concentration is greater than the screening benchmark or a screening benchmark is unavailable, unless the frequency of detection (FOD) is less than 5%.

ASL - Above Screening Level BSL - Below Screening Level

NSL - No Screening Level [d] Hazard quotient (HQ) is the maximum detected concentration divided by the screening benchmark. HQs are only calculated for COPCs.

NA - HQ not calculated because no screening level benchmark was available.

mg/Kg - milligrams per kilogram ANP - Analysis Not Performed

TABLE 4.5 AVS-SEM DATA 333 Adelaide Avenue Providence, Rhode Island

		SEM	AVS	SEM-AVS		11
Location	Sample Date	(g/lomu)	(g/lomn)	(umol/g)	Foc	(SEM-AVS)/Fac
SED15	June, 2006	0.80	0.04	0.76	0.0070	108
SED20	June, 2006	7.63	0.24	7.39	0.0260	284
SED22	June, 2006	23.66	0.09	23.56	0.0240	982
SED24	June, 2006	16.67	0.09	16.59	0.0230	721
SED26	June, 2006	32.44	0.59	31.84	0.0296	1076

If (SEM-AVS)/ F_{oc} <130 umol/goc then divalent metlas unlikely to be bioavailable.

130-3,000 umol/goc then divalent metal bioavailability is uncertain. > 3,000 umol/goc then divelent metals likely to be bioavailable.

<0 umol/goc indicates AVS > SEM, and divalent metals are unavailable for leaching into pore water.

 $\begin{array}{l} AVS \mbox{-} acid volatile sulfides (umol/g) \\ SEM \mbox{-} simultaneously extractable metals (umol/g) \\ F_{oc} \mbox{-} fraction organic carbon (g_{OC}/g_{sed}) \end{array}$

Table 4.6 Summary of Sediment **ΣPAH** Calculations 333 Adelaide Avenue Providence, Rhode Island

Location	Calculated SESBTU_{FCV} ^[a]	Notes
SD-1001		[b]
SD-1002		[b]
SD-1003		[b]
SD-1004		[b]
SD-1005		[b]
SED10		[c]
SED11	0.32	
SED12	42.34	
SED13	1.64	[d]
SED14	0.39	
SED15	0.39	
SED16	0.29	
SED17	0.52	
SED18	0.17	
SED19	0.40	
SED20	48.19	
SED21	0.53	
SED22	0.55	
SED23	0.99	
SED24	0.57	
SED25	2.76	
SED26	0.78	
SED27	0.40	
SED28	2.97	
SED29	1.59	
SED30	6.03	
SED31	1.67	
SED32	12.69	

Notes

A Sesseruction of benchic organisms A Sesseruction of benchic organisms and the sesseruction of benchic organisms and the sesseruction of benchic organisms and the sesseruction of the se

- [a] 1/2 the detection limit was used for PAHs reported as non detect.
- [b] ΣPAH was not calculated for SED-1001 through SED-1005 because these samples did not include TOC concentrations
- [c] Σ PAH was not calculated for SD10 because TOC < 0.20 %
- [d] Although the $\Sigma PAH > 1$ for SED13, PAHs were not detected and thus calculations are based entirely on 1/2 detection limits.

Table 4.7 Summary of Sediment TEQ Calculations **Providence**, Rhode Island 333 Adelaide Avenue

	I EQ Maininal				1	
Location	(mg/kg)	θн	TEQ Bird (mg/kg)	НQ	TEQ Fish (mg/kg)	НQ
SD-1001	5.1E-05	7.1	8.3E-05	12	4.9E-05	6.8
SD-1002	5.6E-05	7.8	9.1E-05	13	5.5E-05	7.7
SD-1003	2.0E-04	27	3.0E-04	42	2.0E-04	27
SD-1004	2.0E-04	28	3.1E-04	43	2.0E-04	27
SD-1005	2.4E-05	3.3	3.9E-05	5.4	2.3E-05	3.2
SED10	9.4E-07	0.1	1.2E-06	0.2	1.0E-06	0.1
SED11	2.6E-04	37	4.8E-04	66	2.6E-04	36
SED12	1.1E-05	1.6	1.1E-05	1.6	3.6E-06	0.5
SED13	1.2E-06	0.2	1.8E-06	0.2	1.3E-06	0.2
SED14	9.4E-05	13	1.7E-04	24	9.3E-05	13
SED15	1.0E-06	0.1	1.2E-06	0.2	1.1E-06	0.2
SED16	1.7E-03	231	3.1E-03	433	1.7E-03	230
SED17	1.2E-04	16	2.1E-04	29	1.1E-04	16
SED18	3.6E-03	503	6.8E-03	945	3.6E-03	502
SED19	2.1E-03	286	3.8E-03	534	2.1E-03	286
SED20	1.6E-04	23	2.4E-04	33	1.6E-04	23
SED21	2.6E-05	3.7	4.8E-05	6.7	2.6E-05	3.7
SED22	7.3E-04	102	1.4E-03	195	7.3E-04	101
SED23	8.5E-07	0.1	1.1E-06	0.1	9.2E-07	0.1
SED24	5.7E-05	7.9	1.0E-04	14	5.7E-05	7.9
SED25	1.3E-03	184	2.5E-03	342	1.3E-03	184
SED26	3.2E-06	0.4	5.0E-06	0.7	2.7E-06	0.4
SED27	5.6E-04	78	1.0E-03	141	5.6E-04	11
SED28	1.8E-03	255	3.4E-03	478	1.8E-03	254
SED29	2.4E-04	34	3.4E-04	47	2.4E-04	33
SED30	5.3E-05	7.4	9.4E-05	13	5.2E-05	7.2
SED31	1.2E-03	170	2.1E-03	290	1.2E-03	170
SED32	2.4E-05	3.3	4.2E-05	5.8	2.3E-05	3.1

TCDD Screening Value = 7.2E-06 mg/kg (WA SCV; Cubbage, 1997)
TEQ - Toxic Equivalence was calculated from toxicity equivalence factors published by the World Health Organization (Van den Berg et al., 1998)
HQ - Hazard Quotient

Summary of Surface Water TEQ Calculations **Providence**, Rhode Island **333 Adelaide Avenue** Table 4.8

	TEQ Mammal		TEQ Bird			
Location	(mg/L)	НQ	(mg/Lg)	Н	TEQ Fish (mg/Lg)	ΗQ
SW11	1.3E-08	1.3	1.6E-08	1.6	1.4E-08	1.4
SW19	1.3E-08	1.3	1.5E-08	1.5	1.4E-08	1.4
SW27	6.2E-08	6.2	7.1E-08	7.1	5.8E-08	5.8

TCDD Screening Value = 1.0E-08 mg/L (USEPA, 2004) TEQ - Toxic Equivalence was calculated from toxicity equivalence factors published by the World Health Organization (Van den Berg et al., 1998) HQ - Hazard Quotient

Table 5.1 Comparison of VOCs COPCs between the Eastern and Western Portions of the Inner Cove 333 Adelaide Avenue Providence, Ri

			5 - 51	Westerr	n Part of Inne	r Cove	
						2	
	Range of Non	Range of Detected					-
Parameter	Detects	Concentrations	SED16	SED18	SED2	SED22	SED23
Volatile Organics (mg/kg)							
1,1,1-Trichloroethane	0.004 - 0.15	0.3 - 1.3	< 0.0235	< 0.0506	< 0.0044	< 0.0126	< 0.0041
1,1-Dichloroethane	0.004 - 1.1	0.011 - 7.92	< 0.0235	< 0.0506	< 0.0044	< 0.0126	< 0.0041
1,1-Dichloroethene	0.004 - 1.1	0.014 - 11.3	< 0.0235	< 0.0506	< 0.0044	< 0.0126	< 0.0041
Acetone	0.039 - 4.6	0.0757 - 1.9	< 0.235	1.9	< 0.0445	0.294	< 0.0406
Carbon Disulfide	0.004 - 1.1	0.0046 - 0.0576	< 0.0235	< 0.0506	< 0.0044	< 0.0126	< 0.0041
cis-1,2-Dichloroethene	0.004 - 1.1	0.0091 - 175	< 0.0235	< 0.0506	< 0.0044	< 0.0126	0.0091
s-Butylbenzene	0.004 - 1.1	0.0197 - 0.0303	< 0.0235	< 0.0506	< 0.0044	< 0.0126	< 0.0041
Tetrachloroethene	0.004 - 1.1	0.0081 - 18.1	< 0.0235	< 0.0506	< 0.0044	< 0.0126	1.0
Toluene	0.004 - 1.1	1.92 - 1.92	< 0.0235	< 0.0506	< 0.0044	< 0.0126	< 0.0041
Trichloroethene	0.004 - 0.15	0.176 - 58.4	< 0.0235	< 0.0506	< 0.0044	< 0.0126	0.176
Vinyl chloride	0.0081 - 2.3	0.0218 - 24.8	< 0.047	< 0.101	< 0.0089	< 0.0253	< 0.0081

mg/Kg - milligrams per kilogram

.

Table 5.1 Comparison of VOCs COPCs between the Eastern and Western Portions of the Inner Cove 333 Adelaide Avenue Providence, RI

			ш	astern Part o	f Inner Cove		1	
Daramatar	SD-1001	SID-1002	SD-1003	SD-1004	SD-1005	SED17	SED19	SED20
Volatile Organics (mg/kg)		400-00			2001-00			
1,1,1-Trichloroethane	< 0.013	< 0.0098	< 0.15	1.3	0.3	0.732	0.635	< 0.0149
1,1-Dichloroethane	< 0.013	< 0.0098	1.4	< 1.1	< 0.012	0.137	7.92	< 0.0149
1,1-Dichloroethene	< 0.013	< 0.0098	< 0.15	< 1.1	0.014	0.0555	11.3	< 0.0149
Acetone	< 0.052	< 0.039	0.87	< 4.6	< 0.048	< 0.0463	0.242	0.421
Carbon Disulfide	< 0.013	< 0.0098	< 0.15	< 1.1	< 0.012	0.007	0.0576	< 0.0149
cis-1,2-Dichloroethene	< 0.013	< 0.0098	0.42	< 1.1	0.016	0.0298	175	< 0.0149
s-Butylbenzene	< 0.013	< 0.0098	< 0.15	< 1.1	< 0.012	< 0.0046	0.0197	< 0.0149
Tetrachloroethene	< 0.013	< 0.0098	< 0.15	< 1.1	< 0.012	0.0081	18.1	< 0.0149
Toluene	< 0.013	< 0.0098	< 0.15	< 1.1	< 0.012	< 0.0046	< 0.017	< 0.0149
Trichloroethene	< 0.013	< 0.0098	< 0.15	5.6	0.21	1.22	58.4	< 0.0149
Vinyl chloride	< 0.026	< 0.02	5	< 2.3	< 0.024	< 0.0093	0.148	< 0.0298

mg/Kg - milligrams per kilogram

 Table 5.1

 Comparison of VOCs COPCs between the Eastern and Western Portions of the Inner Cove

 333 Adelaide Avenue

 Providence, RI

			Laster	ח רמת סד וחחו	er cove (con	(panua)			
Parameter	SED24	SED25	SED26	SED27	SED28	SED29	SED30	SED31	SED32
Volatile Organics (mg/kg)									
1,1,1-Trichloroethane	< 0.0079	< 0.0088	< 0.008	< 0.0198	< 0.0226	< 0.025	< 0.0043	< 0.0289	< 0.005
1,1-Dichloroethane	0.011	1.09	< 0.008	4.67	0.0266	< 0.025	< 0.0043	1.92	< 0.005
1,1-Dichloroethene	< 0.0079	< 0.0088	< 0.008	2.34	< 0.0226	< 0.025	< 0.0043	< 0.0289	< 0.005
Acetone	< 0.0791	0.128	0.0856	< 0.198	0.384	0.27	< 0.0434	0.522	< 0.0496
Carbon Disulfide	< 0.0079	0.0111	< 0.008	0.0398	< 0.0226	< 0.025	< 0.0043	< 0.0289	< 0.005
cis-1,2-Dichloroethene	< 0.0079	11.5	< 0.008	103	< 0.0226	< 0.025	< 0.0043	10.6	< 0.005
s-Butylbenzene	< 0.0079	< 0.0088	< 0.008	< 0.0198	0.0303	< 0.025	< 0.0043	< 0.0289	< 0.005
Tetrachloroethene	< 0.0079	< 0.0088	< 0.008	< 0.0198	< 0.0226	< 0.025	< 0.0043	< 0.0289	< 0.005
Toluene	< 0.0079	< 0.0088	< 0.008	< 0.0198	< 0.0226	< 0.025	< 0.0043	1.92	< 0.005
Trichloroethene	< 0.0079	0.276	< 0.008	15.1	< 0.0226	< 0.025	< 0.0043	0.797	< 0.005
Vinyl chloride	0.0218	24.8	< 0.016	5.42	0.0499	< 0.05	< 0.0087	11.7	< 0.0099
								3	L

mg/Kg - milligrams per kilogram

a 2

3 of 3

ATTACHMENT A

ECOTOXICOLOGICAL PROFILES

ECOTOXICOLOGICAL PROFILES

1.0 Volatile Organic Compounds (VOCs). VOCs rapidly dissociate from a liquid into a gaseous state, and exhibit varying degrees of solubility in water. Many VOCs, such as carbon tetrachloride, react with light to form highly unstable free-radicals. VOCs can range from low to high toxicity to aquatic and terrestrial life (Crosby, 1998). Acute damage to vertebrates typically involves damage to liver and kidneys (e.g. tetrachloroethylene and perchloroethylene), while chronic toxicity typically involves cancer (1,2-dichloroethane). Effects on invertebrates involve reduced growth and mortality. For example, the LC50 of 1,2,4-trichlorobenzene after fourteen days of exposure to earthworms is as low as 127 ppm. Because of their reactive and volatile nature, VOCs generally do not accumulate in plant and animal tissue.

2.0 Semi Volatile Organic Compounds (SVOCs). In aquatic environments, SVOCs (including polyaromatic hydrocarbons, or PAHs) rapidly become adsorbed to organic and inorganic particulate materials and are deposited in sediments (Neff, 1985). Sediment associated SVOCs can be accumulated by bottom-dwelling invertebrates and fish (Eisler 1987) and can be toxic to benthic invertebrates (Lotufo and Fleeger, 1996).

SVOC-induced phytotoxic effects are rare, however toxicological data are limited. Some higher plants can catabolize SVOCs, but this metabolic pathway is not well defined. Certain plants contain substances that can protect against SVOC effects, inactivating their cancer-causing and mutation-causing potential. Additionally, SVOCs synthesized by plants may act as growth hormones.

Most animals and microorganisms (shellfish and algae are notable exceptions) can metabolize and transform SVOCs to breakdown products that may ultimately completely degrade (Eisler, 1987). Biodegradation probably occurs more slowly in aquatic systems (especially under anaerobic systems) than soil (USEPA, 1985).

A-1

Some SVOCs rapidly bioaccumulate in animals because of their high lipid solubility (Eisler, 1987). The rate of bioaccumulation is inversely related to the rate of SVOC metabolism and is also influenced by the concentration of SVOC to which an organism is exposed. Both rates are dependent on the size of the specific SVOC molecule; for example PAHs with less than four rings are readily metabolized and not bioaccumulated, while PAHs with more than four rings are more slowly metabolized and tend to bioaccumulate on a short-term basis (USEPA, 1985; Eisler, 1987). Other effects in terrestrial organisms are poorly characterized, but may include adverse effects on reproduction, development, and immunity (ATSDR, 1995).

PAHs are highly potent carcinogens that can produce tumors in some organisms as well as other non-cancer-causing effects (Eisler, 1987). Effects have been found in many types of organisms, including mammals, birds, invertebrates, plants, amphibians, and fish. Effects on benthic invertebrates include inhibited reproduction, delayed emergence, sediment avoidance, and mortality. Fish exposed to PAH contamination have exhibited fin erosion, liver abnormalities, cataracts, and immune system impairments leading to increased susceptibility to disease (Fabacher *et al.*, 1991; Weeks and Warinner 1984; O'Conner and Huggett 1988).

3.0 Polychlorinated Biphenyls (PCBs)

PCBs are the family of chemicals formed by attaching one or more chlorine atoms to a pair of connected benzene rings. Depending on the number and position of chlorine atoms attached to the biphenyl ring structure, 209 different PCB congeners can be formed. No known natural sources of PCBs exist. The chemical and toxicological properties of PCBs vary from one congener to the next (ASTDR, 2000).

PCBs are mutation-causing, cancer-causing, and teratogenic. They are readily absorbed through the gut, respiratory system, and skin in mammals and will concentrate in the liver, blood, muscle, adipose tissue, and skin (Eisler, 1986). Mutagenic activity tents to decrease with increasing chlorination.

In aquatic systems, increased toxicity is generally associated with increasing exposure, younger developmental stages, and lower chlorinated biphenyls (Eisler, 1986). Effects on algae include growth reduction. Effects on fish may include reduced egg survival and reduced fertilization success, and complete reproductive failure in brook trout. Carcinogenic and biochemical perturbations have been observed in trout liver cells and marine teleosts, with anemia, hyperglycemia, and altered cholesterol metabolism in brown trout fed diets with 10 ppm PCBs.

Toxic effects in avian species include morbidity, tremors, upward pointing beaks, muscular uncoordination, and hemorrhagic areas in the liver (Eisler, 1986). Other sublethal effects include delayed reproduction and chromosomal aberrations, courtship and nest building behavioral impairments, reduced hatchability, and decline in sperm concentrations. However, birds tend to be more resistant to acute exposure than other groups.

4.0 Pesticides

Pesticides may be very persistent in aquatic systems, absorbing strongly to sediments, and bioconcentrating in aquatic organisms, including fish and other organisms (HSDB, 2000). Pesticides may be toxic to many types of aquatic organisms, even at low concentrations. Birds show a wide range of susceptibility to pesticides including dieldrin (less toxic than in aquatic organisms), heptachlor (moderately to high toxicity), gamma-BHC (slightly to moderately toxic), and DDT (slightly to non-toxic). However, DDT causes eggshell thinning and embryo mortality, especially in predatory birds. DDT also changes courtship behavior and induces other reproductive impairments.

Many pesticides are highly persistent and lipophilic compounds subject to pronounced biomagnification. The extremely low water solubilities result in strong adsorption to soil particles and very low leaching losses. Microbes biodegrade DDT to DDE and DDD under aerobic and anaerobic conditions, respectively. Both metabolites are more persistent than DDT. Plants adsorb DDT and its metabolites form soil, but they are

A-3

poorly translocated and remain primarily in the roots. Foliar herbivory is therefore not a significant route of exposure to soil DDT. The toxicity of DDT to earthworms is low (Edwards and Bolgen, 1992), so bioaccumulation by earthworms is a significant route of exposure to vermivores and can results in lethal doses (Barker, 1958).

5.0 Dioxins/Furans

Dioxins and furans belong to a family of compounds divided into groups based on the number of chlorine atoms in the compound. (USEPA, 2003). They are typically produced from the incomplete combustion of fossil fuels or waste, but area also associated with several smelting and manufacturing processes. Dioxins do not dissolve easily in water; aquatic forms will attach strongly to small particles of soil or organic matter and eventually settle to the bottom. Dioxins may also attach to microscopic plants and animals (plankton) which serve as prey for other organisms. Concentrations of chemicals such as the most toxic form, 2,3,7,8-TCDD, are difficult for organisms to metabolize, and thus biomagnify. In certain animal species, 2,3,7,8-TCDD is especially harmful and can cause death after a single exposure to small amounts. Exposure to nonlethal doses can cause a variety of adverse effects in animals, such as weight loss, biochemical and degenerative changes in the liver, and chloracne (USEPA, 2003). At relatively low levels 2,3,7,8-TCDD can also weaken the immune system. Exposure to 2,3,7,8-TCDD can cause reproductive damage and birth defects in animals. Less is known about other, less toxic forms of dioxins.

4.0 Metals.

Many inorganic compounds occur naturally in the environment (Shacklette *et al*, 1971). Assessing the mobility and persistence of metals in environmental media is complicated and often difficult because of the many inorganic and organic complexes and salts they form. In addition, metals undergo a variety of processes in soils and water, which included hydrolysis, reduction, oxidation, and adsorption. These reactions are highly dependent on factors such as pH, salinity, sulfides, oxygen, ionic strength, particle-surface reactions, and the presence of anions and natural organic acids (humics and fulvics). Adsorption of metals through cation exchange, specific adsorption,

A-4

coprecipitation, or organic complexation by oils and sediments is the dominant fate mechanisms in natural systems. Consequently, metals transported to surface water via runoff, groundwater, or suspended sediment derived from soil erosion would be predicted to accumulate. Metals vary in the extent to which they are adsorbed, and the adsorbents range in selectivity for metals.

5.0 References

- ATSDR. 2000. *Toxicological profile for polychlorinated biphenyls*. U.S. Department. of Health and Human Services, Public Health Service. November 2000.
- ATSDR. 1995. *Toxicological profile for polycyclic aromatic hydrocarbons*. U.S. Department. of Health and Human Services, Public Health Service. November 1995.
- Barker, R. 1958. Notes on some ecological effects of DDT sprayed on elms. *Journal of Wildlife Management* 22:269-274. *Cited in* USEPA, 2006.
- Crosby, D.G. 1998. Environmental Toxicology and Chemistry. Oxford University Press, New York. 336p.
- Edwards, C. and P. Bolgen. 1992. The effects of toxic chemicals on earthworms. *Review of Environmental Contamination and Toxicology* 125:23-99. *Cited in* USEPA, 2006.
- Eisler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish and Wildlife Service Biological Report 85(1.11).
- Eisler, R. 1986. Polychlorinated biphenyl hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish and Wildlife Service Biological Report 85(1.7).
- Fabacher, D. L., *et al.* 1991. Contaminated sediments from tributaries of the Great Lakes: chemical characterization and cancer-causing effects in medaka (*Oryzias latipes*). *Archives of Environmental Contamination and Toxicology.* 20:17-35.
- HSDB. 2000. Toxicology and Environmental health Information Program, National Library of Medicine. Available at: http://toxnet.nlm.nih.gov.
- Lotufo, G.R. and J.W. Fleeger. 1996. Toxicity of sediment-associated pyrene and phenanthrene to *Limnodrilus hoffmeisteri* (Oligochaeta: Tubificidae). *Environmental Toxicology and Chemistry*.
- Neff, J.M. 1985. Polycyclic Aromatic Hydrocarbons. In: Rand, G.M. and S.R. Petrocelli (eds) *Fundamentals of Aquatic Toxicology, Methods, and Applications*. Hemisphere Publishing Corporation. Washington, D.C.
- O'Conner, J. M. and R.J. Huggett. 1988. Aquatic pollution problems, North Atlantic coast, including Chesapeake Bay. *Aquatic Toxicology*. 11:163-190.

- Shacklette, H.T., and J.G. Boerngen. 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. U.S. Geological Survey Professional Paper 1270. U.S. Government Printing Office, Washington, D.C. 105p.
- USEPA. 2003. Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds. EPA/600/P-00/001Cb. National Center for Environmental Assessment. December, 2003.
- U.S. Environmental Protection Agency (USEPA). 2006. Ecotox Database. http://www.epa.gov/ecotox/ecotox home.htm. Accessed January 23, 2006.
- USEPA. 1985. Chemical, physical, and biological properties of compounds present at hazardous waste site- final report. Prepared by Clement Associates, Inc. for the U.S. Environmental protection Agency. September, 1985.
- Van den Berg M *et al.* 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. *Environmental Health Perspective* 106(12):775-792.
- Weeks, B.A. and J. E. Warinner. 1984. Effects of toxic chemicals on macrophage phagocytosis in two estuarine fishes. *Maine Environmental Research*. 14:327-35.

ATTACHMENT B

CALCULATIONS FOR Σ PAH MODELS

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.0815	1.25	0.003
Acenaphthylene	452	2400	0.0815	1.25	0.003
Anthracene	594	1300	0.0815	1.25	0.002
Benz(a)anthracene	841	4153	0.0815	1.25	0.001
Benzo(a)pyrene	965	3840	0.0815	1.25	0.001
Benzo(b)fluoranthene	979	2169	0.245	3.77	0.004
Benzo(k)fluoranthene	981	1220	0.0815	1.25	0.001
Chrysene	844	826	0.0815	1.25	0.001
Fluoranthene	707	23870	0.327	5.03	0.007
Fluorene	538	26000	0.0815	1.25	0.002
Naphthalene	385	61700	0.0815	1.25	0.003
Phenanthrene	596	34300	0.0815	1.25	0.002
Pyrene	697	9090	0.258	3.97	0.006
ΣESBTU _{FCV,13}					0.037
Correction Factor for 90 th	Percentile				8.5
Calculated SESBTU _{FCV,3}	i4				0.316

SED11

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. November 2003.

Assumes TOC of : 6.50%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.0564	24.52	0.050
Acenaphthylene	452	2400	0.0276	12.00	0.027
Anthracene	594	1300	0.276	120.00	0.202
Benz(a)anthracene	841	4153	0.685	297.83	0.354
Benzo(a)pyrene	965	3840	0.862	374.78	0.388
Benzo(b)fluoranthene	979	2169	1.41	613.04	0.626
Benzo(k)fluoranthene	981	1220	0.636	276.52	0.282
Chrysene	844	826	0.625	271.74	0.322
Fluoranthene	707	23870	1.92	834.78	1.181
Fluorene	538	26000	0.107	46.52	0.086
Naphthalene	385	61700	0.02765	12.02	0.031
Phenanthrene	596	34300	1.14	495.65	0.832
Pyrene	697	9090	1.01	439.13	0.630
ΣESBTU _{FCV,13}					5.011
Correction Factor for 90 th Pe	ercentile				8.5
Calculated SESBTU _{FCV,34}					42.344

SED12

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013.

November 2003.

Assumes TOC of : 0.23%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.01605	5.94	0.012
Acenaphthylene	452	2400	0.01605	5.94	0.013
Anthracene	594	1300	0.01605	5.94	0.010
Benz(a)anthracene	841	4153	0.01605	5.94	0.007
Benzo(a)pyrene	965	3840	0.01605	5.94	0.006
Benzo(b)fluoranthene	979	2169	0.0378	14.00	0.014
Benzo(k)fluoranthene	981	1220	0.01605	5.94	0.006
Chrysene	844	826	0.01605	5.94	0.007
Fluoranthene	707	23870	0.0833	30.85	0.044
Fluorene	538	26000	0.01605	5.94	0.011
Naphthalene	385	61700	0.01605	5.94	0.015
Phenanthrene	596	34300	0.0333	12.33	0.021
Pyrene	697	9090	0.0513	19.00	0.027
ΣESBTU _{FCV,13}					0.194
Correction Factor for 90th Per	rcentile				8.5
Calculated SESBTU _{FCV,34}					1.639

SED13

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks

(ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. November 2003.

Assumes TOC of :

0.27%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.04715	1.52	0.003
Acenaphthylene	452	2400	0.04715	1.52	0.003
Anthracene	594	1300	0.04715	1.52	0.003
Benz(a)anthracene	841	4153	0.04715	1.52	0.002
Benzo(a)pyrene	965	3840	0.04715	1.52	0.002
Benzo(b)fluoranthene	979	2169	0.04715	1.52	0.002
Benzo(k)fluoranthene	981	1220	0.04715	1.52	0.002
Chrysene	844	826	0.04715	1.52	0.002
Fluoranthene	707	23870	0.204	6.58	0.009
Fluorene	538	26000	0.04715	1.52	0.003
Naphthalene	385	61700	0.04715	1.52	0.004
Phenanthrene	596	34300	0.0999	3.22	0.005
Pyrene	697	9090	0.153	4.94	0.007
ΣESBTU _{FCV,13}					0.046
Correction Factor for 90 th Pe	rcentile				8.5
Calculated SESBTU _{FCV,34}					0.388

SED14

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013.

November 2003.

Assumes TOC of : 3.10%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.01575	2.25	0.005
Acenaphthylene	452	2400	0.01575	2.25	0.005
Anthracene	594	1300	0.01575	2.25	0.004
Benz(a)anthracene	841	4153	0.01575	2.25	0.003
Benzo(a)pyrene	965	3840	0.01575	2.25	0.002
Benzo(b)fluoranthene	979	2169	0.01575	2.25	0.002
Benzo(k)fluoranthene	981	1220	0.01575	2.25	0.002
Chrysene	844	826	0.01575	2.25	0.003
Fluoranthene	707	23870	0.01575	2.25	0.003
Fluorene	538	26000	0.01575	2.25	0.004
Naphthalene	385	61700	0.01575	2.25	0.006
Phenanthrene	596	34300	0.01575	2.25	0.004
Pyrene	697	9090	0.01575	2.25	0.003
ΣESBTU _{FCV,13}					0.046
Correction Factor for 90 th Pe	ercentile				8.5
Calculated SESBTU _{FCV,34}					0.387

SED15

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013.

November 2003.

Assumes TOC of :

0.70%
EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.0895	1.23	0.002
Acenaphthylene	452	2400	0.0895	1.23	0.003
Anthracene	594	1300	0.0895	1.23	0.002
Benz(a)anthracene	841	4153	0.0895	1.23	0.001
Benzo(a)pyrene	965	3840	0.0895	1.23	0.001
Benzo(b)fluoranthene	979	2169	0.201	2.75	0.003
Benzo(k)fluoranthene	981	1220	0.0895	1.23	0.001
Chrysene	844	826	0.0895	1.23	0.001
Fluoranthene	707	23870	0.33	4.52	0.006
Fluorene	538	26000	0.0895	1.23	0.002
Naphthalene	385	61700	0.0895	1.23	0.003
Phenanthrene	596	34300	0.0895	1.23	0.002
Pyrene	697	9090	0.244	3.34	0.005
ΣESBTU _{FCV,13}					0.034
Correction Factor for 90th Pe	ercentile				8.5
Calculated SESBTU _{FCV,34}					0.289

SED16

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. November 2003.

Assumes TOC of :

7.30%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.0175	3.02	0.006
Acenaphthylene	452	2400	0.0175	3.02	0.007
Anthracene	594	1300	0.0175	3.02	0.005
Benz(a)anthracene	841	4153	0.0175	3.02	0.004
Benzo(a)pyrene	965	3840	0.0175	3.02	0.003
Benzo(b)fluoranthene	979	2169	0.0175	3.02	0.003
Benzo(k)fluoranthene	981	1220	0.0175	3.02	0.003
Chrysene	844	826	0.0175	3.02	0.004
Fluoranthene	707	23870	0.0175	3.02	0.004
Fluorene	538	26000	0.0175	3.02	0.006
Naphthalene	385	61700	0.0175	3.02	0.008
Phenanthrene	596	34300	0.0175	3.02	0.005
Pyrene	697	9090	0.0175	3.02	0.004
ΣESBTU _{FCV,13}					0.061
Correction Factor for 90th Per	centile				8.5
Calculated SESBTU _{FCV,34}					0.519

SED17

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks

(ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. November 2003.

Assumes TOC of : 0.58%

TABLE B-8 EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.0915	0.80	0.002
Acenaphthylene	452	2400	0.0915	0.80	0.002
Anthracene	594	1300	0.0915	0.80	0.001
Benz(a)anthracene	841	4153	0.0915	0.80	0.001
Benzo(a)pyrene	965	3840	0.0915	0.80	0.001
Benzo(b)fluoranthene	979	2169	0.0915	0.80	0.001
Benzo(k)fluoranthene	981	1220	0.0915	0.80	0.001
Chrysene	844	826	0.0915	0.80	0.001
Fluoranthene	707	23870	0.267	2.32	0.003
Fluorene	538	26000	0.0915	0.80	0.001
Naphthalene	385	61700	0.0915	0.80	0.002
Phenanthrene	596	34300	0.0915	0.80	0.001
Pyrene	697	9090	0.187	1.63	0.002
ΣESBTU _{FCV,13}					0.020
Correction Factor for 90th Perce	ntile				8.5
Calculated SESBTU _{FCV,34}					0.165

SED18

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013.

November 2003.

Assumes TOC of :

11.50%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

	le.		Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.062	0.89	0.002
Acenaphthylene	452	2400	0.062	0.89	0.002
Anthracene	594	1300	0.062	0.89	0.001
Benz(a)anthracene	841	4153	0.218	3.13	0.004
Benzo(a)pyrene	965	3840	0.151	2.17	0.002
Benzo(b)fluoranthene	979	2169	0.32	4.60	0.005
Benzo(k)fluoranthene	981	1220	0.062	0.89	0.001
Chrysene	844	826	0.201	2.89	0.003
Fluoranthene	707	23870	0.533	7.66	0.011
Fluorene	538	26000	0.062	0.89	0.002
Naphthalene	385	61700	0.062	0.89	0.002
Phenanthrene	596	34300	0.218	3.13	0.005
Pyrene	697	9090	0.35	5.03	0.007
ΣESBTU _{FCV,13}	12 I				0.048
Correction Factor for 90th Pe	ercentile				8.5
Calculated SESBTU _{FCV,34}					0.402

SED19

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. November 2003.

6.96%

Assumes TOC of :

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.153	5.88	0.012
Acenaphthylene	452	2400	0.781	30.04	0.066
Anthracene	594	1300	3.09	118.85	0.200
Benz(a)anthracene	841	4153	15.1	580.77	0.691
Benzo(a)pyrene	965	3840	7.87	302.69	0.314
Benzo(b)fluoranthene	979	2169	14.8	569.23	0.581
Benzo(k)fluoranthene	981	1220	5.1	196.15	0.200
Chrysene	844	826	8.94	343.85	0.407
Fluoranthene	707	23870	28.8	1107.69	1.567
Fluorene	538	26000	0.863	33.19	0.062
Naphthalene	385	61700	0.0306	1.18	0.003
Phenanthrene	596	34300	11.8	453.85	0.761
Pyrene	697	9090	15.2	584.62	0.839
ΣESBTU _{FCV,13}					5.703
Correction Factor for 90th Pe	rcentile				8.5
Calculated SESBTU _{FCV,34}					48.193

SED20

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013.

November 2003.

Assumes TOC of : 2.60%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g_{oc})	ESBTU
Acenaphthene	491	33400	0.0164	3.09	0.006
Acenaphthylene	452	2400	0.0164	3.09	0.007
Anthracene	594	1300	0.0164	3.09	0.005
Benz(a)anthracene	841	4153	0.0164	3.09	0.004
Benzo(a)pyrene	965	3840	0.0164	3.09	0.003
Benzo(b)fluoranthene	979	2169	0.0164	3.09	0.003
Benzo(k)fluoranthene	981	1220	0.0164	3.09	0.003
Chrysene	844	826	0.0164	3.09	0.004
Fluoranthene	707	23870	0.0164	3.09	0.004
Fluorene	538	26000	0.0164	3.09	0.006
Naphthalene	385	61700	0.0164	3.09	0.008
Phenanthrene	596	34300	0.0164	3.09	0.005
Pyrene	697	9090	0.0164	3.09	0.004
ΣESBTU _{FCV,13}					0.063
Correction Factor for 90 th Pe	rcentile				8.5
Calculated SESBTU _{FCV,34}					0.533

SED21

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks

(ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. November 2003.

Assumes TOC of : 0.53%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.0397	1.65	0.003
Acenaphthylene	452	2400	0.0397	1.65	0.004
Anthracene	594	1300	0.0397	1.65	0.003
Benz(a)anthracene	841	4153	0.108	4.50	0.005
Benzo(a)pyrene	965	3840	0.102	4.25	0.004
Benzo(b)fluoranthene	979	2169	0.144	6.00	0.006
Benzo(k)fluoranthene	981	1220	0.0397	1.65	0.002
Chrysene	844	826	0.119	4.96	0.006
Fluoranthene	707	23870	0.235	9.79	0.014
Fluorene	538	26000	0.0397	1.65	0.003
Naphthalene	385	61700	0.0397	1.65	0.004
Phenanthrene	596	34300	0.121	5.04	0.008
Pyrene	697	9090	0.0397	1.65	0.002
ΣESBTU _{FCV,13}					0.065
Correction Factor for 90 th Per	rcentile				8.5
Calculated SESBTU _{FCV,34}					0.552

SED22

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks

(ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. November 2003.

Assumes TOC of : 2.40%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g₀c)	ESBTU
Acenaphthene	491	33400	0.0161	5.75	0.012
Acenaphthylene	452	2400	0.0161	5.75	0.013
Anthracene	594	1300	0.0161	5.75	0.010
Benz(a)anthracene	841	4153	0.0161	5.75	0.007
Benzo(a)pyrene	965	3840	0.0161	5.75	0.006
Benzo(b)fluoranthene	979	2169	0.0161	5.75	0.006
Benzo(k)fluoranthene	981	1220	0.0161	5.75	0.006
Chrysene	844	826	0.0161	5.75	0.007
Fluoranthene	707	23870	0.0161	5.75	0.008
Fluorene	538	26000	0.0161	5.75	0.011
Naphthalene	385	61700	0.0161	5.75	0.015
Phenanthrene	596	34300	0.0161	5.75	0.010
Pyrene	697	9090	0.0161	5.75	0.008
ΣESBTU _{FCV,13}					0.117
Correction Factor for 90 th Percentile					
Calculated SESBTU _{FCV,34}					0.990

SED23

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. November 2003.

Assumes TOC of : 0.28%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g₀c)	(ug/g dry wt.)	(ug/g₀c)	ESBTU
Acenaphthene	491	33400	0.03155	1.37	0.003
Acenaphthylene	452	2400	0.03155	1.37	0.003
Anthracene	594	1300	0.03155	1.37	0.002
Benz(a)anthracene	841	4153	0.0896	3.90	0.005
Benzo(a)pyrene	965	3840	0.0707	3.07	0.003
Benzo(b)fluoranthene	979	2169	0.0732	3.18	0.003
Benzo(k)fluoranthene	981	1220	0.03155	1.37	0.001
Chrysene	844	826	0.0896	3.90	0.005
Fluoranthene	707	23870	0.211	9.17	0.013
Fluorene	538	26000	0.03155	1.37	0.003
Naphthalene	385	61700	0.03155	1.37	0.004
Phenanthrene	596	34300	0.169	7.35	0.012
Pyrene	697	9090	0.177	7.70	0.011
ΣESBTU _{FCV,13}					0.068
Correction Factor for 90 th Pe	rcentile				8.5
Calculated SESBTU _{FCV,34}					0.572

SED24

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks

(ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. November 2003.

Assumes TOC of : 2.30%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g₀c)	ESBTU
Acenaphthene	491	33400	0.04145	0.90	0.002
Acenaphthylene	452	2400	0.04145	0.90	0.002
Anthracene	594	1300	0.163	3.54	0.006
Benz(a)anthracene	841	4153	0.541	11.74	0.014
Benzo(a)pyrene	965	3840	0.483	10.48	0.011
Benzo(b)fluoranthene	979	2169	0.516	11.19	0.011
Benzo(k)fluoranthene	981	1220	0.04145	0.90	0.001
Chrysene	844	826	0.534	11.58	0.014
Fluoranthene	707	23870	3.17	68.76	0.097
Fluorene	538	26000	0.04145	0.90	0.002
Naphthalene	385	61700	0.04145	0.90	0.002
Phenanthrene	596	34300	2.46	53.36	0.090
Pyrene	697	9090	2.4	52.06	0.075
ΣESBTU _{FCV,13}					0.326
Correction Factor for 90th Perce	entile				8.5
Calculated SESBTU _{FCV,34}					2.756

SED25

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks

4.61%

(ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. November 2003.

Assumes TOC of :

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.02315	0.78	0.002
Acenaphthylene	452	2400	0.02315	0.78	0.002
Anthracene	594	1300	0.02315	0.78	0.001
Benz(a)anthracene	841	4153	0.241	8.14	0.010
Benzo(a)pyrene	965	3840	0.273	9.22	0.010
Benzo(b)fluoranthene	979	2169	0.256	8.65	0.009
Benzo(k)fluoranthene	981	1220	0.02315	0.78	0.001
Chrysene	844	826	0.227	7.67	0.009
Fluoranthene	707	23870	0.419	14.16	0.020
Fluorene	538	26000	0.02315	0.78	0.001
Naphthalene	385	61700	0.02315	0.78	0.002
Phenanthrene	596	34300	0.158	5.34	0.009
Pyrene	697	9090	0.348	11.76	0.017
ΣESBTU _{FCV,13}					0.092
Correction Factor for 90th Pe	rcentile				8.5
Calculated SESBTU _{FCV,34}					0.777

SED26

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks

(ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. November 2003.

Assumes TOC of : 2.96%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g₀c)	(ug/g dry wt.)	(ug/g₀c)	ESBTU
Acenaphthene	491	33400	0.062	1.35	0.003
Acenaphthylene	452	2400	0.062	1.35	0.003
Anthracene	594	1300	0.062	1.35	0.002
Benz(a)anthracene	841	4153	0.134	2.91	0.003
Benzo(a)pyrene	965	3840	0.062	1.35	0.001
Benzo(b)fluoranthene	979	2169	0.285	6.20	0.006
Benzo(k)fluoranthene	981	1220	0.062	1.35	0.001
Chrysene	844	826	0.062	1.35	0.002
Fluoranthene	707	23870	0.354	7.70	0.011
Fluorene	538	26000	0.062	1.35	0.003
Naphthalene	385	61700	0.062	1.35	0.004
Phenanthrene	596	34300	0.062	1.35	0.002
Pyrene	697	9090	0.196	4.26	0.006
ΣESBTU _{FCV,13}					0.047
Correction Factor for 90 th Pe	ercentile				8.5
Calculated SESBTU _{FCV,34}					0.401

SED27

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks

(ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. November 2003.

Assumes TOC of :

4.60%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.0456	1.11	0.002
Acenaphthylene	452	2400	0.0456	1.11	0.002
Anthracene	594	1300	0.403	9.83	0.017
Benz(a)anthracene	841	4153	1.29	31.46	0.037
Benzo(a)pyrene	965	3840	0.993	24.22	0.025
Benzo(b)fluoranthene	979	2169	1.49	36.34	0.037
Benzo(k)fluoranthene	981	1220	0.668	16.29	0.017
Chrysene	844	826	1.16	28.29	0.034
Fluoranthene	707	23870	2.31	56.34	0.080
Fluorene	538	26000	0.135	3.29	0.006
Naphthalene	385	61700	0.0456	1.11	0.003
Phenanthrene	596	34300	1.14	27.80	0.047
Pyrene	697	9090	1.29	31.46	0.045
ΣESBTU _{FCV,13}					0.352
Correction Factor for 90th Pe	ercentile				8.5
Calculated SESBTU _{FCV,34}					2.970

SED28

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013.

November 2003.

Assumes TOC of : 4.10%

TABLE B-19 EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

		SED29			
РАН	FCV (ug/g _{oc})	Maxi (ug/g₀c)	Measured Conc. (ug/g dry wt.)	C _{OC} (ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.0505	1.12	0.002
Acenaphthylene	452	2400	0.0505	1.12	0.002
Anthracene	594	1300	0.169	3.76	0.006
Benz(a)anthracene	841	4153	0.687	15.27	0.018
Benzo(a)pyrene	965	3840	0.543	12.07	0.013
Benzo(b)fluoranthene	979	2169	0.882	19.60	0.020
Benzo(k)fluoranthene	981	1220	0.396	8.80	0.009
Chrysene	844	826	0.617	13.71	0.016
Fluoranthene	707	23870	1.34	29.78	0.042
Fluorene	538	26000	0.0505	1.12	0.002
Naphthalene	385	61700	0.0505	1.12	0.003
Phenanthrene	596	34300	0.689	15.31	0.026
Pyrene	697	9090	0.874	19.42	0.028
ΣESBTU _{FCV,13}					0.188
Correction Factor for 90 th Pe	ercentile				8.5
Calculated SESBTU _{FCV,34}					1.586

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks

(ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. November 2003.

Assumes TOC of :

4.50%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.01555	2.32	0.005
Acenaphthylene	452	2400	0.01555	2.32	0.005
Anthracene	594	1300	0.0852	12.72	0.021
Benz(a)anthracene	841	4153	0.376	56.12	0.067
Benzo(a)pyrene	965	3840	0.239	35.67	0.037
Benzo(b)fluoranthene	979	2169	0.433	64.63	0.066
Benzo(k)fluoranthene	981	1220	0.137	20.45	0.021
Chrysene	844	826	0.299	44.63	0.053
Fluoranthene	707	23870	0.535	79.85	0.113
Fluorene	538	26000	0.0802	11.97	0.022
Naphthalene	385	61700	0.0342	5.10	0.013
Phenanthrene	596	34300	0.466	69.55	0.117
Pyrene	697	9090	0.81	120.90	0.173
ΣESBTU _{FCV,13}					0.713
Correction Factor for 90th Per	rcentile				8.5
Calculated SESBTU _{FCV,34}					6.027

SED30

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013.

November 2003.

Assumes TOC of : 0.67%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

		P	Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.0545	1.18	0.002
Acenaphthylene	452	2400	0.0545	1.18	0.003
Anthracene	594	1300	0.171	3.72	0.006
Benz(a)anthracene	841	4153	0.671	14.59	0.017
Benzo(a)pyrene	965	3840	0.503	10.93	0.011
Benzo(b)fluoranthene	979	2169	1.18	25.65	0.026
Benzo(k)fluoranthene	981	1220	0.326	7.09	0.007
Chrysene	844	826	0.579	12.59	0.015
Fluoranthene	707	23870	1.51	32.83	0.046
Fluorene	538	26000	0.0545	1.18	0.002
Naphthalene	385	61700	0.0545	1.18	0.003
Phenanthrene	596	34300	0.757	16.46	0.028
Pyrene	697	9090	0.953	20.72	0.030
ΣESBTU _{FCV,13}					0.197
Correction Factor for 90th Perc	entile				8.5
Calculated SESBTU _{FCV,34}				÷	1.668

SED31

Source:

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013.

November 2003.

Assumes TOC of :

4.60%

EVALUATION OF PAH ESBs FOR BENTHIC INVERTEBRATES 333 Adelaide Avenue Providence, Rhode Island

			Measured		
	FCV	Maxi	Conc.	Coc	
РАН	(ug/g _{oc})	(ug/g _{oc})	(ug/g dry wt.)	(ug/g _{oc})	ESBTU
Acenaphthene	491	33400	0.12	17.14	0.035
Acenaphthylene	452	2400	0.017	2.43	0.005
Anthracene	594	1300	0.438	62.57	0.105
Benz(a)anthracene	841	4153	0.64	91.43	0.109
Benzo(a)pyrene	965	3840	0.497	71.00	0.074
Benzo(b)fluoranthene	979	2169	0.892	127.43	0.130
Benzo(k)fluoranthene	981	1220	0.43	61.43	0.063
Chrysene	844	826	0.551	78.71	0.093
Fluoranthene	707	23870	1.56	222.86	0.315
Fluorene	538	26000	0.156	22.29	0.041
Naphthalene	385	61700	0.0456	6.51	0.017
Phenanthrene	596	34300	1.23	175.71	0.295
Pyrene	697	9090	1.07	152.86	0.219
ΣESBTU _{FCV,13}					1.502
Correction Factor for 90th Percer	ntile		1.		8.5
Calculated SESBTU _{FCV,34}					12.689

SED32

Source:

- 6

USEPA (2003) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. November 2003.

Assumes TOC of :

0.70%

ATTACHMENT C

TEQ CALCULATIONS

TABLE C-1	MMAL TEQ CALCULATIONS	SEDIMENT
	AAM	

2.03E-04			1.98E-04		5.61E-05		5.09E-05			TEQ
	0.0013			0.0013		0.00029		0.00029		Total TCDF
	0.00011			0.00012		0.000045		0.000077		Total TCDD
	0.0054			0.0051		0.00088		0.00068		Total PeCDF
	0.00029			0.00031		0.000056		0.000074		Total PeCDD
	0.0058			0.0055		0.001		0.00078		Total HxCDF
	0.00042			0.00049		0.00013		0.00012		Total HxCDD
	0.00055			0.00062		0.00024		0.00018		Total HpCDF
	0.00026			0.00027		0.00012		0.0002		Total HpCDD
0.000000007	0.00007		0.000000019	0.00019	0.000000019	0.00019	7.5E-09	0.000075	0.0001	OCDF
0.000000048	0.00048		0.000000042	0.00042	0.000000024	0.00024	0.000000075	0.00075	0.0001	ocdd
0.0000029	0.000029		0.0000027	0.000027	0.0000015	0.000015	0.0000018	0.000018	0.1	2,3,7,8-TCDF
0.0000092	0.0000092		0.0000095	0.0000095	0.0000025	0.0000025	0.0000053	0.0000053	*	2,3,7,8-TCDD
0.000085	0.00017		0.00008	0.00016	0.0000215	0.000043	0.000018	0.000036	0.5	2,3,4,7,8-PeCDF
0.000022	0.00022		0.000018	0.00018	0.0000051	0.000051	0.0000036	0.000036	0.1	2,3,4,6,7,8-HxCDF
0.00000275	0.000055		0.000003	0.00006	0.0000014	0.000028	0.0000008	0.000016	0.05	1,2,3,7,8-PeCDF
0.000033	0.000033		0.000031	0.000031	0.0000074	0.0000074	0.0000097	0.0000097		1,2,3,7,8-PeCDD
0.000000355	0.0000071	v	0.00000086	0.0000086	0.00000014	< 0.0000028	0.000000155	< 0.0000031	0.1	1,2,3,7,8,9-HxCDF
0.000002	0.00002		0.0000021	0.000021	0.0000008	0.000008	0.00000082	0.0000082	0.1	1,2,3,7,8,9-HxCDD
0.000026	0.00026		0.000023	0.00023	0.0000059	0.000059	0.0000037	0.000037	0.1	1,2,3,6,7,8-HxCDF
0.0000039	0.000039		0.0000042	0.000042	0.0000012	0.000012	0.0000013	0.000013	0.1	1,2,3,6,7,8-HxCDD
0.000011	0.00011		0.000017	0.00017	0.0000057	0.000057	0.000003	0.00003	0.1	1,2,3,4,7,8-HxCDF
0.0000007	0.000014	v	0.0000016	0.000016	0.00000061	0.0000061	0.00000049	0.0000049	0.1	1,2,3,4,7,8-HxCDD
0.00000047	0.000047		0.00000049	0.000049	0.00000014	0.000014	0.00000000	0.0000099	0.01	1,2,3,4,7,8,9-HpCDF
0.0000021	0.00021		0.0000027	0.00027	0.0000016	0.00016	0.0000002	0.000092	0.01	1,2,3,4,6,7,8-HpCDF
0.0000014	0.00014		0.0000013	0.00013	0.00000059	0.000059	0.0000011	0.00011	0.01	1,2,3,4,6,7,8-HpCDD
Sample*TEF	0-2		Sample*TEF	0-2	Sample*TEF	0-2	Sample*TEF	0-2	TEF Mammal	Parameter
	12/28/2005			12/28/2005		12/28/2005		12/28/2005		
	SD-1004			SD-1003		SD-1002		SD-1001		

Page 1 of 6

SD-1005		S S	ED10		SED11		U) (SED12		Ċ	SED13	
c000	Sample*TEF	10	5-1	Sample*TEF	0-1	Sample*TEF	10	22/2000	Sample*TEF	õ	0-0 5	Sample*TEF
000017	0.00000017	v	7.5E-07	3.75E-09	0.00028	0.0000028	-	0.000068	0.0000068		0.0000022	0.000000022
0.00003	0.0000003	v	7.5E-07	3.75E-09	0.00014	0.0000014		0.000079	0.00000079	V	7.6E-07	3.8E-09
0000041	0.000000041	v	7.5E-07	3.75E-09	0.000018	0.00000018		0.000079	0.00000079	v	7.6E-07	3.8E-09
.0000018	0.00000000	v	7.5E-07	3.75E-08	0.000005	0.00000095	v	7.1E-07	3.55E-08	V	7.6E-07	0.00000038
0.000017	0.0000017	v	7.5E-07	3.75E-08	0.000036	0.0000036	v	7.1E-07	3.55E-08	V	7.6E-07	0.00000038
0.0000047	0.00000047	v	7.5E-07	3.75E-08	0.000025	0.0000025	v	7.1E-07	3.55E-08	V	7.6E-07	0.00000038
0.000033	0.0000033	v	7.5E-07	3.75E-08	0.000086	0.0000086	v	7.1E-07	3.55E-08	V	7.6E-07	0.00000038
0.0000027	0.000000135	v	7.5E-07	3.75E-08	0.000017	0.0000017		0.00008	0.000008	V	7.6E-07	0.00000038
9.1E-07	4.55E-08	v	7.5E-07	3.75E-08	0.00003	0.000003	v	7.1E-07	3.55E-08	V	7.6E-07	0.00000038
0.000003	0.0000015	v	7.5E-07	0.000000375	0.000011	0.000011	v	7.1E-07	0.000000355	V	7.6E-07	0.0000038
0.0000083	0.000000415	v	7.5E-07	1.875E-08	0.000032	0.0000016	v	7.1E-07	1.775E-08	V	7.6E-07	0.000000019
0.000028	0.0000028	v	7.5E-07	3.75E-08	0.00008	0.000008	v	7.1E-07	3.55E-08	V	7.6E-07	0.00000038
0.000023	0.0000115	v	7.5E-07	1.875E-07	0.00043	0.000215		7.3E-07	0.000000365		8.6E-07	0.00000043
9.8E-07	0.0000008	v	1.5E-07	0.000000075	0.0000042	0.0000042	v	1.4E-07	0.00000007	V	1.5E-07	0.000000075
0.0000043	0.00000043	v	1.5E-07	7.5E-09	< 5.7E-07	2.85E-08		2.4E-07	0.000000024		1.9E-07	0.000000019
0.000077	7.7E-09	-	0.0000044	4.4E-10	0.0018	0.00000018		0.00015	0.000000015		0.000016	1.6E-09
0.0000076	7.6E-10	v	0.0000015	7.5E-11	0.000087	8.7E-09		0.00012	0.000000012		0.0000016	1.6E-10
0.000036		v	7.5E-07		0.00063		v	0.0000007			0.0000039	
0.000073		v	7.5E-07		0.00033		v	0.0000007			0.0000011	
0.000048		v	7.5E-07		0.0003		v	0.0000007		V	7.6E-07	
0.00079		۷	7.5E-07		0.0023		v	0.0000007			0.000003	
0.000022		v	7.5E-07		0.00014		v	7.1E-07		V	7.6E-07	
0.00075		v	7.5E-07		0.0055		v	0.0000007			0.0000074	
0.000011		v	1.5E-07		0.000089		v	1.4E-07		V	1.5E-07	
0.00017		v	1.5E-07		0.0016		v	1.4E-07			0.0000031	
	2.39E-05			9.38E-07		2.65E-04			1.13E-05			1.22E-06

P:IW2-mfg/TEXTRON/GORHAM/SupplementSI 2006/SLERA/ TEQCaics xis, SD-AlIData-Mammal

Page 2 of 6

	SED14			SED15		SED16		SED17		SED18	
	6/22/2006		6/2	22/2006		6/22/2006		6/22/2006		6/22/2006	
Parameter	0-1	Sample*TEF		0-1	Sample*TEF	0-1	Sample*TEF	0_5-1	Sample*TEF	0-1	Sample*TEF
1,2,3,4,6,7,8-HpCDD	0.000071	0.00000071	v	0.0000008	0.000000004	0.00048	0.0000048	0.000021	0.00000021	0.00064	0.0000064
1,2,3,4,6,7,8-HpCDF	0.000037	0.00000037	v	0.0000008	0.000000004	0.00057	0.0000057	0.000035	0.00000035	0.001	0.00001
1,2,3,4,7,8,9-HpCDF	0.0000044	0.000000044	v	0.0000008	0.000000004	0.000092	0.0000002	0.0000065	0.000000065	0.00017	0.0000017
1,2,3,4,7,8-HxCDD	0.0000033	0.00000033	v	0.0000008	0.00000004	0.000041	0.0000041	0.0000022	0.00000022	0.000074	0.0000074
1,2,3,4,7,8-HxCDF	< 0.0000017	0.000000085	v	0.0000008	0.00000004	0.00033	0.000033	0.000017	0.0000017	0.00067	0.000067
1,2,3,6,7,8-HxCDD	0.0000068	0.0000068	v	0.0000008	0.00000004	0.00012	0.000012	0.0000057	0.00000057	0.00019	0.000019
1,2,3,6,7,8-HxCDF	0.000026	0.0000026	v	0.0000008	0.00000004	0.00057	0.000057	0.00003	0.000003	0.0013	0.00013
1,2,3,7,8,9-HxCDD	0.0000034	0.00000034	v	0.0000008	0.00000004	0.000056	0.0000056	0.0000033	0.00000033	0.000097	0.0000097
1,2,3,7,8,9-HxCDF	0.0000084	0.00000084	v	0.0000008	0.00000004	0.00019	0.000019	0.000013	0.0000013	0.00039	0.000039
1,2,3,7,8-PeCDD	0.0000048	0.0000048	v	0.0000008	0.0000004	0.000056	0.000056	0.0000033	0.0000033	0.000098	0.000098
1,2,3,7,8-PeCDF	0.0000084	0.00000042	v	0.0000008	0.00000002	< 0.0000034	0.000000085	0.0000081	0.000000405	< 0.0000032	0.0000008
2,3,4,6,7,8-HxCDF	0.000051	0.0000051	v	0.0000008	0.00000004	0.0004	0.00004	0.000075	0.0000075	0.00091	0.000091
1,3,4,7,8-PeCDF	0.00015	0.000075	v	0.0000008	0.0000002	0.0028	0.0014	0.00019	0.000095	0.0062	0.0031
1,3,7,8-TCDD	0.0000014	0.0000014	v	1.6E-07	0.0000008	0.000016	0.000016	0.0000011	0.0000011	0.00003	0.00003
1,3,7,8-TCDF	0.0000076	0.00000076	V	1.6E-07	0.00000008	0.000082	0.0000082	< 1.4E-07	0.000000007	0.00012	0.000012
CDD	0.00047	0.000000047	-	0.0000044	4.4E-10	0.0023	0.00000023	0.00007	0.000000007	0.0027	0.00000027
DCDF	0.000036	3.6E-09	v	0.0000016	8E-11	0.00025	0.000000025	0.000008	8E-10	0.0003	0.0000003
Total HpCDD	0.00014		v	0.0000008		0.00097		0.000044		0.0013	
Total HpCDF	0.000089		v	0.0000008		0.0014		0.000087		0.0028	
otal HxCDD	0.000087		v	0.0000008		0.0014		0.00007		0.0026	
rotal HxCDF	0.00051			0.0000011		0.016		0.0009		0.023	
Total PeCDD	0.000047		v	0.0000008		0.001		0.000041		0.002	
Total PeCDF	0.0013			0.0000031		0.0073		0.0021		0.0096	
rotal TCDD	0.000029		v	1.6E-07		0.00038		0.000023		0.0008	
Total TCDF	0.00042		_	0.0000013		0.0069		0.0006		0.012	
EQ		9.35E-05			1.00E-06		1.66E-03		1.15E-04		3.62E-03

Page 3 of 6

TABLE C-1 MAMMAL TEQ CALCULATIONS SEDIMENT
--

	SED19		SED20		SED21		SED22			SED23	
	6/22/2006		6/22/2006		6/22/2006		6/22/2006		6	22/2006	
Parameter	0-1	Sample*TEF	0_5-1	Sample*TEF	0-1	Sample*TEF	0-1	Sample*TEF		0-1	Sample*TEF
1,2,3,4,6,7,8-HpCDD	0.00027	0.0000027	0.00009	0.000000	0.0000045	0.00000045	0.00011	0.0000011	v	6.8E-07	3.4E-09
1,2,3,4,6,7,8-HpCDF	0.00051	0.0000051	0.0002	0.000002	0.0000065	0.000000065	0.00016	0.0000016	v	6.8E-07	3.4E-09
1,2,3,4,7,8,9-HpCDF	0.00011	0.0000011	0.000041	0.00000041	0.0000012	0.000000012	0.000025	0.00000025	v	6.8E-07	3.4E-09
1,2,3,4,7,8-HxCDD	0.000051	0.0000051	0.000015	0.0000015	< 8.4E-07	0.000000042	< 0.000018	0.000000	v	6.8E-07	0.000000034
1,2,3,4,7,8-HxCDF	0.00039	0.000039	0.00014	0.000014	0.0000034	0.00000034	0.000068	0.0000068	v	6.8E-07	0.000000034
1,2,3,6,7,8-HxCDD	0.00012	0.000012	0.000035	0.0000035	0.0000013	0.00000013	0.000028	0.0000028	v	6.8E-07	0.000000034
1,2,3,6,7,8-HxCDF	0.00062	0.000062	0.00014	0.000014	0.0000073	0.00000073	0.00016	0.000016	v	6.8E-07	0.000000034
1,2,3,7,8,9-HxCDD	0.000059	0.0000059	0.000016	0.0000016	< 8.4E-07	0.000000042	< 0.000018	0.000000	v	6.8E-07	0.000000034
1,2,3,7,8,9-HxCDF	0.00025	0.000025	0.000052	0.0000052	0.0000024	0.00000024	0.000062	0.0000062	v	6.8E-07	0.000000034
1,2,3,7,8-PeCDD	0.000069	0.000069	0.00003	0.00003	9.5E-07	0.0000005	0.000018	0.000018	v	6.8E-07	0.00000034
1,2,3,7,8-PeCDF	< 0.0000027	6.75E-08	< 0.0000012	0.0000003	0.0000023	0.000000115	0.000041	0.00000205	v	6.8E-07	0.000000017
2,3,4,6,7,8-HxCDF	0.00054	0.000054	0.00012	0.000012	0.000016	0.0000016	0.00015	0.000015	v	6.8E-07	0.000000034
2,3,4,7,8-PeCDF	0.0035	0.00175	0.00014	0.00007	0.000044	0.000022	0.0013	0.00065	v	6.8E-07	0.00000017
2,3,7,8-TCDD	0.000021	0.000021	0.0000073	0.0000073	< 1.7E-07	0.000000085	0.0000068	0.0000068	۷	1.4E-07	0.0000007
2,3,7,8-TCDF	0.000058	0.0000058	0.0000033	0.0000003	< 1.7E-07	8.5E-09	0.000027	0.0000027	v	1.4E-07	0.000000007
ocdd	0.00093	0.00000003	0.00024	0.000000024	0.000025	2.5E-09	0.0005	0.00000005		0.0000035	3.5E-10
OCDF	0.0001	0.0000001	0.000082	8.2E-09	0.0000022	2.2E-10	0.000044	4.4E-09	v	0.0000014	7E-11
Total HpCDD	0.00058		0.00019		0.0000088		0.00024		v	6.8E-07	
Total HpCDF	0.0014		0.0005		0.000017		0.00042		v	6.8E-07	
Total HxCDD	0.0016		0.00047		0.000013		0.00031		v	6.8E-07	
Total HxCDF	0.012		0.0046		0.0002		0.0055			0.0000017	
Total PeCDD	0.0014		0.00039		0.0000081		0.0002		v	6.8E-07	
Total PeCDF	0.0088		0.0069		0.00046		0.014			0.0000044	
Total TCDD	0.00051		0.00016		0.0000036		0.00015		v	1.4E-07	
Total TCDF	0.0065		0.0014		0.00014		0.0045			0.0000012	
TEQ		2.06E-03		1.63E-04		2.64E-05		7.31E-04			8.53E-07

	SED24		SED25		SED26		SED27		SED28	
	6/22/2006		6/22/2006		6/22/2006		6/22/2006		6/21/2006	
215	0-1	Sample*TEF	0-1	Sample*TEF	0-1	Sample*TEF	0-1	Sample*TEF	0_5-1	Sample*TEF
8	0.000029	0.00000029	0.00032	0.0000032	0.00002	0.0000002	0.00018	0.0000018	0.00049	0.0000049
DF	0.000029	0.00000029	0.00044	0.0000044	0.0000059	0.000000059	0.00023	0.0000023	0.00064	0.0000064
DF	0.0000045	0.000000045	0.000079	0.00000079	< 0.0000014	0.000000007	0.000036	0.00000036	0.000099	0.00000099
	0.0000013	0.00000013	0.00003	0.00003	< 0.0000014	0.0000007	< 0.000021	0.00000105	0.000039	0.0000039
L	0.000012	0.0000012	0.00031	0.000031	0.0000024	0.00000024	0.00013	0.000013	0.0003	0.00003
	0.0000054	0.00000054	0.000083	0.0000083	0.0000036	0.00000036	0.000037	0.0000037	0.00011	0.000011
	0.000016	0.0000016	0.00038	0.000038	< 0.0000014	0.00000007	0.00015	0.000015	0.00052	0.000052
0	0.0000028	0.00000028	0.000038	0.0000038	0.0000017	0.00000017	0.000022	0.0000022	0.000068	0.0000068
L L	0.000007	0.000007	0.00018	0.000018	< 0.0000014	0.0000007	0.000075	0.0000075	0.0002	0.00002
-	0.0000024	0.0000024	0.000063	0.000063	< 0.0000014	0.000007	0.000029	0.000029	0.000076	0.000076
	0.0000055	0.000000275	< 0.0000049	1.225E-07	< 0.0000014	0.000000035	0.000035	0.00000175	< 0.000018	0.00000045
JF DF	0.000012	0.0000012	0.00031	0.000031	< 0.0000014	0.0000007	0.00018	0.000018	0.00042	0.000042
	0.000095	0.0000475	0.0022	0.0011	0.0000017	0.00000085	0.00091	0.000455	0.0031	0.00155
	7.2E-07	0.00000072	0.000018	0.000018	< 2.8E-07	0.00000014	0.0000081	0.0000081	0.000022	0.000022
	< 2.6E-07	0.000000013	0.000053	0.0000053	0.0000016	0.00000016	< 0.0000042	0.00000021	0.000084	0.0000084
	0.00017	0.000000017	0.0019	0.00000019	0.000043	4.3E-09	0.00083	0.00000003	0.0029	0.00000029
	0.000017	1.7E-09	0.00017	0.000000017	0.0000062	6.2E-10	0.00013	0.000000013	0.00021	0.000000021
***	0.000058		0.00065		0.000033		0.00038		0.001	
	0.000066		0.0011		0.0000059		0.00051		0.0016	
	0.00005		0.0011		0.000064		0.00045		0.0014	
	0.00049		0.012		0.0000054		0.0048		0.01	
	0.000029		0.00091		0.000022		0.00024		0.00095	
	0.0011		0.012		0.0000061		0.0098		0.024	
	0.000017		0.0005		0.000021		0.00013		0.00042	
	0.00032		0.0069		0.000021		0.003		0.0088	
		5.72E-05		1.33E-03		3.21E-06		5.59E-04		1.84E-03

2.36E-05		1.23E-03		5.32E-05		2.41E-04		TEQ
	0.00016		0.015		0.00017		0.0037	Total TCDF
	0.000012		0.00064		0.000021		0.00027	Total TCDD
	0.0005		0.04		0.00059		0.014	Total PeCDF
	0.000025		0.0016		0.000055		0.00053	Total PeCDD
	0.00032		0.025		0.00038		0.0083	Total HxCDF
	0.000051		0.002		0.00013		6000.0	Total HxCDD
	0.00012		0.002		0.000094		0.00087	Total HpCDF
	0.00017		0.00094		0.00013		0.0004	Total HpCDD
0.00000008	0.00008	0.000000019	0.00019	3.7E-09	0.000037	0.000000017	0.00017	OCDF
0.000000081	0.00081	0.00000016	0.0016	0.000000054	0.00054	0.000000084	0.00084	ocdd
0.0000006	0.000006	0.0000076	0.000076	0.00000047	0.0000047	0.0000032	0.000032	2,3,7,8-TCDF
0.00000052	5.2E-07	0.000033	0.000033	0.00000062	6.2E-07	0.000012	0.000012	2,3,7,8-TCDD
0.000014	0.000028	0.0008	0.0016	0.000038	0.000076	0.00008	0.00016	2,3,4,7,8-PeCDF
0.0000012	0.000012	0.000064	0.00064	0.0000013	0.000013	0.000023	0.00023	2,3,4,6,7,8-HxCDF
1.825E-08	< 7.3E-07	0.0000115	0.00023	1.75E-08	< 0.0000007	0.000000045	< 0.0000018	1,2,3,7,8-PeCDF
0.0000022	0.0000022	0.00012	0.00012	0.0000052	0.0000052	0.000041	0.000041	1,2,3,7,8-PeCDD
0.00000053	0.0000053	0.000042	0.00042	0.0000096	0.0000096	0.000014	0.00014	1,2,3,7,8,9-HxCDF
0.00000028	0.0000028	0.0000078	0.000078	0.00000072	0.0000072	0.0000031	0.000031	1,2,3,7,8,9-HxCDD
0.0000012	0.000012	0.000075	0.00075	0.0000014	0.000014	0.000029	0.00029	1,2,3,6,7,8-HxCDF
0.00000048	0.0000048	0.000015	0.00015	0.0000012	0.000012	0.000007	0.00007	1,2,3,6,7,8-HxCDD
0.0000011	0.000011	0.000032	0.00032	0.0000018	0.000018	0.000021	0.00021	1,2,3,4,7,8-HxCDF
0.00000018	0.0000018	0.0000055	0.000055	0.00000034	0.0000034	0.0000018	0.000018	1,2,3,4,7,8-HxCDD
0.000000051	0.0000051	0.0000017	0.00017	0.00000061	0.0000061	0.0000069	0.000069	1,2,3,4,7,8,9-HpCDF
0.0000004	0.00004	0.0000071	0.00071	0.0000036	0.000036	0.0000035	0.00035	1,2,3,4,6,7,8-HpCDF
0.00000074	0.000074	0.0000043	0.00043	0.0000066	0.000066	0.0000018	0.00018	1,2,3,4,6,7,8-HpCDD
Sample*TEF	0_5-1	Sample*TEF	0 5-1	Sample*TEF	0_5-1	Sample*TEF	0_5-1	Parameter
	6/21/2006		6/21/2006		6/21/2006		6/21/2006	
	SED32		SED31		SED30		SED29	

TABLE C-2 BIRD TEQ CALCULATIC SEDIMENT	TABLE C-2	BIRD TEQ CALCULATIONS	SEDIMENT
--	-----------	------------------------------	----------

Parameter TEI		1 JUDB/JUDE							
Parameter TEI		0007107171		CUU2102121		0007107171			
	r Bird	0-2	Sample*TEF	0-2	Sample*TEF	0-2	Sample*TEF	0-2	Sample*TEF
,2,3,4,6,7,8-HpCDD	0.001	0.00011	0.00000011	0.000059	0.000000059	0.00013	0.00000013	0.00014	0.00000014
.2.3.4.6.7.8-HpCDF	0.01	0.000092	0.0000002	0.00016	0.0000016	0.00027	0.0000027	0.00021	0.0000021
,2,3,4,7,8,9-HpCDF	0.01	0.0000099	0.00000000	0.000014	0.00000014	0.000049	0.00000049	0.000047	0.00000047
,2,3,4,7,8-HxCDD	0.05	0.0000049	0.000000245	0.0000061	0.000000305	0.000016	0.000008	< 0.000014	0.00000035
,2,3,4,7,8-HxCDF	0.1	0.00003	0.00003	0.000057	0.0000057	0.00017	0.000017	0.00011	0.000011
,2,3,6,7,8-HxCDD	0.01	0.000013	0.00000013	0.000012	0.00000012	0.000042	0.00000042	0.000039	0.00000039
,2,3,6,7,8-HxCDF	0.1	0.000037	0.0000037	0.000059	0.0000059	0.00023	0.000023	0.00026	0.000026
,2,3,7,8,9-HxCDD	0.1	0.0000082	0.0000082	0.000008	0.000008	0.000021	0.0000021	0.00002	0.000002
,2,3,7,8,9-HxCDF	0.1	< 0.0000031	0.000000155	< 0.0000028	0.00000014	0.0000086	0.00000086	< 0.0000071	0.000000355
,2,3,7,8-PeCDD	1	0.0000097	0.0000097	0.0000074	0.0000074	0.000031	0.000031	0.000033	0.000033
,2,3,7,8-PeCDF	0.1	0.000016	0.0000016	0.000028	0.0000028	0.00006	0.000006	0.000055	0.0000055
1,3,4,6,7,8-HxCDF	0.1	0.000036	0.0000036	0.000051	0.0000051	0.00018	0.000018	0.00022	0.000022
1,3,4,7,8-PeCDF	1	0.000036	0.000036	0.000043	0.000043	0.00016	0.00016	0.00017	0.00017
1,3,7,8-TCDD	-	0.0000053	0.0000053	0.0000025	0.0000025	0.0000095	0.0000095	0.0000092	0.0000092
1,3,7,8-TCDF	-	0.000018	0.000018	0.000015	0.000015	0.000027	0.000027	0.000029	0.000029
DCDD	0.0001	0.00075	0.000000075	0.00024	0.000000024	0.00042	0.000000042	0.00048	0.000000048
JCDF	0.0001	0.000075	7.5E-09	0.00019	0.000000019	0.00019	0.000000019	0.00007	0.000000007
otal HpCDD		0.0002		0.00012		0.00027		0.00026	
⁻ otal HpCDF		0.00018		0.00024		0.00062		0.00055	
otal HxCDD		0.00012		0.00013		0.00049		0.00042	
Total HxCDF		0.00078		0.001		0.0055		0.0058	
otal PeCDD		0.000074		0.000056		0.00031		0.00029	
otal PeCDF		0.00068		0.00088		0.0051		0.0054	
otal TCDD		0.000077		0.000045		0.00012		0.00011	
otal TCDF		0.00029		0.00029		0.0013		0.0013	
Ēa			8.35E-05		9.06E-05		2.99E-04		3.12E-04

-0.5 Sample*TEF 0.0000022 2.2E-09 7.6E-07 3.8E-09
EF 0-0 068 0.0(079 779
Sample*TEF Sample*TEF 0.00000006 9 0.0000007 7 1.775E-C
0_5-1 0.000068 0.000079 0.000079 0.000079 < 7.1E-07 < 7.1E-07
Sample*TEF 0.00000028 0.0000014 0.00000018 0.00000018 0.00000018 0.00000018
0-1 0.00028 0.00014 0.000018 0.0000055 0.000036
Sample*TEF 3.75E-10 3.75E-09 3.75E-09 1.875E-08 3.75E-08
0.5-1 5 7.5E-07 7.5E-07 7.5E-07 7.5E-07 7.5E-07 7.5E-07
017 A 017 A 017 A 017 A 0177 A
Sample*TI 0.000001 0.000000 0.000000000000000000
0-2 0.000017 0.00003 0.0000041 < 0.0000018 0.0000018
senting a literation of the sector of the se

P:\W2-mfg)TEXTRON\GORHAM\SupplementSI 2006\SLERA\ TEQCalcs.xls, SD-AllData-Bird

Page 2 of 6

7/28/2006

	SFD14			SFD15		SED16		SED17		SED18	
	6/22/2006		6/2	22/2006		6/22/2006		6/22/2006		6/22/2006	
Parameter	0-1	Sample*TEF		0-1	Sample*TEF	0-1	Sample*TEF	0_5-1	Sample*TEF	0-1	Sample*TEF
1,2,3,4,6,7,8-HpCDD	0.000071	0.000000071	v	0.0000008	4E-10	0.00048	0.00000048	0.000021	0.000000021	0.00064	0.00000064
1,2,3,4,6,7,8-HpCDF	0.000037	0.00000037	v	0.0000008	0.000000004	0.00057	0.0000057	0.000035	0.00000035	0.001	0.00001
1,2,3,4,7,8,9-HpCDF	0.0000044	0.000000044	v	0.0000008	0.000000004	0.000092	0.00000092	0.0000065	0.000000065	0.00017	0.0000017
1,2,3,4,7,8-HxCDD	0.0000033	0.000000165	v	0.0000008	0.00000002	0.000041	0.00000205	0.0000022	0.00000011	0.000074	0.0000037
1,2,3,4,7,8-HxCDF	< 0.0000017	0.000000085	v	0.0000008	0.00000004	0.00033	0.000033	0.000017	0.0000017	0.00067	0.000067
1,2,3,6,7,8-HxCDD	0.0000068	0.00000068	v	0.0000008	0.000000004	0.00012	0.0000012	0.0000057	0.000000057	0.00019	0.0000019
1,2,3,6,7,8-HxCDF	0.000026	0.0000026	v	0.0000008	0.00000004	0.00057	0.000057	0.00003	0.000003	0.0013	0.00013
1,2,3,7,8,9-HxCDD	0.0000034	0.00000034	v	0.0000008	0.00000004	0.000056	0.0000056	0.0000033	0.00000033	0.000097	0.000007
1,2,3,7,8,9-HxCDF	0.0000084	0.00000084	v	0.0000008	0.00000004	0.00019	0.000019	0.000013	0.0000013	0.00039	0.000039
1,2,3,7,8-PeCDD	0.0000048	0.0000048	v	0.0000008	0.0000004	0.000056	0.000056	0.0000033	0.0000033	0.000098	0.000098
1,2,3,7,8-PeCDF	0.0000084	0.00000084	v	0.0000008	0.00000004	< 0.0000034	0.00000017	0.0000081	0.00000081	< 0.0000032	0.00000016
2,3,4,6,7,8-HxCDF	0.000051	0.0000051	v	0.0000008	0.00000004	0.0004	0.00004	0.000075	0.0000075	0.00091	0.000091
2,3,4,7,8-PeCDF	0.00015	0.00015	v	0.0000008	0.0000004	0.0028	0.0028	0.00019	0.00019	0.0062	0.0062
2,3,7,8-TCDD	0.0000014	0.0000014	v	1.6E-07	0.00000008	0.000016	0.000016	0.0000011	0.0000011	0.00003	0.00003
2,3,7,8-TCDF	0.0000076	0.0000076	v	1.6E-07	0.00000008	0.000082	0.000082	< 1.4E-07	0.00000007	0.00012	0.00012
DCDD	0.00047	0.000000047		0.0000044	4.4E-10	0.0023	0.00000023	0.00007	0.000000007	0.0027	0.00000027
DCDF	0.000036	3.6E-09	v	0.0000016	8E-11	0.00025	0.000000025	0.000008	8E-10	0.0003	0.0000003
Fotal HpCDD	0.00014		v	0.0000008		0.00097		0.000044		0.0013	
Total HpCDF	0.000089		v	0.0000008		0.0014		0.000087		0.0028	
Fotal HxCDD	0.000087		v	0.0000008		0.0014		0.00007		0.0026	
Fotal HxCDF	0.00051			0.0000011		0.016		0.0009		0.023	
Total PeCDD	0.000047		v	0.0000008		0.001		0.000041		0.002	
Total PeCDF	0.0013			0.0000031		0.0073		0.0021		0.0096	
Total TCDD	0.000029		v	1.6E-07		0.00038		0.000023		0.0008	
Fotal TCDF	0.00042			0.0000013		0.0069		0.0006		0.012	
TEQ		1.74E-04			1.23E-06		3.12E-03		2.10E-04		6.80E-03

	Sample*TEF	3.4E-10	3.4E-09	3.4E-09	0.000000017	0.000000034	3.4E-09	0.000000034	0.000000034	0.000000034	0.00000034	0.000000034	0.000000034	0.00000034	0.00000007	0.00000007	3.5E-10	7E-11									1.05E-06
SED23	0-1	6.8E-07	6.8E-07	6.8E-07	6.8E-07	6.8E-07	6.8E-07	6.8E-07	6.8E-07	6.8E-07	6.8E-07	6.8E-07	6.8E-07	6.8E-07	1.4E-07	1.4E-07	0.0000035	0.0000014	6.8E-07	6.8E-07	6.8E-07	0.0000017	6.8E-07	0.0000044	1.4E-07	0.0000012	
	ample*TEF	0.00000011 <	0.0000016	0.00000025	0.00000045	0.0000068	0.00000028	0.000016	> 0.0000009	0.0000062	0.000018	0.0000041	0.000015	0.0013	0.0000068	0.000027	0.00000005	4.4E-09	<u> </u>	v	•		v 				1.40E-03
SED22 6/22/2006	0-1 S	0.00011	0.00016	0.000025	< 0.000018	0.000068	0.000028	0.00016	< 0.000018	0.000062	0.000018	0.000041	0.00015	0.0013	0.0000068	0.000027	0.0005	0.000044	0.00024	0.00042	0.00031	0.0055	0.0002	0.014	0.00015	0.0045	
	Sample*TEF	4.5E-09	0.00000065	0.000000012	0.000000021	0.00000034	0.000000013	0.00000073	0.000000042	0.00000024	0.0000095	0.00000023	0.0000016	0.000044	0.000000085	0.000000085	2.5E-09	2.2E-10									4.84E-05
SED21	0-1	0.0000045	0.0000065	0.0000012	< 8.4E-07	0.0000034	0.0000013	0.0000073	< 8.4E-07	0.0000024	9.5E-07	0.0000023	0.000016	0.000044	< 1.7E-07	< 1.7E-07	0.000025	0.0000022	0.0000088	0.000017	0.000013	0.0002	0.0000081	0.00046	0.0000036	0.00014	
	Sample*TEF	0.0000000	0.000002	0.00000041	0.00000075	0.000014	0.00000035	0.000014	0.0000016	0.0000052	0.00003	00000000	0.000012	0.00014	0.0000073	0.000003	.000000024	8.2E-09									2.37E-04
				0								0					0										
SED20	0 5-1	0.00009	0.0002	0.000041 0	0.000015 (0.00014	0.000035	0.00014	0.000016	0.000052	0.00003	< 0.0000012 0	0.00012	0.00014	0.0000073	0.000003	0.00024 0	0.000082	0.00019	0.0005	0.00047	0.0046	0.00039	0.0069	0.00016	0.0014	
SED20 erozionne	Sample*TEF 0 5-1	0.00000027 0.00009	0.0000051 0.0002	0.0000011 0.000041 0	0.00000255 0.000015 0	0.000039 0.00014	0.0000012 0.000035	0.000062 0.00014	0.0000059 0.000016	0.000025 0.000052	0.000069 0.00003	0.000000135 < 0.0000012 0	0.000054 0.00012	0.0035 0.00014	0.000021 0.0000073	0.000058 0.0000093	0.00000093 0.00024 0	0.0000001 0.000082	0.00019	0.0005	0.00047	0.0046	0.00039	0.0069	0.00016	0.0014	3.84E-03
SED19 SED20	0.22/2000 0-1 Sample*TEF 0 5-1	0.00027 0.0000027 0.00009	0.00051 0.0000051 0.0002	0.00011 0.0000011 0.000041 0	0.000051 0.00000255 0.000015 0	0.00039 0.000039 0.00014	0.00012 0.0000012 0.000035	0.00062 0.000062 0.00014	0.000059 0.0000059 0.000016	0.00025 0.00025 0.000052	0.000069 0.000069 0.00003	< 0.0000027 0.000000135 < 0.0000012 0	0.00054 0.000054 0.00012	0.0035 0.0035 0.00014	0.000021 0.000021 0.0000073	0.000058 0.000058 0.000003	0.00093 0.00000093 0.00024 0	0.0001 0.0000001 0.000082	0.00058 0.00019	0.0014 0.0005	0.0016 0.00047	0.012 0.0046	0.0014 0.00039	0.0088 0.0069	0.00051 0.00016	0.0065 0.0014	3.84E-03

		Sample*TEF	0.00000049	0.0000064	0.00000099	0.00000195	0.00003	0.0000011	0.000052	0.0000068	0.00002	0.000076	0.000000	0.000042	0.0031	0.000022	0.000084	0.00000029	0.000000021									3.44E-03
SED28	6/21/2006	0_5-1	0.00049	0.00064	0.000099	0.000039	0.0003	0.00011	0.00052	0.000068	0.0002	0.000076	< 0.000018	0.00042	0.0031	0.000022	0.000084	0.0029	0.00021	0.001	0.0016	0.0014	0.01	0.00095	0.024	0.00042	0.0088	
		Sample*TEF	0.00000018	0.0000023	0.00000036	0.000000525	0.000013	0.00000037	0.000015	0.0000022	0.0000075	0.000029	0.0000035	0.000018	0.00091	0.0000081	0.0000021	0.00000083	0.000000013									1.01E-03
SED27	6/22/2006	0-1	0.00018	0.00023	0.000036	< 0.000021	0.00013	0.000037	0.00015	0.000022	0.000075	0.000029	0.000035	0.00018	0.00091	0.0000081	< 0.0000042	0.00083	0.00013	0.00038	0.00051	0.00045	0.0048	0.00024	0.0098	0.00013	0.003	
		Sample*TEF	0.00000002	0.000000059	0.00000007	0.000000035	0.00000024	0.00000036	0.0000007	0.00000017	0.0000007	0.0000007	0.0000007	0.0000007	0.0000017	0.00000014	0.0000016	4.3E-09	6.2E-10									4.99E-06
SED26	6/22/2006	0-1	0.00002	0.0000059	< 0.0000014	< 0.0000014	0.0000024	0.0000036	< 0.0000014	0.0000017	< 0.0000014	< 0.0000014	< 0.0000014	< 0.0000014	0.0000017	< 2.8E-07	0.0000016	0.000043	0.0000062	0.000033	0.0000059	0.000064	0.0000054	0.000022	0.0000061	0.000021	0.000021	
		Sample*TEF	0.00000032	0.0000044	0.00000079	0.0000015	0.000031	0.00000083	0.000038	0.0000038	0.000018	0.000063	0.000000245	0.000031	0.0022	0.000018	0.000053	0.00000019	0.000000017									2.46E-03
SED25	6/22/2006	0-1	0.00032	0.00044	0.000079	0.00003	0.00031	0.000083	0.00038	0.000038	0.00018	0.000063	< 0.0000049	0.00031	0.0022	0.000018	0.000053	0.0019	0.00017	0.00065	0.0011	0.0011	0.012	0.00091	0.012	0.0005	0.0069	
	1	Sample*TEF	0.000000029	0.00000029	0.000000045	0.000000065	0.0000012	0.000000054	0.0000016	0.00000028	0.000007	0.0000024	0.00000055	0.0000012	0.000055	0.00000072	0.00000013	0.000000017	1.7E-09									1.04E-04
SED24	6/22/2006	0-1	0.000029	0.000029	0.0000045	0.0000013	0.000012	0.0000054	0.000016	0.0000028	0.000007	0.0000024	0.0000055	0.000012	0.000095	7.2E-07	< 2.6E-07	0.00017	0.000017	0.000058	0.000066	0.00005	0.00049	0.000029	0.0011	0.000017	0.00032	
		Parameter	1,2,3,4,6,7,8-HpCDD	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	1,2,3,4,7,8-HxCDD	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDD	1,2,3,6,7,8-HxCDF	1,2,3,7,8,9-HxCDD	1,2,3,7,8,9-HxCDF	1,2,3,7,8-PeCDD	1,2,3,7,8-PeCDF	2,3,4,6,7,8-HxCDF	2,3,4,7,8-PeCDF	2,3,7,8-TCDD	2,3,7,8-TCDF	ocdd	OCDF	Total HpCDD	Total HpCDF	Total HxCDD	Total HxCDF	Total PeCDD	Total PeCDF	Total TCDD	Total TCDF	TEQ

TABLE C-2 BIRD TEQ CALCULATIONS SEDIMENT	
--	--

							×	
4.18E-05		2.09E-03		9.36E-05		3.41E-04		TEQ
	0.00016		0.015		0.00017		0.0037	Total TCDF
	0.000012		0.00064		0.000021		0.00027	Total TCDD
	0.0005		0.04		0.00059		0.014	Total PeCDF
	0.000025		0.0016		0.000055		0.00053	Total PeCDD
	0.00032		0.025		0.00038		0.0083	Total HxCDF
	0.000051		0.002		0.00013		6000.0	Total HxCDD
	0.00012		0.002		0.000094		0.00087	Total HpCDF
	0.00017		0.00094		0.00013		0.0004	Total HpCDD
0.000000008	0.00008	0.000000019	0.00019	3.7E-09	0.000037	0.000000017	0.00017	OCDF
0.000000081	0.00081	0.00000016	0.0016	0.000000054	0.00054	0.000000084	0.00084	OCDD
0.00006	0.000006	0.000076	0.000076	0.0000047	0.0000047	0.000032	0.000032	2,3,7,8-TCDF
0.00000052	5.2E-07	0.000033	0.000033	0.00000062	6.2E-07	0.000012	0.000012	2,3,7,8-TCDD
0.000028	0.000028	0.0016	0.0016	0.000076	0.000076	0.00016	0.00016	2,3,4,7,8-PeCDF
0.0000012	0.000012	0.000064	0.00064	0.0000013	0.000013	0.000023	0.00023	2,3,4,6,7,8-HxCDF
3.65E-08	< 7.3E-07	0.000023	0.00023	0.000000035	< 0.0000007	0.00000000	< 0.0000018	1,2,3,7,8-PeCDF
0.0000022	0.0000022	0.00012	0.00012	0.0000052	0.0000052	0.000041	0.000041	1,2,3,7,8-PeCDD
0.00000053	0.0000053	0.000042	0.00042	0.0000096	0.0000096	0.000014	0.00014	1,2,3,7,8,9-HxCDF
0.00000028	0.0000028	0.0000078	0.000078	0.00000072	0.0000072	0.0000031	0.000031	1,2,3,7,8,9-HxCDD
0.0000012	0.000012	0.000075	0.00075	0.0000014	0.000014	0.000029	0.00029	1,2,3,6,7,8-HxCDF
0.000000048	0.0000048	0.0000015	0.00015	0.00000012	0.000012	0.000007	0.00007	1,2,3,6,7,8-HxCDD
0.0000011	0.000011	0.000032	0.00032	0.0000018	0.000018	0.000021	0.00021	1,2,3,4,7,8-HxCDF
0.00000000	0.0000018	0.00000275	0.000055	0.00000017	0.0000034	6000000000	0.000018	1,2,3,4,7,8-HxCDD
0.000000051	0.0000051	0.0000017	0.00017	0.000000061	0.0000061	0.00000069	0.000069	1,2,3,4,7,8,9-HpCDF
0.0000004	0.00004	0.0000071	0.00071	0.0000036	0.000036	0.0000035	0.00035	1,2,3,4,6,7,8-HpCDF
0.000000074	0.000074	0.00000043	0.00043	0.00000066	0.000066	0.00000018	0.00018	1,2,3,4,6,7,8-HpCDD
Sample*TEF	0_5-1	Sample*TEF	0_5-1	Sample*TEF	0 5-1	Sample*TEF	0 5-1	Parameter
	6/21/2006		6/21/2006		6/21/2006		6/21/2006	
	SED32		SED31		SED30		SED29	

TABLE C-3	FISH TEQ CALCULATIONS	SEDIMENT
-----------	-----------------------	----------

1.98E-04			1.96E-04		5.55E-05		4.90E-05			TEQ
	0.0013			0.0013		0.00029		0.00029		Total TCDF
	0.00011			0.00012		0.000045		0.000077		Total TCDD
	0.0054			0.0051		0.00088		0.00068		Total PeCDF
	0.00029			0.00031		0.000056		0.000074		Total PeCDD
	0.0058			0.0055		0.001		0.00078		Total HxCDF
	0.00042			0.00049		0.00013		0.00012		Total HxCDD
	0.00055			0.00062		0.00024		0.00018		Total HpCDF
	0.00026			0.00027		0.00012		0.0002		Total HpCDD
0.000000007	0.00007	19	0.0000000.0	0.00019	0.000000019	0.00019	7.5E-09	0.000075	0.0001	OCDF
0.000000048	0.00048	42	0.0000000	0.00042	0.00000024	0.00024	0.000000075	0.00075	0.0001	OCDD
0.00000145	0.000029	35	0.0000013	0.000027	0.00000075	0.000015	0.000009	0.000018	0.05	2,3,7,8-TCDF
0.0000092	0.0000092	95	0.00000	0.0000095	0.0000025	0.0000025	0.0000053	0.0000053	-	2,3,7,8-TCDD
0.000085	0.00017	80	0.000	0.00016	0.0000215	0.000043	0.000018	0.000036	0.5	2,3,4,7,8-PeCDF
0.000022	0.00022	18	0.0000.0	0.00018	0.0000051	0.000051	0.0000036	0.000036	0.1	2,3,4,6,7,8-HxCDF
0.00000275	0.000055	03	0.0000(0.00006	0.0000014	0.000028	0.000008	0.000016	0.05	1,2,3,7,8-PeCDF
0.000033	0.000033	31	0.0000	0.000031	0.0000074	0.0000074	0.0000097	0.0000097	~	1,2,3,7,8-PeCDD
0.000000355	< 0.0000071	80	0.000000	0.0000086	0.00000014	< 0.0000028	0.000000155	< 0.0000031	0.1	1,2,3,7,8,9-HxCDF
0.0000002	0.00002	2	0.000000	0.000021	0.0000008	0.000008	0.000000082	0.0000082	0.01	1,2,3,7,8,9-HxCDD
0.000026	0.00026	23	0.00002	0.00023	0.0000059	0.000059	0.0000037	0.000037	0.1	1,2,3,6,7,8-HxCDF
0.00000039	0.000039	42	0.000000	0.000042	0.00000012	0.000012	0.00000013	0.000013	0.01	1,2,3,6,7,8-HxCDD
0.000011	0.00011	17	0.0000	0.00017	0.0000057	0.000057	0.00003	0.00003	0.1	1,2,3,4,7,8-HxCDF
0.0000035	< 0.000014	8	0.0000(0.000016	0.00000305	0.0000061	0.00000245	0.0000049	0.5	1,2,3,4,7,8-HxCDD
0.00000047	0.000047	1 9	0.000000	0.000049	0.00000014	0.000014	0.00000000	0.0000099	0.01	1,2,3,4,7,8,9-HpCDF
0.0000021	0.00021	27	0.000002	0.00027	0.0000016	0.00016	0.0000002	0.000092	0.01	1,2,3,4,6,7,8-HpCDF
0.00000014	0.00014	13	0.000000.0	0.00013	0.00000059	0.000059	0.00000011	0.00011	0.001	1,2,3,4,6,7,8-HpCDD
Sample*TEF	0-2	11.	Sample*TEF	0-2	Sample*TEF	0-2	Sample*TEF	0-2	TEF Fish	Parameter
	12/28/2005			12/28/2005		12/28/2005		12/28/2005		
	SD-1004			SD-1003		SD-1002		SD-1001	「「「「「「」」」	

Page 1 of 6

TABLE C-3	FEQ CALCULATIONS	SEDIMENT	
TAE	FISH TEQ C	SEC	

Parameter 0-2 Sample*TEF 0-1 1,2,3,4,6,7,8-HpCDD 0.0000017 7.5E-07 3.75E-10 0.0 1,2,3,4,6,7,8-HpCDF 0.0000017 7.5E-07 3.75E-09 0.0 1,2,3,4,6,7,8-HpCDF 0.00000017 7.5E-07 3.75E-09 0.0 1,2,3,4,6,7,8-HpCDF 0.000000017 7.5E-07 3.75E-09 0.0 1,2,3,4,7,8,9-HpCDF 0.000000017 7.5E-07 3.75E-09 0.0 1,2,3,4,7,8-HxCDF 0.00000017 7.5E-07 3.75E-09 0.0	EF 0 5-1 017 < 7.5E 003 < 7.5E 045 7.5E 041 7.5E 045 7.5E 045 7.5E 045 7.5E 047 7.5E 033 7.5E 033 7.5E 033 7.5E 033 7.5E	Sample*TEF 07 3.75E-10 07 3.75E-09 07 3.75E-09 07 3.75E-09 07 1.875E-09 07 3.75E-09	0-1 0.00028 0.000018 0.0000095 0.0000095 0.0000036 0.0000036 0.0000086	Sample*TEF 0.00000028 0.00000014 0.00000018 0.00000018 0.0000036 0.00000036 0.00000025 0.00000025 0.00000025	0_5-1 0.000068 0.000075 0.000075 <7.1E-07	Sample*TEF 0.00000068		0-0 5 0 0000022	Sample*TEF
1,2,3,4,6,7,8-HpCDD 0.000017 0.00000017 7.5E-07 3.75E-10 0.0 1,2,3,4,6,7,8-HpCDF 0.00003 0.0000033 < 7.5E-07 3.75E-09 0.0 1,2,3,4,6,7,8-HpCDF 0.0000031 0.00000033 < 7.5E-07 3.75E-09 0.0 1,2,3,4,7,8,9-HpCDF 0.00000041 7.5E-07 3.75E-09 0.0 1,2,3,4,7,8-HxCDD 0.00000045 7.5E-07 3.75E-09 0.0 1,2,3,4,7,8-HxCDD 0.00000045 7.5E-07 3.75E-09 0.0 1,2,3,4,7,8-HxCDD 0.00000047 7.5E-07 3.75E-09 0.0 1,2,3,6,7,8-HxCDD 0.00000047 7.5E-07 3.75E-09 0.0 1,2,3,6,7,8-HxCDD 0.00000047 7.5E-07 3.75E-08 0.0	017 < 7.5E 003 7.5E 041 7.5E 045 7.5E 047 7.5E 047 7.5E 033 7.5E 033 7.5E 033 7.5E 033 7.5E 033 7.5E 033 7.5E	07 3.75E-10 07 3.75E-09	0.00028 0.00018 0.000018 0.000095 0.000036 0.000025 0.000025	0.0000028 0.0000014 0.0000018 0.00000475 0.0000036 0.0000036 0.0000025 0.0000086	0.000068 0.000075 0.000075	0.000000068		0.0000022	
1,2,3,4,6,7,8-HpCDF 0.00003 0.0000003 < 7.5E-07 3.75E-09 0.0 1,2,3,4,7,8,9-HpCDF 0.0000041 0.00000041 7.5E-07 3.75E-09 0.0 1,2,3,4,7,8,9-HpCDF 0.00000041 7.5E-07 3.75E-09 0.0 1,2,3,4,7,8-HxCDD 0.00000045 7.5E-07 3.75E-09 0.0 1,2,3,4,7,8-HxCDD 0.00000047 7.5E-07 3.75E-09 0.0 1,2,3,4,7,8-HxCDD 0.00000047 7.5E-07 3.75E-08 0.0 1,2,3,6,7,8-HxCDD 0.00000047 7.5E-07 3.75E-08 0.0 1,2,3,6,7,8-HxCDD 0.00000047 7.5E-07 3.75E-08 0.0	003 7.5E- 041 7.5E- 045 7.5E- 047 7.5E- 047 7.5E- 043 7.5E- 044 7.5E- 033 7.5E- 033 7.5E- 033 7.5E- 033 7.5E- 033 7.5E-	07 3.75E-09 07 3.75E-09 07 3.75E-09 07 3.75E-08 07 3.75E-08 07 3.75E-08 07 3.75E-09 07 3.75E-09 07 3.75E-09 07 3.75E-09	0.00014 0.000018 0.0000095 0.000036 0.000036 0.000086 0.000086	0.0000014 0.00000175 0.00000475 0.0000036 0.0000036 0.0000025 0.0000086	0.000079 0.000075				2.2E-09
1,2,3,4,7,8,9-HpCDF 0.0000041 0.0000041 0.0000041 0.000 1,2,3,4,7,8-HxCDD 0.0000018 0.00000045 7.5E-07 3.75E-09 0.000 1,2,3,4,7,8-HxCDF 0.0000018 0.00000045 7.5E-07 1.875E-07 0.000 1,2,3,4,7,8-HxCDF 0.00000017 7.5E-07 3.75E-08 0.00 1,2,3,6,7,8-HxCDD 0.00000047 7.5E-07 3.75E-08 0.00 1,2,3,6,7,8-HxCDD 0.000000047 7.5E-07 3.75E-09 0.00	041 < 7.5E- 045 < 7.5E- 017 < 7.5E- 047 < 7.5E- 033 < 7.5E- 033 < 7.5E- 038 < 7.5E-	07 3.75E-09 07 3.75E-08	0.000018 0.0000095 0.000036 0.000025 0.000086 0.000086	0.00000018 0.00000475 0.0000036 0.0000025 0.0000025 0.0000026	 0.000079 7.1E-07 	0.00000079	v	7.6E-07	3.8E-09
1,2,3,4,7,8-HxCDD < 0.0000048 < 7.5E-07 1.875E-07 0.000 1,2,3,4,7,8-HxCDF 0.0000017 0.0000017 <	045 < 7.5E- 017 < 7.5E- 047 < 7.5E- 033 < 7.5E- 038 < 7.5E- 038 < 7.5E-	07 1.875E-07 07 3.75E-08 07 3.75E-08 07 3.75E-09	0.000095 0.000036 0.000025 0.000086 0.000086	0.00000475 0.0000036 0.0000025 0.0000086 0.0000086	< 7.1E-07	0.00000079	v	7.6E-07	3.8E-09
1,2,3,4,7,8-HxCDF 0.0000017 0.0000017 < 7.5E-07 3.75E-08 0.00 1,2,3,6,7,8-HxCDD 0.00000047 < 7.5E-07	017 < 7.5E- 047 < 7.5E- 033 < 7.5E- -08 < 7.5E-	07 3.75E-08 07 3.75E-09 07 3.75E-09 07 3.75E-08 07 3.75E-08 07 3.75E-08 07 0.000000375	0.000036 0.000025 0.000086 0.000086	0.0000036 0.00000025 0.0000086 0.0000086		7 1.775E-07	v	7.6E-07	0.00000019
1,2,3,6,7,8-HxCDD 0.0000047 0.00000047 < 7.5E-07 3.75E-09 0.00	047 < 7.5E- 033 < 7.5E- -08 < 7.5E-	07 3.75E-09 07 3.75E-08 07 3.75E-08 07 3.75E-08 07 0.000000375	0.000025 0.000086 0.000017	0.00000025 0.0000086 0.00000017	< 7.1E-07	7 3.55E-08	v	7.6E-07	0.000000038
	033 < 7.5E- 5-08 < 7.5E- 5-08 < 7.5E-	07 3.75E-08 07 3.75E-09 07 3.75E-09 07 0.000000375	0.000086 0.000017	0.00000086	< 7.1E-07	7 3.55E-09	v	7.6E-07	3.8E-09
	08 < 7.5E- -08 < 7.5E-	07 3.75E-09 07 3.75E-08 07 0.000000375	0.000017	0.00000017	< 7.1E-07	7 3.55E-08	v	7.6E-07	0.00000038
1,2,3,7,8,9-HxCDD < 0.0000027 1.35E-08 < 7.5E-07 3.75E-09 0.0	:-08 < 7.5E-	07 3.75E-08 07 0.000000375			0.0000	3 0.000008	v	7.6E-07	3.8E-09
1,2,3,7,8,9-HxCDF < 9.1E-07 4.55E-08 < 7.5E-07 3.75E-08 0.		07 0.000000375	0.00003	0.000003	< 7.1E-07	7 3.55E-08	v	7.6E-07	0.00000038
1,2,3,7,8-PeCDD < 0.000003 0.0000015 < 7.5E-07 0.000000375 0.01	015 < 7.5E-	The second secon	0.000011	0.000011	< 7.1E-07	7 0.000000355	v	7.6E-07	0.0000038
1,2,3,7,8-PeCDF 0.0000083 0.000000415 < 7.5E-07 1.875E-08 0.0	415 < 7.5E-	-07 1.875E-08	0.000032	0.0000016	< 7.1E-07	7 1.775E-08	v	7.6E-07	0.000000019
2,3,4,6,7,8-HxCDF 0.000028 0.0000028 < 7.5E-07 3.75E-08 0.	028 < 7.5E-	-07 3.75E-08	0.00008	0.000008	< 7.1E-07	7 3.55E-08	v	7.6E-07	0.00000038
2,3,4,7,8-PeCDF 0.000023 0.0000115 < 7.5E-07 1.875E-07 0.	115 < 7.5E-	-07 1.875E-07	0.00043	0.000215	7.3E-07	7 0.000000365		8.6E-07	0.00000043
2,3,7,8-TCDD 9.8E-07 0.0000098 < 1.5E-07 0.00000075 0.00	098 < 1.5E-	07 0.00000075	0.0000042	0.0000042	< 1.4E-07	7 0.0000007	v	1.5E-07	0.000000075
2,3,7,8-TCDF 0.0000043 0.00000215 < 1.5E-07 3.75E-09 < 5.	215 < 1.5E-	-07 3.75E-09	< 5.7E-07	1.425E-08	2.4E-07	7 0.000000012		1.9E-07	9.5E-09
OCDD 0.000077 7.7E-09 0.0000044 4.4E-10 0	000000 0.00000	144 4.4E-10	0.0018	0.00000018	0.00015	0.000000015		0.000016	1.6E-09
OCDF 0.0000076 7.6E-10 < 0.0000015 7.5E-11 0.0	-10 < 0.00000	15 7.5E-11	0.000087	8.7E-09	0.00012	0.000000012		0.0000016	1.6E-10
Total HpCDD 0.000036 < 7.5E-07 0.	 7.5E- 	-07	0.00063		< 0.0000007	<u> </u>		0.0000039	
Total HpCDF 0.000073 < 7.5E-07 0.	 7.5E- 	-07	0.00033		< 0.0000007	•		0.0000011	
Total HxCDD 0.000048 < 7.5E-07 0	< 7.5E-	-07	0.0003		< 0.0000007		v	7.6E-07	
Total HxCDF 0.00079 < 7.5E-07 C	 7.5E. 	-07	0.0023		< 0.0000007	7		0.000003	
Total PeCDD 0.000022 < 7.5E-07 0.	 7.5E- 	-07	0.00014		< 7.1E-07	×	v	7.6E-07	
Total PeCDF 0.00075 < 7.5E-07 0	 7.5E- 	-07	0.0055		< 0.0000007	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.0000074	
Total TCDD 0.000011 < 1.5E-07 0.00011 0.0	 1.5E- 	07	0.000089		< 1.4E-07		v	1.5E-07	
Total TCDF 0.00017 < 1.5E-07 0	 1.5E- 	-07	0.0016		< 1.4E-07	7		0.0000031	
TEQ 2.33E-05 7.01E-06	10	1.01E-06		2.62E-04		3.62E-06			1.27E-06

×

	SED14			ED15		SED16		SED17		SED18	
	6/22/2006	Comelo#TFF		22/2006	Completific	6/22/2006	Comula#TEE	6/22/2006	CompletTEE	6/22/2006	Comolo#TEE
rarameter	1-0	C COCCCCC	1			1-0		0 00001	O ODOODOO	1-0	
1,2,3,4,6,7,8-HpCUU	0.0000/1	1.700000000	v	0.0000008	4E-10	0.00048	0.0000048	0.000021	ח.טטטטטטט	0.0004	0.0000004
1,2,3,4,6,7,8-HpCDF	0.000037	0.00000037	۷	0.0000008	0.000000004	0.00057	0.0000057	0.000035	0.00000035	0.001	0.00001
1,2,3,4,7,8,9-HpCDF	0.0000044	0.000000044	v	0.0000008	0.000000004	0.000092	0.00000092	0.0000065	0.000000065	0.00017	0.0000017
1,2,3,4,7,8-HxCDD	0.0000033	0.00000165	v	0.0000008	0.0000002	0.000041	0.0000205	0.0000022	0.0000011	0.000074	0.000037
1,2,3,4,7,8-HxCDF	< 0.0000017	0.000000085	v	0.0000008	0.0000004	0.00033	0.000033	0.000017	0.0000017	0.00067	0.000067
1,2,3,6,7,8-HxCDD	0.0000068	0.000000068	v	0.0000008	0.000000004	0.00012	0.0000012	0.0000057	0.000000057	0.00019	0.0000019
1,2,3,6,7,8-HxCDF	0.000026	0.0000026	v	0.0000008	0.0000004	0.00057	0.000057	0.00003	0.000003	0.0013	0.00013
1,2,3,7,8,9-HxCDD	0.0000034	0.000000034	v	0.0000008	0.000000004	0.000056	0.00000056	0.0000033	0.000000033	0.000097	0.00000097
1,2,3,7,8,9-HxCDF	0.0000084	0.00000084	v	0.0000008	0.00000004	0.00019	0.000019	0.000013	0.0000013	0.00039	0.000039
1,2,3,7,8-PeCDD	0.0000048	0.0000048	v	0.0000008	0.0000004	0.000056	0.000056	0.0000033	0.0000033	0.000098	0.000098
1,2,3,7,8-PeCDF	0.0000084	0.00000042	v	0.0000008	0.00000002	< 0.0000034	0.000000085	0.0000081	0.000000405	< 0.0000032	0.0000008
2,3,4,6,7,8-HxCDF	0.000051	0.0000051	v	0.0000008	0.00000004	0.0004	0.00004	0.000075	0.0000075	0.00091	0.000091
2,3,4,7,8-PeCDF	0.00015	0.000075	v	0.0000008	0.0000002	0.0028	0.0014	0.00019	0.000095	0.0062	0.0031
2,3,7,8-TCDD	0.0000014	0.0000014	v	1.6E-07	0.00000008	0.000016	0.000016	0.0000011	0.0000011	0.00003	0.00003
2,3,7,8-TCDF	0.0000076	0.00000038	v	1.6E-07	0.00000004	0.000082	0.0000041	< 1.4E-07	3.5E-09	0.00012	0.00006
DCDD	0.00047	0.000000047		0.0000044	4.4E-10	0.0023	0.00000023	0.00007	0.000000007	0.0027	0.00000027
DCDF	0.000036	3.6E-09	v	0.0000016	8E-11	0.00025	0.000000025	0.000008	8E-10	0.0003	0.0000003
Total HpCDD	0.00014		v	0.0000008		0.00097		0.000044		0.0013	
Fotal HpCDF	0.000089		v	0.0000008		0.0014		0.000087		0.0028	
Total HxCDD	0.000087		v	0.0000008		0.0014		0.00007		0.0026	
Total HxCDF	0.00051			0.0000011		0.016		0.0009		0.023	
Fotal PeCDD	0.000047		v	0.0000008		0.001		0.000041		0.002	
Fotal PeCDF	0.0013			0.0000031		0.0073		0.0021		0.0096	
Fotal TCDD	0.000029		v	1.6E-07		0.00038		0.000023		0.0008	
Total TCDF	0.00042			0.0000013		0.0069		0.0006		0.012	
req		9.29E-05			1.08E-06		1.65E-03		1.15E-04		3.61E-03

TABLE C-3 FISH TEQ CALCULATIONS SEDIMENT

> P:W2-mfg/TEXTRON/GORHAM/SupplementSI 2006/SLERA/ TEQCalcs.xis, SD-AllData-Fish

Page 3 of 6

SED19		SED20		SED21		SED22		SED23	
ne C	nla*TEE	6/22/2006 0 5-1	Samula*TEF	6/22/2006 0-1	Samula*TEF	6/22/2006 0-1	Samule*TFF	6/22/2006 0-1	Samula*TFF
	00000027	0.00009	0.00000000	0.0000045	4.5E-09	0.00011	0.00000011	< 6.8E-	07 3.4E-10
`	0.0000051	0.0002	0.000002	0.0000065	0.000000065	0.00016	0.0000016	< 6.8E-	7 3.4E-09
-	0.0000011	0.000041	0.00000041	0.0000012	0.000000012	0.000025	0.00000025	< 6.8E-	07 3.4E-09
	0.0000255	0.000015	0.0000075	< 8.4E-07	0.00000021	< 0.000018	0.0000045	< 6.8E-	0.00000017
	0.000039	0.00014	0.000014	0.0000034	0.00000034	0.000068	0.0000068	< 6.8E-	0.00000034
	0.0000012	0.000035	0.00000035	0.0000013	0.000000013	0.000028	0.00000028	< 6.8E-	07 3.4E-09
	0.000062	0.00014	0.000014	0.0000073	0.00000073	0.00016	0.000016	< 6.8E-	0.000000034
	0.00000059	0.000016	0.00000016	< 8.4E-07	4.2E-09	< 0.000018	0.0000000	< 6.8E-	7 3.4E-09
	0.000025	0.000052	0.0000052	0.0000024	0.00000024	0.000062	0.0000062	< 6.8E-	0.00000034
	0.000069	0.00003	0.00003	9.5E-07	0.00000095	0.000018	0.000018	 6.8E- 	0.0000034
	6.75E-08	< 0.0000012	0.0000003	0.0000023	0.000000115	0.000041	0.00000205	< 6.8E-	0.000000017
	0.000054	0.00012	0.000012	0.000016	0.0000016	0.00015	0.000015	< 6.8E-	0.00000034
	0.00175	0.00014	0.00007	0.000044	0.000022	0.0013	0.00065	< 6.8E-	0.00000017
	0.000021	0.0000073	0.0000073	< 1.7E-07	0.000000085	0.0000068	0.0000068	1.4E-	0.00000007
1.1	0.0000029	0.000003	0.000000465	< 1.7E-07	4.25E-09	0.000027	0.00000135	 1.4E- 	07 3.5E-09
	0.00000003	0.00024	0.000000024	0.000025	2.5E-09	0.005	0.00000005	0.00000	3.5E-10
	0.00000001	0.000082	8.2E-09	0.0000022	2.2E-10	0.000044	4.4E-09	< 0.00000	4 7E-11
		0.00019		0.0000088		0.00024			7
		0.0005		0.000017		0.00042		< 6.8E-	17
		0.00047		0.000013		0.00031		< 6.8E-	77
		0.0046		0.0002		0.0055		0.00000	7
		0.00039		0.0000081		0.0002		 <td>17</td>	17
		0.0069		0.00046		0.014		0.00000	14
		0.00016		0.0000036		0.00015		< 1.4E-	17
		0.0014		0.00014		0.0045		0.00000	2
23	2.06E-03		1.64E-04		2.64E-05		7.29E-04		9.21E-07

TABLE C-3 FISH TEQ CALCULATIONS SEDIMENT

1

	Sample*TEF	0.00000049	0.0000064	0.00000099	0.0000195	0.00003	0.0000011	0.000052	0.00000068	0.00002	0.000076	0.00000045	0.000042	0.00155	0.000022	0.0000042	0.00000029	0.000000021								9	1.83E-03
SED28	0 5-1	0.00049	0.00064	0.000099	0.000039	0.0003	0.00011	0.00052	0.000068	0.0002	0.000076	< 0.000018	0.00042	0.0031	0.000022	0.000084	0.0029	0.00021	0.001	0.0016	0.0014	0.01	0.00095	0.024	0.00042	0.0088	
	Sample*TEF	0.00000018	0.0000023	0.0000036	0.00000525	0.000013	0.00000037	0.000015	0.00000022	0.0000075	0.000029	0.00000175	0.000018	0.000455	0.0000081	0.000000105	0.00000083	0.000000013									5.56E-04
SED27 6/22/2006	0-1	0.00018	0.00023	0.000036	< 0.000021	0.00013	0.000037	0.00015	0.000022	0.000075	0.000029	0.000035	0.00018	0.00091	0.0000081	< 0.0000042	0.00083	0.00013	0.00038	0.00051	0.00045	0.0048	0.00024	0.0098	0.00013	0.003	-
	Sample*TEF	0.0000002	0.00000059	0.00000007	0.00000035	0.00000024	0.00000036	0.0000007	0.00000017	0.0000007	0.000007	0.00000035	0.0000007	0.00000085	0.00000014	0.0000008	4.3E-09	6.2E-10						-			2.75E-06
SED26	0-1	0.00002	0.0000059	< 0.0000014	< 0.0000014	0.0000024	0.0000036	< 0.0000014	0.0000017	< 0.0000014	< 0.0000014	< 0.0000014	< 0.0000014	0.0000017	< 2.8E-07	0.0000016	0.000043	0.0000062	0.000033	0.0000059	0.000064	0.0000054	0.000022	0.0000061	0.000021	0.000021	
	ample*TEF	0.00000032	0.0000044	0.00000079	0.000015	0.000031	0.00000083	0.000038	0.00000038	0.000018	0.000063	1.225E-07	0.000031	0.0011	0.000018	0.00000265	0.00000019	0.00000017									1.32E-03
SED25 6/22/2006	0-1	0.00032	0.00044	0.000079	0.00003	0.00031	0.000083	0.00038	0.000038	0.00018	0.000063	< 0.0000049	0.00031	0.0022	0.000018	0.000053	0.0019	0.00017	0.00065	0.0011	0.0011	0.012	0.00091	0.012	0.0005	0.0069	
	Sample*TEF	0.00000029	0.0000029	0.00000045	0.0000065	0.0000012	0.000000054	0.0000016	0.00000028	0.000007	0.0000024	0.000000275	0.0000012	0.0000475	0.00000072	6.5E-09	0.000000017	1.7E-09									5.67E-05
SED24	0-1	0.000029	0.000029	0.0000045	0.0000013	0.000012	0.0000054	0.000016	0.0000028	0.000007	0.0000024	0.0000055	0.000012	0.000095	7.2E-07	< 2.6E-07	0.00017	0.000017	0.000058	0.000066	0.00005	0.00049	0.000029	0.0011	0.000017	0.00032	
	Parameter	1,2,3,4,6,7,8-HpCDD	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	1,2,3,4,7,8-HxCDD	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDD	1,2,3,6,7,8-HxCDF	1,2,3,7,8,9-HxCDD	1,2,3,7,8,9-HxCDF	1,2,3,7,8-PeCDD	1,2,3,7,8-PeCDF	2,3,4,6,7,8-HxCDF	2,3,4,7,8-PeCDF	2,3,7,8-TCDD	2,3,7,8-TCDF	COD	OCDF	Total HpCDD	Fotal HpCDF	Fotal HxCDD	Fotal HxCDF	Total PeCDD	Fotal PeCDF	Fotal TCDD	Fotal TCDF	rea

TABLE C-3 FISH TEQ CALCULATIONS SEDIMENT

TABLE C-3	FISH TEQ CALCULATIONS	SEDIMENT
	쯢	

	SED29		SED30		SED31		SED32	
	6/21/2006		6/21/2006		6/21/2006		6/21/2006	
Parameter	0_5-1	Sample*TEF	0_5-1	Sample*TEF	0_5-1	Sample*TEF	0_5-1	Sample*TEF
1,2,3,4,6,7,8-HpCDD	0.00018	0.00000018	0.000066	0.000000066	0.00043	0.00000043	0.000074	0.000000074
1,2,3,4,6,7,8-HpCDF	0.00035	0.0000035	0.000036	0.00000036	0.00071	0.0000071	0.00004	0.0000004
1,2,3,4,7,8,9-HpCDF	0.000069	0.00000069	0.0000061	0.000000061	0.00017	0.0000017	0.0000051	0.000000051
1,2,3,4,7,8-HxCDD	0.000018	0.00009	0.0000034	0.0000017	0.000055	0.0000275	0.0000018	0.000009
1,2,3,4,7,8-HxCDF	0.00021	0.000021	0.000018	0.0000018	0.00032	0.000032	0.000011	0.0000011
1,2,3,6,7,8-HxCDD	0.00007	0.000007	0.000012	0.00000012	0.00015	0.0000015	0.0000048	0.000000048
1,2,3,6,7,8-HxCDF	0.00029	0.000029	0.000014	0.0000014	0.00075	0.000075	0.000012	0.0000012
1,2,3,7,8,9-HxCDD	0.000031	0.00000031	0.0000072	0.000000072	0.000078	0.00000078	0.0000028	0.000000028
1,2,3,7,8,9-HxCDF	0.00014	0.000014	0.0000096	0.0000096	0.00042	0.000042	0.0000053	0.00000053
1,2,3,7,8-PeCDD	0.000041	0.000041	0.0000052	0.0000052	0.00012	0.00012	0.0000022	0.0000022
1,2,3,7,8-PeCDF	< 0.0000018	0.000000045	< 0.0000007	1.75E-08	0.00023	0.0000115	< 7.3E-07	1.825E-08
2,3,4,6,7,8-HxCDF	0.00023	0.000023	0.000013	0.0000013	0.00064	0.000064	0.000012	0.0000012
2,3,4,7,8-PeCDF	0.00016	0.0008	0.000076	0.000038	0.0016	0.0008	0.000028	0.000014
2,3,7,8-TCDD	0.000012	0.000012	6.2E-07	0.00000062	0.000033	0.000033	5.2E-07	0.00000052
2,3,7,8-TCDF	0.000032	0.0000016	0.0000047	0.000000235	0.000076	0.0000038	0.000006	0.0000003
OCDD	0.00084	0.000000084	0.00054	0.000000054	0.0016	0.00000016	0.00081	0.000000081
OCDF	0.00017	0.000000017	0.000037	3.7E-09	0.00019	0.000000019	0.00008	0.00000008
Total HpCDD	0.0004		0.00013		0.00094		0.00017	
Total HpCDF	0.00087		0.000094		0.002		0.00012	
Total HxCDD	0.0009		0.00013		0.002		0.000051	
Total HxCDF	0.0083		0.00038		0.025		0.00032	
Total PeCDD	0.00053		0.000055		0.0016		0.000025	
Total PeCDF	0.014		0.00059		0.04		0.0005	
Total TCDD	0.00027		0.000021		0.00064		0.000012	
Total TCDF	0.0037		0.00017		0.015		0.00016	
TEQ		2.36E-04		5.20E-05		1.22E-03		2.27E-05
TABLE C-4 MAMMAL TEQ CALCULATIONS SURFACE WATER

6.22E-08			1.29E-08		1.28E-08			TEQ
annon an an Antonia an Anno an Anno.	3.2E-08			3.4E-09		c 2.1E-09		Total TCDF
	3.1E-09	-		< 2E-09		c 2.1E-09	-	Total TCDD
	2.9E-08			< 0.00000001		< 0.00000001		Total PeCDF
	4.6E-08			< 0.00000001		0.00000001	-	Total PeCDD
	0.00000001	V		< 0.00000001		0.00000001	•	Total HxCDF
	6.4E-08			< 0.00000001		0.00000001	•	Total HxCDD
	1.3E-08			2.1E-08		1.2E-08		Total HpCDF
	6.1E-08			7.2E-08		4.3E-08		Total HpCDD
1E-12	0.00000002	v	1E-12	< 0.00000002	1.05E-12	c 2.1E-08	0.0001	OCDF
3.5E-11	0.00000035		3.2E-11	0.00000032	1.8E-11	0.00000018	0.0001	OCDD
8.9E-10	8.9E-09		1E-10	< 2E-09	1.05E-10	2.1E-09	0.1	2,3,7,8-TCDF
3.1E-09	3.1E-09		0.000000001	< 2E-09	1.05E-09	c 2.1E-09	-	2,3,7,8-TCDD
2.5E-09	0.00000001	v	2.5E-09	< 0.00000001	2.5E-09	< 0.00000001	0.5	2,3,4,7,8-PeCDF
5E-10	0.00000001	V	5E-10	< 0.00000001	5E-10	0.00000001	0.1	2,3,4,6,7,8-HxCDF
2.5E-10	0.00000001	v	2.5E-10	< 0.00000001	2.5E-10	0.00000001	0.05	1,2,3,7,8-PeCDF
0.000000046	4.6E-08		0.000000005	< 0.00000001	0.000000005	0.00000001	-	1,2,3,7,8-PeCDD
5E-10	0.00000001	V	5E-10	< 0.00000001	5E-10	0.00000001	0.1	1,2,3,7,8,9-HxCDF
5.1E-09	5.1E-08		5E-10	< 0.00000001	5E-10	0.00000001	0.1	1,2,3,7,8,9-HxCDD
5E-10	0.00000001	v	5E-10	< 0.00000001	5E-10	0.00000001	0.1	1,2,3,6,7,8-HxCDF
1.3E-09	1.3E-08		5E-10	< 0.00000001	5E-10	0.00000001	0.1	1,2,3,6,7,8-HxCDD
5E-10	0.00000001	V	5E-10	< 0.00000001	5E-10	0.00000001	0.1	1,2,3,4,7,8-HxCDF
5E-10	0.00000001	V	5E-10	< 0.00000001	5E-10	0.00000001	0.1	1,2,3,4,7,8-HxCDD
5E-11	0.00000001	v	5E-11	< 0.00000001	5E-11	< 0.00000001	0.01	1,2,3,4,7,8,9-HpCDF
5E-11	0.00000001	v	5E-11	< 0.00000001	5E-11	0.00000001	0.01	1,2,3,4,6,7,8-HpCDF
4.3E-10	4.3E-08		4.3E-10	4.3E-08	2.4É-10	2.4E-08	0.01	1,2,3,4,6,7,8-HpCDD
Sample*TEF	6/22/2006		Sample*TEF	6/21/2006	Sample*TEF	6/21/2006	TEF Mammals	Parameter
	SW27			SW19		SW11		ない、「「「「「「」」」」

P:W2-mfgTEXTROMGORHAMISupplementSI 2006ISLERAI TEQCalcs.xis, SW-AllDate-Mammal

Page 1 of 1

7/28/2006

TABLE C-5 BIRD TEQ CALCULATIONS SURFACE WATER

		SW11		SW19		SW27	
Parameter	TEF Bird	6/21/2006	Sample*TEF	6/21/2006	Sample*TEF	6/22/2006	Sample*TEF
1,2,3,4,6,7,8-HpCDD	0.001	2.4E-08	2.4E-11	4.3E-08	4.3E-11	4.3E-08	4.3E-11
1,2,3,4,6,7,8-HpCDF	0.01	< 0.00000001	5E-11	< 0.00000001	5E-11	< 0.00000001	5E-11
1,2,3,4,7,8,9-HpCDF	0.01	< 0.00000001	5E-11	< 0.00000001	5E-11	< 0.00000001	5E-11
1,2,3,4,7,8-HxCDD	0.05	< 0.0000001	2.5E-10	< 0.00000001	2.5E-10	< 0.00000001	2.5E-10
1,2,3,4,7,8-HxCDF	0.1	< 0.0000001	5E-10	< 0.00000001	5E-10	< 0.00000001	5E-10
1,2,3,6,7,8-HxCDD	0.01	< 0.0000001	5E-11	< 0.00000001	5E-11	1.3E-08	1.3E-10
1,2,3,6,7,8-HxCDF	0.1	< 0.0000001	5E-10	< 0.00000001	5E-10	< 0.00000001	5E-10
1,2,3,7,8,9-HxCDD	0.1	< 0.00000001	5E-10	< 0.00000001	5E-10	5.1E-08	5.1E-09
1,2,3,7,8,9-HxCDF	0.1	< 0.0000001	5E-10	< 0.00000001	5E-10	< 0.00000001	5E-10
1,2,3,7,8-PeCDD	-	< 0.00000001	0.00000005	< 0.00000001	0.000000005	4.6E-08	0.000000046
1,2,3,7,8-PeCDF	0.1	< 0.00000001	5E-10	< 0.00000001	5E-10	< 0.00000001	5E-10
2,3,4,6,7,8-HxCDF	0.1	< 0.0000001	5E-10	< 0.00000001	5E-10	< 0.00000001	5E-10
2,3,4,7,8-PeCDF		< 0.00000001	0.000000005	< 0.00000001	0.000000005	< 0.00000001	0.000000000
2,3,7,8-TCDD		< 2.1E-09	1.05E-09	< 2E-09	0.000000001	3.1E-09	3.1E-09
2,3,7,8-TCDF		< 2.1E-09	1.05E-09	< 2E-09	0.000000001	8.9E-09	8.9E-09
ocdd	0.0001	0.00000018	1.8E-11	0.00000032	3.2E-11	0.00000035	3.5E-11
OCDF	0.0001	< 2.1E-08	1.05E-12	< 0.00000002	1E-12	< 0.00000002	1E-12
Total HpCDD		4.3E-08		7.2E-08	•	6.1E-08	
Total HpCDF		1.2E-08		2.1E-08		1.3E-08	
Total HxCDD		< 0.0000001		< 0.00000001		6.4E-08	
Total HxCDF		< 0.0000001		< 0.00000001		< 0.00000001	
Total PeCDD		< 0.0000001		< 0.00000001		4.6E-08	
Total PeCDF		< 0.00000001		< 0.00000001		2.9E-08	
Total TCDD		< 2.1E-09		< 2E-09		3.1E-09	
Total TCDF		< 2.1E-09		3.4E-09		3.2E-08	
TEQ	12		1.55E-08		1.55E-08		7.12E-08

TABLE C-6 FISH TEQ CALCULATIONS SURFACE WATER

		SW11		SW19		SW27	
chemical name	TEF Fish	6/21/2006	Sample*TEF	6/21/2006	Sample*TEF	6/22/2006	Sample*TEF
1,2,3,4,6,7,8-HpCDD	0.001	2.4E-08	2.4E-11	4.3E-08	4.3E-11	4.3E-08	4.3E-11
1,2,3,4,6,7,8-HpCDF	0.01	< 0.00000001	5E-11	< 0.00000001	5E-11	< 0.00000001	5E-11
1,2,3,4,7,8,9-HpCDF	0.01	< 0.00000001	5E-11	< 0.00000001	5E-11	< 0.00000001	5E-11
1,2,3,4,7,8-HxCDD	0.5	< 0.00000001	2.5E-09	< 0.00000001	2.5E-09	< 0.00000001	2.5E-0(
1,2,3,4,7,8-HxCDF	0.1	< 0.00000001	5E-10	< 0.00000001	5E-10	< 0.00000001	5E-1(
1,2,3,6,7,8-HxCDD	0.01	< 0.00000001	5E-11	< 0.00000001	5E-11	1.3E-08	1.3E-1(
1,2,3,6,7,8-HxCDF	0.1	< 0.00000001	5E-10	< 0.00000001	5E-10	< 0.00000001	5E-1(
1,2,3,7,8,9-HxCDD	0.01	< 0.00000001	5E-11	< 0.00000001	5E-11	5.1E-08	5.1E-1(
1,2,3,7,8,9-HxCDF	0.1	< 0.00000001	5E-10	< 0.0000001	5E-10	< 0.00000001	5E-1(
1,2,3,7,8-PeCDD	-	< 0.00000001	0.000000005	< 0.00000001	0.000000005	4.6E-08	0.000000046
1,2,3,7,8-PeCDF	0.05	< 0.00000001	2.5E-10	< 0.00000001	2.5E-10	< 0.00000001	2.5E-1(
2,3,4,6,7,8-HxCDF	0.1	< 0.00000001	5E-10	< 0.00000001	5E-10	< 0.00000001	5E-1(
2,3,4,7,8-PeCDF	0.5	< 0.00000001	2.5E-09	< 0.00000001	2.5E-09	< 0.00000001	2.5E-0(
2,3,7,8-TCDD	1	< 2.1E-09	1.05E-09	< 2E-09	0.000000001	3.1E-09	3.1E-09
2,3,7,8-TCDF	0.05	< 2.1E-09	5.25E-11	< 2E-09	5E-11	8.9E-09	4.45E-1(
ocdd	0.0001	0.00000018	1.8E-11	0.0000032	3.2E-11	0.00000035	3.5E-11
OCDF	0.0001	< 2.1E-08	1.05E-12	< 0.00000002	1E-12	< 0.00000002	1E-12
Total HpCDD		4.3E-08		7.2E-08		6.1E-08	
Total HpCDF		1.2E-08		2.1E-08		1.3E-08	
Total HxCDD		< 0.00000001		< 0.00000001		6.4E-08	
Total HxCDF		< 0.00000001		< 0.00000001		< 0.00000001	
Total PeCDD		< 0.00000001		< 0.00000001		4.6E-08	
Total PeCDF		< 0.00000001		< 0.00000001		2.9E-08	
Total TCDD		< 2.1E-09		< 2E-09		3.1E-09	
Total TCDF		< 2.1E-09		3.4E-09		3.2E-08	
TEQ-Fish		2	1.36E-08	2	1.36E-08		5.76E-08