

EA Engineering, Science, and Technology, Inc.

Airport Professional Park 2350 Post Road Warwick, Rhode Island 02886 Telephone: 401-736-3440 Fax: 401-736-3423 www.eaest.com

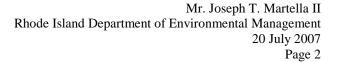
20 July 2007

Mr. Joseph T. Martella II, Senior Engineer RIDEM - Office of Waste Management Site Remediation Program 235 Promenade Street Providence, Rhode Island 02908

RE: 29 June 2007 Air Sampling Event/Order of Approval Compliance Follow-Up Letter Adelaide Avenue School, 333 Adelaide Avenue, Providence, Rhode Island Case No. 2005-029

EA Project No. 61965.01

Dear Mr. Martella:


On behalf of the Providence Department of Public Property (City), EA Engineering, Science, and Technology, Inc. (EA) is providing this letter in accordance with Item 6(e)(vi) of the Department's Order of Approval (OA) issued in June 2006 and amended in February 2007 (Amended Order) for the referenced Adelaide Avenue School site (the Site).

As communicated via telephone message to the Rhode Island Department of Environmental Management (the Department) at approximately 2:45 pm on Monday, 16 July 2007, several volatile organic compounds (VOCs) were identified in indoor air at the site in concentrations that exceed the Indoor Air Action Levels for this project during the sampling event completed on 29 June 2007. We have attached tables summarizing the pertinent data, figures illustrating the sampling locations, and copies of the laboratory analytical reports for your reference (Attachment A).

EA collected eight sub-slab vapor samples, eight indoor air samples, one ambient air sample, and 3 roof-top effluent samples at the Site on 29 June 2007, and submitted the samples to Alpha Woods Hole Labs (Mansfield, MA) for analysis of volatile organic compounds (VOCs) via Method TO-15. This was the fifth sampling round completed at the Site in accordance with the schedule mandated by the Amended Order. Sub-slab vacuum measurements were also collected on 29 June 2007 to ensure that adequate depressurization of the sub-slab region was being maintained by the active sub-slab depressurization (SSD) system.

As previous air sampling summary correspondence submitted to the Department presented, the data collected on 29 June 2007 continues to demonstrate that:

- No evidence of soil vapor intrusion into the newly constructed school has been observed.
- The continuous operation of the SSD system and confirmation of sub-slab vacuum beneath the school between -0.04 and -0.18 inches of water column illustrates ongoing, effective operation of the SSD system and elimination of the soil vapor intrusion pathway at the site.
- To date, with the exception of 1 VOC compound in 1 indoor air sample collected on 22 March 2007 (Trichloroethylene, also known to be resultant from construction activities and also detected in ambient outdoor air at a greater concentration that that reported for the indoor sample on 22 March), none of the VOC compounds of greatest potential concern to human health at this site, as identified by the Agency for Toxic Substances and Disease Registry in their December 2006

Health Consultation, have been detected in any of the 40 samples at concentrations greater than the respective Indoor Air Action Levels.

- The sub-slab vapor samples continue to illustrate the expected steady and dramatic decrease in the concentrations of two construction-related VOC compounds (Acetone and 2-Butanone) detected in the sub-slab samples due to the use of PVC primer and glue during construction of the sampling probes. The average decrease in the concentration of Acetone and 2-Butanone in all sub-slab sampling locations is 99.85% since the initial round of sub-slab sampling was completed in March 2007.
- All reporting limits for the sub-slab vapor samples have been dramatically lowered by the laboratory over time as the PVC-related compounds have significantly decreased. Currently, all but 1 of the VOCs of greatest potential concern to human health at this site, as identified by the Agency for Toxic Substances and Disease Registry in their December 2006 Health Consultation (and approximately 77% of all VOCs) include a reporting limit that is less than the respective Action Levels applicable to indoor air.
- Carbon Tetrachloride, a background ambient concentration at the site and in urban communities, has consistently been detected in ambient outdoor air during each of the five sampling events completed thus far at concentrations ranging between 0.48 to 0.71 ug/m³. During the same sampling events, Carbon Tetrachloride concentrations inside the school building have ranged between 0.36 to 0.79 ug/m³. During this sampling event, the ambient outdoor concentration of Carbon Tetrachloride was 0.50 ug/m³, and concentrations within the school were similarly between 0.45 and 0.53 ug/m³.
- In general, since indoor air sampling was initiated in March 2007, ongoing construction activities and cigarette smoking by contractors have resulted in the presence of some VOCs inside the school. However, as expected and as the amount of indoor construction activities with the potential to generate VOCs (touch-up painting, cleaning, finish carpentry, etc.) has decreased over time and since smoking by contractors has stopped, the number of VOCs detected inside the school has dramatically decreased to the point where only two VOCs known to be associated with construction activity (1,3,5-Trimethylbenzene and 1,2,4-Trimethylbenzene) were detected in several samples at concentrations that exceed the applicable Indoor Air Action Levels on 29 June 2007. Historically, these 2 VOCs were either not detected in soil gas sampled from the school property or were detected at concentrations significantly lower than the Action Level (9.3 ug/m³). During the same sampling round, neither of these 2 VOCs was detected in the sub-slab region above 3.4 ug/m³.
- During this sampling event, Methylene Chloride was detected in Ambient Outdoor Air at a concentration of 6.7 ug/m³, and at similar concentrations within the school building and within the three rooftop effluent samples (between 5.3 to 9.2 ug/m³). Methylene Chloride is a known possible laboratory contaminant, and is also widely used as an industrial solvent and as a paint stripper. It can also be found in certain aerosols, pesticide products, photographic film processes, spray paints, automotive cleaners, and other household products. EA has contacted Alpha Woods Hole Labs, and the data collected suggests that the Methylene Chloride reported in these samples could be a background ambient concentration for this site or may be resultant from inadvertent contamination introduced into the sampling canisters during handling or storage at the laboratory.
- Roof-top effluent samples from the three SSD system fans were collected during this sampling round. The previous roof-top effluent sampling round collected in March 2007 immediately after SSD system startup indicated compliance with all Air Pollution Control Permit Applicability

Thresholds. In general, the VOC concentrations in the rooftop effluent associated with this sampling round are significantly less than those measured during the March 2007 sampling event. Taking actual air flow measurements collected during the 29 June 2007 sampling event into account, the roof-top VOC emissions are similarly significantly less than those calculated based upon the March sampling event and the Air Pollution Control Permit Applicability Thresholds continue to be met.

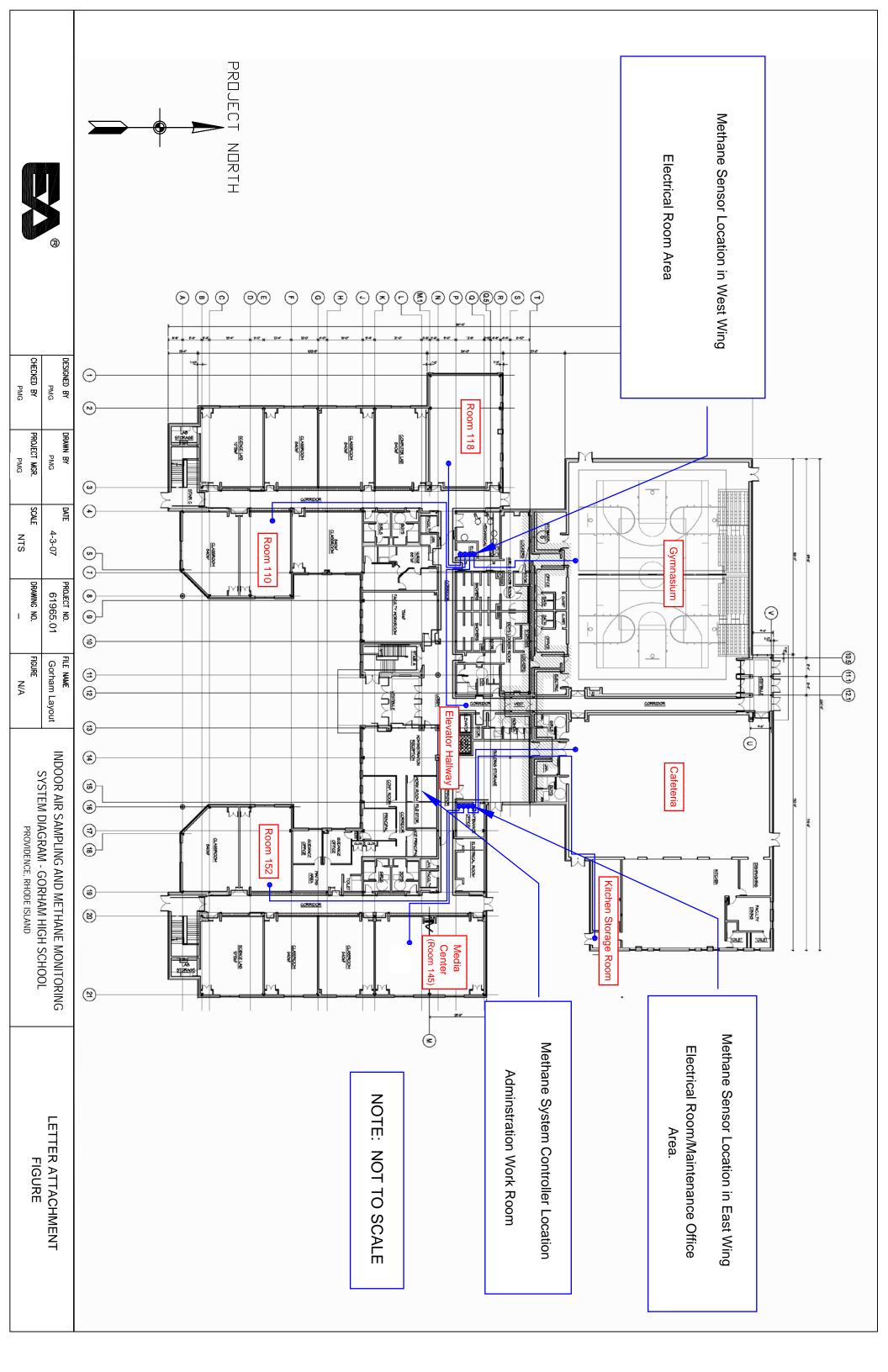
In conclusion, we continue to be encouraged by the results of the sampling and monitoring efforts completed thus far at the site, the SSD System continues to operate according to design, and data collected to date indicates that no soil vapor intrusion is occurring. In accordance with data trends observed thus far, the 2 residual VOCs related to construction activity detected above the respective Indoor Air Action Levels inside the building are expected to continue to decrease over time, and Carbon Tetrachloride is expected to continue to be an ambient background compound for the site. Methylene Chloride may also be an ambient background compound for the site or may have been introduced into the sampling containers at the laboratory. Additional sampling is scheduled for 30 July 2007. Therefore, no SSD System modifications or other actions to address current site conditions are warranted or proposed at this time.

We trust that this correspondence satisfies OA Provision 6(e)(vi). However, if you have any questions or require additional information, please do not hesitate to contact me at 401-736-3440, Ext. 216.

Sincerely,

EA ENGINEERING, SCIENCE, AND TECHNOLOGY, INC.

stu M Howers


Peter M. Grivers, P.E., LSP Project Manager

Attachments

cc: J. Simmons, City of Providence

- A. Sepe, Providence Department of Public Property
- J. Fernandez, City of Providence Law Department
- S. Rapport, City of Providence Law Department
- J. Boehnert, Partridge, Snow, & Hahn
- J. Ryan, Partridge, Snow, & Hahn
- T. Deller, Providence Redevelopment Agency
- T. Gray, RIDEM Bureau of Environmental Protection
- J. Langlois, RIDEM Legal Services
- L. Hellested, RIDEM Office of Waste Management
- K. Owens, RIDEM Office of Waste Management
- C. Walusiak, RIDEM Office of Waste Management
- S. Fischbach, RI Legal Services

Former Gorham Site, Parcel B – Knight Memorial Library Repository

Summary of Indoor Air Sampling Data - Adelaide Avenue School Project - Volatile Organic Compounds Sampling Event - June 29, 2007

					Kitchen Storage Room ^A	Cafeteria		Gymnasium		Elevator Hallway		Room 118		Room 110		Media Center (Rm 145)		Room 152		Ambient Outdoor	
	CT Draft Proposed	CT Existing Indoor	NYSDOH																		
Volatile Organic Compounds via	Indoor Residential Target	Residential Target	Air Guideline	Units	Qual		Qual		Qual		Qual		Qual		Qual		Qual		Qual		Qual
TO-15	Air Concentrations *	Air Concentrations **	Values***																		
Carbon tetrachloride ¹	0.5	1	None	μg/m³	0.51	0.51		0.45		0.50		0.53		0.50		0.50		0.48		0.50	
1,3,5-Trimethylbenzene ²	9.3	None	None	μg/m³	9.4	5.8		3.6		6.2		0.77		0.34		1.0		2.3		0.10	U
1,2,4-Trimethylbenzene ³	9.3	None	None	μg/m³	16	10		7.10		9.9		1.50		0.53		1.5		3.80		0.19	
Methylene Chloride ⁴	3	45	60	μg/m³	9.2	6.7		5.3		5.7		7.6		8.0		6.1		7.0		6.7	

* State of Connecticut Draft Proposed Indoor Residential Target Air Concentrations [Proposed Revisions to Connecticut's Remediation Standard Regulations Volatilization Criteria, CTDEP, March 2003]; These concentrations have been established as Action Levels for indoor air in the RIDEM Or Amended February 2007] with the exception of several compounds (1,2-Dichloroethane, Bromodichloromethane, 1,1,1,2-Tetrachloroethane, and 1,1,2,2-Tetrachloroethane) where laboratory reporting limits can not achieve these concentrations.

der of Approval [June 2006,

** State of Connecticut Existing Indoor Residential Target Air Concentrations [Remediation Standard Regulations, CTDEP, 1996]. Please note, these concentrations are provided for comparative purposes only and are not Action Levels for the Adelaide Avenue School project. "None" indicates that air concentration has been established for this compound by CTDEP.

no target

*** New York State Department of Health (NYSDOH) air guideline concentrations [Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, NYSDOH, October 2006]. Please note, these concentrations are provided for comparative purposes only and are not Action Levels for t project. "None" indicates that no air guideline has been established for this compound by NYSDOH.

he A delaide Avenue School

U: designation indicates that the compound was not detected by the laboratory. Reporting limit shown in the data column.

: gray shading indicates that the sample concentration for this compound exceeds the applicable Indoor Air Action Level.

- 1: Carbon Tetrachloride is a manufactured chemical used in aerosols, cleaning fluids, fire extinguishers, and degreasing agents. This compound was measured at 0.50 ug/m3 in ambient outdoor air and was not detected in soil vapor at the site in 2005 at a reporting limit of 3.1 ug/m3.
- 2: 1,3,5-Trimethylbenzene is found in plastic, vinyl products, PVC pipes, building materials, and furnishings. 1,3,5-Trimethylbenzene was not detected in soil vapor at the site in 2005 and was not detected in ambient outdoor air during this sampling event.
- 3: 1,2,4-Trimethylbenzene is found in paints, paint thinners, vinyl flooring, rubber floor and wall coverings, wood furniture, and building insulation products. 1,2,4-Trimethylbenzene was found in one soil vapor sample at the site in 2005 at a concentration of 4.3 ug/m3, but was not found in paints.
- 4: Methylene Chloride is used as an industrial solvent and as a paint stripper. It can be found in certain aerosol and pesticide products and is used in the manufacture of photographic film. The chemical may be found in some spray paints, automotive cleaners, and other household product methylene chloride released to the environment results from its use as an end product by various industries and the use of aerosol products and paint removers. Methylene Chloride was found in each of the 8 indoor air samples collected during this sampling round, but was also detected at gene in ambient outdoor air (6.7 ug/m3). These Methylene Chloride results are not consistent with previous sampling at the site and is also known to be a common laboratory contaminant. The laboratory performing the analyses utilized a different facility to analyze these samples as opposed to p laboratory contamination or background ambient air is the most likely contributor of the Methylene Chloroide.

A: Can of spray paint noted in Kitchen Storage Room during this sampling event.

n ambient outdoc

s. Most of the rally the same concer

rally the same concentration revious sampling roun

ANALYTICAL REPORT

Prepared for:

EA Engineering, Science & Technology 2350 Post Road Warwick, RI 02886

Project:

Adelaide Ave. School

ETR:

0706154

Report Date:

July 12, 2007

Certifications and Accreditations

Massachusetts M-MA030
Connecticut PH-0141
New Hampshire 2206
Rhode Island LAO00289
New Jersey MA015
Maine MA0030
New York 11627
Louisiana 03090
Florida E87814
Pennsylvania 68-02089
Army Corps of Engineers
Department of the Navy

This report shall not be reproduced except in full, without written approval from the laboratory.

Sample ID Cross Reference

Client:

EA Engineering, Science & Technology

Project: Adelaide Ave. School

Lab Code: MA00030

ETR: 0706154

Lab Sample ID	Client Sample ID		
0706154-01	Gym		
0706154-02	Cafeteria		
0706154-03	Kitchen Storage Room		
0706154-04	Elevator Hallway		
0706154-05	Room 118		
0706154-06	Room 110		
0706154-07	Room 145 - Media Ctr		
0706154-08	Room 152		
0706154-09	Ambient Outdoor Air		

CASE NARRATIVE Alpha Woods Hole Lab

ETR: 0706154

Project: Adelaide Ave. School

All analyses were performed according to Alpha Woods Hole Labs quality assurance program and documented Standard Operating Procedures (SOPs). The analytical results contained in this report were performed within holding time, and with appropriate quality control measures, except where noted. A summary of all state and federal accreditations is provided within this report. Blank correction of results is not performed in the laboratory for any parameter.

Volatile Organics by TO-15 SIM

- The method blank VA071107B27, analyzed on 6/30/07 has benzene detected at trace levels below the reporting limit and "J" qualified. Associated field sample results would be flagged with "B" qualifiers if the concentrations of the analytes in the samples were less than 5X the concentration in the blank.
- Sample Room 110 (0706154-06) required re-analysis at a 1:10 dilution due to concentrations of 2-Butanone detected above the calibration range of the instrument. This re-analysis is only evaluated for 2-Butanone which was over the calibration range in the original analysis.

The enclosed results of analyses are representative of the samples as received by the laboratory. Alpha Woods Hole Labs makes no representations or certifications as to the method of sample collection, sample identification, or transporting/handling procedures used prior to the receipt of samples by Alpha Woods Hole Labs. To the best of my knowledge, the information contained in this report is accurate and complete.

1

Client: Project:

Date Collected

06/29/07

EA Engineering, Science & Technology

250

Adelaide Ave. School

Lab Code: MA00030

ETR: 0706154

Lab ID: 0706154-01

Client ID:

Gym N/A

06/30/07

N/A SDG:

Associated Blank: VA071107B27

Matrix:

Date Received

06/29/07

Air

Sample Final Volume (ml) **Dilution Factor** Analyst Date Analyzed Amount (ml) 1 JEG

250

00/27/07	00/30/07	230	200	1	ļ
Parameter		Raw Am	ount	Result	
		ppb	v	$\mu g/m^3$	
Dichlorodifly	uoromethane	0.41	L	2.0	
Chlorometha		0.04	U	0.08 U	
Vinyl chloric	de	0.02	? U	0.05 U	
Chloroethan		0.02	2 U	0.05 U	
Acetone		5.9		14	
Trichloroflu	oromethane	0.21		1.2	
Acrylonitrile	,	0.50		1.1 U	
1,1-Dichloro	ethene	0.02		0.08 U	
Methylene cl		1.5		5.3	
trans-1,2-Dio	chloroethene	0.02		0.08 U	
1,1-Dichloro	ethane	0.02		0.08 U	
MTBE		0.04		0.14	
2-Butanone		9.6		28	
cis-1,2-Dich	loroethene	0.02		0.08 U	
Chloroform		0.03		0.13	
1,2-Dichloro		0.02		0.08 U	
1,1,1-Trichlo	oroethane	0.02		0.11 U	
Benzene		0.10)	0.32	
Carbon tetra	chloride	0.07		0.45	
1,2-Dichloro		0.02		0.09 U	
Bromodichlo		0.02		0.13 U	
Trichloroeth		0.02		0.11 U	
cis-1,3-Dich		0.02		0.09 U	
4-Methyl-2-1		0.50		2.0 U	
	chloropropene	0.02		0.09 U	
1,1,2-Trichlo	oroethane	0.02	2 U	0.11 U	
Toluene		1.2		4.3	
Dibromochlo		0.02		0.17 U	
1,2-Dibromo		0.02		0.15 U	
Tetrachloroe		0.02		0.14	
	chloroethane	0.02		0.14 U	
Chlorobenze		0.02		0.09 U	
Ethylbenzen		1.0		4.5	
p+m-Xylene		3.6		16	
Bromoform		0.02		0.21 U	
Styrene		0.03	3	0.14	

Client: Project: Client ID:

EA Engineering, Science & Technology Adelaide Ave. School

Lab Code: MA00030

ETR: 0706154

Lab ID: 0706154-01

Gym N/A

SDG:

N/A

Associated Blank: VA071107B27

Air Matrix:

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	250	250	1	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U
o-Xylene	0.90	3.9
Isopropylbenzene	0.50 U	2.5 U
1,3,5-Trimethylbenzene	0.74	3.6
1,2,4-Trimethylbenzene	1.4	7.1
1,3-Dichlorobenzene	0.02 U	0.12 U
1,4-Dichlorobenzene	0.05	0.29
sec-Butylbenzene	0.50 U	2.5 U
p-Isopropyltoluene	0.04 U	0.22 U
1,2-Dichlorobenzene	0.02 U	0.12 U
n-Butylbenzene	0.20 U	1.1 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client:
Project:
Client ID:
WOODS HOLE LABSCase:

Matrix:

EA Engineering, Science & Technology

Adelaide Ave. School

Cafeteria

Air

N/A SDG:

N/A

Lab Code: MA00030

ETR: **0706154**

Lab ID: 0706154-02

Associated Blank: VA071107B27

				Sample	Final		
	Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
Ì	06/29/07	06/29/07	06/30/07	250	250	1	JEG

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	0.48	2.4
Chloromethane	0.46	2.3
Vinyl chloride	0.02 U	0.05 U
Chloroethane	0.02 U	0.05 U
Acetone	6.3	15
Trichlorofluoromethane	0.22	1.3
Acrylonitrile	0.50 U	1.1 U
1,1-Dichloroethene	0.02 U	0.08 U
Methylene chloride	1.9	6.7
trans-1,2-Dichloroethene	0.02 U	0.08 U
1,1-Dichloroethane	0.02 U	0.08 U
MTBE	0.02 U	0.07 U
2-Butanone	1.5	4.4
cis-1,2-Dichloroethene	0.02 U	0.08 U
Chloroform	0.02 U	0.10 U
1,2-Dichloroethane	0.02 U	0.08 U
1,1,1-Trichloroethane	0.02 U	0.11 U
Benzene	0.10	0.33
Carbon tetrachloride	0.08	0.51
1,2-Dichloropropane	0.02 U	0.09 U
Bromodichloromethane	0.02 U	0.13 U
Trichloroethene	0.02 U	0.11 U
cis-1,3-Dichloropropene	0.02 U	0.09 U
4-Methyl-2-pentanone	0.50 U	2.0 U
trans-1,3-Dichloropropene	0.02 U	0.09 U
1,1,2-Trichloroethane	0.02 U	0.11 U
Toluene	1.5	5.6
Dibromochloromethane	0.02 U	0.17 U
1,2-Dibromoethane	0.02 U	0.15 U
Tetrachloroethene	0.02 U	0.14 U
1,1,1,2-Tetrachloroethane	0.02 U	0.14 U
Chlorobenzene	0.02 U	0.09 U
Ethylbenzene	0.73	3.2
p+m-Xylene	2.5	11
Bromoform	0.02 U	0.21 U
Styrene	0.07	0.29

Client: Project: Client ID:

EA Engineering, Science & Technology

N/A

Adelaide Ave. School

Lab Code: MA00030

ETR: 0706154

Lab ID: 0706154-02

WOODS HOLE LABSCase:

Date Collected

06/29/07

Cafeteria N/A

Air

SDG:

Associated Blank: VA071107B27

Matrix:

Final Sample Dilution Factor Analyst Date Received Date Analyzed Amount (ml) Volume (ml) 06/29/07 06/30/07 250 250 1 JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U
o-Xylene	0.67	2.9
Isopropylbenzene	0.50 U	2.5 U
1,3,5-Trimethylbenzene	1.2	5.8
1,2,4-Trimethylbenzene	2.0	9.8
1,3-Dichlorobenzene	0.02 U	0.12 U
1,4-Dichlorobenzene	0.05	0.31
sec-Butylbenzene	0.50 U	2.5 U
p-Isopropyltoluene	0.04 U	0.22 U
1,2-Dichlorobenzene	0.02 U	0.12 U
n-Butylbenzene	0.20 U	1.1 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Duplicate Volatile Organics by TO-15

Client:
Project:
Client ID:
WOODS HOLE LABSCase:

Matrix:

EA Engineering, Science & Technology

Adelaide Ave. School

Cafataria

Cafeteria N/A

Air

SDG:

N/A

Lab Code: MA00030

ETR: 0706154

Lab ID: **0706154-02 D**

Associated Blank: VA071107B27

Sample Final Date Collected Date Received Date Analyzed Amount (ml) Volume (ml) Dilution Factor Analyst 250 JEG 06/29/07 06/29/07 06/30/07 250 1

Parameter	Raw Amount	Result
	ppbv	μg/m³
Dichlorodifluoromethane	0.46	2.3
Chloromethane	0.41	2.1
Vinyl chloride	0.02 U	0.05 U
Chloroethane	0.02 U	0.05 U
Acetone	6.4	15
Trichlorofluoromethane	0.22	1.2
Acrylonitrile	0.50 U	1.1 U
1,1-Dichloroethene	0.02 U	0.08 U
Methylene chloride	1.9	6.7
trans-1,2-Dichloroethene	0.02 U	0.08 U
1,1-Dichloroethane	0.02 U	0.08 U
MTBE	0.03	0.11
2-Butanone	1.5	4.5
cis-1,2-Dichloroethene	0.02 U	0.08 U
Chloroform	0.03	0.13
1,2-Dichloroethane	0.02 U	0.08 U
1,1,1-Trichloroethane	0.02 U	0.11 U
Benzene	0.10	0.33
Carbon tetrachloride	0.08	0.50
1,2-Dichloropropane	0.02	0.09
Bromodichloromethane	0.02 U	0.13 U
Trichloroethene	0.02 U	0.11 U
cis-1,3-Dichloropropene	0.02 U	0.09 U
4-Methyl-2-pentanone	0.50 U	2.0 U
trans-1,3-Dichloropropene	0.02 U	0.09 U
1,1,2-Trichloroethane	0.02 U	0.11 U
Toluene	1.4	5.4
Dibromochloromethane	0.02 U	0.17 U
1,2-Dibromoethane	0.02 U	0.15 U
Tetrachloroethene	0.02	0.15
1,1,1,2-Tetrachloroethane	0.02 U	0.14 U
Chlorobenzene	0.02 U	0.09 U
Ethylbenzene	0.71	3.1
p+m-Xylene	2.4	10
Bromoform	0.02 U	0.21 U
Styrene	0.07	0.28

Duplicate Volatile Organics by TO-15

Client: Project: Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

Lab Code: MA00030

ETR: 0706154

Lab ID: 0706154-02 D

Associated Blank: VA071107B27

WOODS HOLE LABSCase:

Cafeteria N/A

SDG:

N/A

Matrix:	Air
---------	-----

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	250	250	1	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U
o-Xylene	0.66	2.9
Isopropylbenzene	0.50 U	2.5 U
1,3,5-Trimethylbenzene	1.2	5.7
1,2,4-Trimethylbenzene	2.0	9.6
1,3-Dichlorobenzene	0.02 U	0.12 U
1,4-Dichlorobenzene	0.05	0.29
sec-Butylbenzene	0.50 U	2.5 U
p-Isopropyltoluene	0.04 U	0.22 U
1,2-Dichlorobenzene	0.02 U	0.12 U
n-Butylbenzene	0.20 U	1.1 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: Project: Client ID: WOODS HOLE LABSCase:

EA Engineering, Science & Technology

Lab Code: MA00030 ETR: 0706154

Air

Adelaide Ave. School Kitchen Storage Room

Lab ID: 0706154-03

Matrix:

N/A SDG: N/A

Associated Blank: VA071107B27

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	250	250	1	JEG

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	0.48	2.4
Chloromethane	0.04 U	0.08 U
Vinyl chloride	0.02 U	0.05 U
Chloroethane	0.02 U	0.05 U
Acetone	8.8	21
Trichlorofluoromethane	0.24	1.3
Acrylonitrile	0.50 U	1.1 U
1,1-Dichloroethene	0.02 U	0.08 U
Methylene chloride	2.7	9.2
trans-1,2-Dichloroethene	0.02 U	0.08 U
1,1-Dichloroethane	0.02 U	0.08 U
MTBE	0.04	0.13
2-Butanone	2.4	7.2
cis-1,2-Dichloroethene	0.02 U	0.08 U
Chloroform	0.03	0.16
1,2-Dichloroethane	0.02 U	0.08 U
1,1,1-Trichloroethane	0.02 U	0.11 U
Benzene	0.11	0.35
Carbon tetrachloride	0.08	0.51
1,2-Dichloropropane	0.03	0.12
Bromodichloromethane	0.02 U	0.13 U
Trichloroethene	0.03	0.16
cis-1,3-Dichloropropene	0.02 U	0.09 U
4-Methyl-2-pentanone	0.50 U	2.0 U
trans-1,3-Dichloropropene	0.02 U	0.09 U
1,1,2-Trichloroethane	0.02 U	0.11 U
Toluene	1.8	6.8
Dibromochloromethane	0.02 U	0.17 U
1,2-Dibromoethane	0.02 U	0.15 U
Tetrachloroethene	0.02	0.16
1,1,1,2-Tetrachloroethane	0.02 U	0.14 U
Chlorobenzene	0.02 U	0.09 U
Ethylbenzene	0.86	3.7
p+m-Xylene	2.9	13
Bromoform	0.02 U	0.21 U
Styrene	0.94	4.0

Client: WOODS HOLE LABSCase:

EA Engineering, Science & Technology

Lab Code: MA00030

Project: Client ID: Adelaide Ave. School Kitchen Storage Room

ETR: 0706154 Lab ID: 0706154-03

N/A SDG: N/A

Associated Blank: VA071107B27

Matrix: Air

ĺ	-			Sample	Final		
	Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
	06/29/07	06/29/07	06/30/07	250	250	1	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U
o-Xylene	0.85	3.7
Isopropylbenzene	0.50 U	2.5 U
1,3,5-Trimethylbenzene	1,9	9.4
1,2,4-Trimethylbenzene	3.2	16
1,3-Dichlorobenzene	0.02 U	0.12 U
1,4-Dichlorobenzene	0.06	0.36
sec-Butylbenzene	0.50 U	2.5 U
p-Isopropyltoluene	0.04 U	0.22 U
1,2-Dichlorobenzene	0.02 U	0.12 U
n-Butylbenzene	0.20 U	1.1 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: Project: Client ID: WOODS HOLE LABSCase:

Matrix:

EA Engineering, Science & Technology

Adelaide Ave. School

Elevator Hallway SDG:

N/A

Air

N/A

Lab Code: MA00030

ETR: 0706154 Lab ID: 0706154-04

Associated Blank: VA071107B27

[Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	250	250	1	IFG

Parameter	Raw Amount	Result
	ppbv	$\mu \mathrm{g}/\mathrm{m}^3$
Dichlorodifluoromethane	0.47	2.3
Chloromethane	0.04 U	0.08 U
Vinyl chloride	0.02 U	0.05 U
Chloroethane	0.02 U	0.05 U
Acetone	7.4	18
Trichlorofluoromethane	0.23	1.3
Acrylonitrile	0.50 U	1.1 U
1,1-Dichloroethene	0.02 U	0.08 U
Methylene chloride	1.6	5.7
trans-1,2-Dichloroethene	0.02 U	0.08 U
1,1-Dichloroethane	0.02 U	0.08 U
MTBE	0.02	0.09
2-Butanone	1.1	3.2
cis-1,2-Dichloroethene	0.02 U	0.08 U
Chloroform	0.04	0.17
1,2-Dichloroethane	0.02 U	0.08 U
1,1,1-Trichloroethane	0.02 U	0.11 U
Benzene	0.12	0.37
Carbon tetrachloride	0.08	0.50
1,2-Dichloropropane	0.02 U	0.09 U
Bromodichloromethane	0.02 U	0.13 U
Trichloroethene	0.02	0.12
cis-1,3-Dichloropropene	0.02 U	0.09 U
4-Methyl-2-pentanone	0.50 U	2.0 U
trans-1,3-Dichloropropene	0.02 U	0.09 U
1,1,2-Trichloroethane	0.02 U	0.11 U
Toluene	1.1	4.1
Dibromochloromethane	0.02 U	0.17 U
1,2-Dibromoethane	0.02 U	0.15 U
Tetrachloroethene	0.02	0.16
1,1,1,2-Tetrachloroethane	0.02 U	0.14 U
Chlorobenzene	0.02 U	0.09 U
Ethylbenzene	0.37	1.6
p+m-Xylene	1.2	5.4
Bromoform	0.02 U	0.21 U
Styrene	0.10	0.43

Client:
Project:
Client ID:
WOODS HOLE LABSCase:

EA Engineering, Science & Technology

Adelaide Ave. School

Elevator Hallway

N/A SDG:

N/A

Lab Code: MA00030

ETR: 0706154

Lab ID: 0706154-04

Associated Blank: VA071107B27

Matrix: Air

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	250	250	1	JEG

Raw Amount ppbv	Result µg/m³	
0.02 U	0.14 U	
0.39	1.7	
0.50 U	2.5 U	
1.2	6.2	
2.0	9.9	
0.02 U	0.12 U	
0.05	0.29	
0.50 U	2.5 U	
0.04 U	0.22 U	
0.02 U	0.12 U	
0.20 U	1.1 U	
	ppbv 0.02 U 0.39 0.50 U 1.2 2.0 0.02 U 0.05 0.50 U 0.04 U 0.02 U	

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client:
Project:
Client ID:
WOODS HOLE LABSCase:

Matrix:

EA Engineering, Science & Technology

Adelaide Ave. School

Room 118

Air

N/A SDG:

N/A

Lab Code: MA00030

ETR: 0706154

Lab ID: 0706154-05

Associated Blank: VA071107B27

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	250	250	1	JEG

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	0.48	2.4
Chloromethane	0.04 U	0.08 U
Vinyl chloride	0.02 U	0.05 U
Chloroethane	0.02 U	0.05 U
Acetone	4.4	10
Trichlorofluoromethane	0.24	1.3
Acrylonitrile	0.50 U	1.1 U
1,1-Dichloroethene	0.02 U	0.08 U
Methylene chloride	2.2	7.6
trans-1,2-Dichloroethene	0.02 U	0.08 U
1,1-Dichloroethane	0.02 U	0.08 U
MTBE	0.02	0.07
2-Butanone	0.20 U	0.59 U
cis-1,2-Dichloroethene	0.02 U	0.08 U
Chloroform	0.02	0.12
1,2-Dichloroethane	0.02 U	0.08 U
1,1,1-Trichloroethane	0.02 U	0.11 U
Benzene	0.12	0.39
Carbon tetrachloride	0.09	0.53
1,2-Dichloropropane	0.02 U	0.09 U
Bromodichloromethane	0.02 U	0.13 U
Trichloroethene	0.02	0.11
cis-1,3-Dichloropropene	0.02 U	0.09 U
4-Methyl-2-pentanone	0.50 U	2.0 U
trans-1,3-Dichloropropene	0.02 U	0.09 U
1,1,2-Trichloroethane	0.02 U	0.11 U
Toluene	0.62	2.3
Dibromochloromethane	0.02 U	0.17 U
1,2-Dibromoethane	0.02 U	0.15 U
Tetrachloroethene	0.02	0.14
1,1,1,2-Tetrachloroethane	0.02 U	0.14 U
Chlorobenzene	0.02 U	0.09 U
Ethylbenzene	0.12	0.52
p+m-Xylene	0.41	1.8
Bromoform	0.02 U	0.21 U
Styrene	0.03	0.11

Client:
Project:
Client ID:
Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

Room 118

N/A SDG:

G: **N/A**

Lab Code: MA00030

ETR: **0706154**

Lab ID: 0706154-05

Associated Blank: VA071107B27

Matrix: Air

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	250	250	1	JEG

Parameter	Raw Amount ppbv	Result µg/m³	
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U	
o-Xylene	0.12	0.50	
Isopropylbenzene	0.50 U	2.5 U	
1,3,5-Trimethylbenzene	0.16	0.77	
1,2,4-Trimethylbenzene	0.30	1.5	
1,3-Dichlorobenzene	0.02 U	0.12 U	
1,4-Dichlorobenzene	0.05	0.28	
sec-Butylbenzene	0.50 U	2.5 U	
p-Isopropyltoluene	0.04 U	0.22 U	
1,2-Dichlorobenzene	0.02 U	0.12 U	
n-Butylbenzene	0.20 U	1.1 U	

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client:
Project:
Client ID:
WOODS HOLE LABSCase:

Matrix:

EA Engineering, Science & Technology

Adelaide Ave. School

Room 110

N/A

Air

SDG: N/A

Lab Code: MA00030

ETR: 0706154

Lab ID: 0706154-06

Associated Blank: VA071107B27

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	250	250	1	JEG

Parameter	Raw Amount	Result
	ppbv	μg/m³
Dichlorodifluoromethane	0.43	2.1
Chloromethane	0.64	1.3
Vinyl chloride	0.02 U	0.05 U
Chloroethane	0.02 U	0.05 U
Acetone	30	72
Trichlorofluoromethane	0.22	1.2
Acrylonitrile	0.50 U	1.1 U
1,1-Dichloroethene	0.02 U	0.08 U
Methylene chloride	2.3	8.0
trans-1,2-Dichloroethene	0.02 U	0.08 U
1,1-Dichloroethane	0.02 U	0.08 U
MTBE	0.02 U	0.07 U
2-Butanone	170 E	510 E
cis-1,2-Dichloroethene	0.02 U	0.08 U
Chloroform	0.03	0.14
1,2-Dichloroethane	0.02 U	0.08 U
1,1,1-Trichloroethane	0.02 U	0.11 U
Benzene	0.10	0.32
Carbon tetrachloride	0.08	0.50
1,2-Dichloropropane	0.02 U	0.09 U
Bromodichloromethane	0.02 U	0.13 U
Trichloroethene	0.02	0.12
cis-1,3-Dichloropropene	0.02 U	0.09 U
4-Methyl-2-pentanone	0.50 U	2.0 U
trans-1,3-Dichloropropene	0.02 U	0.09 U
1,1,2-Trichloroethane	0.02 U	0.11 U
Toluene	0.42	1.6
Dibromochloromethane	0.02 U	0.17 U
1,2-Dibromoethane	0.02 U	0.15 U
Tetrachloroethene	0.02 U	0.14 U
1,1,1,2-Tetrachloroethane	0.02 U	0.14 U
Chlorobenzene	0.02 U	0.09 U
Ethylbenzene	0.05	0.21
p+m-Xylene	0.14	0.61
Bromoform	0.02 U	0.21 U
Styrene	0.02	0.09

Client: Project: Client ID:

EA Engineering, Science & Technology Adelaide Ave. School

Lab Code: MA00030

ETR: 0706154

Lab ID: 0706154-06

Room 110 N/A

SDG:

N/A

Associated Blank: VA071107B27

Matrix: Air

			Sample	Final		· · · · · · · · · · · · · · · · · · ·
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	250	250	1	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U
o-Xylene	0.05	0.21
Isopropylbenzene	0.50 U	2.5 U
1,3,5-Trimethylbenzene	0.07	0.34
1,2,4-Trimethylbenzene	0.11	0.53
1,3-Dichlorobenzene	0.02 U	0.12 U
1,4-Dichlorobenzene	0.04	0.26
sec-Butylbenzene	0.50 U	2.5 U
p-Isopropyltoluene	0.04 U	0.22 U
1,2-Dichlorobenzene	0.02 U	0.12 U
n-Butylbenzene	0.20 U	1.1 U

N/A - Not Applicable

E - Estimated value, exceeds the upper limit of calibration.

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client:
Project:
Client ID:
WOODS HOLE LABSCase:

Matrix:

EA Engineering, Science & Technology

Adelaide Ave. School

Room 110

Air

N/A SDG:

N/A

Lab Code: MA00030

ETR: **0706154**

Lab ID: 0706154-06E

Associated Blank: VA071107B27

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	25	250	10	JEG

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	0.20 U	0.99 U
Chloromethane	0.40 U	0.83 U
Vinyl chloride	0.20 U	0.51 U
Chloroethane	0.20 U	0.53 U
Acetone	10 U	24 U
Trichlorofluoromethane	0.20 U	1.1 U
Acrylonitrile	5.0 U	11 U
1,1-Dichloroethene	0.20 U	0.79 U
Methylene chloride	5.0 U	17 U
trans-1,2-Dichloroethene	0.20 U	0.79 U
1,1-Dichloroethane	0.20 U	0.81 U
MTBE	0.20 U	0.72 U
2-Butanone	120	360
cis-1,2-Dichloroethene	0.20 U	0.79 U
Chloroform	0.20 U	0.98 U
1,2-Dichloroethane	0.20 U	0.81 U
1,1,1-Trichloroethane	0.20 U	1.1 U
Benzene	0.40 U	1.3 U
Carbon tetrachloride	0.20 U	1.3 U
1,2-Dichloropropane	0.20 U	0.92 U
Bromodichloromethane	0.20 U	1.3 U
Trichloroethene	0.20 U	1.1 U
cis-1,3-Dichloropropene	0.20 U	0.91 U
4-Methyl-2-pentanone	5.0 U	20 U
trans-1,3-Dichloropropene	0.20 U	0.91 U
1,1,2-Trichloroethane	0.20 U	1.1 U
Toluene	0.50 U	1.9 U
Dibromochloromethane	0.20 U	1.7 U
1,2-Dibromoethane	0.20 U	1.5 U
Tetrachloroethene	0.20 U	1.4 U
1,1,1,2-Tetrachloroethane	0.20 U	1.4 U
Chlorobenzene	0.20 U	0.92 U
Ethylbenzene	0.20 U	0.87 U
p+m-Xylene	0.40 U	1.7 U
Bromoform	0.20 U	2.1 U
Styrene	0.20 U	0.85 U

Client: Project:

EA Engineering, Science & Technology

Adelaide Ave. School

Lab Code: MA00030

ETR: 0706154

Lab ID: 0706154-06E

Room 110 N/A

N/A SDG:

Associated Blank: VA071107B27

Matrix:

Air

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	25	250	10	JEG

Parameter	Raw Amount ppbv	Result μg/m³	
1,1,2,2-Tetrachloroethane	0.20 U	1.4 U	
o-Xylene	0.20 U	0.87 U	
Isopropylbenzene	5.0 U	25 U	
1,3,5-Trimethylbenzene	0.20 U	0.98 U	
1,2,4-Trimethylbenzene	0.20 U	0.98 U	
1,3-Dichlorobenzene	0.20 U	1.2 U	
1,4-Dichlorobenzene	0.20 U	1.2 U	
sec-Butylbenzene	5.0 U	25 U	
p-Isopropyltoluene	0.40 U	2.2 U	
1,2-Dichlorobenzene	0.20 U	1.2 U	
n-Butylbenzene	2.0 U	11 U	

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: Project: Client ID: WOODS HOLE LABSCase:

EA Engineering, Science & Technology

Lab Code: MA00030 ETR: 0706154

Adelaide Ave. School

Room 145 - Media Ctr SDG:

Lab ID: **0706154-07**

Matrix:

N/A Air

Associated Blank: VA071107B27

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	250	250	1	JEG

N/A

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	0.44	2.2
Chloromethane	0.04 U	0.08 U
Vinyl chloride	0.02 U	0.05 U
Chloroethane	0.02 U	0.05 U
Acetone	4.9	12
Trichlorofluoromethane	0.22	1.2
Acrylonitrile	0.50 U	1.1 U
1,1-Dichloroethene	0.02 U	0.08 U
Methylene chloride	1.8	6.1
trans-1,2-Dichloroethene	0.02 U	0.08 U
1,1-Dichloroethane	0.02 U	0.08 U
MTBE	0.02 U	0.07 U
2-Butanone	6.2	18
cis-1,2-Dichloroethene	0.02 U	0.08 U
Chloroform	0.03	0.15
1,2-Dichloroethane	0.02 U	0.08 U
1,1,1-Trichloroethane	0.02 U	0.11 U
Benzene	0.10	0.31
Carbon tetrachloride	0.08	0.50
1,2-Dichloropropane	0.02 U	0.09 U
Bromodichloromethane	0.02 U	0.13 U
Trichloroethene	0.03	0.14
cis-1,3-Dichloropropene	0.02 U	0.09 U
4-Methyl-2-pentanone	0.50 U	2.0 U
trans-1,3-Dichloropropene	0.02 U	0.09 U
1,1,2-Trichloroethane	0.02 U	0.11 U
Toluene	0.47	1.8
Dibromochloromethane	0.02 U	0.17 U
1,2-Dibromoethane	0.02 U	0.15 U
Tetrachloroethene	0.02	0.14
1,1,1,2-Tetrachloroethane	0.02 U	0.14 U
Chlorobenzene	0.02 U	0.09 U
Ethylbenzene	0.06	0.24
p+m-Xylene	0.16	0.68
Bromoform	0.02 U	0.21 U
Styrene	0.03	0.13

Client: Project: WOODS HOLE LABSCase:

EA Engineering, Science & Technology

Adelaide Ave. School

Room 145 - Media Ctr N/A

N/A SDG: Lab Code: MA00030

ETR: 0706154

Lab ID: 0706154-07

Associated Blank: VA071107B27

Matrix:

Air

[Sample	Final		
l	Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
ŀ	06/29/07	06/29/07	06/30/07	250	250	1	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U
o-Xylene	0.07	0.29
Isopropylbenzene	0.50 U	2.5 U
1,3,5-Trimethylbenzene	0.21	1.0
1,2,4-Trimethylbenzene	0.31	1.5
1,3-Dichlorobenzene	0.02 U	0.12 U
1,4-Dichlorobenzene	0.03	0.20
sec-Butylbenzene	0.50 U	2.5 U
p-Isopropyltoluene	0.04 U	0.22 U
1,2-Dichlorobenzene	0.02 U	0.12 U
n-Butylbenzene	0.20 U	1.1 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client:
Project:
Client ID:
WOODS HOLE LABSCase:

EA Engineering, Science & Technology

Adelaide Ave. School

Room 152

N/A SDG:

N/A

Lab Code: MA00030

ETR: 0706154

Lab ID: 0706154-08

Associated Blank: VA071107B27

Matrix: Air

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	250	250	1	JEG

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	0.43	2.1
Chloromethane	0.54	1.1
Vinyl chloride	0.02 U	0.05 U
Chloroethane	0.02 U	0.05 U
Acetone	5.5	13
Trichlorofluoromethane	0.22	1.2
Acrylonitrile	0.50 U	1.1 U
1,1-Dichloroethene	0.02 U	0.08 U
Methylene chloride	2.0	7.0
trans-1,2-Dichloroethene	0.02 U	0.08 U
1,1-Dichloroethane	0.02 U	0.08 U
MTBE	0.02 U	0.07 U
2-Butanone	0.56	1.6
cis-1,2-Dichloroethene	0.02 U	0.08 U
Chloroform	0.02	0.12
1,2-Dichloroethane	0.02 U	0.08 U
1,1,1-Trichloroethane	0.02 U	0.11 U
Benzene	0.10	0.33
Carbon tetrachloride	0.08	0.48
1,2-Dichloropropane	0.02 U	0.09 U
Bromodichloromethane	0.02 U	0.13 U
Trichloroethene	0.02 U	0.11 U
cis-1,3-Dichloropropene	0.02 U	0.09 U
4-Methyl-2-pentanone	0.50 U	2.0 U
trans-1,3-Dichloropropene	0.02 U	0.09 U
1,1,2-Trichloroethane	0.02 U	0.11 U
Toluene	0.61	2.3
Dibromochloromethane	0.02 U	0.17 U
1,2-Dibromoethane	0.02 U	0.15 U
Tetrachloroethene	0.02	0.14
1,1,1,2-Tetrachloroethane	0.02 U	0.14 U
Chlorobenzene	0.02 U	0.09 U
Ethylbenzene	0.10	0.46
p+m-Xylene	0.33	1.4
Bromoform	0.02 U	0.21 U
Styrene	0.04	0.17

Client: Project: Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

Lab Code: MA00030

ETR: 0706154

Lab ID: 0706154-08

Matrix:

Room 152 N/A

Air

SDG:

N/A

Associated Blank: VA071107B27

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	250	250	1	JEG

Parameter	Raw Amount ppbv	Result µg/m³
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U
o-Xylene	0.12	0.52
Isopropylbenzene	0.50 U	2.5 U
1,3,5-Trimethylbenzene	0.47	2.3
1,2,4-Trimethylbenzene	0.76	3.8
1,3-Dichlorobenzene	0.02 U	0.12 U
1,4-Dichlorobenzene	0.04	0.25
sec-Butylbenzene	0.50 U	2.5 U
p-Isopropyltoluene	0.04 U	0.22 U
1,2-Dichlorobenzene	0.02 U	0.12 U
n-Butylbenzene	0.20 U	1.1 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: Project: WOODS HOLE LABSCase:

EA Engineering, Science & Technology

Adelaide Ave. School

Ambient Outdoor Air N/A SDG:

N/A

Lab Code: MA00030

Lab ID: 0706154-09

ETR: **0706154**

Associated Blank: VA071107B27

Matrix:

Air

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	250	250	1	JEG

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	0.44	2.2
Chloromethane	0.04 U	0.08 U
Vinyl chloride	0.02 U	0.05 U
Chloroethane	0.02 U	0.05 U
Acetone	5.4	13
Trichlorofluoromethane	0.21	1.2
Acrylonitrile	0.50 U	1.1 U
1,1-Dichloroethene	0.02 U	0.08 U
Methylene chloride	1.9	6.7
trans-1,2-Dichloroethene	0.02 U	0.08 U
1,1-Dichloroethane	0.02 U	0.08 U
MTBE	0.02 U	0.07 U
2-Butanone	12	36
cis-1,2-Dichloroethene	0.02 U	0.08 U
Chloroform	0.02	0.10
1,2-Dichloroethane	0.02 U	0.08 U
1,1,1-Trichloroethane	0.02 U	0.11 U
Benzene	0.09	0.28
Carbon tetrachloride	0.08	0.50
1,2-Dichloropropane	0.02 U	0.09 U
Bromodichloromethane	0.02 U	0.13 U
Trichloroethene	0.04	0.23
cis-1,3-Dichloropropene	0.02 U	0.09 U
4-Methyl-2-pentanone	0.50 U	2.0 U
trans-1,3-Dichloropropene	0.02 U	0.09 U
1,1,2-Trichloroethane	0.02 U	0.11 U
Toluene	0.24	0.92
Dibromochloromethane	0.02 U	0.17 U
1,2-Dibromoethane	0.02 U	0.15 U
Tetrachloroethene	0.02 U	0.14 U
1,1,1,2-Tetrachloroethane	0.02 U	0.14 U
Chlorobenzene	0.02 U	0.09 U
Ethylbenzene	0.04	0.18
p+m-Xylene	0.11	0.49
Bromoform	0.02 U	0.21 U
Styrene	0.02 U	0.09 U

Client:
Project:
Client ID:
WOODS HOLE LABSCase:

Matrix:

Air

EA Engineering, Science & Technology

Adelaide Ave. School

Ambient Outdoor Air

N/A SDG: N/A

A Associ

Lab Code: MA00030

Lab ID: 0706154-09

ETR: 0706154

Associated Blank: VA071107B27

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	06/30/07	250	250	1	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U
o-Xylene	0.04	0.15
Isopropylbenzene	0.50 U	2.5 U
1,3,5-Trimethylbenzene	0.02 U	0.10 U
1,2,4-Trimethylbenzene	0.04	0.19
1,3-Dichlorobenzene	0.02 U	0.12 U
1,4-Dichlorobenzene	0.06	0.34
sec-Butylbenzene	0.50 U	2.5 U
p-Isopropyltoluene	0.04 U	0.22 U
1,2-Dichlorobenzene	0.02 U	0.12 U
n-Butylbenzene	0.20 U	1.1 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client:
Project:

EA Engineering, Science & Technology

Adelaide Ave. School

Lab Code: MA00030

ETR: 0706154

Client ID:

Blank N/A Air

Matrix:

SDG: N/A

Lab ID: VA071107B27 Associated Blank: N/A

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
N/A	N/A	06/30/07	250	250	1	JEG

Parameter	Raw Amoun	t Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	0.02 U	0.10 U
Chloromethane	0.04 U	0.08 U
Vinyl chloride	0.02 U	0.05 U
Chloroethane	0.02 U	0.05 U
Acetone	1.0 U	2.4 U
Trichlorofluoromethane	0.02 U	0.11 U
Acrylonitrile	0.50 U	1.1 U
1,1-Dichloroethene	0.02 U	0.08 U
Methylene chloride	0.50 U	1.7 U
trans-1,2-Dichloroethene	0.02 U	
1,1-Dichloroethane	0.02 U	
MTBE	0.02 U	
2-Butanone	0.20 U	
cis-1,2-Dichloroethene	0.02 U	
Chloroform	0.02 U	
1,2-Dichloroethane	0.02 U	
1,1,1-Trichloroethane	0.02 U	0.11 U
Benzene	0.04 U	
Carbon tetrachloride	0.02 U	0.13 U
1,2-Dichloropropane	0.02 U	
Bromodichloromethane	0.02 U	
Trichloroethene	0.02 U	
cis-1,3-Dichloropropene	0.02 U	
4-Methyl-2-pentanone	0.50 U	
trans-1,3-Dichloropropene	0.02 U	
1,1,2-Trichloroethane	0.02 U	
Toluene	0.05 U	
Dibromochloromethane	0.02 U	
1,2-Dibromoethane	0.02 U	
Tetrachloroethene	0.02 U	
1,1,1,2-Tetrachloroethane	0.02 U	
Chlorobenzene	0.02 U	
Ethylbenzene	0.02 U	
p+m-Xylene	0.04 U	
Bromoform	0.02 U	
Styrene	0.02 U	0.09 U

Client: Project:

EA Engineering, Science & Technology

Adelaide Ave. School

Lab Code: MA00030

ETR: 0706154

Blank N/A

SDG:

N/A

Lab ID: VA071107B27 Associated Blank: N/A

Matrix: Air

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
N/A	N/A	06/30/07	250	250	1	JEG

Parameter	Raw Amount ppbv	Result µg/m³	
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U	
o-Xylene	0.02 U	0.09 U	
Isopropylbenzene	0.50 U	2.5 U	
1,3,5-Trimethylbenzene	0.02 U	0.10 U	
1,2,4-Trimethylbenzene	0.02 U	0.10 U	
1,3-Dichlorobenzene	0.02 U	0.12 U	
1,4-Dichlorobenzene	0.02 U	0.12 U	
sec-Butylbenzene	0.50 U	2.5 U	
p-Isopropyltoluene	0.04 U	0.22 U	
1,2-Dichlorobenzene	0.02 U	0.12 U	
n-Butylbenzene	0.20 U	1.1 U	

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Laboratory Control Summary Volatile Organics by TO-15

EA Engineering, Science & Technology

Adelaide Ave. School

Laboratory Control Sample N/A SDG: N/A

യവം:

Air

Lab Code: MA00030

ETR: 0706154 Lab ID: See Below

Associated Blank: VA071107B27

Concentration Units: µg/m³

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
N/A	N/A	06/30/07	250	250	1	JEG

	VA071107B27	VA071107LCS13		% Recovery
12 10 10 10 10 10 10 10 10 10 10 10 10 10	Blank	LCS		
Parameter	Conc.	Conc.	% Recovery	Limits
Dichlorodifluoromethane	0.10 U	28	111	70-130
Chloromethane	0.08 U	11	104	70-130
Vinyl chloride	0.05 U	13	103	70-130
Chloroethane	0.05 U	12	90	70-130
Acetone	2.4 U	10	87	70-130
Trichlorofluoromethane	0.11 U	28	98	70-130
Acrylonitrile	1.1 U	9.7	89	70-130
1,1-Dichloroethene	0.08 U	19	95	70-130
Methylene chloride	1.7 U	15	86	70-130
trans-1,2-Dichloroethene	0.08 U	18	90	70-130
1,1-Dichloroethane	0.08 U	18	91	70-130
MTBE	0.07 U	15	85	70-130
2-Butanone	0.59 U	14	96	70-130
cis-1,2-Dichloroethene	0.08 U	19	96	70-130
Chloroform	0.10 U	24	98	70-130
1,2-Dichloroethane	0.08 U	17	85	70-130
1,1,1-Trichloroethane	0.11 U	29	106	70-130
Benzene	0.13 U	13	79	70-130
Carbon tetrachloride	0.13 U	32	101	70-130
1,2-Dichloropropane	0.09 U	21	91	70-130
Bromodichloromethane	0.13 U	33	99	70-130
Trichloroethene	0.11 U	27	102	70-130
cis-1,3-Dichloropropene	0.09 U	23	101	70-130
4-Methyl-2-pentanone	2.0 U	24	115	70-130
trans-1,3-Dichloropropene	0.09 U	20	88	70-130
1,1,2-Trichloroethane	0.11 U	26	97	70-130
Toluene	0.19 U	14	75	70-130
Dibromochloromethane	0.17 U	42	98	70-130
1,2-Dibromoethane	0.15 U	33	87	70-130
Tetrachloroethene	0.14 U	31	92	70-130
1,1,1,2-Tetrachloroethane	0.14 U	30	88	70-130
Chlorobenzene	0.09 U	19	84	70-130
Ethylbenzene	0.09 U	19	88	70-130

Laboratory Control Summary Volatile Organics by TO-15

EA Engineering, Science & Technology

Adelaide Ave. School

Laboratory Control Sample N/A SDG: N/A

Matrix: Air

Lab Code: MA00030

ETR: 0706154

Lab ID: See Below

Associated Blank: VA071107B27

Concentration Units: µg/m³

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
N/A	N/A	06/30/07	250	250	1	JEG

	VA071107B27	VA071107LCS13 LCS		% Recovery
	Blank			
Parameter	Conc.	Conc.	% Recovery	Limits
p+m-Xylene	0.17 U	42	97	70-130
Bromoform	0.21 U	53	103	70-130
Styrene	0.09 U	18	86	70-130
1,1,2,2-Tetrachloroethane	0.14 U	30	86	70-130
o-Xylene	0.09 U	19	87	70-130
Isopropylbenzene	2.5 U	22	90	70-130
1,3,5-Trimethylbenzene	0.10 U	22	89	70-130
1,2,4-Trimethylbenzene	0.10 U	22	92	70-130
1,3-Dichlorobenzene	0.12 U	27	89	70-130
1,4-Dichlorobenzene	0.12 U	27	89	70-130
sec-Butylbenzene	2.5 U	23	95	70-130
p-Isopropyltoluene	0.22 U	24	86	70-130
1,2-Dichlorobenzene	0.12 U	27	91	70-130
n-Butylbenzene	1.1 U	24	89	70-130

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Concentrations reported as calculated values, which includes rounding for significant figures. Percent recoveries and RPD values are calculated from the unrounded result.

Duplicate Volatile Organics by TO-15

Client:
Project:
Client ID:
Client ID:

Matrix:

EA Engineering, Science & Technology

Adelaide Ave. School

Cafeteria

Air

N/A SDG:

N/A

Lab Code: MA00030

ETR: **0706154**Lab ID: **0706154-02**

Associated Blank: VA071107B27

Concentration Units: µg/m³

Date Collected	Date Rec		Analyst		
06/29/07	06/29/	07	JEG		
Parameter	Sample Result	Duplicate Result	RPD	RPD Limi	
Dichlorodifluoromethane	2.4	2.3	4	2.	
Chloromethane	2.3	2.1	0	2	
Vinyl chloride	0.05 U	0.05 U	N/A	2.	
Chloroethane	0.05 U	0.05 U	N/A	2:	
Acetone	15	15	2	2.	
Trichlorofluoromethane	1.3	1.2	1	2.	
Acrylonitrile	1.1 U	1.1 U	N/A	2:	
1,1-Dichloroethene	0.08 U	0.08 U	N/A	2:	
Methylene chloride	6.7	6.7	0	2:	
trans-1,2-Dichloroethene	0.08 U	0.08 U	N/A	2:	
1,1-Dichloroethane	0.08 U	0.08 U	N/A	2:	
MTBE	0.07 U	0.11	X	2:	
2-Butanone	4.4	4.5	2	2:	
cis-1,2-Dichloroethene	0.08 U	0.08 U	N/A	2:	
Chloroform	0.10 U	0.13	X	2:	
1,2-Dichloroethane	0.08 U	0.08 U	N/A	2:	
1,1,1-Trichloroethane	0.11 U	0.11 U	N/A	2:	
Benzene	0.33	0.33	1	2:	
Carbon tetrachloride	0.51	0.50	1	2:	
1,2-Dichloropropane	0.09 U	0.09	X	2:	
Bromodichloromethane	0.13 U	0.13 U	N/A	2:	
Trichloroethene	0.11 U	0.11 U	N/A	2:	
cis-1,3-Dichloropropene	0.09 U	0.09 U	N/A	2:	
4-Methyl-2-pentanone	2.0 U	2.0 U	N/A	2:	
trans-1,3-Dichloropropene	0.09 U	0.09 U	N/A	2:	
1,1,2-Trichloroethane	0.11 U	0.11 U	N/A	2:	
Toluene	5.6	5.4	4	2:	
Dibromochloromethane	0.17 U	0.17 U	N/A	25	
1,2-Dibromoethane	0.15 U	0.15 U	N/A	2:	
Tetrachloroethene	0.14 U	0.15	X	2:	
1,1,1,2-Tetrachloroethane	0.14 U	0.14 U	N/A	2:	
Chlorobenzene	0.09 U	0.09 U	N/A	2:	
Ethylbenzene	3.2	3.1	2	2:	
p+m-Xylene	11	10	2	25	
Bromoform	0.21 U	0.21 U	N/A	25	

N/A - Not Applicable

X - It is not possible to calculate RPD, one result is below the detection limit, the other is above reporting limit.

U - The analyte was analyzed for but not detected at the sample specific level reported.

Duplicate Volatile Organics by TO-15

EA Engineering, Science & Technology

N/A

Adelaide Ave. School

SDG:

Cafeteria

Lab Code: MA00030

ETR: 0706154

Lab ID: 0706154-02

Associated Blank: VA071107B27

Concentration Units: µg/m³

Case:	N/L
Matrix:	Δiı

Date Collected	Date Rec	eived	Analyst		
06/29/07	06/29/	07	JEG		
Parameter	Sample Result	Duplicate Result	RPD	RPD Limit	
Styrene	0.29	0.28	2	25	
1,1,2,2-Tetrachloroethane	0.14 U	0.14 U	N/A	25	
o-Xylene	2.9	2.9	2	25	
Isopropylbenzene	2.5 U	2.5 U	N/A	25	
1,3,5-Trimethylbenzene	5.8	5.7	2	25	
1,2,4-Trimethylbenzene	9.8	9.6	3	25	
1,3-Dichlorobenzene	0.12 U	0.12 U	N/A	25	
1,4-Dichlorobenzene	0.31	0.29	4	25	
sec-Butylbenzene	2.5 U	2.5 U	N/A	25	
p-Isopropyltoluene	0.22 U	0.22 U	N/A	25	
1,2-Dichlorobenzene	0.12 U	0.12 U	N/A	25	
n-Butylbenzene	1.1 U	1.1 U	N/A	25	

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Concentrations reported as calculated values, which includes rounding for significant figures. RPD values are reported based on the unrounded calculated result.

												The state of the s	Particular Control of the Control of
AIRA CHAINGECUSTON	AIR ANALYSIS	SIS	PAGE	E OF		Date Rec	Date Rec'd in Lab				ALPHA Job#:	10.00	1706/SH
Š	5	Project Information	uo			Report	Report Information - Data Deliverables	on - Data	Delivera	bles	Billing In	Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	Project Na	Project Name: Ade lo	dide f	3	TOP	D FAX			_	,,	Same as	XSame as Client info PC	PO #:
ClientInformation	Project Location	Cartion	abina	NC (A	Н		Criteria Checker () Put Rord	er. Jes	HRoom	\ / I	Solfic Solfic		
Client FA Chamber ING	Project #:	$\breve{\sigma}$	-1050	1005		(Det	(Default based on F Other Formats:	Regulatory C	riteria Indica		· _		
Address: 23KD VOLKA	Project Manager:	anager:	ter Gr	rivers		D EMAII	☐ EMAIL (standard pdf report)	1 pdf repor	t)		Regulat	ory Requireme	Regulatory Requirements/Report Limits
Narwick K	ALPHA Quote #:	Suote #:				□ Additi	☐ Additional Deliverables:	erables:			State/Fed	1	0
3	Turn-A	Turn-Around Time	91			Report to	Report to: (if different than Project Manager)	an Project Mana	iger)	-		TO SOUTH	- AN - ANGE
9	YStanda	Đ	☐ RUSH (∞	☐ RUSH (only confirmed if pre-approved!)	3proved!)				, , , , , , , , , , , , , , , , , , , ,		7		
Email OR FIVE TS & POREST. CA		DAYS							•		ANALYSIS	SIS	
Other Project Specific Requirements/Comments:	by Alpha Date Due:	5		:ame:							_	J7N SNVI	
										W	SES ED GASES	10 SES COS ON FIDES/WEKCYP	
Al PHA I ship			Colloction				9		្ទរួ	IS SI	p.c.	SAS SUL	
(Lab Use Only)	D	Date	Start Time	End Time	Sample Matrix	Samplers Initials	Can	I D - Flow Controller	10/04	10, A A	.01	2010 104	Sample Comments (i.e. PID)
My J-		6-23-07	6733	5080	4	A	382	0220	<i>^</i>				PID=0.161 PPM
- 2 Cafeteria	The state of the s	-	0735	080			383	0156				里	PED= 0.105 RPM
-3 Kitchyn Sto	rage ROM		0737	080/			ગુગૃ	158				E CE	PID= 0.130 ppm
-4 Slevator Hal	ווייייייייייייייייייייייייייייייייייייי		947 o	6180			345	8110				120-	PID= 0.128 ADM
-5 Room 118			ShLa	5180			Ч(9	6910				PID	PID- 0.009 DOM
-6 Kom 110			7470	08/7			113	0/5/0				PED=	PID=0.006 DDM
-7 ROOM 145-	Media Ctr.		5520	2280			207	0 153				B	May 400.0 = OTA
-8 Room 152			0757	0827			228	5510				PED	1=0.015"DON
-9 Ambient Outh	for AIR	>	0270	9230	>	→	144	5220				RTO:	PED=0.010 POM
Pa													
Shaded Gray Areas For Lab Use Only	or Lab Use Onl						Contair	Container Type	<u></u>	8	77.1.	Please print completely.	Please print clearly, legibly and completely. Samples can not be
/ 33	Relingui	Relinguished By:		Date	le/Time		Received By:	The state of the s		Da // 2/	Date/Time:	clock will ambiguitie	clock will not start until any ambiguities are resolved. All
X				offet	270-7	unt				dethi		A Samples s Alpha's P	samples submitted are subject to Alpha's Payment Terms. See reverse side.
Form No: 01-03 (rev. 28-NOV-06)							3						

Certificate/Approval Program Summary

Method numbers assume the most recent EPA revisions. For a complete listing of analytes for the referenced methods please contact your Alpha Woods Hole Lab Project Manager or the Quality Assurance Manager.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141 - Wastewater (General Chemistry: EPA 120.1, 150.1, 160.1, 160.2, 180.1, 300.0, 310.1, 335.2, 365.2; Metals: 200.8, 245.1; Organics: 608, 624, 625, ETPH) Solid Waste/Soil (General Chemistry: 1010, 9010/9014, 9045, 9060; Metals: 6020, 7470, 7471; Organics: 8081, 8082, 8260, 8270, ETPH).

Florida Department of Health Certificate/Lab ID: E87814 - Primary NELAP Accreditation Authority for Air & Emissions. Secondary NELAP Accreditation for Wastwater and Solid & Hazardous Waste. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 335.2, 365.2, SM2320B, SM2340B, SM2540G, SM4500NH3; Metals: 245.1; Organics: 608, 624, 625). Solid and Hazardous Waste (General Chemistry: 9010/9014, 9045, 9050, 9056, 9065, Reactivity 7.3; Metals: 6020, 7470, 7471; Organics: 8081, 8082, 8260, 8270). Air & Emissions (Organics: EPA TO-15).

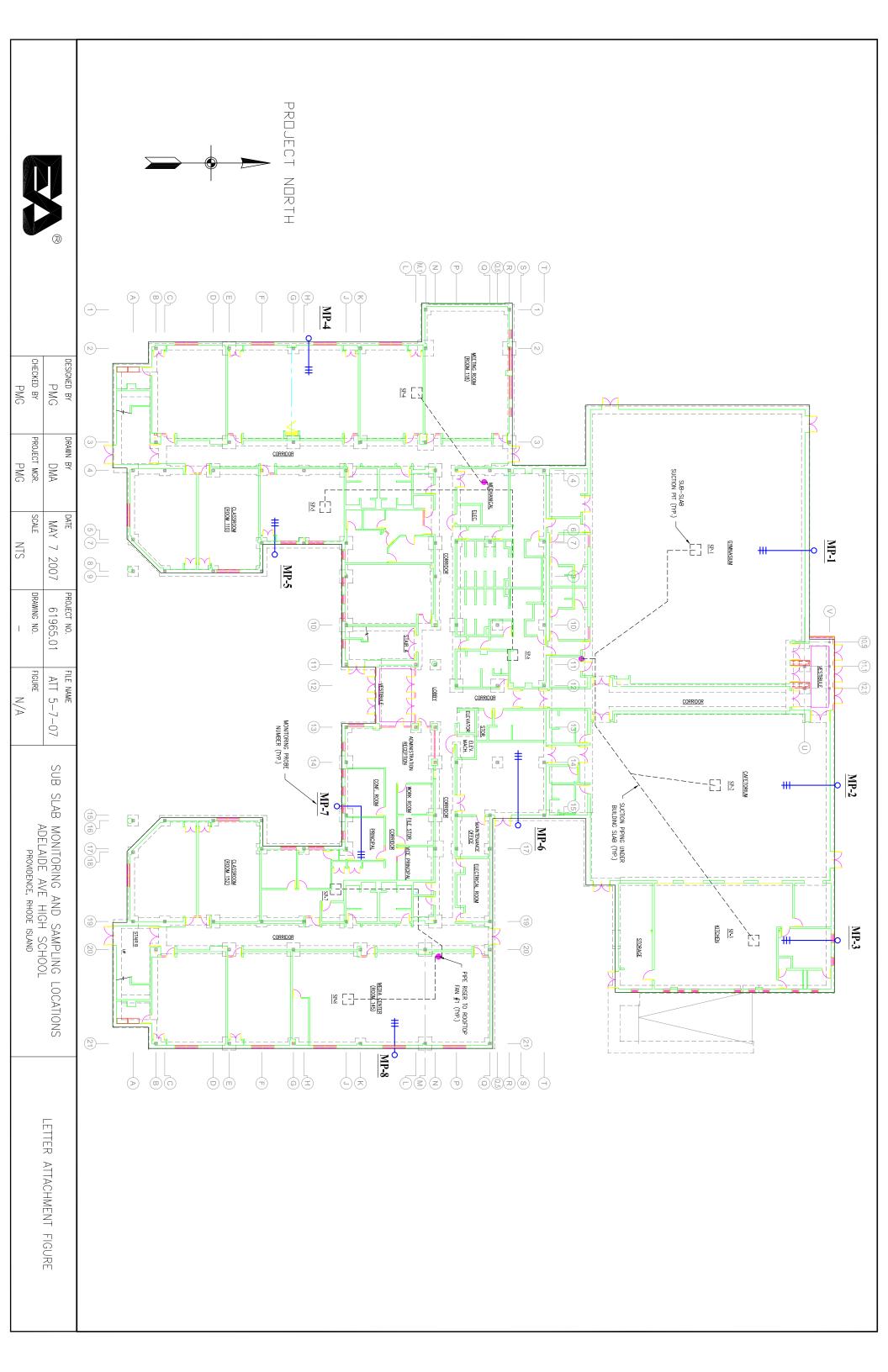
Louisiana Department of Environmental Quality Certificate/Lab ID: 03090 - Primary NELAP Accrediting Authority for Wastewater, Solid & Hazardous Waste. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 310.1/SM2320B, 335.2, 365.2, 376.2, 9010/9014, 9056, SM2540G; Metals: 200.8, 245.1, 6020; Organics: 608, 624, 625, 8015-DRO/GRO, 8081, 8082, 8260, 8270). Solid and Hazardous Waste (General Chemistry: 1010, 1311, 9010/9014, 9040, 9045, 9056, 9060, Reactivity 7.3; Metals: 6020, 7196, 7470, 7471; Organics: 8015-DRO/GRO, 8081, 8082, 8260, 8270).

Maine Department of Human Services Certificate/Lab ID: MA0030 - Wastewater (General Chemistry: EPA 120.1/SM2510B, 160.1/SM2540C, 160.2/SM2540D, 300.0, 310.1/SM2320B, 335.2, 365.2; Metals: EPA 245.1; Organics: 608, 624).

Massachusetts Department of Environmental Protection <u>Certificate/Lab ID</u>: M-MA030 - *Wastewater* (<u>General Chemistry</u>: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 300.0, 310.1/SM2320B, 335.2, 365.2; <u>Metals</u>: EPA 245.1; <u>Organics</u>: EPA 608, 624).

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206 - Secondary NELAP Accreditation. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 310.1/SM2320B, 335.2, 365.2, 376.2, SM2540G; Metals: 200.8, 245.4; Organics: 608, 624, 625).

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015 - Secondary NELAP Accreditation. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 310.1/SM2320B, 335.2, 376.2, 9010/9014, 9056, SM2540G; Metals: 200.8, 245.1 6020; Organics: 608, 624, 625, 8081, 8082, 8260, 8270). Solid & Hazardous Waste (General Chemistry: EPA 1010, 1311, 9010/9014, 9040, 9045, 9056, 9060; Metals: 6020, 7196, 7470, 7471; Organics: 8015-DRO/GRO, 8081, 8082, 8260, 8270). Air & Emissions (Organics: EPA TO-15).


New York Department of Health Certificate/Lab ID: 11627 - Secondary NELAP Accreditation. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 300.0, 310.1/SM2320B, 365.2, 376.2; Metals: 245.1; Organics: 608, 624, 625). Solid and Hazardous Waste (General Chemistry: EPA 1010, 1311; : 245.1; 6020, 7041; Organics: 8081, 8082, 8260, 8270). Air & Emissions (Organics: EPA TO-15).

Rhode Island Department of Health Certificate/Lab ID: LAO00289 - Chemistry: Organic and Inorganic in Non-Poratable Water, Wastewater/Sewage and Soil (Refer to LADEQ and MADEP certificates for method numbers.)

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-02089 - Registered laboratory

U.S. Army Corps of Engineers

Department of the Navy

Summary of Sub-Slab Air Sampling Data - Adelaide Avenue School Project - Volatile Organic Compounds March - June 2007

		MP-1		MP-2		MP-3		MP-4		MP-5		MP-6		MP-7		MP-8	
Volatile Organic Compounds via TO-15	Sample Date		Qual	2	Qual	0	Qual		Qual	0	Qual	Nii O	Qual	/	Qual	0	Qual
1,1,1,2-Tetrachloroethane	15-Mar-07	620	U	590	U	590	U	600	U	580	U	240	U	91	U	260	U
,,,,,	22-Mar-07	85.7	Ü	85.7	Ü	85.7	Ü	85.7	Ü	85.7	Ü	85.7	Ü	85.7	Ü	34.3	Ü
	26-Apr-07	34.3	U	34.3	U	34.3	U	34.3	U	34.3	U	34.3	U	34.3	U	34.3	U
	21-May-07	62.4	U	34.3	U	34.3	Ü	60.4	U	34.3	U	34.3	U	3.43	U	34.3	U
	29-Jun-07	0.69	U	0.69	U	0.69	U	0.69	U	0.69	U	1.4	U	0.69	U	0.69	U
1,1,2,2-Tetrachloroethane	15-Mar-07	620	U	590	U	590	U	600	U	580	U	240	U	91	U	260	U
, , ,	22-Mar-07	85.7	U	85.7	U	85.7	U	85.7	U	85.7	Ü	85.7	U	85.7	U	34.3	U
	26-Apr-07	34.3	U	34.3	U	34.3	Ü	34.3	U	34.3	U	34.3	U	34.3	U	34.3	U
	21-May-07	62.4	U	34.3	U	34.3	Ü	60.4	U	34.2	U	34.3	U	3.43	U	34.3	U
	29-Jun-07	0.69	Ü	0.69	Ü	0.69	Ü	0.69	Ü	0.69	Ü	1.4	Ü	0.69	Ü	0.69	Ü
1,1,2-Trichloroethane	15-Mar-07	490	U	470	U	470	U	470	U	460	U	190	U	72	U	200	U
, ,	22-Mar-07	68.1	U	68.1	U	68.1	U	68.1	U	68.1	Ü	68.1	U	68.1	U	27.2	U
	26-Apr-07	27.2	U	27.2	U	27.2	Ü	27.2	U	27.2	U	27.2	U	27.2	U	27.2	U
	21-May-07	36.8	Ü	27.2	U	27.2	Ü	48.0	U	27.2	U	27.2	Ü	2.72	Ü	27.2	Ū
	29-Jun-07	0.55	Ü	0.55	Ü	0.55	Ü	0.55	Ü	0.55	_	1.1	Ü	0.55	Ü	0.55	Ü
1,1-Dichloroethene	15-Mar-07	360	U	340	Ü	340	U	350	U	340	U	140	U	53	U	150	U
,	22-Mar-07	49.5	Ü	49.5	Ü	49.5	Ü	49.5	Ü	49.5	Ü	49.5	Ü	49.5	Ü	19.8	Ü
	26-Apr-07	19.8	Ü	19.8	Ü	19.8	Ü	19.8	U	19.8	U	19.8	Ü	19.8	Ü	19.8	Ü
	21-May-07	36.0	Ü	19.8	Ü	19.8	Ü	35.6	Ü	19.8	U	19.8	Ü	1.98	Ü	19.8	Ü
	29-Jun-07	0.4	Ü	0.4	Ü	0.4	Ü	0.4	Ü	0.4	Ü	0.79	Ü	0.4	Ü	0.4	Ü
1,2,4-Trimethylbenzene	15-Mar-07	440	U	420	U	420	U	430	U	420	U	170	U	65	U	180	Ü
,_,	22-Mar-07	61.4	Ü	61.4	Ü	61.4	Ü	61.4	Ü	61.4	Ü	61.4	Ü	61.4	Ü	24.6	Ü
	26-Apr-07	24.6	U	24.6	U	24.6	Ü	24.6	U	24.6	U	24.6	U	24.6	U	24.6	U
	21-May-07	44.7	Ü	24.6	U	24.6	Ü	43.2	U	24.6	U	24.6	Ü	2.46	Ü	24.6	Ū
	29-Jun-07	2.4	-	1.5	_	1.2	_	3.4		3.2	_	0.98	Ü	2.6	_	1.5	
1,2-Dibromoethane	15-Mar-07	690	U	660	U	660	U	670	U	650	U	260	U	100	U	290	U
,	22-Mar-07	96	Ü	96	Ü	96	Ü	96	Ü	96	Ü	96	Ü	96	Ü	38.4	Ü
	26-Apr-07	38.4	U	38.4	U	38.4	Ü	38.4	U	38.4	Ü	38.4	U	38.4	U	38.4	U
	21-May-07	69.9	Ü	38.4	U	38.4	Ü	67.6	U	38.4	U	38.4	Ü	3.84	Ü	38.4	Ū
	29-Jun-07	0.77	Ü	0.77	Ü	0.77	Ü	0.77	Ü	0.77	Ü	1.5	Ü	0.77	Ü	0.77	Ü
1,2-Dichloroethane	15-Mar-07	370	U	350	U	350	U	350	U	340	U	140	U	53	U	150	Ü
,	22-Mar-07	50.6	Ü	50.6	U	50.6	Ü	50.6	Ü	50.6	U	50.6	Ü	50.6	Ü	20.2	Ū
	26-Apr-07	20.2	Ü	20.2	Ü	20.2	Ü	20.2	Ü	20.2	Ü	20.2	Ü	20.2	Ü	20.2	Ü
	21-May-07	36.8	Ü	20.2	Ü	20.2	Ü	35.6	U	20.2	U	20.2	Ü	2.02	Ü	20.2	Ü
	29-Jun-07	0.4	Ü	0.4	Ü	0.4	Ü	0.4	Ü	0.4	Ü	0.81	Ü	0.4	Ü	0.4	Ü
1,2-Dichloropropane	15-Mar-07	420	U	400	U	400	U	400	U	390	U	160	U	61	U	170	U
,	22-Mar-07	57.7	Ü	57.7	U	57.7	Ü	57.7	U	57.7	U	57.7	Ü	57.7	Ü	23.1	Ū
	26-Apr-07	23.1	Ü	23.1	Ü	23.1	Ü	23.1	Ü	23.1	U	23.1	Ü	23.1	Ü	23.1	Ü
	21-May-07	42.0	Ü	23.1	U	23.1	Ü	40.6	U	23.1	U	23.1	Ü	2.31	Ü	23.1	Ū
	29-Jun-07	0.46	Ü	0.46	Ü	0.46	Ü	0.46	Ü	0.46	Ü	0.92	Ü	0.46	Ü	0.46	Ü
1,3,5-Trimethybenzene	15-Mar-07	440	U	420	U	420	U	430	U	420	U	170	U	65	U	180	Ü
,,,,,	22-Mar-07	61.4	Ü	61.4	U	61.4	Ü	61.4	Ü	61.4	U	61.4	Ü	61.4	Ü	24.6	Ü
	26-Apr-07	24.6	Ü	24.6	Ü	24.6	Ü	24.6	Ü	24.6	U	24.6	Ü	24.6	Ü	24.6	Ü
	21-May-07	44.7	Ü	24.6	U	24.6	Ü	43.2	Ü	24.6	U	24.6	Ü	2.46	Ü	24.6	Ū
	29-Jun-07	1.2	ľ	0.79		0.59	Ŭ	1.7	Ŭ	1.7		0.98	Ü	2.6	ľ	1.5	
1,4-Dichlorobenzene	15-Mar-07	540	U	520	U	520	U	520	U	510	U	210	U	79	U	220	U
,,	22-Mar-07	75.1	Ü	75.1	U	75.1	Ü	75.1	U	75.1	U	75.1	Ü	75.1	Ü	30	Ū
	26-Apr-07	30	Ü	30	Ü	30	Ü	30	Ü	30	U	30	Ü	30	Ü	30	Ü
	21-May-07	54.7	Ü	30	Ü	30	Ü	52.9	Ü	30	U	30	Ü	3	Ü	30	Ü
	29-Jun-07	69	l	58	1	55		68		65		39		75	l ŭ l	61	Ιĭ
2-Butanone	15-Mar-07	19000000	1	18000000		6000000		16000000		3600000		6800000		700000		6300000	+
	22-Mar-07	505000	1	1180000		3590000		742000		739000		5120000		51900		357000	1
	26-Apr-07	26200		15100		67600		19000		22200		93000		2620		43000	1
	21-May-07	29500		4360		13600		14100		15900		10700		1.47	U	10200	1
	29-Jun-07	7100		6200		8300		11000		9400		21000		2200	l ~ l	12000	
Acetone	15-Mar-07	2000000	1	2400000	1	1300000		1900000		250000		2300000		91000		1110000	+-
	22-Mar-07	44100		93600		583000		55500		54700		1320000		2390		50100	1
	26-Apr-07	1650	1	1300		14100		1390		2160		30000		188		11000	1
	21-May-07	824		1210		5100		761		2390		2740		13.7		2750	
	29-Jun-07	490	1	410	1	1100	1	770	1	1000	1	4700	1	170	1	1600	1

		•	Summa	ry of Sub-Slab A	ir Samı	pling Data - Adela March - Ju		enue School Proj 07, continued	ject - Vo	olatile Organic C	ompou	inds					
Volatile Organic Compounds via TO-15		MP-1		MP-2	1	MP-3	T	MP-4		MP-5	1	MP-6	1	MP-7		MP-8	\top
Volatile Organic Compounds via 10-15	Sample Date		Qual		Qual		Qual		Qual		Qual		Qual		Qual		Qual
Benzene	15-Mar-07	290	U	280	U	280	С	280	U	270	U	110	U	42	U	120	U
	22-Mar-07	39.9	U	39.9	U	39.9	U	39.9	U	39.9	U	39.9	U	39.9	U	16	U
	26-Apr-07	16	U	16	U	16	U	16	U	16	U	16	U	16	U	16	U
	21-May-07	29.0	U	16	U	16	U	28.1	U	16	U	16	U	1.6	U	16	U
	29-Jun-07	0.69		0.64	U	0.73		0.67		0.75		1.3	U	0.83		0.7	
Bromodichloromethane	15-Mar-07	600	U	580	U	580	U	580	U	570	U	230	U	88	U	250	U
	22-Mar-07	83.7	U	83.7	U	83.7	U	83.7	U	83.7	U	83.7	U	83.7	U	33.5	U
	26-Apr-07	33.5	U	33.5	U	33.5	U	33.5	U	33.5	U	33.5	U	33.5	U	33.5	U
	21-May-07	60.9	U	33.5	U	33.5	U	58.9	U	33.5	U	33.5	U	3.35	U	33.5	U
	29-Jun-07	0.67	U	0.67	U	0.67	U	0.67	U	0.67	U	1.3	U	0.67	U	0.67	U
Bromoform	15-Mar-07	930	U	890	U	890	U	900	U	880	U	360	U	140	U	390	U
	22-Mar-07	129	U	129	U	129	U	129	U	129	U	129	U	129	U	51.6	U
	26-Apr-07	51.6	U	51.6	U	51.6	U	51.6	U	51.6	U	51.6	U	51.6	U	51.6	U
	21-May-07	94.0	U	51.6	U	51.6	U	90.9	U	51.6	U	51.6	U	5.16	U	51.6	U
	29-Jun-07	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	2.1	U	1.0	U	1.0	U
cis-1,2-Dichloroethene	15-Mar-07	360	U	340	U	340	U	340	U	340	U	140	U	52	U	150	U
	22-Mar-07	49.5	U	49.5	U	49.5	U	49.5	U	49.5	U	49.5	U	49.5	U	19.8	U
	26-Apr-07	19.8	U	19.8	U	19.8	U	19.8	U	19.8	U	19.8	U	19.8	U	19.8	U
	21-May-07	36.0	U	19.8	U	19.8	U	34.9	U	19.8	U	19.8	U	1.98	U	19.8	U
	29-Jun-07	0.5	U	0.45	U	0.45	U	0.45	U	0.45	U	0.91	U	0.45	U	0.45	U
Methylene chloride	15-Mar-07	12000	U	12000	U	12000	U	12000	U	14000		4800	U	1800	U	5200	U
	22-Mar-07	86.8	U	86.8	U	86.8	U	86.8	U	86.8	U	86.8	U	86.8	U	34.7	U
	26-Apr-07	34.7	U	34.7	U	34.7	U	34.7	U	34.7	U	34.7	U	34.7	U	69.4	
	21-May-07	63.2	U	34.7	U	34.7	U	61.1	U	34.7	U	34.7	U	3.47	U	34.7	U
	29-Jun-07	8.7	U	8.7	U	8.7	U	8.7	U	8.7	U	17	U	8.7	U	8.7	U
Tetrachloroethene	15-Mar-07	610	U	580		580	U	590	U	580	U	230	U	90	U	250	U
	22-Mar-07	84.7	U	84.7	U	84.7	U	84.7	U	84.7	U	84.7	U	84.7	U	33.9	U
	26-Apr-07	33.9	U	33.9	U	33.9	U	33.9	U	33.9	U	33.9	U	33.9	U	33.9	U
	21-May-07	61.7	U	33.9	U	33.9	U	59.6	U	33.9	U	33.9	U	3.39	U	33.9	U
	29-Jun-07	0.88		0.78		0.75		2.2		6.7		1.4	U	1.0		0.68	\perp
Trichloroethene	15-Mar-07	480	U	460	U	460	U	470	U	460	U	180	U	71	U	200	U
	22-Mar-07	67.1	U	67.1	U	67.1	U	67.1	U	67.1	U	67.1	U	67.1	U	26.8	U
	26-Apr-07	26.8	U	26.8	U	26.8	U	26.8	U	26.8	U	26.8	U	26.8	U	26.8	U
	21-May-07	48.9	U	26.8	U	26.8	U	47.2	U	26.8	U	26.8	U	2.68	U	26.8	U
	29-Jun-07	0.54	U	0.54	U	0.54	U	22		100		1.1	U	0.62		0.54	U
Toluene	15-Mar-07	850	U	810	U	810	U	820	U	800	U	320	U	120	U	350	U
	22-Mar-07	47.1	U	47.1	U	47.1	U	47.1	U	47.1	U	47.1	U	47.1	U	18.8	U
	26-Apr-07	18.8	U	18.8	U	18.8	U	18.8	U	18.8	U	18.8	U	18.8	U	18.8	U
	21-May-07	34.3	U	26.2		18.8	U	57.3		47.4		18.8	U	1.92		18.8	U
	29-Jun-07	26	L	3.3	<u> </u>	3.3	1	4.3	١١	4.1	L	3.0	L	5.3	4	4.2	
Vinyl chloride	15-Mar-07	230	U	220	U	220	U	220	U	220	U	88	U	34	U	96	U
	22-Mar-07	31.9	U	31.9	U	31.9	U	31.9	U	31.9	U	31.9	U	31.9	U	12.8	U
	26-Apr-07	12.8	U	12.8	U	12.8	U	12.8	U	12.8	U	12.8	U	12.8	U	12.8	U
	21-May-07	23.2	U	12.8	U	12.8	U	22.5	U	12.8	U	12.8	U	1.28	U	12.8	U
0-1	29-Jun-07	0.26	U	0.26	U	0.26	U	0.26	U	0.26	U	0.51	U	0.26	U	0.26	U
Carbon tetrachloride	15-Mar-07	570	U	540	U	540	U	540	U	530	U	220	U	83	U	240	U
	22-Mar-07	78.6	U	78.6	U	78.6	U	78.6	U	78.6	U	78.6	U	78.6	U	31.4	U
	26-Apr-07	31.4	U	31.4	U	31.4	U	31.4	U	31.4	U	31.4	U	31.4	U	31.4	U
	21-May-07	57.2	U	31.4	U	31.4	U	55.3	U	31.4	U	31.4	U	3.14	U	31.4	U
OU.	29-Jun-07	0.63	U	0.63	U	0.63	U	0.63	U	0.63	U	1.3	U	0.63	U	0.63	U
Chloroform	15-Mar-07	440	U	420	U	420	U	420	U	410	U	170	U	64	U	180	U
	22-Mar-07	61	U	61	U	61	U	61	U	61	U	61	U	61	U	24.4	U
	26-Apr-07	24.4	U	24.4	U	24.4	U	24.4	U	24.4	U	24.4	U	24.4	U	24.4	U
	21-May-07	44.4	U	24.4	U	24.4	U	42.9	U	24.4	U	24.4	U	2.44	U	24.4	U
Notae:	29-Jun-07	0.49	U	0.49	U	0.49	U	0.49	U	0.49	U	0.98	U	0.49	U	0.49	U

Notes

All VOC compounds detected above the laboratory detection limits or those reported as "Not Detected" with reporting limits that exceed the action levels applicable to indoor air for this project are presented in this table. All data presented in micrograms per cubic meter (ug/m3).

U: designation indicates that the compound was not detected by the laboratory. Reporting limit shown in the data column.

ANALYTICAL REPORT

Prepared for:

EA Engineering, Science & Technology 2350 Post Road Warwick, RI 02886

Project:

Adelaide Ave. School

ETR:

0706153

Report Date:

July 12, 2007

Certifications and Accreditations

Massachusetts M-MA030
Connecticut PH-0141
New Hampshire 2206
Rhode Island LAO00289
New Jersey MA015
Maine MA0030
New York 11627
Louisiana 03090
Florida E87814
Pennsylvania 68-02089
Army Corps of Engineers
Department of the Navy

This report shall not be reproduced except in full, without written approval from the laboratory.

Sample ID Cross Reference

EA Engineering, Science & Technology

Project: Adelaide Ave. School

Lab Code: MA00030

ETR: **0706153**

Lab Sample ID	Client Sample ID
0706153-01	MP-1
0706153-02	MP-2
0706153-03	MP-3
0706153-04	MP-6
0706153-05	MP-8
0706153-06	MP-7
0706153-07	MP-5
0706153-08	MP-4

CASE NARRATIVE Alpha Woods Hole Lab

ETR: 0706153

Project: Adelaide Ave. School

All analyses were performed according to Alpha Woods Hole Labs quality assurance program and documented Standard Operating Procedures (SOPs). The analytical results contained in this report were performed within holding time, and with appropriate quality control measures, except where noted. A summary of all state and federal accreditations is provided within this report. Blank correction of results is not performed in the laboratory for any parameter.

Volatile Organics by TO-15 SIM

- 1. The laboratory control sample (LCS), VA071207LCS02, analyzed on 7/6/07, had recoveries for several analytes below the 70% lower QC limit. This LCS is associated with the dilution re-analysis of all samples for Acetone and 2-Butanone only, thus the data were accepted.
- 2. The majority of samples required dilution re-analyses due to analytes above the calibration range. These re-analyses were only evaluated for the compounds that were over the calibration range in the original analyses. See the sample report forms for specific sample dilutions.

The enclosed results of analyses are representative of the samples as received by the laboratory. Alpha Woods Hole Labs makes no representations or certifications as to the method of sample collection, sample identification, or transporting/handling procedures used prior to the receipt of samples by Alpha Woods Hole Labs. To the best of my knowledge, the information contained in this report is accurate and complete.

Approved by: Litzabeth Porta Title: Organics Manager Date: 7/12/07

Client:
Project:

EA Engineering, Science & Technology

Adelaide Ave. School

Client ID: MP-1

Soil Vapor

Case: N/A

Matrix:

SDG:

N/A

Lab Code: MA00030

ETR: **0706153**Lab ID: **0706153-01**

Associated Blank: VA071107B28

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	50	250	5	JEG

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	0.44	2.2
Chloromethane	0.20 U	0.41 U
Vinyl chloride	0.10 U	0.26 U
Chloroethane	0.10 U	0.26 U
Acetone	210	490
Trichlorofluoromethane	0.23	1.3
Acrylonitrile	2.5 U	5.4 U
1,1-Dichloroethene	0.10 U	0.40 U
Methylene chloride	2.5 U	8.7 U
trans-1,2-Dichloroethene	0.10 U	0.40 U
1,1-Dichloroethane	0.10 U	0.40 U
MTBE	0.15	0.54
2-Butanone	2300 E	6800 E
cis-1,2-Dichloroethene	0.10 U	0.40 U
Chloroform	0.10 U	0.49 U
1,2-Dichloroethane	0.10 U	0.40 U
1,1,1-Trichloroethane	0.10 U	0.55 U
Benzene	0.22	0.69
Carbon tetrachloride	0.10 U	0.63 U
1,2-Dichloropropane	0.10 U	0.46 U
Bromodichloromethane	0.10 U	0.67 U
Trichloroethene	0.10 U	0.54 U
cis-1,3-Dichloropropene	0.10 U	0.45 U
4-Methyl-2-pentanone	2.5 U	10 U
trans-1,3-Dichloropropene	0.10 U	0.45 U
1,1,2-Trichloroethane	0.10 U	0.55 U
Toluene	6.9	26
Dibromochloromethane	0.10 U	0.85 U
1,2-Dibromoethane	0.10 U	0.77 U
Tetrachloroethene	0.13	0.88
1,1,1,2-Tetrachloroethane	0.10 U	0.69 U
Chlorobenzene	0.12	0.53
Ethylbenzene	3.4	15
p+m-Xylene	5.8	25
Bromoform	0.10 U	1.0 U
Styrene	0.16	0.70

Client: Project: Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

ETR: 0706153

Lab Code: MA00030

MP-1

N/A

Soil Vapor

Lab ID: 0706153-01

Matrix:

SDG:

Associated Blank: VA071107B28

1330Clated Di	am. v	AU/I

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	50	250	5	JEG

N/A

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.10 U	0.69 U
o-Xylene	1.6	7.0
Isopropylbenzene	2.5 U	12 U
1,3,5-Trimethylbenzene	0.25	1.2
1,2,4-Trimethylbenzene	0.49	2.4
1,3-Dichlorobenzene	0.10 U	0.60 U
1,4-Dichlorobenzene	12	69
sec-Butylbenzene	2.5 U	12 U
p-Isopropyltoluene	0.20 U	1.1 U
1,2-Dichlorobenzene	0.10 U	0.60 U
n-Butylbenzene	1.0 U	5.5 U

N/A - Not Applicable

E - Estimated value, exceeds the upper limit of calibration.

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: Project:

EA Engineering, Science & Technology

Adelaide Ave. School

Client ID: MP-1

Case: N/A SDG: N/A
Matrix: Soil Vapor

Lab Code: MA00030

ETR: 0706153

Lab ID: 0706153-01E

Associated Blank: VA071207B02

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/06/07	1.5037	250	166.26	JEG

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	3.3 U	16 U
Chloromethane	6.6 U	14 U
Vinyl chloride	3.3 U	8.5 U
Chloroethane	3.3 U	8.8 U
Acetone	170 U	400 U
Trichlorofluoromethane	3.3 U	19 U
Acrylonitrile	83 U	180 U
1,1-Dichloroethene	3.3 U	13 U
Methylene chloride	83 U	290 U
trans-1,2-Dichloroethene	3.3 U	13 U
1,1-Dichloroethane	3.3 U	13 U
MTBE	3.3 U	12 U
2-Butanone	2400	7100
cis-1,2-Dichloroethene	3.3 U	13 U
Chloroform	3.3 U	16 U
1,2-Dichloroethane	3.3 U	13 U
1,1,1-Trichloroethane	3.3 U	18 U
Benzene	6.6 U	21 U
Carbon tetrachloride	3.3 U	21 U
1,2-Dichloropropane	3.3 U	15 U
Bromodichloromethane	3.3 U	22 U
Trichloroethene	3.3 U	18 U
cis-1,3-Dichloropropene	3.3 U	15 U
4-Methyl-2-pentanone	83 U	340 U
trans-1,3-Dichloropropene	3.3 U	15 U
1,1,2-Trichloroethane	3.3 U	18 U
Toluene	8.3 U	31 U
Dibromochloromethane	3.3 U	28 U
1,2-Dibromoethane	3.3 U	26 U
Tetrachloroethene	3.3 U	22 U
1,1,1,2-Tetrachloroethane	3.3 U	23 U
Chlorobenzene	3.3 U	15 U
Ethylbenzene	3.3 U	14 U
p+m-Xylene	6.6 U	29 U
Bromoform	3.3 U	34 U
Styrene	3.3 U	14 U

Client: Project:

EA Engineering, Science & Technology

Lab Code: MA00030

Client ID:

Adelaide Ave. School MP-1

ETR: 0706153

Lab ID: 0706153-01E

Case:

SDG:

N/A

Associated Blank: VA071207B02

Matrix: Soil Vapor

N/A

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/06/07	1.5037	250	166.26	JEG

Parameter	Raw Amour ppbv	t Result μg/m³
1,1,2,2-Tetrachloroethane	3.3 U	23 U
o-Xylene	3.3 U	14 U
Isopropylbenzene	83 L	410 U
1,3,5-Trimethylbenzene	3.3 L	16 U
1,2,4-Trimethylbenzene	3.3 L	16 U
1,3-Dichlorobenzene	3.3 U	20 U
1,4-Dichlorobenzene	3.3 U	20 U
sec-Butylbenzene	83 U	410 U
p-Isopropyltoluene	6,6 L	36 U
1,2-Dichlorobenzene	3.3 U	20 U
n-Butylbenzene	33 L	180 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: Project: Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

MP-2

Lab Code: MA00030 ETR: 0706153

Lab ID: 0706153-02

Associated Blank: VA071107B28

SDG: N/A

Matuin.	0.21	T 7 a m a m
Matrix:	2011	Vapor

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	50	250	5	JEG

N/A

Parameter	Raw Amount	Result
	ppbv	μg/m³
Dichlorodifluoromethane	0.44	2.2
Chloromethane	0.20 U	0.41 U
Vinyl chloride	0.10 U	0.26 U
Chloroethane	0.10 U	0.26 U
Acetone	170	410
Trichlorofluoromethane	0.28	1.5
Acrylonitrile	2.5 U	5.4 U
1,1-Dichloroethene	0.10 U	0.40 U
Methylene chloride	2.5 U	8.7 U
trans-1,2-Dichloroethene	0.10 U	0.40 U
1,1-Dichloroethane	0.10 U	0.40 U
MTBE	0.20	0.72
2-Butanone	1900 E	5700 E
cis-1,2-Dichloroethene	0.10 U	0.40 U
Chloroform	0.10 U	0.49 U
1,2-Dichloroethane	0.10 U	0.40 U
1,1,1-Trichloroethane	0.10 U	0.55 U
Benzene	0.20 U	0.64 U
Carbon tetrachloride	0.10 U	0.63 U
1,2-Dichloropropane	0.10 U	0.46 U
Bromodichloromethane	0.10 U	0.67 U
Trichloroethene	0.10 U	0.54 U
cis-1,3-Dichloropropene	0.10 U	0.45 U
4-Methyl-2-pentanone	2.5 U	10 U
trans-1,3-Dichloropropene	0.10 U	0.45 U
1,1,2-Trichloroethane	0.10 U	0.55 U
Toluene	0.88	3.3
Dibromochloromethane	0.10 U	0.85 U
1,2-Dibromoethane	0.10 U	0.77 U
Tetrachloroethene	0.12	0.78
1,1,1,2-Tetrachloroethane	0.10 U	0.69 U
Chlorobenzene	0.10 U	0.46 U
Ethylbenzene	0.10 U	0.43 U
p+m-Xylene	0.28	1.2
Bromoform	0.10 U	1.0 U
Styrene	0.10 U	0.43 U

Client:
Project:
Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

ETR: 0706153

MP-2

Lab ID: 0706153-02

Lab Code: MA00030

*Case:

N/A SDG: N/A

Associated Blank: VA071107B28

Matrix: Soil Vapor

				Sample	Final		
Da	ite Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
	06/29/07	06/29/07	07/02/07	50	250	5	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.10 U	0.69 U
o-Xylene	0.12	0.50
Isopropylbenzene	2.5 U	12 U
1,3,5-Trimethylbenzene	0.16	0.79
1,2,4-Trimethylbenzene	0.30	1.5
1,3-Dichlorobenzene	0.10 U	0.60 U
1,4-Dichlorobenzene	9.6	58
sec-Butylbenzene	2.5 U	12 U
p-Isopropyltoluene	0.20 U	1.1 U
1,2-Dichlorobenzene	0.10 U	0.60 U
n-Butylbenzene	1.0 U	5.5 U

N/A - Not Applicable

E - Estimated value, exceeds the upper limit of calibration.

U - The analyte was analyzed for but not detected at the sample specific level reported.

07/13/07 12:40

Client: Project: Client ID: MP-2 Case: N/A

EA Engineering, Science & Technology

Adelaide Ave. School

SDG:

N/A

Lab ID: 0706153-02E

ETR: 0706153

Lab Code: MA00030

Associated Blank: VA071207B02

Matrix:

Soil Vapor

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/06/07	1.557	250	160.56	JEG

Parameter	Raw Amount	Result
	ppbv	μg/m³
Dichlorodifluoromethane	3.2 U	16 U
Chloromethane	6.4 U	13 U
Vinyl chloride	3.2 U	8.2 U
Chloroethane	3.2 U	8.5 U
Acetone	160 U	380 U
Trichlorofluoromethane	3.2 U	18 U
Acrylonitrile	80 U	170 U
1,1-Dichloroethene	3.2 U	13 U
Methylene chloride	80 U	280 U
trans-1,2-Dichloroethene	3.2 U	13 U
1,1-Dichloroethane	3.2 U	13 U
MTBE	3.2 U	12 U
2-Butanone	2100	6200
cis-1,2-Dichloroethene	3.2 U	13 U
Chloroform	3.2 U	16 U
1,2-Dichloroethane	3.2 U	13 U
1,1,1-Trichloroethane	3.2 U	18 U
Benzene	6.4 U	20 U
Carbon tetrachloride	3.2 U	20 U
1,2-Dichloropropane	3.2 U	15 U
Bromodichloromethane	3.2 U	22 U
Trichloroethene	3.2 U	17 U
cis-1,3-Dichloropropene	3.2 U	15 U
4-Methyl-2-pentanone	80 U	330 U
trans-1,3-Dichloropropene	3.2 U	15 U
1,1,2-Trichloroethane	3.2 U	18 U
Toluene	8.0 U	30 U
Dibromochloromethane	3.2 U	27 U
1,2-Dibromoethane	3.2 U	25 U
Tetrachloroethene	3.2 U	22 U
1,1,1,2-Tetrachloroethane	3.2 U	22 U
Chlorobenzene	3.2 U	15 U
Ethylbenzene	3.2 U	14 U
p+m-Xylene	6.4 U	28 U
Bromoform	3.2 U	33 U
Styrene	3.2 U	14 U

Client: Project: Client ID: MOODS HOTE

EA Engineering, Science & Technology

Adelaide Ave. School

MP-2

Lab Code: MA00030

ETR: 0706153

Lab ID: 0706153-02E

Associated Blank: VA071207B02

Matrix:

N/A SDG: Soil Vapor

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/06/07	1.557	250	160.56	JEG

N/A

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	3.2 U	22 U
o-Xylene	3.2 U	14 U
Isopropylbenzene	80 U	390 U
1,3,5-Trimethylbenzene	3.2 U	16 U
1,2,4-Trimethylbenzene	3.2 U	16 U
1,3-Dichlorobenzene	3.2 U	19 U
1,4-Dichlorobenzene	3.2 U	19 U
sec-Butylbenzene	80 U	390 U
p-Isopropyltoluene	6.4 U	35 U
1,2-Dichlorobenzene	3.2 U	19 U
n-Butylbenzene	32 U	180 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: Project: Client ID: MP-3 Case: N/A ABSCASE:

EA Engineering, Science & Technology

Adelaide Ave. School

SDG:

N/A

Lab Code: MA00030 ETR: 0706153

Lab ID: 0706153-03

Associated Blank: VA071107B28

Matrix: Soil Vapor

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	50	250	5	JEG

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	0.42	2.1
Chloromethane	0.20 U	0.41 U
Vinyl chloride	0.10 U	0.26 U
Chloroethane	0.10 U	0.26 U
Acetone	410 E	980 E
Trichlorofluoromethane	0.20	1.2
Acrylonitrile	2.5 U	5.4 U
1,1-Dichloroethene	0.10 U	0.40 U
Methylene chloride	2.5 U	8.7 U
trans-1,2-Dichloroethene	0.10 U	0.40 U
1,1-Dichloroethane	0.10 U	0.40 U
MTBE	0.10 U	0.36 U
2-Butanone	2300 E	6900 E
cis-1,2-Dichloroethene	0.10 U	0.40 U
Chloroform	0.10 U	0.49 U
1,2-Dichloroethane	0.10 U	0.40 U
1,1,1-Trichloroethane	0.10 U	0.55 U
Benzene	0.23	0.73
Carbon tetrachloride	0.10 U	0.63 U
1,2-Dichloropropane	0.10 U	0.46 U
Bromodichloromethane	0.10 U	0.67 U
Trichloroethene	0.10 U	0.54 U
cis-1,3-Dichloropropene	0.10 U	0.45 U
4-Methyl-2-pentanone	2.5 U	10 U
trans-1,3-Dichloropropene	0.10 U	0.45 U
1,1,2-Trichloroethane	0.10 U	0.55 U
Toluene	0.88	3.3
Dibromochloromethane	0.10 U	0.85 U
1,2-Dibromoethane	0.10 U	0.77 U
Tetrachloroethene	0.11	0.75
1,1,1,2-Tetrachloroethane	0.10 U	0.69 U
Chlorobenzene	0.10 U	0.46 U
Ethylbenzene	0.10 U	0.43 U
p+m-Xylene	0.27	1.2
Bromoform	0.10 U	1.0 U
Styrene	0.10 U	0.43 U

Client: Project:

EA Engineering, Science & Technology

Lab Code: MA00030

Client ID:

Adelaide Ave. School

ETR: 0706153

Case:

MP-3 N/A

SDG: N/A Lab ID: 0706153-03

Matrix:

Soil Vapor

Associated Blank: VA071107B28

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	50	250	5	JEG

Raw Amount ppbv	Result μg/m³
0.10 U	0.69 U
0.10	0.46
2.5 U	12 U
0.12	0.59
0.24	1,2
0.10 U	0.60 U
9.2	55
2.5 U	12 U
0.20 U	1.1 U
0.10 U	0.60 U
1.0 U	5.5 U
	ppbv 0.10 U 0.10 2.5 U 0.12 0.24 0.10 U 9.2 2.5 U 0.20 U 0.10 U

N/A - Not Applicable

E - Estimated value, exceeds the upper limit of calibration.

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: Project: Client ID:

Case:

Matrix:

N/A

Soil Vapor

WOODS HOLE LABS

EA Engineering, Science & Technology

Adelaide Ave. School

MP-3

SDG: N/A ETR: 0706153 Lab ID: 0706153-03E

Associated Blank: VA071207B02

Lab Code: MA00030

Sample Final Amount (ml) Volume (ml) Dilution Factor Analyst Date Received Date Analyzed Date Collected JEG 06/29/07 07/06/07 1.5893 250 157.31 06/29/07

Parameter	Raw Amount	Result	
	ppbv	$\mu g/m^3$	
Dichlorodifluoromethane	3.2 U	16 U	
Chloromethane	6.3 U	13 U	
Vinyl chloride	3.2 U	8.0 U	
Chloroethane	3.2 U	8.3 U	
Acetone	460	1100	
Trichlorofluoromethane	3.2 U	18 U	
Acrylonitrile	79 U	170 U	
1,1-Dichloroethene	3.2 U	12 U	
Methylene chloride	79 U	270 U	
trans-1,2-Dichloroethene	3.2 U	12 U	
1,1-Dichloroethane	3.2 U	13 U	
MTBE	3.2 U	11 U	
2-Butanone	2800	8300	
cis-1,2-Dichloroethene	3.2 U	12 U	
Chloroform	3.2 U	15 U	
1,2-Dichloroethane	3.2 U	13 U	
1,1,1-Trichloroethane	3.2 U	17 U	
Benzene	6.3 U	20 U	
Carbon tetrachloride	3.2 U	20 U	
1,2-Dichloropropane	3.2 U	14 U	
Bromodichloromethane	3.2 U	21 U	
Trichloroethene	3.2 U	17 U	
cis-1,3-Dichloropropene	3.2 U	14 U	
4-Methyl-2-pentanone	79 U	320 U	
trans-1,3-Dichloropropene	3.2 U	14 U	
1,1,2-Trichloroethane	3.2 U	17 U	
Toluene	7.9 U	30 U	
Dibromochloromethane	3,2 U	27 U	
1,2-Dibromoethane	3.2 U	24 U	
Tetrachloroethene	3.2 U	21 U	
1,1,1,2-Tetrachloroethane	3.2 U	22 U	
Chlorobenzene	3.2 U	14 U	
Ethylbenzene	3.2 U	14 U	
p+m-Xylene	6.3 U	27 U	
Bromoform	3.2 U	32 U	
Styrene	3.2 U	13 U	

Client:

EA Engineering, Science & Technology

Lab Code: MA00030

Project:

Adelaide Ave. School

SDG:

ETR: 0706153

Client ID:

MP-3 N/A

N/A

Lab ID: 0706153-03E

Matrix:

Soil Vapor

Associated Blank: VA071207B02

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/06/07	1.5893	250	157.31	JEG

Parameter	Raw Amount ppbv	Result μg/m³		
1,1,2,2-Tetrachloroethane	3.2 U	22 U		
o-Xylene	3.2 U	14 U		
Isopropylbenzene	79 U	390 U		
1,3,5-Trimethylbenzene	3.2 U	15 U		
1,2,4-Trimethylbenzene	3.2 U	15 U		
1,3-Dichlorobenzene	3.2 U	19 U		
1,4-Dichlorobenzene	3.2 U	19 U		
sec-Butylbenzene	79 U	390 U		
p-Isopropyltoluene	6.3 U	34 U		
1,2-Dichlorobenzene	3.2 U	19 U		
n-Butylbenzene	32 U	170 U		

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: Project: Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

Lab Code: MA00030

ETR: 0706153

Lab ID: 0706153-04

WOODS HOLE LABSCASE:

MP-6

N/A

N/A SDG:

Associated Blank: VA071107B28

Matrix:

Soil Vapor

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	25	250	10	JEG

Parameter	Raw Amount	Result	
	ppbv	$\mu g/m^3$	
Dichlorodifluoromethane	0.51	2.5	
Chloromethane	0.40 U	0.83 U	
Vinyl chloride	0.20 U	0.51 U	
Chloroethane	0.20 U	0.53 U	
Acetone	2200 E	5200 E	
Trichlorofluoromethane	0.24	1.4	
Acrylonitrile	5.0 U	11 U	
1,1-Dichloroethene	0.20 U	0.79 U	
Methylene chloride	5.0 U	17 U	
trans-1,2-Dichloroethene	0.20 U	0.79 U	
1,1-Dichloroethane	0.20 U	0.81 U	
MTBE	0.20 U	0.72 U	
2-Butanone	5200 E	15000 E	
cis-1,2-Dichloroethene	0.20 U	0.79 U	
Chloroform	0.20 U	0.98 U	
1,2-Dichloroethane	0.20 U	0.81 U	
1,1,1-Trichloroethane	0.20 U	1.1 U	
Benzene	0.40 U	1.3 U	
Carbon tetrachloride	0.20 U	1.3 U	
1,2-Dichloropropane	0.20 U	0.92 U	
Bromodichloromethane	0.20 U	1.3 U	
Trichloroethene	0.20 U	1.1 U	
cis-1,3-Dichloropropene	0.20 U	0.91 U	
4-Methyl-2-pentanone	5.0 U	20 U	
trans-1,3-Dichloropropene	0.20 U	0.91 U	
1,1,2-Trichloroethane	0.20 U	1.1 U	
Toluene	0.80	3.0	
Dibromochloromethane	0.20 U	1.7 U	
1,2-Dibromoethane	0.20 U	1.5 U	
Tetrachloroethene	0.20 U	1.4 U	
1,1,1,2-Tetrachloroethane	0.20 U	1.4 U	
Chlorobenzene	0.20 U	0.92 U	
Ethylbenzene	0.20 U	0.87 U	
p+m-Xylene	0.40 U	1.7 U	
Bromoform	0.20 U	2.1 U	
Styrene	0.20 U	0.85 U	

Client:
Project:
Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

Lab Code: MA00030

ETR: 0706153

Lab ID: 0706153-04

LABSCase:

MP-6 N/A

SDG:

N/A

Associated Blank: VA071107B28

Matrix: Soil Vapor

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	25	250	10	JEG

Parameter	Raw Amount ppbv	Result µg/m³
1,1,2,2-Tetrachloroethane	0.20 U	1.4 U
o-Xylene	0.20 U	0.87 U
Isopropylbenzene	5.0 U	25 U
1,3,5-Trimethylbenzene	0.20 U	0.98 U
1,2,4-Trimethylbenzene	0.20 U	0.98 U
1,3-Dichlorobenzene	0.20 U	1.2 U
1,4-Dichlorobenzene	6.5	39
sec-Butylbenzene	5.0 U	25 U
p-Isopropyltoluene	0.40 U	2.2 U
1,2-Dichlorobenzene	0.20 U	1.2 U
n-Butylbenzene	2.0 U	11 U

N/A - Not Applicable

E - Estimated value, exceeds the upper limit of calibration.

07/13/07 12:43

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: Project:

WOODS HOLE LABS

EA Engineering, Science & Technology

Adelaide Ave. School

Client ID: MP-6 N/A SDG: N/A

Matrix: Soil Vapor

Case:

Lab Code: MA00030

ETR: 0706153

Lab ID: 0706153-04E

Associated Blank: VA071207B02

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst	
06/29/07	06/29/07	07/06/07	1.5813	250	158.09	JEG	

Parameter	Raw Amount	Result
	ppbv	μg/m³
Dichlorodifluoromethane	3.2 U	16 U
Chloromethane	6.3 U	13 U
Vinyl chloride	3.2 U	8.1 U
Chloroethane	3.2 U	8.3 U
Acetone	2000	4700
Trichlorofluoromethane	3.2 U	18 U
Acrylonitrile	79 U	170 U
1,1-Dichloroethene	3.2 U	12 U
Methylene chloride	79 U	270 U
trans-1,2-Dichloroethene	3.2 U	12 U
1,1-Dichloroethane	3.2 U	13 U
MTBE	3.2 U	11 U
2-Butanone	7200	21000
cis-1,2-Dichloroethene	3.2 U	12 U
Chloroform	3.2 U	15 U
1,2-Dichloroethane	3.2 U	13 U
1,1,1-Trichloroethane	3.2 U	17 U
Benzene	6.3 U	20 U
Carbon tetrachloride	3.2 U	20 U
1,2-Dichloropropane	3.2 U	15 U
Bromodichloromethane	3.2 U	21 U
Trichloroethene	3.2 U	17 U
cis-1,3-Dichloropropene	3.2 U	14 U
4-Methyl-2-pentanone	79 U	320 U
trans-1,3-Dichloropropene	3.2 U	14 U
1,1,2-Trichloroethane	3.2 U	17 U
Toluene	7.9 U	30 U
Dibromochloromethane	3.2 U	27 U
1,2-Dibromoethane	3.2 U	24 U
Tetrachloroethene	3.2 U	21 U
1,1,1,2-Tetrachloroethane	3.2 U	22 U
Chlorobenzene	3.2 U	14 U
Ethylbenzene	3.2 U	14 U
p+m-Xylene	6.3 U	27 U
Bromoform	3.2 U	33 U
Styrene	3.2 U	14 U

Client: Project:

EA Engineering, Science & Technology

Lab Code: MA00030

Client ID:

Adelaide Ave. School

ETR: 0706153

Case:

MP-6 N/A

Lab ID: 0706153-04E

Matrix:

SDG:

Soil Vapor

Associated Blank: VA071207B02

Parameter		daa	V	μg/m³		
		Raw Amount F		Result		
06/29/07	06/29/07	07/06/07	1.5813	250	158.09	JEG
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
			Sample	Final		

N/A

Parameter	Raw Amount ppbv		Result μg/m³	
1,1,2,2-Tetrachloroethane	3.2	U	22	U
o-Xylene	3.2	U	14	U
Isopropylbenzene	79	U	390	U
1,3,5-Trimethylbenzene	3.2	U	16	U
1,2,4-Trimethylbenzene	3.2	U	16	U
1,3-Dichlorobenzene	3.2	U	19	U
1,4-Dichlorobenzene	3.2	U	19	U
sec-Butylbenzene	79	U	390	U
p-Isopropyltoluene	6.3	U	35	U
1,2-Dichlorobenzene	3.2	U	19	U
n-Butylbenzene	32	U	170	U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: Project: Client ID: MP-8 WOODS HOLE LABS

EA Engineering, Science & Technology

Adelaide Ave. School

N/A

SDG:

Lab Code: MA00030

ETR: 0706153 Lab ID: 0706153-05

Associated Blank: VA071107B28

Matrix:

Soil Vapor

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	50			JEG

N/A

Parameter	Raw Amount	Result µg/m³
Dichlorodifluoromethane	0.41	2.0
Chloromethane	0.20 U	0.41 U
Vinyl chloride	0.10 U	0.26 U
Chloroethane	0.10 U	0.26 U
Acetone	580 E	1400 E
Trichlorofluoromethane	0.23	1.3
Acrylonitrile	2.5 U	5.4 U
1,1-Dichloroethene	0.10 U	0.40 U
Methylene chloride	2.5 U	8.7 U
trans-1,2-Dichloroethene	0.10 U	0.40 U
1,1-Dichloroethane	0.10 U	0.40 U
MTBE	0.10 U	0.36 U
2-Butanone	2600 E	7600 E
cis-1,2-Dichloroethene	0.10 U	0.40 U
Chloroform	0.10 U	0.49 U
1,2-Dichloroethane	0.10 U	0.40 U
1,1,1-Trichloroethane	0.10 U	0.55 U
Benzene	0.22	0.70
Carbon tetrachloride	0.10 U	0.63 U
1,2-Dichloropropane	0.10 U	0.46 U
Bromodichloromethane	0.10 U	0.67 U
Trichloroethene	0.10 U	0.54 U
cis-1,3-Dichloropropene	0.10 U	0.45 U
4-Methyl-2-pentanone	2.5 U	10 U
trans-1,3-Dichloropropene	0.10 U	0.45 U
1,1,2-Trichloroethane	0.10 U	0.55 U
Toluene	1.1	4.2
Dibromochloromethane	0.10 U	0.85 U
1,2-Dibromoethane	0.10 U	0.77 U
Tetrachloroethene	0.10	0.68
1,1,1,2-Tetrachloroethane	0.10 U	0.69 U
Chlorobenzene	0.10 U	0.46 U
Ethylbenzene	0.10 U	0.43 U
p+m-Xylene	0.29	1.3
Bromoform	0.10 U	1.0 U
Styrene	0.10	0.45

Client: Project: Client ID:

EA Engineering, Science & Technology

Adeleide Ave School

Adelaide Ave. School

ient ID: MP-8 ase: N/A

SDG: N/A

Lab Code: MA00030

ETR: **0706153**Lab ID: **0706153-05**

Associated Blank: VA071107B28

Matrix: Soil Vapor

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	50	250	5	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.10 U	0.69 U
o-Xylene	0.12	0.50
Isopropylbenzene	2.5 U	12 U
1,3,5-Trimethylbenzene	0.16	0.76
1,2,4-Trimethylbenzene	0.30	1.5
1,3-Dichlorobenzene	0.10 U	0.60 U
1,4-Dichlorobenzene	10	61
sec-Butylbenzene	2.5 U	12 U
p-Isopropyltoluene	0.20 U	1.1 U
1,2-Dichlorobenzene	0.10 U	0.60 U
n-Butylbenzene	1.0 U	5.5 U

N/A - Not Applicable

E - Estimated value, exceeds the upper limit of calibration.

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: Project: WOODS HOLE LABS Client ID: MP-8

EA Engineering, Science & Technology

Adelaide Ave. School

N/A

SDG:

N/A

Lab Code: MA00030

ETR: **0706153**

Lab ID: 0706153-05E

Associated Blank: VA071207B02

Matrix: Soil Vapor

Case:

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/06/07	1.4181	250	176.29	JEG

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	3.5 U	17 U
Chloromethane	7.0 U	15 U
Vinyl chloride	3.5 U	9.0 U
Chloroethane	3.5 U	9.3 U
Acetone	660	1600
Trichlorofluoromethane	3.5 U	20 U
Acrylonitrile	88 U	190 U
1,1-Dichloroethene	3.5 U	14 U
Methylene chloride	88 U	310 U
trans-1,2-Dichloroethene	3.5 U	14 U
1,1-Dichloroethane	3.5 U	14 U
MTBE	3.5 U	13 U
2-Butanone	4100	12000
cis-1,2-Dichloroethene	3.5 U	14 U
Chloroform	3.5 U	17 U
1,2-Dichloroethane	3.5 U	14 U
1,1,1-Trichloroethane	3.5 U	19 U
Benzene	7.0 U	22 U
Carbon tetrachloride	3.5 U	22 U
1,2-Dichloropropane	3.5 U	16 U
Bromodichloromethane	3.5 U	24 U
Trichloroethene	3.5 U	19 U
cis-1,3-Dichloropropene	3.5 U	16 U
4-Methyl-2-pentanone	88 U	360 U
trans-1,3-Dichloropropene	3.5 U	16 U
1,1,2-Trichloroethane	3.5 U	19 U
Toluene	8.8 U	33 U
Dibromochloromethane	3.5 U	30 U
1,2-Dibromoethane	3.5 U	27 U
Tetrachloroethene	3.5 U	24 U
1,1,1,2-Tetrachloroethane	3.5 U	24 U
Chlorobenzene	3.5 U	16 U
Ethylbenzene	3.5 U	15 U
p+m-Xylene	7.0 U	31 U
Bromoform	3.5 U	36 U
Styrene	3.5 U	15 U

Client: Project: Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

Lab Code: MA00030

Client ID: MP-8

4D 0

ETR: **0706153**

Case:

SDG:

Lab ID: **0706153-05E**

Matrix:

N/A Soil Vapor

Associated Blank: VA071207B02

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/06/07	1.4181	250	176.29	JEG

N/A

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	3.5 U	24 U
o-Xylene	3.5 U	15 U
Isopropylbenzene	88 U	430 U
1,3,5-Trimethylbenzene	3.5 U	17 U
1,2,4-Trimethylbenzene	3.5 U	17 U
1,3-Dichlorobenzene	3.5 U	21 U
1,4-Dichlorobenzene	3.5 U	21 U
sec-Butylbenzene	88 U	430 U
p-Isopropyltoluene	7.0 U	39 U
1,2-Dichlorobenzene	3.5 U	21 U
n-Butylbenzene	35 U	190 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client:
Project:
Client ID:
Case:

EA Engineering, Science & Technology

Adelaide Ave. School

MP-7

SDG:

N/A

Lab Code: MA00030

ETR: **0706153**

Lab ID: 0706153-06

Associated Blank: VA071107B28

Case: N/A
Matrix: Soil Vapor

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	50	250	5	JEG

01/02/07		
Parameter	Raw Amount	Result
	ppbv	μg/m³
Dichlorodifluoromethane	0.47	2.3
Chloromethane	0.20 U	0.41 U
Vinyl chloride	0.10 U	0.26 U
Chloroethane	0.10 U	0.26 U
Acetone	74	170
Trichlorofluoromethane	0.68	3.8
Acrylonitrile	2.5 U	5.4 U
1,1-Dichloroethene	0.10 U	0.40 U
Methylene chloride	2.5 U	8.7 U
trans-1,2-Dichloroethene	0.10 U	0.40 U
1,1-Dichloroethane	0.10 U	0.40 U
MTBE	0.10 U	0.36 U
2-Butanone	1000 E	3100 E
cis-1,2-Dichloroethene	0.10 U	0.40 U
Chloroform	0.10 U	0.49 U
1,2-Dichloroethane	0.10 U	0.40 U
1,1,1-Trichloroethane	0.10 U	0.55 U
Benzene	0.26	0.83
Carbon tetrachloride	0.10 U	0.63 U
1,2-Dichloropropane	0.10 U	0.46 U
Bromodichloromethane	0.10 U	0.67 U
Trichloroethene	0.12	0.62
cis-1,3-Dichloropropene	0.10 U	0.45 U
4-Methyl-2-pentanone	2.5 U	10 U
trans-1,3-Dichloropropene	0.10 U	0.45 U
1,1,2-Trichloroethane	0.10 U	0.55 U
Toluene	1.4	5.3
Dibromochloromethane	0.10 U	0.85 U
1,2-Dibromoethane	0.10 U	0.77 U
Tetrachloroethene	0.16	1.0
1,1,1,2-Tetrachloroethane	0.10 U	0.69 U
Chlorobenzene	0.10 U	0.46 U
Ethylbenzene	0.12	0.52
p+m-Xylene	0.39	1.7
Bromoform	0.10 U	1.0 U
Styrene	0.15	0.64

Client: Project: Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

MP-7

SDG:

N/A

Lab Code: MA00030

ETR: 0706153

Lab ID: 0706153-06

Associated Blank: VA071107B28

Matrix:

N/A Soil Vapor

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	50	250	5	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.10 U	0.69 U
o-Xylene	0.16	0.72
Isopropylbenzene	2.5 U	12 U
1,3,5-Trimethylbenzene	0.29	1.4
1,2,4-Trimethylbenzene	0.54	2.6
1,3-Dichlorobenzene	0.10 U	0.60 U
1,4-Dichlorobenzene	12	75
sec-Butylbenzene	2.5 U	12 U
p-Isopropyltoluene	0.20 U	1.1 U
1,2-Dichlorobenzene	0.10 U	0.60 U
n-Butylbenzene	1.0 U	5.5 U

N/A - Not Applicable

E - Estimated value, exceeds the upper limit of calibration.

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: Project:

EA Engineering, Science & Technology

Adelaide Ave. School

Client ID: MP-7 Case: N/A N/A N/A SDG:

Soil Vapor Matrix:

Lab Code: MA00030

ETR: 0706153

Lab ID: 0706153-06E

Associated Blank: VA071207B02

Parameter		Raw Amount		Result		
06/29/07	06/29/07	07/06/07	1.0269	250	243.45	JEG
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
		j	Sample	Final		

Raw Amount	Result
ppbv	μg/m³
4.9 U	24 U
9.7 U	20 U
4.9 U	12 U
4.9 U	13 U
240 U	580 U
4.9 U	27 U
120 U	260 U
4.9 U	19 U
120 U	420 U
4.9 U	19 U
4.9 U	20 U
4.9 U	18 U
740	2200
4.9 U	19 U
4.9 U	24 U
4.9 U	20 U
4.9 U	26 U
9.7 U	31 U
4.9 U	31 U
4.9 U	22 U
4.9 U	33 U
4.9 U	26 U
4.9 U	22 U
120 U	500 U
4.9 U	22 U
4.9 U	26 U
12 U	46 U
4.9 U	42 U
4.9 U	37 U
4.9 U	33 U
4.9 U	33 U
4.9 U	22 U
4.9 U	21 U
9.7 U	42 U
4.9 U	50 U
4.9 U	21 U
	## Property Page 2 Page 2

Client: Project:

EA Engineering, Science & Technology

Lab Code: MA00030 ETR: 0706153

Client ID:

Adelaide Ave. School

SDG:

Lab ID: 0706153-06E

Case:

MP-7 N/A

N/A

Associated Blank: VA071207B02

Matrix:

Soil Vapor

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/06/07	1.0269	250	243.45	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	4.9 U	33 U
o-Xylene	4.9 U	21 U
Isopropylbenzene	120 U	600 U
1,3,5-Trimethylbenzene	4.9 U	24 U
1,2,4-Trimethylbenzene	4.9 U	24 U
1,3-Dichlorobenzene	4.9 U	29 U
1,4-Dichlorobenzene	4.9 U	29 U
sec-Butylbenzene	120 U	600 U
p-Isopropyltoluene	9.7 U	53 U
1,2-Dichlorobenzene	4.9 U	29 U
n-Butylbenzene	49 U	270 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: WOODS HOLE LABS Case:

EA Engineering, Science & Technology

Lab Code: MA00030 ETR: 0706153

Project: Client ID:

Adelaide Ave. School

Lab ID: 0706153-07

MP-5 N/A

SDG: N/A

Associated Blank: VA071107B28

Soil Vapor Matrix:

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	50	250	5	JEG

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	0.10 U	0.49 U
Chloromethane	0.20 U	0.41 U
Vinyl chloride	0.10 U	0.26 U
Chloroethane	0.10 U	0.26 U
Acetone	430 E	1000 E
Trichlorofluoromethane	5.9	33
Acrylonitrile	2.5 U	5.4 U
1,1-Dichloroethene	0.10 U	0.40 U
Methylene chloride	2.5 U	8.7 U
trans-1,2-Dichloroethene	0.10 U	0.40 U
1,1-Dichloroethane	0.10 U	0.40 U
MTBE	0.10 U	0.36 U
2-Butanone	2700 E	8000 E
cis-1,2-Dichloroethene	0.10 U	0.40 U
Chloroform	0.10 U	0.49 U
1,2-Dichloroethane	0.10 U	0.40 U
1,1,1-Trichloroethane	0.10 U	0.55 U
Benzene	0.23	0.75
Carbon tetrachloride	0.10 U	0.63 U
1,2-Dichloropropane	0.10 U	0.46 U
Bromodichloromethane	0.10 U	0.67 U
Trichloroethene	19	100
cis-1,3-Dichloropropene	0.10 U	0.45 U
4-Methyl-2-pentanone	2.5 U	10 U
trans-1,3-Dichloropropene	0.10 U	0.45 U
1,1,2-Trichloroethane	0.10 U	0.55 U
Toluene	1.1	4.1
Dibromochloromethane	0.10 U	0.85 U
1,2-Dibromoethane	0.10 U	0.77 U
Tetrachloroethene	1.0	6.7
1,1,1,2-Tetrachloroethane	0.10 U	0.69 U
Chlorobenzene	0.10 U	0.46 U
Ethylbenzene	0.10 U	0.43 U
p+m-Xylene	0.31	1.4
Bromoform	0.10 U	1.0 U
Styrene	0.12	0.53

Client:
Project:
Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

MP-5

Matrix:

Soil Vapor

N/A SDG:

N/A

Lab Code: MA00030

ETR: 0706153

Lab ID: 0706153-07

Associated Blank: VA071107B28

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	50	250	5	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.10 U	0.69 U
o-Xylene	0.14	0.59
Isopropylbenzene	2.5 U	12 U
1,3,5-Trimethylbenzene	0.34	1.7
1,2,4-Trimethylbenzene	0.66	3.2
1,3-Dichlorobenzene	0.10 U	0.60 U
1,4-Dichlorobenzene	11	65
sec-Butylbenzene	2.5 U	12 U
p-Isopropyltoluene	0.20 U	1.1 U
1,2-Dichlorobenzene	0.10 U	0.60 U
n-Butylbenzene	1.0 U	5.5 U

N/A - Not Applicable

E - Estimated value, exceeds the upper limit of calibration.

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: Project: Client ID: MP-5 WOODS HOLE LABS

EA Engineering, Science & Technology

Adelaide Ave. School

N/A

SDG: N/A Lab ID: 0706153-07E

Lab Code: MA00030

ETR: 0706153

Associated Blank: VA071207B02

Matrix: Soil Vapor

Case:

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/06/07	1.6504	250	151.48	JEG

Parameter	Raw Amo	unt	Result	
	ppbv		μg/m³	
Dichlorodifluoromethane	3.0	U	15	U
Chloromethane	6.1	U	12	U
Vinyl chloride	3.0	U	7.7	U
Chloroethane	3.0	U	8.0	U
Acetone	430		1000	
Trichlorofluoromethane	3.0	U	17	U
Acrylonitrile	76	U	160	U
1,1-Dichloroethene	3.0	U	12	U
Methylene chloride	76	U	260	U
trans-1,2-Dichloroethene	3.0	U	12	U
1,1-Dichloroethane	3.0	U	12	U
MTBE	3.0	U	11	U
2-Butanone	3200		9400	
cis-1,2-Dichloroethene	3.0	U	12	U
Chloroform	3.0	U	15	U
1,2-Dichloroethane	3.0	U	12	U
1,1,1-Trichloroethane	3.0	U	16	U
Benzene	6.1	U	19	U
Carbon tetrachloride	3.0	U	19	U
1,2-Dichloropropane	3.0	U	14	U
Bromodichloromethane	3.0	U	20	U
Trichloroethene	3.0	U	16	U
cis-1,3-Dichloropropene	3.0	U	14	U
4-Methyl-2-pentanone	76	U	310	U
trans-1,3-Dichloropropene	3.0	U	14	U
1,1,2-Trichloroethane	3.0	U	16	U
Toluene	7.6	U	28	U
Dibromochloromethane	3.0	U	26	U
1,2-Dibromoethane	3.0	U	23	U
Tetrachloroethene	3.0	U	20	U
1,1,1,2-Tetrachloroethane	3.0	U	21	U
Chlorobenzene	3.0	U	14	U
Ethylbenzene	3.0	U	13	U
p+m-Xylene	6.1	U	26	U
Bromoform	3.0	U	31	U
Styrene	3.0	U	13	U

Client:
Project:
Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

MP-5

N/A

SDG: N/A

Lab Code: MA00030

ETR: 0706153

Lab ID: 0706153-07E

Associated Blank: VA071207B02

Matrix:

Soil Vapor

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/06/07	1.6504	250	151.48	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	3.0 U	21 U
o-Xylene	3.0 U	13 U
Isopropylbenzene	76 U	370 U
1,3,5-Trimethylbenzene	3.0 U	15 U
1,2,4-Trimethylbenzene	3.0 U	15 U
1,3-Dichlorobenzene	3.0 U	18 U
1,4-Dichlorobenzene	3.0 U	18 U
sec-Butylbenzene	76 U	370 U
p-Isopropyltoluene	6.1 U	33 U
1,2-Dichlorobenzene	3.0 U	18 U
n-Butylbenzene	30 U	170 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client: Project: LABSCINC Case:

EA Engineering, Science & Technology

Adelaide Ave. School

Client ID: MP-4 N/A

SDG:

N/A

Lab Code: MA00030

ETR: 0706153 Lab ID: 0706153-08

Associated Blank: VA071107B28

Matrix: Soil Vapor

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	50	250	5	JEG

Parameter	Raw Amount	Result
	ppbv	μg/m³
Dichlorodifluoromethane	0.44	2.2
Chloromethane	0.20 U	0.41 U
Vinyl chloride	0.10 U	0.26 U
Chloroethane	0.13	0.34
Acetone	260 E	610 E
Trichlorofluoromethane	9.2	52
Acrylonitrile	2.5 U	5.4 U
1,1-Dichloroethene	0.10 U	0.40 U
Methylene chloride	2.5 U	8.7 U
trans-1,2-Dichloroethene	0.10 U	0.40 U
1,1-Dichloroethane	0.10 U	0.40 U
MTBE	0.10 U	0.36 U
2-Butanone	2700 E	7900 E
cis-1,2-Dichloroethene	0.10 U	0.40 U
Chloroform	0.10 U	0.49 U
1,2-Dichloroethane	0.10 U	0.40 U
1,1,1-Trichloroethane	0.10 U	0.55 U
Benzene	0.21	0.67
Carbon tetrachloride	0.10 U	0.63 U
1,2-Dichloropropane	0.10 U	0.46 U
Bromodichloromethane	0.10 U	0.67 U
Trichloroethene	4.2	22
cis-1,3-Dichloropropene	0.10 U	0.45 U
4-Methyl-2-pentanone	2.5 U	10 U
trans-1,3-Dichloropropene	0.10 U	0.45 U
1,1,2-Trichloroethane	0.10 U	0.55 U
Toluene	1.1	4.3
Dibromochloromethane	0.10 U	0.85 U
1,2-Dibromoethane	0.10 U	0.77 U
Tetrachloroethene	0.32	2.2
1,1,1,2-Tetrachloroethane	0.10 U	0.69 U
Chlorobenzene	0.10 U	0.46 U
Ethylbenzene	0.10 U	0.43 U
p+m-Xylene	0.32	1.4
Bromoform	0.10 U	1.0 U
Styrene	0.12	0.49

Client: Project: Client ID: WOODS HOLE

EA Engineering, Science & Technology

Adelaide Ave. School

MP-4 Case: N/A

SDG: N/A ETR: 0706153

Lab ID: 0706153-08

Lab Code: MA00030

Associated Blank: VA071107B28

Soil Vapor Matrix:

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	50	250	5	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.10 U	0.69 U
o-Xylene	0.14	0.61
Isopropylbenzene	2.5 U	12 U
1,3,5-Trimethylbenzene	0.36	1.7
1,2,4-Trimethylbenzene	0.69	3.4
1,3-Dichlorobenzene	0.10 U	0.60 U
1,4-Dichlorobenzene	11	68
sec-Butylbenzene	2.5 U	12 U
p-Isopropyltoluene	0.20 U	1.1 U
1,2-Dichlorobenzene	0.10 U	0.60 U
n-Butylbenzene	1.0 U	5.5 U

N/A - Not Applicable

E - Estimated value, exceeds the upper limit of calibration.

U - The analyte was analyzed for but not detected at the sample specific level reported.

07/12/07 14:29

Client: Project: Client ID: MP-4 Case: N/A

EA Engineering, Science & Technology

Adelaide Ave. School

SDG:

N/A

Lab Code: MA00030

ETR: 0706153

Lab ID: 0706153-08E

Associated Blank: VA071207B02

Soil Vapor Matrix:

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/06/07	1.4792	250	169.01	JEG

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	3.4 U	17 U
Chloromethane	6.8 U	14 U
Vinyl chloride	3.4 U	8.6 U
Chloroethane	3.4 U	8.9 U
Acetone	320	770
Trichlorofluoromethane	3.4 U	19 U
Acrylonitrile	84 U	180 U
1,1-Dichloroethene	3.4 U	13 U
Methylene chloride	84 U	290 U
trans-1,2-Dichloroethene	3.4 U	13 U
1,1-Dichloroethane	3.4 U	14 U
MTBE	3.4 U	12 U
2-Butanone	3600	11000
cis-1,2-Dichloroethene	3.4 U	13 U
Chloroform	3.4 U	16 U
1,2-Dichloroethane	3.4 U	14 U
1,1,1-Trichloroethane	3.4 U	18 U
Benzene	6.8 U	22 U
Carbon tetrachloride	3.4 U	21 U
1,2-Dichloropropane	3.4 U	16 U
Bromodichloromethane	3.4 U	23 U
Trichloroethene	3.4 U	18 U
cis-1,3-Dichloropropene	3.4 U	15 U
4-Methyl-2-pentanone	84 U	350 U
trans-1,3-Dichloropropene	3.4 U	15 U
1,1,2-Trichloroethane	3.4 U	18 U
Toluene	8.4 U	32 U
Dibromochloromethane	3.4 U	29 U
1,2-Dibromoethane	3.4 U	26 U
Tetrachloroethene	3.4 U	23 U
1,1,1,2-Tetrachloroethane	3.4 U	23 U
Chlorobenzene	3.4 U	16 U
Ethylbenzene	3.4 U	15 U
p+m-Xylene	6.8 U	29 U
Bromoform	3.4 U	35 U
Styrene	3.4 U	14 U

Client: Project: Client ID: WOODS HOLE LABS

EA Engineering, Science & Technology

Lab Code: MA00030

Adelaide Ave. School

SDG:

ETR: 0706153 Lab ID: 0706153-08E

MP-4 N/A

N/A

Matrix:

Soil Vapor

Associated Blank: VA071207B02

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/06/07	1.4792	250	169.01	JEG

Raw Amount ppbv	Result μg/m³
3.4 U	23 U
3.4 U	15 U
84 U	420 U
3.4 U	17 U
3.4 U	17 U
3.4 U	20 U
3.4 U	20 U
84 U	420 U
6.8 U	37 U
3.4 U	20 U
34 U	180 U
	9pbv 3.4 U 3.4 U 84 U 3.4 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

07/12/07 14:35

Client: Project: Client ID: Blank

EA Engineering, Science & Technology

Adelaide Ave. School

SDG: N/A

ETR: 0706153

Lab ID: VA071107B28 Associated Blank: N/A

Lab Code: MA00030

Soil Vapor Matrix:

Γ				Sample	Final		
	Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
	N/A	N/A	07/02/07	250	250	1	JEG

N/A

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	0.02 U	0.10 U
Chloromethane	0.04 U	0.08 U
Vinyl chloride	0.02 U	0.05 U
Chloroethane	0.02 U	0.05 U
Acetone	1.0 U	2.4 U
Trichlorofluoromethane	0.02 U	0.11 U
Acrylonitrile	0.50 U	1.1 U
1,1-Dichloroethene	0.02 U	0.08 U
Methylene chloride	0.50 U	1.7 U
trans-1,2-Dichloroethene	0.02 U	0.08 U
1,1-Dichloroethane	0.02 U	0.08 U
MTBE	0.02 U	0.07 U
2-Butanone	0.20 U	0.59 U
cis-1,2-Dichloroethene	0.02 U	0.08 U
Chloroform	0.02 U	0.10 U
1,2-Dichloroethane	0.02 U	0.08 U
1,1,1-Trichloroethane	0.02 U	0.11 U
Benzene	0.04 U	0.13 U
Carbon tetrachloride	0.02 U	0.13 U
1,2-Dichloropropane	0.02 U	0.09 U
Bromodichloromethane	0.02 U	0.13 U
Trichloroethene	0.02 U	0.11 U
cis-1,3-Dichloropropene	0.02 U	0.09 U
4-Methyl-2-pentanone	0.50 U	2.0 U
trans-1,3-Dichloropropene	0.02 U	0.09 U
1,1,2-Trichloroethane	0.02 U	0.11 U
Toluene	0.05 U	0.19 U
Dibromochloromethane	0.02 U	0.17 U
1,2-Dibromoethane	0.02 U	0.15 U
Tetrachloroethene	0.02 U	0.14 U
1,1,1,2-Tetrachloroethane	0.02 U	0.14 U
Chlorobenzene	0.02 U	0.09 U
Ethylbenzene	0.02 U	0.09 U
p+m-Xylene	0.04 U	0.17 U
Bromoform	0.02 U	0.21 U
Styrene	0.02 U	0.09 U

Client: Project: Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

ETR: 0706153

Blank N/A

SDG: N/A Lab ID: VA071107B28 Associated Blank: N/A

Lab Code: MA00030

Soil Vapor Matrix:

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
N/A	N/A	07/02/07	250	250	1	JEG

Parameter	Raw Amount ppbv	Result µg/m³
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U
o-Xylene	0.02 U	0.09 U
Isopropylbenzene	0.50 U	2.5 U
1,3,5-Trimethylbenzene	0.02 U	0.10 U
1,2,4-Trimethylbenzene	0.02 U	0.10 U
1,3-Dichlorobenzene	0.02 U	0.12 U
1,4-Dichlorobenzene	0.02 U	0.12 U
sec-Butylbenzene	0.50 U	2.5 U
p-Isopropyltoluene	0.04 U	0.22 U
1,2-Dichlorobenzene	0.02 U	0.12 U
n-Butylbenzene	0.20 U	1.1 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

07/12/07 14:24

Client: Project:

EA Engineering, Science & Technology

Adelaide Ave. School

Lab Code: MA00030

ETR: 0706153

WOODS HOLE LABSCase:

Client ID:

Blank N/A

SDG: N/A Lab ID: VA071207B02 Associated Blank: N/A

Soil Vapor Matrix:

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
N/A	N/A	07/06/07	250	250	1	JEG

Danisatan		Raw Am	ount	Result	
Parameter		Raw Am		μg/m³	
				, ,	
	uoromethane	0.02	U	0.10	U
Chlorometha		0.04		0.08	U
Vinyl chlorie		0.02		0.05	U
Chloroethan	e	0.02	U	0.05	U
Acetone		1.0	U	2.4	U
Trichloroflu		0.02	U	0.11	U
Acrylonitrile		0.50		1.1	U
1,1-Dichloro		0.02		0.08	U
Methylene c		0.50		1.7	U
	chloroethene	0.02		0.08	U
1,1-Dichloro	ethane	0.02		0.08	U
MTBE		0.02		0.07	U
2-Butanone		0.20		0.59	U
cis-1,2-Dich	loroethene	0.02		0.08	U
Chloroform		0.02		0.10	Ü
1,2-Dichloro	ethane	0.02		0.08	U
1,1,1-Trichle	oroethane	0.02		0.11	U
Benzene		0.04		0.13	U
Carbon tetra	chloride	0.02		0.13	U
1,2-Dichloro	propane	0.02		0.09	U
Bromodichlo	oromethane	0.02		0.13	U
Trichloroeth	ene	0.02	U	0.11	U
cis-1,3-Dich	loropropene	0.02		0.09	U
4-Methyl-2-	pentanone	0.50		2.0	U
	chloropropene	0.02		0.09	U
1,1,2-Trichle	oroethane	0.02		0.11	U
Toluene		0.05		0.19	U
Dibromochle	oromethane	0.02		0.17	U
1,2-Dibromo	oethane	0.02		0.15	U
Tetrachloroe	thene	0.02		0.14	U
1,1,1,2-Tetra	achloroethane	0.02		0.14	U
Chlorobenze	ene	0.02	U	0.09	U
Ethylbenzen	e	0.02	U	0.09	U
p+m-Xylene		0.04	U	0.17	U
Bromoform		0.02		0.21	U
Styrene		0.02	U	0.09	U

Client: Project:

EA Engineering, Science & Technology

Adelaide Ave. School

Lab Code: MA00030

ETR: 0706153

Client ID: WOODS HOLE LABSCase:

Blank N/A

SDG:

Lab ID: VA071207B02

Matrix:

Soil Vapor

Associated Blank: N/A

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
N/A	N/A	07/06/07	250	250	1	JEG

N/A

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U
o-Xylene	0.02 U	0.09 U
Isopropylbenzene	0.50 U	2.5 U
1,3,5-Trimethylbenzene	0.02 U	0.10 U
1,2,4-Trimethylbenzene	0.02 U	0.10 U
1,3-Dichlorobenzene	0.02 U	0.12 U
1,4-Dichlorobenzene	0.02 U	0.12 U
sec-Butylbenzene	0.50 U	2.5 U
p-Isopropyltoluene	0.04 U	0.22 U
1,2-Dichlorobenzene	0.02 U	0.12 U
n-Butylbenzene	0.20 U	1.1 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

EA Engineering, Science & Technology

Project: Adelaide Ave. School
Client ID: Laboratory Control Sample
Case: N/A SDG: N/A

Matrix: Soil Vapor

Lab Code: MA00030

ETR: **0706153**Lab ID: **See Below**

Associated Blank: VA071107B28

Concentration Units: µg/m³

				Sample	Final		
Ĺ	Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
	N/A	N/A	07/02/07	250	250	1	JEG

Chloromethane 0.08 U 12 116 70-130 Vinyl chloride 0.05 U 14 114 70-130 Chloroethane 0.05 U 14 103 70-130 Acetone 2.4 U 10 84 70-130 Trichlorofluoromethane 0.11 U 30 105 70-130 Acrylonitrile 1.1 U 12 109 70-130 Acrylonitrile 1.7 U 17 96 70-130 Methylene chloride 1.7 U 17 96 70-130 Methylene chloride 1.7 U 17 96 70-130 1,1-Dichloroethene 0.08 U 19 97 70-130 1,1-Dichloroethane 0.08 U 20 99 70-130 1,1-Dichloroethane 0.09 U 13 91 70-130 2-Butanone 0.59 U 13 91 70-130		VA071107B28	VA071	107LCS14	
Parameter Cone. Cone. % Recovery Limits Dichlorodifluoromethane 0.10 U 29 117 70-130 Chloromethane 0.08 U 12 116 70-130 Vinyl chloride 0.05 U 14 114 70-130 Chloroethane 0.05 U 14 103 70-130 Acetone 2.4 U 10 84 70-130 Acetone 2.4 U 10 84 70-130 Acrylonitrile 1.1 U 30 105 70-130 Acrylonitrile 1.1 U 12 109 70-130 Methylene chloride 1.7 U 17 96 70-130 Methylene chloride 1.7 U 17 96 70-130 Mathylene chloride 0.08 U 20 99 70-130 MTBE 0.07 U 15 83 70-130 MTBE		Blank		LCS	% Recovery
Chloromethane 0.08 U 12 116 70-130 Vinyl chloride 0.05 U 14 114 70-130 Chloroethane 0.05 U 14 103 70-130 Acetone 2.4 U 10 84 70-130 Trichlorofluoromethane 0.11 U 30 105 70-130 Acrylonitrile 1.1 U 12 109 70-130 Acrylonitrile 1.7 U 17 96 70-130 Methylene chloride 1.7 U 17 96 70-130 Methylene chloride 1.7 U 17 96 70-130 trans-1,2-Dichloroethene 0.08 U 20 99 70-130 trans-1,2-Dichloroethane 0.08 U 20 99 70-130 1,1-Dichloroethane 0.59 U 13 91 70-130 2-Butanone 0.59 U 13 91 70-130	Parameter	Conc.	Conc.	% Recovery	
Vinyl chloride 0.05 U 14 114 70-130 Chloroethane 0.05 U 14 103 70-130 Acetone 2.4 U 10 84 70-130 Trichlorofluoromethane 0.11 U 30 105 70-130 Acrylonitrile 1.1 U 12 109 70-130 Acrylonitrile 1.1 U 12 109 70-130 Acrylonitrile 1.7 U 17 96 70-130 Methylene chloride 1.7 U 17 96 70-130 trans-1,2-Dichloroethene 0.08 U 20 99 70-130 1,1-Dichloroethane 0.08 U 20 99 70-130 1,1-Dichloroethane 0.59 U 13 91 70-130 2,2-Dichloroethane 0.08 U 20 103 70-130 1,1,1-Trichloroethane 0.11 U 33 121 70-130<	Dichlorodifluoromethane	0.10 U	29	117	70-130
Chloroethane 0.05 U 14 103 70-130 Acetone 2.4 U 10 84 70-130 Trichlorofluoromethane 0.11 U 30 105 70-130 Acrylonitrile 1.1 U 12 109 70-130 Acrylonitrile 0.08 U 20 103 70-130 Methylene chloride 1.7 U 17 96 70-130 Methylene chloride 1.7 U 17 96 70-130 Methylene chloride 0.08 U 20 99 70-130 I,1-Dichloroethane 0.08 U 20 99 70-130 I,1-Dichloroethane 0.59 U 13 91 70-130 2-Butanone 0.59 U 13 91 70-130 19-2-Dichloroethene 0.08 U 20 103 70-130 1,1-Trichloroethane 0.10 U 26 106 70-130	Chloromethane	0.08 U	12	116	70-130
Acetone 2.4 U 10 84 70-130 Trichlorofluoromethane 0.11 U 30 105 70-130 Acrylonitrile 1.1 U 12 109 70-130 Acrylonitrile 0.08 U 20 103 70-130 J.1-Dichloroethene 0.08 U 17 96 70-130 Methylene chloride 1.7 U 17 96 70-130 trans-1,2-Dichloroethene 0.08 U 19 97 70-130 1,1-Dichloroethane 0.08 U 20 99 70-130 1,1-Dichloroethane 0.08 U 20 99 70-130 2-Butanone 0.59 U 13 91 70-130 cis-1,2-Dichloroethene 0.08 U 20 103 70-130 Cis-1,2-Dichloroethane 0.08 U 20 100 70-130 1,1-1-Trichloroethane 0.11 U 33 121	Vinyl chloride	0.05 U	14	114	70-130
Trichlorofluoromethane 0.11 U 30 105 70-130 Acrylonitrile 1.1 U 12 109 70-130 1,1-Dichloroethene 0.08 U 20 103 70-130 Methylene chloride 1.7 U 17 96 70-130 trans-1,2-Dichloroethene 0.08 U 19 97 70-130 1,1-Dichloroethane 0.08 U 20 99 70-130 1,1-Dichloroethane 0.08 U 20 99 70-130 TBE 0.07 U 15 83 70-130 2-Butanone 0.59 U 13 91 70-130 2-Butanone 0.59 U 13 91 70-130 cis-1,2-Dichloroethane 0.08 U 20 103 70-130 Chloroform 0.10 U 26 106 70-130 1,1-1-Trichloroethane 0.11 U 33 121 70-130 <td>Chloroethane</td> <td>0.05 U</td> <td>14</td> <td>103</td> <td>70-130</td>	Chloroethane	0.05 U	14	103	70-130
Acrylonitrile 1.1 U 12 109 70-130 1,1-Dichloroethene 0.08 U 20 103 70-130 Methylene chloride 1.7 U 17 96 70-130 trans-1,2-Dichloroethene 0.08 U 19 97 70-130 1,1-Dichloroethane 0.08 U 20 99 70-130 MTBE 0.07 U 15 83 70-130 2-Butanone 0.59 U 13 91 70-130 cis-1,2-Dichloroethene 0.08 U 20 103 70-130 Cis-1,2-Dichloroethane 0.08 U 20 103 70-130 Chloroform 0.10 U 26 106 70-130 1,1,1-Trichloroethane 0.11 U 33 121 70-130 1,1,1-Trichloroethane 0.11 U 37 117 70-130 Benzene 0.13 U 15 95 70-130<	Acetone		10	84	70-130
1,1-Dichloroethene 0.08 U 20 103 70-130 Methylene chloride 1.7 U 17 96 70-130 trans-1,2-Dichloroethene 0.08 U 19 97 70-130 1,1-Dichloroethane 0.08 U 20 99 70-130 1,1-Dichloroethane 0.08 U 20 99 70-130 BTBE 0.07 U 15 83 70-130 2-Butanone 0.59 U 13 91 70-130 cis-1,2-Dichloroethene 0.08 U 20 103 70-130 Chloroform 0.10 U 26 106 70-130 1,2-Dichloroethane 0.08 U 20 100 70-130 1,1,1-Trichloroethane 0.11 U 33 121 70-130 Benzene 0.13 U 15 95 70-130 Carbon tetrachloride 0.13 U 37 117 70-130<	Trichlorofluoromethane	0.11 U	30	105	70-130
Methylene chloride 1.7 U 17 96 70-130 trans-1,2-Dichloroethene 0.08 U 19 97 70-130 1,1-Dichloroethane 0.08 U 20 99 70-130 MTBE 0.07 U 15 83 70-130 2-Butanone 0.59 U 13 91 70-130 cis-1,2-Dichloroethene 0.08 U 20 103 70-130 Chloroform 0.10 U 26 106 70-130 1,2-Dichloroethane 0.08 U 20 100 70-130 1,1-Trichloroethane 0.11 U 33 121 70-130 Benzene 0.13 U 15 95 70-130 Benzene 0.13 U 37 117 70-130 1,2-Dichloropropane 0.09 U 24 105 70-130 1,2-Dichloropropane 0.09 U 24 105 70-130 <td>Acrylonitrile</td> <td>1.1 U</td> <td>12</td> <td>109</td> <td>70-130</td>	Acrylonitrile	1.1 U	12	109	70-130
trans-1,2-Dichloroethene 0.08 U 19 97 70-130 1,1-Dichloroethane 0.08 U 20 99 70-130 MTBE 0.07 U 15 83 70-130 2-Butanone 0.59 U 13 91 70-130 2-Butanone 0.08 U 20 103 70-130 Chloroform 0.10 U 26 106 70-130 Chloroform 0.10 U 26 106 70-130 1,2-Dichloroethane 0.08 U 20 100 70-130 1,2-Dichloroethane 0.11 U 33 121 70-130 1,1-Trichloroethane 0.11 U 33 121 70-130 Benzene 0.13 U 15 95 70-130 Carbon tetrachloride 0.13 U 37 117 70-130 1,2-Dichloropropane 0.09 U 24 105 70-130	1,1-Dichloroethene	0.08 U	20	103	70-130
1,1-Dichloroethane 0.08 U 20 99 70-130 MTBE 0.07 U 15 83 70-130 2-Butanone 0.59 U 13 91 70-130 cis-1,2-Dichloroethene 0.08 U 20 103 70-130 Chloroform 0.10 U 26 106 70-130 1,2-Dichloroethane 0.08 U 20 100 70-130 1,1,1-Trichloroethane 0.11 U 33 121 70-130 1,1,1-Trichloroethane 0.11 U 33 121 70-130 Benzene 0.13 U 15 95 70-130 Carbon tetrachloride 0.13 U 37 117 70-130 1,2-Dichloropropane 0.09 U 24 105 70-130 Bromodichloromethane 0.13 U 40 120 70-130 Bromodichloromethane 0.11 U 30 110 70-130 cis-1,3-Dichloropropene 0.09 U 27 117 70-130 trans-1,3-Dichloropropene	Methylene chloride	1.7 U	17	96	70-130
MTBE 0.07 U 15 83 70-130 2-Butanone 0.59 U 13 91 70-130 cis-1,2-Dichloroethene 0.08 U 20 103 70-130 Chloroform 0.10 U 26 106 70-130 1,2-Dichloroethane 0.08 U 20 100 70-130 1,1-Trichloroethane 0.11 U 33 121 70-130 Benzene 0.13 U 15 95 70-130 Carbon tetrachloride 0.13 U 37 117 70-130 1,2-Dichloropropane 0.09 U 24 105 70-130 1,2-Dichloropropane 0.09 U 24 105 70-130 1,2-Dichloropropane 0.11 U 30 110 70-130 1,3-Dichloropropene 0.09 U 27 117 70-130 4-Methyl-2-pentanone 2.0 U 26 126 70-130 trans-1,3-Dichloropropene 0.09 U 23 99 70-130 trans-1,3-Dichloropropene	trans-1,2-Dichloroethene	0.08 U	19	97	70-130
2-Butanone 0.59 U 13 91 70-130 cis-1,2-Dichloroethene 0.08 U 20 103 70-130 Chloroform 0.10 U 26 106 70-130 1,2-Dichloroethane 0.08 U 20 100 70-130 1,1,1-Trichloroethane 0.11 U 33 121 70-130 Benzene 0.13 U 15 95 70-130 Carbon tetrachloride 0.13 U 37 117 70-130 1,2-Dichloropropane 0.09 U 24 105 70-130 1,2-Dichloropropane 0.09 U 24 105 70-130 Bromodichloromethane 0.13 U 40 120 70-130 Trichloroethene 0.11 U 30 110 70-130 cis-1,3-Dichloropropene 0.09 U 27 117 70-130 4-Methyl-2-pentanone 2.0 U 26 126 70-130 trans-1,3-Dichloropropene 0.09 U 23 99 70-130 Toluene	1,1-Dichloroethane	0.08 U	20	99	70-130
cis-1,2-Dichloroethene 0.08 U 20 103 70-130 Chloroform 0.10 U 26 106 70-130 1,2-Dichloroethane 0.08 U 20 100 70-130 1,1,1-Trichloroethane 0.11 U 33 121 70-130 Benzene 0.13 U 15 95 70-130 Carbon tetrachloride 0.13 U 37 117 70-130 1,2-Dichloropropane 0.09 U 24 105 70-130 Bromodichloromethane 0.13 U 40 120 70-130 Trichloroethene 0.11 U 30 110 70-130 Trichloroethene 0.11 U 30 110 70-130 4-Methyl-2-pentanone 2.0 U 27 117 70-130 4-Methyl-2-pentanone 2.0 U 26 126 70-130 1,1,2-Trichloroethane 0.19 U 23 99<	MTBE	0.07 U	15	83	70-130
Chloroform 0.10 U 26 106 70-130 1,2-Dichloroethane 0.08 U 20 100 70-130 1,1,1-Trichloroethane 0.11 U 33 121 70-130 Benzene 0.13 U 15 95 70-130 Carbon tetrachloride 0.13 U 37 117 70-130 1,2-Dichloropropane 0.09 U 24 105 70-130 Bromodichloromethane 0.13 U 40 120 70-130 Trichloroethene 0.11 U 30 110 70-130 cis-1,3-Dichloropropene 0.09 U 27 117 70-130 4-Methyl-2-pentanone 2.0 U 26 126 70-130 4-Methyl-2-pentanone 0.09 U 23 99 70-130 1,1,2-Trichloroethane 0.11 U 29 107 70-130 Toluene 0.19 U 16 86 70-130 Dibromochloromethane 0.17 U 48 114 70-130 Tetrachloroethane	2-Butanone	0.59 U	13	91	70-130
1,2-Dichloroethane 0.08 U 20 100 70-130 1,1,1-Trichloroethane 0.11 U 33 121 70-130 Benzene 0.13 U 15 95 70-130 Carbon tetrachloride 0.13 U 37 117 70-130 1,2-Dichloropropane 0.09 U 24 105 70-130 Bromodichloromethane 0.13 U 40 120 70-130 Trichloroethene 0.11 U 30 110 70-130 cis-1,3-Dichloropropene 0.09 U 27 117 70-130 4-Methyl-2-pentanone 2.0 U 26 126 70-130 trans-1,3-Dichloropropene 0.09 U 23 99 70-130 1,1,2-Trichloroethane 0.11 U 29 107 70-130 Toluene 0.19 U 16 86 70-130 Dibromochloromethane 0.17 U 48 114 70-130 Tetrachloroethane 0.14 U 34 99 70-130 Tetrachloroethane 0.14 U 34 99 70-130 Chlorobenze	cis-1,2-Dichloroethene	0.08 U	20	103	70-130
1,1,1-Trichloroethane 0.11 U 33 121 70-130 Benzene 0.13 U 15 95 70-130 Carbon tetrachloride 0.13 U 37 117 70-130 1,2-Dichloropropane 0.09 U 24 105 70-130 Bromodichloromethane 0.13 U 40 120 70-130 Trichloroethene 0.11 U 30 110 70-130 cis-1,3-Dichloropropene 0.09 U 27 117 70-130 4-Methyl-2-pentanone 2.0 U 26 126 70-130 trans-1,3-Dichloropropene 0.09 U 23 99 70-130 1,1,2-Trichloroethane 0.11 U 29 107 70-130 Toluene 0.19 U 16 86 70-130 Dibromochloromethane 0.17 U 48 114 70-130 1,2-Dibromoethane 0.15 U 37 97 70-130 Tetrachloroethane 0.14 U 34 99 70-130 Chlorobenzene 0.09 U 22 95 70-130	Chloroform	0.10 U	26	106	70-130
Benzene 0.13 U 15 95 70-130 Carbon tetrachloride 0.13 U 37 117 70-130 1,2-Dichloropropane 0.09 U 24 105 70-130 Bromodichloromethane 0.13 U 40 120 70-130 Trichloroethene 0.11 U 30 110 70-130 cis-1,3-Dichloropropene 0.09 U 27 117 70-130 4-Methyl-2-pentanone 2.0 U 26 126 70-130 trans-1,3-Dichloropropene 0.09 U 23 99 70-130 1,1,2-Trichloroethane 0.11 U 29 107 70-130 Toluene 0.19 U 16 86 70-130 Dibromochloromethane 0.17 U 48 114 70-130 1,2-Dibromoethane 0.15 U 37 97 70-130 Tetrachloroethane 0.14 U 34 99 70-130 Chlorobenzene 0.09 U 22 95 70-130	1,2-Dichloroethane	0.08 U	20	100	70-130
Carbon tetrachloride 0.13 U 37 117 70-130 1,2-Dichloropropane 0.09 U 24 105 70-130 Bromodichloromethane 0.13 U 40 120 70-130 Trichloroethene 0.11 U 30 110 70-130 cis-1,3-Dichloropropene 0.09 U 27 117 70-130 4-Methyl-2-pentanone 2.0 U 26 126 70-130 trans-1,3-Dichloropropene 0.09 U 23 99 70-130 1,1,2-Trichloroethane 0.11 U 29 107 70-130 Toluene 0.19 U 16 86 70-130 Dibromochloromethane 0.17 U 48 114 70-130 1,2-Dibromoethane 0.15 U 37 97 70-130 Tetrachloroethene 0.14 U 34 99 70-130 Chlorobenzene 0.09 U 22 95 70-130	1,1,1-Trichloroethane	0.11 U	33	121	70-130
1,2-Dichloropropane 0.09 U 24 105 70-130 Bromodichloromethane 0.13 U 40 120 70-130 Trichloroethene 0.11 U 30 110 70-130 cis-1,3-Dichloropropene 0.09 U 27 117 70-130 4-Methyl-2-pentanone 2.0 U 26 126 70-130 trans-1,3-Dichloropropene 0.09 U 23 99 70-130 1,1,2-Trichloroethane 0.11 U 29 107 70-130 Toluene 0.19 U 16 86 70-130 Dibromochloromethane 0.17 U 48 114 70-130 1,2-Dibromoethane 0.15 U 37 97 70-130 Tetrachloroethene 0.14 U 34 99 70-130 1,1,1,2-Tetrachloroethane 0.14 U 38 111 70-130 Chlorobenzene 0.09 U 22 95 70-130	Benzene	0.13 U	15	95	70-130
Bromodichloromethane 0.13 U 40 120 70-130 Trichloroethene 0.11 U 30 110 70-130 cis-1,3-Dichloropropene 0.09 U 27 117 70-130 4-Methyl-2-pentanone 2.0 U 26 126 70-130 trans-1,3-Dichloropropene 0.09 U 23 99 70-130 1,1,2-Trichloroethane 0.11 U 29 107 70-130 Toluene 0.19 U 16 86 70-130 Dibromochloromethane 0.17 U 48 114 70-130 1,2-Dibromoethane 0.15 U 37 97 70-130 Tetrachloroethene 0.14 U 34 99 70-130 1,1,1,2-Tetrachloroethane 0.14 U 38 111 70-130 Chlorobenzene 0.09 U 22 95 70-130	Carbon tetrachloride	0.13 U	37	117	70-130
Trichloroethene 0.11 U 30 110 70-130 cis-1,3-Dichloropropene 0.09 U 27 117 70-130 4-Methyl-2-pentanone 2.0 U 26 126 70-130 trans-1,3-Dichloropropene 0.09 U 23 99 70-130 1,1,2-Trichloroethane 0.11 U 29 107 70-130 Toluene 0.19 U 16 86 70-130 Dibromochloromethane 0.17 U 48 114 70-130 1,2-Dibromoethane 0.15 U 37 97 70-130 Tetrachloroethene 0.14 U 34 99 70-130 1,1,1,2-Tetrachloroethane 0.14 U 38 111 70-130 Chlorobenzene 0.09 U 22 95 70-130	1,2-Dichloropropane	0.09 U	24	105	70-130
cis-1,3-Dichloropropene 0.09 U 27 117 70-130 4-Methyl-2-pentanone 2.0 U 26 126 70-130 trans-1,3-Dichloropropene 0.09 U 23 99 70-130 1,1,2-Trichloroethane 0.11 U 29 107 70-130 Toluene 0.19 U 16 86 70-130 Dibromochloromethane 0.17 U 48 114 70-130 1,2-Dibromoethane 0.15 U 37 97 70-130 Tetrachloroethene 0.14 U 34 99 70-130 1,1,1,2-Tetrachloroethane 0.14 U 38 111 70-130 Chlorobenzene 0.09 U 22 95 70-130	Bromodichloromethane	0.13 U	40	120	70-130
4-Methyl-2-pentanone 2.0 U 26 126 70-130 trans-1,3-Dichloropropene 0.09 U 23 99 70-130 1,1,2-Trichloroethane 0.11 U 29 107 70-130 Toluene 0.19 U 16 86 70-130 Dibromochloromethane 0.17 U 48 114 70-130 1,2-Dibromoethane 0.15 U 37 97 70-130 Tetrachloroethene 0.14 U 34 99 70-130 1,1,1,2-Tetrachloroethane 0.14 U 38 111 70-130 Chlorobenzene 0.09 U 22 95 70-130	Trichloroethene	0.11 U	30	110	70-130
trans-1,3-Dichloropropene 0.09 U 23 99 70-130 1,1,2-Trichloroethane 0.11 U 29 107 70-130 Toluene 0.19 U 16 86 70-130 Dibromochloromethane 0.17 U 48 114 70-130 1,2-Dibromoethane 0.15 U 37 97 70-130 Tetrachloroethane 0.14 U 34 99 70-130 1,1,1,2-Tetrachloroethane 0.14 U 38 111 70-130 Chlorobenzene 0.09 U 22 95 70-130	cis-1,3-Dichloropropene	0.09 U	27	117	70-130
1,1,2-Trichloroethane 0.11 U 29 107 70-130 Toluene 0.19 U 16 86 70-130 Dibromochloromethane 0.17 U 48 114 70-130 1,2-Dibromoethane 0.15 U 37 97 70-130 Tetrachloroethane 0.14 U 34 99 70-130 1,1,1,2-Tetrachloroethane 0.14 U 38 111 70-130 Chlorobenzene 0.09 U 22 95 70-130	4-Methyl-2-pentanone	2.0 U	26	126	70-130
Toluene 0.19 U 16 86 70-130 Dibromochloromethane 0.17 U 48 114 70-130 1,2-Dibromoethane 0.15 U 37 97 70-130 Tetrachloroethene 0.14 U 34 99 70-130 1,1,1,2-Tetrachloroethane 0.14 U 38 111 70-130 Chlorobenzene 0.09 U 22 95 70-130	trans-1,3-Dichloropropene	0.09 U	23	99	70-130
Dibromochloromethane 0.17 U 48 114 70-130 1,2-Dibromoethane 0.15 U 37 97 70-130 Tetrachloroethene 0.14 U 34 99 70-130 1,1,1,2-Tetrachloroethane 0.14 U 38 111 70-130 Chlorobenzene 0.09 U 22 95 70-130	1,1,2-Trichloroethane	0.11 U	29	107	70-130
1,2-Dibromoethane 0.15 U 37 97 70-130 Tetrachloroethene 0.14 U 34 99 70-130 1,1,1,2-Tetrachloroethane 0.14 U 38 111 70-130 Chlorobenzene 0.09 U 22 95 70-130	Toluene	0.19 U	16	86	70-130
Tetrachloroethene 0.14 U 34 99 70-130 1,1,1,2-Tetrachloroethane 0.14 U 38 111 70-130 Chlorobenzene 0.09 U 22 95 70-130	Dibromochloromethane	0.17 U	48	114	70-130
1,1,1,2-Tetrachloroethane 0.14 U 38 111 70-130 Chlorobenzene 0.09 U 22 95 70-130	1,2-Dibromoethane	0.15 U	37	97	70-130
Chlorobenzene 0.09 U 22 95 70-130	Tetrachloroethene	0.14 U	34	99	70-130
	1,1,1,2-Tetrachloroethane	0.14 U	38	111	70-130
Ethylbenzene 0.09 U 20 92 70-130	Chlorobenzene	0.09 U	22	95	70-130
	Ethylbenzene	0.09 U	20	92	70-130

EA Engineering, Science & Technology

Adelaide Ave. School **Laboratory Control Sample** SDG: N/A

Lab Code: MA00030

ETR: 0706153 Lab ID: See Below

Associated Blank: VA071107B28

Concentration Units: $\mu g/m^3$

Client ID: N/A Matrix:

Soil Vapor

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst	
N/A	N/A	07/02/07	250	250	1	JEG	
		VA07110	VA071107B28		VA071107LCS14		
		Blan	k		LCS % Rec		
Parameter		Con	c	Conc.	% Recovery	Limits	

	VA071107B28	VA071.	107LCS14	
	Blank		LCS	% Recovery
Parameter	Conc.	Conc.	% Recovery	Limits
p+m-Xylene	0.17 U	43	99	70-130
Bromoform	0.21 U	62	120	70-130
Styrene	0.09 U	19	87	70-130
1,1,2,2-Tetrachloroethane	0.14 U	30	88	70-130
o-Xylene	0.09 U	20	90	70-130
Isopropylbenzene	2.5 U	23	93	70-130
1,3,5-Trimethylbenzene	0.10 U	23	92	70-130
1,2,4-Trimethylbenzene	0.10 U	23	94	70-130
1,3-Dichlorobenzene	0.12 U	27	91	70-130
1,4-Dichlorobenzene	0.12 U	27	91	70-130
sec-Butylbenzene	2.5 U	24	100	70-130
p-Isopropyltoluene	0.22 U	24	89	70-130
1,2-Dichlorobenzene	0.12 U	27	91	70-130
n-Butylbenzene	1.1 U	24	89	70-130

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Concentrations reported as calculated values, which includes rounding for significant figures. Percent recoveries and RPD values 07/12/07 14:20 are calculated from the unrounded result.

Client:
Project:
Client ID:
WOODS HOLE LABSCase:

Matrix:

EA Engineering, Science & Technology

Adelaide Ave. School
Laboratory Control Sample
N/A SDG: N/A

Soil Vapor

Lab Code: MA00030

ETR: 0706153 Lab ID: See Below

Associated Blank: VA071207B02

Concentration Units: µg/m³

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
N/A	N/A	07/06/07	250	250	1	JEG
		VA07120	77R02	VA0'	71207LCS02	
		Blan		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	LCS	% Recovery
Parameter		Cone		Conc.	% Recovery	Limits
Dichlorodifluorom	41	0.10		28	111	70-130
	etnane	0.10		11	104	70-130
Chloromethane		0.05		12	97	70-130
Vinyl chloride		0.05		12	89	70-130
Chloroethane		2.4		9.0	75	70-130
Acetone	.1	0.11		24	86	70-130
Trichlorofluorome	thane	1.1	U	9.0	83	70-130
Acrylonitrile				16	81	70-130
1,1-Dichloroethene		0.08		14	82	70-130
Methylene chloride		1.7		15	76	70-130
trans-1,2-Dichloro		0.08			81	70-130
1,1-Dichloroethane	e	0.08		16	60°	70-130
MTBE		0.07		11	74	70-130
2-Butanone		0.59		11		
cis-1,2-Dichloroetl	hene	0.08		16	81	70-130
Chloroform		0.10		22	88	70-130
1,2-Dichloroethane		0.08		17	83	70-130
1,1,1-Trichloroeth	ane	0.13		27	100	70-130
Benzene		0.13		12	76	70-130
Carbon tetrachloric		0.13		30	96	70-130
1,2-Dichloropropa		0.09		20	87	70-130
Bromodichlorome	thane	0.13		33	98	70-130
Trichloroethene		0.1		24	89	70-130
cis-1,3-Dichloropr	opene	0.09		20	90	70-130
4-Methyl-2-pentan	ione	2.0		20	100	70-130
trans-1,3-Dichloro	propene	0.09		17	75	70-130
1,1,2-Trichloroeth	ane	0.1		23	85	70-130
Toluene		0.19) U	12	64ª	70-130
Dibromochlorome	thane	0.1		36	85	70-130
1,2-Dibromoethan	e	0.1:		28	73	70-130
Tetrachloroethene		0.14	4 U	24	71	70-130
1,1,1,2-Tetrachlor	oethane	0.14	4 U	28	83	70-130
Chlorobenzene		0.09	9 U	16	71	70-130
Ethylbenzene		0.09	9 U	14	66ª	70-130

EA Engineering, Science & Technology

Lab Code: MA00030

Adelaide Ave. School

ETR: **0706153**

Laboratory Control Sample N/A SDG: N/A

Lab ID: See Below
Associated Blank: VA071207B02

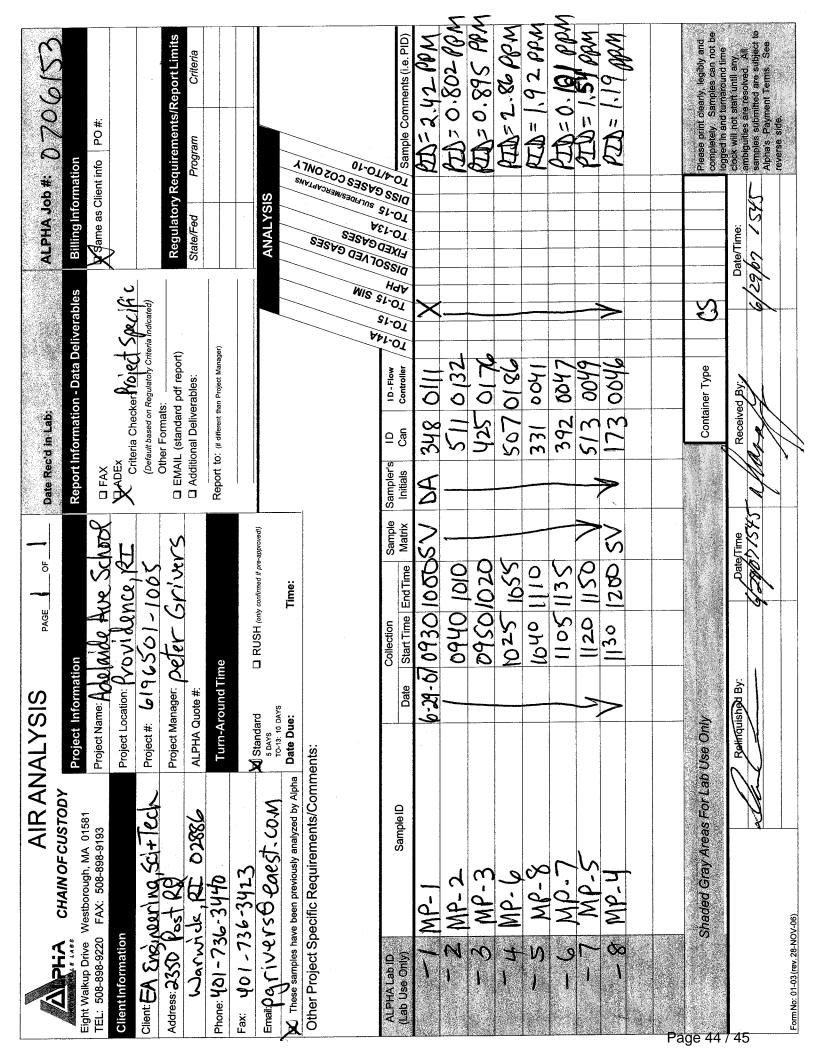
Matrix:

Soil Vapor

Concentration Units: µg/m³

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
N/A	N/A	07/06/07	250	250	1	JEG

	VA071207B02	VA071	207LCS02		
	Blank		LCS	% Recovery	
Parameter	Conc.	Conc.	% Recovery	Limits	
p+m-Xylene	0.17 U	32	73	70-130	
Bromoform	0.21 U	45	87	70-130	
Styrene	0.09 U	13	60ª	70-130	
1,1,2,2-Tetrachloroethane	0.14 U	24	70	70-130	
o-Xylene	0.09 U	14	66ª	70-130	
Isopropylbenzene	2.5 U	16	66ª	70-130	
1,3,5-Trimethylbenzene	0.10 U	16	66ª	70-130	
1,2,4-Trimethylbenzene	0.10 U	16	67ª	70-130	
1,3-Dichlorobenzene	0.12 U	20	67ª	70-130	
1,4-Dichlorobenzene	0.12 U	20	66ª	70-130	
sec-Butylbenzene	2.5 U	18	72	70-130	
p-Isopropyltoluene	0.22 U	17	62ª	70-130	
1,2-Dichlorobenzene	0.12 U	20	65 ^a	70-130	
n-Butylbenzene	1.1 U	17	63ª	70-130	


N/A - Not Applicable

Concentrations reported as calculated values, which includes rounding for significant figures. Percent recoveries and RPD values are calculated from the unrounded result.

07/13/07 13:47

^a - Value outside of QC Limits.

U - The analyte was analyzed for but not detected at the sample specific level reported.

Certificate/Approval Program Summary

Method numbers assume the most recent EPA revisions. For a complete listing of analytes for the referenced methods please contact your Alpha Woods Hole Lab Project Manager or the Quality Assurance Manager.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141 - Wastewater (General Chemistry: EPA 120.1, 150.1, 160.1, 160.2, 180.1, 300.0, 310.1, 335.2, 365.2; Metals: 200.8, 245.1; Organics: 608, 624, 625, ETPH) Solid Waste/Soil (General Chemistry: 1010, 9010/9014, 9045, 9060; Metals: 6020, 7470, 7471; Organics: 8081, 8082, 8260, 8270, ETPH).

Florida Department of Health Certificate/Lab ID: E87814 - Primary NELAP Accreditation Authority for Air & Emissions. Secondary NELAP Accreditation for Wastwater and Solid & Hazardous Waste. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 335.2, 365.2, SM2320B, SM2340B, SM2540G, SM4500NH3; Metals: 245.1; Organics: 608, 624, 625). Solid and Hazardous Waste (General Chemistry: 9010/9014, 9045, 9050, 9056, 9065, Reactivity 7.3; Metals: 6020, 7470, 7471; Organics: 8081, 8082, 8260, 8270). Air & Emissions (Organics: EPA TO-15).

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090 - Primary NELAP Accrediting Authority for Wastewater, Solid & Hazardous Waste. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 310.1/SM2320B, 335.2, 365.2, 376.2, 9010/9014, 9056, SM2540G; Metals: 200.8, 245.1, 6020; Organics: 608, 624, 625, 8015-DRO/GRO, 8081, 8082, 8260, 8270). Solid and Hazardous Waste (General Chemistry: 1010, 1311, 9010/9014, 9040, 9045, 9056, 9060, Reactivity 7.3; Metals: 6020, 7196, 7470, 7471; Organics: 8015-DRO/GRO, 8081, 8082, 8260, 8270).

Maine Department of Human Services Certificate/Lab ID: MA0030 - Wastewater (General Chemistry: EPA 120.1/SM2510B, 160.1/SM2540C, 160.2/SM2540D, 300.0, 310.1/SM2320B, 335.2, 365.2; Metals: EPA 245.1; Organics: 608, 624).

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA030 - Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 300.0, 310.1/SM2320B, 335.2, 365.2; Metals: EPA 245.1; Organics: EPA 608, 624).

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206 - Secondary NELAP Accreditation. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 310.1/SM2320B, 335.2, 365.2, 376.2, SM2540G; Metals: 200.8, 245.4; Organics: 608, 624, 625).

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015 - Secondary NELAP Accreditation. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 310.1/SM2320B, 335.2, 376.2, 9010/9014, 9056, SM2540G; Metals: 200.8, 245.1 6020; Organics: 608, 624, 625, 8081, 8082, 8260, 8270). Solid & Hazardous Waste (General Chemistry: EPA 1010, 1311, 9010/9014, 9040, 9045, 9056, 9060; Metals: 6020, 7196, 7470, 7471; Organics: 8015-DRO/GRO, 8081, 8082, 8260, 8270). Air & Emissions (Organics: EPA TO-15).

New York Department of Health Certificate/Lab ID: 11627 - Secondary NELAP Accreditation. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 300.0, 310.1/SM2320B, 365.2, 376.2; Metals: 245.1; Organics: 608, 624, 625). Solid and Hazardous Waste (General Chemistry: EPA 1010, 1311; :245.1; 6020, 7041; Organics: 8081, 8082, 8260, 8270). Air & Emissions (Organics: EPA TO-15).

Rhode Island Department of Health Certificate/Lab ID: LAO00289 - Chemistry: Organic and Inorganic in Non-Poratable Water, Wastewater/Sewage and Soil (Refer to LADEQ and MADEP certificates for method numbers.)

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-02089 - Registered laboratory

U.S. Army Corps of Engineers

Department of the Navy

Adelaide Avenue School - Sub Slab Depressurization System Emissions Calculations Sample Date - 29 June 2007

	ROOFTOP	FAN 1 (Measured	air flow = 108 cul	bic feet per minute)	ROOFTOP	FAN 2 (Measure	d air flow = 190 cu	ıbic feet per minute)	ROOFTOP	P FAN 3 (Measure	d air flow = 124 c	ıbic feet per minute)	CUMUL	ATIVE EMISSION	IS (3 fans combined)
Volatile Organic	Concentration	Hourly Emission	Daily Emission	Yearly Emission	Concentration	Hourly Emission	Daily Emission	Yearly Emission	Concentration	Hourly Emission	Daily Emission	Yearly Emission	Hourly Emission	Daily Emission	Yearly Emission
Compounds	(ug/m ³)	(lbs/hour)	(lbs/day)	(lbs/year)	(ug/m ³)	(lbs/hour)	(lbs/day)	(lbs/year)	(ug/m ³)	(lbs/hour)	(lbs/dav)	(lbs/year)	(lbs/hour)	(lbs/day)	(lbs/year)
1.1.1.2-Tetrachloroethane	0.14 U	5.65E-08	1.36E-06	4.95E-04	0.14 U	9.94E-08	2.39E-06	8.71E-04	0.14 U	<u> </u>	1.56E-06	5.68E-04	2.21E-07	5.30E-06	1.93E-03
1,1,1-Trichloroethane	2.8	1.13E-06	2.71E-05	9.90E-03	2.8	1.99E-06	4.77E-05	1.74E-02	1.5	6.95E-07	1.67E-05	6.09E-03	3.81E-06	9.15E-05	3.34E-02
1,1,2,2-Tetrachloroethane	0.14 U	5.65E-08	1.36E-06	4.95E-04	0.14 U	9.94E-08	2.39E-06	8.71E-04	0.14 U	6.49E-08	1.56E-06	5.68E-04	2.21E-07	5.30E-06	1.93E-03
1,1,2-Trichloroethane	0.11 U	4.44E-08	1.07E-06	3.89E-04	0.11 U	7.81E-08	1.88E-06	6.84E-04	0.11 U	5.10E-08	1.22E-06	4.47E-04	1.74E-07	4.16E-06	1.52E-03
1,1-Dichloroethane	0.12	4.84E-08	1.16E-06	4.24E-04	0.08 U	5.68E-08	1.36E-06	4.98E-04	0.08 U	3.71E-08	8.90E-07	3.25E-04	1.42E-07	3.42E-06	1.25E-03
1,1-Dichloroethene	0.08 U	3.23E-08	7.75E-07	2.83E-04	0.08 U	5.68E-08	1.36E-06	4.98E-04	0.08 U	3.71E-08	8.90E-07	3.25E-04	1.26E-07	3.03E-06	1.11E-03
1,2,4-Trimethylbenzene	1.7	6.86E-07	1.65E-05	6.01E-03	3.2	2.27E-06	5.45E-05	1.99E-02	2.8	1.30E-06	3.12E-05	1.14E-02	4.26E-06	1.02E-04	3.73E-02
1,2-Dibromoethane	0.15 U	6.06E-08	1.45E-06	5.31E-04	0.15 U	1.07E-07	2.56E-06	9.33E-04	0.15 U	6.95E-08	1.67E-06	6.09E-04	2.37E-07	5.68E-06	2.07E-03
1,2-Dichlorobenzene	0.12 U	4.84E-08	1.16E-06	4.24E-04	0.12 U	8.52E-08	2.05E-06	7.47E-04	0.12 U	5.56E-08	1.34E-06	4.87E-04	1.89E-07	4.54E-06	1.66E-03
1,2-Dichloroethane	0.08 U	3.23E-08	7.75E-07	2.83E-04	0.08 U	5.68E-08	1.36E-06	4.98E-04	0.08 U	3.71E-08	8.90E-07	3.25E-04	1.26E-07	3.03E-06	1.11E-03
1,2-Dichloropropane	0.09 U	3.63E-08	8.72E-07	3.18E-04	0.09 U	6.39E-08	1.53E-06	5.60E-04	0.09 U	4.17E-08	1.00E-06	3.65E-04	1.42E-07	3.41E-06	1.24E-03
1,3,5-Trimethybenzene	0.9	3.63E-07	8.72E-06	3.18E-03	1.8	1.28E-06	3.07E-05	1.12E-02	2.2 U	1.02E-06	2.45E-05	8.93E-03	2.66E-06	6.39E-05	2.33E-02
1,3-Dichlorobenzene	0.12 U	4.84E-08	1.16E-06	4.24E-04	0.12 U	8.52E-08	2.05E-06	7.47E-04	0.12 U	5.56E-08	1.34E-06	4.87E-04	1.89E-07	4.54E-06	1.66E-03
1,4-Dichlorobenzene	76	3.07E-05	7.36E-04	2.69E-01	100	7.10E-05	1.70E-03	6.22E-01	66	3.06E-05	7.34E-04	2.68E-01	1.32E-04	3.18E-03	1.16E+00
2-Butanone	2.8	1.13E-06	2.71E-05	9.90E-03	32	2.27E-05	5.45E-04	1.99E-01	18	8.34E-06	2.00E-04	7.31E-02	3.22E-05	7.73E-04	2.82E-01
4-Methyl-2-pentanone	2 U	8.07E-07	1.94E-05	7.07E-03	2 U	1.42E-06	3.41E-05	1.24E-02	2 U	9.27E-07	2.23E-05	8.12E-03	3.16E-06	7.57E-05	2.76E-02
Acetone	25	1.01E-05	2.42E-04	8.84E-02	110	7.81E-05	1.88E-03	6.84E-01	33	1.53E-05	3.67E-04	1.34E-01	1.04E-04	2.48E-03	9.07E-01
Acrylonitrile	1.1 U	4.44E-07	1.07E-05	3.89E-03	1.1 U	7.81E-07	1.88E-05	6.84E-03	1.1 U	5.10E-07	1.22E-05	4.47E-03	1.74E-06	4.16E-05	1.52E-02
Benzene	0.23	9.29E-08	2.23E-06	8.13E-04	0.46	3.27E-07	7.84E-06	2.86E-03	0.33	1.53E-07	3.67E-06	1.34E-03	5.73E-07	1.37E-05	5.02E-03
Bromodichloromethane	0.13 U	5.25E-08	1.26E-06	4.60E-04	0.13 U	9.23E-08	2.22E-06	8.09E-04	0.13 U	6.03E-08	1.45E-06	5.28E-04	2.05E-07	4.92E-06	1.80E-03
Bromoform	0.21 U	8.48E-08	2.03E-06	7.43E-04	0.21 U	1.49E-07	3.58E-06	1.31E-03	0.21 U	9.73E-08	2.34E-06	8.53E-04	3.31E-07	7.95E-06	2.90E-03
Carbon tetrachloride	0.5	2.02E-07	4.84E-06	1.77E-03	0.49	3.48E-07	8.35E-06	3.05E-03	0.46	2.13E-07	5.12E-06	1.87E-03	7.63E-07	1.83E-05	6.68E-03
Chlorobenzene	0.09 U	3.63E-08	8.72E-07	3.18E-04	0.09 U	6.39E-08	1.53E-06	5.60E-04	0.09 U	4.17E-08	1.00E-06	3.65E-04	1.42E-07	3.41E-06	1.24E-03
Chloroethane	0.05 U	2.02E-08	4.84E-07	1.77E-04	0.18	1.28E-07	3.07E-06	1.12E-03	0.1	4.64E-08	1.11E-06	4.06E-04	1.94E-07	4.67E-06	1.70E-03
Chloroform	0.36	1.45E-07	3.49E-06	1.27E-03	0.39	2.77E-07	6.65E-06	2.43E-03	1.4	6.49E-07	1.56E-05	5.68E-03	1.07E-06	2.57E-05	9.38E-03
Chloromethane	0.08 U	3.23E-08	7.75E-07	2.83E-04	0.08 U	5.68E-08	1.36E-06	4.98E-04	0.08 U	3.71E-08	8.90E-07	3.25E-04	1.26E-07	3.03E-06	1.11E-03
cis-1,2-Dichloroethene	0.08	3.23E-08	7.75E-07	2.83E-04	0.08 U	5.68E-08	1.36E-06	4.98E-04	0.08 U	3.71E-08	8.90E-07	3.25E-04	1.26E-07	3.03E-06	1.11E-03
cis-1,3-Dichloropropene	0.09 U	3.63E-08	8.72E-07	3.18E-04	0.09 U	6.39E-08	1.53E-06	5.60E-04	0.09 U	4.17E-08	1.00E-06	3.65E-04	1.42E-07	3.41E-06	1.24E-03
Dibromochloromethane	0.17 U	6.86E-08	1.65E-06	6.01E-04	0.17 U	1.21E-07	2.90E-06	1.06E-03	0.17 U	7.88E-08	1.89E-06	6.90E-04	2.68E-07	6.44E-06	2.35E-03
Dichlorodifluoromethane	2.2	8.88E-07	2.13E-05	7.78E-03	2.3	1.63E-06	3.92E-05	1.43E-02	2.4	1.11E-06	2.67E-05	9.75E-03	3.63E-06	8.72E-05	3.18E-02
Ethylbenzene	0.3	1.21E-07	2.91E-06	1.06E-03	0.84	5.97E-07	1.43E-05	5.23E-03	17	7.88E-06	1.89E-04	6.90E-02	8.60E-06	2.06E-04	7.53E-02
Isopropylbenzene	2.5 U	1.01E-06	2.42E-05	8.84E-03	2.5 U	1.78E-06	4.26E-05	1.56E-02	2.5 U	1.16E-06	2.78E-05	1.02E-02	3.94E-06	9.47E-05	3.45E-02
Methyl tert butyl ether	0.07 U	2.83E-08	6.78E-07	2.48E-04	0.18	1.28E-07	3.07E-06	1.12E-03	4.6	2.13E-06	5.12E-05	1.87E-02	2.29E-06	5.49E-05	2.00E-02
Methylene chloride	7.5	3.03E-06	7.27E-05	2.65E-02	6.7	4.76E-06	1.14E-04	4.17E-02	6.6	3.06E-06	7.34E-05	2.68E-02	1.08E-05	2.60E-04	9.50E-02
n-Butylbenzene	1.1 U	4.44E-07	1.07E-05	3.89E-03	1.1 U	7.81E-07	1.88E-05	6.84E-03	1.1 U	5.10E-07	1.22E-05	4.47E-03	1.74E-06	4.16E-05	1.52E-02
o-Xylene	0.4	1.61E-07	3.88E-06	1.41E-03	1.1	7.81E-07	1.88E-05	6.84E-03	6.9	3.20E-06	7.68E-05	2.80E-02	4.14E-06	9.94E-05	3.63E-02
p-Isopropyltoluene	0.22 U	8.88E-08	2.13E-06	7.78E-04	0.22 U	1.56E-07	3.75E-06	1.37E-03	0.22 U	1.02E-07	2.45E-06	8.93E-04	3.47E-07	8.33E-06	3.04E-03
p/m-Xylene	1	4.04E-07	9.69E-06	3.54E-03	2.8	1.99E-06	4.77E-05	1.74E-02	25	1.16E-05	2.78E-04	1.02E-01	1.40E-05	3.36E-04	1.22E-01
sec-Butylbenzene	2.5 U	1.01E-06	2.42E-05	8.84E-03	2.5 U	1.78E-06	4.26E-05	1.56E-02	2.5 U	1.16E-06	2.78E-05	1.02E-02	3.94E-06	9.47E-05	3.45E-02
Styrene	0.23	9.29E-08	2.23E-06	8.13E-04	0.67	4.76E-07	1.14E-05	4.17E-03	0.44	2.04E-07	4.90E-06	1.79E-03	7.73E-07	1.85E-05	6.77E-03
Tetrachloroethene	14	5.65E-06	1.36E-04	4.95E-02	3.9	2.77E-06	6.65E-05	2.43E-02	10	4.64E-06	1.11E-04	4.06E-02	1.31E-05	3.13E-04	1.14E-01
Toluene	1.8	7.27E-07	1.74E-05	6.37E-03	9.1	6.46E-06	1.55E-04	5.66E-02	40	1.85E-05	4.45E-04	1.62E-01	2.57E-05	6.18E-04	2.25E-01
trans-1,2-Dichloroethene	0.08 U		7.75E-07	2.83E-04	0.08 U	5.00E 00	1.36E-06	4.98E-04	0.08 U	517 IE 00	8.90E-07	3.25E-04	1.26E-07	3.03E-06	1.11E-03
trans-1,3-Dichloropropene	0.09 U	3.63E-08	8.72E-07	3.18E-04	0.09 U	6.39E-08	1.53E-06	5.60E-04	0.09 U		1.00E-06	3.65E-04	1.42E-07	3.41E-06	1.24E-03
Trichloroethene	83	3.35E-05	8.04E-04	2.94E-01	62	4.40E-05	1.06E-03	3.86E-01	6.5 U		7.23E-05	2.64E-02	8.06E-05	1.93E-03	7.06E-01
Trichlorofluoromethane	100	4.04E-05	9.69E-04	3.54E-01	200	1.42E-04	3.41E-03	1.24E+00	48	2.23E-05	5.34E-04	1.95E-01	2.05E-04	4.91E-03	1.79E+00
Vinyl chloride	0.05 U	2.022 00	4.84E-07	1.77E-04	0.05 U	3.55E-08	8.52E-07	3.11E-04	0.05 U	2.022 00	5.56E-07	2.03E-04	7.89E-08	1.89E-06	6.91E-04
Total VOCs	3.32E+02	Not Applicable	Not Applicable	1.18E+00	553	Not Applicable	Not Applicable	3.44E+00	3.05E+02	Not Applicable	Not Applicable	1.24E+00	Not Applicable	Not Applicable	5.85E+00
				20 000 (T 11-1111/0G)				20.000 (14:-4117/07)				20 000 (I1!! IVOC)			20 000 (I 11-111 170 C)
RIDEM Air Pollution C				20,000 (Individual VOCs)			465	20,000 (Individual VOCs)			4.00	20,000 (Individual VOCs)			20,000 (Individual VOCs)
Applicability Thresh	olds (lbs) *	10	100	50,000 (Total VOCs)	Not Applicable	10	100	50,000 (Total VOCs)	Not Applicable	10	100	50,000 (Total VOCs)	10	100	50,000 (Total VOCs)

U: indicates that chemical was not detected by the laboratory. To be conservative, the reporting limit shown in the concentration column was used in the emissions calculations.

Hourly Emissions (lbs/hour) = VOC concentration (ug/m³) x measured flow rate (cfm) x $0.02832 \text{ m}^3/\text{ft}^3$ x 60 min/hour x 0.001 mg/ug x 0.001 g/mg x 0.0022 lb/g. Daily Emissions (lbs/day) = Hourly Emissions x 24 hours/day.

Yearly Emissions (lbs/year) = Daily Emissions x 365 days/year.

^{*} RIDEM Air Pollution Control Regulation No. 9 [August 1971, Amended April 2004].

ANALYTICAL REPORT

Prepared for:

EA Engineering, Science & Technology 2350 Post Road Warwick, RI 02886

Project:

Adelaide Ave. School

ETR:

0706155

Report Date:

July 12, 2007

Certifications and Accreditations

Massachusetts M-MA030
Connecticut PH-0141
New Hampshire 2206
Rhode Island LAO00289
New Jersey MA015
Maine MA0030
New York 11627
Louisiana 03090
Florida E87814
Pennsylvania 68-02089
Army Corps of Engineers
Department of the Navy

v. helac

This report shall not be reproduced except in full, without written approval from the laboratory.

Sample ID Cross Reference

EA Engineering, Science & Technology

Project: Adelaide Ave. School

Lab Code: MA00030

ETR: **0706155**

Lab Sample ID	Client Sample ID
0706155-01	Rooftop #3
0706155-02	Rooftop #2
0706155-03	Rooftop #1

CASE NARRATIVE Alpha Woods Hole Lab

ETR: 0706155

Project: Adelaide Ave. School

All analyses were performed according to Alpha Woods Hole Labs quality assurance program and documented Standard Operating Procedures (SOPs). The analytical results contained in this report were performed within holding time, and with appropriate quality control measures, except where noted. A summary of all state and federal accreditations is provided within this report. Blank correction of results is not performed in the laboratory for any parameter.

Volatile Organics by TO-15 SIM

1. The specified quality control measures were met.

The enclosed results of analyses are representative of the samples as received by the laboratory. Alpha Woods Hole Labs makes no representations or certifications as to the method of sample collection, sample identification, or transporting/handling procedures used prior to the receipt of samples by Alpha Woods Hole Labs. To the best of my knowledge, the information contained in this report is accurate and complete.

Approved by: Lizabeth Porta Title: Organics Manager Date: 7/1807

Client: Project: WOODS HOLE LABS Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

Rooftop #3 SDG:

N/A

Lab Code: MA00030

ETR: 0706155 Lab ID: 0706155-01

Associated Blank: VA071107B28

Matrix: Soil Vapor

N/A

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/03/07	250	250	1	JEG

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	0.48	2.4
Chloromethane	0.04 U	0.08 U
Vinyl chloride	0.02 U	0.05 U
Chloroethane	0.04	0.10
Acetone	14	33
Trichlorofluoromethane	8.6	48
Acrylonitrile	0.50 U	1.1 U
1,1-Dichloroethene	0.02 U	0.08 U
Methylene chloride	1.9	6.6
trans-1,2-Dichloroethene	0.02 U	0.08 U
1,1-Dichloroethane	0.02 U	0.08 U
MTBE	1.3	4.6
2-Butanone	6.3	18
cis-1,2-Dichloroethene	0.02 U	0.08 U
Chloroform	0.30	1.4
1,2-Dichloroethane	0.02 U	0.08 U
1,1,1-Trichloroethane	0.27	1.5
Benzene	0.10	0.33
Carbon tetrachloride	0.07	0.46
1,2-Dichloropropane	0.02 U	0.09 U
Bromodichloromethane	0.02 U	0.13 U
Trichloroethene	1.2	6.5
cis-1,3-Dichloropropene	0.02 U	0.09 U
4-Methyl-2-pentanone	0.50 U	2.0 U
trans-1,3-Dichloropropene	0.02 U	0.09 U
1,1,2-Trichloroethane	0.02 U	0.11 U
Toluene	11	40
Dibromochloromethane	0.02 U	0.17 U
1,2-Dibromoethane	0.02 U	0.15 U
Tetrachloroethene	1.5	10
1,1,1,2-Tetrachloroethane	0.02 U	0.14 U
Chlorobenzene	0.02 U	0.09 U
Ethylbenzene	3.9	17
p+m-Xylene	5.8	25
Bromoform	0.02 U	0.21 U
Styrene	0.10	0.44

Client: Project: Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

Rooftop #3 N/A SDG:

N/A

Lab Code: MA00030

ETR: 0706155 Lab ID: 0706155-01

Associated Blank: VA071107B28

Soil Vapor Matrix:

Case:

,			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/03/07	250	250	1	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U
o-Xylene	1.6	6.9
Isopropylbenzene	0.50 U	2.5 U
1,3,5-Trimethylbenzene	0.45	2.2
1,2,4-Trimethylbenzene	0.57	2.8
1,3-Dichlorobenzene	0.02 U	0.12 U
1,4-Dichlorobenzene	11	66
sec-Butylbenzene	0.50 U	2.5 U
p-Isopropyltoluene	0.04 U	0.22 U
1,2-Dichlorobenzene	0.02 U	0.12 U
n-Butylbenzene	0.20 U	1.1 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

07/12/07 10:02

Client: Project: WOODS HOLE LABS Client ID: Rooftop #2 Case:

EA Engineering, Science & Technology

Adelaide Ave. School

SDG:

N/A

Lab Code: MA00030

ETR: 0706155 Lab ID: 0706155-02

Associated Blank: VA071107B28

Analyst JEG

wiania.	Son vapor		
		Sample	Τ

Bromoform

Styrene

Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Fac	ctor
06/29/07	06/29/07	07/03/07	250	250	1	
	Parameter		Raw Am	ount	Result	
			ppby	7	μg/m³	
	Dichlorodiflu	ıoromethane	0.46		2.3	
	<u>Chlorometha</u>		0.04	U	0.08 U	
	Vinyl chloric		0.02	U	0.05 U	
	Chloroethane	<u> </u>	0.07		0.18	
	Acetone		47		110	
	Trichlorofluc		36		200	
	Acrylonitrile		0.50	~	1.1 U	
	1,1-Dichloro		0.02	U	0.08 U	
	Methylene ch	······································	1.9		6.7	
	trans-1,2-Dic		0.02		0.08 U	
	1,1-Dichloro	ethane	0.02		0.08 U	
	MTBE		0.05		0.18	
	2-Butanone		11		32	
	cis-1,2-Dichl	oroethene	0.02		0.08 U	
	Chloroform		0.08		0.39	
	1,2-Dichloro		0.02	U	0.08 U	
	1,1,1-Trichlo	roethane	0.50		2.8	
	Benzene		0.14	· · · · · · · · · · · · · · · · · · ·	0.46	
	Carbon tetrac		0.08		0.49	
	1,2-Dichloro		0.02		0.09 U	
	Bromodichlo		0.02	U	0.13 U	
	Trichloroethe		12		62	
	cis-1,3-Dichle		0.02		0.09 U	-
	4-Methyl-2-p		0.50		2.0 U	
	trans-1,3-Dic		0.02		0.09 U	
	1,1,2-Trichlo	roethane	0.02	U	0.11 U	
	Toluene	.1	2.4	T.T.	9.1	
	Dibromochlo	······	0.02		0.17 U	
	1,2-Dibromoe		0.02	Ų	0.15 U	
	Tetrachloroet		0.58	T *	3.9	
	1,1,1,2-Tetrac		0.02		0.14 U	
	Chlorobenzer		0.02	U	0.09 U	
	Ethylbenzene		0.19		0.84	
	p+m-Xylene		0.64		2.8	

0.02 U

0.16

0.21 U

0.67

Client: Project: Client ID: WOODS HOLE LABS

EA Engineering, Science & Technology

Adelaide Ave. School

Lab Code: MA00030

ETR: 0706155

Lab ID: 0706155-02

Case: Matrix: Rooftop #2 N/A

SDG: Soil Vapor

N/A

Associated Blank: VA071107B28

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/03/07	250	250	1	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U
o-Xylene	0.24	1.1
Isopropylbenzene	0.50 U	2.5 U
1,3,5-Trimethylbenzene	0.36	1.8
1,2,4-Trimethylbenzene	0.65	3.2
1,3-Dichlorobenzene	0.02 U	0.12 U
1,4-Dichlorobenzene	17	100
sec-Butylbenzene	0.50 U	2.5 U
p-Isopropyltoluene	0.04 U	0.22 U
1,2-Dichlorobenzene	0.02 U	0.12 U
n-Butylbenzene	0.20 U	1.1 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

07/12/07 10:01

Duplicate Volatile Organics by TO-15

Client: Project: Client ID: Rooftop #2 WOODS HOLE LABS Case:

Matrix:

EA Engineering, Science & Technology

Adelaide Ave. School

Soil Vapor

SDG: N/A

N/A

Lab Code: MA00030

ETR: 0706155

Lab ID: 0706155-02 D

Associated Blank: VA071107B28

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/03/07	250	250	1	JEG

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	0.45	2.2
Chloromethane	0.04 U	0.08 U
Vinyl chloride	0.02 U	0.05 U
Chloroethane	0.07	0.18
Acetone	47	110
Trichlorofluoromethane	37	210
Acrylonitrile	0.50 U	1.1 U
1,1-Dichloroethene	0.02 U	0.08 U
Methylene chloride	1.9	6.6
trans-1,2-Dichloroethene	0.02 U	0.08 U
1,1-Dichloroethane	0.02 U	0.08 U
MTBE	0.05	0.19
2-Butanone	11	32
cis-1,2-Dichloroethene	0.02 U	0.08 U
Chloroform	0.09	0.41
1,2-Dichloroethane	0.02 U	0.08 U
1,1,1-Trichloroethane	0.47	2.6
Benzene	0.14	0.45
Carbon tetrachloride	0.07	0.47
1,2-Dichloropropane	0.02 U	0.09 U
Bromodichloromethane	0.02 U	0.13 U
Trichloroethene	12	62
cis-1,3-Dichloropropene	0.02 U	0.09 U
4-Methyl-2-pentanone	0.50 U	2.0 U
trans-1,3-Dichloropropene	0.02 U	0.09 U
1,1,2-Trichloroethane	0.02 U	0.11 U
Toluene	2.6	9.8
Dibromochloromethane	0.02 U	0.17 U
1,2-Dibromoethane	0.02 U	0.15 U
Tetrachloroethene	0.64	4.3
1,1,1,2-Tetrachloroethane	0.02 U	0.14 U
Chlorobenzene	0.02 U	0.09 U
Ethylbenzene	0.21	0.89
p+m-Xylene	0.69	3.0
Bromoform	0.02 U	0.21 U
Styrene	0.17	0.74

Duplicate Volatile Organics by TO-15

Client: Project: WOODS HOLE LABS Client ID:

EA Engineering, Science & Technology

Adelaide Ave. School

ETR: 0706155

Rooftop #2 SDG: N/A

Lab ID: 0706155-02 D

Lab Code: MA00030

Case:

N/A

Associated Blank: VA071107B28

Matrix: Soil Vapor

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/03/07	250	250	1	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U
o-Xylene	0.26	1.1
Isopropylbenzene	0.50 U	2.5 U
1,3,5-Trimethylbenzene	0.38	1.8
1,2,4-Trimethylbenzene	0.67	3.3
1,3-Dichlorobenzene	0.02 U	0.12 U
1,4-Dichlorobenzene	17	100
sec-Butylbenzene	0.50 U	2.5 U
p-Isopropyltoluene	0.04 U	0.22 U
1,2-Dichlorobenzene	0.02 U	0.12 U
n-Butylbenzene	0.20 U	1.1 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Client:
Project:
Client ID:
Case:

Matrix:

EA Engineering, Science & Technology

Adelaide Ave. School

Rooftop #1

Soil Vapor

N/A SDG:

Lab Code: MA00030

ETR: **0706155** Lab ID: **0706155-03**

Associated Blank: VA071107B28

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	250	250	1	JEG

N/A

Parameter	Raw Amount	Result
	ppbv	$\mu g/m^3$
Dichlorodifluoromethane	0.44	2.2
Chloromethane	0.04 U	0.08 U
Vinyl chloride	0.02 U	0.05 U
Chloroethane	0.02 U	0.05 U
Acetone	11	25
Trichlorofluoromethane	19	100
Acrylonitrile	0.50 U	1.1 U
1,1-Dichloroethene	0.02 U	0.08 U
Methylene chloride	2.2	7.5
trans-1,2-Dichloroethene	0.02 U	0.08 U
1,1-Dichloroethane	0.03	0.12
MTBE	0.02 U	0.07 U
2-Butanone	0.94	2.8
cis-1,2-Dichloroethene	0.02	0.08
Chloroform	0.07	0.36
1,2-Dichloroethane	0.02 U	0.08 U
1,1,1-Trichloroethane	0.52	2.8
Benzene	0.07	0.23
Carbon tetrachloride	0.08	0.50
1,2-Dichloropropane	0.02 U	0.09 U
Bromodichloromethane	0.02 U	0.13 U
Trichloroethene	15	83
cis-1,3-Dichloropropene	0.02 U	0.09 U
4-Methyl-2-pentanone	0.50 U	2.0 U
trans-1,3-Dichloropropene	0.02 U	0.09 U
1,1,2-Trichloroethane	0.02 U	0.11 U
Toluene	0.48	1.8
Dibromochloromethane	0.02 U	0.17 U
1,2-Dibromoethane	0.02 U	0.15 U
Tetrachloroethene	2.1	14
1,1,1,2-Tetrachloroethane	0.02 U	0.14 U
Chlorobenzene	0.02 U	0.09 U
Ethylbenzene	0.07	0.30
p+m-Xylene	0.24	1.0
Bromoform	0.02 U	0.21 U
Styrene	0.06	0.23

Client:
Project:
Client ID:
Case:

Matrix:

EA Engineering, Science & Technology

Adelaide Ave. School

SDG:

Rooftop #1

N/A Soil Vapor N/A

Lab Code: MA00030

ETR: 0706155

Lab ID: 0706155-03

Associated Blank: VA071107B28

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/29/07	06/29/07	07/02/07	250	250	1	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U
o-Xylene	0.09	0.40
Isopropylbenzene	0.50 U	2.5 U
1,3,5-Trimethylbenzene	0.18	0.90
1,2,4-Trimethylbenzene	0.34	1.7
1,3-Dichlorobenzene	0.02 U	0.12 U
1,4-Dichlorobenzene	13	76
sec-Butylbenzene	0.50 U	2.5 U
p-Isopropyltoluene	0.04 U	0.22 U
1,2-Dichlorobenzene	0.02 U	0.12 U
n-Butylbenzene	0.20 U	1.1 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

07/12/07 10:01

Client: Project: WOODS HOLE LABS Client ID: Blank N/A

EA Engineering, Science & Technology

Adelaide Ave. School

SDG:

N/A

Lab Code: MA00030

ETR: **0706155**

Lab ID: VA071107B28 Associated Blank: N/A

Soil Vapor Matrix:

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
N/A	N/A	07/02/07	250	250	1	JEG

Parameter	Raw Amo	t	Result
r ai ainetei	ppbv	unt	μg/m³
5.11			
Dichlorodifluoromethane	0.02	U	0.10 U
Chloromethane	0.04	U	0.08 U
Vinyl chloride	0.02	U	0.05 U
Chloroethane	0.02	U	0.05 U
Acetone	1.0	U	2.4 U
Trichlorofluoromethane	0.02	U	0.11 U
Acrylonitrile	0.50	U	1.1 U
1,1-Dichloroethene	0.02	U	0.08 U
Methylene chloride	0.50	U	1.7 U
trans-1,2-Dichloroethene	0.02	U	0.08 U
1,1-Dichloroethane	0.02	U	0.08 U
MTBE	0.02	U	0.07 U
2-Butanone	0.20	U	0.59 U
cis-1,2-Dichloroethene	0.02	U	0.08 U
Chloroform	0.02	U	0.10 U
1,2-Dichloroethane	0.02	U	0.08 U
1,1,1-Trichloroethane	0.02	U	0.11 U
Benzene	0.04	U	0.13 U
Carbon tetrachloride	0.02	U	0.13 U
1,2-Dichloropropane	0.02	U	0.09 U
Bromodichloromethane	0.02	U	0.13 U
Trichloroethene	0.02	U	0.11 U
cis-1,3-Dichloropropene	0.02	U	0.09 U
4-Methyl-2-pentanone	0.50	U	2.0 U
trans-1,3-Dichloropropene	0.02	U	0.09 U
1,1,2-Trichloroethane	0.02	U	0.11 U
Toluene	0.05	U	0.19 U
Dibromochloromethane	0.02	U	0.17 U
1,2-Dibromoethane	0.02	U	0.15 U
Tetrachloroethene	0.02	U	0.14 U
1,1,1,2-Tetrachloroethane	0.02	U	0.14 U
Chlorobenzene	0.02	U	0.09 U
Ethylbenzene	0.02	U	0.09 U
p+m-Xylene	0.04	U	0.17 U
Bromoform	0.02	U	0.21 U
Styrene	0.02	U	0.09 U

Client: Project: Client ID:

Date Collected N/A

EA Engineering, Science & Technology

N/A

Adelaide Ave. School

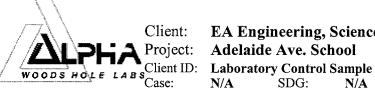
Blank

ETR: 0706155

Lab ID: VA071107B28 Associated Blank: N/A

Lab Code: MA00030

N/A SDG:


Matrix: Soil Vapor

Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
N/A	07/02/07	250	250	1	JEG

Parameter	Raw Amount ppbv	Result μg/m³
1,1,2,2-Tetrachloroethane	0.02 U	0.14 U
o-Xylene	0.02 U	0.09 U
Isopropylbenzene	0.50 U	2.5 U
1,3,5-Trimethylbenzene	0.02 U	0.10 U
1,2,4-Trimethylbenzene	0.02 U	0.10 U
1,3-Dichlorobenzene	0.02 U	0.12 U
1,4-Dichlorobenzene	0.02 U	0.12 U
sec-Butylbenzene	0.50 U	2.5 U
p-Isopropyltoluene	0.04 U	0.22 U
1,2-Dichlorobenzene	0.02 U	0.12 U
n-Butylbenzene	0.20 U	1.1 U

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

EA Engineering, Science & Technology

Adelaide Ave. School

Matrix: Soil Vapor Lab Code: MA00030

ETR: 0706155 Lab ID: See Below

Associated Blank: VA071107B28

Concentration Units: µg/m³

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
N/A	N/A	07/02/07	250	250	1	JEG

	VA071107B28	VA0711	VA071107LCS14		
	Blank	L	LCS		
Parameter	Conc.	Conc.	% Recovery	% Recovery Limits	
Dichlorodifluoromethane	0.10 U	29	117	70-130	
Chloromethane	0.08 U	12	116	70-130	
Vinyl chloride	0.05 U	14	114	70-130	
Chloroethane	0.05 U	14	103	70-130	
Acetone	2.4 U	10	84	70-130	
Trichlorofluoromethane	0.11 U	30	105	70-130	
Acrylonitrile	1.1 U	12	109	70-130	
1,1-Dichloroethene	0.08 U	20	103	70-130	
Methylene chloride	1.7 U	17	96	70-130	
trans-1,2-Dichloroethene	0.08 U	19	97	70-130	
1,1-Dichloroethane	0.08 U	20	99	70-130	
MTBE	0.07 U	15	83	70-130	
2-Butanone	0.59 U	13	91	70-130	
cis-1,2-Dichloroethene	0.08 U	20	103	70-130	
Chloroform	0.10 U	26	106	70-130	
1,2-Dichloroethane	0.08 U	20	100	70-130	
1,1,1-Trichloroethane	0.11 U	33	121	70-130	
Benzene	0.13 U	15	95	70-130	
Carbon tetrachloride	0.13 U	37	117	70-130	
1,2-Dichloropropane	0.09 U	24	105	70-130	
Bromodichloromethane	0.13 U	40	120	70-130	
Trichloroethene	0.11 U	30	110	70-130	
cis-1,3-Dichloropropene	0.09 U	27	117	70-130	
4-Methyl-2-pentanone	2.0 U	26	126	70-130	
trans-1,3-Dichloropropene	0.09 U	23	99	70-130	
1,1,2-Trichloroethane	0.11 U	29	107	70-130	
Toluene	0.19 U	16	86	70-130	
Dibromochloromethane	0.17 U	48	114	70-130	
1,2-Dibromoethane	0.15 U	37	97	70-130	
Tetrachloroethene	0.14 U	34	99	70-130	
1,1,1,2-Tetrachloroethane	0.14 U	38	111	70-130	
Chlorobenzene	0.09 U	22	95	70-130	
Ethylbenzene	0.09 U	20	92	70-130	

EA Engineering, Science & Technology

Project: Adelaide Ave. School
Client ID: Laboratory Control Sample
Case: N/A SDG: N/A

Soil Vapor

Lab Code: MA00030

ETR: 0706155 Lab ID: See Below

Associated Blank: VA071107B28

Concentration Units: µg/m³

			Sample	Final		
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
N/A	N/A	07/02/07	250	250	1	JEG

	VA071107B28	VA07	1107LCS14	
	Blank		LCS	% Recovery
Parameter	Conc.	Conc.	% Recovery	Limits
p+m-Xylene	0.17 U	43	99	70-130
Bromoform	0.21 U	62	120	70-130
Styrene	0.09 U	19	87	70-130
1,1,2,2-Tetrachloroethane	0.14 U	30	88	70-130
o-Xylene	0.09 U	20	90	70-130
Isopropylbenzene	2.5 U	23	93	70-130
1,3,5-Trimethylbenzene	0.10 U	23	92	70-130
1,2,4-Trimethylbenzene	0.10 U	23	94	70-130
1,3-Dichlorobenzene	0.12 U	27	91	70-130
1,4-Dichlorobenzene	0.12 U	27	91	70-130
sec-Butylbenzene	2.5 U	24	100	70-130
p-Isopropyltoluene	0.22 U	24	89	70-130
1,2-Dichlorobenzene	0.12 U	27	91	70-130
n-Butylbenzene	1.1 U	24	89	70-130

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Concentrations reported as calculated values, which includes rounding for significant figures. Percent recoveries and RPD values are calculated from the unrounded result.

Duplicate Volatile Organics by TO-15

Client: Project: Client ID: WOODS HOLE Case:

Matrix:

EA Engineering, Science & Technology

Adelaide Ave. School

Rooftop #2

Soil Vapor

N/A SDG: N/A

Lab Code: MA00030

ETR: 0706155

Lab ID: **0706155-02**

Associated Blank: VA071107B28

Concentration Units: $\mu g/m^3$

Date Collected	Date Rec	eived	Analyst					
06/29/07	06/29/	07	JEG					
Parameter	Sample Result	Duplicate Result	RPD	RPD Limi				
Dichlorodifluoromethane	2.3	2.2	3	25				
Chloromethane	0.08 U	0.08 U	N/A	25				
Vinyl chloride	0.05 U	0.05 U	N/A	25				
Chloroethane	0.18	0.18	1	25				
Acetone	110	110	0	25				
Trichlorofluoromethane	200	210	2	25				
Acrylonitrile	1.1 U	1.1 U	N/A	25				
1,1-Dichloroethene	0.08 U	0.08 U	N/A	25				
Methylene chloride	6.7	6.6	1	25				
trans-1,2-Dichloroethene	0.08 U	0.08 U	N/A	25				
1,1-Dichloroethane	0.08 U	0.08 U	N/A	25				
MTBE	0.18	0.19	10	25				
2-Butanone	32	32	1	25				
cis-1,2-Dichloroethene	0.08 U	0.08 U	N/A	25				
Chloroform	0.39	0.41	6	25				
1,2-Dichloroethane	0.08 U	0.08 U	N/A	25				
1,1,1-Trichloroethane	2.8	2.6	6	25				
Benzene	0.46	0.45	2	25				
Carbon tetrachloride	0.49	0.47	5	25				
1,2-Dichloropropane	0.09 U	0.09 U	N/A	25				
Bromodichloromethane	0.13 U	0.13 U	N/A	25				
Trichloroethene	62	62	0	25				
cis-1,3-Dichloropropene	0.09 U	0.09 U	N/A	25				
4-Methyl-2-pentanone	2.0 U	2.0 U	N/A	25				
trans-1,3-Dichloropropene	0.09 U	0.09 U	N/A	25				
1,1,2-Trichloroethane	0.11 U	0.11 U	N/A	25				
Toluene	9.1	9.8	7	25				
Dibromochloromethane	0.17 U	0.17 U	N/A	25				
1,2-Dibromoethane	0.15 U	0.15 U	N/A	25				
Tetrachloroethene	3.9	4.3	10	25				
1,1,1,2-Tetrachloroethane	0.14 U	0.14 U	N/A	25				
Chlorobenzene	0.09 U	0.09 U	N/A	25				
Ethylbenzene	0.84	0.89	7	25				
p+m-Xylene	2.8	3.0	8	25				
Bromoform	0.21 U	0.21 U	N/A	25				

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

07/12/07 10:08

Duplicate Volatile Organics by TO-15

Matrix:

EA Engineering, Science & Technology

Adelaide Ave. School

Rooftop #2

Soil Vapor

N/A SDG:

N/A

Lab Code: MA00030

ETR: **0706155**

Lab ID: 0706155-02

Associated Blank: VA071107B28

Concentration Units: µg/m³

Date Collected	Date Received	Analyst
06/29/07	06/29/07	JEG

Parameter	Sample Result	Duplicate Result	RPD	RPD Limit
Styrene	0.67	0.74	10	25
1,1,2,2-Tetrachloroethane	0.14 U	0.14 U	N/A	25
o-Xylene	1.1	1.1	6	25
Isopropylbenzene	2.5 U	2.5 U	N/A	25
1,3,5-Trimethylbenzene	1.8	1.8	5	25
1,2,4-Trimethylbenzene	3.2	3.3	2	25
1,3-Dichlorobenzene	0.12 U	0.12 U	N/A	25
1,4-Dichlorobenzene	100	100	2	25
sec-Butylbenzene	2.5 U	2.5 U	N/A	25
p-Isopropyltoluene	0.22 U	0.22 U	N/A	25
1,2-Dichlorobenzene	0.12 U	0.12 U	N/A	25
n-Butylbenzene	1.1 U	1.1 U	N/A	25

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Concentrations reported as calculated values, which includes rounding for significant figures. RPD values are reported based on the unrounded calculated result.

ALPHA Job #: 0706/55	Billing Information	X Same as Client info PO#:	iverables	eportLimits	Criteria	MAMCPPRESUMPTIVE CERTAINTY CTREASONABLE CONFIDENCE PROTOCOLS	Are MCP Analytical Methods Required?	Are CT RCP (Reasonable Confidence Protocols) Required?	SAMPLEHANDLING	,	□ Done □ Done □ Done	☐ Lab to do Preservation	☐ Lab to do	J. Campon Specific Commonst	7	PID= 4.36 pm 1	MD=0.06pm 1	PID = 0.034 pm 1				Please print clearly, legibly and	Completely. Samples can not be longed in and times along the confined times.	Date/Time will not start until any ambiguities are	(VO) /0/2
/_ oF_/_ Date Rec'd in Lab:	Report Information - Data Deliverables	Are School DFAX DEMAIL	Dr	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	State /Fed Program			% []	Je.	27	S	7		Sample Sampler's Matrix Initials	1,	× 70		→ →				Container Type &	Preservative 7	Date/Time Received By:	
CHAIN OF CUSTODY PAGE	Project Information	Project Name: Alelade	3	5	nager:		Turn-Around Time	Standard 🗖 RUSH (only confi	Date Due:	/Comments/Detection Limits:			1	Collection	1/2/1	12 628016850 SI	12 1317	1 1220	,					Relinguished By:	
CHAIL	WESTBORO, MA RAYNHAM,MA TEI - 508-8080-0200	FAX: 508-898-9193 FAX: 508-822-3288	Client Information	Client: EA Englineering Sc	Address: 230 26/ []	Lastiell PT	e: 40/-1/3/	rax: 44-726-3423	Email: Political Society Est. Con These samples have been previously analyzed by Alaba	ᆚᆓ	•			(Lab Use Only)	井でルンクート	Cook 10D	-6 Kgot Togo"	-3 KoofTop#				© PLEASE ANSWER QUESTIONS ABOVE!		MA MCP or CT RCP?	FORM NO: 01-01 (rev. 10-OCT-05)

Certificate/Approval Program Summary

Method numbers assume the most recent EPA revisions. For a complete listing of analytes for the referenced methods please contact your Alpha Woods Hole Lab Project Manager or the Quality Assurance Manager.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141 - Wastewater (General Chemistry: EPA 120.1, 150.1, 160.1, 160.2, 180.1, 300.0, 310.1, 335.2, 365.2; Metals: 200.8, 245.1; Organics: 608, 624, 625, ETPH) Solid Waste/Soil (General Chemistry: 1010, 9010/9014, 9045, 9060; Metals: 6020, 7470, 7471; Organics: 8081, 8082, 8260, 8270, ETPH).

Florida Department of Health Certificate/Lab ID: E87814 - Primary NELAP Accreditation Authority for Air & Emissions. Secondary NELAP Accreditation for Wastwater and Solid & Hazardous Waste. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 335.2, 365.2, SM2320B, SM2340B, SM2540G, SM4500NH3; Metals: 245.1; Organics: 608, 624, 625). Solid and Hazardous Waste (General Chemistry: 9010/9014, 9045, 9050, 9056, 9065, Reactivity 7.3; Metals: 6020, 7470, 7471; Organics: 8081, 8082, 8260, 8270). Air & Emissions (Organics: EPA TO-15).

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090 - Primary NELAP Accrediting Authority for Wastewater, Solid & Hazardous Waste. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 310.1/SM2320B, 335.2, 365.2, 376.2, 9010/9014, 9056, SM2540G; Metals: 200.8, 245.1, 6020; Organics: 608, 624, 625, 8015-DRO/GRO, 8081, 8082, 8260, 8270). Solid and Hazardous Waste (General Chemistry: 1010, 1311, 9010/9014, 9040, 9045, 9056, 9060, Reactivity 7.3; Metals: 6020, 7196, 7470, 7471; Organics: 8015-DRO/GRO, 8081, 8082, 8260, 8270).

Maine Department of Human Services <u>Certificate/Lab ID</u>: MA0030 - Wastewater (<u>General Chemistry</u>: EPA 120.1/SM2510B, 160.1/SM2540C, 160.2/SM2540D, 300.0, 310.1/SM2320B, 335.2, 365.2; <u>Metals</u>: EPA 245.1; <u>Organics</u>: 608, 624).

Massachusetts Department of Environmental Protection <u>Certificate/Lab ID</u>: M-MA030 - *Wastewater* (<u>General Chemistry</u>: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 300.0, 310.1/SM2320B, 335.2, 365.2; <u>Metals</u>: EPA 245.1; <u>Organics</u>: EPA 608, 624).

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206 - Secondary NELAP Accreditation. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 310.1/SM2320B, 335.2, 365.2, 376.2, SM2540G; Metals: 200.8, 245.4; Organics: 608, 624, 625).

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015 - Secondary NELAP Accreditation. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 310.1/SM2320B, 335.2, 376.2, 9010/9014, 9056, SM2540G; Metals: 200.8, 245.1 6020; Organics: 608, 624, 625, 8081, 8082, 8260, 8270). Solid & Hazardous Waste (General Chemistry: EPA 1010, 1311, 9010/9014, 9040, 9045, 9056, 9060; Metals: 6020, 7196, 7470, 7471; Organics: 8015-DRO/GRO, 8081, 8082, 8260, 8270). Air & Emissions (Organics: EPA TO-15).

New York Department of Health Certificate/Lab ID: 11627 - Secondary NELAP Accreditation. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 300.0, 310.1/SM2320B, 365.2, 376.2; Metals: 245.1; Organics: 608, 624, 625). Solid and Hazardous Waste (General Chemistry: EPA 1010, 1311; : 245.1; 6020, 7041; Organics: 8081, 8082, 8260, 8270). Air & Emissions (Organics: EPA TO-15).

Rhode Island Department of Health Certificate/Lab ID: LAO00289 - Chemistry: Organic and Inorganic in Non-Poratable Water, Wastewater/Sewage and Soil (Refer to LADEQ and MADEP certificates for method numbers.)

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-02089 - Registered laboratory

U.S. Army Corps of Engineers

Department of the Navy

320 Forb	es Blvd, Mansfield, N	1A 02048, (508)	822-9300, Fax (508) 822-3288	