11 Northeastern Boulevard Salem, NH 03079-1953 603.870.4500 Fax: 603.870.4501

April 7, 2009 Project 101960

Mr. Joseph T. Martella, II Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street Providence, RI 02908-5767

Re: Status Report: February 2009 Activities Former Gorham Manufacturing Facility 333 Adelaide Avenue, Providence, RI Site Remediation Case No. 97-030

Dear Mr. Martella:

Shaw Environmental, Inc. (Shaw) has prepared this status report on behalf of Textron, Inc. (Textron). This status report is associated with the remediation of tetrachloroethene (PCE) contaminated groundwater at the former Gorham Manufacturing Facility at 333 Adelaide Avenue, Providence, Rhode Island (Figure 1).

PCE is the primary contaminant of concern for groundwater in this area. As discussed in the Remedial Action Work Plan (RAWP) and subsequent revisions, the PCE source area in the vicinity of the former building W is the area of concern with a site-specific remedial goal of 7,700 micrograms per liter (ug/L). This area was treated using in-situ applications of sodium permanganate. Figure 2 shows the most recent treatment area.

This status report describes groundwater monitoring activities conducted in accordance with the proposed groundwater monitoring program submitted to the Rhode Island Department of Environmental Management (RIDEM) in February 2007 (Shaw – Groundwater Monitoring Program letter, dated February 1, 2007).

Mr. Joseph T. Martella, II April 7, 2009 Page 2 of 4

FIELD ACTIVITIES

The following field activities were conducted on February 25, 2009:

Monitoring Activities

Field parameters were measured in treatment area wells and compliance wells on February 25, 2009. Field measurements included oxidation/reduction potential (ORP), dissolved oxygen (DO), pH, temperature, and specific conductance (SC). Groundwater elevation and light non-aqueous phase liquid (LNAPL) thickness measurements were also collected. There was a slight non-aqueous phase liquid (LNAPL) sheen in the development water collected from well MW-216S and MW-217S. The thickness of LNAPL in these wells was not appreciable. Field parameter results are presented in Tables 1 and 2.

Groundwater Sampling

Groundwater samples were collected for analysis for volatile organic compounds (VOCs) (EPA Method 8260B) on February 25, 2009 from 22 monitoring wells within and around the treatment area, including compliance wells. One duplicate sample was collected from MW-101S (MW-101 Dupe) for VOC analysis. One sample was collected for total petroleum hydrocarbon (TPH) analysis (modified EPA Method 8015 B) from monitoring well CW-6 and also a duplicate sample (CW-6 DUP). Samples were collected for lead analysis (EPA Method 6010B) from monitoring wells MW-109D and GZA-3 and also one duplicate sample (GZA-3 DUP). Groundwater samples were delivered to AMRO Environmental Laboratories Corporation in Merrimack, New Hampshire for analysis

SUMMARY OF ANALYTICAL DATA

A summary of the analytical data associated with the groundwater sampling conducted on February 25, 2009 is contained in Table 3. A copy of the laboratory analytical report is attached as Appendix A of this report. The PCE concentration found in well MW-202S was above the treatment goal of 7,700 ug/L.

A summary of the compliance well results is contained in Table 4. The results for the compliance wells indicate that exceedances occurred for wells MW-209D (PCE), MW-218D (PCE, TCE, and 1,1-dichloroethene), and MW-218S (vinyl chloride). Note that for wells MW-209D and MW-218D, these samples were diluted by the laboratory prior to analysis resulting in laboratory reporting limits being higher than the compliance standard for vinyl chloride and 1,1-dichloroethene. In compliance well MW-112 bromodichloromethane was detected at a concentration of 2.1 ug/L, however this compound is not believed to be site related.

Mr. Joseph T. Martella, II April 7, 2009 Page 3 of 4

FUTURE ACTIVITIES

The next sampling event is scheduled for August 2009.

If you have any questions regarding this report, please contact Ed Van Doren at (603) 870-4530.

Sincerely,

SHAW ENVIRONMENTAL, INC.

Edward P. Van Doron

Edward P. Van Doren Project Manager

Attachments: Figures Figure 1 – Site Plan Figure 2 – Injection Well Locations

Tables

Table 1 – Summary Field Parameters Table 2 – Groundwater Elevations Table 3 – VOCs in Groundwater

Table 4 – Compliance Wells Analytical Results

Appendices:

Appendix A – Laboratory Analytical Report

cc: Craig Roy, RIDEM OWR Greg Simpson, Textron Jamieson Schiff, Textron Dave Heislein, MACTEC Thomas Dellar, City of Providence Jeff Morgan, Stop & Shop Ronald Ruth, Sherin and Lodgen

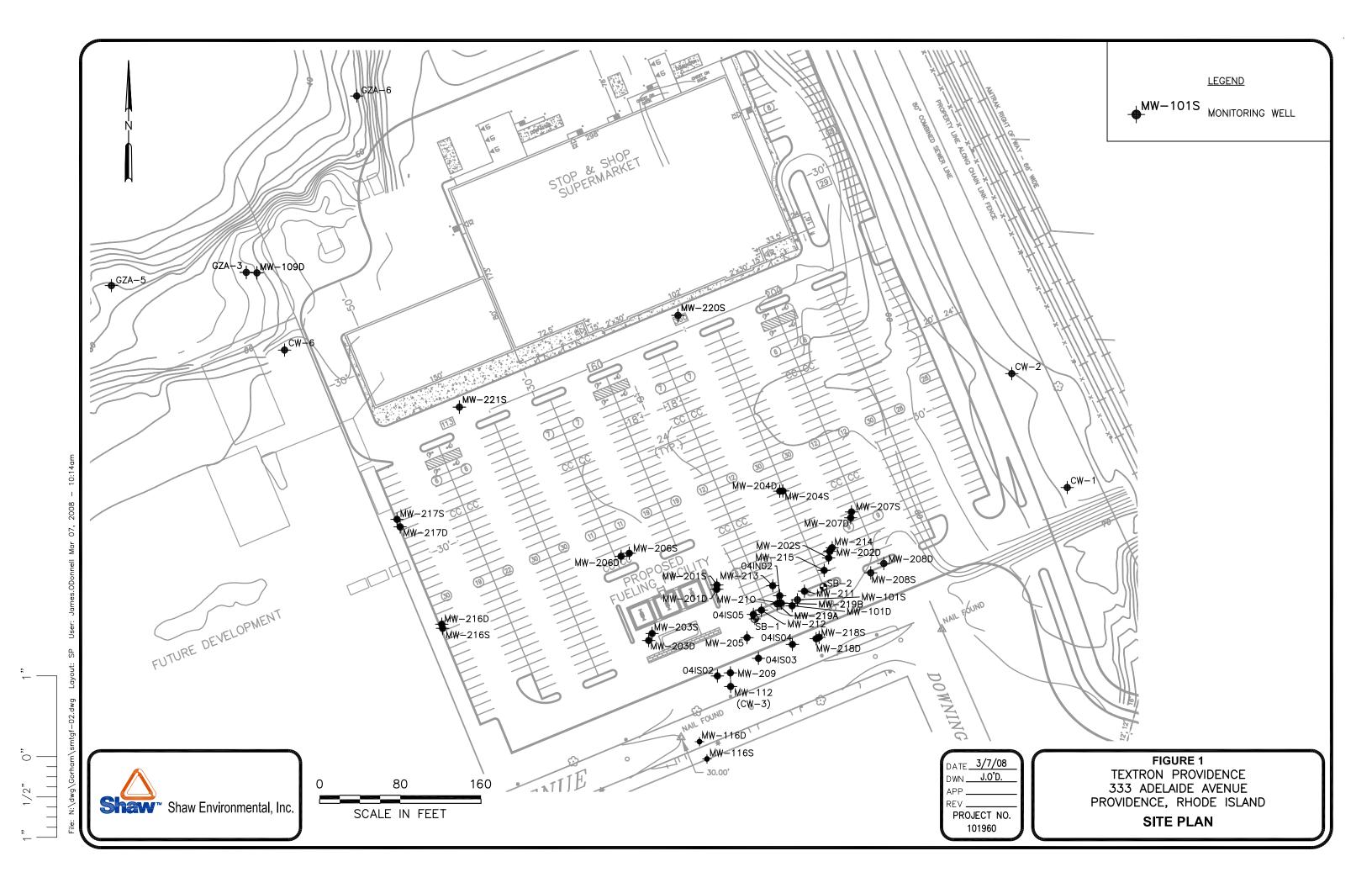
Mr. Joseph T. Martella, II April 7, 2009 Page 4 of 4

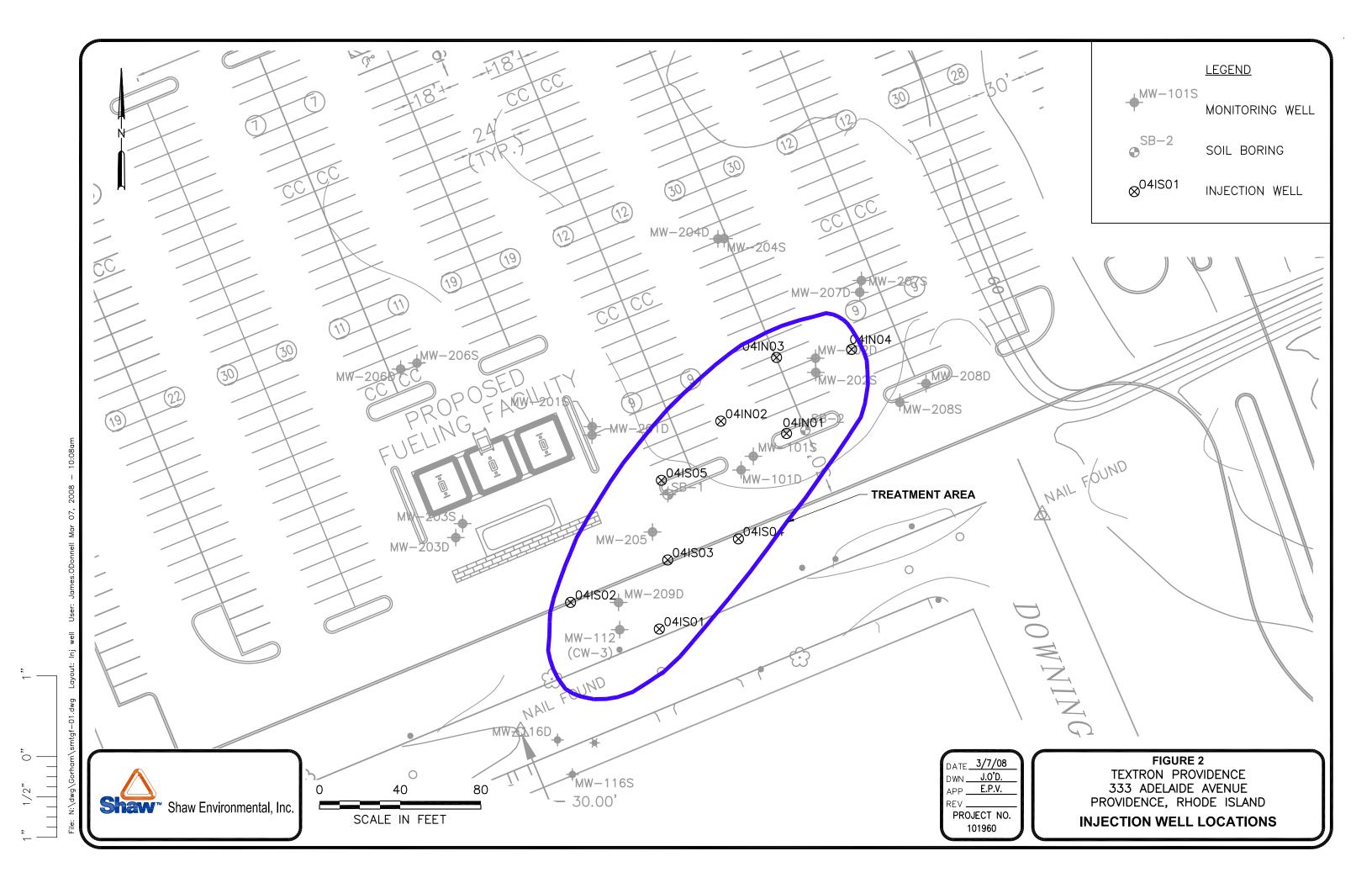
CERTIFICATIONS and back values of particular states of guest process research and process research and

The following certifications are provided pursuant to Rule 9.19 of the Remediation **Regulations:**

I, Edward P. Van Doren, as an authorized representative of Shaw Environmental, Inc. and the person responsible for the preparation of this Status Report dated April 7, 2009, certify that the information contained in this report is complete and accurate to the best of my knowledge.

Edward P. Van Doren Project Manager


We, Textron, Inc., as the party responsible for submittal of this Status Report, certify that this report is a complete and accurate representation of the contaminated site and the release, and contains all known facts surrounding the release, to the best of our knowledge.


Certification on behalf of Textron Inc.

Grega vL.S Sson Project Manager

Date:

C:\Documents and Settings\gsimps01\Local Settings\Temporary Internet Files\OLK51\Feb 2009.doc

Table 1 Summary Field Parameters February 2009

Former Gorham Manufacturing Facility Providence, Rhode Island

				Dissolved	Oxidation Reduction
	рН	Temperature	Conductivity	Oxygen	Potential
DATE	-	(C°)	(mS/cm)	(mg/L)	(mv)
2/25/2009	6.42	14.88	2.553	3.49	-81
2/25/2009	6.02	14.92	3.855	5.53	-68
2/25/2009	5.74	14.12	0.232	0.51	97
2/25/2009	5.76	13.86	0.399	2.75	159
2/25/2009	6.17	12.73	0.107	8.90	105
2/25/2009	6.64	14.54	1.449	1.59	-52
2/25/2009	6.03	15.26	0.787	1.21	145
2/25/2009	5.91	15.44	0.628	1.02	119
2/25/2009	6.03	15.07	1.148	2.03	106
2/25/2009	6.15	15.48	0.952	2.56	102
2/25/2009	6.56	13.83	0.348	0.64	123
2/25/2009	6.26	14.50	0.275	0.32	-26
2/25/2009	6.53	14.77	0.610	1.01	-108
2/25/2009	6.60	14.53	0.299	0.34	-99
2/25/2009	6.54	14.82	0.677	1.19	100
2/25/2009	6.26	14.57	0.408	0.47	33
2/25/2009	6.19	15.38	0.575	2.22	-56
JS					
ns per centimeter					
er liter					
	2/25/2009 2/25/2009 2/25/2009 2/25/2009 2/25/2009 2/25/2009 2/25/2009 2/25/2009 2/25/2009 2/25/2009 2/25/2009 2/25/2009 2/25/2009 2/25/2009 2/25/2009 2/25/2009 2/25/2009	DATE 2/25/2009 6.42 2/25/2009 6.02 2/25/2009 5.74 2/25/2009 5.76 2/25/2009 5.76 2/25/2009 6.17 2/25/2009 6.64 2/25/2009 6.03 2/25/2009 6.03 2/25/2009 6.03 2/25/2009 6.15 2/25/2009 6.56 2/25/2009 6.53 2/25/2009 6.53 2/25/2009 6.54 2/25/2009 6.54 2/25/2009 6.26 2/25/2009 6.54 2/25/2009 6.54 2/25/2009 6.19	DATE (C°) 2/25/2009 6.42 14.88 2/25/2009 6.02 14.92 2/25/2009 5.74 14.12 2/25/2009 5.76 13.86 2/25/2009 6.17 12.73 2/25/2009 6.64 14.54 2/25/2009 6.03 15.26 2/25/2009 6.03 15.26 2/25/2009 6.03 15.26 2/25/2009 6.03 15.07 2/25/2009 6.15 15.48 2/25/2009 6.56 13.83 2/25/2009 6.53 14.77 2/25/2009 6.53 14.77 2/25/2009 6.54 14.82 2/25/2009 6.54 14.82 2/25/2009 6.26 14.57 2/25/2009 6.26 14.57 2/25/2009 6.19 15.38	DATE (C°) (mS/cm) 2/25/2009 6.42 14.88 2.553 2/25/2009 6.02 14.92 3.855 2/25/2009 5.74 14.12 0.232 2/25/2009 5.76 13.86 0.399 2/25/2009 6.17 12.73 0.107 2/25/2009 6.64 14.54 1.449 2/25/2009 6.64 14.54 1.449 2/25/2009 6.03 15.26 0.787 2/25/2009 6.03 15.07 1.148 2/25/2009 6.15 15.48 0.952 2/25/2009 6.56 13.83 0.348 2/25/2009 6.56 13.83 0.348 2/25/2009 6.53 14.77 0.610 2/25/2009 6.54 14.82 0.677 2/25/2009 6.54 14.82 0.677 2/25/2009 6.54 14.53 0.299 2/25/2009 6.26 14.57 0.408 <	DATEPHTemperature (C°)Conductivity (mS/cm)Oxygen (mg/L)2/25/20096.4214.882.5533.492/25/20096.0214.923.8555.532/25/20095.7414.120.2320.512/25/20095.7613.860.3992.752/25/20096.1712.730.1078.902/25/20096.6414.541.4491.592/25/20096.6414.541.4491.592/25/20096.0315.260.7871.212/25/20095.9115.440.6281.022/25/20096.1515.480.9522.562/25/20096.5613.830.3480.642/25/20096.5614.500.2750.322/25/20096.6014.530.2990.342/25/20096.5414.820.6771.192/25/20096.5414.820.6771.192/25/20096.5414.570.4080.472/25/20096.1915.380.5752.22

N/A = Not available due to LNAPL in well.

Table 2 Groundwater Elevations February 2009

Former Gorham Manufacturing Facility Providence, Rhode Island

Well ID	Date	Reference Elevation (Feet)	Depth to Water (Feet)	LNAPL Thickness (Feet)	Groundwater Elevation (Feet)
MW-101D	2/25/2009	98.91	24.37		74.54
MW-101S	2/25/2009	98.90	24.39		74.51
MW-109D	2/25/2009	NA	18.82		NA
MW-112	2/25/2009	100.63	26.04		74.59
MW-116D	2/25/2009	98.92	24.31		74.61
MW-116S	2/25/2009	99.40	24.71		74.69
MW-201D	2/25/2009	98.80	24.27		74.53
MW-202D	2/25/2009	98.17	23.65		74.52
MW-202S	2/25/2009	98.06	23.57		74.49
MW-207D	2/25/2009	98.18	23.73		74.45
MW-207S	2/25/2009	98.28	23.74		74.54
MW-209D	2/25/2009	99.90	25.77		74.13
MW-216D	2/25/2009	98.69	24.95		73.74
MW-216S	2/25/2009	99.58	24.94		74.64
MW-217D	2/25/2009	98.65	24.43		74.22
MW-217S	2/25/2009	98.71	24.50		74.21
MW-218D	2/25/2009	99.67	25.11		74.56
MW-218S	2/25/2009	99.61	25.03		74.58
CW-01	2/25/2009	99.52	25.23		74.29
CW-02	2/25/2009	98.86	24.40		74.46
CW-06	2/25/2009	99.52	24.58		74.94
GZA-3	2/25/2009	NA	17.50		NA
Notes: Groundwater ele established for t	evations are base	d on an arbitrary	reference datu	ım	

Table 3 Groundwater Analytical Results February 2009 Former Gorham Manufacturing Facility Providence, Rhode Island

	CW-01	CW-02	CW-06	CW-06	GZA-3	GZA-3	MW-101D	MW-101S	MW-101S	MW-109D	MW-112	MW-116D	MW-116S
	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009
CONSTITUENT	Primary	Primary	Primary	Duplicate	Primary	Duplicate	Primary	Primary	Duplicate	Primary	Primary	Primary	Primary
VOC (ug/L)		-									-	-	
1,1-Dichloroethene	3.8	<1			<1		<10	<10	<10	<1	<1	<1	<1
1,2,4-Trimethylbenzene	<2	<2			<2		<20	<20	<20	<2	<2	<2	<2
1,3,5-Trimethylbenzene	<2	<2			<2		<20	<20	<20	<2	<2	<2	<2
Benzene	<1	<1			<1		<10	<10	<10	<1	<1	<1	<1
Bromodichloromethane	<2	<2			<2		<20	<20	<20	<2	2.1	<2	<2
Chloroform	<2	<2			<2		<20	<20	<20	<2	20	3	<2
cis-1,2-Dichloroethene	12	<2			9.5		53	110	160	<2	<2	2.1	<2
Ethylbenzene	<2	<2			<2		<20	<20	<20	<2	<2	<2	<2
Methyltert-butylether	<2	<2			<2		<20	<20	<20	<2	<2	<2	<2
Naphthalene	<5	<5			<5		<50	<50	<50	<5	<5	<5	<5
Tetrachloroethene	15	8.6			<2		2300	1600	1300	<2	110	4.1	<2
Toluene	<2	<2			<2		<20	<20	<20	<2	<2	<2	<2
Trichloroethene	250	3			4.2		<20	31	40	<2	4.5	<2	<2
Vinyl chloride	<2	<2			13		<20	<20	<20	<2	<2	<2	<2
m/p-xylene	<2	<2			<2		<20	<20	<20	<2	<2	<2	<2
o-Xylene	<2	<2			<2		<20	<20	<20	<2	<2	<2	<2
TPH (mg/L)													
Unidentified TPH			11	10									
Dissolved Metals (mg/L)													
Lead					<12	<12				<12			
	Notes:												
	< = Less than the	e laboratory repo	rting limit										
	ug/L = Micro gra	ms per liter, parts	s per billion										
	mg/L = Milligram	is per liter, parts p	per million										
	TPH = Total Pet	roleum Hydrocarl	oons										
	= Not analyze	ed for.											

Table 3 Groundwater Analytical Results February 2009 Former Gorham Manufacturing Facility Providence, Rhode Island

	MW-201D	MW-202D	MW-202S	MW-207D	MW-207S	MW-209D	MW-216D	MW-216S	MW-217D	MW-217S	MW-218D	MW-218S
	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009	2/25/2009
CONSTITUENT	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
VOC (ug/L)		,		,	,	,						, , , , , , , , , , , , , , , , , , ,
1,1-Dichloroethene	<50	<10	<100	<20	<10	<10	<1	<1	<1	<1	14	1
1,2,4-Trimethylbenzene	<100	<20	<200	<40	<20	<20	<2	13	<2	<2	<20	<2
1,3,5-Trimethylbenzene	<100	<20	<200	<40	<20	<20	<2	9.8	<2	<2	<20	<2
Benzene	<50	<10	<100	<20	<10	<10	<1	<1	<1	<1	<10	4.4
Bromodichloromethane	<100	<20	<200	<40	<20	<20	<2	<2	<2	<2	<20	<2
Chloroform	<100	<20	<200	<40	<20	<20	<2	<2	<2	<2	<20	<2
cis-1,2-Dichloroethene	2800	<20	<200	<40	<20	<20	<2	76	17	17	23	550
Ethylbenzene	<100	<20	<200	<40	<20	<20	<2	3	<2	<2	<20	<2
Methyltert-butylether	<100	<20	<200	<40	<20	<20	3.2	<2	<2	<2	<20	<2
Naphthalene	<250	<50	<500	<100	<50	<50	<5	46	<5	<5	<50	<5
Tetrachloroethene	200	330	15000	3600	2000	780	<2	<2	<2	16	840	100
Toluene	<100	<20	<200	<40	<20	<20	<2	3	<2	<2	<20	<2
Trichloroethene	<100	<20	<200	110	88	280	3.9	<2	<2	<2	670	13
Vinyl chloride	<100	<20	<200	<40	<20	<20	<2	<2	<2	3	<20	25
m/p-xylene	<100	<20	<200	<40	<20	<20	<2	7.7	<2	<2	<20	<2
o-Xylene	<100	<20	<200	<40	<20	<20	<2	10	<2	<2	<20	<2
TPH (mg/L)												
Unidentified TPH												
Dissolved Metals (mg/L)												
Lead												
	Notes:											
	< = Less than the	e laboratory repo	rting limit									
	ug/I = Micro gran	ns per liter, parts	per billion									
	mg/l = Milligrams	s per liter, parts p	er million									
	TPH = Total Petr	roleum Hydrocart	oons									
	= Not analyze	d for.										

Table 4 Compliance Wells Analytical Results February 2009 Former Gorham Manufacturing Facility Providence, Rhode Island

Mashapaug Pond Compliance	e Wells			
Sample ID	GZA-3	GZA-3	MW-109D	Compliance
Date Collected	2/25/2009	2/25/2009	2/25/2009	Standard ¹
CONSTITUENT		Duplicate		
Metals (mg/L)				
Lead	<0.012	<0.012	<0.012	0.03
VOCs (ug/L)				
1,1-Dichloroethane	<2	NA	<2	50,000
cis-1,2-Dichloroethene	9.5	NA	<2	50,000
Tetrachloroethene	<2	NA	<2	5,000
Trichloroethene	4.2	NA	<2	20,000
Vinyl chloride	13	NA	<2	1,200

TPH Remediation Area Well			
Sample ID	CW-6	CW-6	Compliance
Date Collected	2/25/2009	2/25/2009	Standard ¹
CONSTITUENT		Duplicate	otandara
TPH (mg/L)	11	10	20

Sewer Interceptor Area Wells			
Sample ID Date Collected CONSTITUENT	CW-1 2/25/2009	CW-2 2/25/2009	Compliance Standard ²
VOCs (ug/L)			
1,1-Dichloroethene	3.8	<1	23,000
cis-1,2-Dichloroethene	12	<2	69,000
Trichloroethene	250	3	87,000

Adelaide Avenue Wells					
Sample ID Date Collected CONSTITUENT	MW-112 2/25/2009	MW-209D 2/25/2009	MW-218D 2/25/2009	MW-218S 2/25/2009	Compliance Standard ³
VOCs (ug/L)			-	-	
cis-1,2-Dichloroethene	<2	<20	23	550	2,400
1,1-Dichloroethene	<1	<10	14	1	7
Benzene	<1	<10	<10	4.4	140
Chloroform	20	<20	<20	<2	1,900
Tetrachloroethene	110	780	840	100	150
Trichloroethene	4.5	280	670	13	540
Vinyl chloride	<2	<20	<20	25	2

Notes:

1. These Site specific compliance standards were taken from the approved RAWP dated April 1, 2001 and/or the RIDEM Remediation Regulations.

2. These compliance standards taken from Table 5 - Upper Concentration Limits for GB Groundwater, RIDEM Remediation Regulations.

3. These compliance standards taken from Table 4 -GB Groundwater Objectives of the RIDEM Remediation Regulations or in the case of vinyl chloride the compliance standard was taken from Table 3 of the Remediation Regulations and for chloroform the compliance standard was calculated from the algorithm in Appendix F of the Remediation Regulations (calculations attached as Appendix C of Status Report dated September 18, 2007).

mg/L - milligrams per liter

ug/L - micrograms per liter

< - compound was not detected below the laboratory reporting limit, concentration shown is the reporting limit.

VOCs - volatile organic compounds

TPH - total petroleum hydrocarbons

NA - Indicates that the analysis was not performed.

Environmental Laboratories Corporation

111 Herrick Street, Merrimack, NH 03054 TEL: (603) 424-2022 • FAX: (603) 429-8496 www.amrolabs.com

March 13, 2009

ANALYTICAL TEST RESULTS

Ed VanDoren Shaw Environmental & Infrastructure, Inc. 11 Northeastern Boulevard Salem, NH 030791953 TEL: (603) 870-4530 FAX: (603) 870-4501

Subject: 130274 Textron Gorham

Workorder No.: 0902072

Dear Ed VanDoren:

AMRO Environmental Laboratories Corp. received 26 samples on 2/26/2009 for the analyses presented in the following report.

AMRO is accredited in accordance with NELAC and certifies that these test results meet all the requirements of NELAC, where applicable, unless otherwise noted in the case narrative.

The enclosed Sample Receipt Checklist details the condition of your sample(s) upon receipt. Please be advised that any unused sample volume and sample extracts will be stored for a period of 60 days from sample receipt date (90 days for samples from New York). After this time, AMRO will properly dispose of the remaining sample(s). If you require further analysis, or need the samples held for a longer period, please contact us immediately.

This report consists of a total of <u>III</u> pages. This letter is an integral part of your data report. All results in this project relate only to the sample(s) as received by the laboratory and documented in the Chain-of-Custody. This report shall not be reproduced except in full, without the written approval of the laboratory. If you have any questions regarding this project in the future, please refer to the Workorder Number above.

Sincerely,

Nancy Stewart Vice President

State Certifications: NH (NELAC): 1001, MA: M-NH012, CT: PH-0758, NY: 11278 (NELAC), ME: NH012 and 1001, NJ: NH125, RI: 00105, U.S. Army Corps of Engineers (USACE), Naval Facilities Engineering Service Center (NFESC).

1

Hard copy of the State Certification is available upon request.

Date: 09-Mar-09

CLIENT:	Shaw Environmental & Infrastructure, Inc.
Project:	130274 Textron Gorham
Lab Order:	0902072
Date Received:	2/26/2009

Work Order Sample Summary

.

1

Lab Sample ID	Client Sample ID	Collection Date	Collection Time
0902072-01A	MW-201D	2/25/2009	12:15 PM
0902072-02A	CW-1	2/25/2009	12:30 PM
0902072-03A	CW-2	2/25/2009	1:15 PM
0902072-04A	MW-209D	2/25/2009	1:35 PM
0902072-05A	MW-217S	2/25/2009	3:35 PM
0902072-06A	MW-217D	2/25/2009	3:45 PM
0902072-07A	MW-216S	2/25/2009	3:58 PM
0902072-08A	MW-216D	2/25/2009	4:15 PM
0902072-09A	MW-207S	2/25/2009	9:00 AM
0902072-10A	MW-207D	2/25/2009	9:15 AM
0902072-11A	MW-202D	2/25/2009	9:40 AM
0902072-12A	MW-202S	2/25/2009	9:50 AM
0902072-13A	MW-101D	2/25/2009	10:35 AM
0902072-14A	MW-101S	2/25/2009	10:56 AM
0902072-15A	MW-101 Dupe	2/25/2009	10:55 AM
0902072-16A	MW-218S	2/25/2009	11:20 AM
0902072-17A	MW-218D	2/25/2009	11:40 AM
0902072-18A	MW-112	2/25/2009	11:50 AM
0902072-19A	CW-6	2/25/2009	2:31 PM
0902072-20A	CW-6 Dupe	2/25/2009	2:32 PM
0902072-21A	MW-109D	2/25/2009	3:10 PM
0902072-21B	MW-109D	2/25/2009	3:10 PM
0902072-22A	GZA-3	2/25/2009	3:50 PM
0902072-22B	GZA-3	2/25/2009	3:50 PM
0902072-23A	GZA-3 Dupe	2/25/2009	3:51 PM
0902072-24A	Trip Blank	2/25/2009	12:00 AM
0902072-25A	MW-116D	2/25/2009	4:35 PM
0902072-26A	MW-116S	2/25/2009	4:45 PM

Lab Order:	0902072	0. 1 1			DATES REPORT	RPORT	
Chent: Project:	Shaw Environmental & In 130274 Textron Gorham	Shaw Environmental & Infrastructure, Inc. 130274 Textron Gorham					
Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name		Analysis Date	
				Preparatory Test Name	Prep Date	Batch ID	TCLP Date
0902072-01A	MW-201D	2/25/2009 12:15:00 PM	Groundwater	EPA 8260B VOLATILES by GC/MS	-	2/28/2009	
				EPA 5030B	2/25/2009	R41842	
0902072-02A	CW-1	2/25/2009 12:30:00 PM		EPA 8260B VOLATILES by GC/MS		2/28/2009	
					2/25/2009	R41842	-
0902072-03A	CW-2	2/25/2009 1:15:00 PM		EPA 8260B VOLATILES by GC/MS		2/27/2009	
			-		2/25/2009	R41838	
0902072-04A	MW-209D	2/25/2009 1:35:00 PM		EPA 8260B VOLATILES by GC/MS		2/28/2009	
					2/25/2009	R41842	
0902072-05A	MW-217S	2/25/2009 3:35:00 PM		EPA 8260B VOLATILES by GC/MS		2/27/2009	
2					2/25/2009	R41838	
0902072-06A	MW-217D	2/25/2009 3:45:00 PM		EPA 8260B VOLATILES by GC/MS		2/27/2009	
		-			2/25/2009	R41838	
0902072-07A	MW-216S	2/25/2009 3:58:00 PM	-	EPA 8260B VOLATILES by GC/MS		2/27/2009	
				•	2/25/2009	R41838	
0902072-08A	MW-216D	2/25/2009 4:15:00 PM		EPA 8260B VOLATILES by GC/MS		2/28/2009	
					2/25/2009	R41842	
0902072-09A	MW-207S	2/25/2009 9:00:00 AM		EPA 8260B VOLATILES by GC/MS		2/28/2009	
					2/25/2009	R41842	
0902072-10A	MW-207D	2/25/2009 9:15:00 AM		EPA 8260B VOLATILES by GC/MS		2/28/2009	
					2/25/2009	R41842	
0902072-11A	MW-202D	2/25/2009 9:40:00 AM		EPA 8260B VOLATILES by GC/MS		3/4/2009	· .
				•	2/25/2009	R41860	
0902072-12A	MW-202S	2/25/2009 9:50:00 AM		EPA 8260B VOLATILES by GC/MS		3/4/2009	
					2/25/2009	R41860	

09-Mar-09

AMRO Environmental Laboratories Corp.

3

.

and a strange of the state of the

Client: Project:	Shaw Environmental & In 130274 Textron Gorham	Shaw Environmental & Infrastructure, Inc. 130274 Textron Gorham			DATES	DATES REPORT	
Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name	Dran Data	Analysis Date Botch ID	TCI D Data
				Freparatory Lest Manue	TICD DATE	Datu	TCLI Daw
0902072-13A	MW-101D	2/25/2009 10:35:00 AM	Groundwater	EPA 8260B VOLATILES by GC/MS		3/5/2009	
				EPA 5030B	2/25/2009	R41874	
0902072-14A	MW-101S	2/25/2009 10:56:00 AM		EPA 8260B VOLATILES by GC/MS		3/5/2009	
					2/25/2009	R41874	
0902072-15A	MW-101 Dupe	2/25/2009 10:55:00 AM		EPA 8260B VOLATILES by GC/MS		3/5/2009	
					2/25/2009	R41874	
0902072-16A	MW-218S	2/25/2009 11:20:00 AM		EPA 8260B VOLATILES by GC/MS		2/28/2009	
	·				2/25/2009	R41842	
				EPA 8260B VOLATILES by GC/MS	-	3/4/2009	
4					2/25/2009	R41860	
0902072-17A	MW-218D	2/25/2009 11:40:00 AM		EPA 8260B VOLATILES by GC/MS		3/4/2009	
					2/25/2009	R41860	
0902072-18A	MW-112	2/25/2009 11:50:00 AM		EPA 8260B VOLATILES by GC/MS		3/5/2009	
					2/25/2009	R41874	
0902072-19A	CW-6	2/25/2009 2:31:00 PM		TPH by GC/FID (modified 8015B)		3/5/2009	
				AQPREP SEP FUNNEL: FING	3/4/2009	19141	
0902072-20A	CW-6 Dupe	2/25/2009 2:32:00 PM		TPH by GC/FID (modified 8015B)		3/5/2009	
					3/4/2009	19141	
0902072-21A	MW-109D	2/25/2009 3:10:00 PM		EPA 8260B VOLATILES by GC/MS		2/28/2009	
				EPA 5030B	2/25/2009	R41842	
0902072-21B				EPA 6010B ICP METALS, DISSOLVED		3/4/2009	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	3/4/2009	19143	
0902072-22A	GZA-3	2/25/2009 3:50:00 PM		EPA 8260B VOLATILES by GC/MS		2/28/2009	-

09-Mar-09

AMRO Environmental Laboratories Corp.

1 addan 1

Lab Order:	0902072		-		2 		
Client:	Shaw Environmental & Infrastructure,	& Infrastructure, Inc.			DATES REPORT	EPORT	
Project:	130274 Textron Gorham	lam					
Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name		Date	
				Preparatory Test Name	Prep Date	Batch ID T	TCLP Date
0902072-22B	GZA-3	2/25/2009 3:50:00 PM	Groundwater	EPA 6010B ICP METALS, DISSOLVED		3/4/2009	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	3/4/2009	19143	
0902072-23A	GZA-3 Dupe	2/25/2009 3:51:00 PM		EPA 6010B ICP METALS, DISSOLVED		3/4/2009	
					3/4/2009	19143	
0902072-24A	Trip Blank	2/25/2009	Trip Blank	EPA 8260B VOLATILES by GC/MS		2/28/2009	
				EPA 5030B	2/25/2009	R41842	
0902072-25A	MW-116D	2/25/2009 4:35:00 PM	Groundwater	PM Groundwater EPA 8260B VOLATILES by GC/MS		2/28/2009	
					2/25/2009	R41842	
0902072-26A	MW-116S	2/25/2009 4:45:00 PM	-	EPA 8260B VOLATILES by GC/MS		2/28/2009	
_					2/25/2009	R41842	

09-Mar-09

AMRO Environmental Laboratories Corp.

Oration CHAIN-OF-CUSTODY REC Image: RI Project Manager: State: RI State: RI State: RI State: RI Ed VanDoren State: RI Ed VanDoren	5 8 0 9 0 Office: (603) 424-2022 Fax: (603) 429-8496 web: www.amrolabs.com	Samplers (Signature): AMRO Project No.:	REQUESTED ANALYSES REQUESTED ANALYSES																RA 🗌 13 PP 🔲 23 TAL 🗍 14 MCP 📋	200.7 Other Metals:	Filterrad?	MCP Methods	YES NO	oackage		EDD required: Other:	
	CHAIN-OF-CUSTODY RECORD	t RI Ed		(7			2001. 8	Jomp.	<u>]</u>			3			<u> </u>	7	>	Dither Differ		Method:	ZATION NUMBER		YES NO	Contraction of the second By	020 h ly law	1111 1141501	Samples arriving atter 12:00 noof will be tracked and billed as
	AMRO Environmental Laboratories Corporation 111 Herrick Street Merrimack, NH 03054	: Gorham		Standard	Seal Intact?	°N			Lais GW	1 0001/	\sim	A State of the sta	<u> </u>	-	-				Ed VanDoren PRIORITY TUR	nc.		Ĩ	oren@Shawgrp.com		1755	141	1

oration am Project Addurix Maturix GGW Cont. & Size GW Total # of Cont. & Size anno Cont. & Size Cont. & Size	oration am Project Addurix Maturix GGW Cont. & Size GW Total # of Cont. & Size anno Cont. & Size Cont. & Size	CHAIN-OF-CUSTODY RECORD 58091 Prax: (603) 424-2022 Fax: (603) 429-8496 web: www.amrolabs.com	I Ed VanDoren אין	REQUESTED ANALYSES		P.1	2	80	922	Comp.	5						AUTHORIZATION METALS 8 RCRA 13 PP	r expedited TAT, you must Method: 6010 200.7 Other Metals:	4 <i>TION NUMBER</i> Discolved Metals Field Filtered? VFS NO	MCD Daconnecting Contribute Documents MACD Mathude	AMRO report package S-2	1. 2.4 0	\sum_{α}	GISKey Format	roon will be tracked and billed as AMRO policy requires notification a label of the laboratory in cases where the sa	collected from highly contaminated sites.
ies Corpóration ies Corpóration in Gorham in Gorham		СНА	Project State: RI			ə2	ziS 2	nt. &	0) 1	.qmoO)- Other	URNAROUND TIME	itting samples for expe	ed AUTHORIZATION	270_6501	/Time	RR13 59		1115	Samples arriving atter 12:00- received on the following day.	

Office: (603) 424-2022 Fax: (603) 429-8496 web: www.anrolabs.com	AMRO Project No.:	Remarks		· · · · · · · · · · · · · · · · · · ·						ti eld fi fiered	tand to thered	Find GIANNA						14 MCP			Required R		S-2	S-3 GW-3	Other:	Т	s were CONTAMINATION:	08/18/04
58344	Samplers (Signature):	ANAI VSFS		j j	· · · · · · · · · · · · · · · · · · ·							-							200.7 Other Metals:	iltered? YES NO	unty Required? MCP Methods Needed:		AMRO report package	Hevel needed:	(EDD required:)	AMRO policy requires notification in writing to	the laboratory in cases where the samples were collected from highly contaminated sites.	OF 3 [AMROCOC2004. Rev.3 08/18/04
CHAIN-OF-CUSTODY RECORD	Project Manager:	REOLIFSTED				204-48	294 495 Lead			×	×	×	X	×				METALS	T, you must Method: 6010	: Dissolved Metals Field Filtered?	MCP Presumptive Certainty Required?	YES NO	· // Received By	alen	and the second sec	/ Hoc trackad-and billed as 1		SHEET 3
	Project State: RT			əzić	5 - 78 - 7	of Cont.	Total # Comp. Grab Grab	X X X	X X Rund-1	J- HOWLY X		×	1- none		2- HOWNY X			PRIORITY TURNAROUND TIME AUTHOI	Before submitting samples for expedited TAT, you must	AUTHORIZATION No.: BY:	603-870-45-01		ate/Time /	103 0 Ser 10/1		09 1/1/8 100	received on the following day.	
AMRO Environmental Laboratories Corporation 111 Herrick Street Merrimack, NH 03054	Project Name: TExtros Gerhaw	11-12	stat.	Seal Intact? Yes No N/A		Date/Time	Sampled	my Ichi boste	2124 of 1432 Gw	+ + 0121/ 60/17	1220 CM	marker 1551 6m		SE)/ 6 Ater	21-51 01 / 1645		MeOH, N-HN03, S-H2SO4, Na-NaOH, O- Other	PRIORITY	The	AUTHOR	FAX #:	show arp, com		707		19-PH	e clock will not start until	Yellow: Client Copy
AMRO Environmental 111 Herrick Street Merrimack, NH 03054	Project No.: iるこてく	1 2 2 1		QUOTE #:		Samnle ID :		Cw-6	CW-6 DUDO		62A-3	824-3 Dupe	Trip blank :	MIX-11(D	MW- 1165 3		Preservative: CI-HCI, MeOH, N-		W ENVIRONMENT	Caluer NH 03079	PHONE #: Goz-Sor 4530	E-mail: Edward . Van Doren @	Relinquished By:	quiter bidances	O	Please print clearly legibly and completely Samples can not	be logged in and the turnaround time any ambiguities are resolved.	

Login Account for multiple users

From: Sent: To: Subject: VanDoren, Edward [Edward.VanDoren@shawgrp.com] Thursday, February 26, 2009 6:31 PM Login Account for multiple users; Lielausis, Peter RE: TPH for Textron (AMRO 0902072)

Hi Connie-

Can you please do what you did last time. I'm not sure what it is and I'm not in the office. The last time was in August of 2008.

Thanks Ed

From: Login Account for multiple users [mailto:login@amrolabs.com] Sent: Thu 2/26/2009 1:11 PM To: Lielausis, Peter Cc: VanDoren, Edward Subject: TPH for Textron (AMRO 0902072)`

Hi Peter -

Can you tell me which TPH you need run for these samples? In the past we have done Fingerprint.

Thanks!

Connie in Receiving

****Internet Email Confidentiality Footer**** Privileged/Confidential Information may be contained in this message. If you are not the addressee indicated in this message (or responsible for delivery of the message to such person), you may not copy or deliver this message to anyone. In such case, you should destroy this message and notify the sender by reply email.

Please advise immediately if you or your employer do not consent to Internet email for messages of this kind. Opinions, conclusions and other information in this message that do not relate to the official business of The Shaw Group Inc. or its subsidiaries shall be understood as neither given nor endorsed by it.

1 9

The Shaw Group Inc.

http://www.shawgrp.com

AMRO Environmental Laboratories Corporation

SAMPLE RECEIPT CHECKLIST

111 Herrick Street Merrimack, NH 03054 (603) 424-2022

				(603) 424-2022
Client: SHAW ENVIRONMENTAL, INC	AMRO I		<u></u>	0902072
Project Name: TEXTRON GORHAM	Date Rec		<u> </u>	2-26-09
Ship via: (circle one) Fed Ex., UPS, AMRO Courier,	Date Due	e:		3-5-09
Hand Del., Other Courier, Other:				·
		<u> </u>		r
Items to be Checked Upon Receipt	Yes	No	NA	Comments
1. Army Samples received in individual plastic bags?		ļ	~	
2. Custody Seals present?		·	V	
3. Custody Seals Intact?			~	
4. Air Bill included in folder if received?			1	
5. Is COC included with samples?				
6. Is COC signed and dated by client?				•
7. Laboratory receipt temperature. TEMP = 5.2°		•		
Samples rec. with ice <u>v</u> ice packs neither				
8. Were samples received the same day they were sampled?		~		
Is client temperature $4^{\circ}C \pm 2^{\circ}C$?				
If no obtain authorization from the client for the analyses.				
Client authorization from: Date: Obtained by:			·	
9. Is the COC filled out correctly and completely?				•
10. Does the info on the COC match the samples?	~			· · · · · · · · · · · · · · · · · · ·
11. Were samples rec. within holding time?	~			
12. Were all samples properly labeled?				
13. Were all samples properly preserved?	V			
14. Were proper sample containers used?	V			······································
15. Were all samples received intact? (none broken or leaking)				
16. Were VOA vials rec. with no air bubbles?	V			
17. Were the sample volumes sufficient for requested analysis?	V		·	······
18. Were all samples received?	V			······································
19. VPH and VOA Soils only:				
Sampling Method VPH (circle one): M=Methanol, E=EnCore (air-tight container)	L			· · · · · · · · · · · · · · · · · · ·
Sampling Method VOA (circle one): M=Methanol, SB=Sodium Bisulfate, E=EnCo	re B-Bulk			
If M or SB:		·	I	· · · · · · · · · · · · · · · · · · ·
Does preservative cover the soil?				· · · · · · · · · · · · · · · · · · ·
If NO then client must be faxed.				• • • • • • • • • • • • • • • • • • • •
Does preservation level come close to the fill line on the vial?				· · · · · · · · · · · · · · · · · · ·
If NO then client must be faxed.				
Were vials provided by AMRO?				
If NO then weights MUST be obtained	from clien	1t	T	
Was dry weight aliquot provided? If NO then fax client and inform the V				
	UA lab AS	AP.		
20. Subcontracted Samples:	 		~	
What samples sent:				
Where sent:	<u> </u>			
Date:		4 ¹		·
Analysis:				
TAT:			<u> </u>	
1. Information entered into:				
Internal Tracking Log?				· · · · · · · · · · · · · · · · · · ·
Dry Weight Log?			~	· · · · ·
Client Log?			~	
Composite Log?	+	i	~	
Filtration Log?				
Received By: MG Date: 2-26-09 Logged in By: C	$\frac{1}{2}$			2-26-09
abeled By: CC Date: $2 - 26 - 09$ Checked By:	M61		Date:	2-27-09

AMRO Environmental Laboratories Corporation

÷

111 Herrick Street Merrimack, NH 03054 (603) 424-2022

Please Circle if: Sample= Soil Sample= Waste						· · · ·	AMRO ID:	09020	72	
Sample ID -	, Analysis	Volume Sample	Preserv. Listed	Initial pH*	Acceptable? Y or N	List Preserv. Added by AMRO	Solution ID # of Preserv.	Volume Preservative Added	Final adjusted pH	Final adjusted pH (after 16 hours)
01A-18A,	8260	2-40 MI	HC1			••				
21A-22A,								· · · · ·		
25A-26A)										
24A	8260	1-40 MI	HCI				· · · · · · · · · · · · · · · · · · ·			
1100 Do 0	·	1 11 1	1(()	-7	·····			· · · · · · · · · · · · · · · · · · ·		
19A-20A		1-1LA	Hz504	<2	/				· · ·	
210-22B	D Ph	1-5007	HNOz	22	Y					· · · · · · · · · · · · · · · · · · ·
23A		1-2001	7/1003							
								· ·		
					· · · · ·				· ·	
	• • •		· · ·							
						·····				
							· .			
						· · ·	· · ·			
							-			
									-	
								, · · ·		
									1	
·.					· .					
· .									-	
······			·			·				
					· .		· · · · · · · · · · · · · · · · · · ·			×
			```				<u>`</u>			
					······					
			·							
· · · ·		•				-	<u>`</u>			
* = if the laborator	v preserve	s the drink	cing water s	ample (	s) for EPA Mot	hod 200 ver	ies sample (s) of	hould be hold a		
l6 hours prior to a	nalysis	-			-, , , -, -, -, -, -, -, -, -, -, -, -,		ics, sampte (s) si	ioniu ve neid d		•
pH Checked By		CC		Date:	2-26-09	pH adjı	usted By:		Date:	·
pH Checked By	: -	······································	- · ·	Date:	p	H adjusted	d (16hrs) By:_		Date:	

qc/qcmemos/forms/samplerec Rev.19 02/14/06

CLIENT:Shaw Environmental & Infrastructure, Inc.Project:130274 Textron GorhamLab Order:0902072

Date: 13-Mar-09

## CASE NARRATIVE

#### GC/MS VOLATILES:

1. A Laboratory Control Sample (LCS) was performed on 02/27/09 (Batch ID: R41838).

1.1 The % Recovery for 5 analytes out of 67 analytes in the LCS was outside the laboratory control limits.

2. A Laboratory Control Sample (LCS) was performed on 02/28/09 (Batch ID: R41842).

2.1 The % Recovery for 13 analytes out of 67 analytes in the LCS was outside the laboratory control limits.

3. A Laboratory Control Sample (LCS) was performed on 03/05/09 (Batch ID: R41874).

3.1 The % Recovery for 1 analyte out of 67 analytes in the LCS was outside the laboratory control limits.

4. A Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were performed on sample MW-216S (0902072-08A) (Batch ID: R41842).

4.1 The % Recovery for 5 analytes out of 67 analytes in the MS was outside the laboratory control limits.

4.2 The % Recovery for 8 analytes out of 67 analytes in the MSD was outside the laboratory control limits.

5. A Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were performed on sample MW-218S (0902072-16A) (Batch ID: R41860).

5.1 The % Recovery for 6 analytes out of 67 analytes in the MS was outside the laboratory control limits.

5.2 The % Recovery for 4 analytes out of 67 analytes in the MSD was outside the laboratory control limits.

6. A Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were performed on sample MW-112 (0902072-18A) (Batch ID: R41874).

6.1 The % Recovery for 6 analytes out of 67 analytes in the MS was outside the laboratory control limits.

6.2 The % Recovery for 7 analytes out of 67 analytes in the MSD was outside the laboratory control

CLIENT:Shaw Environmental & Infrastructure, Inc.Project:130274 Textron GorhamLab Order:0902072

## **CASE NARRATIVE**

limits.

TPH GC/FID:

1. No QC deviations were observed.

METALS:

1. No QC deviations were observed.

#### DATA COMMENT PAGE

#### **Organic Data Qualifiers**

- ND Indicates compound was analyzed for, but not detected at or above the reporting limit.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than the method detection limit.
- H Method prescribed holding time exceeded.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- # See Case Narrative

#### **Micro Data Qualifiers**

TNTC Too numerous to count

#### **Inorganic Data Qualifiers**

Indicates element was analyzed for, but not detected at or above the reporting limit. ND or U J Indicates a value greater than or equal to the method detection limit, but less than the quantitation limit. Η Indicates analytical holding time exceedance. В Indicates that the analyte is found in the associated blank, as well as in the sample. MSA Indicates value determined by the Method of Standard Addition E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis. R RPD outside accepted recovery limits RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate. S Spike Recovery outside accepted recovery limits. W Post-digestion spike for Furnace AA analysis is out of control limits (85-115), while sample absorbance is less than 50% of spike absorbance. Duplicate analysis not within control limits. Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995 See Case Narrative

#### Report Comments:

1. Soil, sediment and sludge sample results are reported on a "dry weight" basis.

2. Reporting limits are adjusted for sample size used, dilutions and moisture content, if applicable.

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-01A

Date: 09-Mar-09

Client Sample ID: MW-201D Collection Date: 2/25/2009 12:15:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B	a.			Analyst: <b>SK</b>
Dichlorodifluoromethane	ND	250		µg/L	50	2/28/2009 3:57:00 PM
Chloromethane	ND	250		µg/L	50	2/28/2009 3:57:00 PM
Vinyl chloride	K ND	100		µg/L	50	2/28/2009 3:57:00 PM
Chloroethane	ND	250		µg/L	50	2/28/2009 3:57:00 PM
Bromomethane	ND	100		µg/L	50	2/28/2009 3:57:00 PM
Trichlorofluoromethane	ND	100		µg/L	50	2/28/2009 3:57:00 PM
Diethyl ether	ND -	250		µg/L	50	2/28/2009 3:57:00 PM
Acetone	ND	500		µg/L	50	2/28/2009 3:57:00 PM
1,1-Dichloroethene	ND	50		µg/L	50	2/28/2009 3:57:00 PM
Carbon disulfide	ND	100		µg/L	50	2/28/2009 3:57:00 PM
Methylene chloride	ND	250		µg/L	50	2/28/2009 3:57:00 PM
Methyl tert-butyl ether	ND	100		µg/L	50	2/28/2009 3:57:00 PM
trans-1,2-Dichloroethene	ND	100		µg/L	50	2/28/2009 3:57:00 PM
1,1-Dichloroethane	ND	100		µg/L	50	2/28/2009 3:57:00 PM
2-Butanone	ND	500		µg/L	50	2/28/2009 3:57:00 PM
2,2-Dichloropropane	ND	100		µg/L	50	2/28/2009 3:57:00 PM
cis-1,2-Dichloroethene	2,800	100		µg/L	50	2/28/2009 3:57:00 PM
Chloroform	ND	100		µg/L	50	2/28/2009 3:57:00 PM
Tetrahydrofuran	ND	500		µg/L	50	2/28/2009 3:57:00 PM
Bromochloromethane	ND	100		µg/L	50	2/28/2009 3:57:00 PM
1,1,1-Trichloroethane	ND	100		µg/L	50	2/28/2009 3:57:00 PM
1,1-Dichloropropene	ND	100		µg/L	50	2/28/2009 3:57:00 PM
Carbon tetrachloride	ND	100		µg/L	50	2/28/2009 3:57:00 PM
1,2-Dichloroethane	ND	100		µg/L	50	2/28/2009 3:57:00 PM
Benzene	ND	50		µg/L	50	2/28/2009 3:57:00 PM
Trichloroethene	ND	100		µg/L	50	2/28/2009 3:57:00 PM
1,2-Dichloropropane	ND	100		µg/L	50	2/28/2009 3:57:00 PM
Bromodichloromethane	ND	100		µg/L	50	2/28/2009 3:57:00 PM
Dibromomethane	ND	100		µg/L	50	2/28/2009 3:57:00 PM
4-Methyl-2-pentanone	ND	500		µg/L	50	2/28/2009 3:57:00 PM
cis-1,3-Dichloropropene	ND	50		µg/L	50	2/28/2009 3:57:00 PM
Toluene	ND	100		µg/L	50	2/28/2009 3:57:00 PM
trans-1,3-Dichloropropene	ND	50		µg/L	50	2/28/2009 3:57:00 PM
1,1,2-Trichloroethane	ND	100		µg/L	50	2/28/2009 3:57:00 PM
1,2-Dibromoethane	ND	100		µg/L	50	2/28/2009 3:57:00 PM
2-Hexanone	ND	500		µg/L	50	2/28/2009 3:57:00 PM
1,3-Dichloropropane	ND	100		µg/L	50	2/28/2009 3:57:00 PM
Tetrachloroethene	200	100		µg/L	50	2/28/2009 3:57:00 PM
Dibromochloromethane	ND	100		μg/L	50	2/28/2009 3:57:00 PM

Date: 09-Mar-09

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-01A

## Client Sample ID: MW-201D Collection Date: 2/25/2009 12:15:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	100	μg/L	50	2/28/2009 3:57:00 PM
1,1,1,2-Tetrachloroethane	ND	100	µg/L	50	2/28/2009 3:57:00 PM
Ethylbenzene	ND	.100	µg/L	50	2/28/2009 3:57:00 PM
m,p-Xylene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
o-Xylene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
Styrene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
Bromoform	ND	100	µg/L	50	2/28/2009 3:57:00 PM
Isopropylbenzene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
1,1,2,2-Tetrachloroethane	ND	100	μg/L	50	2/28/2009 3:57:00 PM
1,2,3-Trichloropropane	ND	100	µg/L	50	2/28/2009 3:57:00 PM
Bromobenzene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
n-Propylbenzene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
2-Chlorotoluene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
4-Chlorotoluene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
1,3,5-Trimethylbenzene	NÐ	100	µg/L	50	2/28/2009 3:57:00 PM
tert-Butylbenzene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
1,2,4-Trimethylbenzene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
sec-Butylbenzene	ND	100 _	µg/L	. 50	2/28/2009 3:57:00 PM
4-Isopropyltoluene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
1,3-Dichlorobenzene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
1,4-Dichlorobenzene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
n-Butylbenzene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
1,2-Dichlorobenzene	· ND	100	µg/L	50	2/28/2009 3:57:00 PM
1,2-Dibromo-3-chloropropane	ND	250	µg/L	50	2/28/2009 3:57:00 PM
1,2,4-Trichlorobenzene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
Hexachlorobutadiene	ND	100	µg/L	50	2/28/2009 3:57:00 PM
Naphthalene	ND	250	µg/L	50	2/28/2009 3:57:00 PM
1,2,3-Trichlorobenzene	• ND	100	µg/L	50	2/28/2009 3:57:00 PM
Surr: Dibromofluoromethane	91.8	85-119	%REC	50	2/28/2009 3:57:00 PM
Surr: 1,2-Dichloroethane-d4	122	79-131	%REC	50	2/28/2009 3:57:00 PM
Surr: Toluene-d8	95.5	90-110	%REC	50	2/28/2009 3:57:00 PM
Surr: 4-Bromofluorobenzene	104	76-117	%REC	50	2/28/2009 3:57:00 PM

CLIENT: Lab Order: Project:

Lab ID:

Shaw Environmental & Infrastructure, Inc. 0902072 130274 Textron Gorham 0902072-02A

#### Date: 09-Mar-09

## Client Sample ID: CW-1 Collection Date: 2/25/2009 12:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			·	Analyst: <b>SK</b>
Dichlorodifluoromethane	ND	5.0	ł	µg/L	- 1	2/28/2009 6:45:00 PM
Chloromethane	ND	5.0		µg/L	1	2/28/2009 6:45:00 PN
Vinyl chloride	ND	2.0		µg/L	1	2/28/2009 6:45:00 PN
Chloroethane	ND	5.0	- I	µg/L	1	2/28/2009 6:45:00 PN
Bromomethane	ND	2.0	·	µg/L	1	2/28/2009 6:45:00 PN
Trichlorofluoromethane	ND	2.0		µg/L	1	2/28/2009 6:45:00 PN
Diethyl ether	ND	5.0		µg/L	1	2/28/2009 6:45:00 PN
Acetone	ND	10		µg/L	1	2/28/2009 6:45:00 PN
1,1-Dichloroethene	3.8	1.0		µg/L	1	2/28/2009 6:45:00 PN
Carbon disulfide	ND	2.0		µg/L	1	2/28/2009 6:45:00 PN
Methylene chloride	ND	5.0		µg/L	1	2/28/2009 6:45:00 PN
Methyl tert-butyl ether	ND	2.0		µg/L	1	2/28/2009 6:45:00 PN
trans-1,2-Dichloroethene	ND	2.0		µg/L	1	2/28/2009 6:45:00 PN
1,1-Dichloroethane	ND	2.0		µg/L	1	2/28/2009 6:45:00 PM
2-Butanone	ND	10		µg/L	1	2/28/2009 6:45:00 PM
2,2-Dichloropropane	ND	2.0	j	µg/L	1	2/28/2009 6:45:00 PN
cis-1,2-Dichloroethene	12	. 2.0		µg/L	1	2/28/2009 6:45:00 PM
Chloroform	ND	2.0		µg/L	1	2/28/2009 6:45:00 PM
Tetrahydrofuran	ND	10		µg/L	1	2/28/2009 6:45:00 PM
Bromochloromethane	ND	2.0	-	µg/L	1	2/28/2009 6:45:00 PM
1,1,1-Trichloroethane	ND	2.0		µg/L	1	2/28/2009 6:45:00 PM
1,1-Dichloropropene	ND	2.0		µg/L	1	2/28/2009 6:45:00 PM
Carbon tetrachloride	ND	2.0		µg/L	1	2/28/2009 6:45:00 PN
1,2-Dichloroethane	ND	2.0	1	µg/L	1	2/28/2009 6:45:00 PN
Benzene	ND	1.0		µg/L	1	2/28/2009 6:45:00 PN
Trichloroethene	250	2.0		µg/L	1	2/28/2009 6:45:00 PN
1,2-Dichloropropane	ND	2.0	1	µg/L	1	2/28/2009 6:45:00 PM
Bromodichloromethane	ND	2.0		µg/L	1	2/28/2009 6:45:00 PM
Dibromomethane	ND	2.0		µg/L	1	2/28/2009 6:45:00 PM
4-Methyl-2-pentanone	ND	10	1	µg/L	1	2/28/2009 6:45:00 PM
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	2/28/2009 6:45:00 PN
Toluene	ND	2.0		µg/L	1	2/28/2009 6:45:00 PN
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	2/28/2009 6:45:00 PN
1,1,2-Trichloroethane	ND	2.0		µg/L	1	2/28/2009 6:45:00 PN
1,2-Dibromoethane	ND	2.0		μg/L	1	2/28/2009 6:45:00 PM
2-Hexanone	ND	10		μg/L	1	2/28/2009 6:45:00 PN
1,3-Dichloropropane	ND	2.0		μg/L	1	2/28/2009 6:45:00 PN
Tetrachloroethene	15	2.0		. σ μg/L	1	2/28/2009 6:45:00 PM
Dibromochloromethane	ND	2.0		μg/L	1	2/28/2009 6:45:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-02A

#### Date: 09-Mar-09

## Client Sample ID: CW-1 Collection Date: 2/25/2009 12:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Qı	ial Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
m,p-Xylene	· ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
o-Xylene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
Styrene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
Bromoform	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	2/28/2009 6:45:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
tert-Butylbenzene	ND	2.0	µg/L	· 1	2/28/2009 6:45:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
-sec-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
4-Isopropyltoluene	ND ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	~ 1	2/28/2009 6:45:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	· 1	2/28/2009 6:45:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
Naphthalene	ND	5.0	µg/L	[.] 1	2/28/2009 6:45:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/28/2009 6:45:00 PM
Surr: Dibromofluoromethane	89.8	85-119	%REC	1	2/28/2009 6:45:00 PM
Surr: 1,2-Dichloroethane-d4	120	79-131	%REC	1	2/28/2009 6:45:00 PM
Surr: Toluene-d8	95.0	90-110	%REC	. 1	2/28/2009 6:45:00 PM
Surr: 4-Bromofluorobenzene	101	76-117	%REC	1	2/28/2009 6:45:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-03A

Date: 09-Mar-09

## Client Sample ID: CW-2 Collection Date: 2/25/2009 1:15:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	4	SW8260B			Analyst: <b>SK</b>
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/27/2009 7:13:00 PM
Chloromethane	ND	5.0	µg/L	1	2/27/2009 7:13:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
Chloroethane	ND	5.0	µg/L	. 1	2/27/2009 7:13:00 PM
Bromomethane	ND	.2.0	µg/L	1	2/27/2009 7:13:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	2/27/2009 7:13:00 PM
Diethyl ether	, ND	5.0	μg/L	1	2/27/2009 7:13:00 PM
Acetone	ND	10	µg/L	1	2/27/2009 7:13:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	2/27/2009 7:13:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/27/2009 7:13:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	2/27/2009 7:13:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
2-Butanone	ND	10	μg/L	¹	2/27/2009 7:13:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
cis-1,2-Dichloroethene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
Chloroform	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/27/2009 7:13:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
Benzene	ND	1.0	µg/L	- 1	2/27/2009 7:13:00 PM
Trichloroethene	3.0	2.0	µg/L	1	2/27/2009 7:13:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	. 1	2/27/2009 7:13:00 PM
Bromodichloromethane	ND	2.0	µg/L	· .1	2/27/2009 7:13:00 PM
Dibromomethane	ND	2.0	μg/L	1	2/27/2009 7:13:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/27/2009 7:13:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/27/2009 7:13:00 PM
Toluene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/27/2009 7:13:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	· 1 .	2/27/2009 7:13:00 PM
2-Hexanone	ND	10	µg/L	1	2/27/2009 7:13:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
Tetrachloroethene	8.6	2.0	μg/L	1	2/27/2009 7:13:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/27/2009 7:13:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-03A

#### Date: 09-Mar-09

## Client Sample ID: CW-2 Collection Date: 2/25/2009 1:15:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	⁺ 1	2/27/2009 7:13:00 PM
Ethylbenzene	ND .	, 2.0	µg/L	1	2/27/2009 7:13:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
o-Xylene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
Styrene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
Bromoform	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
2-Chlorotoluene	ND	2.0	μg/L	1	2/27/2009 7:13:00 PM
4-Chlorotoluene	ND	2.0	µg/L	`1	2/27/2009 7:13:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
4-Isopropyltoluene	ND	2.0	µġ/L	1	2/27/2009 7:13:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/27/2009 7:13:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
Naphthalene	ND	5.0	µg/L	1	2/27/2009 7:13:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/27/2009 7:13:00 PM
Surr: Dibromofluoromethane	90.9	85-119	%REC	1	2/27/2009 7:13:00 PM
Surr: 1,2-Dichloroethane-d4	118	79-131	%REC	1	2/27/2009 7:13:00 PM
Surr: Toluene-d8	96.6	90-110	%REC	; <b>1</b>	2/27/2009 7:13:00 PM
Surr: 4-Bromofluorobenzene	100	76-117	%REC	1	2/27/2009 7:13:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-04A

Date: 09-Mar-09

## Client Sample ID: MW-209D Collection Date: 2/25/2009 1:35:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		SW8260B			Analyst: SK
Dichlorodifluoromethane	ND	50	μg/L	10	2/28/2009 5:04:00 PM
Chloromethane	ND	50	µg/L	10	2/28/2009 5:04:00 PM
Vinyl chloride	ND	20	µg/L	10	2/28/2009 5:04:00 PN
Chloroethane	ND	50	µg/L	10	2/28/2009 5:04:00 PM
Bromomethane	ND	20	µg/L	. 10	2/28/2009 5:04:00 PN
Trichlorofluoromethane	ND	20	µg/L	10	2/28/2009 5:04:00 PN
Diethyl ether	ND	50	µg/L	10	2/28/2009 5:04:00 PM
Acetone	ND	100	µg/L	10	2/28/2009 5:04:00 PN
1,1-Dichloroethene	ND	10	µg/L	10	2/28/2009 5:04:00 PN
Carbon disulfide	ND	20	µg/L	10	2/28/2009 5:04:00 PN
Methylene chloride	ND	50	µg/L	10	2/28/2009 5:04:00 PM
Methyl tert-butyl ether	ND	20	µg/L	10	2/28/2009 5:04:00 PN
trans-1,2-Dichloroethene	ND	20	µg/L	10	2/28/2009 5:04:00 PN
1,1-Dichloroethane	ND	20	µg/L	10	2/28/2009 5:04:00 PN
2-Butanone	ND	100	µg/L	10	2/28/2009 5:04:00 PN
2,2-Dichloropropane	ND	20	µg/L	10	2/28/2009 5:04:00 PM
cis-1,2-Dichloroethene	ND	20	µg/L	10	2/28/2009 5:04:00 PN
Chloroform	ŇD	20	μg/L	10	2/28/2009 5:04:00 PN
Tetrahydrofuran	ND	100	µg/L	10	2/28/2009 5:04:00 PN
Bromochloromethane	ND	20	µg/L	10	2/28/2009 5:04:00 PN
1,1,1-Trichloroethane	ND	20	µg/L	10	2/28/2009 5:04:00 PM
1,1-Dichloropropene	ND	20	µg/L	10	2/28/2009 5:04:00 PN
Carbon tetrachloride	ND	20	µg/L	10	2/28/2009 5:04:00 PN
1,2-Dichloroethane	ND	20	µg/L	10	2/28/2009 5:04:00 PN
Benzene	ND	10	µg/L	10	2/28/2009 5:04:00 PN
Trichloroethene	280	20	µg/L	10	2/28/2009 5:04:00 PN
1,2-Dichloropropane	ND	20	µg/L	10	2/28/2009 5:04:00 PN
Bromodichloromethane	ND	20	µg/L	10	2/28/2009 5:04:00 PN
Dibromomethane	ND	20	µg/L	10	2/28/2009 5:04:00 PN
4-Methyl-2-pentanone	ND	100	µg/L	10	2/28/2009 5:04:00 PN
cis-1,3-Dichloropropene	ND	10	µg/L	10	2/28/2009 5:04:00 PN
Toluene	ND	20	µg/L	10	2/28/2009 5:04:00 PN
trans-1,3-Dichloropropene	ND	10	μg/L	10	2/28/2009 5:04:00 PN
1,1,2-Trichloroethane	ND	.20	μg/L	10	2/28/2009 5:04:00 PN
1,2-Dibromoethane	ND	20	μg/L	10	2/28/2009 5:04:00 PN
2-Hexanone	ND	100	μg/L	10	2/28/2009 5:04:00 PM
1,3-Dichloropropane	ND	20	μg/L	10	2/28/2009 5:04:00 PN
Tetrachloroethene	780	20	µg/L	10	2/28/2009 5:04:00 PM
Dibromochloromethane	ND	20	μg/L	10	2/28/2009 5:04:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-04A

#### Date: 09-Mar-09

## Client Sample ID: MW-209D Collection Date: 2/25/2009 1:35:00 PM Matrix: GROUNDWATER

1,1,2-Tetrachloroethane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Ethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           m,p-Xylene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           o-Xylene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Styrene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Bromoform         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Isopropylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,1,2-Tetrachloroethane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trichoropropane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           2-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3,5-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,4-Loichouene         ND         20         µg/L         10         2/28/2009 5:04:0	Analyses	Result.	RL Qu	ial Units	DF	Date Analyzed
Ethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           m,p.Xylene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Styrene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Styrene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Bromoform         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Isopropylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,1,2,2-Tritchloroptopane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Bromobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           n-Propylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           a-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3,5-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM <td>Chlorobenzene</td> <td>ND</td> <td>20</td> <td>µg/L</td> <td>10</td> <td>2/28/2009 5:04:00 PM</td>	Chlorobenzene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
mp-Xylene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           o-Xylene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Styrene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Bromoform         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Isopropylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,2-Tetrachloroethane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trichloropropane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           n-Propylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           n-Propylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3-5-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trimethylbenzene         ND         20         µg/L         10         2/28/2	1,1,1,2-Tetrachloroethane	ND	20	µg/L	10	2/28/2009 5:04:00 PM
ND         20         µg/L         10         2/28/2009 5:04:00 PM           Styrene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Bromoform         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Isopropylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,1,2,2-Tetrachloroethane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3,2-Trichloropropane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Bromobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trinethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           2-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           4-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3,5-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM	Ethylbenzene	ND	_ 20	µg/L	10	2/28/2009 5:04:00 PM
Styrene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Bromoform         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Isopropylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,1,2,2-Tetrachloroethane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trichloropropane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Bromobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trinethrylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           2-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           4-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3,5-Trimethrylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trimethrylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3-Dichlorobenzene         ND         20         µg/L         10	m,p-Xylene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
Bromoform         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Isopropylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,1,2,2-Tetrachloroethane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trichloropropane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Bromobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           n-Propylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           2-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           4-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           3,5-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           4-Isopropyltoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3-Dichlorobenzene         ND         20         µg/L         10	o-Xylene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
Isopropylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,1,2,2-Tetrachloroethane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trichloropropane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Bromobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           n-Propylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           2-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           4-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3,5-Trimethylbenzene         ND         20         µg/L         10         2/28/209 5:04:00 PM           1,2,4-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3-Dichlorobenzene         ND         20         µg/L	Styrene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trichloropropane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Bromobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Bromobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Propylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           2-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           4-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3,5-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM <td>Bromoform</td> <td>ND</td> <td>20</td> <td>µg/L</td> <td>10</td> <td>2/28/2009 5:04:00 PM</td>	Bromoform	ND	20	µg/L	10	2/28/2009 5:04:00 PM
N.D.         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D <thd< th="">         D         <thd< th=""> <thd< th=""></thd<></thd<></thd<>	Isopropylbenzene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
Bromobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           n-Propylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           2-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           4-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3,5-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           4-Isopropyltoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,4-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dichlorobenzene         ND         20         µg/L <td< td=""><td>1,1,2,2-Tetrachloroethane</td><td>ND</td><td>20</td><td>µg/L ∘</td><td>10</td><td>2/28/2009 5:04:00 PM</td></td<>	1,1,2,2-Tetrachloroethane	ND	20	µg/L ∘	10	2/28/2009 5:04:00 PM
Instruction         ND         20         µg/L         10         2/28/2009 5:04:00 PM           2-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           4-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3,5-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3,5-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           4-Isopropyltoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,4-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,4-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dichlorobenzene         ND         20         µg/L	1,2,3-Trichloropropane	ND	20	µg/L	10	2/28/2009 5:04:00 PM
Arthylototione         ND         20         µg/L         10         2/28/2009 5:04:00 PM           2-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3,5-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3,5-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           tert-Butylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           4-Isopropyltoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,4-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dibrono-3-chloropropane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trichlorobenzene         ND         20         µg	Bromobenzene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
A-Chlorotoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3,5-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           tert-Butylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trimethylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           sec-Butylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           4-lsopropyltoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,4-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trichlorobenzene         ND         20         µg/L <td>n-Propylbenzene</td> <td>ND</td> <td>20</td> <td>µg/L</td> <td>10</td> <td>2/28/2009 5:04:00 PM</td>	n-Propylbenzene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
1,3,5-Trimethylbenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         tert-Butylbenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,2,4-Trimethylbenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         sec-Butylbenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         4-Isopropyltoluene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,3-Dichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,4-Dichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,2-Dichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,2-J-Dichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,2,4-Trichlorobenzene       ND	2-Chlorotoluene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
InstructionND20µg/L102/28/2009 5:04:00 PM1,2,4-TrimethylbenzeneND20µg/L102/28/2009 5:04:00 PMsec-ButylbenzeneND20µg/L102/28/2009 5:04:00 PM4-IsopropyltolueneND20µg/L102/28/2009 5:04:00 PM1,3-DichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,4-DichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,4-DichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2-DichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2-DichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2-DichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2-DichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2,4-TrichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2,4-TrichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2,3-TrichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2,3-TrichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2,3-TrichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2,3-TrichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2,3-TrichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,	4-Chlorotoluene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
Instruction       ND       20       µg/L       10       2/28/2009 5:04:00 PM         sec-Butylbenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         4-Isopropyltoluene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,3-Dichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,4-Dichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,4-Dichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,4-Dichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,2-Dichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,2-Dichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,2,4-Trichlorobenzene       ND       50       µg/L       10       2/28/2009 5:04:00 PM         1,2,4-Trichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,2,3-Trichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,2,3-Trichlorobenzene       ND	1,3,5-Trimethylbenzene	ND	20	μg/L	10	2/28/2009 5:04:00 PM
sec-ButylbenzeneND20µg/L102/28/2009 5:04:00 PM4-IsopropyltolueneND20µg/L102/28/2009 5:04:00 PM1,3-DichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,4-DichlorobenzeneND20µg/L102/28/2009 5:04:00 PMn-ButylbenzeneND20µg/L102/28/2009 5:04:00 PMn-ButylbenzeneND20µg/L102/28/2009 5:04:00 PM1,2-DichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2-Dibromo-3-chloropropaneND20µg/L102/28/2009 5:04:00 PM1,2,4-TrichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2,3-TrichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2,3-TrichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2,3-TrichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2,3-TrichlorobenzeneND20µg/L102/28/2009 5:04:00 PM1,2,3-TrichlorobenzeneND20µg/L102/28/2009 5:04:00 PMSurr: Dibromofluoromethane92.785-119%REC102/28/2009 5:04:00 PMSurr: Toluene-d897.490-110%REC102/28/2009 5:04:00 PM	tert-Butylbenzene	ND	20	μg/L	10	2/28/2009 5:04:00 PM
4-Isopropyltoluene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,3-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,4-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           n-Butylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           n-Butylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dibromo-3-chloropropane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trichlorobenzene         ND         50         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Naphthalene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Surr: Dibromofluoromethane         92.7         85-119 <td< td=""><td>1,2,4-Trimethylbenzene</td><td>ND</td><td>20</td><td>µg/L</td><td>10</td><td>2/28/2009 5:04:00 PM</td></td<>	1,2,4-Trimethylbenzene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
1,3-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,4-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           n-Butylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dibromo-3-chloropropane         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Hexachlorobutadiene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Naphthalene         ND         50         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Surr: Dibromofluoromethane         92.7         85-119	sec-Butylbenzene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
1,4-Dichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         n-Butylbenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,2-Dichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,2-Dichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,2-Dibromo-3-chloropropane       ND       50       µg/L       10       2/28/2009 5:04:00 PM         1,2,4-Trichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         1,2,4-Trichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         Hexachlorobutadiene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         Naphthalene       ND       50       µg/L       10       2/28/2009 5:04:00 PM         1,2,3-Trichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         Surr: Dibromofluoromethane       92.7       85-119       %REC       10       2/28/2009 5:04:00 PM         Surr: Toluene-d8       97.4       90-110       %REC       10       2/28/2009 5:04:00 PM	4-Isopropyltoluene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
n-Butylbenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dibromo-3-chloropropane         ND         50         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trichlorobenzene         ND         50         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Hexachlorobutadiene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Naphthalene         ND         50         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trichlorobenzene         ND         50         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Surr: Dibromofluoromethane         92.7         85-119         %REC         10         2/28/2009 5:04:00 PM           Surr: Toluene-d8         97.4         90-110         %REC         10         2/28/2009 5:04:00 PM	1,3-Dichlorobenzene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
1,2-Dichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2-Dibromo-3-chloropropane         ND         50         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           1,2,4-Trichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Hexachlorobutadiene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Naphthalene         ND         50         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trichlorobenzene         ND         50         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Surr: Dibromofluoromethane         92.7         85-119         %REC         10         2/28/2009 5:04:00 PM           Surr: Toluene-d8         97.4         90-110         %REC         10         2/28/2009 5:04:00 PM	1,4-Dichlorobenzene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
1,2-Dibromo-3-chloropropane       ND       50       µg/L       10       2/28/2009 5:04:00 PM         1,2,4-Trichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         Hexachlorobutadiene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         Naphthalene       ND       50       µg/L       10       2/28/2009 5:04:00 PM         Naphthalene       ND       50       µg/L       10       2/28/2009 5:04:00 PM         1,2,3-Trichlorobenzene       ND       20       µg/L       10       2/28/2009 5:04:00 PM         Surr: Dibromofluoromethane       92.7       85-119       %REC       10       2/28/2009 5:04:00 PM         Surr: 1,2-Dichloroethane-d4       120       79-131       %REC       10       2/28/2009 5:04:00 PM         Surr: Toluene-d8       97.4       90-110       %REC       10       2/28/2009 5:04:00 PM	n-Butylbenzene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
1,2,4-Trichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Hexachlorobutadiene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Naphthalene         ND         50         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trichlorobenzene         ND         50         µg/L         10         2/28/2009 5:04:00 PM           Surr: Dibromofluoromethane         92.7         85-119         %REC         10         2/28/2009 5:04:00 PM           Surr: 1,2-Dichloroethane-d4         120         79-131         %REC         10         2/28/2009 5:04:00 PM           Surr: Toluene-d8         97.4         90-110         %REC         10         2/28/2009 5:04:00 PM	1,2-Dichlorobenzene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
Hexachlorobutadiene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Naphthalene         ND         50         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Surr: Dibromofluoromethane         92.7         85-119         %REC         10         2/28/2009 5:04:00 PM           Surr: 1,2-Dichloroethane-d4         120         79-131         %REC         10         2/28/2009 5:04:00 PM           Surr: Toluene-d8         97.4         90-110         %REC         10         2/28/2009 5:04:00 PM	1,2-Dibromo-3-chloropropane	ND	50	µg/L	10	2/28/2009 5:04:00 PM
Naphthalene         ND         50         µg/L         10         2/28/2009 5:04:00 PM           1,2,3-Trichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Surr: Dibromofluoromethane         92.7         85-119         %REC         10         2/28/2009 5:04:00 PM           Surr: 1,2-Dichloroethane-d4         120         79-131         %REC         10         2/28/2009 5:04:00 PM           Surr: Toluene-d8         97.4         90-110         %REC         10         2/28/2009 5:04:00 PM	1,2,4-Trichlorobenzene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
1,2,3-Trichlorobenzene         ND         20         µg/L         10         2/28/2009 5:04:00 PM           Surr: Dibromofluoromethane         92.7         85-119         %REC         10         2/28/2009 5:04:00 PM           Surr: 1,2-Dichloroethane-d4         120         79-131         %REC         10         2/28/2009 5:04:00 PM           Surr: Toluene-d8         97.4         90-110         %REC         10         2/28/2009 5:04:00 PM	Hexachlorobutadiene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
Surr: Dibromofluoromethane         92.7         85-119         %REC         10         2/28/2009 5:04:00 PM           Surr: 1,2-Dichloroethane-d4         120         79-131         %REC         10         2/28/2009 5:04:00 PM           Surr: Toluene-d8         97.4         90-110         %REC         10         2/28/2009 5:04:00 PM	Naphthalene	ND	50	µg/L	10	2/28/2009 5:04:00 PM
Surr: 1,2-Dichloroethane-d4         120         79-131         %REC         10         2/28/2009 5:04:00 PM           Surr: Toluene-d8         97.4         90-110         %REC         10         2/28/2009 5:04:00 PM	1,2,3-Trichlorobenzene	ND	20	µg/L	10	2/28/2009 5:04:00 PM
Surr: Toluene-d8         97.4         90-110         %REC         10         2/28/2009 5:04:00 PM	Surr: Dibromofluoromethane	92.7	85-119	%REC	10	2/28/2009 5:04:00 PM
	Surr: 1,2-Dichloroethane-d4	120	79-131	%REC	10	2/28/2009 5:04:00 PM
Surr: 4-Bromofluorobenzene 103 76-117 %REC 10 2/28/2009 5:04:00 PM	Surr: Toluene-d8	97.4	90-110	%REC	10	2/28/2009 5:04:00 PM
	Surr: 4-Bromofluorobenzene	103	76-117	%REC	10	2/28/2009 5:04:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-05A

Date: 09-Mar-09

## Client Sample ID: MW-217S Collection Date: 2/25/2009 3:35:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B				Analyst: SK
Dichlorodifluoromethane	ND	5.0		µg/L	1	2/27/2009 7:48:00 PM
Chloromethane	ND	5.0		µg/L	1	2/27/2009 7:48:00 PM
Vinyl chloride	3.0	2.0		µg/L	1	2/27/2009 7:48:00 PM
Chloroethane	ND	5.0		µg/L	1	2/27/2009 7:48:00 PM
Bromomethane	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
Trichlorofluoromethane	ND	2.0		µg/L	. 1	2/27/2009 7:48:00 PM
Diethyl ether	ND	5.0		µg/L	.1	2/27/2009 7:48:00 PM
Acetone	ND	10		µg/L	1	2/27/2009 7:48:00 PM
1,1-Dichloroethene	ND	1.0		µg/L	1	2/27/2009 7:48:00 PM
Carbon disulfide	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
Methylene chloride	ND	5.0		µg/L	1	2/27/2009 7:48:00 PM
Methyl tert-butyl ether	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
trans-1,2-Dichloroethene	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
1,1-Dichloroethane	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
2-Butanone	ND	10		µg/L	1	2/27/2009 7:48:00 PM
2,2-Dichloropropane	. ND	2.0		µg/L	1 <b>1</b>	2/27/2009 7:48:00 PM
cis-1,2-Dichloroethene	17	2.0		µg/L	1	2/27/2009 7:48:00 PM
Chloroform	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
Tetrahydrofuran	ND	10		µg/L	1	2/27/2009 7:48:00 PM
Bromochloromethane	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
1,1,1-Trichloroethane	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
1,1-Dichloropropene	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
Carbon tetrachloride	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
1,2-Dichloroethane	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
Benzene	ND	. 1.0		µg/L	1	2/27/2009 7:48:00 PM
Trichloroethene	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
1,2-Dichloropropane	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
Bromodichloromethane	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
Dibromomethane	ND	2.0		µg/L	່ 1	2/27/2009 7:48:00 PM
4-Methyl-2-pentanone	ND	10		µg/L	1	2/27/2009 7:48:00 PM
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	2/27/2009 7:48:00 PM
Toluene	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	2/27/2009 7:48:00 PM
1,1,2-Trichloroethane	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
1,2-Dibromoethane	ND	2.0		µg/L	1	2/27/2009 7:48:00 PM
2-Hexanone	ND	10		μg/L	1	2/27/2009 7:48:00 PM
1,3-Dichloropropane	ND ·	2.0		µg/L	1	2/27/2009 7:48:00 PM
Tetrachloroethene	16	2.0		µg/L	1	2/27/2009 7:48:00 PM
Dibromochloromethane	ND	2.0		µg/L	< 1	2/27/2009 7:48:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-05A

#### Date: 09-Mar-09

## Client Sample ID: MW-217S Collection Date: 2/25/2009 3:35:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	2/27/2009 7:48:00 PM
Ethylbenzene	ND	2.0	μg/L	1	2/27/2009 7:48:00 PM
m,p-Xylene	ND	2.0	μg/L	1	2/27/2009 7:48:00 PM
o-Xylene	ND	2.0	μg/L	1	2/27/2009 7:48:00 PM
Styrene	ND	2.0	µg/L	. 1	2/27/2009 7:48:00 PM
Bromoform	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1.	2/27/2009 7:48:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
4-isopropyltoluene	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/Ľ	1	2/27/2009 7:48:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/27/2009 7:48:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	2/27/2009 7:48:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	2/27/2009 7:48:00 PM
Naphthalene	ND	5.0	µg/L	1	2/27/2009 7:48:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/27/2009 7:48:00 PM
Surr: Dibromofluoromethane	95.4	85-119	%REC	1	2/27/2009 7:48:00 PM
Surr: 1,2-Dichloroethane-d4	110	79-131	%REC	· 1	2/27/2009 7:48:00 PM
Surr: Toluene-d8	96.8	90-110	%REC	. 1	2/27/2009 7:48:00 PM
Surr: 4-Bromofluorobenzene	102	76-117	%REC	1	2/27/2009 7:48:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-06A

#### Date: 09-Mar-09

## Client Sample ID: MW-217D Collection Date: 2/25/2009 3:45:00 PM Matrix: GROUNDWATER

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
PA 8260B VOLATILES BY GC/MS	· · ·	SW8260B	-			Analyst: <b>SK</b>
Dichlorodifluoromethane	ND	5.0	ŀ	ug/L	1	2/27/2009 8:22:00 PM
Chloromethane	ND	5.0	ł	ug/L	1	2/27/2009 8:22:00 PN
Vinyl chloride	ND	2.0	· •	ug/L	1	2/27/2009 8:22:00 PM
Chloroethane	ND	5.0	I	ug/L	1	2/27/2009 8:22:00 PN
Bromomethane	ND	2.0	ł	ug/L	1	2/27/2009 8:22:00 PN
Trichlorofluoromethane	ND	2.0	ł	ug/L	. 1	2/27/2009 8:22:00 PN
Diethyl ether	ND	5.0	ł	ug/L	1	2/27/2009 8:22:00 PM
Acetone	ND	10	. 1	ug/L	1	2/27/2009 8:22:00 PN
1,1-Dichloroethene	ND	1.0	1	µg/L	1	2/27/2009 8:22:00 PN
Carbon disulfide	ND	2.0	1	µg/L	1	2/27/2009 8:22:00 PN
Methylene chloride	ND	5.0	ļ	µg/L	1	2/27/2009 8:22:00 PM
Methyl tert-butyl ether	ND	2.0	1	µg/L	1	2/27/2009 8:22:00 PM
trans-1,2-Dichloroethene	ND	2.0		µg/L	1	2/27/2009 8:22:00 PN
1,1-Dichloroethane	ND	2.0		µg/L	1	2/27/2009 8:22:00 PN
2-Butanone	ND	10		µg/L	1	2/27/2009 8:22:00 PM
2,2-Dichloropropane	ND	2.0		µg/L	1	2/27/2009 8:22:00 PM
cis-1,2-Dichloroethene	17	2.0	•	µg/L	1	2/27/2009 8:22:00 PN
Chloroform	ND	2.0		µg/L	1	2/27/2009 8:22:00 PM
Tetrahydrofuran	ND	10	1	µg/L	1	2/27/2009 8:22:00 PM
Bromochloromethane	ND	. 2.0	1	µg/L	1	2/27/2009 8:22:00 PN
1,1,1-Trichloroethane	ND	2.0	. 1	µg/L	1	2/27/2009 8:22:00 PN
1,1-Dichloropropene	ND	2.0	. 1	µg/L	1	2/27/2009 8:22:00 PM
Carbon tetrachloride	ND	2.0	1	µg/L	1	2/27/2009 8:22:00 PN
1,2-Dichloroethane	ND	2.0		µg/L	1	2/27/2009 8:22:00 PN
Benzene	ND	1.0		µg/L	1	2/27/2009 8:22:00 PM
Trichloroethene	ND	2.0	1	µg/L	1	2/27/2009 8:22:00 PN
1,2-Dichloropropane	ND	2.0	-	µg/L	1	2/27/2009 8:22:00 PM
Bromodichloromethane	ND	2.0		µg/L	1	2/27/2009 8:22:00 PN
Dibromomethane	ND	2.0	1	µg/L	[*] 1	2/27/2009 8:22:00 PN
4-Methyl-2-pentanone	ND	10	1	µg/L	1	2/27/2009 8:22:00 PM
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	2/27/2009 8:22:00 PN
Toluene	ND	2.0		µg/L	1	2/27/2009 8:22:00 PM
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	2/27/2009 8:22:00 PN
1,1,2-Trichloroethane	ND	2.0		µg/L	· 1	2/27/2009 8:22:00 PN
1,2-Dibromoethane	ND	2.0		μg/L	1	2/27/2009 8:22:00 PM
2-Hexanone	ND	10		µg/L	1	2/27/2009 8:22:00 PM
1,3-Dichloropropane	ND	2.0		μg/L	1	2/27/2009 8:22:00 PM
Tetrachloroethene	ND	2.0		µg/L	1	2/27/2009 8:22:00 PN
Dibromochloromethane	ND	2.0		µg/L	1	2/27/2009 8:22:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-06A

#### Date: 09-Mar-09

#### Client Sample ID: MW-217D Collection Date: 2/25/2009 3:45:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	2/27/2009 8:22:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	2/27/2009 8:22:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
o-Xylene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
Styrene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
Bromoform	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	⊬µg/L	1	2/27/2009 8:22:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
-sec-Butylbenzene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/27/2009 8:22:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
Naphthalene	ND	5.0	µg/́L	1	2/27/2009 8:22:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/27/2009 8:22:00 PM
Surr: Dibromofluoromethane	90.7	85-119	%REC	1	2/27/2009 8:22:00 PM
Surr: 1,2-Dichloroethane-d4	115	79-131	%REC	1	2/27/2009 8:22:00 PM
Surr: Toluene-d8	96.3	90-110	%REC	<u>,</u> 1	2/27/2009 8:22:00 PM
Surr: 4-Bromofluorobenzene	105	76-117	%REC	1	2/27/2009 8:22:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-07A

Date: 09-Mar-09

## Client Sample ID: MW-216S Collection Date: 2/25/2009 3:58:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	/8260B			Analyst: <b>SK</b>
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/27/2009 8:57:00 PN
Chloromethane	ND	5.0	µg/L	1	2/27/2009 8:57:00 PN
Vinyl chloride	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
Chloroethane	ND	5.0	µg/L	1	2/27/2009 8:57:00 PN
Bromomethane	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
Trichlorofluoromethane	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
Diethyl ether	ND	5.0	µg/L	1	2/27/2009 8:57:00 PN
Acetone	ND	10	μg/L	1	2/27/2009 8:57:00 PN
1,1-Dichloroethene	ND	1.0	μg/L	- 1	2/27/2009 8:57:00 PN
Carbon disulfide	ND	2.0	μg/L	1	2/27/2009 8:57:00 PN
Methylene chloride	ND	5.0	µg/L	1	2/27/2009 8:57:00 PN
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
trans-1,2-Dichloroethene	ND	2.0	μg/L	1	2/27/2009 8:57:00 PN
1,1-Dichloroethane	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
2-Butanone	ND	10	µg/L	1	2/27/2009 8:57:00 PN
2,2-Dichloropropane	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
cis-1,2-Dichloroethene	76	2.0	μg/L	1	2/27/2009 8:57:00 PN
Chloroform	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
Tetrahydrofuran	ND	10	µg/L	1	2/27/2009 8:57:00 PN
Bromochloromethane	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
1,1,1-Trichloroethane	ND .	2.0	µg/L	1	2/27/2009 8:57:00 PN
1,1-Dichloropropene	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
Carbon tetrachloride	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
1,2-Dichloroethane	ND	2.0	µg/L	1	2/27/2009 8:57:00 PM
Benzene	ND	1.0	µg/L	1	2/27/2009 8:57:00 PN
Trichloroethene	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
1,2-Dichloropropane	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
Bromodichloromethane	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
Dibromomethane	ND	2.0	µg/L	1	2/27/2009 8:57:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/27/2009 8:57:00 PN
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/27/2009 8:57:00 PM
Toluene	3.0	2.0	µg/L	1	2/27/2009 8:57:00 PN
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	2/27/2009 8:57:00 PN
1,1,2-Trichloroethane	ND	2.0	µg/L	1 .	2/27/2009 8:57:00 PN
1,2-Dibromoethane	ND	2.0	µg/L	1	2/27/2009 8:57:00 PM
2-Hexanone	ND	10	µg/L	1	2/27/2009 8:57:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
Tetrachloroethene	ND	2.0	μg/L	1	2/27/2009 8:57:00 PN
Dibromochloromethane	ND	2.0	μg/L	1	2/27/2009 8:57:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-07A

#### Date: 09-Mar-09

#### Client Sample ID: MW-216S Collection Date: 2/25/2009 3:58:00 PM Matrix: GROUNDWATER

Analyses	Result	RL QI	al Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/27/2009 8:57:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/27/2009 8:57:00 PM
Ethylbenzene	3.0	, 2.0	µg/L	1	2/27/2009 8:57:00 PM
m,p-Xylene	7.7	2.0	µg/L	1	2/27/2009 8:57:00 PM
o-Xylene	10	2.0	µg/L	1	2/27/2009 8:57:00 PM
Styrene	ND	2.0	µg/L	1	2/27/2009 8:57:00 PM
Bromoform	ND	2.0	µg/L	1	2/27/2009 8:57:00 PM
Isopropylbenzene	ND	2.0	µg/L	<u></u> 1	2/27/2009 8:57:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/27/2009 8:57:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	2/27/2009 8:57:00 PM
Bromobenzene	. ND	2.0	µg/L	1	2/27/2009 8:57:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
2-Chlorotoluene	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
4-Chlorotoluene	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
1,3,5-Trimethylbenzene	9.8	2.0	µg/L	1	2/27/2009 8:57:00 PN
tert-Butylbenzene	ND	2.0	μg/L	1	2/27/2009 8:57:00 PM
1,2,4-Trimethylbenzene	13	2.0	µg/L	1	2/27/2009 8:57:00 PN
sec-Butylbenzene	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
4-Isopropyltoluene	ND	2.0	μg/L	1	2/27/2009 8:57:00 PN
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
n-Butylbenzene`	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/27/2009 8:57:00 PN
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/27/2009 8:57:00 PN
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/27/2009 8:57:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	2/27/2009 8:57:00 PM
Naphthalene	46	5.0	µg/L	1	2/27/2009 8:57:00 PN
1,2,3-Trichlorobenzene	ND	2.0	µg/L	. 1	2/27/2009 8:57:00 PN
Surr: Dibromofluoromethane	91.4	85-119	%REC	1	2/27/2009 8:57:00 PN
Surr: 1,2-Dichloroethane-d4	109	79-131	%REC	1	2/27/2009 8:57:00 PN
Surr: Toluene-d8	98.2	90-110	%REC	. 1	2/27/2009 8:57:00 PN
Surr: 4-Bromofluorobenzene	104	76-117	%REC	1	2/27/2009 8:57:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-08A

Date: 09-Mar-09

#### Client Sample ID: MW-216D Collection Date: 2/25/2009 4:15:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B				Analyst: SK
Dichlorodifluoromethane	ND	5.0		µg/L	1	2/28/2009 12:34:00 PN
Chloromethane	ND	5.0		µg/L	1	2/28/2009 12:34:00 PN
Vinyl chloride	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
Chloroethane	ND	5.0		µg/L	1	2/28/2009 12:34:00 PN
Bromomethane	ND	2.0		µg/L	. 1	2/28/2009 12:34:00 PN
Trichlorofluoromethane	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
Diethyl ether	ND	5.0		µg/L	1	2/28/2009 12:34:00 PN
Acetone	ND	10		µg/L	1	2/28/2009 12:34:00 PM
1,1-Dichloroethene	ND	1.0		µg/L	1	2/28/2009 12:34:00 PN
Carbon disulfide	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
Methylene chloride	ND	5.0		µg/L	1	2/28/2009 12:34:00 PN
Methyl tert-butyl ether	3.2	2.0		µg/L	1	2/28/2009 12:34:00 PN
trans-1,2-Dichloroethene	ND	2.0	t.	µg/L	1	2/28/2009 12:34:00 PN
1,1-Dichloroethane	ND	2.0		µg/L	1	2/28/2009 12:34:00 PM
2-Butanone	ND	10		µg/L	1	2/28/2009 12:34:00 PN
2,2-Dichloropropane	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
cis-1,2-Dichloroethene	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
Chloroform	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
Tetrahydrofuran	ND	10		µg/L	1	2/28/2009 12:34:00 PN
Bromochloromethane	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
1,1,1-Trichloroethane	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
1,1-Dichloropropene	ND	2.0		µg/L	1	2/28/2009 12:34:00 PM
Carbon tetrachloride	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
1,2-Dichloroethane	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
Benzene	ND	1.0		µg/L	1	2/28/2009 12:34:00 PN
Trichloroethene	3.9	2.0		µg/L	1	2/28/2009 12:34:00 PN
1,2-Dichloropropane	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
Bromodichloromethane	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
Dibromomethane	ND	2.0		µg/L	<u> </u>	2/28/2009 12:34:00 PN
4-Methyl-2-pentanone	ND	10		µg/L	1	2/28/2009 12:34:00 PN
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	2/28/2009 12:34:00 PN
Toluene	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	2/28/2009 12:34:00 PN
1,1,2-Trichloroethane	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
1,2-Dibromoethane	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
2-Hexanone	ND .	10		µg/L	1	2/28/2009 12:34:00 PN
1,3-Dichloropropane	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
Tetrachloroethene	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN
Dibromochloromethane	ND	2.0		µg/L	1	2/28/2009 12:34:00 PN

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-08A

#### Date: 09-Mar-09

#### Client Sample ID: MW-216D Collection Date: 2/25/2009 4:15:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	. 1	2/28/2009 12:34:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/28/2009 12:34:00 PM
Ethylbenzene	ND	, 2.0	µg/L	1	2/28/2009 12:34:00 PN
m,p-Xylene	ND	2.0	µg/L	1	2/28/2009 12:34:00 PM
o-Xylene	ND	2.0	µg/L	1	2/28/2009 12:34:00 PN
Styrene	ND	2.0	μg/L	1	2/28/2009 12:34:00 PN
Bromoform	ND	2.0	µg/L	1	2/28/2009 12:34:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/28/2009 12:34:00 PN
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	2/28/2009 12:34:00 PN
1,2,3-Trichloropropane	ND	2.0	μg/L	1	2/28/2009 12:34:00 PN
Bromobenzene	ND	2.0	μg/L	1	2/28/2009 12:34:00 PN
n-Propylbenzene	ND	2.0	μg/L	1	2/28/2009 12:34:00 PN
2-Chlorotoluene	ND	2.0	µg/L	1	2/28/2009 12:34:00 PN
4-Chlorotoluene	ND	2.0	µg/L	1	2/28/2009 12:34:00 PN
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/28/2009 12:34:00 PN
tert-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 12:34:00 PN
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/28/2009 12:34:00 PN
-sec-Butylbenzene	ND	2.0	μg/L	1	2/28/2009 12:34:00 PN
4-Isopropyltoluene	ND	2.0	µg/L	1	2/28/2009 12:34:00 PN
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 12:34:00 PN
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 12:34:00 PN
n-Butylbenzene	ND	2.0	µg/L	[`] 1	2/28/2009 12:34:00 PN
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 12:34:00 PN
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/28/2009 12:34:00 PN
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/28/2009 12:34:00 PN
Hexachlorobutadiene	ND	2.0	µg/L	1	2/28/2009 12:34:00 PM
Naphthalene	ND	5.0	µg/L	1	2/28/2009 12:34:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/28/2009 12:34:00 PM
Surr: Dibromofluoromethane	89.2	85-119	%REC	1	2/28/2009 12:34:00 PM
Surr: 1,2-Dichloroethane-d4	118	79-131	%REC	· 1	2/28/2009 12:34:00 PM
Surr: Toluene-d8	96.8	90-110	%REC	. 1	2/28/2009 12:34:00 PM
Surr: 4-Bromofluorobenzene	103	76-117	%REC	1	2/28/2009 12:34:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-09A

Date: 09-Mar-09

#### Client Sample ID: MW-207S Collection Date: 2/25/2009 9:00:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	S	W8260B			•	Analyst: <b>SK</b>
Dichlorodifluoromethane	ND	· 50		µg/L	10	2/28/2009 5:38:00 PN
Chloromethane	ND	50		µg/L`	10	2/28/2009 5:38:00 PN
Vinyl chloride	ND	20		µg/L	10	2/28/2009 5:38:00 PN
Chloroethane	ND	. 50		µg/L	10	2/28/2009 5:38:00 PN
Bromomethane	ND	20		µg/L	10	2/28/2009 5:38:00 PN
Trichlorofluoromethane	ND	20		µg/L	10	2/28/2009 5:38:00 PN
Diethyl ether	ND	50		μg/L	10	2/28/2009 5:38:00 PN
Acetone	ND	100		µg/L	10	2/28/2009 5:38:00 PN
1,1-Dichloroethene	ND	10		µg/L	10	2/28/2009 5:38:00 PN
Carbon disulfide	ND	20		µg/L	10	2/28/2009 5:38:00 PM
Methylene chloride	ND	50		µg/L	10	2/28/2009 5:38:00 PM
Methyl tert-butyl ether	ND	20		µg/L	10	2/28/2009 5:38:00 PM
trans-1,2-Dichloroethene	ND	20		µg/L	10	2/28/2009 5:38:00 PM
1,1-Dichloroethane	ND	20		µg/L	10	2/28/2009 5:38:00 PM
2-Butanone	ND	100		µg/L	10	2/28/2009 5:38:00 PM
2,2-Dichloropropane	ND	20		µg/L	10	2/28/2009 5:38:00 PM
cis-1,2-Dichloroethene	ND	20		µg/L	10	2/28/2009 5:38:00 PN
Chloroform	ND	20		µg/L	10	2/28/2009 5:38:00 PN
Tetrahydrofuran	ND	100		µg/L	10	2/28/2009 5:38:00 PN
Bromochloromethane	ND	20		µg/L	10	2/28/2009 5:38:00 PN
1,1,1-Trichloroethane	ND	20		µg/L	10	2/28/2009 5:38:00 PM
1,1-Dichloropropene	ND	20		µg/L	10	2/28/2009 5:38:00 PM
Carbon tetrachloride	ND	20		µg/L	10	2/28/2009 5:38:00 PM
1,2-Dichloroethane	ND	20		µg/L	10	2/28/2009 5:38:00 PM
Benzene	ND	10		µg/L	10	2/28/2009 5:38:00 PM
Trichloroethene	88	20		µg/L	10	2/28/2009 5:38:00 PM
1,2-Dichloropropane	ND	20		µg/L	10	2/28/2009 5:38:00 PM
Bromodichloromethane	ND	20		µg/L	10	2/28/2009 5:38:00 PM
Dibromomethane	ND	20		µg/L	10	2/28/2009 5:38:00 PM
4-Methyl-2-pentanone	ND	100		µg/L	10	2/28/2009 5:38:00 PM
cis-1,3-Dichloropropene	ND	10		µg/L	10	2/28/2009 5:38:00 PN
Toluene	ND	20		µg/L	10	2/28/2009 5:38:00 PN
trans-1,3-Dichloropropene	ND	10		µg/L	10	2/28/2009 5:38:00 PN
1,1,2-Trichloroethane	ND	20		µg/L	10	2/28/2009 5:38:00 PN
1,2-Dibromoethane	ND	20		µg/L	10	2/28/2009 5:38:00 PM
2-Hexanone	ND	100		µg/L	10	2/28/2009 5:38:00 PM
1,3-Dichloropropane	ND	20	~	µg/L	10	2/28/2009 5:38:00 PM
Tetrachloroethene	2,000	20		µg/L	10	2/28/2009 5:38:00 PM
Dibromochloromethane	ND	20		µg/L	10	2/28/2009 5:38:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-09A

#### Date: 09-Mar-09

## Client Sample ID: MW-207S Collection Date: 2/25/2009 9:00:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	20	µg/L	. 10	2/28/2009 5:38:00 PM
1,1,1,2-Tetrachloroethane	ND	20	µg/L	10	2/28/2009 5:38:00 PM
Ethylbenzene	ND	_ 20	µg/L	10	2/28/2009 5:38:00 PM
m,p-Xylene	ND	20	µg/L	10	2/28/2009 5:38:00 PM
o-Xylene	ND	20	µg/L	10	2/28/2009 5:38:00 PM
Styrene	ND	20	μg/L	10	2/28/2009 5:38:00 PM
Bromoform	ND	20	µg/L	10	2/28/2009 5:38:00 PM
Isopropylbenzene	ND	20	µg/L	10	2/28/2009 5:38:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	2/28/2009 5:38:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	2/28/2009 5:38:00 PM
Bromobenzene	ND	20	µg/L	10	2/28/2009 5:38:00 PM
n-Propylbenzene	ND	20	μg/L	-10	2/28/2009 5:38:00 PM
2-Chlorotoluene	ND	20	µg/L	10	2/28/2009 5:38:00 PM
4-Chlorotoluene	ND	20	µg/L	10	2/28/2009 5:38:00 PM
1,3,5-Trimethylbenzene	ND	20	μg/L	10	2/28/2009 5:38:00 PM
tert-Butylbenzene	ND	20	µg/L	10	2/28/2009 5:38:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	10	2/28/2009 5:38:00 PM
-sec-Butylbenzene	ND	20	µg/L	10	2/28/2009 5:38:00 PM
4-Isopropyltoluene	ND	20	μg/L	10	2/28/2009 5:38:00 PM
1,3-Dichlorobenzene	ND	20	μg/L	10	2/28/2009 5:38:00 PM
1,4-Dichlorobenzene	ND	20	μg/L	10	2/28/2009 5:38:00 PM
n-Butylbenzene	ND	20	µg/L	10	2/28/2009 5:38:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10	2/28/2009 5:38:00 PM
1,2-Dibromo-3-chloropropane	ND	50	µg/L	10	2/28/2009 5:38:00 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	10	2/28/2009 5:38:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	2/28/2009 5:38:00 PM
Naphthalene	ND	50	µg/L	10	2/28/2009 5:38:00 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	10	2/28/2009 5:38:00 PM
Surr: Dibromofluoromethane	94.0	85-119	%REC	10	2/28/2009 5:38:00 PM
Surr: 1,2-Dichloroethane-d4	123	79-131	%REC	10	2/28/2009 5:38:00 PM
Surr: Toluene-d8	96.3	90-110	%REC	10	2/28/2009 5:38:00 PM
Surr: 4-Bromofluorobenzene	103	76-117	%REC	10	2/28/2009 5:38:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-10A

Date: 09-Mar-09

#### Client Sample ID: MW-207D Collection Date: 2/25/2009 9:15:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		SW8260B	i.			Analyst: <b>SK</b>
Dichlorodifluoromethane	ND	· · 100		µg/L	20	2/28/2009 6:12:00 PM
Chloromethane	ND	100		µg/L	20	2/28/2009 6:12:00 PN
Vinyl chloride	ND	40		µg/L	20	2/28/2009 6:12:00 PM
Chloroethane	ND	100		µg/L	20	2/28/2009 6:12:00 PM
Bromomethane	ND	40		µg/L	20	2/28/2009 6:12:00 PM
Trichlorofluoromethane	ND	40		µg/L	20	2/28/2009 6:12:00 PM
Diethyl ether	ND	. 100		µg/L	20	2/28/2009 6:12:00 PM
Acetone	ND	200		µg/L	20	2/28/2009 6:12:00 PM
1,1-Dichloroethene	ND	20		µg/L	20	2/28/2009 6:12:00 PM
Carbon disulfide	ND	40		µg/L	20	2/28/2009 6:12:00 PM
Methylene chloride	ND	100		µg/L	20	2/28/2009 6:12:00 PM
Methyl tert-butyl ether	ND	40		µg/L	20	2/28/2009 6:12:00 PM
trans-1,2-Dichloroethene	ND	40		µg/L	20	2/28/2009 6:12:00 PM
1,1-Dichloroethane	ND	40		µg/L	20	2/28/2009 6:12:00 PM
2-Butanone	ND	200		µg/L	20	2/28/2009 6:12:00 PN
2,2-Dichloropropane	ND	40		µg/L	20	2/28/2009 6:12:00 PM
cis-1,2-Dichloroethene	ND	40		µg/L	20	2/28/2009 6:12:00 PM
Chloroform	ND	40		µg/L	20	2/28/2009 6:12:00 PM
Tetrahydrofuran	ND	200		µg/L	20	2/28/2009 6:12:00 PN
Bromochloromethane	ND	40		µg/L	20	2/28/2009 6:12:00 PN
1,1,1-Trichloroethane	ND	40		µg/L	20	2/28/2009 6:12:00 PM
1,1-Dichloropropene	ND	40		µg/L	20	2/28/2009 6:12:00 PN
Carbon tetrachloride	ND	40		µg/L	20	2/28/2009 6:12:00 PN
1,2-Dichloroethane	ND	40		µg/L	20	2/28/2009 6:12:00 PM
Benzene	ND	20		µg/L	20	2/28/2009 6:12:00 PM
Trichloroethene	110	40		µg/L	20	2/28/2009 6:12:00 PN
1,2-Dichloropropane	ND	40		µg/L	20	2/28/2009 6:12:00 PM
Bromodichloromethane	ND	40		µg/L	20	2/28/2009 6:12:00 PN
Dibromomethane	ND	40		µg/L	20	2/28/2009 6:12:00 PN
4-Methyl-2-pentanone	ND	200		µg/L	20	2/28/2009 6:12:00 PN
cis-1,3-Dichloropropene	ND	20		µg/L	20	2/28/2009 6:12:00 PN
Toluene	ND	40		µg/L	20	2/28/2009 6:12:00 PN
trans-1,3-Dichloropropene	ND	20		µg/L	20	2/28/2009 6:12:00 PM
1,1,2-Trichloroethane	ND	40		µg/L	20	2/28/2009 6:12:00 PN
1,2-Dibromoethane	ND	40		µg/L	20	2/28/2009 6:12:00 PN
2-Hexanone	ND	200		µg/L	20	2/28/2009 6:12:00 PN
1,3-Dichloropropane	ND	40		μg/L	20	2/28/2009 6:12:00 PN
Tetrachloroethene	3,600	40		µg/L	20	2/28/2009 6:12:00 PN
Dibromochloromethane	ND	40		µg/L	20	2/28/2009 6:12:00 PN

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-10A

#### Date: 09-Mar-09

#### Client Sample ID: MW-207D Collection Date: 2/25/2009 9:15:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
1,1,1,2-Tetrachloroethane	ND	40	µg/L	20	2/28/2009 6:12:00 PM
Ethylbenzene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
m,p-Xylene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
o-Xylene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
Styrene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
Bromoform	ND	40	µg/L	20	2/28/2009 6:12:00 PM
Isopropylbenzene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
1,1,2,2-Tetrachioroethane	ND	40	µg/L	20	2/28/2009 6:12:00 PM
1,2,3-Trichloropropane	ND	40	μg/L	20	2/28/2009 6:12:00 PM
Bromobenzene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
n-Propylbenzene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
2-Chlorotoluene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
4-Chlorotoluene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
1,3,5-Trimethylbenzene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
tert-Butylbenzene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
1,2,4-Trimethylbenzene	ND	40	μg/L	20	2/28/2009 6:12:00 PM
-sec-Butylbenzene	ND	40	μg/L	20	2/28/2009 6:12:00 PM
4-isopropyltoluene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
1,3-Dichlorobenzene	ND	40	μg/L	20	2/28/2009 6:12:00 PM
1,4-Dichlorobenzene	ND	40	μg/L	20	2/28/2009 6:12:00 PM
n-Butylbenzene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
1,2-Dichlorobenzene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
1,2-Dibromo-3-chloropropane	ND	100	μg/L	20	2/28/2009 6:12:00 PM
1,2,4-Trichlorobenzene	ND	40	µg/L	20	2/28/2009 6:12:00 PM
Hexachlorobutadiene	ND	40	µg/L	20	2/28/2009 6:12:00 PM.
Naphthalene	ND	100	µg/L	20	2/28/2009 6:12:00 PM
1,2,3-Trichlorobenzene	ND	40	μg/L	20	2/28/2009 6:12:00 PM
Surr: Dibromofluoromethane	92.6	85-119	%REC	20	2/28/2009 6:12:00 PM
Surr: 1,2-Dichloroethane-d4	122	79-131	%REC	20	2/28/2009 6:12:00 PM
Surr: Toluene-d8	97.6	90-110	%REC	20	2/28/2009 6:12:00 PM
Surr: 4-Bromofluorobenzene	101	76-117	%REC	20	2/28/2009 6:12:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-11A

Date: 09-Mar-09

#### Client Sample ID: MW-202D Collection Date: 2/25/2009 9:40:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B				Analyst: SK
Dichlorodifluoromethane	ND	· 50		µg/L	10	3/4/2009 5:18:00 PM
Chloromethane	ND	50		µg/L	10	3/4/2009 5:18:00 PM
Vinyl chloride	ND	20		µg/L	10	3/4/2009 5:18:00 PM
Chloroethane	ND	50		µg/L	10	3/4/2009 5:18:00 PM
Bromomethane	ND	20		µg/L	10	3/4/2009 5:18:00 PM
Trichlorofluoromethane	ND	20		µg/L	10	3/4/2009 5:18:00 PM
Diethyl ether	ND	50		µg/L [`]	10	3/4/2009 5:18:00 PM
Acetone	ND	100		µg/L	10	3/4/2009 5:18:00 PM
1,1-Dichloroethene	ND	10		µg/L	10	3/4/2009 5:18:00 PM
Carbon disulfide	ND	20		µg/L	10	3/4/2009 5:18:00 PM
Methylene chloride	ND	50		µg/L	10	3/4/2009 5:18:00 PM
Methyl tert-butyl ether	ND	20		µg/L	10	3/4/2009 5:18:00 PM
trans-1,2-Dichloroethene	ND	20		µg/L	10	3/4/2009 5:18:00 PM
1,1-Dichloroethane	ND	20		µg/L	10	3/4/2009 5:18:00 PM
2-Butanone	ND	100		µg/L	10	3/4/2009 5:18:00 PM
2,2-Dichloropropane	ND	20		µg/L	10	3/4/2009 5:18:00 PM
cis-1,2-Dichloroethene	ND	20		µg/L	10	3/4/2009 5:18:00 PM
Chloroform	ND	20		µg/L	10	3/4/2009 5:18:00 PM
Tetrahydrofuran	ND	100		µg/L	· 10	3/4/2009 5:18:00 PM
Bromochloromethane	ND	20		µg/L	10	3/4/2009 5:18:00 PM
1,1,1-Trichloroethane	ND	20		µg/L	10	3/4/2009 5:18:00 PM
1,1-Dichloropropene	ND	20		µg/L	10	3/4/2009 5:18:00 PM
Carbon tetrachloride	ND	20		µg/L	10	3/4/2009 5:18:00 PM
1,2-Dichloroethane	ND	20		µg/L	10	3/4/2009 5:18:00 PM
Benzene	ND	10		µg/L	10	3/4/2009 5:18:00 PM
Trichloroethene	ND	20		µg/L	10	3/4/2009 5:18:00 PM
1,2-Dichloropropane	ND	20		µg/L	10	3/4/2009 5:18:00 PM
Bromodichloromethane	ND	20		µg/L	10	3/4/2009 5:18:00 PM
Dibromomethane	ND	20		µg/L	10	3/4/2009 5:18:00 PM
4-Methyl-2-pentanone	ND	100		µg/L	10	3/4/2009 5:18:00 PM
cis-1,3-Dichloropropene	ND	10		µg/L	10	3/4/2009 5:18:00 PM
Toluene	ND	20		µg/L	10	3/4/2009 5:18:00 PM
trans-1,3-Dichloropropene	ND	10		µg/L	10	3/4/2009 5:18:00 PM
1,1,2-Trichloroethane	ND	20		μg/L	10	3/4/2009 5:18:00 PM
1,2-Dibromoethane	ND	20		μg/L	10	3/4/2009 5:18:00 PM
2-Hexanone	ND	100		μġ/L	10	3/4/2009 5:18:00 PM
1,3-Dichloropropane	ND	20		μg/L	10	3/4/2009 5:18:00 PM
Tetrachloroethene	330	20		µg/L	10	3/4/2009 5:18:00 PM
Dibromochloromethane	ND	20		µg/L	10	3/4/2009 5:18:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-11A

#### Date: 09-Mar-09

#### Client Sample ID: MW-202D Collection Date: 2/25/2009 9:40:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	20	µg/L	10	3/4/2009 5:18:00 PM
1,1,1,2-Tetrachloroethane	ND	20	µg/L	10	3/4/2009 5:18:00 PM
Ethylbenzene	ND	20	µg/L	10	3/4/2009 5:18:00 PM
m,p-Xylene	ND	20	µg/L	10	3/4/2009 5:18:00 PM
o-Xylene	ND	20	μg/L	10	3/4/2009 5:18:00 PM
Styrene	ND	20	₂µg/L	10	3/4/2009 5:18:00 PM
Bromoform	ND	20	μg/L	10	3/4/2009 5:18:00 PM
Isopropylbenzene	ND	20	μg/Ľ	10	3/4/2009 5:18:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10 -	3/4/2009 5:18:00 PM
1,2,3-Trichloropropane	ND	20	μg/L	10	3/4/2009 5:18:00 PN
Bromobenzene	ND	20	µg/L	10	3/4/2009 5:18:00 PN
n-Propylbenzene	ND	20	µg/L	10	3/4/2009 5:18:00 PN
2-Chlorotoluene	ND	20	μg/L	10	3/4/2009 5:18:00 PN
4-Chlorotoluene	ND	20	μg/L	10	3/4/2009 5:18:00 PN
1,3,5-Trimethylbenzene	ND	20	μg/L	10	3/4/2009 5:18:00 PN
tert-Butylbenzene	ND	20	µg/L	10	3/4/2009 5:18:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	10	3/4/2009 5:18:00 PM
sec-Butylbenzene	ND	20	µg/L	10	3/4/2009 5:18:00 PN
4-Isopropyltoluene	ND	20	µg/L	10	3/4/2009 5:18:00 PN
1,3-Dichlorobenzene	ND	20	μg/L	10	3/4/2009 5:18:00 PN
1,4-Dichlorobenzene	ND	20	µg/L	10	3/4/2009 5:18:00 PN
n-Butylbenzene	ND	20	µg/L	10	3/4/2009 5:18:00 PN
1,2-Dichlorobenzene	ND	20	μg/L	10	3/4/2009 5:18:00 PN
1,2-Dibromo-3-chloropropane	ND	-50	μg/L	10	3/4/2009 5:18:00 PN
1,2,4-Trichlorobenzene	ND	20	μg/L	. 10	3/4/2009 5:18:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	3/4/2009 5:18:00 PN
Naphthalene	ND	50	μg/L	10	3/4/2009 5:18:00 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	10	3/4/2009 5:18:00 PN
Surr: Dibromofluoromethane	111	85-119	%REC	10	3/4/2009 5:18:00 PN
Surr: 1,2-Dichloroethane-d4	101	79-131	%REC	10	3/4/2009 5:18:00 PN
Surr: Toluene-d8	103	90-110	%REC	10	3/4/2009 5:18:00 PN
Surr: 4-Bromofluorobenzene	90.2	76-117	%REC	10	3/4/2009 5:18:00 PN

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-12A

Date: 09-Mar-09

Client Sample ID: MW-202S Collection Date: 2/25/2009 9:50:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	S	W8260B				Analyst: SH
Dichlorodifluoromethane	ND	- 500		µg/L	100	3/4/2009 1:54:00 PM
Chloromethane	ND	500		µg/L	100	3/4/2009 1:54:00 PM
Vinyl chloride	ND	200		µg/L	100	3/4/2009 1:54:00 PM
Chloroethane	ND	500		µg/L	100	3/4/2009 1:54:00 PM
Bromomethane	ŃD	200		µg/L	100	3/4/2009 1:54:00 PM
Trichlorofluoromethane	ND	200		µg/L	100	3/4/2009 1:54:00 PM
Diethyl ether	ND	500		µg/L	100	3/4/2009 1:54:00 PM
Acetone	ND	1,000		µg/L	100	3/4/2009 1:54:00 PM
1,1-Dichloroethene	ND	100		µg/L	100	3/4/2009 1:54:00 PM
Carbon disulfide	ND	200		µg/L	100	3/4/2009 1:54:00 PM
Methylene chloride	ND	500		µg/L	100	3/4/2009 1:54:00 PM
Methyl tert-butyl ether	ND	200		µg/L	100	3/4/2009 1:54:00 PM
trans-1,2-Dichloroethene	ND	200		µg/L	100	3/4/2009 1:54:00 PM
1,1-Dichloroethane	ND	200		µg/L	100	3/4/2009 1:54:00 PM
2-Butanone	ND	1,000		µg/L	100	3/4/2009 1:54:00 PM
2,2-Dichloropropane	ND	200		µg/L	100	3/4/2009 1:54:00 PM
cis-1,2-Dichloroethene	ND	200		µg/L	100	3/4/2009 1:54:00 PM
Chloroform	ND	200		µg/L	100	3/4/2009 1:54:00 PM
Tetrahydrofuran	ND	1,000		µg/L	100	3/4/2009 1:54:00 PM
Bromochloromethane	ND	200		µg/L	100	3/4/2009 1:54:00 PM
1,1,1-Trichloroethane	ND	200		µg/L	100	3/4/2009 1:54:00 PM
1,1-Dichloropropene	ND	200		µg/L	100	3/4/2009 1:54:00 PM
Carbon tetrachloride	ND	200		µg/L	100	3/4/2009 1:54:00 PM
1,2-Dichloroethane	ND	200		µg/L	100	3/4/2009 1:54:00 PM
Benzene	ND	100		µg/L	100	3/4/2009 1:54:00 PM
Trichloroethene	ND	200		µg/L	100	3/4/2009 1:54:00 PM
1,2-Dichloropropane	ND	200		µg/L	100	3/4/2009 1:54:00 PM
Bromodichloromethane	ND	200		µg/L	100	3/4/2009 1:54:00 PM
Dibromomethane	ND	200		µg/L	100	3/4/2009 1:54:00 PM
4-Methyl-2-pentanone	ND	1,000		µg/L	100	3/4/2009 1:54:00 PM
cis-1,3-Dichloropropene	ND	100		µg/L	100	3/4/2009 1:54:00 PM
Toluene	ND	200		µg/L	100	3/4/2009 1:54:00 PM
trans-1,3-Dichloropropene	ND	100		µg/L	100	3/4/2009 1:54:00 PM
1,1,2-Trichloroethane	ND	200		µg/L	100	3/4/2009 1:54:00 PM
1,2-Dibromoethane	ND	200		µg/L	100	3/4/2009 1:54:00 PM
2-Hexanone	ND	1,000		µg/L	100	3/4/2009 1:54:00 PM
1,3-Dichloropropane	ND	200		µg/L	100	3/4/2009 1:54:00 PM
Tetrachloroethene	15,000	200		µġ/L	100	3/4/2009 1:54:00 PM
Dibromochloromethane	ND	200		µg/L	100	3/4/2009 1:54:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-12A

#### Date: 09-Mar-09

#### Client Sample ID: MW-202S Collection Date: 2/25/2009 9:50:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
1,1,1,2-Tetrachloroethane	ND	200	µg/L	100	3/4/2009 1:54:00 PM
Ethylbenzene	ND	200	μg/L	100 ⁻	3/4/2009 1:54:00 PM
m,p-Xylene	ND	200	μg/L	100	3/4/2009 1:54:00 PM
o-Xylene	ND	200	μg/L	100	3/4/2009 1:54:00 PM
Styrene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
Bromoform	ND	200	µg/L	100	3/4/2009 1:54:00 PM
Isopropylbenzene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
1,1,2,2-Tetrachloroethane	ND	200	µg/L	100	3/4/2009 1:54:00 PM
1,2,3-Trichloropropane	ND	200	µg/L	100	3/4/2009 1:54:00 PM
Bromobenzene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
n-Propylbenzene	ND	200	μg/L	100	3/4/2009 1:54:00 PM
2-Chlorotoluene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
4-Chlorotoluene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
1,3,5-Trimethylbenzene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
tert-Butylbenzene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
1,2,4-Trimethylbenzene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
sec-Butylbenzene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
4-Isopropyitoluene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
1,3-Dichlorobenzene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
1,4-Dichlorobenzene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
n-Butylbenzene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
1,2-Dichlorobenzene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
1,2-Dibromo-3-chloropropane	ND	500	µg/L	100	3/4/2009 1:54:00 PM
1,2,4-Trichlorobenzene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
Hexachlorobutadiene	ND	200	µg/L	100	3/4/2009 1:54:00 PM
Naphthalene	ND	500	μg/L	100	3/4/2009 1:54:00 PM
1,2,3-Trichlorobenzene	ND	200	μg/L	100	3/4/2009 1:54:00 PM
Surr: Dibromofluoromethane	96.0	85-119	%REC	100	3/4/2009 1:54:00 PM
Surr: 1,2-Dichloroethane-d4	104	79-131	%REC	100	3/4/2009 1:54:00 PM
Surr: Toluene-d8	102	90-110	%REC	100	3/4/2009 1:54:00 PM
Surr: 4-Bromofluorobenzene	97.8	76-117	%REC	100	3/4/2009 1:54:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-13A

#### Date: 09-Mar-09

#### Client Sample ID: MW-101D Collection Date: 2/25/2009 10:35:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: <b>SK</b>
Dichlorodifluoromethane	ND	· 50	μg/L	10	3/5/2009 12:44:00 PM
Chloromethane	ND	50	µg/L	10	3/5/2009 12:44:00 PM
Vinyl chloride	ND	20	µg/L	10	3/5/2009 12:44:00 PN
Chloroethane	ND	50	μg/L	10	3/5/2009 12:44:00 PM
Bromomethane	ND	20	µg/L	10	3/5/2009 12:44:00 PM
Trichlorofluoromethane	ND	20	µg/L	10	3/5/2009 12:44:00 PM
Diethyl ether	ND	50	μg/L	10	3/5/2009 12:44:00 PN
Acetone	ND	100	µg/L	10	3/5/2009 12:44:00 PM
1,1-Dichloroethene	ND	10	μg/L	10	3/5/2009 12:44:00 PM
Carbon disulfide	ND	20	µg/L	10	3/5/2009 12:44:00 PN
Methylene chloride	ND	50	µg/L	10	3/5/2009 12:44:00 PN
Methyl tert-butyl ether	ND	20	µg/L	10	3/5/2009 12:44:00 PN
trans-1,2-Dichloroethene	ND	20	µg/L	10	3/5/2009 12:44:00 PN
1,1-Dichloroethane	ND	20	µg/L	10	3/5/2009 12:44:00 PN
2-Butanone	ND	100	µg/L	10	3/5/2009 12:44:00 PN
2,2-Dichloropropane	ND	20	µg/L	10	3/5/2009 12:44:00 PN
cis-1,2-Dichloroethene	53	20	µg/L	10	3/5/2009 12:44:00 PN
Chloroform	ND	20	µg/L	10	3/5/2009 12:44:00 PN
Tetrahydrofuran	ND	100	µg/L	10	3/5/2009 12:44:00 PN
Bromochloromethane	ND	20	µg/L	10	3/5/2009 12:44:00 PN
1,1,1-Trichloroethane	ND	20	µg/L	10	3/5/2009 12:44:00 PN
1,1-Dichloropropene	ND	20	µg/L	10	3/5/2009 12:44:00 PN
Carbon tetrachloride	ND	20	µg/L	10	3/5/2009 12:44:00 PN
1,2-Dichloroethane	ND	20	µg/L	10	3/5/2009 12:44:00 PN
Benzene	ND	10	μg/L	10	3/5/2009 12:44:00 PN
Trichloroethene	ND	20	µg/L	10	3/5/2009 12:44:00 PN
1,2-Dichloropropane	ND	20	µg/L	10	3/5/2009 12:44:00 PN
Bromodichloromethane	ND	20	µg/L	10	3/5/2009 12:44:00 PN
Dibromomethane	ND	20	µg/L	10	3/5/2009 12:44:00 PN
4-Methyi-2-pentanone	ND	100	µg/L	10	3/5/2009 12:44:00 PN
cis-1,3-Dichloropropene	ND	10	µg/L	10	3/5/2009 12:44:00 PN
Toluene	ND	20	µg/L	10	3/5/2009 12:44:00 PN
trans-1,3-Dichloropropene	ND	10	µg/L	10	3/5/2009 12:44:00 PM
1,1,2-Trichloroethane	ND	20	µg/L	10	3/5/2009 12:44:00 PN
1,2-Dibromoethane	ND	20	μg/L	10	3/5/2009 12:44:00 PN
2-Hexanone	ND	100	μg/L	10	3/5/2009 12:44:00 PN
1,3-Dichloropropane	ND	20	µg/L	10	3/5/2009 12:44:00 PN
Tetrachloroethene	2,300	20	μg/L	10	3/5/2009 12:44:00 PN
Dibromochloromethane	ND	20	μg/L	10	3/5/2009 12:44:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-13A

#### Date: 09-Mar-09

#### Client Sample ID: MW-101D Collection Date: 2/25/2009 10:35:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	20	μg/L	10	3/5/2009 12:44:00 PM
1,1,1,2-Tetrachloroethane	NÐ	20	μg/L	10	3/5/2009 12:44:00 PM
Ethylbenzene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
m,p-Xylene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
o-Xylene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
Styrene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
Bromoform	ND	20	μg/L	10	3/5/2009 12:44:00 PM
Isopropylbenzene	ND	20	μg/L	10	3/5/2009 12:44:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	3/5/2009 12:44:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	3/5/2009 12:44:00 PM
Bromobenzene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
n-Propylbenzene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
2-Chlorotoluene	. ND	20	µg/L	10	3/5/2009 12:44:00 PM
4-Chlorotoluene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
1,3,5-Trimethylbenzene	ND	20	µg/L	10	3/5/2009 12:44:00 PN
tert-Butylbenzene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
sec-Butylbenzene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
4-isopropyltoluene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
1,3-Dichlorobenzene	ND	20	µg/L	· 10	3/5/2009 12:44:00 PM
1,4-Dichlorobenzene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
n-Butylbenzene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
1,2-Dibromo-3-chloropropane	ND	50	µg/L	10	3/5/2009 12:44:00 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	3/5/2009 12:44:00 PM
Naphthalene	ND	50	µg/L	10	3/5/2009 12:44:00 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	. 10	3/5/2009 12:44:00 PM
Surr: Dibromofluoromethane	99.2	85-119	%REC	10	3/5/2009 12:44:00 PM
Surr: 1,2-Dichloroethane-d4	102	79-131	%REC	10	3/5/2009 12:44:00 PM
Surr: Toluene-d8	101	90-110	%REC	<u> </u>	3/5/2009 12:44:00 PM
Surr: 4-Bromofluorobenzene	87.0	76-117	%REC	10	3/5/2009 12:44:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-14A

Date: 09-Mar-09

#### Client Sample ID: MW-101S Collection Date: 2/25/2009 10:56:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Uni	ts DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: Sk
Dichlorodifluoromethane	ND	50	µg/L	10	3/5/2009 1:18:00 PM
Chloromethane	ND	50	µg/L	10	3/5/2009 1:18:00 PM
Vinyl chloride	ND	20	μg/L	10	3/5/2009 1:18:00 PM
Chloroethane	ND	50	µg/L	10	3/5/2009 1:18:00 PM
Bromomethane	ND	20	μg/L	10	3/5/2009 1:18:00 PM
Trichlorofluoromethane	ND	20	µg/L	10	3/5/2009 1:18:00 PM
Diethyl ether	ND	. 50	μg/L	10	3/5/2009 1:18:00 PM
Acetone	ND	100	µg/L	10	3/5/2009 1:18:00 PM
1,1-Dichloroethene	ND	10	µg/L	10	3/5/2009 1:18:00 PM
Carbon disulfide	ND	20	μg/L	10	3/5/2009 1:18:00 PM
Methylene chloride	ND	50	µg/L	10	3/5/2009 1:18:00 PM
Methyl tert-butyl ether	ND	20	µg/L	10	3/5/2009 1:18:00 PM
trans-1,2-Dichloroethene	ND	20	μg/L	10	3/5/2009 1:18:00 PM
1,1-Dichloroethane	ND	20	µg/L	10	3/5/2009 1:18:00 PM
2-Butanone	ND	100	µg/L	10	3/5/2009 1:18:00 PM
2,2-Dichloropropane	ND	20	µg/L	10	3/5/2009 1:18:00 PM
cis-1,2-Dichloroethene	110	20	µg/L	10	3/5/2009 1:18:00 PM
Chloroform	ND	[′] 20	µg/L	10	3/5/2009 1:18:00 PM
Tetrahydrofuran	ND	100	µg/L	10	3/5/2009 1:18:00 PM
Bromochloromethane	ND	20	μg/L	10	3/5/2009 1:18:00 PM
1,1,1-Trichloroethane	ND	20	μg/L	10	3/5/2009 1:18:00 PM
1,1-Dichloropropene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
Carbon tetrachloride	ND	20	µg/L	10	3/5/2009 1:18:00 PM
1,2-Dichloroethane	ND	20	µg/L	10	3/5/2009 1:18:00 PM
Benzene	ND	.10	µg/L	10	3/5/2009 1:18:00 PM
Trichloroethene	31	20	µg/L	10	3/5/2009 1:18:00 PM
1,2-Dichloropropane	ND	20	µg/L	10	3/5/2009 1:18:00 PM
Bromodichloromethane	ND	20	μg/L	10	3/5/2009 1:18:00 PM
Dibromomethane	ND	20	µg/L	10	3/5/2009 1:18:00 PM
4-Methyl-2-pentanone	ND	100	µg/L	10	3/5/2009 1:18:00 PM
cis-1,3-Dichloropropene	ND	10	µg/L	10	3/5/2009 1:18:00 PM
Toluene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
trans-1,3-Dichloropropene	ND	10	µg/L	10	3/5/2009 1:18:00 PM
1,1,2-Trichloroethane	ND	20	µg/L		3/5/2009 1:18:00 PM
1,2-Dibromoethane	ND	20	µg/L		3/5/2009 1:18:00 PM
2-Hexanone	ND	100	μg/L		3/5/2009 1:18:00 PM
1,3-Dichloropropane	ND	20	μg/L		3/5/2009 1:18:00 PM
Tetrachloroethene	1,600	20	μg/L		3/5/2009 1:18:00 PM
Dibromochloromethane	ND	20	μg/L		3/5/2009 1:18:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-14A

#### Date: 09-Mar-09

#### Client Sample ID: MW-101S Collection Date: 2/25/2009 10:56:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	20	μg/L	10	3/5/2009 1:18:00 PM
1,1,1,2-Tetrachloroethane	ND	20	µg/L	10	3/5/2009 1:18:00 PM
Ethylbenzene	ND	_ 20	µg/L	10	3/5/2009 1:18:00 PM
m,p-Xylene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
o-Xylene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
Styrene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
Bromoform	ND	20	µg/L	10	3/5/2009 1:18:00 PM
Isopropylbenzene	ND	20	μg/L	10	3/5/2009 1:18:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/Ľ	10	3/5/2009 1:18:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	3/5/2009 1:18:00 PM
Bromobenzene	ND	20	μg/L	10	3/5/2009 1:18:00 PM
n-Propylbenzene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
2-Chlorotoluene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
4-Chlorotoluene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
1,3,5-Trimethylbenzene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
tert-Butylbenzene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
1,2,4-Trimethylbenzene	ND	20	μg/L	10	3/5/2009 1:18:00 PM
sec-Butylbenzene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
4-Isopropyltoluene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
1,3-Dichlorobenzene	ND	20	μg/L	10	3/5/2009 1:18:00 PM
1,4-Dichlorobenzene	ND	20	μg/L	10	3/5/2009 1:18:00 PM
n-Butylbenzene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
1,2-Dibromo-3-chloropropane	ND	50	µg/L	10	3/5/2009 1:18:00 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
Naphthalene	ND	50	µg/L	10	3/5/2009 1:18:00 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	10	3/5/2009 1:18:00 PM
Surr: Dibromofluoromethane	99.7	85-119	%REC	10	3/5/2009 1:18:00 PM
Surr: 1,2-Dichloroethane-d4	101	79-131	%REC	10	3/5/2009 1:18:00 PM
Surr: Toluene-d8	102	90-110	%REC	10	3/5/2009 1:18:00 PM
Surr: 4-Bromofluorobenzene	83.4	76-117	%REC	10	3/5/2009 1:18:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-15A

Date: 09-Mar-09

#### Client Sample ID: MW-101 Dupe Collection Date: 2/25/2009 10:55:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		SW8260B				Analyst: <b>SK</b>
Dichlorodifluoromethane	ND	50		µg/L	10	3/5/2009 1:52:00 PM
Chloromethane	ND	50		µg/L	10	3/5/2009 1:52:00 PM
Vinyl chloride	• ND	20		µg/L	10	3/5/2009 1:52:00 PM
Chloroethane	ND	50		µg/L	10	3/5/2009 1:52:00 PM
Bromomethane	ND	20		µg/L	10	3/5/2009 1:52:00 PM
Trichlorofluoromethane	ND	20		µg/L	10	3/5/2009 1:52:00 PM
Diethyl ether	ND	50		µg/L	10	3/5/2009 1:52:00 PM
Acetone	ND	100		µg/L	10	3/5/2009 1:52:00 PM
1,1-Dichloroethene	ND	10		µg/L	10	3/5/2009 1:52:00 PM
Carbon disulfide	ND	20		µg/L	10	3/5/2009 1:52:00 PM
Methylene chloride	ND	50		µg/L	10	3/5/2009 1:52:00 PM
Methyl tert-butyl ether	ND	20		µg/L	10	3/5/2009 1:52:00 PM
trans-1,2-Dichloroethene	ND	20		µg/L	10	3/5/2009 1:52:00 PM
1,1-Dichloroethane	ND	20		µg/L	10	3/5/2009 1:52:00 PM
2-Butanone	ND	100		µg/L	10	3/5/2009 1:52:00 PM
2,2-Dichloropropane	ND	20		µg/L	10	3/5/2009 1:52:00 PM
cis-1,2-Dichloroethene	160	20		µg/L	10	3/5/2009 1:52:00 PM
Chloroform	ND	20		µg/L	10	3/5/2009 1:52:00 PM
Tetrahydrofuran	ND	100		µg/L	10	3/5/2009 1:52:00 PM
Bromochloromethane	ND	20		µg/L	10	3/5/2009 1:52:00 PM
1,1,1-Trichloroethane	ND	20		µg/L	10	3/5/2009 1:52:00 PM
1,1-Dichloropropene	ND	20		µg/L	ົ <u>10</u>	3/5/2009 1:52:00 PM
Carbon tetrachloride	ND	20		µg/L	10	3/5/2009 1:52:00 PM
1,2-Dichloroethane	ND	20		µg/L	10	3/5/2009 1:52:00 PM
Benzene	ND	10		µg/L	10	3/5/2009 1:52:00 PM
Trichloroethene	40	20		µg/L	10	3/5/2009 1:52:00 PM
1,2-Dichloropropane	ND	20		µg/L	10	3/5/2009 1:52:00 PM
Bromodichloromethane	ND	20		µg/L	10	3/5/2009 1:52:00 PM
Dibromomethane	ND	20		µg/L	10	3/5/2009 1:52:00 PM
4-Methyl-2-pentanone	ND	100		µg/L	10	3/5/2009 1:52:00 PM
cis-1,3-Dichloropropene	ND	10		µg/L	10	3/5/2009 1:52:00 PM
Toluene	ND	20		µg/L	10	3/5/2009 1:52:00 PM
trans-1,3-Dichloropropene	ND	10		µg/L	10	3/5/2009 1:52:00 PM
1,1,2-Trichloroethane	ND	20		µg/L	10	3/5/2009 1:52:00 PM
1,2-Dibromoethane	ND	20		µg/L	10	3/5/2009 1:52:00 PM
2-Hexanone	ND	100		µg/L	10	3/5/2009 1:52:00 PM
1,3-Dichloropropane	ND	20		µg/L	10	3/5/2009 1:52:00 PM
Tetrachloroethene	1,300	20		μg/L	10	3/5/2009 1:52:00 PM
Dibromochloromethane	ND	20		µg/L	10	3/5/2009 1:52:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-15A

#### Date: 09-Mar-09

#### Client Sample ID: MW-101 Dupe Collection Date: 2/25/2009 10:55:00 AM Matrix: GROUNDWATER

Analyses	Result	RL (	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	20	μg/L	10	3/5/2009 1:52:00 PM
1,1,1,2-Tetrachloroethane	ND	20	µg/L	10	3/5/2009 1:52:00 PM
Ethylbenzene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
m,p-Xylene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
o-Xylene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
Styrene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
Bromoform	ND	20	µg/L	10	3/5/2009 1:52:00 PM
Isopropylbenzene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	3/5/2009 1:52:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	3/5/2009 1:52:00 PM
Bromobenzene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
n-Propylbenzene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
2-Chlorotoluene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
4-Chlorotoluene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
1,3,5-Trimethylbenzene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
tert-Butylbenzene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
sec-Butylbenzene	ND	20	μg/L	10	3/5/2009 1:52:00 PM
4-Isopropyltoluene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
1,3-Dichlorobenzene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
1,4-Dichlorobenzene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
n-Butylbenzene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
1,2-Dibromo-3-chloropropane	ND	50	µg/L	10	3/5/2009 1:52:00 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
Naphthalene	ND	50	µg/L	10	3/5/2009 1:52:00 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	10	3/5/2009 1:52:00 PM
Surr: Dibromofluoromethane	109	85-119	%REC	10	3/5/2009 1:52:00 PM
Surr: 1,2-Dichloroethane-d4	101	79-131	%REC	10	3/5/2009 1:52:00 PM
Surr: Toluene-d8	99.7	90-110	%REC	10	3/5/2009 1:52:00 PM
Surr: 4-Bromofluorobenzene	86.4	76-117	%REC	10	3/5/2009 1:52:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-16A

Date: 09-Mar-09

#### Client Sample ID: MW-218S Collection Date: 2/25/2009 11:20:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	S	W8260B				Analyst: <b>SK</b>
Dichlorodifluoromethane	ND	· 5.0		µg/L	1	2/28/2009 1:08:00 PM
Chloromethane	ND	5.0		µg/L	1	2/28/2009 1:08:00 PM
Vinyl chloride	25	2.0		µg/L	1	2/28/2009 1:08:00 PN
Chloroethane	ND	5.0		µg/L	1	2/28/2009 1:08:00 PN
Bromomethane	ND	2.0		µg/L	1	2/28/2009 1:08:00 PN
Trichlorofluoromethane	ND	2.0		µg/L	× <b>1</b>	2/28/2009 1:08:00 PN
Diethyl ether	ND	5.0		µg/L	1	2/28/2009 1:08:00 PN
Acetone	ND	10		µg/L	.1	2/28/2009 1:08:00 PN
1,1-Dichloroethene	1.0	1.0		µg/L	1	2/28/2009 1:08:00 PN
Carbon disulfide	ND	2.0		µg/L	1	2/28/2009 1:08:00 PN
Methylene chloride	NĐ	5.0		µg/L	1	2/28/2009 1:08:00 PN
Methyl tert-butyl ether	ND	2.0		µg/L	· 1	2/28/2009 1:08:00 PM
trans-1,2-Dichloroethene	ND	2.0		µg/L	1	2/28/2009 1:08:00 PM
1,1-Dichloroethane	ND	2.0		µg/L	1	2/28/2009 1:08:00 PM
2-Butanone	ND	10		µg/L	1	2/28/2009 1:08:00 PM
2,2-Dichloropropane	ND	2.0		µg/L	1	2/28/2009 1:08:00 PM
cis-1,2-Dichloroethene	550	20		µg/L	10	3/4/2009 12:46:00 PM
Chloroform	ND	2.0		µg/L	1	2/28/2009 1:08:00 PM
Tetrahydrofuran	ND	10		µg/L	1	2/28/2009 1:08:00 PM
Bromochloromethane	ND	2.0		µg/L	1	2/28/2009 1:08:00 PM
1,1,1-Trichloroethane	ND	2.0		µg/L	1	2/28/2009 1:08:00 PM
1,1-Dichloropropene	ND	2.0		µg/L	1	2/28/2009 1:08:00 PM
Carbon tetrachloride	ND	2.0		µg/L	1	2/28/2009 1:08:00 PM
1,2-Dichloroethane	ND	2.0		µg/L	1	2/28/2009 1:08:00 PM
Benzene	4.4	1.0		µg/L	1	2/28/2009 1:08:00 PM
Trichloroethene	13	2.0		µg/L	1	2/28/2009 1:08:00 PM
1,2-Dichloropropane	ND	2.0		µg/L	1	2/28/2009 1:08:00 PM
Bromodichloromethane	ND	2.0		µg/L	1	2/28/2009 1:08:00 PM
Dibromomethane	ND	2.0		µg/L	1	2/28/2009 1:08:00 PM
4-Methyl-2-pentanone	ND	10		µg/L	1	2/28/2009 1:08:00 PM
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	2/28/2009 1:08:00 PM
Toluene	ND	2.0		µg/L	1	2/28/2009 1:08:00 PN
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	2/28/2009 1:08:00 PN
1,1,2-Trichloroethane	ND	2.0		µg/L	1	2/28/2009 1:08:00 PN
1,2-Dibromoethane	ND	2.0		μg/L	1	2/28/2009 1:08:00 PN
2-Hexanone	ND	10		μg/L	1	2/28/2009 1:08:00 PM
1,3-Dichloropropane	ND	2.0		μg/L	1	2/28/2009 1:08:00 PN
Tetrachloroethene	100	2.0		μg/L	1	2/28/2009 1:08:00 PM
Dibromochloromethane	ND	2.0		μg/L	1	2/28/2009 1:08:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-16A

Date: 09-Mar-09

## Client Sample ID: MW-218S Collection Date: 2/25/2009 11:20:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/28/2009 1:08:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PN
m,p-Xylene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PN
o-Xylene	ND	2.0	μg/L	1	2/28/2009 1:08:00 PN
Styrene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PM
Bromoform	ND	2.0	µg/L	1	2/28/2009 1:08:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PN
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	2/28/2009 1:08:00 PN
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/28/2009 1:08:00 PN
Bromobenzene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PN
n-Propylbenzene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PN
2-Chlorotoluene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PN
4-Chlorotoluene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PN
tert-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PN
·sec-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PM
4-isopropyltoluene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PN
n-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PN
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/28/2009 1:08:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PM
Naphthalene	ND	5.0	µg/L	1	2/28/2009 1:08:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/28/2009 1:08:00 PM
Surr: Dibromofluoromethane	89.8	85-119	%REC	1	2/28/2009 1:08:00 PN
Surr: 1,2-Dichloroethane-d4	117	79-131	%REC	1	2/28/2009 1:08:00 PN
Surr: Toluene-d8	96.4	90-110	%REC	<u>,</u> 1	2/28/2009 1:08:00 PN
Surr: 4-Bromofluorobenzene	103	76-117	%REC	1	2/28/2009 1:08:00 PN

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-17A

Date: 09-Mar-09

#### Client Sample ID: MW-218D Collection Date: 2/25/2009 11:40:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	S	W8260B				Analyst: SK
Dichlorodifluoromethane	ND	- 50		µg/L	10	3/4/2009 4:10:00 PM
Chloromethane	ND	50		µg/L	10	3/4/2009 4:10:00 PM
Vinyl chloride	ND	20		µg/L	10	3/4/2009 4:10:00 PM
Chloroethane	ND	50		µg/L	10	3/4/2009 4:10:00 PM
Bromomethane	ND	20		µg/L	10	3/4/2009 4:10:00 PM
Trichlorofluoromethane	ND	20		µg/L	10	3/4/2009 4:10:00 PM
Diethyl ether	ND	50		µg/L	10	3/4/2009 4:10:00 PM
Acetone	ND	100		µg/L	10	3/4/2009 4:10:00 PM
1,1-Dichloroethene	14	10		µg/L	10	3/4/2009 4:10:00 PM
Carbon disulfide	ND	20		µg/L	10	3/4/2009 4:10:00 PM
Methylene chloride	ND	50		µg/L	10	3/4/2009 4:10:00 PM
Methyl tert-butyl ether	ND	20		µg/L	10	3/4/2009 4:10:00 PM
trans-1,2-Dichloroethene	ND	20		µg/L	10	3/4/2009 4:10:00 PM
1,1-Dichloroethane	ND	20		µg/L	10	3/4/2009 4:10:00 PM
2-Butanone	ND	100		µg/L	10	3/4/2009 4:10:00 PM
2,2-Dichloropropane	ND	20		µg/L	10	3/4/2009 4:10:00 PM
cis-1,2-Dichloroethene	23	20		µg/L	10	3/4/2009 4:10:00 PM
Chloroform	ND	20		µg/L	10	3/4/2009 4:10:00 PM
Tetrahydrofuran	ND	100		µg/L	10	3/4/2009 4:10:00 PM
Bromochloromethane	ND	20		µg/L	10	3/4/2009 4:10:00 PM
1,1,1-Trichloroethane	ND	20		µg/L	10	3/4/2009 4:10:00 PM
1,1-Dichloropropene	ND	20		µg/L	10	3/4/2009 4:10:00 PM
Carbon tetrachloride	ND	20		µg/L	10	3/4/2009 4:10:00 PM
1,2-Dichloroethane	ND	. 20		µg/L	10	3/4/2009 4:10:00 PM
Benzene	ND	10		µg/L	10	3/4/2009 4:10:00 PM
Trichloroethene	670	20		µg/L	10	3/4/2009 4:10:00 PM
1,2-Dichloropropane	ND	20		µg/L	10	3/4/2009 4:10:00 PM
Bromodichloromethane	ND	20		µg/L	10	3/4/2009 4:10:00 PM
Dibromomethane	ND	20		µg/L	10	3/4/2009 4:10:00 PM
4-Methyl-2-pentanone	ND	100		µg/L	10	3/4/2009 4:10:00 PM
cis-1,3-Dichloropropene	ND	10		µg/L	10	3/4/2009 4:10:00 PM
Toluene	ND	20		µg/L	10	3/4/2009 4:10:00 PM
trans-1,3-Dichloropropene	ND	10		µg/L	10	3/4/2009 4:10:00 PM
1,1,2-Trichloroethane	ND	20		µg/L	10	3/4/2009 4:10:00 PM
1,2-Dibromoethane	ND	20		µg/L	10	3/4/2009 4:10:00 PM
2-Hexanone	ND	100		µg/L	10	3/4/2009 4:10:00 PM
1,3-Dichloropropane	ND	20		µg/L	10	3/4/2009 4:10:00 PM
Tetrachloroethene	840	20		µg/L	10	3/4/2009 4:10:00 PM
Dibromochloromethane	ND	20		μg/L	10	3/4/2009 4:10:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-17A

_

#### Date: 09-Mar-09

#### Client Sample ID: MW-218D Collection Date: 2/25/2009 11:40:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	5 DF	Date Analyzed
Chlorobenzene	ND	20	µg/L	10	3/4/2009 4:10:00 PM
1,1,1,2-Tetrachloroethane	ND	20	µg/L	10	3/4/2009 4:10:00 PM
Ethylbenzene	ND	20	µg/L	10	3/4/2009 4:10:00 PM
m,p-Xylene	ND	20	μg/L	10	3/4/2009 4:10:00 PM
o-Xylene	ND	20	μg/L	10	3/4/2009 4:10:00 PM
Styrene	ND	20	µg/Ľ	10	3/4/2009 4:10:00 PM
Bromoform	ND	20	µg/L	. 10	3/4/2009 4:10:00 PM
Isopropylbenzene	ND	20	µg/L	10	3/4/2009 4:10:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	3/4/2009 4:10:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	3/4/2009 4:10:00 PM
Bromobenzene	ND	20	µg/L	·	3/4/2009 4:10:00 PM
n-Propylbenzene	ND	20	µg/L	. 10	3/4/2009 4:10:00 PM
2-Chlorotoluene	ND	20	µg/L	10	3/4/2009 4:10:00 PM
4-Chlorotoluene	ND	20	µg/L	10	3/4/2009 4:10:00 PM
1,3,5-Trimethylbenzene	ND	20	µg/L	10	3/4/2009 4:10:00 PM
tert-Butylbenzene	ND	20	µg/L	10	3/4/2009 4:10:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	10	3/4/2009 4:10:00 PM
-sec-Butylbenzene	ND	20	µg/L	10	3/4/2009 4:10:00 PM
4-Isopropyltoluene	ND	20	μg/L	10	3/4/2009 4:10:00 PM
1,3-Dichlorobenzene	ND	20	µg/L	10	3/4/2009 4:10:00 PM
1,4-Dichlorobenzene	ND	20	µg/L	10	3/4/2009 4:10:00 PM
n-Butylbenzene	ND	20	µg/Ľ	10	3/4/2009 4:10:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10	3/4/2009 4:10:00 PM
1,2-Dibromo-3-chloropropane	ND	50	µg/L	10	3/4/2009 4:10:00 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	10	3/4/2009 4:10:00 PM
Hexachlorobutadiene	ND	20	μg/L	10	3/4/2009 4:10:00 PM
Naphthalene	ND	50	µg/L	10	3/4/2009 4:10:00 PM
1,2,3-Trichlorobenzene	ND	. 20	µg/L	10	3/4/2009 4:10:00 PM
Surr: Dibromofluoromethane	97.4	85-119	%REC	C 10	3/4/2009 4:10:00 PM
Surr: 1,2-Dichloroethane-d4	98.3	79-131	%REC	C 10	3/4/2009 4:10:00 PM
Surr: Toluene-d8	102	90-110	%REC	C 10	3/4/2009 4:10:00 PM
Surr: 4-Bromofluorobenzene	91.2	76-117	%REC	C 10	3/4/2009 4:10:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-18A

Date: 09-Mar-09

#### Client Sample ID: MW-112 Collection Date: 2/25/2009 11:50:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual U	Jnits	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B				Analyst: SK
Dichlorodifluoromethane	ND	· 5.0	μ	ıg/L	1	3/5/2009 12:10:00 PN
Chloromethane	ND	5.0	μ	ıg/L	1	3/5/2009 12:10:00 PM
Vinyl chloride	ND	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PM
Chloroethane	ND	5.0	μ	ıg/L	1	3/5/2009 12:10:00 PN
Bromomethane	ND	2.0	μ	ig/L	1	3/5/2009 12:10:00 PM
Trichlorofluoromethane	ND	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PN
Diethyl ether	ND	5.0	μ	ıg/L	1	3/5/2009 12:10:00 PM
Acetone	ND	10	μ	ıg/L	1	3/5/2009 12:10:00 PM
1,1-Dichloroethene	ND	1.0	μ	ıg/L	1	3/5/2009 12:10:00 PM
Carbon disulfide	ND	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PM
Methylene chloride	ND	5.0		ıg/L	1	3/5/2009 12:10:00 PN
Methyl tert-butyl ether	ND	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PM
trans-1,2-Dichloroethene	ND	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PN
1,1-Dichloroethane	ND	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PM
2-Butanone	ND	10	μ	ıg/L	1	3/5/2009 12:10:00 PN
2,2-Dichloropropane	ND	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PM
cis-1,2-Dichloroethene	ND	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PM
Chloroform	20	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PM
Tetrahydrofuran	ND	10	μ	ıg/L	1	3/5/2009 12:10:00 PM
Bromochloromethane	ND	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PN
1,1,1-Trichloroethane	ND	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PN
1,1-Dichloropropene	ND	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PN
Carbon tetrachloride	ND	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PN
1,2-Dichloroethane	ND	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PN
Benzene	ND	1.0	μ	ıg/L	1	3/5/2009 12:10:00 PN
Trichloroethene	4.5	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PN
1,2-Dichloropropane	ND	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PM
Bromodichloromethane	2.1	2.0	Ч	ıg/L	1	3/5/2009 12:10:00 PN
Dibromomethane	ND	2.0	μ	ıg/L	· 1	3/5/2009 12:10:00 PM
4-Methyl-2-pentanone	ND	10	μ	Jg/L	1	3/5/2009 12:10:00 PM
cis-1,3-Dichloropropene	ND	1.0	μ	ıg/L	1	3/5/2009 12:10:00 PN
Toluene	ND	2.0	μ	ıg/L	1	3/5/2009 12:10:00 PM
trans-1,3-Dichloropropene	ND	1.0	μ	ug/L	1	3/5/2009 12:10:00 PN
1,1,2-Trichloroethane	ND	2.0		ug/L	1	3/5/2009 12:10:00 PM
1,2-Dibromoethane	ND	2.0		ug/L	1	3/5/2009 12:10:00 PM
2-Hexanone	ND	10		ug/L	1	3/5/2009 12:10:00 PN
1,3-Dichloropropane	ND	2.0		ug/L	1	3/5/2009 12:10:00 PM
Tetrachloroethene	110	2.0		ug/L	1	3/5/2009 12:10:00 PM
Dibromochloromethane	ND	2.0		ug/L	1	3/5/2009 12:10:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-18A

**Date:** 09-Mar-09

#### Client Sample ID: MW-112 Collection Date: 2/25/2009 11:50:00 AM Matrix: GROUNDWATER

ChlorobenzeneND2.0 $\mu g/L$ 1,1,1,2-TetrachloroethaneND2.0 $\mu g/L$ EthylbenzeneND2.0 $\mu g/L$ m,p-XyleneND2.0 $\mu g/L$ o-XyleneND2.0 $\mu g/L$ StyreneND2.0 $\mu g/L$ BromoformND2.0 $\mu g/L$ IsopropylbenzeneND2.0 $\mu g/L$ 1,1,2,2-TetrachloroethaneND2.0 $\mu g/L$ 1,1,2,2-TetrachloroethaneND2.0 $\mu g/L$ 1,1,2,2-TetrachloroethaneND2.0 $\mu g/L$ 1,2,3-TrichloropropaneND2.0 $\mu g/L$ BromobenzeneND2.0 $\mu g/L$ 1,3,5-TrimethylbenzeneND2.0 $\mu g/L$ 1,3,5-TrimethylbenzeneND2.0 $\mu g/L$ 1,2,4-TrimethylbenzeneND2.0 $\mu g/L$ 1,2,4-TrimethylbenzeneND2.0 $\mu g/L$ 1,3-DichlorobenzeneND2.0 $\mu g/L$ 1,3-DichlorobenzeneND2.0 $\mu g/L$ 1,4-DichlorobenzeneND2.0 $\mu g/L$ 1,2-DichlorobenzeneND2.0 $\mu g/L$ 1,2-DichlorobenzeneND2.0 $\mu g/L$	1 1 1 1 1 1 1 1 1	3/5/2009 12:10:00 PM 3/5/2009 12:10:00 PM
Ethylbenzene         ND         2.0         µg/L           m,p-Xylene         ND         2.0         µg/L           o-Xylene         ND         2.0         µg/L           Styrene         ND         2.0         µg/L           Bromoform         ND         2.0         µg/L           Isopropylbenzene         ND         2.0         µg/L           Isopropylbenzene         ND         2.0         µg/L           1,1,2,2-Tetrachloroethane         ND         2.0         µg/L           1,2,3-Trichloropropane         ND         2.0         µg/L           Bromobenzene         ND         2.0         µg/L           n-Propylbenzene         ND         2.0         µg/L           2-Chlorotoluene         ND         2.0         µg/L           1,3,5-Trimethylbenzene         ND         2.0         µg/L           1,3,5-Trimethylbenzene         ND         2.0         µg/L           1,2,4-Trimethylbenzene         ND         2.0         µg/L           1,2,4-Trimethylbenzene         ND         2.0         µg/L           sec-Butylbenzene         ND         2.0         µg/L           1,3-Dichlorobenzene         ND	1 1 1 1 1 1	3/5/2009 12:10:00 PM 3/5/2009 12:10:00 PM 3/5/2009 12:10:00 PM 3/5/2009 12:10:00 PM 3/5/2009 12:10:00 PM
m,p-Xylene         ND         2.0         µg/L           o-Xylene         ND         2.0         µg/L           Styrene         ND         2.0         µg/L           Bromoform         ND         2.0         µg/L           Isopropylbenzene         ND         2.0         µg/L           1,1,2,2-Tetrachloroethane         ND         2.0         µg/L           1,2,3-Trichloropropane         ND         2.0         µg/L           Bromobenzene         ND         2.0         µg/L           n-Propylbenzene         ND         2.0         µg/L           schorotoluene         ND         2.0         µg/L           4-Chlorotoluene         ND         2.0         µg/L           1,3,5-Trimethylbenzene         ND         2.0         µg/L           1,3,5-Trimethylbenzene         ND         2.0         µg/L           1,2,4-Trimethylbenzene         ND         2.0         µg/L           1,2,4-Trimethylbenzene         ND         2.0         µg/L           sec-Butylbenzene         ND         2.0         µg/L           1,3-Dichlorobenzene         ND         2.0         µg/L           1,4-Dichlorobenzene         ND	1 1 1 1 1 1	3/5/2009 12:10:00 PM 3/5/2009 12:10:00 PM 3/5/2009 12:10:00 PM 3/5/2009 12:10:00 PM
o-XyleneND2.0µg/LStyreneND2.0µg/LBromoformND2.0µg/LIsopropylbenzeneND2.0µg/L1,1,2,2-TetrachloroethaneND2.0µg/L1,2,3-TrichloropropaneND2.0µg/LBromobenzeneND2.0µg/Ln-PropylbenzeneND2.0µg/L2-ChlorotolueneND2.0µg/L4-ChlorotolueneND2.0µg/L1,3,5-TrimethylbenzeneND2.0µg/L1,2,4-TrimethylbenzeneND2.0µg/L1,2,4-TrimethylbenzeneND2.0µg/L1,3-DichlorobenzeneND2.0µg/L1,3-DichlorobenzeneND2.0µg/L1,4-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L	1 1 1 1 1	3/5/2009 12:10:00 PM 3/5/2009 12:10:00 PM 3/5/2009 12:10:00 PM
StyreneND2.0µg/LBromoformND2.0µg/LIsopropylbenzeneND2.0µg/L1,1,2,2-TetrachloroethaneND2.0µg/L1,2,3-TrichloropropaneND2.0µg/LBromobenzeneND2.0µg/Ln-PropylbenzeneND2.0µg/L2-ChlorotolueneND2.0µg/L4-ChlorotolueneND2.0µg/L1,3,5-TrimethylbenzeneND2.0µg/L1,2,4-TrimethylbenzeneND2.0µg/L1,2,4-TrimethylbenzeneND2.0µg/L4-IsopropyltolueneND2.0µg/L1,3-DichlorobenzeneND2.0µg/L1,4-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-Dichlorob	1 1 1 1	3/5/2009 12:10:00 PM 3/5/2009 12:10:00 PM
BromoformND2.0µg/LIsopropylbenzeneND2.0µg/L1,1,2,2-TetrachloroethaneND2.0µg/L1,2,3-TrichloropropaneND2.0µg/LBromobenzeneND2.0µg/Ln-PropylbenzeneND2.0µg/L2-ChlorotolueneND2.0µg/L4-ChlorotolueneND2.0µg/L1,3,5-TrimethylbenzeneND2.0µg/L1,2,4-TrimethylbenzeneND2.0µg/L1,2,4-TrimethylbenzeneND2.0µg/L4-IsopropyltolueneND2.0µg/L1,3-DichlorobenzeneND2.0µg/L1,4-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L	1 1 1	3/5/2009 12:10:00 PM
IsopropylbenzeneND2.0µg/L1,1,2,2-TetrachloroethaneND2.0µg/L1,2,3-TrichloropropaneND2.0µg/LBromobenzeneND2.0µg/Ln-PropylbenzeneND2.0µg/L2-ChlorotolueneND2.0µg/L4-ChlorotolueneND2.0µg/L1,3,5-TrimethylbenzeneND2.0µg/L1,2,4-TrimethylbenzeneND2.0µg/Lsec-ButylbenzeneND2.0µg/L4-IsopropyltolueneND2.0µg/L1,3-DichlorobenzeneND2.0µg/L1,4-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L	1	
1,1,2,2-TetrachloroethaneND2.0µg/L1,2,3-TrichloropropaneND2.0µg/LBromobenzeneND2.0µg/Ln-PropylbenzeneND2.0µg/L2-ChlorotolueneND2.0µg/L4-ChlorotolueneND2.0µg/L1,3,5-TrimethylbenzeneND2.0µg/L1,2,4-TrimethylbenzeneND2.0µg/L1,2,4-TrimethylbenzeneND2.0µg/Lsec-ButylbenzeneND2.0µg/L1,3-DichlorobenzeneND2.0µg/L1,4-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L	1	3/5/2009 12:10:00 PM
1,2,3-TrichloropropaneND2.0µg/LBromobenzeneND2.0µg/Ln-PropylbenzeneND2.0µg/L2-ChlorotolueneND2.0µg/L4-ChlorotolueneND2.0µg/L1,3,5-TrimethylbenzeneND2.0µg/L1,2,4-TrimethylbenzeneND2.0µg/L1,2,4-TrimethylbenzeneND2.0µg/Lsec-ButylbenzeneND2.0µg/L4-IsopropyltolueneND2.0µg/L1,3-DichlorobenzeneND2.0µg/L1,4-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L		
BromobenzeneND2.0µg/Ln-PropylbenzeneND2.0µg/L2-ChlorotolueneND2.0µg/L4-ChlorotolueneND2.0µg/L1,3,5-TrimethylbenzeneND2.0µg/L1,2,4-TrimethylbenzeneND2.0µg/Lsec-ButylbenzeneND2.0µg/L4-IsopropyltolueneND2.0µg/L1,3-DichlorobenzeneND2.0µg/L1,4-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L	4	3/5/2009 12:10:00 PM
n-PropylbenzeneND2.0µg/L2-ChlorotolueneND2.0µg/L4-ChlorotolueneND2.0µg/L1,3,5-TrimethylbenzeneND2.0µg/Ltert-ButylbenzeneND2.0µg/L1,2,4-TrimethylbenzeneND2.0µg/Lsec-ButylbenzeneND2.0µg/L4-IsopropyltolueneND2.0µg/L1,3-DichlorobenzeneND2.0µg/L1,4-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L	I	3/5/2009 12:10:00 PM
2-ChlorotolueneND2.0µg/L4-ChlorotolueneND2.0µg/L1,3,5-TrimethylbenzeneND2.0µg/Ltert-ButylbenzeneND2.0µg/L1,2,4-TrimethylbenzeneND2.0µg/Lsec-ButylbenzeneND2.0µg/L4-IsopropyltolueneND2.0µg/L1,3-DichlorobenzeneND2.0µg/L1,4-DichlorobenzeneND2.0µg/L1,4-DichlorobenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L	1	3/5/2009 12:10:00 PM
4-Chlorotoluene         ND         2.0         μg/L           1,3,5-Trimethylbenzene         ND         2.0         μg/L           tert-Butylbenzene         ND         2.0         μg/L           1,2,4-Trimethylbenzene         ND         2.0         μg/L           sec-Butylbenzene         ND         2.0         μg/L           4-Isopropyltoluene         ND         2.0         μg/L           1,3-Dichlorobenzene         ND         2.0         μg/L           1,4-Dichlorobenzene         ND         2.0         μg/L           1,4-Dichlorobenzene         ND         2.0         μg/L           1,2-Dichlorobenzene         ND         2.0         μg/L	1	3/5/2009 12:10:00 PN
1,3,5-Trimethylbenzene       ND       2.0       µg/L         tert-Butylbenzene       ND       2.0       µg/L         1,2,4-Trimethylbenzene       ND       2.0       µg/L         sec-Butylbenzene       ND       2.0       µg/L         4-Isopropyltoluene       ND       2.0       µg/L         1,3-Dichlorobenzene       ND       2.0       µg/L         1,4-Dichlorobenzene       ND       2.0       µg/L         1,4-Dichlorobenzene       ND       2.0       µg/L         1,2-Dichlorobenzene       ND       2.0       µg/L	1	3/5/2009 12:10:00 PM
tert-ButylbenzeneND2.0µg/L1,2,4-TrimethylbenzeneND2.0µg/Lsec-ButylbenzeneND2.0µg/L4-IsopropyltolueneND2.0µg/L1,3-DichlorobenzeneND2.0µg/L1,4-DichlorobenzeneND2.0µg/Ln-ButylbenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L	· 1	3/5/2009 12:10:00 PN
1,2,4-TrimethylbenzeneND2.0µg/Lsec-ButylbenzeneND2.0µg/L4-IsopropyltolueneND2.0µg/L1,3-DichlorobenzeneND2.0µg/L1,4-DichlorobenzeneND2.0µg/Ln-ButylbenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L	1	3/5/2009 12:10:00 PN
sec-ButylbenzeneND2.0µg/L4-IsopropyltolueneND2.0µg/L1,3-DichlorobenzeneND2.0µg/L1,4-DichlorobenzeneND2.0µg/Ln-ButylbenzeneND2.0µg/L1,2-DichlorobenzeneND2.0µg/L	1	3/5/2009 12:10:00 PN
4-Isopropyltoluene         ND         2.0         μg/L           1,3-Dichlorobenzene         ND         2.0         μg/L           1,4-Dichlorobenzene         ND         2.0         μg/L           n-Butylbenzene         ND         2.0         μg/L           1,2-Dichlorobenzene         ND         2.0         μg/L	1	3/5/2009 12:10:00 PN
ND         2.0         µg/L           1,3-Dichlorobenzene         ND         2.0         µg/L           1,4-Dichlorobenzene         ND         2.0         µg/L           n-Butylbenzene         ND         2.0         µg/L           1,2-Dichlorobenzene         ND         2.0         µg/L	1	3/5/2009 12:10:00 PM
1,4-Dichlorobenzene         ND         2.0         µg/L           n-Butylbenzene         ND         2.0         µg/L           1,2-Dichlorobenzene         ND         2.0         µg/L	1	3/5/2009 12:10:00 PN
n-Butylbenzene ND 2.0 µg/L 1,2-Dichlorobenzene ND 2.0 µg/L	1	3/5/2009 12:10:00 PM
1,2-Dichlorobenzene ND 2.0 µg/L	1	3/5/2009 12:10:00 PM
10	1	3/5/2009 12:10:00 PN
	1	3/5/2009 12:10:00 PM
1,2-Dibromo-3-chloropropane ND 5.0 µg/L	່ 1	3/5/2009 12:10:00 PM
1,2,4-Trichlorobenzene ND 2.0 µg/L	1	3/5/2009 12:10:00 PN
Hexachlorobutadiene ND 2.0 µg/L	1	3/5/2009 12:10:00 PN
Naphthalene ND 5.0 µg/L	1	3/5/2009 12:10:00 PN
1,2,3-Trichlorobenzene ND 2.0 µg/L	1	3/5/2009 12:10:00 PN
Surr: Dibromofluoromethane 99.5 85-119 %REC	1	3/5/2009 12:10:00 PM
Surr: 1,2-Dichloroethane-d4 101 79-131 %REC	· 1	3/5/2009 12:10:00 PN
Surr: Toluene-d8 102 90-110 %REC	<u>,</u> 1	3/5/2009 12:10:00 PM
Surr: 4-Bromofluorobenzene 85.5 76-117 %REC	1	3/5/2009 12:10:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-21A

Date: 09-Mar-09

## Client Sample ID: MW-109D Collection Date: 2/25/2009 3:10:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: <b>SK</b>
Dichlorodifluoromethane	ND	5.0	µg/L	· 1	2/28/2009 1:42:00 PM
Chloromethane	ND	5.0	µg/L	1	2/28/2009 1:42:00 PM
Vinyl chloride	ND	2.0	μg/L	1	2/28/2009 1:42:00 PM
Chloroethane	ND	5.0	µg/L	1	2/28/2009 1:42:00 PM
Bromomethane	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/28/2009 1:42:00 PM
Acetone	ND	10	μg/L	1	2/28/2009 1:42:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/28/2009 1:42:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/28/2009 1:42:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
2-Butanone	ND	10	µg/L	1	2/28/2009 1:42:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
cis-1,2-Dichloroethene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
Chloroform	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/28/2009 1:42:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	2/28/2009 1:42:00 PM
Benzene	ND	1.0	μg/L	1	2/28/2009 1:42:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/28/2009 1:42:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/28/2009 1:42:00 PM
Toluene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	.1	2/28/2009 1:42:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	[,] 1	2/28/2009 1:42:00 PM
2-Hexanone	ND	10	μg/L	1	2/28/2009 1:42:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	2/28/2009 1:42:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/28/2009 1:42:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-21A

#### Date: 09-Mar-09

### Client Sample ID: MW-109D Collection Date: 2/25/2009 3:10:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	al Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
o-Xylene	ND	2.0	µg/L	1.	2/28/2009 1:42:00 PM
Styrene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
Bromoform	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	· 1	2/28/2009 1:42:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
4-Chlorotoluene	ND	2.0	μg/L	1	2/28/2009 1:42:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/28/2009 1:42:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/28/2009 1:42:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1 -	2/28/2009 1:42:00 PM
Naphthalene	ND	5.0	µg/L	1	2/28/2009 1:42:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	- 1	2/28/2009 1:42:00 PM
Surr: Dibromofluoromethane	90.2	85-119	%REC	1	2/28/2009 1:42:00 PM
Surr: 1,2-Dichloroethane-d4	117	79-131	%REC	1	2/28/2009 1:42:00 PM
Surr: Toluene-d8	96.3	90-110	%REC	1	2/28/2009 1:42:00 PM
Surr: 4-Bromofluorobenzene	101	76-117	%REC	1	2/28/2009 1:42:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-22A

Date: 09-Mar-09

#### Client Sample ID: GZA-3 Collection Date: 2/25/2009 3:50:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SW	/8260B	٢		Analyst: SK
Dichlorodifluoromethane	ND	· 5.0	µg/L	1	2/28/2009 2:15:00 PM
Chloromethane	ND	5.0	µg/L	1	2/28/2009 2:15:00 PM
Vinyl chloride	13	2.0	µg/L	1	2/28/2009 2:15:00 PM
Chloroethane	ND	5.0	µg/L	1	2/28/2009 2:15:00 PM
Bromomethane	ND	2.0	μg/L	1	2/28/2009 2:15:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/28/2009 2:15:00 PM
Acetone	» ND	10	µg/L	1	2/28/2009 2:15:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	2/28/2009 2:15:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/28/2009 2:15:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	. 1	2/28/2009 2:15:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
2-Butanone	ND	10	µg/L	1	2/28/2009 2:15:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
cis-1,2-Dichloroethene	9.5	2.0	µg/L	1	2/28/2009 2:15:00 PM
Chloroform	ND	2.0	µg/L	1	2/28/2009 2:15:00 PN
Tetrahydrofuran	ND	10	µg/L	1	2/28/2009 2:15:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	· 1	2/28/2009 2:15:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
Benzene	ND	1.0	µg/L	1	2/28/2009 2:15:00 PM
Trichloroethene	4.2	2.0	µg/L	1	2/28/2009 2:15:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
Dibromomethane	ND	2.0	µg/L	· 1	2/28/2009 2:15:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/28/2009 2:15:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/28/2009 2:15:00 PM
Toluene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/28/2009 2:15:00 PM
1,1,2-Trichloroethane	ND	, 2.0	µg/L	1	2/28/2009 2:15:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
2-Hexanone	ND	10	µg/L	1	2/28/2009 2:15:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	2/28/2009 2:15:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/28/2009 2:15:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-22A

#### Date: 09-Mar-09

## Client Sample ID: GZA-3 Collection Date: 2/25/2009 3:50:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	2/28/2009 2:15:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	. 1	2/28/2009 2:15:00 PM
Ethylbenzene	ND	. 2.0	µg/L	1	2/28/2009 2:15:00 PM
m,p-Xylene	ND	2.0	μg/L	1	2/28/2009 2:15:00 PM
o-Xylene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
Styrene	, ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
Bromoform	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
1,2,3-Trichloropropane	ND	2.0	`µg/L	1	2/28/2009 2:15:00 PM
Bromobenzene	ND	2.0	μg/L	1	2/28/2009 2:15:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
4-Isopropyitoluene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/28/2009 2:15:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
Naphthalene	ND	5.0	µg/L	1	2/28/2009 2:15:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/28/2009 2:15:00 PM
Surr: Dibromofluoromethane	90.1	85-119	%REC	1	2/28/2009 2:15:00 PM
Surr: 1,2-Dichloroethane-d4	118	79-131	%REC	1	2/28/2009 2:15:00 PN
Surr: Toluene-d8	96.4	90-110	%REC	. 1	2/28/2009 2:15:00 PN
Surr: 4-Bromofluorobenzene	103	76-117	%REC	1	2/28/2009 2:15:00 PM

**CLIENT:** Shaw Environmental & Infrastructure, Inc. 0902072 Lab Order: **Project:** 130274 Textron Gorham Lab ID: 0902072-24A

Date: 09-Mar-09

Client Sample ID: Trip Blank Collection Date: 2/25/2009 Matrix: TRIP BLANK

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	S	W8260B				Analyst: <b>SK</b>
Dichlorodifluoromethane	ND	[.] 5.0	÷	µg/L	1	2/28/2009 12:00:00 PM
Chloromethane	ND	5.0		µg/L	1	2/28/2009 12:00:00 PM
Vinyl chloride	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
Chloroethane	ND	5.0		µg/L	1	2/28/2009 12:00:00 PM
Bromomethane	. ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
Trichlorofluoromethane	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
Diethyl ether	ND	5.0		µg/L	1	2/28/2009 12:00:00 PM
Acetone	ND	10		µg/L	1	2/28/2009 12:00:00 PM
1,1-Dichloroethene	ND	1.0		µg/L	1	2/28/2009 12:00:00 PM
Carbon disulfide	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
Methylene chloride	ND	5.0		µg/L	1 -	2/28/2009 12:00:00 PM
Methyl tert-butyl ether	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
trans-1,2-Dichloroethene	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
1,1-Dichloroethane	· ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
2-Butanone	ND	10		µg/L	1	2/28/2009 12:00:00 PM
2,2-Dichloropropane	ND	2.0	•	µg/L	1	2/28/2009 12:00:00 PM
cis-1,2-Dichloroethene	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
Chloroform	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
Tetrahydrofuran	ND	10		µg/L	1	2/28/2009 12:00:00 PM
Bromochloromethane	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
1,1,1-Trichloroethane	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
1,1-Dichloropropene	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
Carbon tetrachloride	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
1,2-Dichloroethane	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
Benzene	ND	1.0		µg/L	1	2/28/2009 12:00:00 PM
Trichloroethene	ND	2.0		μg/L	1	2/28/2009 12:00:00 PM
1,2-Dichloropropane	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
Bromodichloromethane	ND	2.0		μg/L	1	2/28/2009 12:00:00 PM
Dibromomethane	ND	2.0		µg/L	· 1	2/28/2009 12:00:00 PM
4-Methyl-2-pentanone	ND	10		μg/L	1	2/28/2009 12:00:00 PM
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	2/28/2009 12:00:00 PM
Toluene	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	2/28/2009 12:00:00 PM
1,1,2-Trichloroethane	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
1,2-Dibromoethane	ND	2.0		µg/L	.1	2/28/2009 12:00:00 PM
2-Hexanone	ND	10		µg/L	1 .	2/28/2009 12:00:00 PM
1,3-Dichloropropane	ND	2.0		µg/L	1	2/28/2009 12:00:00 PM
Tetrachloroethene	ND	2.0		μg/L	1	2/28/2009 12:00:00 PM
Dibromochloromethane	ND	2.0		μg/L	1	2/28/2009 12:00:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-24A

#### Date: 09-Mar-09

## Client Sample ID: Trip Blank Collection Date: 2/25/2009

Matrix: TRIP BLANK

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
o-Xylene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
Styrene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
Bromoform	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L ⁻	1	2/28/2009 12:00:00 PM
Bromobenzene	ND	2.0	µg/L	· 1	2/28/2009 12:00:00 PM
n-Propylbenzene	ND	2.0	µg/L	1 [.]	2/28/2009 12:00:00 PM
2-Chlorotoluene	ND	2.0	μg/L	1	2/28/2009 12:00:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	2/28/2009 12:00:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	· 1	2/28/2009 12:00:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/28/2009 12:00:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
Naphthalene	ND	5.0	µg/L	, 1 [°]	2/28/2009 12:00:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/28/2009 12:00:00 PM
Surr: Dibromofluoromethane	89.8	85-119	%REC	1	2/28/2009 12:00:00 PM
Surr: 1,2-Dichloroethane-d4	118	79-131	%REC	1	2/28/2009 12:00:00 PM
Surr: Toluene-d8	97.4	90-110	%REC	1	2/28/2009 12:00:00 PM
Surr: 4-Bromofluorobenzene	102	76-117	%REC	1	2/28/2009 12:00:00 PM

**CLIENT:** Shaw Environmental & Infrastructure, Inc. 0902072 Lab Order: 130274 Textron Gorham **Project:** Lab ID: 0902072-25A

#### Date: 09-Mar-09

#### Client Sample ID: MW-116D Collection Date: 2/25/2009 4:35:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: <b>SK</b>
Dichlorodifluoromethane	ND	· 5.0	µg/L	1	2/28/2009 2:49:00 PM
Chloromethane	ND	5.0	µg/L	1	2/28/2009 2:49:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Chloroethane	ND	5.0	µg/L	1	2/28/2009 2:49:00 PM
Bromomethane	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/28/2009 2:49:00 PM
Acetone	ND	10	µg/L	1	2/28/2009 2:49:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/28/2009 2:49:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/28/2009 2:49:00 PM
Methyl tert-butyl ether	ND	^{~~} 2.0	µg/L	1	2/28/2009 2:49:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
2-Butanone	ND	· 10	µg/L	1	2/28/2009 2:49:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
cis-1,2-Dichloroethene	2.1	2.0	µg/L	1	2/28/2009 2:49:00 PM
Chloroform	3.0	2.0	µg/L	1	2/28/2009 2:49:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/28/2009 2:49:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Benzene	ND	1.0	μg/L	1	2/28/2009 2:49:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PN
1,2-Dichloropropane	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Dibromomethane	ND	2.0	µg/L	[.] 1	2/28/2009 2:49:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/28/2009 2:49:00 PN
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/28/2009 2:49:00 PN
Toluene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PN
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/28/2009 2:49:00 PN
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/28/2009 2:49:00 PN
1,2-Dibromoethane	ND	2.0	µg/L	<u>,</u> 1	2/28/2009 2:49:00 PN
2-Hexanone	ND	10	µg/L	1	2/28/2009 2:49:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Tetrachloroethene	4.1	2.0	µg/L	1	2/28/2009 2:49:00 PM
Dibromochloromethane	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-25A

#### Date: 09-Mar-09

## Client Sample ID: MW-116D Collection Date: 2/25/2009 4:35:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	2/28/2009 2:49:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Ethylbenzene	ND	. 2.0	µg/L	1	2/28/2009 2:49:00 PM
m,p-Xylene	ND	2.0	μg/L	1	2/28/2009 2:49:00 PM
o-Xylene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Styrene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Bromoform	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	· 1	2/28/2009 2:49:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	2/28/2009 2:49:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
1,2,4-Trimethylbenzene	. ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
'sec-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/28/2009 2:49:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/28/2009 2:49:00 PM
Naphthalene	ND	5.0	µg/L	1	2/28/2009 2:49:00 PM
1,2,3-Trichlorobenzene	ND	° 2.0	µg/L	1	2/28/2009 2:49:00 PM
Surr: Dibromofluoromethane	91.2	85-119	%REC	1	2/28/2009 2:49:00 PM
Surr: 1,2-Dichloroethane-d4	120	79-131	%REC	1	2/28/2009 2:49:00 PM
Surr: Toluene-d8	97.1	90-110	%REC	. 1	2/28/2009 2:49:00 PM
Surr: 4-Bromofluorobenzene	102	76-117	%REC	1	2/28/2009 2:49:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-26A

Date: 09-Mar-09

## Client Sample ID: MW-116S Collection Date: 2/25/2009 4:45:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B				Analyst: <b>SK</b>
Dichlorodifluoromethane	ND	5.0		µg/L	1	2/28/2009 3:23:00 PM
Chloromethane	ND	5.0		µg/L	1	2/28/2009 3:23:00 PM
Vinyl chloride	ND	· 2.0		µg/L	1	2/28/2009 3:23:00 PM
Chloroethane	ND	5.0		µg/L	1	2/28/2009 3:23:00 PM
Bromomethane	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
Trichlorofluoromethane	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
Diethyl ether	ND	5.0		µg/L	1	2/28/2009 3:23:00 PM
Acetone	ND	10		µg/L	1	2/28/2009 3:23:00 PM
1,1-Dichloroethene	ND	1.0		µg/L	1	2/28/2009 3:23:00 PM
Carbon disulfide	ND '	2.0		µg/L	1	2/28/2009 3:23:00 PM
Methylene chloride	ND	5.0		µg/L	1	2/28/2009 3:23:00 PM
Methyl tert-butyl ether	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
trans-1,2-Dichloroethene	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
1,1-Dichloroethane	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
2-Butanone	ND	10		µg/L	1	2/28/2009 3:23:00 PM
2,2-Dichloropropane	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
cis-1,2-Dichloroethene	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
Chloroform	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
Tetrahydrofuran	ND	10		µg/L	1	2/28/2009 3:23:00 PM
Bromochloromethane	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
1,1,1-Trichloroethane	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
1,1-Dichloropropene	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
Carbon tetrachloride	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
1,2-Dichloroethane	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
Benzene	ND	1.0		µg/L	1	2/28/2009 3:23:00 PM
Trichloroethene	ND	2.0		µg/L	1 -	2/28/2009 3:23:00 PM
1,2-Dichloropropane	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
Bromodichloromethane	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
Dibromomethane	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
4-Methyl-2-pentanone	ND	10		µg/Ľ	1	2/28/2009 3:23:00 PM
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	2/28/2009 3:23:00 PM
Toluene	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
trans-1,3-Dichloropropene	ND	1.0		µg/L	1.	2/28/2009 3:23:00 PM
1,1,2-Trichloroethane	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
1,2-Dibromoethane	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
2-Hexanone	ND	10		µg/L	1	2/28/2009 3:23:00 PM
1,3-Dichloropropane	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
Tetrachloroethene	ND	2.0		µg/L	1	2/28/2009 3:23:00 PM
Dibromochloromethane	ND	2.0		μg/L	1	2/28/2009 3:23:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-26A

#### Date: 09-Mar-09

#### Client Sample ID: MW-116S Collection Date: 2/25/2009 4:45:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Qı	ial Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/28/2009 3:23:00 ⁻ PM
Ethylbenzene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
m,p-Xylene	ND	2.0	µg/L	1.	2/28/2009 3:23:00 PM
o-Xylene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
Styrene	. ND	2.0	μg/L	1	2/28/2009 3:23:00 PM
Bromoform	ND	2.0	μg/L	1	2/28/2009 3:23:00 PM
isopropylbenzene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	2/28/2009 3:23:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1.	2/28/2009 3:23:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
-sec-Butylbenzene	ND	2.0	µg/L∘	1	2/28/2009 3:23:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μ́g/L	1	2/28/2009 3:23:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
Hexachlorobutadiene	• ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
Naphthalene	ND	5.0	µg/L	1	2/28/2009 3:23:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/28/2009 3:23:00 PM
Surr: Dibromofluoromethane	91.8	85-119	%REC	1	2/28/2009 3:23:00 PM
Surr: 1,2-Dichloroethane-d4	119	79-131	%REC	1	2/28/2009 3:23:00 PM
Surr: Toluene-d8	97.3	90-110	%REC	, 1	2/28/2009 3:23:00 PM
Surr: 4-Bromofluorobenzene	104	76-117	%REC	1	2/28/2009 3:23:00 PM

Work Order: 0902072 Division: 130774	Shaw Environmental & Intrastructure, Inc.	ure, Inc.				ULLS JO	OC STIMMARY REPORT	<b>EPORT</b>
	72 4 Textron Gorham		- - -				Meth	Method Blank
					And Data 2/27/00 1:26-00 DM	Md OO:	Dren Data 2/27/00	00/20
Sample IJ mb-U2/2//09	Batch ID: K41838				Alialysis Date 2/2/03 1.2			
Client ID:		Kun ID:	A122060_1-V	A	nonipac			
	QC Sample			Original Sample	Ō	Original Sample		
Analyte	Result	R	Units	Amount Result %REC	LowLimit HighLimit or	or MS Result	%RPD RP	RPDLimit Qua
Dichlorodifluoromethane	QN	5.0	hg/L					
Chloromethane	QN	5.0	hg/L					
Vinyl chloride	QN	2.0	µg/L					
Chloroethane	QN	5.0	hg/L	~				
Bromomethane	QN	2.0	hg/L		н.,			
Trichlorofluoromethane	QN	2.0	hg/L					
Diethyl ether	ŊŊ	5.0	hg/L					
Acetone	QN	10	hg/L					
1,1-Dichloroethene	QN	1.0	hg/L					
Carbon disulfide	QN	2.0	hg/L					
Methylene chloride	ND	5.0	hg/L					
Methyl tert-butyl ether	ND	2.0	hg/L					
trans-1,2-Dichloroethene	QN	2.0	hg/L					
1,1-Dichloroethane	ND	2.0	hg/L					
2-Butanone	ND	10	hg/L					
2,2-Dichloropropane	ON .	2.0	hg/L					
cis-1,2-Dichloroethene	DN	2.0	hg/L					
Chloroform	QN	2.0	hg/L					
Tetrahydrofuran	ND	10	hg/L					
Bromochloromethane	ND	2.0	hg/L					
1,1,1-Trichloroethane	ND	2.0	hg/L					
1,1-Dichloropropene	ND	2.0	µg/L					
Carbon tetrachloride	ND	2.0	µg/L					
1,2-Dichloroethane	ND	2.0	hg/L					
Benzene	QN	1.0	hg/L					
Qualifiers: ND - Not Det	ND - Not Detected at the Reporting Limit	S.	- Spike Recover	Spike Recovery outside accepted recovery limits	B - Analyte detected in the associated Method Blank	issociated Metho	od Blank	
J - Analyte dé	J - Analyte detected below quantitation limits	R -		RPD outside accepted recovery limits	NA - Not applicable where J values or ND results occur	I values or ND re	sults occur	

CLITNT:         Stave Environmental & Infractionane, Inc.         OCCUMMARY REPORT           Vort OLICIT:         002071         Method Blank           Projett         130274         Expension           Projett         002072         Method Blank           Technoentere         NO         20         1907           Technoentere         NO         20         1907           Technoentere         NO         20         1907           Technoentere         NO         20         1907           Environmentere         NO         20         1907           Environmentere </th <th></th> <th></th> <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th>			•																																																																																																																																																																																									
02072         0214 Textron Gorham         ND       20       19/L	ENT:	Shaw Environmental & Infras	tructure, Inc				OC SUMMAI	<b>REPORT</b>																																																																																																																																																																																				
20       µgl         20       µgl         20       µgl         10       µgl         10       µgl         10       µgl         10       µgl         10       µgl         10       µgl         110       µgl         120       µgl         130       µgl         20       µgl         21       µgl         20       µgl         21       µgl         22       µgl         23       µgl         20       µgl         21       µgl         22       µgl         23       µgl         24       µgl         25       µgl         20       µgl         21       µgl         22       µgl         23       µgl         24       µgl         25       µgl         20       µgl         21       µgl         22       µgl         23       µgl         24       µgl         25       µgl	Work Order:	0902072						Method Blank																																																																																																																																																																																				
ND         2.0         μg/L           ND         1.0         μg/L           ND         2.0         μg/L	ject:	130274 Textron Gorham																																																																																																																																																																																										
ND         2.0         μg/L           ND         2.0         μg/L           ND         1.0         μg/L           ND         1.0         μg/L           ND         2.0         μg/L	loroethene	QN	2.0	hg/L			-																																																																																																																																																																																					
ND         2.0         μg/L           ND         10         μg/L           ND         1.0         μg/L           ND         2.0         μg/L	ichloropropane		2.0	hg/L																																																																																																																																																																																								
ND         2.0         µg/L           ND         10         µg/L           ND         1.0         µg/L           ND         2.0         µg/L     <	odichlorometh		2.0	hg/L																																																																																																																																																																																								
ND         10         µg/L           ND         1.0         µg/L           ND         2.0         µg/L     <	momethane	ΟN	2.0	hg/L																																																																																																																																																																																								
ND         1.0         μg/L           ND         2.0         μg/L	thyl-2-pentano		10	hg/L																																																																																																																																																																																								
ND         2.0         µg/L           ND         1.0         µg/L           ND         2.0         µg/L	3-Dichloroprop		1.0	hg/L		-																																																																																																																																																																																						
ND         1.0         μg/L           ND         2.0         μg/L	ane	QN	2.0	hg/L		•																																																																																																																																																																																						
ane         ND         2.0         μg/L           ie         ND         2.0         μg/L           ine         ND         2.0         μg/L           ine         ND         2.0         μg/L           ine         ND         2.0         μg/L           ine         ND         2.0         μg/L           intane         ND<	-1,3-Dichloropr		1.0	hg/L																																																																																																																																																																																								
Inc         ND         2.0         µg/L           Inc         ND         2.0         µg/L           Inc         ND         2.0         µg/L           Inc         ND         2.0         µg/L           Intaine         ND         2.0         µg/L           Intain	-Trichloroethar		2.0	hg/L																																																																																																																																																																																								
ND         10         µg/L           ne         ND         2.0         µg/L           Anare         ND         2.0         µg/L           Anare         ND         2.0         µg/L           Anare         ND         2.0         µg/L           ND         2.0         µg/L         µg/L </td <td>ibromoethane</td> <td></td> <td>2.0</td> <td>hg/L</td> <td></td> <td></td> <td></td> <td></td>	ibromoethane		2.0	hg/L																																																																																																																																																																																								
me     ND     2.0 $\mu g/L$ model     ND     2.0 $\mu g/L$ thane     ND     2.0 $\mu g/L$ thane     ND     2.0 $\mu g/L$ oothane     ND     2.0 $\mu g/L$ ND     2.0 $\mu g/L$ oothane     ND     2.0 $\mu g/L$ <td>xanone</td> <td>N</td> <td>10</td> <td>hg/L</td> <td></td> <td></td> <td></td> <td></td>	xanone	N	10	hg/L																																																																																																																																																																																								
B         ND         2.0         µg/L           thane         ND         2.0         µg/L           oethane         ND         2.0         µg/L           oethane         ND         2.0         µg/L           oethane         ND         2.0         µg/L           ND         2.0         µg/L            ND         2.0         µg/L            ND         2.0         µg/L            ND         2.0         µg/L            ND         2.0         µg/L            ND         2.0         µg/L            Pane         ND         2.0         µg/L           ND         2.0         µg/L            Pane         ND         2.0         µg/L           ND         2.0         µg/L            ND         2.0         µg/L            ND         2.0         µg/L            ND         2.0         µg/L            ND         2.0         µg/L            ND         2.0         µg/L       <	ichloropropan€		2.0	hg/L																																																																																																																																																																																								
Anale         ND         2.0         µg/L           oethane         ND         2.0         µg/L           oethane         ND         2.0         µg/L           ND         2.0         µg/L         µg/L           Pane         ND         2.0         µg/L           ND         2.0         µg/L         µg/L           Pane         ND         2.0         µg/L           ND         2.0         µg/L         µg/L           Pane         ND         2.0         µg/L           ND         2.0         µg/L         µg/L           ND         2.0         µg/L         µg/L           ND         2.0         µg/L         µg/L           ND         2.0         µg/L         µg/L <tr td="">         ND         µg/L     <td>chloroethene</td><td>QN</td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td></tr> <tr><td>ND         2.0         $\mu g/L$           oethane         ND         2.0         $\mu g/L$           pane         ND         2.0         $\mu g/L$           no         2.0         $\mu g/L$ $\mu g/L$           no         2.0</td><td>mochlorometh</td><td></td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td></tr> <tr><td>oethane         ND         2.0         µg/L           pane         ND         2.0         µg/L           ND         2.0         µg/L        </td><td>obenzene</td><td>ΠN</td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td></tr> <tr><td>ND       2.0       $\mu g/L$         ND       2.0       $\mu g/L$         Pane       ND       2.0       $\mu g/L$         ND       2.0       $\mu g/L$ $\mu g/L$         ND&lt;</td><td>2-Tetrachloroe</td><td></td><td>2.0</td><td>hg/L</td><td>,</td><td></td><td></td><td></td></tr> <tr><td>ND         2.0         µg/L           ND         2.0         µg/L           oethane         ND         2.0         µg/L           ND         2.0         µg/L            pane         ND         2.0         µg/L           ND         2.0         µg/L            nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L      N</td><td>benzene</td><td>ND</td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td></tr> <tr><td>ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           roethane         ND         2.0         µg/L           roethane         ND         2.0         µg/L           roethane         ND         2.0         µg/L           roethane         ND         2.0         µg/L           nzene         ND         2.0         µg/L</td><td>(ylene</td><td>N</td><td>2.0</td><td>hg/L</td><td></td><td>•••</td><td></td><td></td></tr> <tr><td>ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           rethane         ND         2.0         µg/L           rethane         ND         2.0         µg/L           rethane         ND         2.0         µg/L           rethane         ND         2.0         µg/L           nzene         ND         2.0         µg/L</td><td>ene</td><td>QN</td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td>-</td></tr> <tr><td>ND         2.0         µg/L           oethane         ND         2.0         µg/L           oethane         ND         2.0         µg/L           pane         ND         2.0         µg/L           pane         ND         2.0         µg/L           noethane         ND         2.0         µg/L           noethane         ND         2.0         µg/L           ND         2.0         µg/L         ND           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L</td><td>ne</td><td>ΠN</td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td></tr> <tr><td>ND     2.0     $\mu g/L$       roethane     ND     2.0     $\mu g/L$       roethane     ND     2.0     $\mu g/L$       pane     ND     2.0     $\mu g/L$       nzene     ND     2.0     $\mu g/L$</td><td>loform</td><td>QN</td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td>·</td></tr> <tr><td>coeffname     ND     $2.0$ $\mu g/L$       pane     ND     $2.0$ $\mu g/L$       pane     ND     $2.0$ $\mu g/L$       ND     $2.0$ $\mu g/L$       ND     $2.0$ $\mu g/L$       ND     $2.0$ $\mu g/L$       nzene     ND     $2.0$ $\mu g/L$</td><td>opylbenzene</td><td>QN</td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td></tr> <tr><td>pane     ND     2.0     µg/L       ND     2.0     µg/L       ND     2.0     µg/L       ND     2.0     µg/L       nzene     ND     2.0     µg/L       Analvie detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits</td><td>,2-Tetrachloroe</td><td></td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td></tr> <tr><td>ND     2.0     µg/L       ND     2.0     µg/L       ND     2.0     µg/L       nzene     ND     2.0     µg/L       nzene     ND     2.0     µg/L       0     2.0     µg/L       1     2.0     µg/L</td><td>-Trichloroprops</td><td>•</td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td></tr> <tr><td>ND     2.0     μg/L       ND     2.0     μg/L       ND     2.0     μg/L       nzene     ND     2.0     μg/L       nzene     ND     2.0     μg/L       O - Not Detected at the Reporting Limit     2.0     μg/L</td><td>lobenzene</td><td>ND</td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td></tr> <tr><td>ND     2.0     μg/L       enzene     ND     2.0     μg/L       enzene     ND     2.0     μg/L       e     ND     2.0     μg/L       enzene     ND     2.0     μg/L       enzene     ND     2.0     μg/L       enzene     ND     2.0     μg/L       Enzene     ND     2.0     μg/L       D- Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits</td><td>pylbenzene</td><td>N</td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td></tr> <tr><td>ND     2.0     μg/L       nzene     ND     2.0     μg/L</td><td>lorotoluene</td><td>QN</td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td></tr> <tr><td>Tzene     ND     2.0     μg/L       ND     2.0     μg/L       Tzene     ND     2.0     μg/L       0 - Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits</td><td>lorotoluene</td><td></td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td></tr> <tr><td>ND 2.0 µg/L NZENE ND 2.0 µg/L 0 - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits Analysis detected helow quantitation limits R - RPD outside accented recovery limits</td><td>-Trimethylbenz</td><td></td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td></tr> <tr><td>ND 2.0 µg/L Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits a detected below quantitation limits R - RPD outside accented recovery limits</td><td>sutylbenzene</td><td></td><td>2.0</td><td>µg/L</td><td></td><td></td><td>-</td><td></td></tr> <tr><td>ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 1 - Analyte detected below quantitation limits R - RPD outside accepted recovery limits</td><td>-Trimethylbenz</td><td></td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td></tr> <tr><td>R - RPD outside accented recovery limits</td><td></td><td>- Not Detected at the Reporting Limit</td><td></td><td>S - Spike Recovery outside a</td><td>ccepted recovery limits</td><td>B - Analyte detected in th</td><td>he associated Method Blan</td><td>K</td></tr> <tr><td>mining fragmentary and and an and and and and and and and</td><td>J - A:</td><td>J - Analyte detected below quantitation limits</td><td>ts</td><td>R - RPD outside accepted rec</td><td>covery limits</td><td>NA - Not annlicable whe</td><td>re I vialites or ND results o</td><td></td></tr>	chloroethene	QN	2.0	hg/L					ND         2.0 $\mu g/L$ oethane         ND         2.0 $\mu g/L$ pane         ND         2.0 $\mu g/L$ no         2.0 $\mu g/L$ $\mu g/L$ no         2.0	mochlorometh		2.0	hg/L					oethane         ND         2.0         µg/L           pane         ND         2.0         µg/L           ND         2.0         µg/L	obenzene	ΠN	2.0	hg/L					ND       2.0 $\mu g/L$ Pane       ND       2.0 $\mu g/L$ ND       2.0 $\mu g/L$ $\mu g/L$ ND<	2-Tetrachloroe		2.0	hg/L	,				ND         2.0         µg/L           oethane         ND         2.0         µg/L           ND         2.0         µg/L            pane         ND         2.0         µg/L           ND         2.0         µg/L            nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L      N	benzene	ND	2.0	hg/L					ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           roethane         ND         2.0         µg/L           roethane         ND         2.0         µg/L           roethane         ND         2.0         µg/L           roethane         ND         2.0         µg/L           nzene         ND         2.0         µg/L	(ylene	N	2.0	hg/L		•••			ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           rethane         ND         2.0         µg/L           rethane         ND         2.0         µg/L           rethane         ND         2.0         µg/L           rethane         ND         2.0         µg/L           nzene         ND         2.0         µg/L	ene	QN	2.0	hg/L				-	ND         2.0         µg/L           oethane         ND         2.0         µg/L           oethane         ND         2.0         µg/L           pane         ND         2.0         µg/L           pane         ND         2.0         µg/L           noethane         ND         2.0         µg/L           noethane         ND         2.0         µg/L           ND         2.0         µg/L         ND           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L	ne	ΠN	2.0	hg/L					ND     2.0 $\mu g/L$ roethane     ND     2.0 $\mu g/L$ roethane     ND     2.0 $\mu g/L$ pane     ND     2.0 $\mu g/L$ nzene     ND     2.0 $\mu g/L$	loform	QN	2.0	hg/L				·	coeffname     ND $2.0$ $\mu g/L$ pane     ND $2.0$ $\mu g/L$ pane     ND $2.0$ $\mu g/L$ ND $2.0$ $\mu g/L$ ND $2.0$ $\mu g/L$ ND $2.0$ $\mu g/L$ nzene     ND $2.0$ $\mu g/L$	opylbenzene	QN	2.0	hg/L					pane     ND     2.0     µg/L       ND     2.0     µg/L       ND     2.0     µg/L       ND     2.0     µg/L       nzene     ND     2.0     µg/L       Analvie detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits	,2-Tetrachloroe		2.0	hg/L					ND     2.0     µg/L       ND     2.0     µg/L       ND     2.0     µg/L       nzene     ND     2.0     µg/L       nzene     ND     2.0     µg/L       0     2.0     µg/L       1     2.0     µg/L	-Trichloroprops	•	2.0	hg/L					ND     2.0     μg/L       ND     2.0     μg/L       ND     2.0     μg/L       nzene     ND     2.0     μg/L       nzene     ND     2.0     μg/L       O - Not Detected at the Reporting Limit     2.0     μg/L	lobenzene	ND	2.0	hg/L					ND     2.0     μg/L       enzene     ND     2.0     μg/L       enzene     ND     2.0     μg/L       e     ND     2.0     μg/L       enzene     ND     2.0     μg/L       enzene     ND     2.0     μg/L       enzene     ND     2.0     μg/L       Enzene     ND     2.0     μg/L       D- Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits	pylbenzene	N	2.0	hg/L					ND     2.0     μg/L       nzene     ND     2.0     μg/L	lorotoluene	QN	2.0	hg/L					Tzene     ND     2.0     μg/L       ND     2.0     μg/L       Tzene     ND     2.0     μg/L       0 - Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits	lorotoluene		2.0	hg/L					ND 2.0 µg/L NZENE ND 2.0 µg/L 0 - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits Analysis detected helow quantitation limits R - RPD outside accented recovery limits	-Trimethylbenz		2.0	hg/L					ND 2.0 µg/L Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits a detected below quantitation limits R - RPD outside accented recovery limits	sutylbenzene		2.0	µg/L			-		ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 1 - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	-Trimethylbenz		2.0	hg/L					R - RPD outside accented recovery limits		- Not Detected at the Reporting Limit		S - Spike Recovery outside a	ccepted recovery limits	B - Analyte detected in th	he associated Method Blan	K	mining fragmentary and and an and and and and and and and	J - A:	J - Analyte detected below quantitation limits	ts	R - RPD outside accepted rec	covery limits	NA - Not annlicable whe	re I vialites or ND results o	
chloroethene	QN	2.0	hg/L																																																																																																																																																																																									
ND         2.0 $\mu g/L$ oethane         ND         2.0 $\mu g/L$ pane         ND         2.0 $\mu g/L$ no         2.0 $\mu g/L$ $\mu g/L$ no         2.0	mochlorometh		2.0	hg/L																																																																																																																																																																																								
oethane         ND         2.0         µg/L           pane         ND         2.0         µg/L           ND         2.0         µg/L	obenzene	ΠN	2.0	hg/L																																																																																																																																																																																								
ND       2.0 $\mu g/L$ Pane       ND       2.0 $\mu g/L$ ND       2.0 $\mu g/L$ $\mu g/L$ ND<	2-Tetrachloroe		2.0	hg/L	,																																																																																																																																																																																							
ND         2.0         µg/L           oethane         ND         2.0         µg/L           ND         2.0         µg/L            pane         ND         2.0         µg/L           ND         2.0         µg/L            nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L           nzene         ND         2.0         µg/L      N	benzene	ND	2.0	hg/L																																																																																																																																																																																								
ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           roethane         ND         2.0         µg/L           roethane         ND         2.0         µg/L           roethane         ND         2.0         µg/L           roethane         ND         2.0         µg/L           nzene         ND         2.0         µg/L	(ylene	N	2.0	hg/L		•••																																																																																																																																																																																						
ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           rethane         ND         2.0         µg/L           rethane         ND         2.0         µg/L           rethane         ND         2.0         µg/L           rethane         ND         2.0         µg/L           nzene         ND         2.0         µg/L	ene	QN	2.0	hg/L				-																																																																																																																																																																																				
ND         2.0         µg/L           oethane         ND         2.0         µg/L           oethane         ND         2.0         µg/L           pane         ND         2.0         µg/L           pane         ND         2.0         µg/L           noethane         ND         2.0         µg/L           noethane         ND         2.0         µg/L           ND         2.0         µg/L         ND           nzene         ND         2.0         µg/L	ne	ΠN	2.0	hg/L																																																																																																																																																																																								
ND     2.0 $\mu g/L$ roethane     ND     2.0 $\mu g/L$ roethane     ND     2.0 $\mu g/L$ pane     ND     2.0 $\mu g/L$ nzene     ND     2.0 $\mu g/L$	loform	QN	2.0	hg/L				·																																																																																																																																																																																				
coeffname     ND $2.0$ $\mu g/L$ pane     ND $2.0$ $\mu g/L$ pane     ND $2.0$ $\mu g/L$ ND $2.0$ $\mu g/L$ ND $2.0$ $\mu g/L$ ND $2.0$ $\mu g/L$ nzene     ND $2.0$ $\mu g/L$	opylbenzene	QN	2.0	hg/L																																																																																																																																																																																								
pane     ND     2.0     µg/L       ND     2.0     µg/L       ND     2.0     µg/L       ND     2.0     µg/L       nzene     ND     2.0     µg/L       Analvie detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits	,2-Tetrachloroe		2.0	hg/L																																																																																																																																																																																								
ND     2.0     µg/L       ND     2.0     µg/L       ND     2.0     µg/L       nzene     ND     2.0     µg/L       nzene     ND     2.0     µg/L       0     2.0     µg/L       1     2.0     µg/L	-Trichloroprops	•	2.0	hg/L																																																																																																																																																																																								
ND     2.0     μg/L       ND     2.0     μg/L       ND     2.0     μg/L       nzene     ND     2.0     μg/L       nzene     ND     2.0     μg/L       O - Not Detected at the Reporting Limit     2.0     μg/L	lobenzene	ND	2.0	hg/L																																																																																																																																																																																								
ND     2.0     μg/L       enzene     ND     2.0     μg/L       enzene     ND     2.0     μg/L       e     ND     2.0     μg/L       enzene     ND     2.0     μg/L       enzene     ND     2.0     μg/L       enzene     ND     2.0     μg/L       Enzene     ND     2.0     μg/L       D- Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits	pylbenzene	N	2.0	hg/L																																																																																																																																																																																								
ND     2.0     μg/L       nzene     ND     2.0     μg/L	lorotoluene	QN	2.0	hg/L																																																																																																																																																																																								
Tzene     ND     2.0     μg/L       ND     2.0     μg/L       Tzene     ND     2.0     μg/L       0 - Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits	lorotoluene		2.0	hg/L																																																																																																																																																																																								
ND 2.0 µg/L NZENE ND 2.0 µg/L 0 - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits Analysis detected helow quantitation limits R - RPD outside accented recovery limits	-Trimethylbenz		2.0	hg/L																																																																																																																																																																																								
ND 2.0 µg/L Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits a detected below quantitation limits R - RPD outside accented recovery limits	sutylbenzene		2.0	µg/L			-																																																																																																																																																																																					
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 1 - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	-Trimethylbenz		2.0	hg/L																																																																																																																																																																																								
R - RPD outside accented recovery limits		- Not Detected at the Reporting Limit		S - Spike Recovery outside a	ccepted recovery limits	B - Analyte detected in th	he associated Method Blan	K																																																																																																																																																																																				
mining fragmentary and and an and and and and and and and	J - A:	J - Analyte detected below quantitation limits	ts	R - RPD outside accepted rec	covery limits	NA - Not annlicable whe	re I vialites or ND results o																																																																																																																																																																																					

.

		ren de la constante de la const													
CLIENT:	Shaw Environmental & Infrastructure, Inc.	ental & Infras	tructure, Inc	ġ	·			J			00	<b>NUS</b>	MARY	<b>OC SUMMARY REPORT</b>	RT
Work Order:	0902072										,			Mathad Dlank	140
Project:	130274 Textron Gorham	ı Gorham		-									- <b>1</b>	Mennon Di	allk
sec-Butylbenzene		QN	2.0	hg/L						-					
4-Isopropyltoluene	Đ	QN	2.0	hg/L											
1,3-Dichlorobenzene	ene	Q	2.0	µg/L											
1,4-Dichlorobenzene	ene	QN	2.0	hg/L											
n-Butylbenzene		QN	2.0	hg/L											
1,2-Dichlorobenzene	ene	QN	2.0	hg/L											;
1,2-Dibromo-3-chloropropane	loropropane	QN	5.0	hg/L											
1,2,4-Trichlorobenzene	nzene	QN	2.0	hg/L											
Hexachlorobutadiene	iene	Q	2.0	µg/L											
Naphthalene		QN	5.0	hg/L											
1,2,3-Trichlorobenzene	nzene	Q	2.0	µg/L											
Surr: Dibromofluoromethane	luoromethane	22.14	2.0	hg/L	25		0 85	88.6	85	119		0			
Surr: 1,2-Dichloroethane-d4	oroethane-d4	25.55	2.0	hg/L	25		0	102	79	131		0			
Surr: Toluene-d8	<u>d</u> 8	23.5	2.0	hg/L	25			94	.06	110		0			
Surr: 4-Bromofluorobenzene	fluorobenzene	23.96	2.0	hg/L	25		-95 -	95.8	76	117		0			
		2													
•															
	•														
	•														
	· · · ·					-									
Qualifiers: NI	ND - Not Detected at the Reporting Limit	teporting Limit		S - Spike Recc	S - Spike Recovery outside accepted recovery limits	cepted recov	ery limit	· ·	Analyte d	stected in	the associ	iated Meth	B - Analyte detected in the associated Method Blank		
	I - Ansivte detected helow quantitation limits	auantitation limi	Is	R - RPD outsic	R - RPD outside accented recovery limits	verv limits									
,										VIN D HUC-	TION   CACH	IN LO CO.			

CLIRNT:         Saw barrironmental & Infrastructure, Inc.         OCC         CLIRNT         OCC         CLIRNT         OCC         CLIRNT         OCC         CLIRNT         OCC         CLIRNT         OCC         CLIRNT         OCC         Method Blank           Vork Order:         000072         ISU24 TERton Clirity         ISU24 TERton Clirity         Analysis Date 22000         Proposition         Proposit         Proposition         Proposition <th>AMRO Environme</th> <th>AMRO Environmental Laboratories Corp.</th> <th>Corp.</th> <th></th> <th>-</th> <th></th> <th></th> <th>· · ·</th> <th></th> <th>Date: 06-Mar-09</th> <th>-Mar-09</th> <th></th>	AMRO Environme	AMRO Environmental Laboratories Corp.	Corp.		-			· · ·		Date: 06-Mar-09	-Mar-09	
Durder:         0.09/01/2           I:         130/24 Textron Garban         Analysis Late         2500/12           I:         130/24 Textron Garban         Run ID:         V-2         Perp Date         Perp Date         2260/0           I:         Durder:         Run ID:         V-2         Run ID:         Ru		nvironmental & Infrastruc	ture, Inc.						QC SUM	IMARY	REPOR	
D         mb-st28004         Each ID: R4184.1         Test Code: SW25003         Units: Jul L         Analysis Data         Z28004         Tesp Data         Z28004         Z28004 <thz28004< th=""> <thz28004< th="">         Z28004</thz28004<></thz28004<>	rder:	2 Textron Gorham						-		Μ	ethod Bla	h h
Image:	Samule ID mh-02/28/09	Batch ID: R41842	Test Code:	SW8260B	Units: ua/L		Analysi	is Date 2/28/0	11:26:00 AM	Prep Date	2/28/09	
CSample         CCSample         Control         Cashie         Optional Sample         Optional Sample           Influencembrane         ND         5         Unix         Amount         Featur         MS Featur         MS Featur         MPOunt           Influencembrane         ND         5         HD	Client ID:		Run ID:	V-2_090228			SeqNo	: 69642(				
Result         RL         Units         Amount         Result         MRPD intellimit         or MS Result         WRPD         RPDInit           dihoromethane         ND         5.0         µg/L         noil         0.0         %FCD         Noil         %FCD         MRD intellimit         or MS Result         WRD         RPD intellimit           dihoromethane         ND         5.0         µg/L         noil         intellimit         intellimit         or MS Result         WRD         RPD intellimit           dihoromethane         ND         5.0         µg/L         intellimit		QC Sample		ð	C Spike Original	Sample			Original Sample			
ND         5.0         µg/L           ND         5.0         µg/L           ND         5.0         µg/L           ND         5.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           ND         10         µg/L           ND         10         µg/L           ND         2.0         µg/L </th <th>Analyte</th> <th>Result</th> <th>RL</th> <th></th> <th>Amount</th> <th></th> <th></th> <th></th> <th></th> <th>%RPD</th> <th>RPDLimit</th> <th>Qua</th>	Analyte	Result	RL		Amount					%RPD	RPDLimit	Qua
ND         5.0         µg/L           ND         2.0         µg/L           ND         1.0         µg/L           ND         1.0         µg/L           ND         2.0         µg/L	Dichlorodifluoromethane	QN	5.0	hg/L								
ND       2.0       µg/L         ND       1.0       µg/L         ND       1.0       µg/L         ND       2.0       µg	Chloromethane	ND	5.0	hg/L						-		
ND       5.0       µg/L         ND       2.0       µg/L         ND       5.0       µg/L         ND       5.0       µg/L         ND       1.0       µg/L         ND       1.0       µg/L         ND       2.0       µg	Vinyl chloride	ND	2.0	hg/L					-			
ND         2.0         µg/L           ND         5.0         µg/L           ND         5.0         µg/L           ND         1.0         µg/L           ND         1.0         µg/L           ND         2.0         µg/L	Chloroethane	QN	5.0	hg/L					•			
ND       2.0 $\mu g/L$ ND       5.0 $\mu g/L$ ND       1.0 $\mu g/L$ ND       2.0 $\mu$	Bromomethane	QN	2.0	hg/L								
ND         5.0         µg/L           ND         10         µg/L           ND         2.0         µg/L     <	Trichlorofluoromethane	ND	2.0	hg/L								
ND       10 $\mu g/L$ ND       2.0 $\mu g/L$ ND       5.0 $\mu g/L$ ND       2.0 $\mu $	Diethyl ether	ND	5.0	hg/L								
ND       1.0 $\mu g/L$ ND       2.0 $\mu$	Acetone	QN	10	hg/L		•		•				
ND2.0 $\mu g/L$ ND5.0 $\mu g/L$ ND2.0 $\mu g/L$ ND2.	1,1-Dichloroethene	QN	1.0	hg/L								
ND5.0 $\mu g/L$ ND2.0 $\mu g/L$ ND2.	Carbon disulfide	QN	2.0	hg/L								
ND $2.0$ $\mu g/L$ ND $2.0$ N	Methylene chloride	ON .	5.0	hg/L	÷							
ND $2.0$ $\mu g/L$ ND $2.0$ $\mu g$	Methyl tert-butyl ether	QN	2.0	hg/L			•			-		
ND       2.0 $\mu g/L$ ND       10 $\mu g/L$ ND       2.0 $\mu g/L$ ND       1.0 $\mu g/L$ ND       2.0 $\mu $	trans-1,2-Dichloroethene	ON N	2.0	hg/L								
ND       10 $\mu g/L$ ND       2.0 $\mu g/L$ ND       1.0 $\mu g/L$ ND       2.0 $\mu g/L$ ND       2.0 $\mu g/L$ ND       2.0 $\mu g/L$ ND       1.0 $\mu g/L$ ND       1.0 $\mu g/L$ ND       1.0 $\mu $	1,1-Dichloroethane	ON	2.0	hg/L								
ND       2.0 $\mu g/L$ ND       1.0 $\mu g/L$ ND       2.0 $\mu g/L$ ND       1.0 $\mu g/L$ At detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         yte detected below quantitation limits       R - RPD outside accepted recovery limits         Dortine Limit. defined as the lowest concentration the laboratory can accurately quantitate.	2-Butanone	ON N	10	µg/L								
ND       2.0 $\mu g/L$ ND       1.0 $\mu g/L$ ND       1.0 $\mu g/L$ ND       2.0 $\mu g/L$ ND       2.0 $\mu g/L$ ND       1.0 $\mu$	2,2-Dichloropropane	Ð	2.0	hg/L								
ND $2.0$ $\mu g/L$ uranND $10$ $\mu g/L$ omethaneND $2.0$ $\mu g/L$ oroethaneND $2.0$ $\mu g/L$ oroethaneND $2.0$ $\mu g/L$ opropeneND $2.0$ $\mu g/L$ orthaneND $2.0$ $\mu g/L$ off $2.0$ $\mu g/L$ off $1.0$ $\mu g/L$ off $1.0$ $\mu g/L$ ND - Not Detected at the Reporting Limit $S$ - Spike Recovery outside accepted recovery limitsJ - Analyte detected below quantitation limits $R$ - RPD outside accepted recovery limitsRI - Reporting Limit: defined as the lowest concentration the laboratory can accurately quantitate.	cis-1,2-Dichloroethene	QN	2.0	hg/L								
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Chloroform	QN	2.0	hg/L								
ND       2.0       µg/L         ND       1.0       µg	Tetrahydrofuran	QN	10	hg/L								
B     ND     2.0     μg/L       Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits       alyte detected below quantitation limits     R - RPD outside accepted recovery limits       Reporting Limit. defined as the lowest concentration the laboratory can accurately quantitate.	Bromochloromethane	DN	2.0	hg/L								
ND       2.0       μg/L         ND       2.0       μg/L         ND       2.0       μg/L         ND       2.0       μg/L         ND       1.0       μg/L         Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         alyte detected below quantitation limits       R - RPD outside accepted recovery limits         Renorting Limit. defined as the lowest concentration the laboratory can accurately quantitate.	1,1,1-Trichloroethane	DN	2.0	µg/L							زم	
ND       2.0       μg/L         ND       2.0       μg/L         ND       2.0       μg/L         ND       1.0       μg/L         Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         alyte detected below quantitation limits       R - RPD outside accepted recovery limits         Renorting Limit. defined as the lowest concentration the laboratory can accurately quantitate.	1,1-Dichloropropene	QN	2.0	hg/L								
ND       2.0       μg/L         ND       1.0       μg/L         - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         nalyte detected below quantitation limits       R - RPD outside accepted recovery limits         Reporting Limit: defined as the lowest concentration the laboratory can accurately quantitate.	Carbon tetrachloride	ND	2.0	hg/L	•							
ND       1.0       μg/L         rs:       ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         J - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits         RL - Reporting Limit. defined as the lowest concentration the laboratory can accurately quantitate.	1,2-Dichloroethane	DN	2.0	hg/L								
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         J - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits         RI - Reporting Limit: defined as the lowest concentration the laboratory can accurately quantitate.	Benzene	QN	1.0	hg/L								
S		ted at the Reporting Limit		Spike Recove	ry outside accepted	recovery lim		alyte detected	in the associated Met	hod Blank		
	J - Analyte dete	cted below quantitation limits	R -	RPD outside :	accepted recovery l	imits	I - AN	Not applicable v	where J values or ND	results occur		
	BI - Renorting	I imit: defined as the lowest cond	centration the	lahoratory car	n accurately quantit	ate.						

CLIENT: Sha	Shaw Environmental & Infrastructure, Inc.	ture, In	ö		Ö	OC SUMMARY REPORT
Work Order: 090	0902072		-		ý	
Project: 13(	130274 Textron Gorham	•				INTELLIOU DIALIK
Trichloroethene	QN	2.0	hg/L			
1,2-Dichloropropane	ND	2.0	hg/L			
Bromodichloromethane	QN	2.0	hg/L			••
Dibromomethane	QN	2.0	hg/L			
4-Methyl-2-pentanone	ND	10	hg/L			
cis-1,3-Dichloropropene	ND	1.0	hg/L			
Toluene	ND	2.0	hg/L	•		
trans-1,3-Dichloropropene	e ND	1.0	hg/L			
1,1,2-Trichloroethane	ON .	2.0	hg/L			1
1,2-Dibromoethane	QN	2.0	hg/L			
2-Hexanone	<u>ON</u>	10	hg/L		•	
1,3-Dichloropropane	ND	2.0	hg/L			
Tetrachloroethene	QN	2.0	hg/L			
Dibromochloromethane	QN	2.0	hg/L		-	• •
Chlorobenzene	QN	2.0	hg/L			
1,1,1,2-Tetrachloroethane	e ND	2.0	hg/L			
Ethylbenzene	QN	2.0	hg/L			
m,p-Xylene	QN	2.0	hg/L			-
o-Xylene	QN	2.0	hg/L			
Styrene	QN	2.0	hg/L			
Bromoform	QN	2.0	hg/L			
lsopropylbenzene	QN	2.0	hg/L			
1,1,2,2-Tetrachloroethane	e ND	2.0	hg/L			
1,2,3-Trichloropropane	QN	2.0	hg/L			•
Bromobenzene	ON .	2.0	hg/L			
n-Propylbenzene	QN	2.0	hg/L	•		
2-Chlorotoluene	<u>ON</u>	2.0	hg/L			
4-Chlorotoluene	QN	2.0	hg/L		•	
1,3,5-Trimethylbenzene	QN	2.0	hg/L	-		
tert-Butylbenzene	ON	2.0	hg/L			
1,2,4-Trimethylbenzene	ON .	2.0	µg/L			
Qualifiers: ND - Not I	ND - Not Detected at the Reporting Limit		S - Spike Reco	S - Spike Recovery outside accepted recovery limits	B - Analyte detected in the associated Method Blank	ociated Method Blank
J - Analyte	J - Analyte detected below quantitation limits		R - RPD outsid	R - RPD outside accepted recovery limits	NA - Not amilicable where I values or ND results occur	alitat of ND reculte occur
/						

AMRO Environmental Laboratories Corp.         Date: 66.460-09           CLIRN:         Saw Environmental Laboratories Corp.         Date: 66.460-09           CLIRN:         Saw Environmental & Infrastructure, Inc.         OC SUMMARY REPORT           Void Order:         900202         Method Blank           Enjoint:         130274         Texture Gorder         OC SUMMARY REPORT           Enjoint:         130274         Corron Gorder         OC SUMMARY REPORT           Enjointenontense         20         191 <th></th>													
Informetical Laconatories Coup.     Occ SUMMAR       Slave Environmental & Infrastructure, Inc.     200 907.       Slave Environmental & Infrastructure, Inc.     200 901.       0002072     200 1901.       0002072     200 1901.       0002072     200 1901.       0002072     200 1901.       0002072     200 1901.       0002072     200 1901.       0002072     200 1901.       0002073     200 1901.       0002074     200 1901.       000207     200 1901.       000207     200 1901.       000207     200 1901.       000207     200 1901.       000207     200 1901.       0001     200 1901.       0001     200 1901.       0001     200 1901.       0001     200 1901.       0001     200 1901.       0001     200 1901.       0001     200 1901.       0001     200 1901.       0001     2125       0001     220 1901.       0001     220 1901.       0001     220 1901.       0001     23.       001     23.       001     24.25       001     25.       001     26.       01     26. <td></td> <td>in I fotocorrection</td> <td></td> <td></td> <td>1</td> <td>•</td> <td></td> <td>. ·</td> <td>•</td> <td> - -</td> <td></td> <td>Date: 06-Mar-</td> <td>-09</td>		in I fotocorrection			1	•		. ·	•	 - -		Date: 06-Mar-	-09
Address intractional of the international intractional of the international containant.       OC SUMMAR         III 10.714 Textron Gorban         Textron Gorban         Textron Gorban         Colspan= ND 2.0 µg/L         Distribution ND 2.0 µg/L         Benzene       ND 2.0 µg/L         Benzene       ND 2.0 µg/L         Benzene       ND 2.0 µg/L         Benzene       ND 2.0 µg/L       S 0 141       OF         ND 2.0 µg/L       S 0 141       OF       OF         ND 2.0 µg/L       S 0 141       OF       OF         ND 2.0 µg/L       S 0 141       S 0 141       OF         Conditionmentation       2.2 µg/L       S 0 141       OF       OF         Conditionmentation       2.2 µg/L       S 0 141       OF       OF         Conditionmentation       2.2 µg/L       S 0 141       S 0 141       S 0 141       S 0 141       <				corp.									
J30274 Textron Gorham         I 30274 Textron Gorham         II 30274 Textron Gorham       ND       2.0       1.9/L         III 0       2.0       1.9/L       1.9/L         III 0       2.0       1.9/L       1.9/L         III 0       2.0       1.9/L       1.1       2.1       1.9/L         III 0       2.0       1.9/L       2.0       1.9/L       2.5       1.19       0         III 0       2.0       1.9/L       2.5       0       1.14       7.9       1.31       0         III 0       2.0       1.9/L       2.5       0       1.14       7.9       1.31       0         III 0       2.0       1.9/L       2.5       0       1.14       7.9       1.31       0         III 0       2.12       2.0       1.9/L       2.5       0       1.14       7.9       1.31       0         III 0       2.12       2.0       1.9/L       2.5       0       1.14       7.9       1.31       0         content active a	Unit Ordon.		ital & IIIIasuu	ciure, mc.						7	QC SUMN	<b>IARY RE</b>	PORT
ND         2.0         µg/L           re         ND         2.0         µg/L           rene         ND         2.0         µg/L           rene         ND         2.0         µg/L           contentane         2.1         µg/L         25         0           contentane         2.1.         µg/L         25         0         97           condentane         2.4.2.5         2.0         µg/L         25         0         97           screae         ND         2.0         µg/L         25         0         97           corbenzene         2.3.2.0         µg/L         25         0         97           screae         2.3.2.0         µg/L         25         0         97           screae         2.3.2.0         µg/L         25         0	roject:	130274 Textron C	Jorham								•	Methc	od Blank
ND         2.0         µg/L           ie         ND         2.0         µg/L           cine         ND         2.0         µg/L           connethane         2.0         µg/L         2.5           orotherane-ct         28.5         2.0         µg/L           3         24.25         2.0         µg/L         2.5           3         24.25         2.0         µg/L         2.5           6         1.0/L         2.5         0         9/L           7         24.25         2.0         µg/L         2.5           8         24.25         2.0         µg/L         2.5           9         0         µg/L         2.5	ec-Butvlbenzene		QN	2.0	ug/L								
в         ND         2.0         µg/L           ie         ND         2.0         µg/L           inforopane         ND         2.0         µg/L           ie         ND         2.0         µg/L           iene         ND         2.0         µg/L           inforopane         ND         2.0         µg/L           iene         ND         2.0         µg/L         25           oritharie         22.42         2.0         µg/L         25           oritharie         28.5         2.0         µg/L         25           orithoritharie         26         2.0         µg/L         25           orobenzene         26         2.0         µg/L         27           orobenzene         26         2.0         µg/L         25           orobenzene         26         2.0         µg/L           .Not.Detected at the Reporting Limit         S-Splike Recovery outside accepted recov	Isopropyltoluene		QN	2.0	hg/L								
enzene         ND         2.0         µg/L           ne         ND         2.0         µg/L           actionopropane         ND         5.0         µg/L           3-chloropropane         ND         2.0         µg/L           actionopropane         ND         2.0         µg/L           actionopropane         ND         2.0         µg/L           actionopropane         ND         2.0         µg/L           actionomethane         ND         2.0         µg/L         25           anofluoromethane         22.42         2.0         µg/L         25         0         97           ichloromethane         21.25         2.0         µg/L         25         0         104           ane-dS         24.25         2.0         µg/L         25         0         104           anofluorobenzene         26         2.0         µg/L         25         0         104           Mofluorobenzene         26         2.0         µg/L         25         0         104           Mofluorobenzene         26         2.0         µg/L         25         0         104           Ansiver denected at the Reporting Limit         5 <s< td=""><td>3-Dichlorobenzen</td><td>Ð</td><td>Q</td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></s<>	3-Dichlorobenzen	Ð	Q	2.0	hg/L								
me         ND         2.0         PgL           enzene         ND         2.0         µg/L           0-difforpropane         ND         2.0         µg/L           0-difforpropane         ND         2.0         µg/L           0-difformed         ND         2.0         µg/L           1adiene         ND         2.0         µg/L           0-difformed         ND         2.0         µg/L           0-difformed         ND         2.0         µg/L           0-difformed         ND         2.0         µg/L         25           nofluoromethane         22.42         2.0         µg/L         25           ane-dis         28.5         2.0         µg/L         25         0         104           anofluorobenzene         28.5         2.0         µg/L         25         0         104           anofluorobenzene         2.8         2.0         µg/L         25         0         104           Moltorobenzene         2.6         2.0         µg/L         25         0         104           Moltorobenzene         2.6         2.0         µg/L         25         0         104           Mol	4-Dichlorobenzen	e		2.0	µg/L ≃″								
3-fulloropropane         ND         5.0         µg/L           obenzene         ND         2.0         µg/L           obenzene         ND         2.0         µg/L           obenzene         ND         5.0         µg/L           obenzene         ND         2.0         µg/L           obenzene         ND         2.0         µg/L           obenzene         ND         2.0         µg/L           mofluoromethane         22.42         2.0         µg/L           ichloromethane         22.42         2.0         µg/L           mofluorobenzene         28.5         2.0         µg/L           mofluorobenzene         28.5         0         104           mofluorobenzene         26         2.0         µg/L         25         0         104           Multurobenzene         26         2.0         µg/L	Butyibenzene 2-Dichlorobenzene	ď	n Q	2.0 2.0	µg/L ua/L								
Obstrate         ND         2.0         µg/L           Itadiene         ND         5.0         µg/L           Itadiene         ND         2.0         µg/L           Obstrate         ND         2.0         µg/L           Obstrate         ND         2.0         µg/L           molluoromethane         22.42         2.0         µg/L         25           ichloroethane-d4         28.5         2.0         µg/L         25         0         114           molluorobenzene         23.5         2.0         µg/L         25         0         104           molluorobenzene         26         2.0         µg/L         25 <td< td=""><td>2-Dibromo-3-chlor</td><td>ropropane</td><td>QN</td><td>5.0</td><td>hg/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	2-Dibromo-3-chlor	ropropane	QN	5.0	hg/L								
Itadiene         ND         2.0         μg/L           ND         5.0         μg/L         06         13.7           obenzene         ND         2.0         μg/L         25         0         13.4           molluoromethane         22.42         2.0         μg/L         25         0         14.4           molluoromethane         22.42         2.0         μg/L         25         0         14.4           ane-d8         24.25         2.0         μg/L         25         0         10.4           molluorobenzene         26         2.0         μg/L         25         0         10.4           Molluorobenzente         2.5	2,4-Trichlorobenz	ene	QN	2.0	hg/L								
ND         5.0         µg/L           obenzene         ND         2.0         µg/L         25         0         83.7           mofluoromethane         22.42         2.0         µg/L         25         0         114           ichloroethane-d4         28.5         2.0         µg/L         25         0         714           ane-d8         24.25         2.0         µg/L         25         0         704           mofluorobenzene         26         2.0         µg/L         25         0         704           mofluorobenzene         26         2.0         µg/L         25         0         704           MD-Norbenzene         26         2.0         µg/L         25         0         704           MD-Not Decored at the Reporting Limit         S - Spike Recovery outside accepted recovery limits         N.1.4.Not detected at the Reporting Limit         S - Spike Recovery outside accepted recovery limits	exachlorobutadien	Э	QN	2.0	hg/L								
ND         2.0         μg/L         55         0         83.7           ane-d4         23.5         2.0         μg/L         25         0         714           ane-d4         28.5         2.0         μg/L         25         0         77           enzene         24.25         2.0         μg/L         25         0         704           enzene         26         2.0         μg/L         25         0         704           enzene         26         2.0         μg/L         25         0         704           Detected         26         2.0         μg/L         25         0         704           Detected         atthe Reporting Limit         S <splike accepted="" limits<="" outside="" recovery="" td="">         S         Shike Recovery outside accepted recovery limits</splike>	aphthalene		ND	5.0	hg/L			•			·		
ormofluoromethane     22.42     2.0     µg/L     25     0     83.7       Dichloroethane-d4     28.5     2.0     µg/L     25     0     714       lene-d8     24.25     2.0     µg/L     25     0     704       comofluorobenzene     26     2.0     µg/L     25     0     104       ormofluorobenzene     26     2.0     µg/L     25     0     104       off     1.0     1.0     1.04     1.04       off     1.0     1.0     1.04     1.0       off     1.0     1.0     1.0     1.0       off     1.0     1.0     1.0     1.0 <td>2,3-Trichlorobenz</td> <td>ene</td> <td>DN</td> <td>2.0</td> <td>hg/L</td> <td>ŗ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2,3-Trichlorobenz	ene	DN	2.0	hg/L	ŗ							
Dichloroethane-d4 28.5 2.0 µg/L 25 0 114 lene-d8 24.25 2.0 µg/L 25 0 104 comofluorobenzene 26 2.0 µg/L 25 0 104 ND - Not Detected at the Reporting Limits R - RPD outside accepted recovery limits	Surr: Dibromofluc	oromethane	22.42	2.0	hg/L	25		89.7	85	119	0	•	
Iene-d8     24.25     2.0     µg/L     25     0     97       comofluorobenzene     26     2.0     µg/L     25     0     104       104     26     2.0     µg/L     25     0     104       105     106     104     26     2.0     104       106     107     25     2.0     104       107     108     104     25     104       108     108     104     104     104       108     108     108     104     104       108     108     108     104     104	Surr: 1,2-Dichlorc	oethane-d4	28.5	2.0	hg/L	25	0	114	79	131	0		
omofluorobenzene 26 2.0 µg/L 25 0 104 7 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits R - R - R - R - R - R - R - R - R - R	Surr: Toluene-d8		24.25	2.0	hg/L	25	0	97	06	110	0		
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         1 - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits	Surr: 4-Bromofluc	orobenzene	26	2.0	hg/L	25	0	104	76	117	0	0	
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         1 - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits						-							
ND - Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits       I - Analyte detected below quantitation limits     R - RPD outside accepted recovery limits													
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         I - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits											•		
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         I - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits													
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         I - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits						· · ·							
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         I - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits									·				
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         I - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits		·											
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         I - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits													
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         I - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits						•.							
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         I - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits		×											
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         I - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits						-							
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         I - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits								,					
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         I - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits		-	•				~						
R - RPD outside accepted recovery limits		Not Detected at the Rep	vorting Limit	S	- Spike Recove	ry outside accepted	1 recovery lir		3 - Analyte de	tected in the	associated Method	l Blank	
and a second and a		nalyte detected below qu	antitation limits	Я	- RPD outside	accepted recovery i	limits	Æ	IA Motonul	onhle where	I violinee of ND res	1140 000114	

10.0000000

CLIENT:	Shaw Env	Shaw Environmental & Infrastructure, Inc.	acture, Inc.			-		QC SUMMARY REPORT	MARY I	REPORT
Work Order: Project:	0902072 130274 T	)902072 130274 Textron Gorham							Me	Method Blank
Sample ID mb-03/04/09	(04/09	Batch ID: R41860	Test Code:	le: SW8260B	B Units: µg/L	Analysi	Analysis Date 3/4/09 11:37:00 AM	11:37:00 AM	Prep Date 3/4/09	3/4/09
	,		Run ID:	V-3_090304A		SeqNo:	696616			
		QC Sample			QC Spike Original Sample			Original Sample		
Analyte		Result	RL	Units	Amount Result %REC	EC LowLimit	it HighLimit	or MS Result	%RPD F	RPDLimit Qua
Dichlorodifluoromethane	thane	QN	5.0	hg/L			·			
Chloromethane		QN	5.0	hg/L						
Vinyl chloride		CN .	2.0	hg/L						
Chloroethane		QN	5.0	hg/L						
Bromomethane	•	QN	2.0	hg/L						
Trichlorofluoromethane	nane	QN	2.0	hg/L				·		
Diethyl ether		QN	5.0	hg/L						
Acetone		QN	10	hg/L						
1,1-Dichloroethene		QN	1.0	hg/L						
Carbon disulfide		QN	2.0	hg/L						
Methylene chloride	_	QN	5.0	hg/L						
Methyl tert-butyl ether	her	Q	2.0	hg/L						
trans-1,2-Dichloroethene	thene	QN	2.0	hg/L				•	١	
1,1-Dichloroethane		Q	2.0	hg/L	•	. *				·
2-Butanone		Q	10	hg/L					X	
2,2-Dichloropropane	e.	QN	2.0	hg/L						
cis-1,2-Dichloroethene	ene	ON .	2.0	hg/L						
Chloroform		Q	2.0	hg/L						
Tetrahydrofuran		QN	10	hg/L						
Bromochloromethane	ne	QN	2.0	hg/L						
1,1,1-Trichloroethane	ne	QN	2.0	hg/L						
1,1-Dichloropropene	le	QN	2.0	hg/L			Ŷ.			
Carbon tetrachloride	e	QN .	2.0	hg/L	• •					
1,2-Dichloroethane		QN	2.0	hg/L						
Benzene		QN	1.0	hg/L				-		
Qualifiers: ND -	- Not Detected	ND - Not Detected at the Reporting Limit		S - Spike Reco	Spike Recovery outside accepted recovery limits		alyte detected ir	B - Analyte detected in the associated Method Blank	od Blank	
V I	atota datanta	I Arototod holow anontitation limits			DDD autoide coccepted seconemy limite		•			

		T				-	narrakanan iyo ta' da marakan da s		
CLIENT: Shaw ]	Shaw Environmental & Infrastructure, Inc.	frastructure, I	nc.			-	OC SIIMMARY REPORT	TARV REI	PORT
Work Order: 0902072	72	e						Mathod Blank	The Blank
<b>Project:</b> 130274	4 Textron Gorham	-						MITCHIN	
Trichloroethene	QN	2.0	, hg/L	/L					
1,2-Dichloropropane	ND	2.0	hg/L	//F					
Bromodichloromethane	ND	2.0	hg/L	//L					
Dibromomethane	<b>UN</b>	2.0	hg/L	\L \					
4-Methyl-2-pentanone	<b>UN</b>	10	hg/L	٦				·	
cis-1,3-Dichloropropene	DN	1.0	hg/L	//		•			
Toluene	ON N	2.0	hg/L	<b>//</b> ۲					
trans-1,3-Dichloropropene	QN	1.0	hg/l	۲					
1,1,2-Trichloroethane	<b>DN</b>	2.0	l/brl	٦					
1,2-Dibromoethane	QN	2.0	hg/l	//F					
2-Hexanone	<b>N</b>	10	hg/L	/۲					
1,3-Dichloropropane	QN	2.0	hg/L	/L			•		
Tetrachloroethene	QN	2.0	hg/L	//					
Dibromochloromethane	QN	2.0	l/brl	//	-		,		
Chlorobenzene	QN	2.0	l/gu	\ <b>۲</b>					
1,1,1,2-Tetrachloroethane	DN	2.0	1/6rl	۲L ر					
Ethylbenzene	QN	2.0	hg/L	٦L					
m,p-Xylene	QN	2.0	Л/бн	٦					
o-Xylene	<b>ND</b>	2.0	hg/L	\ <b>L</b>	_				
Styrene	<b>DN</b>	2.0	1/6rl	۲ <b>۲</b>					
Bromoform	QN	2.0	l/brl	۰. ۲۸ .					
lsopropylbenzene	QN	2.0	1/6rl	۲ <b>۲</b> .					
1,1,2,2-Tetrachloroethane	ND	2.0	l/6rl	//T					
1,2,3-Trichloropropane	- CN	2.0	hg/L	//F					
Bromobenzene	QN	2.0	hg/L	<b>/۲</b>					
n-Propylbenzene	QN	2.0	hg/L	//F					
2-Chlorotoluene	QN	2.0	hg/L	//F		2			
4-Chlorotoluene	QN	2.0	µg/L	۲۲. ۱۲					
1,3,5-Trimethylbenzene	QN	2.0	hg/L	//۲					
tert-Butylbenzene	<b>D</b>	2.0	hg/L	<i>۲</i> ۲					
1,2,4-Trimethylbenzene	QN	2.0	hg/L	<i>\</i> /۲					
Qualifiers: ND - Not Dete	ND - Not Detected at the Reporting Limit	mit	S - Spike	S - Spike Recovery outside accepted recovery limits	epted recovery limits	B - Analyte detected it	B - Analyte detected in the associated Method Blank	Blank	
J - Analyte det	J - Analyte detected below quantitation limits	ı limits	R - RPD	R - RPD outside accepted recovery limits	very limits	NA - Not applicable w	NA - Not applicable where J values or ND results occur	ults occur	

									A second s		
CLIENT:		Shaw Environmental & Infrastructure, Inc.	sture, Inc.							QC SUMMARY REPORT	REPORT
Work Order: Project:	<pre>sr: 0902072 130274 Textron Gorham</pre>	Gorham						т		W	Method Blank
sec-Butylbenzene	:ene	QN	2.0	µg/L							
4-Isopropyltoluene	uene	QN	2.0	hg/L							
1,3-Dichlorobenzene	enzene	QN	2.0	hg/L							
1,4-Dichlorobenzene	enzene	Ŋ	2.0	hg/L							
n-Butylbenzene	le	DN	2.0	hg/L							
1,2-Dichlorobenzene	enzene	DN	2.0	hg/L							
,2-Dibromo-3	1,2-Dibromo-3-chloropropane	QN	5.0	hg/L							
1,2,4-Trichlorobenzene	obenzene	QN	2.0	hg/L	r.,						
Hexachlorobutadiene	tadiene	QN	2.0	hg/L							
Naphthalene		Ŋ	5.0	hg/L							
1,2,3-Trichlorobenzene	phenzene	QN	2.0	hg/L							÷
Surr: Dibror	Surr: Dibromofluoromethane	23.72	2.0	hg/L	25	0	94.9	85	119	0	
Surr: 1,2-Di	Surr: 1,2-Dichloroethane-d4	24.68	2.0	hg/L	25	0	98.7	79	131	0	
Surr: Toluene-d8	ne-d8	25.6	2.0	hg/L	25	0	102	06	110	0	
Surr: 4-Bror	Surr: 4-Bromofluorobenzene	24.53	2.0	T/6rl.	25	0	98.1	76	117	0	
						·			×		
									•		
						ŗ					
											,
	· · · · · · · · · · · · · · · · · · ·								·		
	•										
								Ľ			
	•						•				
	, ,										
		• .			-	•				•	
			•	•							
Qualifiers;	ND - Not Detected at the Reporting Limit	eporting Limit	S	Spike Reco	S - Spike Recovery outside accepted recovery limits	d recovery li		B - Analyte (	letected in the	B - Analyte detected in the associated Method Blank	
	J - Analyte detected below quantitation limits	quantitation limits	R-1	. RPD outsid	RPD outside accepted recovery limits	limite	,		-		
						CONTRACT OF		NA - NOT 3D7	OTICABLE WREFE	I values or NU results occur	

CLENT:     Save Favioremental & Infraementus, Inc.       Verte Criete:     002073       Protect:     002073       Protect:     002073       Protect:     002073       Protect:     002074       Protect:     002073       Protect:     002074       Protect:     00208       Protect:	AMRO Environn	AMRO Environmental Laboratories Corp.	Corp.	-			-			<b>Date:</b> 06-Mar-09	-Mar-09	1
D         Dn-J300603         Batch ID: R41574         Test Code:         SWR300         Unlike:         Purp Dele         3660         Tool 10: 00         000         Dele         3660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660         2660 </th <th>der:</th> <th>Environmental &amp; Infrastruc 372 74 Textron Gorham</th> <th>cture, Inc.</th> <th></th> <th></th> <th></th> <th>- -</th> <th></th> <th>QC SUM</th> <th>MARY M</th> <th>REPOR1 [ethod Blan</th> <th></th>	der:	Environmental & Infrastruc 372 74 Textron Gorham	cture, Inc.				- -		QC SUM	MARY M	REPOR1 [ethod Blan	
D         m-0.0305(00)         Batch Di. Mr104, multication         Test Code: SW2506         Unit:         ipt         Part Pictor												,
Characteristic         Run (C):         V.2. J000054         SeqNo:         66681           Anotot         Run (C):         V.2. J000054         SeqNo:         66681           Anotot         Run (C):         V.2. J000054         SeqNo:         66681           Anotot         S:0         Units         Anotot         Result         SREC         J00018           Anotot         S:0         Up/L         Anotot         Result         SREC         J0018           Anotototethane         NO         S:0         Up/L         Anotot         Result         SREC         J0018           Anotototethane         NO         S:0         Up/L         Anotot         Result         SREC         J0018           Anotot         S:0         Up/L         HighLinit         MOR         SREC         J018           Anotot         S:0         Up/L         HighLinit	Sample ID mb-03/05/09	Batch ID: R41874		W8260B	Units: µg/L		Analysis [	ate 3/5/09 1	1:01:00 AM	Prep Date	3/5/09	
CCSample         CCSplite Original Sample         Original Sample           diffuctorentiane         ND         50         µUl         Amount         Cessite         APD         APD         APD           diffuctorentiane         ND         50         µUl         Amount         Result         APD         APD         APD         APD           diffuctorentiane         ND         50         µUl         Amount         Result         APD         APD <th>Client ID:</th> <th></th> <th></th> <th>-3_090305</th> <th>5A</th> <th></th> <th>SeqNo:</th> <th>696851</th> <th></th> <th></th> <th></th> <th></th>	Client ID:			-3_090305	5A		SeqNo:	696851				
Result         R.         Units         Amound         Result         %RDD         RPDLinit           Influctomethane         ND         50         µg/L         ND         50         µg/L           Influctomethane         ND         50         µg/L         ND         \$00         µg/L           Informethane         ND         10         µg/L         ND         \$00         µg/L           Informethane         ND         10         µg/L         ND         µg/L         \$00           Informethane         ND         10         µg/L         ND         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00         \$00		QC Sample		a	iC Spike Original	Sample		U	Jriginal Sample			
ND         5.0         µg/L           ND         5.0         µg/L           ND         5.0         µg/L           ND         5.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           ND         1.0         µg/L           ND         1.0         µg/L           ND         2.0         µg/L	Analyte	Result		Jnits	Amount		LowLimit	HighLimit	or MS Result	%RPD		Qua
ND         5.0         μg/L           ND         2.0         μg/L           ND         1.0         μg/L           ND         1.0         μg/L           ND         2.0         μg/L	Dichlorodifluoromethane	QN		hg/L								
ND         2.0         μg/L           ND         5.0         μg/L           ND         2.0         μg/L           ND         2.0         μg/L           ND         5.0         μg/L           ND         1.0         μg/L           ND         1.0         μg/L           ND         1.0         μg/L           ND         2.0         μg/L	Chloromethane	QN	5.0	hg/L					*1			
ND       5.0       µg/L         ND       2.0       µg/L         ND       5.0       µg/L         ND       5.0       µg/L         ND       1.0       µg/L         ND       1.0       µg/L         ND       2.0       µg	Vinyl chloride	QN	2.0	hg/L					·			
ND       2.0 $\mu g/L$ ND       5.0 $\mu g/L$ ND       10 $\mu g/L$ ND       1.0 $\mu g/L$ ND       2.0 $\mu $	Chloroethane	ND	5.0	hg/L								
ND         2.0         μg/L           ND         5.0         μg/L           ND         1.0         μg/L           ND         2.0         μg/L	Bromomethane	QN	2.0	hg/L								
ND5.0 $pg/L$ ND10 $pg/L$ ND2.0 $pg/L$ ND3.0 $pg/L$ ND <t< td=""><td>Trichlorofluoromethane</td><td>DN</td><td>2.0</td><td>hg/L</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td></t<>	Trichlorofluoromethane	DN	2.0	hg/L						•		
ND         10         µg/L           ND         2.0         µg/L           ND         5.0         µg/L           ND         5.0         µg/L           ND         2.0         µg/L     <	Diethyl ether	QN	5.0	hg/L								
ND       1.0 $\mu g/L$ ND       5.0 $\mu g/L$ ND       2.0 $\mu$	Acetone	ON ,	10	hg/L								
ND $2.0$ $\mu g/L$ ND $5.0$ $\mu g/L$ ND $2.0$ $\mu g/L$	1,1-Dichloroethene	QN	1.0	hg/L								
ND       5.0 $\mu g/L$ ND       2.0 $\mu$	Carbon disulfide	ON .	2.0	hg/L								
ND       2.0 $\mu g/L$ ND       2.0 $\mu$	Methylene chloride	ND	5.0	hg/L								
ND       2.0 $\mu g/L$ ND       2.0 $\mu$	Methyl tert-butyl ether	QN	2.0	hg/L								
ND $2.0$ $\mu g/L$ ND $10$ $\mu g/L$ ND $2.0$ $\mu g/L$	trans-1,2-Dichloroethene	QN	2.0	hg/L								
ND       10 $\mu g/L$ ND       2.0 $\mu g/L$ At detected at the Reporting Limit       S         At detected below quantitation li	1,1-Dichloroethane	DN	2.0	hg/L								
ND $2.0$ µg/L         ND $1.0$ µg/L         At Detected at the Reporting Limit $S - Spike Recovery outside accepted recovery limits         At detected below quantitation limits       R - RPD outside accepted recovery limits   $	2-Butanone	DN	10	hg/L		· .						
ND     2.0     μg/L       ND     1.0     μg/L       MO     1.0     μg/L	2,2-Dichloropropane	DN	2.0	hg/L							-	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	cis-1,2-Dichloroethene	QN	2.0	hg/L								
ND     10     μg/L       ND     2.0     μg/L	Chloroform	QN	2.0	hg/L								
ND       2.0       µg/L         ND       1.0       µg/L         It       NJL       1.0         It       NG/L       NL         Action the Reporting Limit       S - Spike Recovery outside accepted recovery limits	Tetrahydrofuran	QN	10	hg/L								
ND     2.0     µg/L       ND     1.0     µg/L       Iyte detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits	Bromochloromethane	QN	2.0	hg/L		3						
ND     2.0     µg/L       ND     2.0     µg/L       ND     2.0     µg/L       ND     2.0     µg/L       ND     1.0     µg/L       Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits       Not detected below quantitation limits     R - RPD outside accepted recovery limits	1,1,1-Trichloroethane	QN	2.0	hg/L								
ND       2.0       μg/L         ND       2.0       μg/L         ND       1.0       μg/L         Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         Not detected below quantitation limits       R - RPD outside accepted recovery limits	1,1-Dichloropropene	QN	2.0	hg/L								
Directhane     ND     2.0     μg/L       ND     1.0     μg/L       s:     ND - Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits       J - Analyte detected below quantitation limits     R - RPD outside accepted recovery limits	Carbon tetrachloride	Q	2.0	hg/L								
<ul> <li>ND - Not Detected at the Reporting Limit</li> <li>S - Spike Recovery outside accepted recovery limits</li> <li>J - Analyte detected below quantitation limits</li> <li>R - RPD outside accepted recovery limits</li> </ul>	1,2-Dichloroethane	Q	2.0	hg/L	9 ₁ .							
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         J - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits         D1 - Demonstrated recovery limits       R - RPD outside accepted recovery limits	Benzene	DN	1.0	hg/L								I
R - RPD outside accepted recovery limits		ected at the Reporting Limit	S - S	oike Recove	ry outside accepted	d recovery limits	B - Analy	te detected in	the associated Meth	od Blank		
laboratory can accurately quantitate	J - Analyte d	etected below quantitation limits	- R - R	PD outside	accepted recovery	limits	NA - Not	applicable wh	ere J values or ND 1	esults occur		
	DI Danouti	ar I imit defined as the lowest con	centration the la	horatory car	n accurately quanti	itate .					·	

ADDRESS A					And the second se						
CLIENT:	Shaw Environmental & Infrastructure, Inc.	ıl & Infrastruc	sture, In	Ċ.			•.	50	QC SUMMARY REPORT	RY REPO	ORT
work Uruer: Project:	130274 Textron Gorham	rham								Method Blank	Blank
Trichloroethene		QN	2.0	hg/L							
1,2-Dichloropropane	e e e e e e e e e e e e e e e e e e e	QN	2.0	hg/L							
Bromodichloromethane	ane	QN	2.0	hg/L							
Dibromomethane	•	QN	2.0	hg/L							
4-Methyl-2-pentanone	ne	QN	10	hg/L							
cis-1,3-Dichloropropene	sene	QN	1.0	hg/L							
Toluene		QN	2.0	hg/L							
trans-1,3-Dichloropropene	ropene	ND	1.0	hg/L							
1,1,2-Trichloroethane	Эг	QN	2.0	hg/L							
1,2-Dibromoethane		QN	2.0	hg/L							
2-Hexanone		QN	10	hg/L				•			
1,3-Dichloropropane	đì	QN	2.0	hg/L							
Tetrachloroethene		QN	2.0	hg/L				-			
Dibromochloromethane	ane	QN	2.0	hg/L				¢			
Chlorobenzene		QN	2.0	hg/L							
1,1,1,2-Tetrachloroethane	ethane	QN	2.0	hg/L				•		`	
Ethylbenzene		QN	2.0	hg/L	1		·				
m,p-Xylene		QN	2.0	hg/L		. •					
o-Xylene	•	QN	2.0	hg/L			•				
Styrene		QN	2.0	hg/L			٠.				
Bromoform		QN	2.0	hg/L					,		,
Isopropylbenzene		QN	2.0	hg/L							
1,1,2,2-Tetrachloroethane	ethane	QN	2.0	hg/L							
1,2,3-Trichloropropane	ane .	QN	2.0	hg/L							
Bromobenzene		QN	2.0	hg/L							
n-Propylbenzene		QN	2.0	hg/L					-		
2-Chlorotoluene	•	QN	2.0	hg/L					•		
4-Chlorotoluene		QN	2.0	hg/L							
1,3,5-Trimethylbenzene	cene	QN	2.0	hg/L	•						
tert-Butylbenzene		QN	2.0	hg/L							
1,2,4-Trimethylbenzene	zene	QN	2.0	hg/L				•			
Qualifiers: ND -	ND - Not Detected at the Reporting Limit	ting Limit		S - Spike Re	S - Spike Recovery outside accepted recovery limits	recovery limits	B - Analyte dete	ected in the asso	B - Analyte detected in the associated Method Blank	ınk	
J - A	J - Analyte detected below quantitation limits	utitation limits		R - RPD out	R - RPD outside accepted recovery limits	mits	NA - Not annlic	ov la where I ve	NA - Not amiliochle where I welves or ND recults occur		
								CADIC WIELC J VO	וומכצ מו זאוז ובפתופ	OCCUI	

Ier:     0902072       I30274 Textron Gorham     ND       Tzene     ND       Denzene     ND       benzene     ND       benzene     ND       -3-chloropropane     ND       00uchene     ND       -3-chloropropane     ND       01chene     ND       -3-chloropropane     ND       01chloroethane     24.92       02     ND       03     25.33       1400robenzene     24.92       151     20       151     20       151     20	CLIENT: She	Shaw Environmental & Infrastructure, Inc.	tal & Infrastru	cture, Inc.										
0214       Textron Gorham         N0       20       µg/L         Sined4       24.83       20       µg/L         25.31       20       µg/L       25       0       117       0         encone       21.51       20       µg/L       25       0       117       0         encone       21.51       20       µg/L       25       0       101       0         Encone       21.51       20       µg/L       25       0       101       0         Encone       21.51       20       µg/L       25       0       101 <td< th=""><th>ler:</th><th>02072</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	ler:	02072												
ND         20         μg/L           S         25.31         20           ND         20.1         μg/L           S         25.31         20           ND         21.51         20           S         21.51         20           ND         21.51         25           ND         10/L         25		0274 Textron C	Jorham										Men	lod Blank
ND         2.0         µg/L           S.5.31         2.0         µg/L           Encert         2.1.51         2.0         µg/L           Encert         2.1.51         2.0         µg/L           Encert         2.1.51         2.0         µg/L           Encert         2.1.51         2.0         µg/L           Encert         <	sec-Butylbenzene	•	QN	2.0	hg/L									
ND         2.0         µg/L           ND         2.0         µg/L         25           Inc-d4         24.92         2.0         µg/L           ND         2.0         µg/L         25           Inc-d4         24.92         2.0         µg/L           Enzene         21.51         2.0         µg/L         25           Increat         25.31         2.0         µg/L         25           Increat         21.51         2.0         µg/L         25           Increat         21.51         2.0         µg/L         25           Increat	4-Isopropyltoluene		QN	2.0	hg/L									
ND         2.0         ug/L           ND         2.0         ug/L           ND         2.0         ug/L           ND         5.0         ug/L           ND         2.0         ug/L         25           ND         ug/L         25         0         90.7           erzene         21.51         2.0         ug/L         25         0         90.7	I,3-Dichlorobenzene		QN	2.0	hg/L									
ND         2.0         µg/L           Dame         ND         5.0         µg/L           ND         2.0         µg/L         25         0         99.3           Inte-d4         24.92         2.0         µg/L         25         0         99.3           ane-d4         24.92         2.0         µg/L         25         0         99.3           enzene         21.51         2.0         µg/L         25         0         89.7           enzene         21.51         2.0         µg/L         25         0         89.7           Detected at the Reporting Limit         5.5         5.5         0         86.7	4-Dichlorobenzene		QN	2.0	hg/L									
ND         2.0         µg/L           parle         ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           ND         5.0         µg/L           ND         5.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           ND         2.1.51         2.0         µg/L           25.31         2.0         µg/L         25         0         101           encdt         25.31         2.0         µg/L         25         0         101           enctet         21.51         2.0         µg/L         25         0         101           25.31         2.0         µg/L         25         0         101           21.51         2.0         µg/L         25         0         101           21.51         2.0         µg/L         25         0         101	Butylbenzene		QN	2.0	hg/L									
Dente         ND         5.0         µg/L           ND         2.0         µg/L           ND         5.0         µg/L           ND         5.0         µg/L           ND         2.0         µg/L           ND         2.1.51         2.0         µg/L           25.31         2.0         µg/L         25         0           Anzene         21.51         2.0         µg/L         25         0         701           enzene         21.51         2.0         µg/L         25         0         86           Anzene         21.51         2.0         µg/L         25         0         86           Detected at the Reporting Limit         2.5         5         0         86	,2-Dichlorobenzene		QN	2.0	hg/L	i								
ND         2.0         µg/L           S.1         2.0         µg/L         25           ane-d4         24.32         2.0         µg/L         25           are-d4         24.32         2.0         µg/L         25         0         90.7           enzene         21.51         2.0         µg/L         25         0         701           enzene         21.51         2.0         µg/L         25         0         86	,2-Dibromo-3-chloroprol	pane	ND	5.0	hg/L							•		
ND         2.0         µg/L           ND         5.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           ND         2.0         µg/L           Si         µg/L         25           ane-d4         24.92         2.0           25.31         2.0         µg/L         25           erzene         21.51         2.0         µg/L         25           erzene         21.51         2.0         µg/L         25         0         36           erzene         21.51         2.0         µg/L         25         0         36	,2,4-Trichlorobenzene		QN	2.0	hg/L									
ND         5.0         μg/L           ND         2.0         μg/L           ND         2.0         μg/L           ND         2.151         2.0         99.3           ane-d4         24.92         2.0         μg/L         25         0         99.7           entrane         24.92         2.0         μg/L         25         0         90.7           enzene         21.51         2.0         μg/L         25         0         701           enzene         21.51         2.0         μg/L         25         0         70	lexachlorobutadiene		QN	2.0	hg/L									
ND         2.0         µg/L         25         0         99.3           nen-d4         24.92         2.0         µg/L         25         0         99.7           ame-d4         24.92         2.0         µg/L         25         0         90.7           enzene         21.51         2.0         µg/L         25         0         701           enzene         21.51         2.0         µg/L         25         0         86           21.51         2.0         µg/L         25         0         86           Derected at the Reporting Limit         2.0         µg/L         25         0         86	laphthalene		QN	5.0	hg/L									
omofluoromethane $24.83$ $2.0$ $ug/L$ $25$ $0$ $93.3$ Dichloroethane-d4 $24.92$ $2.0$ $ug/L$ $25$ $0$ $91.7$ Lene-d8 $25.31$ $2.0$ $ug/L$ $25$ $0$ $101$ comofluorobenzene $21.51$ $2.0$ $ug/L$ $25$ $0$ $86$ comofluorobenzene $21.51$ $2.0$ $ug/L$ $25$ $0$ $101$ comofluorobenzene $21.51$ $2.0$ $ug/L$ $25$ $0$ $86$ Northurobenzene $21.51$ $2.0$ $ug/L$ $25$ $0$ $86$ ND - Not Detected at the Reporting LimitS-Spike Recovery outside accepted recovery limits	,2,3-Trichlorobenzene		QN	2.0	hg/L									
Dichloroethane-d4 24.92 2.0 µg/L 25 0 99.7 Lene-d8 25.31 2.0 µg/L 25 0 101 comofluorobenzene 21.51 2.0 µg/L 25 0 86 µg/L 25 0 101 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	Surr: Dibromofluorome	ethane	24.83	2.0	hg/L	25	0	99.3	85	119		0		
Lene-d8     25.31     2.0     µg/L     25     0     101       comofluorobenzene     21.51     2.0     µg/L     25     0     86       1     1     1     2.0     1     1     1	Surr: 1,2-Dichloroetha	ne-d4	24.92	2.0	hg/L	25	0	99.7	19	131		0		
conofluorobenzene     21.51     2.0     μg/L     25     0     86       ND - Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits	Surr: Toluene-d8		25.31	2.0	hg/L	25	0	101	06	110		0		
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	Surr: 4-Bromofluorobe	nzene	21.51	2.0	hg/L	25	0	86	76	117		0		
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits											•			
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits		•												
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits														
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits														
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits					e.									·
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits				· .										
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits					• .		÷							
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits		•												
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits		ı												
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	-						•	-						
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits							ŗ				•			
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits			4											
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits														۹.
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	•													
		Detected at the Rep	orting Limit	S	- Spike Recover	y outside accep	ted recovery	limits	B - Analyte	detected in	the associat	ted Method	Blank	
J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not amilicable where I values or ND results occur	J - Analyte	e detected below qu	antitation limits	R	- RPD outside a	iccepted recover	ry limits		NA - Not at	ulicable wh	ere I values	s or ND resi	ults occur	

Work Order: 09020/2 Project: 130274 Sample ID Ics-02/27/09	Shaw Environmental & Infrastructure, Inc.	acture, Inc.		-					QC SUMMARY REPORT	IMARY	REPO	RT
	4 Textron Gorham								Lat	oratory (	Laboratory Control Spike	oike
	Batch ID: R41838	Test Code:	e: SW8260B	Units: µg/L			Analysis D	ate 2/27/09	Analysis Date 2/27/09 12:17:00 PM	Prep Date	Prep Date 2/27/09	
Client ID:		Run ID:				•	SeqNo:	696378				
	QC Sample		l Inite Q	QC Spike Original Sample Amount Result		%REC	1 owl imit	Hinhl imit	Original Sample or MS Result	%RPD	RPDI imit	Olla
individifi incomothono	10.30	- r						150				
Dictrict contracts	19.39		н9/г п0/ј	20	о с	83.4	37	150				
Vinvl chloride	19.84	2.0	hg/L	20	00	99.2	48	150	0	•		
Chloroethane	15.83	5.0	hg/L	20	0	79.2	54	142	0			
Bromomethane	16.82	2.0	hg/L	20	0	84.1	51	137 。	0			
Trichlorofluoromethane	23.96	2.0	hg/L	20	0	120	62	141	0			
Diethyl ether	22.26	5.0	hg/L	20	0	111	68	134	0			
Acetone	20.33	10	hg/L	20	Ò	102	თ	, 150	0			
1,1-Dichloroethene	25.03	1.0	hg/L	20	0	125	68	146	0			
Carbon disulfide	24.35	2.0	hg/L	20	0	122	52	131	0			
Methytene chloride	20.73	5.0	hg/L	20	0	104	67	138	0			
Methyl tert-butyl ether	20.97	2.0	hg/L	20	0	105	63	139	0			
trans-1,2-Dichloroethene	23.52	2.0	hg/L	20	0	118	81	126	0			
1,1-Dichloroethane	20.58	2.0	hg/L	20	0	103	78	124	0			
2-Butanone	20.35	10	hg/L	20	0	102	41	150	0			
2,2-Dichloropropane	23.16	2.0	hg/L	20	0	116	71	150	0			
cis-1,2-Dichloroethene	21.63	2.0	hg/L	20	0	108	78	121	0			
Chloroform	19.41	2.0	hg/L	20	0	67	82	123	0 0			
Tetrahydrofuran	23.01	10	hg/L	20	0	115	51	146	0			
Bromochloromethane	22.17	2.0	hg/L	20	0	111	11	131	0			
1,1,1-Trichloroethane	20.68	2.0	hg/L	20	0	103	8	127	0			
1,1-Dichloropropene	20.24	2.0	hg/L	20	0	101	76	119	0			
Carbon tetrachloride	18.1	2.0	hg/L	20	0	90.5	76	129	0			
1,2-Dichloroethane	20.87	2.0	hg/L	20	0	104	76	127	0			
Benzene	21.09	1.0	hg/L	20	0	105	8	118	0			
Qualifiers: ND - Not Dete	ND - Not Detected at the Reporting Limit	S -	- Spike Recove	Spike Recovery outside accepted recovery limits	recovery 1	imits	B - Analy	te detected in t	B - Analyte detected in the associated Method Blank	hod Blank		
J - Analyte dei	J - Analyte detected below quantitation limits	R -		RPD outside accepted recovery limits	mits		NA - Not	annlicable whe	NA - Not annlicable where I values or ND results occur	results ocour		

CLIENT:	Shaw Environmental & Infrastructure, Inc.	intal & Infrastruc	cture, In	lc.		-					OC SUMMARY REPORT	RPORT
Work Order:	0902072									2 ) Y		
Project:	130274 Textron	Textron Gorham			-					-	Laboratory Control Spike	anto tonu
Trichloroethene	-	22.32	2.0	hg/L	20	0		2 81	119		0	
1,2-Dichloropropane	в	18.94	2.0	hg/L	20	0	94.		120		0	
Bromodichloromethane	lane	18.96	2.0	hg/L	20	0	94.8				0	
Dibromomethane		21.93	2.0	hg/L	20	0	11		128		0	
4-Methyl-2-pentanone	ne	24.02	9	hg/L	20	0	12	•			0	
cis-1,3-Dichloropropene	pene	18.2	1.0	hg/L	20	0	6	1 76			0	
Toluene		20.45	2.0	hg/L	20	0	10				0	
trans-1,3-Dichloropropene	ropene	18.3	1.0	hg/L	20	0	91.5	-			0	
1,1,2-Trichloroethane	ne	20.69	2.0	hg/L	20	0	10	3 74			0	
1,2-Dibromoethane		21.6	2.0	hg/L	20	0	10		•	÷	0	·
2-Hexanone		16.56	10	hg/L	20	0	82.		-		0	
1,3-Dichloropropane	Ŀ	20.85	2.0	hg/L	20	0	104				0	
Tetrachloroethene		22.99	2.0	hg/L	20	0	÷				0	
Dibromochloromethane	lane	19.67	2.0	hg/L	20	0	98.		126		0	
Chlorobenzene		20.99	2.0	hg/L	20	0	10		•		0	
1,1,1,2-Tetrachloroethane	ethane	22.27	2.0	hg/L	20	,	11		124		ر 0	
Ethylbenzene		21.64	2.0	hg/L	20	0	10				0	
m,p-Xylene		44.61	2.0	hg/L	40	0			•	-	0	
o-Xylene		22.27	2.0	hg/L	20	0			•		0	
Styrene		21.01	2.0	hg/L	20	0	10				0	
Bromoform		18.88	2.0	hg/L	20	0	94.4		·		0	ſ
sopropylbenzene		25.83	2.0	hg/L	20	0	129				0	S
1,1,2,2-Tetrachloroethane	ethane	26.37	2.0	hg/L	20	0	132		• •	•	0	
1,2,3-Trichloropropane	ane	24.48	2.0	hg/L	20	0	122				0	
Bromobenzene		25.96	2.0	hg/L	20	0	130				0	S
n-Propylbenzene		24.11	2.0	hg/L	20	0	121				Q	
2-Chlorotoluene		22.13	2.0	hg/L	20	0	111				0	
4-Chlorotoluene		21.87	2.0	hg/L	20	0	109		·		0	
1,3,5-Trimethylbenzene	zene	23	2.0	hg/L	20	0	115		•		0	
tert-Butylbenzene		23.74	2.0	hg/L	20	0		_			0	
1,2,4-Trimethylbenzene	zene	21.47	2.0	hg/L		0	107	7 80	118		0	
Qualifiers: ND	ND - Not Detected at the Reporting Limit	eporting Limit	÷	S - Spike Rec	- Spike Recovery outside accepted recovery limits	epted recover	ry limits		lyte detected in	the associa	B - Analyte detected in the associated Method Blank	
		;										

Work Order:         09020/12           Project:         130274 Texton Gorham           sec-Butylbenzene         24.82         20 $\mu g/L$ 20         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2	Laboratory Control Spike
24.92       2.0 $\mu g/L$ 20       0       125         24.37       2.0 $\mu g/L$ 20       0       126         24.37       2.0 $\mu g/L$ 20       0       126         22.08       2.0 $\mu g/L$ 20       0       126         21.54       2.0 $\mu g/L$ 20       0       126         21.54       2.0 $\mu g/L$ 20       0       124         21.64       2.0 $\mu g/L$ 20       0       124         21.33       2.0 $\mu g/L$ 20       0       124         21.65       1.0 $\mu g/L$ 20       0       124         e       27.87       2.0 $\mu g/L$ 20       0       124         e       27.87       2.0 $\mu g/L$ 20       0       126         e       27.87       2.0 $\mu g/L$ 20       0       126         e       27.87       2.0 $\mu g/L$ 20       0       126         e       27.35       2.0 $\mu g/L$ 20       0       97.4         innethane <td< th=""><th></th></td<>	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	125
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	122
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	110
24.83       20 $\mu g/L$ 20       0       124         propane       21.03       2.0 $\mu g/L$ 20       0       105         a       20.19       5.0 $\mu g/L$ 20       0       101         a       24.83       2.0 $\mu g/L$ 20       0       101         a       24.83       2.0 $\mu g/L$ 20       0       124         27.87       2.0 $\mu g/L$ 20       0       124         27.87       2.0 $\mu g/L$ 20       0       124         25.2       5.0 $\mu g/L$ 20       0       126         amethane       21.76       2.0 $\mu g/L$ 20       0       147         than-d4       23.75       2.0 $\mu g/L$ 25       0       96         24.54       2.0 $\mu g/L$ 25       0       97       4         bonctane       24.54       2.0 $\mu g/L$ 25       0       97         bonctane       24.54       2.0 $\mu g/L$ 25       0       97	108
21.03       2.0 $\mu g/L$ 20       0       105         propane       20.19       5.0 $\mu g/L$ 20       0       101         le       24.83       2.0 $\mu g/L$ 20       0       101         le       24.83       2.0 $\mu g/L$ 20       0       124         le       27.87       2.0 $\mu g/L$ 20       0       124         le       27.87       2.0 $\mu g/L$ 20       0       126         le       23.33       2.0 $\mu g/L$ 20       0       147         nmethane       21.76       2.0 $\mu g/L$ 20       0       147         thane-d4       23.75       2.0 $\mu g/L$ 26       0       87         thane-d4       23.75       2.0 $\mu g/L$ 26       0       96         bohrzene       24.54       2.0 $\mu g/L$ 25       0       97.4         bohrzene       24.35       2.0 $\mu g/L$ 25       0       97.4	124
propane       20.19       5.0 $\mu g/L$ 20       0       101         le $24.83$ $2.0$ $\mu g/L$ $20$ 0       124         a $27.87$ $2.0$ $\mu g/L$ $20$ 0       124 $27.87$ $2.0$ $\mu g/L$ $20$ 0       124 $25.2$ $5.0$ $\mu g/L$ $20$ 0       147         le $23.33$ $2.0$ $\mu g/L$ $20$ 0       147         methane $21.76$ $2.0$ $\mu g/L$ $20$ 0 $87$ thane-d4 $23.75$ $2.0$ $\mu g/L$ $25$ 0 $98.2$ bhenzene $24.35$ $2.0$ $\mu g/L$ $25$ 0 $97.4$ bhenzene $24.35$ $2.0$ $\mu g/L$ $25$ $0$ $97.4$	105
e $24.83$ $2.0$ $\mu g/L$ $20$ $0$ $124$ $27.87$ $2.0$ $\mu g/L$ $20$ $0$ $139$ $25.2$ $5.0$ $\mu g/L$ $20$ $0$ $139$ e $25.2$ $5.0$ $\mu g/L$ $20$ $0$ $147$ omethane $21.76$ $2.0$ $\mu g/L$ $25$ $0$ $87$ thane-d4 $23.75$ $2.0$ $\mu g/L$ $25$ $0$ $98.2$ thane-d4 $23.75$ $2.0$ $\mu g/L$ $25$ $0$ $98.2$ obsenzene $24.35$ $2.0$ $\mu g/L$ $25$ $0$ $98.2$ obsenzene $24.35$ $2.0$ $\mu g/L$ $25$ $0$ $98.2$ obsenzene $24.35$ $2.0$ $\mu g/L$ $25$ $0$ $98.2$	101
27.87       2.0 $\mu g/L$ 20       0       139         25.2       5.0 $\mu g/L$ 20       0       126         amethane       21.76       2.0 $\mu g/L$ 20       0       147         amethane       21.76       2.0 $\mu g/L$ 25       0       87         thane-d4       23.75       2.0 $\mu g/L$ 25       0       98.2         thane-d4       23.75       2.0 $\mu g/L$ 25       0       98.2         obsenzene       24.54       2.0 $\mu g/L$ 25       0       98.2         obsenzene       24.35       2.0 $\mu g/L$ 25       0       97.4	124
$25.2$ $5.0$ $\mu g/L$ $20$ $0$ $126$ obenzene $29.33$ $2.0$ $\mu g/L$ $20$ $0$ $147$ mofluoromethane $21.76$ $2.0$ $\mu g/L$ $25$ $0$ $87$ inchloroethane-d4 $23.75$ $2.0$ $\mu g/L$ $25$ $0$ $98.2$ inchluorobenzene $24.54$ $2.0$ $\mu g/L$ $25$ $0$ $98.2$ inclluorobenzene $24.35$ $2.0$ $\mu g/L$ $25$ $0$ $98.2$ inclluorobenzene $24.35$ $2.0$ $\mu g/L$ $25$ $0$ $98.2$ inclluorobenzene $24.35$ $2.0$ $\mu g/L$ $25$ $0$ $98.2$	139 77
29.33       2.0 $\mu g/L$ 20       0       147         lethane       21.76       2.0 $\mu g/L$ 25       0       87         ane-d4       23.75       2.0 $\mu g/L$ 25       0       87         24.54       2.0 $\mu g/L$ 25       0       98.2         enzene       24.35       2.0 $\mu g/L$ 25       0       97.4	126 58
21.76       2.0       μg/L       25       0       87         23.75       2.0       μg/L       25       0       95         24.54       2.0       μg/L       25       0       98.2         24.35       2.0       μg/L       25       0       97.4         24.35       2.0       μg/L       25       0       97.4	147 76
23.75 2.0 μg/L 25 0 95 24.54 2.0 μg/L 25 0 98.2 24.35 2.0 μg/L 25 0 97.4 0 97.4	87 85 1
24.54 2.0 μg/L 25 0 98.2 24.35 2.0 μg/L 25 0 97.4 97.4	95 79
24.35 2.0 µg/L 25 0 97.4	98.2 90
	97.4
	•
	•
S - Spike Recovery outside accepted recovery limits	accepted recovery limits B - Analyte detected in the associated Method Blank
J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not app	Scovery limits NIA Not analisable where I willing on NID results occur

CLIENT: Shaw Environmental & Infrastructure, Inc.           Work Order:         0902072           Project:         130274 Textron Gorham           Rample         Test Code:         SW0250B         Units: $\mu g/L$ $h$ Sample         Locations         Batch ID:         R41842         Test Code:         SW0250B         Units: $\mu g/L$ $h$ Sample ID Les-02/2809         Batch ID:         R41842         Run ID: $V_2$ _090228A $h$ $h$ Sample ID Les-02/2809         Batch ID:         R41842         Test Code:         SW0250B         Units: $\mu g/L$ $h$ $h$ Client ID:         Occ Sample         R.         L         Units         Amount         Result $k/REC         L           Analyte         R.         Units         Amount         Result         k/REC         L           Officionentiane         13.33         5.0         \mu g/L         2.0         \theta g/L         2.0         \theta g/L         2.0         \theta g/L           Ontorothane         13.59         2.0         \mu g/L         2.0         \theta g/L         2.0         \theta g/L         2.0           Di$	Analysis Date Analysis Date SeqNo: SeqNo: SeqNo: SeqNo: 67.4 237 78.7 37 78.7 37 59.2 51 63.2 51 97.1 62 72.4 68 78.7 9 78.7 9 78.7 68 78.6 68		QC SUMMARY REPORT Laboratory Control Spike
30274 Textron Gorham       30274 Textron Gorham         30274 Textron Gorham       Run ID: v-2_090228A         Run ID: v-2_090228A       Units: µg/L         Run ID: v-2_090228A       CS Spike Original Sample         Run ID: rast Code: SW8260B       Units: µg/L         Result       RL       Units       Amount         Result       Result       Second       0       07.4         13.47       5.0       µg/L       20       0       07.4         15.59       2.0       µg/L       20       0       78         15.59       2.0       µg/L       20       0       78         15.59       2.0       µg/L       20       0       78         13.89       2.0       µg/L       20       0       78         16.74       10       µg/L       20       0       78         16.1589       10       µg/L       20       0       78	%REC 1 89.2 67.4 78 59.2 63.2 97.1 78.7 78.7 78.7 78.7 78.7 78.7		oratory Control Spike Prep Date 2/28/09 %RPD RPDLimit Qu
D9         Barch ID: R41842         Test Code:         SW8260B         Units: $\mu g/L$ Run ID:         V-2_090228A         CSpike Original Sample         CC Spike Original Sample           Result         RL         Units         Amount         Result         %REC         1           Result         RL         Units         Amount         Result         %REC         1           13.47         5.0 $\mu g/L$ 20         0         89.2           13.47         5.0 $\mu g/L$ 20         0         78.4           15.59         2.0 $\mu g/L$ 20         0         78.4           13.47         5.0 $\mu g/L$ 20         0         78.4           13.47         5.0 $\mu g/L$ 20         0         73.4           13.47         5.0 $\mu g/L$ 20         0         73.4           15.74         10 $\mu g/L$ 20         0         73.4           15.74         10 $\mu g/L$ 20         0         73.4           15.74         10 $\mu g/L$ 20         0         73.4           15.7	%REC 1 89.2 67.4 59.2 53.2 57.1 78.7 78.7 78.7 78.7 78.7 78.7 78.7	8/09 9:45:00 AM 421 Coriginal Sample mit or MS Result 50 0 60 0 37 0 34 0 60 0 60 0 60 0	2/28/09 RPDLimit
Run ID:         V-2_090238A           CC Sample         CC Spike Original Sample           Result         RL         Units         Amount         Result         %REC         1           Result         R.1         Units         Amount         Result         %REC         1           13.47         5.0         µg/L         20         0         89.2           13.47         5.0         µg/L         20         0         78           15.59         2.0         µg/L         20         0         78           15.44         2.0         µg/L         20         0         78           15.49         2.0         µg/L         20         0         78           15.49         1.0         µg/L         20         0         78           15.49         2.0         µg/L         20         0         73           15.49         2.0         µg/L         20         0         78           15.49         2.0         µg/L         20         0         73           15.41         10         µg/L         20         0         73           15.41         2.0         µg/L         20 </th <th>%REC 1 89.2 67.4 67.4 59.2 63.2 97.1 78.7 78.7 78.7 78.7 78.7 78.7</th> <th>421         Original Sample         nit       or MS Result         50       0         60       0         37       0         34       0         50       0</th> <th>RPDLimit</th>	%REC 1 89.2 67.4 67.4 59.2 63.2 97.1 78.7 78.7 78.7 78.7 78.7 78.7	421         Original Sample         nit       or MS Result         50       0         60       0         37       0         34       0         50       0	RPDLimit
CC Sample Result         Amount         CC Spike Original Sample Result           Result         RL         Units         Amount         Result         %rREC           13.47         5.0 $\mu g/L$ 20         0         89.2           13.47         5.0 $\mu g/L$ 20         0         89.2           13.47         5.0 $\mu g/L$ 20         0         67.4           13.47         5.0 $\mu g/L$ 20         0         78           15.59         2.0 $\mu g/L$ 20         0         78           11.85         5.0 $\mu g/L$ 20         0         78           13.47         2.0 $\mu g/L$ 20         0         78           13.47         2.0 $\mu g/L$ 20         0         78           13.49         5.0 $\mu g/L$ 20         0         78           13.89         2.0 $\mu g/L$ 20         0         78           13.89         2.0 $\mu g/L$ 20         0         70.4           15.44         10 $\mu g/L$ 20         0         78.4 <th>%REC         LowLimit           89.2         10           89.2         10           67.4         37           78         48           59.2         54           63.2         54           63.2         54           63.2         54           63.2         54           63.2         54           72.4         68           78.7         9           79.4         68           79.4         68           79.5         52</th> <th>Ō</th> <th>RPDLimit</th>	%REC         LowLimit           89.2         10           89.2         10           67.4         37           78         48           59.2         54           63.2         54           63.2         54           63.2         54           63.2         54           63.2         54           72.4         68           78.7         9           79.4         68           79.4         68           79.5         52	Ō	RPDLimit
Result         RL         Units         Amount         Result         %REC           17.83         5.0 $\mu g/L$ 20         67.4           13.47         5.0 $\mu g/L$ 20         67.4           13.47         5.0 $\mu g/L$ 20         67.4           13.47         5.0 $\mu g/L$ 20         67.4           15.59         2.0 $\mu g/L$ 20         78           11.85         5.0 $\mu g/L$ 20         73           13.49         5.0 $\mu g/L$ 20         74           14.49         5.0 $\mu g/L$ 20         73           15.4         10 $\mu g/L$ 20         73           15.4         2.0 $\mu g/L$ 20         74           15.4         2.0 $\mu g/L$ 20         74           16.7         2.0 $\mu g/L$ 20 <th>%REC         LowLimit           89.2         10           87.4         37           78         48           59.2         54           67.4         54           63.2         54           97.1         62           72.4         68           78.7         9           79.4         68           79.4         68           79.4         68           69.5         52</th> <th>· · · · · ·</th> <th>RPDLimit</th>	%REC         LowLimit           89.2         10           87.4         37           78         48           59.2         54           67.4         54           63.2         54           97.1         62           72.4         68           78.7         9           79.4         68           79.4         68           79.4         68           69.5         52	· · · · · ·	RPDLimit
$17.83$ $5.0$ $\mu g/L$ $20$ $0$ $13.47$ $5.0$ $\mu g/L$ $20$ $0$ $13.47$ $5.0$ $\mu g/L$ $20$ $0$ $11.85$ $5.0$ $\mu g/L$ $20$ $0$ $11.43$ $5.0$ $\mu g/L$ $20$ $0$ $11.43$ $5.0$ $\mu g/L$ $20$ $0$ $11.389$ $2.0$ $\mu g/L$ $20$ $0$ $113.89$ $2.0$ $\mu g/L$ $20$ $0$ $113.827$ $10$ $\mu g/L$ $20$ $0$ $117.98$	50 0 51 54 52 54 53 54 54 54 54 54 54 54 54 54 54 54 54 54		
13.47       5.0 $\mu g/L$ 20       0         15.59       2.0 $\mu g/L$ 20       0         15.59       2.0 $\mu g/L$ 20       0         11.85       5.0 $\mu g/L$ 20       0         12.64       2.0 $\mu g/L$ 20       0         12.64       2.0 $\mu g/L$ 20       0         13.89       5.0 $\mu g/L$ 20       0         15.74       10 $\mu g/L$ 20       0         15.89       1.0 $\mu g/L$ 20       0         15.89       1.0 $\mu g/L$ 20       0         8.5       5.0 $\mu g/L$ 20       0         8.5       5.0 $\mu g/L$ 20       0         16.19       2.0 $\mu g/L$ 20       0         16.19       2.0 $\mu g/L$ 20       0       0         16.19       2.0 $\mu g/L$ 20       0       0         16.19       2.0 $\mu g/L$ 20       0       0         16.16       2.0 $\mu g/L$ 20       0 <t< td=""><td>37 55 59 50 68 51 52 68 52 53 53 54 54 55 54 55 54 55 54 55 54 55 54 55 54 55 55</td><td></td><td></td></t<>	37 55 59 50 68 51 52 68 52 53 53 54 54 55 54 55 54 55 54 55 54 55 54 55 54 55 55		
15.59       2.0 $\mu g/L$ 20 $\mu g/L$ 20       0         11.85       5.0 $\mu g/L$ 20       0       0         12.64       2.0 $\mu g/L$ 20       0       0         13.85       5.0 $\mu g/L$ 20       0       0         15.74       10 $\mu g/L$ 20       0       0         15.85       2.0 $\mu g/L$ 20       0       0         16.65       2.0 $\mu g/L$ 20       0       0         16.19       2.0 $\mu g/L$ 20       0       0         16.44       10 $\mu g/L$ 20       0       0       0         16.56       2.0 $\mu g/L$ 20       0       0       0       0         16.58       2.0 $\mu g/L$ 20       0       0       0       0       0       0       0       0<	7 8 9 9 7 7 4 8 7 8 9 8 2 1 4 8 7 8 9 8 2 1 4 8		
11.85       5.0 $\mu g/L$ 20       0         12.64       2.0 $\mu g/L$ 20       0         12.64       2.0 $\mu g/L$ 20       0         14.49       5.0 $\mu g/L$ 20       0         15.74       10 $\mu g/L$ 20       0         13.89       5.0 $\mu g/L$ 20       0         15.74       10 $\mu g/L$ 20       0         15.89       1.0 $\mu g/L$ 20       0         13.89       2.0 $\mu g/L$ 20       0         13.89       2.0 $\mu g/L$ 20       0         16.65       2.0 $\mu g/L$ 20       0         16.19       2.0 $\mu g/L$ 20       0         16.44       10 $\mu g/L$ 20       0         16.56       2.0 $\mu g/L$ 20       0	57 57 57 58 9 88 52 88 52		
12.64       2.0 $\mu g/L$ 20 $\mu g/L$ 20 $\mu g/L$ 20       0         19.42       2.0 $\mu g/L$ 20 $\mu g/L$ 20       0         14.49       5.0 $\mu g/L$ 20 $\mu g/L$ 20       0         15.74       1.0 $\mu g/L$ 20       0       0         15.74       1.0 $\mu g/L$ 20       0       0         15.89       2.0 $\mu g/L$ 20       0       0         13.89       2.0 $\mu g/L$ 20       0       0         13.89       2.0 $\mu g/L$ 20       0       0         15.42       2.0 $\mu g/L$ 20       0       0         16.19       2.0 $\mu g/L$ 20       0       0       0         16.19       2.0 $\mu g/L$ 20       0       0       0       0         16.56       2.0 $\mu g/L$ 20       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	52 8 0 8 7 1 52 8 0 8 8 7 1		
$I_{1} = I_{1}I_{2} = I_{1}I_{2} = I_{1}I_{2} = I_{1}I_{2} = I_{1}I_{2} = I_{1}I_{2} = I_{1}I_{2}I_{1} = I_{1}I_{1}I_{1} = I_{1}I_{1}I_{1}I_{1} = I_{1}I_{1$	52 8 9 8 2 57 6 9 8 2		
The formula of the f	-08 50 50 50 50 50 50 50 50 50 50 50 50 50		
15.74       10 $\mu g/L$ 20       0         15.89       1.0 $\mu g/L$ 20       0         15.89       1.0 $\mu g/L$ 20       0         13.89       2.0 $\mu g/L$ 20       0         8.5       5.0 $\mu g/L$ 20       0         13.89       2.0 $\mu g/L$ 20       0         12.4       2.0 $\mu g/L$ 20       0         16.55       2.0 $\mu g/L$ 20       0         16.57       2.0 $\mu g/L$ 20       0         16.19       2.0 $\mu g/L$ 20       0         17.42       2.0 $\mu g/L$ 20       0         16.19       2.0 $\mu g/L$ 20       0         17.98       2.0 $\mu g/L$ 20       0         16.56       2.0 $\mu g/L$ 20       0         20.32       2.0 $\mu g/L$ 20       0         16.56       2.0 $\mu g/L$ 20       0         16.56       2.0 $\mu g/L$ 20       0         20.32       2.0	9 52 8 68		
The second seco	68 52	ر ب	
The formula of the set of the se	52	140 O	
The formula of the f		131 0	
le 12.4 2.0 $\mu g/L$ 20 0 16.65 2.0 $\mu g/L$ 20 0 16.65 2.0 $\mu g/L$ 20 0 16.72 2.0 $\mu g/L$ 20 0 16.72 2.0 $\mu g/L$ 20 0 15.42 2.0 $\mu g/L$ 20 0 16.19 2.0 $\mu g/L$ 20 0 16.19 2.0 $\mu g/L$ 20 0 2.0 $\mu g/L$ 20 0 20 2.0 $\mu g/L$ 20 0 20 2.0 $\mu g/L$ 20 0 20.0 $\mu g/L$ 20 0 0 20.32 2.0 $\mu g/L$ 20 0 0 0 16.56 2.0 $\mu g/L$ 20 0 0 0 16.56 2.0 $\mu g/L$ 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	67	138 0	S
The the tensor of tenso	63	139 0	S
16.72       2.0 $\mu g/L$ 20       0         18.27       10 $\mu g/L$ 20       0         15.42       2.0 $\mu g/L$ 20       0         15.42       2.0 $\mu g/L$ 20       0         15.42       2.0 $\mu g/L$ 20       0         16.19       2.0 $\mu g/L$ 20       0         17.98       2.0 $\mu g/L$ 20       0         18.44       10 $\mu g/L$ 20       0         20.32       2.0 $\mu g/L$ 20       0	81	126 0	
18.27       10 $\mu g/L$ 20       0         15.42       2.0 $\mu g/L$ 20       0         16.19       2.0 $\mu g/L$ 20       0         17.98       2.0 $\mu g/L$ 20       0         17.98       2.0 $\mu g/L$ 20       0         18.44       10 $\mu g/L$ 20       0         16.56       2.0 $\mu g/L$ 20       0         20.32       2.0 $\mu g/L$ 20       0	78	124 0	-
15.42     2.0     μg/L     20     0       16.19     2.0     μg/L     20     0       17.98     2.0     μg/L     20     0       18.44     10     μg/L     20     0       16.56     2.0     μg/L     20     0       20.32     2.0     μg/L     20     0	41	150 0	× .
16.19     2.0     μg/L     20     0       17.98     2.0     μg/L     20     0       18.44     10     μg/L     20     0       16.56     2.0     μg/L     20     0       20.32     2.0     μg/L     20     0	71	150 0	
17.98 2.0 μg/L 20 0 uran 18.44 10 μg/L 20 0 omethane 16.56 2.0 μg/L 20 0 proethane 20.32 2.0 μg/L 20 0	78	121 0	
18.44 10 μg/L 20 0 16.56 2.0 μg/L 20 0 20.32 2.0 μg/L 20 0	82	123 0	
16.56 2.0 μg/L 20 0 20.32 2.0 μg/L 20 0	51	146 0	
20.32 2.0 µg/L 20 0	2.2	131 0	
	81	127 0	~
1,1-Dichloropropene 20.49 2.0 μg/L 20 0 102	76	119 0	
0	76	1290	
2.0 µg/L 20 0	76	127 0	
Benzene 17.37 1.0 μg/L 20 0 86.8	81	118 0	
Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits		B - Analyte detected in the associated Method Blank	od Blank
I - Analyte detected below quantitation limits R - RPD outside accepted recovery limits		NA - Not surficehle where I values or ND results occur	Peulte occur

AMRO Environmental Laboratories Corp.	boratories C	Jorp.	- -						<b>Date:</b> 06-Mar-09	ır-09
<u>ــــــــــــــــــــــــــــــــــــ</u>	tal & Infrastruct	ure, Inc.						-	QC SUMMARY REPORT	EPORT
Work Order: 0902072 Project: 130274 Textron Gorham	Jorham				,				Laboratory Control Spike	trol Spike
Trichloroethene	20.67	2.0	hg/L	20	0	103	81	119	0	
1,2-Dichloropropane	17.14	2.0	hg/L	20	0	85.7	19	120	0	
Bromodichloromethane	15.02	2.0	hg/L	20	0	75.1	. 22	131	0	S
Dibromomethane	17.97	2.0	hg/L	20	0	89.8	76	128	0	
4-Methyl-2-pentanone	15.63	10	hg/L	20	0	78.2	51	141	0	
cis-1, 3-Dichloropropene	15.08	1.0	hg/L	20	0	75.4	76	120	0	<b>S</b>
Toluene	20.2	2.0	hg/L	20	0	101	83	119	0	
trans-1,3-Dichloropropene	14.68	1.0	hg/L	20	0	73.4	66	128	0	
1,1,2-Trichloroethane	18.94	2.0	µg/L	20	0	94.7	74	123	0	
1,2-Dibromoethane	17.8	2.0	hg/L	20	0	89	72	128	0	
2-Hexanone	16.71	10	hg/L	20	0	83.6	31	148	0.	
1,3-Dichloropropane	20.94	2.0	hg/L	20	0	105	76	122	0	
Tetrachloroethene	23.37	2.0	hg/L	20	0	117	81	124	0	
Dibromochloromethane	14.55	2.0	hg/L	20	0	72.8	63	126	0	
Chlorobenzene	23.78	2.0	hg/L	20	0	119	84	113	0	S
1,1,1,2-Tetrachloroethane	18.24	2.0	hg/L	20	0	91.2	73	124	0	
Ethylbenzene	23.8	2.0	hg/L	20	0	119	83	118	Ō	S
m,p-Xylene	48.74	2.0	hg/L	40	0	122	85	116	0	S
o-Xylene	24.04	2.0	hg/L	20	o	120	84	115	0	S
Styrene	23.97	2.0	hg/L	20	0	120	81	118	0	S
Bromoform	13.46	2.0	, hg/L	20	0	67.3	55	126	0	
Isopropylbenzene	26.53	2.0	hg/L	20	0	133	17	125	0	S
1,1,2,2-Tetrachloroethane	19.49	2.0	hg/L	20	0	97.5	62	134	0	
1,2,3-Trichloropropane	20.55	2.0	hg/L	20	0	103	62	132	0	
Bromobenzene	22.09	2.0	hg/L	20	0	110	78	119	. 0	
n-Propylbenzene	23.26	2.0	hg/L	20	0	116	11	127	0	
2-Chlorotoluene	23.01	2.0	hg/L	20	0	115	78	118	0	
4-Chlorotoluene	23.05	2.0	hg/L	20	0	115	11	119	0	
1,3,5-Trimethylbenzene	24.37	2.0	hg/L	20	0	122	80	120	0	S
tert-Butylbenzene	23.81	2.0	hg/L	20	0	119	8	120	0	
1,2,4-Trimethylbenzene	23.65	2.0	hg/L	20	0	118	80	118	0.	S
Qualifiers: ND - Not Detected at the Reporting Limit	oorting Limit		3 - Spike Recover	- Spike Recovery outside accepted recovery limits	covery li	imits	B - Analyte o	letected in tl	B - Analyte detected in the associated Method Blank	
J - Analyte detected below quantitation limits	antitation limits		RPD outside a	- RPD outside accepted recovery limits	nits		NA - Not apj	plicable whe	NA - Not applicable where J values or ND results occur	

77

RL - Reporting Limit, defined as the lowest concentration the laboratory can accurately quantitate.

AMRO Environmental Laboratories Corp.	ll Laborator	ies Corp.		•		1			<b>Date:</b> 06-Mar-09
CLIENT: Shaw Enviro Work Order: 0902072	Shaw Environmental & Infrastructure, Inc. 0902072 130774 Textron Corbon	astructure, Inc.		•					QC SUMMARY REPORT Laboratory Control Spike
		c		ç	c	007	ç	400	c
sec-Butylbenzene 4-Isonronvitolijane	24.34 22 48	7 O	µg/L ua/L	50 20	00	112	80 8	126	0.0
1.3-Dichlorobenzene	22.57	2.0	hg/L	20	0	113	84	115	0
1,4-Dichlorobenzene	21.96	2.0	hg/L	20	0	110	79	117	0
n-Butylbenzene	22.38	2.0	hg/L	20	0	112	. 26	128	0
1,2-Dichlorobenzene	21.89	2.0	hg/L	20	o ·	109	81	117	0.
1,2-Dibromo-3-chloropropane	13.9	5.0	hg/L	20	0	69.5	47	136	0
1,2,4-Trichlorobenzene	22.42	2.0	hg/L	20	0	112	73	126	0
Hexachlorobutadiene	24.02	2.0	hg/L	20	0	120	11	134	0
Naphthalene	22.12	5.0	hg/L	20	0	111	58	138	. 0
1,2,3-Trichlorobenzene	25.74	2.0	hg/L	20	0	129	76	124	0
Surr: Dibromofluoromethane	× 22.64	2.0	hg/L	25	0	90.6	85	119	0
Surr: 1,2-Dichloroethane-d4	27.07	2.0	hg/L	25	0	108	29	131	0
Surr: Toluene-d8	24.02	2.0	hg/L	25	0	96.1	06	110	
Surr: 4-Bromofluorobenzene	23.85	2.0	hg/L	25	0	95.4	76	117	0
		-							
									•
	•		•						
		•						•	
				· .					

ND - Not Detected at the Reporting Limit Qualifiers:

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

NA - Not applicable where J values or ND results occur

	Shaw Environmental & Infrastructure, Inc.	acture, Inc.							QC SUM	QC SUMMARY REPORT
Work Order: 0902072 Project: 130274	0902072 130274 Textron Gorham								Lal	Laboratory Control Spike
Samia ID Jas-03/04/00	Batch ID: <b>R41860</b>	Test Code	Test Code: SW8260B	I Inits- ud/	1/0		Analvsis D	Analvsis Date 3/4/09 9:55:00 AM	9:55:00 AM	Prep Date 3/4/09
Client ID:		Run ID:	V-3_090304A		l b	۰,	SeqNo:	696617		-
	QC Sample	•	0	QC Spike Original Sample	jinal Sample	•			Original Sample	
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD RPDLimit Qua
Dichlorodifluoromethane	19.8	5.0	hg/L	20	0	66	10	150	0	
Chloromethane	18.97	5.0	hg/L	20	0	94.8	37	150	0	
Vinyl chloride	20.94	2.0	hg/L	20	0	105	48	150	0	
Chloroethane	20.03	5.0	µg/L	20	0	100	54	142	0	
Bromomethane	18.99	2.0	hg/L	20	0	95	51	137	0	
Trichlorofluoromethane	20.74	2.0	hg/L	20	0	104	62	141	<b>O</b>	
Diethyl ether	19.85	5.0	hg/L	20	0	99.2	89	134	0	
Acetone	15	10	hg/L	20	0	75	<b>0</b>	150	0	
1,1-Dichloroethene	19.66	1.0	hg/L	20	0	98.3	68	146	0	
Carbon disulfide	17.59	2.0	hg/L	20	0	88	52	131	0	
Methylene chloride	21.91	5.0	hg/L	20	0	110	67	138	0	
Methyl tert-butyl ether	19.99	2.0	hg/L	20	0	100	63	139	Q	
trans-1,2-Dichloroethene	20.14	2.0	hg/L	20	0	101	81	126	0	
1,1-Dichloroethane	20.57	2.0	hg/L	20	0	103	78	124	0	
2-Butanone	18.9	10	hg/L	20	0	94.5	41	150	<b>0</b>	
2,2-Dichloropropane	21.41	2.0	hg/L	20	0	107	71	150	0	
cis-1,2-Dichloroethene	19.25	2.0	hg/L	20	0	96.2	78	121	0	
Chloroform	19.95	2.0	µg/L	20	0	99.8	82	123	0	
Tetrahydrofuran	19.55	10	hg/L	20	0	97.8	51	146	0	
Bromochloromethane	22.59	2.0	µg/L	20	0	113	17	131	0	
1,1,1-Trichloroethane	20.74	2.0	hg/L	20	0	104	81	127	<b>0</b>	
1,1-Dichloropropene	19.77	2.0	µg/L	20	0	98.8	76	119	0	
Carbon tetrachloride	18.77	2.0	hg/L	20	0	93.8	76	129	0	
1,2-Dichloroethane	20.31	2.0	hg/L	50	0	102	76	127	0	
Benzene	20.64	1.0	hg/L	20	0	103	81	118	0	
Qualifiers: ND - Not Detec	ND - Not Detected at the Reporting Limit	S-	Spike Recove	- Spike Recovery outside accepted recovery limits	epted recovery	/ limits	B - Analy	te detected in	B - Analyte detected in the associated Method Blank	hod Blank
J - Analyte dete	J - Analyte detected below quantitation limits	R	- RPD outside	R - RPD outside accepted recovery limits	/ery limits		NA - Not	applicable wh	NA - Not applicable where J values of ND results occur	results occur

			•								An sea an
CLIENT:	Shaw Environn	Shaw Environmental & Infrastructure, Inc.	cture, Inc.				•			QC SUMN	QC SUMMARY REPORT
Work Order: Project:	0902072 130274 Textron Gorham	n Gorham								Labo	Laboratory Control Spike
Trichloroethene		19.88	2.0	hg/L	20	0	99.4	81	119	0	
1,2-Dichloropropane	Те	21.11	2.0	hg/L	20	0	106	79	120	0	
Bromodichloromethane	hane	20.04	2.0	hg/L	20	0	100	11	131	0	
Dibromomethane		21.26	2.0	hg/L	20	0	106	76	128	0	
4-Methyl-2-pentanone	one	16.84	10	hg/L	20	0	84.2	51	141	0	
cis-1,3-Dichloropropene	pene	20.35	1.0	hg/L	20	0	102	76	120	0	
Toluene		20.61	2.0	hg/L	20	0	103	83	119	0	
trans-1,3-Dichloropropene	propene	20.07	1.0	hg/L	20	0	100	99	· 128	0	
1,1,2-Trichloroethane	ane	19.59	2.0	hg/L	20	0	-98 -	74	123	0	
1,2-Dibromoethane	Ø	20.44	2.0	hg/L	20	0	102	72	128	0	
2-Hexanone		14.8	10	hg/L	20	0	74	31	148	0	
1,3-Dichloropropane	ле	19.98	2.0	hg/L	20	0	6.66	76	122	0	
Tetrachloroethene		20.42	2.0	hg/L	20	0	102	81	124	0	
Dibromochloromethane	thane	19.66	2.0	hg/L	20	0	98.3	63	126	0	
Chlorobenzene		20.36	2.0	hg/L	20	0	102	84	113	0	
1,1,1,2-Tetrachloroethane	oethane	19.51	2.0	hg/L	20	0	97.6	73	124	0	
Ethylbenzene		19.09	2.0	hg/L	20	0	95.4	83	118	<b>O</b>	-
m,p-Xylene		37.33	2.0	hg/L	40	0	93.3	85	116	0	
o-Xylene		19.97	2.0	hg/L	20	0	99.8	84	115	Ó	
Styrene		20.14	2.0	hg/L	20	0	101	81	118	0	
Bromoform		19.61	2.0	hg/L	20	0	98	55	126	0	
Isopropylbenzene		21.91	2.0	hg/L	20	0	110	11	125	0	
1,1,2,2-Tetrachloroethane	oethane	19.4	2.0	hg/L	20	0	97	62	134	0	
1,2,3-Trichloropropane	ane	18.5	2.0	hg/L	20	0	92.5	62	132	0	
Bromobenzene		20.27	2.0	hg/L	20	0	101	78	119	0	
n-Propylbenzene	·	20.42	2.0	hg/L	20	0	102	77	127	0	
2-Chlorotoluene		19.74	2.0	hg/L	20	0	98.7	78	118	0	
4-Chlorotoluene		19.68	2.0	µg/L	20	0	98.4	. 77	119	0	
1,3,5-Trimethylbenzene	Jzene	20.02	2.0	hg/L	20	0	100	80	120	0	
tert-Butylbenzene	-	20.54	2.0	hg/L	20	0	103	81	120	0	
1,2,4-Trimethylbenzene	Jzene	19.64	2.0	hg/L	20	0	98.2	80	118	0	
Qualifiers: ND	ND - Not Detected at the Reporting Limit	Reporting Limit	S-	Spike Recover	- Spike Recovery outside accepted recovery limits	recovery	limits	B - Analyte c	letected in th	B - Analyte detected in the associated Method Blank	d Blank
	J - Analyte detected below quantitation limits	w quantitation limits	R -	RPD outside a	- RPD outside accepted recovery limits	imits		NA - Not ant	olicable whe	NA - Not amilicable where I values or ND résults occur	sults occur
	AND AND THE Y							1717 1711 - CX	THAT WILL WATER	TAT TATE OF CONTRACT OF	invov citic

.

CLIENT:		Shaw Environmental & Infrastructure, Inc.	oture, Inc							QCS	QC SUMMARY REPORT	REPORT
Work Order: Project:	0902072 130274	Textron Gorham									Laboratory (	Laboratory Control Spike
sec-Butylbenzene	ine	20.31	2.0	hg/L	20	0	102	82	123		0	
4-Isopropyltoluene	ane	20.55	2.0	hg/L	20	0	103	80	126		0	
1,3-Dichlorobenzene	Jzene	20.49	2.0	hg/L	20	0	102	84	115		0	
1,4-Dichlorobenzene	Izene	20.6	2.0	hig/L	20	0	103	26	117		0	
n-Butylbenzene	-	21.36	2.0	hg/L	20	0	107	76	128		0	
1,2-Dichlorobenzene	ızene	19.68	2.0	hg/L'	20	0	98.4	81	117		0	
1,2-Dibromo-3-	,2-Dibromo-3-chloropropane	17.81	5.0	hg/L	20	0	68	47	136		0	
1,2,4-Trichlorobenzene	Jenzene	20.91	2.0	hg/L	20	0	105	73	126		0	
Hexachlorobutadiene	adiene	21.11	2.0	hg/L	20	0	106	17	134		0	
Naphthalene		18.73	5.0	hg/L	20	0	93.6	58	138		0	
1,2,3-Trichlorobenzene	Jenzene	19.83	2.0	hg/L	20	0	99.2	216	124		0	
Surr: Dibrom	Surr: Dibromofluoromethane	26.14	2.0	hg/L	25	0	105	85	119		0	
Surr: 1,2-Dic	Surr: 1,2-Dichloroethane-d4	24.92	2.0	hg/L	25	0	99.7	62	131		0	
Surr: Toluene-d8	e-d8	25.1	2.0	hg/L	25	0	100	06	110		0	
Surr: 4-Brom	Surr: 4-Bromofluorobenzene	24.18	2.0	hg/L	25	0	96.7	16	117		0	
									·			
•												
					·							
		•										
Qualifiers:	ND - Not Detected at the Reporting Limit	Reporting Limit		S - Spike Recov	Spike Recovery outside accepted recovery limits	l recovery l	limits	B - Analyte c	letected in	the associate	B - Analyte detected in the associated Method Blank	
		:										

	Units: Jug/L J5A C Spike Original Amount 20 20 20 20 20 20 20 20 20 20 20 20 20	Sample Sample Result %REC 0 117 0 0 0 0000000000	Analysis D SeqNo: SeqNo: 10 37 54 54 51 62 68			QC SUMMARY REPORT Laboratory Control Spike 9:00 AM Prep Date 3/5/09 ginal Sample or MS Result %RPD RPDLimit Qu	REPORT ontrol Spike 3/5/09 RPDLimit Qua
Order:         0902012           Ist 130274 Textron Gorham         Run ID:         V-3_0003           ID Ics-03/05/09         Batch ID:         R41874         Test Code:         SW8260B           Close         Batch ID:         R41874         R         Lost Code:         SW8260B           Idificoromethane         22.35         2.0         pg/L         pg/L           ether         15.78         1.0         pg/L         pg/L           ether         23.66         2.0         pg/L         pg/L           ether         22.33         2.0         pg/L         pg/L           ether         22.33         2.0	W8260B Units: Jug/L -3_090305A Units: Jug/L aC Spike Original Sa ag/L 20 Jug/L 20		Analysis D SeqNo: 10 37 54 51 51 62 68	Date 3/5/09 9:15 696852 Corig HighLimit c 150 150 142 137		Prep Date 3/ %RPD RF	5/09 5/09 DLimit
ID         Ics-03/05/09         Batch ID: R41874         Test Code: SW8260B           D:         QC Sample         Run ID:         V-3_09031           D:         QC Sample         Run ID:         V-3_09031           D:         QC Sample         RL         Units           Result         RL         Units         Pg/L           Idifluoromethane         22.98         5.0         µg/L           Ioride         23.35         2.0         µg/L           Iororomethane         23.61         2.0         µg/L           Iororomethane         23.61         2.0         µg/L           Iororomethane         23.61         2.0         µg/L           Iororomethane         23.61         2.0         µg/L           Iororomethane         22.96         1.0         µg/L           Iororothane         21.04         2.0         µg/L<	W8260B Units: µg/L -3_090305A -3_090305A -3_090305A -3_C Spike Original Sa AC Spike Original Sa Jg/L 20 Jg/L 20 Jg/L 20 Jg/L 20 Jg/L 20 Jg/L 20 Jg/L 20 Jg/L 20		Analysis D SeqNo: LowLimit 10 37 48 54 51 51 68	Date 3/5/09 9:15 696852 696852 0rig 150 150 150 150 137	9:00 AM 9:100 AM 9:101 Sample 0 0 0	Prep Date 3/ %RPD RF	ait
ConstraintRun ID:V-3_0903CallCallRun ID:V-3_0903CallCallResultR.LUnitsResultR.LUnitsResultR.LUnitsRethane22.985.0 $\mu g/L$ Ioride20.015.0 $\mu g/L$ Indituoromethane23.352.0 $\mu g/L$ Ioride20.015.0 $\mu g/L$ Intane23.352.0 $\mu g/L$ Intane23.352.0 $\mu g/L$ Intane23.612.0 $\mu g/L$ Intane23.612.0 $\mu g/L$ Intane23.612.0 $\mu g/L$ Intromethane23.612.0 $\mu g/L$ Intromethane23.612.0 $\mu g/L$ Introcethene22.961.0 $\mu g/L$ Introcethene22.432.0 $\mu g/L$ Introcethane22.432.0 $\mu g/L$ Introcethane22.432.0 $\mu g/L$ Introcethane24.022.0 $\mu g/L$ Introcethane24.022.0 $\mu g/L$ Introcethane24.022.0 $\mu g/L$ Introcethane21.042.0	-3_090305A Anount Re Jg/L 20 Jg/L 20		SeqNo: LowLimit 10 37 48 54 51 68	696852 HighLimit c 150 150 150 142 137	jinal Sample or MS Result 0 0		
CC Sample         Rsult         RL         Units           Result         R.         Units         Edition         Units         Edition           diffuoromethane         22.98         5.0         µg/L         Units           loride         20.37         5.0         µg/L           loride         23.35         2.0         µg/L           loride         23.35         2.0         µg/L           loride         23.35         2.0         µg/L           loride         23.35         2.0         µg/L           floromethane         23.35         2.0         µg/L           offuoromethane         23.61         2.0         µg/L           offuoromethane         23.61         2.0         µg/L           effburde         19.48         5.0         µg/L           iloroethene         22.96         1.0         µg/L           eff-butyl ether         22.96         1.0         µg/L           eff-butyl ether         22.33         2.0         µg/L           one         21.04         2.0         µg/L           one         22.43         2.0         µg/L           one         21.04			LowLimit 10 37 48 54 51 68	Ori	ginal Sample or MS Result 0 0		
ResultRLUnitsdiffuoromethane $22.98$ $5.0$ $\mu g/L$ lethane $20.37$ $5.0$ $\mu g/L$ loride $23.35$ $2.0$ $\mu g/L$ hethane $23.35$ $2.0$ $\mu g/L$ nethane $23.35$ $2.0$ $\mu g/L$ nethane $23.61$ $5.0$ $\mu g/L$ nethane $23.61$ $2.0$ $\mu g/L$ nethane $23.61$ $2.0$ $\mu g/L$ nethane $23.61$ $2.0$ $\mu g/L$ sther $19.48$ $5.0$ $\mu g/L$ loroethene $22.96$ $1.0$ $\mu g/L$ erburyl ether $22.06$ $1.0$ $\mu g/L$ erburyl ether $22.33$ $2.0$ $\mu g/L$ one $22.43$ $2.0$ $\mu g/L$ one $18.57$ $10$ $\mu g/L$ one $18.57$ $2.0$ $\mu g/L$ idropropane $21.04$ $2.0$ $\mu g/L$	Amount 20 20 20 20 20 20 20		LowLimit 10 37 54 51 62 63		or MS Result 0 0		
22.98 5.0 20.37 5.0 23.35 2.0 18.12 2.0 19.48 5.0 15.78 10 15.78 10 22.96 1.0 22.96 1.0 22.43 2.0 18.57 5.0 18.57 2.0 22.43 2.0 22.0			10 37 54 62 68	150 150 142 137	0000		
20.37       5.0         23.35       5.0         23.35       2.0.01         20.01       5.0         18.12       2.0         18.12       2.0         19.48       5.0         15.78       1.0         22.96       1.0         22.96       1.0         22.96       1.0         22.96       1.0         22.43       2.0         22.43       2.0         22.43       2.0         22.43       2.0         22.43       2.0         24.02       2.0         22.43       2.0         21.04       2.0         21.04       2.0			37 54 51 62 68	150 150 137	000		
23.35 2.0 20.01 5.0 18.12 2.0 19.48 5.0 15.78 10 22.96 1.0 22.96 1.0 22.43 2.0 18.57 5.0 18.57 2.0 22.43 2.0 22.43 2.0 22.43 2.0 22.43 2.0 22.43 2.0 22.43 2.0 22.43 2.0			, 54 62 68 68	150 137	o c		
20.01 5.0 18.12 2.0 19.48 5.0 15.78 10 15.78 10 22.96 1.0 22.96 1.0 22.96 2.0 19.86 2.0 18.57 5.0 18.57 2.0 22.43 2.0 22.43 2.0 22.43 2.0 22.43 2.0 22.43 2.0 22.43 2.0			51 62 68	142	c		
18.12       2.0         23.61       2.0         19.48       5.0         15.78       10         22.96       1.0         22.96       1.0         22.96       1.0         22.96       2.0         22.96       1.0         22.457       5.0         22.43       2.0         22.43       2.0         22.43       2.0         24.02       2.0         22.43       2.0         24.02       2.0         21.04       2.0		0 90.6 0 118 0 97.4	51 62 68	137	Э ,		
23.61 2.0 19.48 5.0 15.78 10 22.96 1.0 24.57 5.0 19.86 2.0 18.57 2.0 18.57 2.0 22.43 2.0 22.43 2.0 24.02 2.0 21.04 2.0		0 118 0 97.4	62 68	4 4 4	0		
19.48 5.0 15.78 10 22.96 1.0 24.57 5.0 19.86 2.0 18.57 2.0 18.57 2.0 22.43 2.0 18.57 10 22.0 24.02 2.0 21.04 2.0		0 97.4	68	141	ο.		
15.78 10 22.96 1.0 24.57 5.0 19.86 2.0 22.33 2.0 18.57 10 24.02 2.0 21.04 2.0		002 0		134	0		
22.96 1.0 20.08 2.0 19.86 2.0 19.86 2.0 22.43 2.0 18.57 10 24.02 2.0 21.04 2.0		0 10.0	თ	150	0		
20.08 2.0 24.57 5.0 19.86 2.0 22.43 2.0 18.57 10 24.02 2.0 21.04 2.0		0 115	89	146	0		
24.57 5.0 19.86 2.0 22.43 2.0 18.57 10 24.02 2.0 21.04 2.0		0 100	52	131	0		
19.86 2.0 22.33 2.0 22.43 2.0 18.57 10 24.02 2.0 21.04 2.0		0 123	67	138	0		
22.33 2.0 22.43 2.0 18.57 10 24.02 2.0 21.04 2.0		0 99.3	63	139	0		
22.43 2.0 18.57 10 24.02 2.0 21.04 2.0		0 112	81	126	0		
18.57 10 24.02 2.0 21.04 2.0	J/L 20	0 112 ,	78	124	0		
24.02 2.0 21.04 2.0		0 92.8	41	150	0		,
21.04 2.0		0 120	71	150	0		
	µg/L 20	0 105	78	121	0		
2.0		0 111	82	. 123	0		
Tetrahydrofuran 17.49 10 µg/L		0 87.5	51	146	0		
		0 117	- 11	131	O		
1,1,1-Trichloroethane 21.76 2.0 µg/L		0 109	81	127	0		
1,1-Dichloropropene 20.34 2.0 µg/L		0 102	76	119	0		
Carbon tetrachioride 19.22 2.0 µg/L		0 96.1	16	129	0		
1,2-Dichloroethane 21.45 2.0 µg/L		0 107	9/	127	0		
Benzene 23.39 1.0 µg/L	ug/L 20	0 117	81	118	0		
Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery	- Spike Recovery outside accepted recovery limits	covery limits	B - Analy	B - Analyte detected in the associated Method Blank	associated Met	hod Blank	
J - Analyte detected below quantitation limits R - RPD outside acc	- RPD outside accepted recovery limits	ts	NA - Not	NA - Not applicable where J values or ND results occur	J values or ND	results occur	
DI Demonting Limit: defined as the lowest concentration the laboratory can accurately quantitate	•			:			

Work Order: 0902072	Shaw Environmental & Infrastructure, Inc.	cture, Inc.	r						OC SUMMARY REPORT	ORT
	0902072 130274  Textron Gorham		•						Laboratory Control Spike	l Spike
Trichloroethene	23.09	2.0	hg/L	20	0	115	81	119	0	
1,2-Dichloropropane	23.04	2.0	hg/L	20	0	115	79	120	0	
Bromodichloromethane	21.6	2.0	hg/L	20	0	108	77	131	0	
Dibromomethane	23.07	2.0	hg/L	20	0	115	76	128	0	
4-Methyl-2-pentanone	19.01	10	hg/L	20	0	95	51	141	0	
cis-1,3-Dichloropropene	21.5	1.0	hg/L	20	0	108	76	120	0	
Foluene	22.86	2.0	hg/L	20	0	114	83	119	0	
trans-1,3-Dichloropropene	21.46	1.0	hg/L	20	0	107	99	128	0	
1,1,2-Trichloroethane	21.05	2.0	µg/L	20	0	105	74	123	0	
1,2-Dibromoethane	21.68	2.0	hg/L	20	0	108	72	128	0	
2-Hexanone	16.62	10	hg/L	20	0	83.1	31	148	0	
1,3-Dichloropropane	22.04	2.0	hg/L	20	0	110	76	122	0	
Tetrachloroethene	21.03	2.0	µg/L	20	0	105	81	124	. 0	
Dibromochloromethane	19.08	2.0	hg/L	20	0	95.4	63	126	. 0	
Chlorobenzene	21.63	2.0	µg/L	20	0	108	84	113	0.	
1,1,1,2-Tetrachloroethane	19.96	2.0	hg/L	20	0	99.8	73	124	0	
Ethylbenzene	21.55	2.0	hg/L	20	0	108	83	118	0	
m,p-Xylene	40.87	2.0	hg/L	40	0	102	85	116	0	
o-Xylene	21.36	2.0	hg/L	20	0	107	84	115	0	
Styrene	21.69	2.0	hg/L	20	0	108	81	118	0	
Bromoform	17.03	2.0	hg/L	20	0	85.2	55	126	0	,
sopropylbenzene	25.25	2.0	hg/L	20	0	126	11.1	125	0	S
1,1,2,2-Tetrachloroethane	22.96	2.0	hg/L	20	0	115	62	134	0	
1,2,3-Trichloropropane	. 21.76	2.0	hg/L	20	0	109	62	132		
Bromobenzene	20.51	2.0	hg/L	20	0	103	78	119	0	
n-Propylbenzene	24.03	2.0	hg/L	20	0	120	- 22	127	0	
2-Chlorotoluene	22.53	2.0	hg/L	20	0	113	78	118	0	
4-Chlorotoluene	22.88	2.0	hg/L	20	0	114	77	119	0	
1,3,5-Trimethylbenzene	22.78	2.0	hg/L	20	0	114	80	120	0	
tert-Butylbenzene	22.99	2.0	hg/L	20	0	115	81	120	0	
1,2,4-Trimethylbenzene	22.23	2.0	hg/L	20	0	111	80	118	0	
Qualifiers: ND - Not Dete	ND - Not Detected at the Reporting Limit	S-		Spike Recovery outside accepted recovery limits	recovery 1		B - Analyte d	etected in the a	B - Analyte detected in the associated Method Blank	
J - Analvte de	J - Analyte detected below quantitation limits	В	RPD outside a	R - RPD outside accepted recovery limits	imits		NA - Not ann	- and when	NA - Not amilioahle where I values or ND results occur	

CLIENT:		Shaw Environmental & Infrastructure, Inc.	ructure, Inc.			-				QC SUMMARY REPORT	LEPORT
Work Urder: Project:	: 0902072 130274 Textron Gorham	on Gorham								Laboratory Control Spike	ntrol Spik
sec-Butylbenzene	ne	23.56	2.0	hg/L	20	0	118	82	123	0	
4-Isopropyltoluene	ine	23.13	2.0	hg/L	20	0	116	80	126	0	
1,3-Dichlorobenzene	Izene	21.2	2.0	hg/L	20	0	106	84	115	Ō	
1,4-Dichlorobenzene	Izene	20.92	2.0	hg/L	20	0	105	79	117	0	
n-Butylbenzene	_	25.19	2.0	hg/L	20	0	126	76	128	0	
1,2-Dichlorobenzene	Izene	20.1	2.0	hg/L	20	0	100	81	117	0	
1,2-Dibromo-3-chloropropane	chloropropane	20.82	5.0	µg/L	20	0	104	47	136	0	
1,2,4-Trichlorobenzene	enzene	19.87	2.0	hg/L	20	0	99.4	73	126	0	
Hexachlorobutadiene	diene	19	2.0	µg/L	20	0	95	77	134	0	
Naphthalene		19.05	5.0	hg/L	20	0	95.2	58	138	0	
1,2,3-Trichlorobenzene	enzene	18.75	2.0	hg/L	20	0	93.8	76	124	0	
Surr: Dibromo	Surr: Dibromofluoromethane	24.21	2.0	hg/L	25	0	96.8	85	119	0	
Surr: 1,2-Dict	Surr: 1,2-Dichloroethane-d4	24.68	2.0	hg/L	25	0	98.7	79	131	0	
Surr: Toluene-d8	-d8	25.35	2.0	µg/L	25	0	101	06	110 ·	0	
Surr: 4-Brom	Surr: 4-Bromofluorobenzene	21.93	2.0	hg/L	25	0	87.7	76	117	0	
											•
	-									-	
										-	
									·		
					-						
										•	
Oualifiers: N	ND - Not Detected at the Reporting Limit	e Reporting Limit	-S-	Spike Recover	- Spike Recovery outside accepted recovery limits	d recovery l		B - Analyte	detected in t	B - Analyte detected in the associated Method Blank	June 1997
	I A notvto detected held	ow anantitation limit		- RPD outside a	R - RPD outside accepted recovery limits	limits		ATA Maton	odm olderite	NIA - Mot amutionable where I welves on MD reaching occur	

CLJENT:Shaw Environmental & IrWork Order:0902072Project:130274Textron GorhamSample ID0902072-08AmsSample ID:MW-216D	Shaw Environmental & Infrastructure, Inc.	ture, Inc.				-		-	OC SUM	OC SUMMARY REPORT	RT
Te Te									,		
	Controm						·			Sample Matrix Spike	pike
	on Gornam								-	4	
	Batch ID: R41842	Test Code: S	SW8260B	Units: µg/L			Analysis Date		2/28/09 7:19:00 PM	Prep Date 2/25/09	
		Run ID: V	V-2_090228A				SeqNo:	696418			
	QC Sample		0 O	QC Spike Original Sample	Sample			0	Original Sample		
Analyte	Result	RL	Units A	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD RPDLimit	Qua
Dichlorodifluoromethane	93.75	25	hg/Ľ	100	0	93.8	16	150	0		(
Chloromethane	73.95	25	hg/L	100	0	74	35	150	0		
Vinyl chloride	83.2	10	hg/L	100	0	83.2	49	150	0		
Chloroethane	65.75	25	hg/L	100	0	65.8	58	147	0		
Bromomethane	65.1	10	hg/L	100	0	65.1	49	142	0		
Trichlorofluoromethane	109.2	10	hg/L	100	0.99	108	57	149	0		
Diethyl ether	78.2	25	hg/L	100	0	78.2	99	136	<b>0</b>		
Acetone	80.2	50	hg/L	100	0	80.2	16	150	0		
1,1-Dichloroethene	84.85	5.0	hg/L	100	0	84.8	20	150	0		
Carbon disulfide	76	10	hg/L	100	0	76	47	135	0		
Methylene chloride	57.55	25	hg/L	100	0	57.6	99	142	0		ა
Methyl tert-butyl ether	72.6	10	hg/L	100	3.15	69.5	63	138	0		
trans-1,2-Dichloroethene	88.9	10	hg/L	100	0	88.9	78	135	0		
1,1-Dichloroethane	92.15	10	hg/L	100	Q	92.2	76	131	0		
2-Butanone	76.8	50	hg/L	100	0	76.8	51	142	0		
2,2-Dichloropropane	83.5	10	hg/L	100	0	83.5	60	149	0		
cis-1,2-Dichloroethene	86	10	hg/L	100	0	86	74	128	0		
Chloroform	98.3		hg/L	100	0	98.3	80	129	0		
Tetrahydrofuran	86.5	50	hg/L	100	0	86.5	53	145	0		
Bromochloromethane	91	10	hg/L	100	0	91	78	130	Ģ		
1,1,1-Trichloroethane	109.6	10	hg/L	100	0	110	11	139	0		
1,1-Dichloropropene	109.4	10	hg/L	100	0	109	74	127	0		
Carbon tetrachloride	105.3	10	hg/L	100	0	105	73	138	0		
1,2-Dichloroethane	110.4	10	hg/L	100	0	110	75	130	0		
Benzene	95.25	5.0	hg/L	100	0	95.2	79	123	0		
Qualifiers: ND - Not Detected at the Reporting Limit	e Reporting Limit	s - S	ike Recovery	S - Spike Recovery outside accepted recovery limits	recovery	limits	B - Analyt	te detected in	B - Analyte detected in the associated Method Blank	10d Blank	
J - Analyte detected below quantitation limits	ow quantitation limits	R-RI	D outside ac	R - RPD outside accepted recovery limits	imits		NA - Not	annlicable wh	NA - Not applicable where I values or ND results occur	results occur	
	· · ·							J			

AMRO Environmental Lahoratories Com

**Date:** 06-Mar-09

CLENT:         Same Bariconnectual & Infestructure, Inc.         CONTINITIAL         <	AMRO Env	AMRO Environmental Laboratories Corp.	boratories (	Corp.			-				Date: 00-Mar-09	<0- mu-0
0.2072         0.2072           0.274         Textron Gorham           116.8         10         µg/L         100         389         113         75         125         0           78.3.5         10         µg/L         100         389         113         75         125         0           78.3.5         10         µg/L         100         389         113         75         125         0           73.15         5.0         µg/L         100         0         73.4         76         119         0           75.45         5.0         µg/L         100         0         74.1         53         124         0           73.15         10         µg/L         100         0         75.4         70         119         0           90.3         10         µg/L         100         0         75         127         0         0           90.3         10         µg/L         100         0         75         127         0         0           10.3         µg/L         100         0         73         127         127         0           113.8         10         µg/L <th>CLIENT:</th> <th>Shaw Environmer</th> <th>ıtal &amp; Infrastruc</th> <th>cture, Inc.</th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th>OC SUMMARY</th> <th><b>REPORT</b></th>	CLIENT:	Shaw Environmer	ıtal & Infrastruc	cture, Inc.		-					OC SUMMARY	<b>REPORT</b>
Model         100         100         3.89         113         7.6         126         0           92.5         10 $100^{11}$ 100         3.89         113         7.6         126         0           73.5         10 $100^{11}$ 100         0         7.3         119         0           73.15         5.0 $100^{11}$ 100         0         7.3         119         0           73.15         5.0 $100^{11}$ 100         0         7.5         124         0           75.5         5.0 $100^{11}$ 100         0         7.5         124         0           90.9         10 $100^{11}$ 100         0         7.5         124         0           90.9         10 $100^{11}$ 100         0         7.3         127         0           90.9         10 $100^{11}$ 100         0         7.3         127         0         0           118.8         10 $100^{11}$ 100         0         7.3         127         0         0           125.6         10 $100^{11}$ <th>Work Order:</th> <th>0902072</th> <th></th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th></th> <th></th> <th>Sample</th> <th>Matrix Spike</th>	Work Order:	0902072					•				Sample	Matrix Spike
1(6)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0)         (0) <th>rroject:</th> <th>1000X21 4/70C1</th> <th></th>	rroject:	1000X21 4/70C1										
92.5         10         pp(L         100         92.5         76         125         0           78.3         10         pp(L         100         0         74.1         53         141         0           74.1         50         pp(L         100         0         74.1         53         141         0           75.45         5.0         pp(L         100         0         74.1         53         124         0           75.45         5.0         pp(L         100         0         74.1         53         124         0           75.45         50         pp(L         100         0         73         124         0           90.3         10         pp(L         100         0         73         127         0           90.1         10         pp(L         100         0         73         125         0           110.8         10         pp(L         100         0         73         125         0           110.8         10         pp(L         100         0         73         125         0           110.8         10         10         10         100	Trichloroethene	J.	116.8	10	µg/L	100	3.89	113	62	126	0	
78.35         10         100         100         73         63         110         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td>1,2-Dichloropropar</td> <td>Je</td> <td>92.5</td> <td>10</td> <td>hg/L</td> <td>100</td> <td>0</td> <td>92.5</td> <td>76</td> <td>125</td> <td>0</td> <td></td>	1,2-Dichloropropar	Je	92.5	10	hg/L	100	0	92.5	76	125	0	
38.6         10         49.L         100         0         33.6         73         73         0         107         10         0           7         73.45         5.0         49.L         100         0         73.4         73         141         0           75.45         5.0         49.L         100         0         73         127         0         0           90.3         75.0         49.L         100         0         97.5         127         0         0           90.3         75         10         49.L         100         0         73         127         0         0           90.4         10         49.L         100         0         73         127         0         0           90.4         10         49.L         100         0         73         127         0         0           91.4         10         49.L         100         0         73         127         0         0           91.4         10         49.L         100         0         73         127         0         0           1103.4         10         49.L         100         0	Bromodichloromet	hane	78.35	10	hg/L	100	0	78.4	69	119	0	
741         50         µµL         100         7         74         53         141         0           75.45         5.0         µµL         100         0         75.4         70         119         0           75.45         5.0         µµL         100         0         73         72         124         0           97.55         10         µµL         100         0         97.6         73         127         0           90.7         50         µµL         100         0         97.6         73         127         0          90.7         50         µµL         100         0         73         74         50         0           1034         10         µµL         100         0         73         57         125         0         0           73.55         10         µµL         100         0         73         57         125         0         0           73.55         10         µµL         100         0         73         57         124         0         0           73.55         10         µµL         100         0         123         0         0	Dibromomethane		93.6	10	hg/L	100	0	93.6	76	127	0	
7545         5.0         µµL         100         75         7         149         6         70         149         0           16         7.0         10         µµL         100         0         73         124         0           97.55         10         µµL         100         0         73         127         0           80.7         50         µµL         100         0         73         127         0         0           80.7         50         µµL         100         0         73         127         0         0           133.6         10         µµL         100         0         73         52         129         0           123.5         10         µµL         100         0         73         52         129         0           123.6         10         µµL         100         0         73         52         129         0           123.6         10         µµL         100         0         73         52         129         0           123.6         10         µµL         100         123         83         123         0           <	4-Methyl-2-pentan	one	74.1	50	hg/L	100	0	74.1	53	141	0	
105.1         10         µµL         100         0         70         82         124         0           properie         7.3         5         0         µµL         100         0         70         5         0         µµL         0           ane         90.9         10         µµL         100         0         73         127         0           ane         90.9         10         µµL         100         0         73         145         0           ane         73.55         10         µµL         100         0         73         52         123         0           ane         73.55         10         µµL         100         0         73         52         123         0           ane         73.55         10         µµL         100         0         73         52         123         0           ane         73.55         10         µµL         100         123         53         123         0         0           ane         122.66         10         µµL         100         123         124         0         0           ane         123.6         10<	cis-1,3-Dichloropro	pene	75.45	5.0	hg/L	100	0	75.4	02	119	0	
properie         70         50 $\mu\sigma/L$ 100         70         54         124         0           ane         90.9         10 $\mu\sigma/L$ 100         0         73         127         0           ane         90.9         10 $\mu\sigma/L$ 100         0         97.6         73         127         0           ane         118.8         10 $\mu\sigma/L$ 100         0         73         745         0           ne         118.8         10 $\mu\sigma/L$ 100         0         73         745         0           ne         173.5         10 $\mu\sigma/L$ 100         0         73         73         125         0           ne         173.5         10 $\mu\sigma/L$ 100         0         73         73         125         0           thane         73.55         10 $\mu\sigma/L$ 100         0         73         123         0         0           thane         123.5         10 $\mu\sigma/L$ 100         0         123         0         0           thane         123.5         10 $\mu\sigma/L$	Toluene		105.1	10	hg/L	100	0	105	82	124	0	
ane $97.55$ 10 $\mu\rho/L$ 100 $0$ $97.6$ 73 $127$ 0           a $80.7$ $5$ $\mu\rho/L$ 100 $0$ $90.9$ $73$ $127$ $0$ a $80.7$ $5$ $\mu\rho/L$ $100$ $0$ $90.9$ $75$ $127$ $0$ ne $118.8$ $10$ $\mu\rho/L$ $100$ $0$ $130$ $32$ $129$ $0$ ne $72.55$ $10$ $\mu\rho/L$ $100$ $0$ $72$ $129$ $0$ oethane $72.55$ $10$ $\mu\rho/L$ $100$ $0$ $120$ $0$ $244$ $10$ $\mu\rho/L$ $100$ $0$ $122$ $83$ $123$ $0$ $222.3$ $10$ $\mu\rho/L$ $100$ $0$ $122$ $83$ $123$ $0$ $222.45$ $10$ $\mu\rho/L$ $100$ $120$ $0$ $1213$ $1213$	trans-1,3-Dichloro	ropene	70	5.0	hg/L	100	0	20	64	124	0	
e         90.9         10 $ugl.$ 100 $ugl.$ 100         0         37         127         0           e         103         10 $ugl.$ 100         0         607         37         145         0           e         108.4         10 $ugl.$ 100         0         75         145         0           hane         7.3.55         10 $ugl.$ 100         0         73         745         0           thane         7.3.55         10 $ugl.$ 100         0         73         82         125         0           other         10 $ugl.$ 100         0         72         83         123         0           chance         1216         10 $ugl.$ 100         0         123         84         121         0           chance         1216         10 $ugl.$ 100         101         100         123         124         0           chance         123         10 $ugl.$ 124         124         0           chane         123         124         12	1,1,2-Trichloroeths	ne	97.55	10	hg/L	100	0	97.6	73	127	0	
model         103         10 $\mu gll         100         0         37         145         0           methen         73.55         10         \mu gll         100         0         73         5         123         0           methen         73.55         10         \mu gll         100         0         73.6         59         123         0           methen         73.55         10         \mu gll         100         0         73.6         59         123         0           oethame         94.5         10         \mu gll         100         0         73.6         59         123         0           244         10         \mu gll         100         0         73.6         59         123         0           244         10         \mu gll         100         0         72         124         0           244         10         \mu gll         100         0         122         8         121         0           244         10         \mu gll         100         0         123         13         0         0           244         10         \mu gll         100         0 $	1,2-Dibromoethane		6.06	10	hg/L	100	0	90.9	73	127	0	
ne         103.4         10         µg/L         100         0         103         10         µg/L         100         0         113         0         123         0         1         10         µg/L         100         0         113         8         123         0         0           thane         73.55         10         µg/L         100         0         120         82         123         0         0           oethane         94.45         10         µg/L         100         0         122         83         123         0         0           244         10         µg/L         100         0         122         83         123         0         0           224         10         µg/L         100         0         122         83         123         0         0           1213         10         µg/L         100         0         122         83         123         0         0           661         123         10         µg/L         100         122         80         123         0           661         101         101         101         101         101         1	2-Hexanone		80.7	50	hg/L	100	0	80.7	37	145	0	
1         118.8         10 $\mu g/L$ 100         0         73.6         52         7.29         0           thane         73.55         10 $\mu g/L$ 100         0         73.6         59         72.5         0           celthane         94.45         10 $\mu g/L$ 100         0         73.6         59         72.5         0           celthane         94.45         10 $\mu g/L$ 100         0         73         83         72.9         0           24.4         10 $\mu g/L$ 100         0         72         84         72         0           23.3         10 $\mu g/L$ 100         0         72         84         72         0           colthane         12.2         10 $\mu g/L$ 100         0         72         84         72         0           colthane         10 $\mu g/L$ 100         0         72         84         72         0           colthane         10 $\mu g/L$ 100         0         72         13         0         0           colthane         10 <td>1,3-Dichloropropar</td> <td>le</td> <td>109.4</td> <td>10</td> <td>hg/L</td> <td>100</td> <td>0</td> <td>109</td> <td>26</td> <td>123</td> <td>0</td> <td></td>	1,3-Dichloropropar	le	109.4	10	hg/L	100	0	109	26	123	0	
thane         73.55         10         ug/L         100         0         73.6         59         125         0           120         10         ug/L         100         0         120         80         120         0           121.6         10         ug/L         100         0         44         12         0           244         10         ug/L         100         0         122         84         121         0           244         10         ug/L         100         0         122         84         121         0           122.3         10         ug/L         100         0         122         83         119         0           654         10         ug/L         100         0         122         80         123         0           661         130         12         75         13         0         0         0           661         100         0         112         75         124         0         0           671         10         101         100         0         112         75         124         0           611         10	Tetrachloroethene	-	118.8	10	hg/L	100	0	119	82	129	0	
120         10 $\mu g/L$ 100         0         120         80         120         0           122.6         10 $\mu g/L$ 100         0         44         72         124         0           122.6         10 $\mu g/L$ 100         0         122         83         123         0           121.6         10 $\mu g/L$ 100         0         122         84         121         0           121.6         10 $\mu g/L$ 100         0         122         84         121         0           65.45         10 $\mu g/L$ 100         0         122         80         122         0           65.45         10 $\mu g/L$ 100         0         122         80         122         0           65.45         10 $\mu g/L$ 100         0         122         80         122         0           65.45         10 $\mu g/L$ 100         0         131         75         131         0           107.7         10 $\mu g/L$ 100         0         122         0         0 <td>Dibromochloromet</td> <td>hane</td> <td>73.55</td> <td>10</td> <td>hg/L</td> <td>100</td> <td>0</td> <td>73.6</td> <td>59</td> <td>125</td> <td>0</td> <td>•</td>	Dibromochloromet	hane	73.55	10	hg/L	100	0	73.6	59	125	0	•
Oethane $84.45$ 10         µg/L         100 $94.4$ 72         124         0 $122.6$ 10         µg/L         100         0         123         83         123         0 $244$ 10         µg/L         100         0         122         83         123         0 $122.3$ 10         µg/L         100         0         122         83         123         0 $122.3$ 10         µg/L         100         0         122         83         123         0 $65.45$ 10         µg/L         100         0         122         83         123         0 $65.45$ 10         µg/L         100         0         131         7         131         0 $90.1$ 10         µg/L         100         0         112         7         124         0 $111.8$ 10         µg/L         100         0         112         7         124         0 $111.8$ 10         µg/L         100         0         112         7         124	Chlorobenzene		120	10	hg/L	100	0	120	80	120	0	S
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1,1,1,2-Tetrachlord	vethane	94.45	10	hg/L	100	0	94.4	72	124	0	
244         10 $\mu g/L$ 200         0         122         84         121         0           121.6         10 $\mu g/L$ 100         122         83         119         0           122.3         10 $\mu g/L$ 100         0         122         83         119         0           65.45         10 $\mu g/L$ 100         0         122         80         122         0           65.45         10 $\mu g/L$ 100         0         131         75         131         0           oethane         102.6         10 $\mu g/L$ 100         0         131         75         131         0           pane         107.7         10 $\mu g/L$ 100         0         112         77         124         0           116.8         10 $\mu g/L$ 100         0         116         77         124         0           115.4         10 $\mu g/L$ 100         0         116         77         124         0           116.1         10 $\mu g/L$ 100         116         76	Ethylbenzene		122.6	10	hg/L.	100	0	123	83	123	0	-
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	m,p-Xylene		244	10	hg/L	200	0	122	84	121	0	S
12.3         10 $\mu g/L$ 100         0         122         80         122         0           65.45         10 $\mu g/L$ 100         0         65.4         54         19         0           65.45         10 $\mu g/L$ 100         0         131         75         131         0           noethane         102.6         10 $\mu g/L$ 100         0         131         75         131         0           pane         107.7         10 $\mu g/L$ 100         0         103         66         130         0           111.8         10 $\mu g/L$ 100         0         112         77         124         0           116.8         10 $\mu g/L$ 100         0         116         76         124         0           111.8         10 $\mu g/L$ 100         0         116         76         124         0           111.8         10 $\mu g/L$ 100         0         116         76         124         0           111.6.4         10 $\mu g/L$ 100         124	o-Xylene		121.6	10	hg/L	100	0	122	83	119	0	S
65.45       10 $\lg/L$ 100       0       65.4         130.8       10 $\lg/L$ 100       0       65.4         oethane       102.6       10 $\lg/L$ 100       0       131         oethane       107.7       10 $\lg/L$ 100       0       131         oethane       107.7       10 $\lg/L$ 100       0       103         pane       107.7       10 $\lg/L$ 100       0       103         111.8       10 $\lg/L$ 100       0       112         116.8       10 $\lg/L$ 100       0       113         115.4       10 $\lg/L$ 100       0       116         115.4       10 $\lg/L$ 100       0       116         115.4       10 $\lg/L$ 100       0       116         nzene       116 $lg/L$ 100       0       116         nzene       113.6       10 $\lg/L$ 100       0       114         nzene       113.6       10 $\lg/L$ 100       0       114         nze	Styrene		122.3	10	hg/L	100	0	122	80	122	0	S
130.8       10 $\mu g/L$ 100       0       131         oethane       102.6       10 $\mu g/L$ 100       0       103         pane       107.7       10 $\mu g/L$ 100       0       103         pane       107.7       10 $\mu g/L$ 100       0       103         pane       111.8       10 $\mu g/L$ 100       0       114         116.8       10 $\mu g/L$ 100       0       117         115.4       10 $\mu g/L$ 100       0       116         115.4       10 $\mu g/L$ 100       0       116         115.4       10 $\mu g/L$ 100       0       116         nzene       116       10 $\mu g/L$ 100       0       116         nzene       113.6       10 $\mu g/L$ 100       0       114         nzene       113.6       10 $\mu g/L$ 100       0       114         nzene       113.6       10 $\mu g/L$ 100       0       114         or Not Detected at the Reporting Limit       S - Spike Recovery outside	Bromoform		65.45	10	hg/L	100	0	65.4	54	119	0	,
oethane         102.6         10 $\mu g/L$ 100         0         103           pane         107.7         10 $\mu g/L$ 100         0         103           pane         107.7         10 $\mu g/L$ 100         0         103           pane         111.8         10 $\mu g/L$ 100         0         112           111.8         10 $\mu g/L$ 100         0         115           118.2         10 $\mu g/L$ 100         0         116           115.4         10 $\mu g/L$ 100         0         116           nzene         116         10 $\mu g/L$ 100         0         116           nzene         113.6         10 $\mu g/L$ 100         0         114           orticle         13.1	Isopropylbenzene	•	130.8	10	hg/L	100	0	131	75	131	0	
pane         107.7         10 $\mu g/L$ 100         0         108           111.8         10 $\mu g/L$ 100         0         112           116.8         10 $\mu g/L$ 100         0         112           116.8         10 $\mu g/L$ 100         0         117           118.2         10 $\mu g/L$ 100         0         116           115.4         10 $\mu g/L$ 100         0         116           113.6         10 $\mu g/L$ 100         0         114           nzene         113.6         10 $\mu g/L$ 100         <	1,1,2,2-Tetrachlorc	ethane	102.6	10	hg/L	100	0	103	61	139	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,3-Trichloroprop	ane	107.7	10	hg/L	100	0	108	, 66	130	0	
116.8     10     µg/L     100     0     117       118.2     10     µg/L     100     0     118       118.2     10     µg/L     100     0     118       115.4     10     µg/L     100     0     116       115.4     10     µg/L     100     0     116       113.6     10     µg/L     100     0     114       12ene     113.6     10     µg/L     100     0     114       13.6     10     µg/L     100     0     114       14     S - Spike Recovery outside accepted recovery limits     Native detected below quantitation limits     R - RPD outside accepted recovery limits	Bromobenzene		111.8	10	hg/L	100	0	112	17	124	0	
118.2       10       µg/L       100       0       118         115.4       10       µg/L       100       0       115         nzene       116       10       µg/L       100       0       115         nzene       116       10       µg/L       100       0       116         nzene       113.6       10       µg/L       100       0       114         o - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits       Analyte detected below quantitation limits       R - RPD outside accepted recovery limits	n-Propylbenzene		116.8	10	hg/L	100	0	117	76	131	0	
115.4     10     µg/L     100     0     115       nzene     116     10     µg/L     100     0     116       113.6     10     µg/L     100     0     114       nzene     113.6     10     µg/L     100     0     114       0     Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits     0     114	2-Chlorotoluene		118.2	10	hg/L	100	0	118	78	125	0	
Tzene         116         10         µg/L         100         0         116           113.6         10         µg/L         100         0         114           Tzene         113.6         10         µg/L         100         0         114           Tzene         113.6         10         µg/L         100         0         114           0 - Not Detected at the Reporting Limit         S - Spike Recovery outside accepted recovery limits         0         114	4-Chlorotoluene		115.4	10	hg/L	100	0	115	. 75	124	0	
113.6     10     µg/L     100     0     114       nzene     113.6     10     µg/L     100     0     114       0 - Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits     0     114	1,3,5-Trimethylben	zene	116	10	hg/L	100	0	116	62	124	0	
113.6     10     µg/L     100     0     114       Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits       e detected below quantitation limits     R - RPD outside accepted recovery limits	tert-Butylbenzene		113.6	10	hg/L	100	0	114	· 79	126	0	
ND - Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits       J - Analyte detected below quantitation limits     R - RPD outside accepted recovery limits	1,2,4-Trimethylber	zene	113.6	10	hg/L	100	0	114	11	124	0	
ts		- Not Detected at the Rep	porting Limit	S.	- Spike Recover	y outside accepte	d recovery	limits	B - Analyte d	etected in the	associated Method Blank	
	7 - ſ	Analyte detected below q	uantitation limits		- RPD outside a	ccepted recovery	limits		NA - Not app	dicable where	I values or ND results occur	
		•	•			•			44			

<b>CLIENT:</b>	Shaw Environmental & Infrastructure, Inc.	al & Infrastru	cture, Inc.							OC STIMMARY REPORT	RV REP(	ORT
Work Order: Proiect	0902072 130774 Textron Gorham	orham								Sam	Sample Matrix Spike	Spike
			0	11~	007	c	116	6	108	c		
sec-Butylbenzene		115.8	<u>n</u>	hg/L	001			70	071	5 0		
4-Isopropyltoluene		103.5	10	hg/L	100	0	104	11	128	5		
1,3-Dichlorobenzene	ne	112.4	10	hg/L	100	0	112	80	122	0		
1,4-Dichlorobenzene	ue .	111	10	hg/L	100	0	111	78	123	0	1	
n-Butylbenzene		108.4	10	hg/L	100	0	108	74	130	0		
1,2-Dichlorobenzene	Je	108.8	10	hg/L	100	0	109	78	121	0		
1,2-Dibromo-3-chloropropane	oropropane	58.6	25	hg/L	100	0	58.6	50	127	0		
1,2,4-Trichlorobenzene	zene	93.3	10	hg/L	100	0	93.3	67	128	0		
Hexachlorobutadiene	ne	108.2	10	hg/L	100	0	108	74	134	0		
Naphthalene	-	88.95	25	hg/L	100	0	89	57	131	0		
1.2.3-Trichlorobenzene	zene	106.8	10	hg/L	100	0	107	64	131	0		
Surr: Dibromofluoromethane	toromethane	114.2	10	hg/L	125	0	91.4	85	119	0		
Surr: 1.2-Dichloroethane-d4	roethane-d4	152.6	10	hg/L	125	0	122	79	131	0		
Surr: Toluene-d8	ŝ	122.3	10	hg/L	125	0	97.8	06	110	0		
Surr: 4-Bromofiuorobenzene	lorobenzene	123.4	10	hg/L	125	0	98.7	76	117	0		
								• .				
	×											
				*								
		r										
				b								
	•				÷		•					
	•											
Oualifiers: ND	ND - Not Detected at the Renorting Limit	ating I imit	C									
	- 1061 - 1061 - 1061 -	nung runt	ò	- spike kecover	S - Spike Recovery outside accepted recovery limits	d recovery		B - Analyte d	letected in th	B - Analyte detected in the associated Method Blank	nk	

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Corp.	
atories	
l Labor	
ivironmenta	
Enviro	
AMRO	

**Date:** 06-Mar-09

	Shaw Environmental & Infrastructure, Inc.	cture, Inc.							QC SUMMARY REPORT	IMARY	REPOI	ZT
Work Order: 0902072 Project: 130274 T	0902072 130274 Textron Gorham								Sample N	Matrix Sp	Sample Matrix Spike Duplicate	ate
Sample ID 0902072-08Amsd	Batch ID: R41842	Test Cod	Test Code: SW8260B	Units: µg/L			Analysis D	ate 2/28/09	Analysis Date 2/28/09 7:52:00 PM	Prep Date	Prep Date 2/25/09	
Client ID: MW-216D		Run ID:	V-2_090228A	8A			SeqNo:	696419				*
•	QC Sample		J	QC Spike Original Sample	l Sample			U	Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluoromethane	95.95	25	hg/L	100	0	96	16	150	93.75	2.32	20	
Chloromethane	76.3	25	hg/L	100	0	76.3	35	150	73.95	3.13	20	
Vinyl chloride	87.7	10	hg/L	100	0	87.7	49	150	83.2	5.27	20	
Chloroethane	67.25	25	hg/L	100	0	67.2	58	147	65.75	2.26	20	
Bromomethane	69	10	hg/L	100	0	69	49	142	65.1	5.82	20	
Trichlorofluoromethane	110.8	10	hg/L	100	0.99	110	- 57	149	109.2	1.5	20	
Diethyl ether	81.05	25	hg/L	100	0	81	99	136	78.2	3.58	20	
Acetone	79.4	50	ùg/L	100	0	79.4	16	150	80.2	-	, 20	
1,1-Dichloroethene	86.5	5.0	hg/L	100	<b>0</b>	86.5	20	150	84.85	1.93	20	
Carbon disulfide	78.5	10	hg/L	100	0	78.5	47	135	76	3.24	20	
Methylene chloride	57.8	25	hg/L	100	0	57.8	.99	142	57.55	0.433	20	S
Methyl tert-butyl ether	73.8	10	hg/L	100	3.15	70.7	63	138	72.6	1.64	20	
trans-1,2-Dichtoroethene	89.5	10	hg/L	100	0	89.5	78	135	88.9	0.673	20	
1,1-Dichloroethane	92.7	10	hg/L	100	0	92.7	26	131	92.15	0.595	20	
2-Butanone	73.55	50	hg/L	100	0	73.6	51	142	76.8	4.32	20	
2,2-Dichloropropane	85.4	10	hg/L	100	0	85.4	60	149	83.5	2.25	20	
cis-1,2-Dichloroethene	87.3	10	hg/L	100	0	87.3	74	128	86	1.5	20	
Chloroform	9.99.8	10	hg/L	100	0	99.8	80	129	98.3	1.51	20	
Tetrahydrofuran	88.6	50	hg/L	100	0	88.6	53	145	86.5	2.4	20	
Bromochloromethane	91.3	10	hg/L	100	0	91.3	78	130	91	0.329	20	
1,1,1-Trichloroethane	113.6	10	hg/L	100	0	114	. 22	139	109.6	3.49	20	
1,1-Dichloropropene	112.4	10	hg/L	100	0	112	74	127	109.4	2.8	20	
Carbon tetrachloride	107.6	10	hg/L	100	0	108	73	138	105.3	2.16	20	
1,2-Dichloroethane	109.4	10	hg/L	100	0	109	15	130	110.4	0.864	20	
Benzene	96.4	5.0	hg/L	100	0	96.4	64	123	95.25	1.2	20	
Qualifiers: ND - Not Detected	ND - Not Detected at the Reporting Limit	S	- Spike Recov	S - Spike Recovery outside accepted recovery limits	d recovery	limits	B - Analyi	e detected in	B - Analyte detected in the associated Method Blank	thod Blank		
J - Analyte detecte	J - Analyte detected below quantitation limits	ц	- RPD outside	R - RPD outside accepted recovery limits	limits		NA - Not	applicable wł	NA - Not applicable where J values or ND results occur	results occur		
	the formed of the formed and		o lohomotomi o	a commotaly guont	itota							
KL - Keporting Lit	KL - Reporting Limit; defined as the lowest concentration		le ladoratory ce	the laboratory can accurately quantitate	llauc.							

PULLER AND

AMRO Environmental Laboratories Corp.	boratories C	orp.								Date: 06-Mar-09	ar-09	1
	ital & Infrastruch	ure, Inc.							QC SUMMARY REPORT	AARY R	EPORT	. <b>r</b> .
Work Order: 09020//2 Project: 130274 Textron Gorham	Gorham								Sample Matrix Spike Duplicate	atrix Spike	Duplicate	0.1
Trichloroethene	112	10	µg/L	100	3.89	108	79	126	116.8	4.24	20	
1,2-Dichloropropane	96.4	10	hg/L	100	0	96.4	76	125	92.5	4.13	20	
Bromodichloromethane	80.95	10	hg/L	100	0	81	69	119	78.35	3.26	20	
Dibromomethane	97.45	10	hg/L	100	0	97.5	76	127	93.6	4.03	20	
4-Methyl-2-pentanone	75.55	50	hg/L	100	0	75.6	53	141	74.1	1.94	20	
cis-1,3-Dichloropropene	77.8	5.0	hg/L	100	0	77.8	20	119	75.45	3.07	20	
Toluene	106.4	10	hg/L	100	0	106	82	124	105.1	1.23	20	
trans-1,3-Dichloropropene	72.9	5.0	hg/L	100	0	72.9	64	124	20	4.06	20	
1,1,2-Trichloroethane	96.6	10	hg/L	100	0	96.6	73	127	97.55	0.979	20	
1,2-Dibromoethane	93.35	10	hg/L	100	0	93.4	73	127	90.9	2.66	20	
2-Hexanone	83.25	50	hg/L	100	0	83.2	37	145	80.7	3.11	20	
1,3-Dichloropropane	111.2	10	hg/L	100	0	111	76	123	109.4	1.68	20	
Tetrachloroethene	120.1	10	hg/L	100	0	120	82	129	118.8	1.13	20	
Dibromochloromethane	77.25	10	hg/L	100	0	77.2	59	125	73.55	4.91	20	
Chlorobenzene	122.8	10	hg/L	100	Ģ	123	80	120	120	2.26		S
1,1,1,2-Tetrachloroethane	94.9	10	hg/L	100	0	94.9	72	124	94.45	0.475	20	
Ethylbenzene	126.5	10	hg/L	100	0	127	83	123	122.6	3.09		ŝ
m,p-Xylene	247.4	10	hg/L	200	0	124	84	121	244	1.4		S
o-Xylene	123.4	10	hg/L	100	0	123	83	119	121.6	1.47		S
Styrene	125.4	10	hg/L	100	0	125	80	122	122.3	2.54		ഗ
Bromoform	63.5	10	hg/L	100	0	63.5	54	119	65.45	3.02	20	
Isopropylbenzene	138.1	10	hg/L	100	0	138	75	131	130.8	5.47		S
1,1,2,2-Tetrachloroethane	105.8	10	hg/L	100	0	106	61	139	102.6	3.02	20	
1,2,3-Trichloropropane	113	10	hg/L	100	0	113	66	130	107.7	4.76	20	
Bromobenzene	115.2	10	hg/L	100	0	115	11	124	111.8	2.91	20	
n-Propylbenzene	123.7	10	hg/L	100	0	124	16	131	116.8	5.78	20	
2-Chtorotoluene	122.7	10	hg/L	100	0	123	78	125	118.2	3.78	20	
4-Chlorotoluene	123.5	10	hg/L	100	0	124	- 22	124	115.4	6.74		
1,3,5-Trimethylbenzene	125.4	10	hg/L	100	0	125	50	124	116	7.78		S
tert-Butylbenzene	123.1	10	hg/L	100	0	123	79	126	113.6	7.98	20	
1,2,4-Trimethylbenzene	119.7	10	hg/L	100	0	120	17	124	113.6	5.23	20	

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

J - Analyte detected below quantitation limits

Qualifiers: ND - Not Detected at the Reporting Limit

NA - Not applicable where J values or ND results occur

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-Mar-09

AMRO Environmental Laboratories Corp.

Shaw Environmental & Infrastructure, Inc. 0902072

Work Order: **CLIENT:** 

QC SUMMARY REPORT

uplic
Ū.
Spike
Matrix
Sample

work Urger:	7/07060									Country Mr.	this Called	Dualizato
Project:	130274 Textron Gorham	Jorham								Sample Manix Spike Dupircate	ante vin	Dupiicaic
sec-Butylbenzene		125.2	10	hg/L	100	0	125	82	128	115.8	7.8	20
4-Isopropyltoluene		114.6	10	hg/L	100	0	115	77	128	103.5	10.1	20
1,3-Dichlorobenzene		116.7	10	hg/L	100	0	117	80	122	112.4	3.71	20
1,4-Dichlorobenzene		119.9	10	hg/L	100	0	120	78	123	111	7.71	20
n-Butylbenzene		116.1	10	hg/L	100	0	116	74	130	108.4	6.86	20
1,2-Dichlorobenzene		115.6	10	hg/L	100	0	116	78	121	108.8	6.01	20
1,2-Dibromo-3-chloropropane	propane	68.95	25	hg/L	100	0	69	50	127	58.6	16.2	20
1,2,4-Trichlorobenzene	ne	106	10	hg/L	100	0	106	67	128	93.3	12.8	20
Hexachlorobutadiene	4	119.8	10	hg/L	100	0	120	74	134	108.2	10.1	20
Naphthalene		103.7	25	hg/L	100	0	104	57	131	88.95	15.3	20
1,2,3-Trichlorobenzene	ne	119.3	10	hg/L	100	0	119	64	131	106.8	11	20
Surr: Dibromofluoromethane	omethane	118.6	10	hg/L	125	0	94.9	85	119	0	0	0
Surr: 1,2-Dichloroethane-d4	ethane-d4	152.8	10	hg/L	125	0	122	79	131	0	0	0
Surr: Toluene-d8		122.6	10	hg/L	125	0	98	06	110	0	0	0
Surr: 4-Bromofluorobenzene	robenzene	126	10	hg/L	125	0	101	76	117	0	0	0

R - RPD outside accepted recovery limits J - Analyte detected below quantitation limits

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits

ND - Not Detected at the Reporting Limit

Qualifiers:

CLJENT: Shaw En Work Order: 0902072 Project: 130274		true Inc								) } 1		
	Shaw Environmental & Initasuructure, Inc.	inte, mc.	•	۰.					QC SUMMARY REPORT	IMARY	REPOR	Z
	09020/2 130274 Textron Gorham									Sample	Sample Matrix Spike	ike
Sample ID 0902072-16Ams	Batch ID: R41860	Test Code:	SW8260B	Units: µg/L			Analysis D	Analysis Date 3/4/09 7:12:00 PM	7:12:00 PM	Prep Date	Prep Date 2/25/09	
Client ID: MW-218S		Run ID:	V-3_090304A				SeqNo:	696607				
	QC Sample		Ø	QC Spike Original Sample	Sample				Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluoromethane	244.9	50	hg/L	200	0	122	16	150	0			
Chloromethane	196.5	50	hg/L	200	0	98.2	35	150	0			
Vinyl chloride	286.3	20	hg/L	200	35.4	125	49	150	0			
Chloroethane	227.5	50	hg/L	200	0	114	58	147	0			
Bromomethane	210.6	20	hg/L	200	0	105	49	142	0			
Trichlorofluoromethane	259.8	20	hg/L	200	0	130	22	149	0			
Diethyl ether	196.3	50	hg/L	200	0	98.2	99	136	0			
Acetone	127.6	100	hg/L	200	ò	63.8	16	150	0		•	
1,1-Dichloroethene	262.7	10	hg/L	200	0	131	20	150	0			
Carbon disulfide	220.3	20	hg/L	200	0	110	47	135	0		-	
Methylene chloride	255.3	50	hg/L	200	11.7	122	99	142	0			
Methyl tert-butyl ether	214.1	20	hg/L	200	0	107	. 63	138	0			
trans-1,2-Dichloroethene	248	20	hg/L	200	0	124	78	135	•			
1,1-Dichloroethane	244.8	20	hg/L	200	0	122	76	131	0			
2-Butanone	151	100	hg/L	200	0	75.5	51	142	0		,	
2,2-Dichloropropane	237.4	20	hg/L	200	0	119	60	149	0			
cis-1,2-Dichloroethene	769.4	20	hg/L	200	551.7	109	74	128	0			
Chloroform	232.3	20	hg/L	200	0	116	80	129	0			
Tetrahydrofuran	157.7	100	hg/L	200	0	78.8	53	145	0			
Bromochloromethane	238.1	20	hg/L	200	0	119	78	130	0			
1,1,1-Trichloroethane	270.8	20	hg/L	200	0	135	17	139	0			
1,1-Dichloropropene	263.9	20	hg/L	200	0	132	74	127	0			ა
Carbon tetrachloride	231.5	20	hg/L	200	0	116	73	138	0		,	
1,2-Dichloroethane	222.7	20	hg/L	200	0	111	75	130	0			
Benzene	253.7	10	hg/L	200	6.2	124	26	123	0			s
Qualifiers: ND - Not Detec	ND - Not Detected at the Reporting Limit	s.	Spike Recove	Spike Recovery outside accepted recovery limits	d recovery	limits	B - Analy	te detected in	B - Analyte detected in the associated Method Blank	thod Blank		
I - Analyte dete	I - Analyte detected below quantitation limits	R	RPD outside	RPD outside accepted recovery limits	limits		NA - Not	annlicahle wh	NA - Not amilicable where I values or ND results occur	) results occur		

「同時のない」

<b>CLIENT:</b>	Shaw Environmental & Infrastructure, Inc.	1 & Infrastruc	ture, Inc				-		· .	QC SUMMARY REPORT	PORT
Work Order: Project:	0902072 130274 Textron Gorham	rham								Sample Matrix Spike	x Spike
Lrichloroethene		258.1	20	hg/L	200	16.2	121	62	126	0	
1.2-Dichloropropane		241.7	20	hg/L	200	0	121	76	125	0	
Bromodichloromethane	ne	223	20	hg/L	200	0	112	69	119	0	
Dibromomethane		222.5	20	hg/L	200	Ō	111	. 92	127	0	
4-Methyl-2-pentanone	e	159	100	hg/L	200	0	79.5	53	141	0	
cis-1,3-Dichloropropene	jne	222	10	hg/L	200	0	111	70	119	0	
Toluene		243.9	20	hg/L	200	0	122	82	124	0	
trans-1,3-Dichloropropene	pene	214	10	hg/L	200	0	107	64	124	0	
1,1,2-Trichloroethane		209.2	20	hg/L	200	0	105	73	127	0	
1,2-Dibromoethane		207.7	20	hg/L	200	0	104	73	127	0	
2-Hexanone		136.5	100	hg/L	200	0	68.2	37	145	0	
1,3-Dichloropropane		217.2	20	hg/L	200	0	109	76	123	. 0	
Tetrachloroethene		317.4	20	hg/L	200	104.4	106	82	129	0	
Dibromochloromethane	ne	186.9	20	hg/L	200	0	93.4	59	125	0	
Chlorobenzene		227.3	20	hg/L	200	0	114	80	120	0	
1,1,1,2-Tetrachloroethane	hane	207.9	20	hg/L	200	0	104	72	124	, Ó	
Ethylbenzene		232.5	20	hg/L	200	0	116	83	123	0	
m,p-Xylene		444.6	20	hg/L	400	0	111	84	121	0	
o-Xylene		229.6	20	hg/L	200	0	115	83	119	0	
Styrene		229.9	20	μg/L	200	0	115	80	122	0	
Bromoform		155.4	20	hg/L	200	0	7.77	54	119	0	Ŧ
lsopropylbenzene		278.5	20	hg/L	200	0	139	75	131	0	S
1,1,2,2-Tetrachloroethane	thane	211.5	20	hg/L	200	0	106	61	139	0	
1,2,3-Trichloropropane		206.2	20	hg/L	200	0	103	66	130	0	x
Bromobenzene		218.5	20	hg/L	200	0	109	77	124	0	
n-Propylbenzene		266.1	20	hg/L	200	0	133	76	131	0	S
2-Chlorotoluene		242.1	20	hg/L	200	0	121	78	125	0	
4-Chlorotoluene		240.4	20	hg/L	200	0	. 120	75	124	0	
1,3,5-Trimethylbenzene	sne	243.5	20	hg/L	200	0	122	62	124	0	
tert-Butylbenzene		247.6	20	hg/L	200	0	124	64	126	0	
1,2,4-Trimethylbenzene	ane	236.4	20	hg/L	200	0	118	17	124	0	
Qualifiers: ND - I	ND - Not Detected at the Reporting Limit	ting Limit		S - Spike Recove	Spike Recovery outside accepted recovery limits	ed recovery	y limits	B - Analyte de	stected in t	B - Analyte detected in the associated Method Blank	

Work Order: Project: sec-Butylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene		Oliaw Elivioliuschial & mulasuuciure, mv.	ture, inc.								OC SUMMARY REPORT
3c-Butylbenze Isopropyltoluk ,3-Dichlorober ,4-Dichlorober	:: 0902072 130274 Textron Gorham	n Gorham						-		Sa	Sample Matrix Spike
-Isopropyltolue 3-Dichlorober 4-Dichlorober	ne	256.8	20	hg/L	200	0	128	. 82	128	0	S
3-Dichloroben 4-Dichlorober	ane	245.9	20	hg/L	200	0	123	77	128	0	
4-Dichlorober	Jzene	225.5	20	hg/L	200	6.5	110	80	122	0	
	Jzene	221.9	20	hg/L	200	5.3	108	78	123	0	
n-Butylbenzene		269.2	20	hg/L	200	0	135	74	130	0	S
1,2-Dichlorobenzene	ızene	214.8	20	hg/L	200	0	107	78	121	0	
.2-Dibromo-3-(	1,2-Dibromo-3-chloropropane	175.6	50	hg/L	200	0	87.8	50	127	0	
1,2,4-Trichlorobenzene	Jenzene	198.7	20	hg/L	200	0	99.4	67	128	0	
Hexachlorobutadiene	adiene	198	20	hg/L	200	7.2	95.4	74	134	0	
Naphthalene		178.9	50	hg/L	200	0	89.4	57	131	0	
1,2,3-Trichlorobenzene	Jenzene	181.8	20	µg/L	200	0	90.9	64	131	0	
Surr: Dibrom	Surr: Dibromòfluoromethane	275.3	20	hg/L	250	0	110	85	119	0	
Surr: 1,2-Did	Surr: 1,2-Dichloroethane-d4	237	20	hg/L	250	0	94.8	52	131	0	
Surr: Toluene-d8	e-d8	256.5	20	hg/L	250	0	103	06	110	0	
Surr: 4-Brom	Surr: 4-Bromofluorobenzene	220.8	20	hg/L	250	0	88.3	76	117	0	
				·							
								-			
				ţ							
		-									
	-			y.							
										·	
Qualifiers:	ND - Not Detected at the Reporting Limit	Reporting Limit	S	- Spike Recovery	- Spike Recovery outside accepted recovery limits	recovery li		3 - Analyte d	letected in th	B - Analyte detected in the associated Method Blank	ilank
·	J - Analyte detected below quantitation limits	v quantitation limits	R .	- RPD outside ac	R - RPD outside accepted recovery limits	mits	Į	NA - Not app	licable whe	NA - Not applicable where J values or ND results occur	ts occur

06-Mar-09	
Date:	

AMRO Environmental Laboratories Corp.

Shaw Environmental & Infrastructure, Inc.

**CLIENT:** 

QC SUMMARY REPORT

<b>Project:</b> 130274 T	Textron Gorham											
Sample ID 0902072-16Amsd	Batch ID: R41860	Test Code:	Test Code: SW8260B	Units: µg/L			Analysis D	Analysis Date 3/4/09 7:45:00 PM	:45:00 PM	Prep Date	Prep Date 2/25/09	
Client ID: MW-218S		Run ID:	V-3_090304A	A			SeqNo:	696608				
	QC Sample		ğ	QC Spike Original	Original Sample			0	Original Sample			
Analyte	Result	RL	Units	Amount	1	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluoromethane	226.6	50	hg/L	200	0	113	16	150	244.9	7.76	20	
Chloromethane	203.5	50	hg/L	200	0	102	35	150	196.5	, 3.5	20	
Vinyl chloride	271.1	20	hg/L	200	35.4	118	49	150	286.3	5.45	20	
Chloroethane	200.7	50	hg/L	200	0	100	58	147	227.5	12.5	20	
Bromomethane	176.7	20	hg/L	200	0	88.4	49	142	210.6	17.5	20	
Trichlorofluoromethane	239.6	20	hg/L	200	0	120	57	149	259.8	8.09	20	
Diethyl ether	191.9	50	hg/L	200	0	96	<u>66</u>	136	196.3	2.27	20	
Acetone	122.5	100	hg/L	200	0	61.2	16	150	127.6	4.08	50	
1,1-Dichloroethene	240.7	10	hg/L	200	0	120	70	150	262.7	8.74	20	
Carbon disulfide	207.9	20	hg/L	200	0	104	47	135	220.3	5.79	. 20	
Methylene chloride	234.1	50	hg/L	200	11.7	111	66	142	255.3	8.66	20	
Methyl tert-butyl ether	208.9	20	hg/L	200	0	104	63	138	214.1	2.46	20	
trans-1,2-Dichloroethene	234	20	hg/L	200	0	117	78	135	248	5.81	20	
1,1-Dichloroethane	233.9	20	hg/L	200	0	117	76	131	244.8	4.55	20	
2-Butanone	143.3	100	hg/L	200	0	71.6	51	142	151	5.23	20	
2.2-Dichloropropane	223.4	20	hg/L	200	0	112	60	149	237.4	6.08	20	
cis-1,2-Dichloroethene	753	20	hg/L	200	551.7	101	74	128	769.4	2.15	20	
Chloroform	225.4	20	hg/L	200	0	113	80	129	232.3	3.02	20	
Tetrahydrofuran	142.1	100	hg/L	200	0	71	53	145	157.7	10.4	20	
Bromochloromethane	229.4	20	hg/L	200	0	115	78	130	238.1	3.72	20	
1,1,1-Trichloroethane	260.3	20	hg/L	200	0	130	11	139	270.8	3.95	20	
1,1-Dichloropropene	258.5	20	hg/L	200	0	129	74	127	263.9	2.07	20	ა
Carbon tetrachloride	216.6	20	hg/L	200	0	108	- 22	138	231.5	6.65	20	
1,2-Dichloroethane	213.2	20	hg/L	200	Ö	107	75	130	222.7	4.36	20	
Benzene	245.6	10	hg/L	200	6.2	120	19	123	253.7	3.24	50	
Qualifiers: ND - Not Detected	ND - Not Detected at the Reporting Limit	S.	Spike Recover	S - Spike Recovery outside accepted recovery limits	d recovery	limits	B - Analy	te detected in	B - Analyte detected in the associated Method Blank	thod Blank		
J - Analyte detecte	J - Analyte detected below quantitation limits		RPD outside 2	R - RPD outside accepted recovery limits	limits		NA - Not	applicable wh	NA - Not applicable where J values or ND results occur	results occur		

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

										A CONTRACTOR OF A CONTRACTOR A CONTRAC			
Judie::         0.0020/12           Judie::         Judie:: <th colsp<="" th=""><th></th><th>v Environmental &amp; Infrastru</th><th>cture, Inc.</th><th></th><th></th><th></th><th></th><th></th><th></th><th>QC SUM</th><th>MARY I</th><th>REPOR</th></th>	<th></th> <th>v Environmental &amp; Infrastru</th> <th>cture, Inc.</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>QC SUM</th> <th>MARY I</th> <th>REPOR</th>		v Environmental & Infrastru	cture, Inc.							QC SUM	MARY I	REPOR
offention $2657$ $20$ $10/1$ $200$ $162$ $120$ $126$ $2817$ $0$ onformethane $2375$ $20$ $10/1$ $200$ $0$ $119$ $76$ $125$ $2417$ $2252$ methane $2131$ $20$ $10/1$ $200$ $0$ $108$ $76$ $127$ $2252$ methane $2167$ $100$ $10/1$ $200$ $0$ $119$ $76$ $121$ $2252$ andimone $2163$ $20$ $10/1$ $200$ $0$ $113$ $82$ $124$ $233$ $2161$ $100$ $10/1$ $200$ $0$ $117$ $82$ $124$ $233$ $2161$ $200$ $00/1$ $200$ $00/1$ $200$ $214$ $214$ $214$ $2161$ $200$ $00/1$ $200$ $00/1$ $200$ $214$ $214$ $214$ $21610$ $2101$ $200$ </th <th>rder:</th> <th>072 74 Textron Gorham</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Sample N</th> <th>fatrix Spik</th> <th>e Duplica</th>	rder:	072 74 Textron Gorham								Sample N	fatrix Spik	e Duplica	
oropropane $237.5$ $20$ $pgll$ $200$ $0$ $199$ $75$ $241.7$ $225.3$ methane $216$ $20$ $pgll$ $200$ $0$ $199$ $55$ $141$ $159$ $223$ $2$ -pertance $216.2$ $10$ $pgll$ $200$ $0$ $176$ $55$ $141$ $159$ $223$ $2$ -pertance $216.2$ $10$ $pgll$ $200$ $0$ $108$ $73$ $141$ $159$ $223$ $2010$ coptrane $234.4$ $20$ $pgll$ $200$ $0$ $108$ $73$ $121$ $224$ $224$ $2010$ $211$ $200$ $901$ $200$ $010$ $102$ $217$ $218$ $214$ $214$ $2110$ $2011$ $200$ $901$ $200$ $210$ $214$ $214$ $2110$ $2110$ $2101$ $200$ $911$ $210$ $2172$ $2017$	Trichloroethene	256.7	20	hg/L	200	16.2	120	62	126	258.1	0.544	20	
chloromethane         215         20         µg/L         200         0         108         70         119         223           chloromethane         152.3         100         µg/L         200         0         76.4         73         119         223           2-pendrome         152.3         10         µg/L         200         0         117         85         111         159           dichloropropene         2/34.6         20         µg/L         200         0         117         85         117         232           dichloropropene         2/34.6         20         µg/L         200         0         103         73         127         203           modelhane         132.4         100         µg/L         200         0         101         76         127         203           modelhane         2/37         20         µg/L         200         0         101         76         127         203           modelhane         2/37         200         µg/L         200         0         101         76         127         203           modelhane         2/37         200         µg/L         200         101	1,2-Dichloropropane	237.5	20	hg/L	200	0	119	. 92	125	241.7	1.75	20	
methane         218.1         20         pg/L         200         0         106         76         127         222.5 $2$ -pentarione         215.2.8         100         pg/L         200         0         164         53         141         159 $2$ -pentarione         215.2.5         10         pg/L         200         0         164         53         124         233.9 $2$ -bentarione         215.2.5         10         pg/L         200         0         108         64         124         243.9 $2$ -bentarione         205.7         10         pg/L         200         0         108         64         124         243.9 $2$ -bentariane         203.1         20         pg/L         200         0         107         76         127         203.7 $2$ -one         201         201         200         104.4         106         64.7         37         145         136.5 $2$ -one         201         200         101         200         102         102         127         207.3 $2$ -one         201         200         101         200         102         <	Bromodichloromethane	215	20	hg/L	200	0	108	69	119	223	3.65	20	
2-pentanote         1328         100 $pgl.$ 200         0         76.4         53         141         159           chloropropene         234.5         10 $pgl.$ 200         0         103         64         124         214           chloropropene         234.5         10 $pgl.$ 200         0         103         64         124         214           chloropropene         203.4         10 $pgl.$ 200         0         103         64         124         214         203           chloropropene         213.7         20 $pgl.$ 200         0         103         64         124         214         10           chloropropane         213.7         20 $pgl.$ 200         104         10         101         127         203         217.2         203         217.2         203         217.2         203         217.2         203         217.2         203         217.2         203         217.2         203         217.2         203         217.2         203         217.2         203         217.2         203         217.2         203         217.2         203	Dibromomethane	218.1	20	hg/L	200	0	109	76	127	222.5	7	20	
Inclusion         215.2         10 $\mu gl.$ 200         10         117         82         124         224           Chloropropene         233.46         20 $\mu gl.$ 200         0         117         82         124         243.9           Chloropropene         205.7         10 $\mu gl.$ 200         0         137         82         127         209.2           chloropropene         205.4         20 $\mu gl.$ 200         0         64         124         243.9           chloropropene         205.4         20 $\mu gl.$ 200         0         64.7         75         136.5         207.7           one         213.7         20 $\mu gl.$ 200         0         147.4         56         123         275.3         277.2         207.9           one         213.7         20 $\mu gl.$ 200         0         147.4         56         126.5         277.7         207.9           one         213.7         20 $\mu gl.$ 200         0         114         106         82         126.7         207.9           entenononethane <td< td=""><td>4-Methyl-2-pentanone</td><td>152.8</td><td>100</td><td>hg/L</td><td>200</td><td>0</td><td>76.4</td><td>53</td><td>141</td><td>159</td><td>3.98</td><td>20</td></td<>	4-Methyl-2-pentanone	152.8	100	hg/L	200	0	76.4	53	141	159	3.98	20	
Z34.6         20         µg/L         200         0         117         82         124         243.9           -Dichloropropene         205.7         10         µg/L         200         0         103         64         124         243.9           -Dichloropropene         203.4         20         µg/L         200         0         103         64         124         214         207.7           moethane         203.4         100         µg/L         200         0         107         75         127         207.7           oropropane         213.7         20         µg/L         200         0         107         76         128         136.5           oropropane         213.7         20         µg/L         200         0         107         76         123         27.7         207.7           oropropane         213.4         20         µg/L         200         0         114         106         84         124         27.2         27.7           oropropane         24.4         20         µg/L         200         114         106         114         124         207.9         277.3           zerrachloororhinane	cis-1,3-Dichloropropene	215.2	10	hg/L	200	0	108	20	119	222	3.11	20	
	Toluene	234.6	20	hg/L	200	0	117	82	124	243.9	3.89	20	
chloroethane         199.6         20 $\mu g/L$ 200         0         93.8         73         127         209.2           monothane         129.4         100 $\mu g/L$ 200         0         102         73         127         207.7           monothane         129.4         100 $\mu g/L$ 200         0         102         73         127         207.7           monothane         213.7         20 $\mu g/L$ 200         0         107         73         127         207.7           monothane         317         20 $\mu g/L$ 200         0         107         73         127         207.7           monothane         213.7         20 $\mu g/L$ 200         0         101         75         128.6         136.5           monothane         213.2         20 $\mu g/L$ 200         0         101         75         124         273           monothane         223.5         2         200         0         101         200         201.2         223.5           monothane         224.9         200         101         200         0         <	trans-1,3-Dichloropropene	205.7	10	hg/L	200	0	103	. 64	124	214	3.96	20	
modulation         203.4         20 $\mu g/L$ 200         0         102         73         127         207.7           one         129.4         100 $\mu g/L$ 200         0         107         75         123         217.2         207.7           oropropene         213.7         20 $\mu g/L$ 200         0         107         76         123         217.2         207.7           oropropene         213.7         20 $\mu g/L$ 200         0         107         76         123         217.2         207.3           orrondration         182.8         20 $\mu g/L$ 200         0         112         88         123         237.3           attraction         227.7         20 $\mu g/L$ 200         0         113         88         123         237.5         0           attraction         227.3         20 $\mu g/L$ 200         0         138         113         237.5         0           attraction         227.5         20 $\mu g/L$ 200         0         114         20         124         207.9         207.9	1,1,2-Trichloroethane	199.6	20	hg/L	200	0	99.8	73	127	209.2	4.7	20	
one         129.4         100 $\mu g/L$ 200         0         64.7         37         145         136.5           oropropane         213.7         20 $\mu g/L$ 200         0         76         123         73         145         136.5           oropropane         213.7         20 $\mu g/L$ 200         0         17         56         123         217.2         217.2           oropropane         214.1         20 $\mu g/L$ 200         0         114         59         125         156.5         166.5           arrent         227.7         20 $\mu g/L$ 200         0         112         80         120         227.3           etrachloroethane         227.7         20 $\mu g/L$ 200         0         114         80         123         227.3           etrachloroethane         227.7         20 $\mu g/L$ 200         0         123         227.3         227.3           etrachloroethane         227.4         200         0         113         83         119         228.6         164.6           m         144.6         200         120 </td <td>1,2-Dibromoethane</td> <td>203.4</td> <td>20</td> <td>hg/L</td> <td>200</td> <td>0</td> <td>102</td> <td>73</td> <td>127</td> <td>207.7</td> <td>2.09</td> <td>20</td>	1,2-Dibromoethane	203.4	20	hg/L	200	0	102	73	127	207.7	2.09	20	
Oropropane $213.7$ $20$ $\mu g/L$ $200$ $107$ $76$ $123$ $217.2$ Screption $317$ $20$ $\mu g/L$ $200$ $104.4$ $106$ $82$ $123$ $217.4$ $0$ chloromethane $317$ $20$ $\mu g/L$ $200$ $014.4$ $106$ $82$ $123$ $217.4$ $0$ arzene $227.4$ $20$ $\mu g/L$ $200$ $0$ $112$ $80$ $127$ $227.3$ $227.3$ arzene $227.7$ $20$ $\mu g/L$ $200$ $0$ $112$ $80$ $127$ $227.3$ $227.3$ arzene $227.4$ $20$ $\mu g/L$ $200$ $0$ $112$ $80$ $127$ $227.3$ $227.3$ area $227.4$ $200$ $\mu g/L$ $200$ $0$ $113$ $227.8$ $0$ area $224.4$ $200$ $107$ $200$ $1107$ $77$ $124$ </td <td>2-Hexanone</td> <td>129.4</td> <td>100</td> <td>hg/L</td> <td>200</td> <td>0</td> <td>64.7</td> <td>37</td> <td>145</td> <td>136.5</td> <td>5.34</td> <td>20</td>	2-Hexanone	129.4	100	hg/L	200	0	64.7	37	145	136.5	5.34	20	
screethere         317         20 $\mu g/L$ 200         10.4.4         106         82         129         317.4         0           chloromethane         182.8         20 $\mu g/L$ 200         0         11.4         59         125         186.9           arrene         224.4         20 $\mu g/L$ 200         0         11.2         80         123         227.3           etrachloroethane         203.3         20 $\mu g/L$ 200         0         112         80         123         227.3           etrachloroethane         203.3         20 $\mu g/L$ 200         0         112         80         123         223.5           etrachloroethane         225.9         20 $\mu g/L$ 200         0         112         80         122         229.6           m         147.9         20 $\mu g/L$ 200         0         138         119         229.6         0           m         147.9         20 $\mu g/L$ 200         0         12         230.9         0         125         231.6         0           m         147.9 <t< td=""><td>1,3-Dichloropropane</td><td>213.7</td><td>20</td><td>hg/L</td><td>200</td><td>0</td><td>107</td><td>76</td><td>123</td><td>217.2</td><td>1.62</td><td>20</td></t<>	1,3-Dichloropropane	213.7	20	hg/L	200	0	107	76	123	217.2	1.62	20	
chloromethane         18.2.8         20         µg/L         200         0         91.4         59         125         186.9           snzene         224.4         20         µg/L         200         0         112         80         120         227.3           etrachloroethane         227.7         20         µg/L         200         0         112         80         120         227.3           zene         227.7         20         µg/L         200         0         114         83         123         232.5           and         147.9         20         µg/L         200         0         113         83         119         229.6           m         147.9         20         µg/L         200         0         123         229.5         0           m         147.9         20         µg/L         200         0         123         229.6         0           m         147.9         20         µg/L         200         0         113         229.6         0           m         147.9         20         µg/L         200         0         124         219.6         211.5           m	Tetrachloroethene	317	20	hg/L	200	104.4	106	82	129	317.4	0.126	20	
anzene $22.44$ $20$ $\mu g/L$ $200$ $0$ $112$ $80$ $120$ $227.3$ etrachloroethane $203.3$ $20$ $\mu g/L$ $200$ $0$ $102$ $72$ $124$ $207.9$ zene $227.7$ $20$ $\mu g/L$ $200$ $0$ $114$ $83$ $123$ $222.5$ zene $225.9$ $20$ $\mu g/L$ $200$ $0$ $114$ $83$ $119$ $229.6$ an $147.9$ $20$ $\mu g/L$ $200$ $0$ $113$ $83$ $119$ $229.6$ m $147.9$ $20$ $\mu g/L$ $200$ $0$ $113$ $83$ $119$ $125.4$ $0$ m $127$ $201.1$ $20$ $\mu g/L$ $200$ $0$ $113$ $75$ $113$ $2115$ $0$ m $127$ $201.1$ $200$ $0$ $107$ $17$ $124$ $218.5$ <t< td=""><td>Dibromochloromethane</td><td>182.8</td><td>20</td><td>hg/L</td><td>200</td><td>0</td><td>91.4</td><td>59</td><td>125</td><td>186.9</td><td>2.22</td><td>20</td></t<>	Dibromochloromethane	182.8	20	hg/L	200	0	91.4	59	125	186.9	2.22	20	
etrachloroethane $203.3$ $20$ $\mu g/L$ $200$ $0$ $102$ $72$ $124$ $207.9$ zene $227.7$ $20$ $\mu g/L$ $200$ $0$ $114$ $83$ $123$ $232.5$ $232.5$ zene $227.7$ $20$ $\mu g/L$ $200$ $0$ $114$ $83$ $123$ $223.5$ $223.5$ ine $225.3$ $20$ $\mu g/L$ $200$ $0$ $113$ $83$ $119$ $229.6$ ine $147.9$ $20$ $\mu g/L$ $200$ $0$ $112$ $83$ $119$ $229.6$ ine $276$ $20$ $\mu g/L$ $200$ $0$ $112$ $2131$ $278.5$ $0$ ine $201.1$ $20$ $\mu g/L$ $200$ $0$ $107$ $75$ $113$ $2136.5$ $0$ ine $201.1$ $200$ $0$ $101$ $200$ $101$ $102$ $124$	Chlorobenzene	224.4	20	hg/L	200	0	112	80	120	227.3	1.28	20	
Zene $227.7$ $20$ $\mu g/L$ $200$ $0$ $114$ $83$ $123$ $232.5$ ne $430.8$ $20$ $\mu g/L$ $200$ $0$ $114$ $83$ $121$ $444.6$ ne $430.8$ $20$ $\mu g/L$ $200$ $0$ $113$ $83$ $119$ $229.6$ m $147.9$ $20$ $\mu g/L$ $200$ $0$ $112$ $80$ $122$ $229.6$ m $147.9$ $20$ $\mu g/L$ $200$ $0$ $112$ $80$ $122$ $229.6$ m $147.9$ $20$ $\mu g/L$ $200$ $0$ $112$ $80$ $122$ $229.6$ chrachloroethane $204.1$ $20$ $\mu g/L$ $200$ $0$ $138$ $75$ $119$ $155.4$ $0$ metholoropropane $201.1$ $200$ $0$ $1012$ $66$ $130$ $206.2$ $216.1$ benzene <td>1,1,1,2-Tetrachloroethane</td> <td>203.3</td> <td>20</td> <td>hg/L</td> <td>200</td> <td>0</td> <td>102</td> <td>72</td> <td>124</td> <td>207.9</td> <td>2.24</td> <td>20</td>	1,1,1,2-Tetrachloroethane	203.3	20	hg/L	200	0	102	72	124	207.9	2.24	20	
Ine         430.8         20 $\mu g/L$ 400         0         108         84         121         444.6           m         225.9         20 $\mu g/L$ 200         0         113         83         119         229.6           m         147.9         20 $\mu g/L$ 200         0         74         54         119         155.4           benzene         276         20 $\mu g/L$ 200         0         74         54         119         155.4           ohloropropane         201.1         20 $\mu g/L$ 200         0         138         75         131         278.5         0           etrachloroethane         201.1         20 $\mu g/L$ 200         0         101         66         130         216.2           ohloropropane         213.9         20 $\mu g/L$ 200         0         101         76         131         226.2         243.6         0           ohloropropane         213.1         200         0         101         76         131         266.1         166.1           ohloropropane         213.6         200         0 <td>Ethylbenzene</td> <td>227.7</td> <td>20</td> <td>hg/L</td> <td>200</td> <td>0</td> <td>114</td> <td>83</td> <td>123</td> <td>232.5</td> <td>2.09</td> <td>20</td>	Ethylbenzene	227.7	20	hg/L	200	0	114	83	123	232.5	2.09	20	
$225.9$ $20$ $\mu g/L$ $200$ $0$ $113$ $83$ $119$ $229.6$ mm $147.9$ $20$ $\mu g/L$ $200$ $0$ $112$ $80$ $122$ $229.9$ mm $147.9$ $20$ $\mu g/L$ $200$ $0$ $112$ $80$ $122$ $229.9$ hearzene $276$ $20$ $\mu g/L$ $200$ $0$ $112$ $80$ $122$ $229.9$ etrachloroethane $276$ $20$ $\mu g/L$ $200$ $0$ $138$ $75$ $119$ $155.4$ etrachloroethane $201.1$ $20$ $\mu g/L$ $200$ $0$ $102$ $61$ $139$ $211.5$ etrachloroethane $201.1$ $20$ $\mu g/L$ $200$ $0$ $107$ $77$ $124$ $218.5$ $0$ benzene $233.2$ $20$ $\mu g/L$ $200$ $0$ $119$ $75$ $242.1$ $240.4$ $240.$	m,p-Xylene	430.8	20	hg/L	400	0	108	84	121	444.6	3.15	20	
mm         224.9         20 $\mu g/L$ 200         0         112         80         122         229.9           mm         147.9         20 $\mu g/L$ 200         0         74         54         119         155.4           benzene         276         20 $\mu g/L$ 200         0         74         54         119         155.4           etrachloroethane         204.2         20 $\mu g/L$ 200         0         138         75         131         278.5         0           etrachloroethane         201.1         20 $\mu g/L$ 200         0         107         77         139         211.5           encloropropane         213.9         20 $\mu g/L$ 200         0         107         77         124         218.5           benzene         237.2         20 $\mu g/L$ 200         0         119         76         131         266.1           benzene         238.9         20 $\mu g/L$ 200         0         177         124         243.4         0           toluene         238.3         20 $\mu g/L$ 200<	o-Xylene	225.9	20	hg/L	200	0	113	83	119	229.6	1.62	20	
mm         147.9         20 $\mu g/L$ 200         0         74         54         119         155.4           Ibenzene         276         20 $\mu g/L$ 200         0         138         75         131         278.5         0           etrachloroethane         204.2         20 $\mu g/L$ 200         0         102         61         139         211.5           othoropropane         201.1         20 $\mu g/L$ 200         0         101         66         130         206.2           ohloropropane         213.9         20 $\mu g/L$ 200         0         107         77         124         218.5           ohnzene         237.2         20 $\mu g/L$ 200         0         119         76         131         266.1           toluene         237.2         20 $\mu g/L$ 200         0         119         76         124         240.4         0           methylbenzene         234.3         20 $\mu g/L$ 200         0         119         75         124         243.5         0.1           methylbenzene         234.3	Styrene	224.9	20	hg/L	200	0	112	80	122	229.9	2.2	20	
276         20 $\mu g/L$ 200         0         138         75         131         278.5         0           ane         204.2         20 $\mu g/L$ 200         0         102         61         139         211.5         1           201.1         20 $\mu g/L$ 200         0         101         66         130         206.2         2           213.9         20 $\mu g/L$ 200         0         107         77         124         218.5           237.2         20 $\mu g/L$ 200         0         119         76         131         266.1           233.2         20 $\mu g/L$ 200         0         119         76         124         243.5         0.1           246.9         20 $\mu g/L$ 200         0         122         79         124         243.5         0.1           246.9         20 $\mu g/L$ 200         0         123         79         124         243.5         0.1           246.9         20 $\mu g/L$ 200         0         119         77         124         243.5	Bromoform	147.9	20	hg/L	200	0	74	54	119	155.4	4.95	20	
ane         204.2         20 $\mu g/L$ 200         0         102         61         139         211.5           201.1         20 $\mu g/L$ 200         0         101         66         130         206.2           213.9         20 $\mu g/L$ 200         0         107         77         124         216.5           213.9         20 $\mu g/L$ 200         0         131         76         131         266.1           237.2         20 $\mu g/L$ 200         0         119         76         131         266.1           238.9         20 $\mu g/L$ 200         0         119         76         124         242.1           238.9         20 $\mu g/L$ 200         0         122         79         124         243.5         0.1           246.9         20 $\mu g/L$ 200         0         123         79         124         243.5         0.1           246.9         20 $\mu g/L$ 200         0         117         77         124         243.5         0.1           246.4         20	Isopropylbenzene	276	20	hg/L	200	0	138	75	131	278.5	0.902	20	
201.1       20 $\mu g/L$ 200       0       101       66       130       206.2         213.9       20 $\mu g/L$ 200       0       107       77       124       218.5         262.8       20 $\mu g/L$ 200       0       131       76       131       266.1         262.8       20 $\mu g/L$ 200       0       119       76       131       266.1         237.2       20 $\mu g/L$ 200       0       119       78       125       242.1         238.9       20 $\mu g/L$ 200       0       119       78       125       242.1         243.6       20 $\mu g/L$ 200       0       122       79       124       243.5       0.1         246.9       20 $\mu g/L$ 200       0       123       79       126       247.6       0         234.3       20 $\mu g/L$ 200       0       117       77       124       236.4       0         234.5       24.1       200       0       127       79       126       247.6       0         234.4       2 <td>1,1,2,2-Tetrachloroethane</td> <td>204.2</td> <td>20</td> <td>hg/L</td> <td>200</td> <td>0</td> <td>102</td> <td>61</td> <td>139</td> <td>211.5</td> <td>3.51</td> <td>20</td>	1,1,2,2-Tetrachloroethane	204.2	20	hg/L	200	0	102	61	139	211.5	3.51	20	
213.9       20       µg/L       200       0       107       77       124       218.5         262.8       20       µg/L       200       0       131       76       131       266.1         263.1       237.2       20       µg/L       200       0       119       76       131       266.1         237.2       20       µg/L       200       0       119       78       125       242.1         238.9       20       µg/L       200       0       119       75       124       240.4       0         246.9       20       µg/L       200       0       122       79       124       243.5       0.1         246.9       20       µg/L       200       0       123       79       126       247.6       0         234.3       20       µg/L       200       0       177       77       124       236.4       0         234.1       20       µg/L       200       0       177       79       126       247.6       0         234.1       234.3       0       172       79       126       236.4       0         2 <t< td=""><td>1,2,3-Trichloropropane</td><td>201.1</td><td>20</td><td>hg/L</td><td>200</td><td>0</td><td>101</td><td>66</td><td>130</td><td>206.2</td><td>2.5</td><td>20</td></t<>	1,2,3-Trichloropropane	201.1	20	hg/L	200	0	101	66	130	206.2	2.5	20	
Z62.8         Z0         µg/L         Z00         0         131         76         131         266.1           237.2         20         µg/L         200         0         119         78         125         242.1           238.9         20         µg/L         200         0         119         78         125         240.4         0           1zene         243.6         20         µg/L         200         0         122         79         124         243.5         0.0           1zene         246.9         20         µg/L         200         0         122         79         126         243.5         0.1           1zene         234.3         20         µg/L         200         0         122         79         126         243.5         0.1           1zene         234.3         20         µg/L         200         0         123         79         126         247.6         0           1zene         234.3         20         µg/L         200         0         117         77         124         236.4         0           12         234.4         0         117         77         124	Bromobenzene	213.9	20	hg/L	200	0	107	77	124	218.5	2.13	20	
237.2     20     μg/L     200     0     119     78     125     242.1       238.9     20     μg/L     200     0     119     75     124     240.4       12ene     243.6     20     μg/L     200     0     122     79     124     243.5     0       12ene     246.9     20     μg/L     200     0     122     79     124     247.6       12ene     234.3     20     μg/L     200     0     123     79     126     247.6       12ene     234.3     20     μg/L     200     0     17     77     124     236.4       12ene     234.3     20     μg/L     200     0     177     77     124     236.4       12ene     234.3     20     μg/L     200     0     177     77     124     236.4       12ene     234.3     20     μg/L     200     0     177     77     124     236.4	n-Propylbenzene	262.8	20	hg/L	200	0	131	76	131	266.1	1.25	20	
238.9         20         µg/L         200         0         119         75         124         240.4           nzene         246.9         20         µg/L         200         0         122         79         124         243.5         0           nzene         246.9         20         µg/L         200         0         123         79         124         243.5         0           nzene         234.3         20         µg/L         200         0         117         79         126         236.4           0. Not Discreted at the Renorting Limit         3.0         µg/L         200         0         117         77         124         236.4	2-Chlorotoluene	237.2	20	hg/L	200	0	119	78	125	242.1	2.04	20	
Tzene         243.6         20         µg/L         200         0         122         79         124         243.5         0           246.9         20         µg/L         200         0         123         79         126         247.6           72ene         234.3         20         µg/L         200         0         117         77         124         236.4           7         77         124         236.4         236.4         236.4         236.4           2         5.5         5.5         50         0         117         77         124         236.4	4-Chlorotoluene	238.9	20	нд/Г	200	0	119	75	124	240.4	0.626	20	
247.6         247.6           nzene         234.3         20         µg/L         200         0         123         79         126         247.6           nzene         234.3         20         µg/L         200         0         117         77         124         236.4           0. Not Distorted at the Renorting 1 imit         S - Snike Recovery outside accepted recovery limits         B - Analyte detected in the associated Method B	1,3,5-Trimethylbenzene	243.6	20	hg/L	200	0	122	-79	124	243.5	0.0411	20	
Tzene     234.3     20     μg/L     200     0     117     77     124     236.4       0. Not Disected at the Remotine 1 imit     S - Snike Recovery outside accepted recovery limits     B - Analyte detected in the associated Method B	tert-Butylbenzene	246.9	20	hg/L	200	0	123	40	126	247.6	0.283	20	
ND - Not Detected at the Renorting Limit S - Snike Recovery outside accepted recovery limits	1,2,4-Trimethylbenzene	234.3	20	hg/L	200	0	117	27	124	236.4	0.892	20	
IND - IND DENOTE AN IN AND IN THE PRIME THE ADDRESS TO ADDRES	Qualifiers: ND - Not De	ND - Not Detected at the Reporting Limit		s - Spike Recove	ry outside accep	ted recovery	limits	B - Analyte de	tected in th	ie associated Meth	od Blank		
J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur	J - Analyte d	letected below quantitation limits	,	X - RPD outside	accepted recover	y limits		NA - Not appl	icable when	re J values or ND	results occur		

.

AMRO Environmental Laboratories Corp.

Date: 06-Mar-09

· ^

CLIENT: Work Order: Project:	Shaw Enviro 0902072 130274 Text	Shaw Environmental & Infrastructure, Inc. 0902072 130274 Textron Gorham	astructure, Inc.							QC SUMMARY REPORT Sample Matrix Spike Duplicate	<b>MARY R</b> atrix Spike	<b>EPOF</b> Duplic	ate
sec-Butylbenzene		258	20	µg/L	200	0	129	82	128	256.8	0.466	20	S
4-Isopropyltoluene		249.4	20	hg/L	200	0	125	17	128	245.9	1.41	20	
1,3-Dichlorobenzene		222.5	20	hg/L	200	6.5	108	80	122	225.5	1.34	20	
1,4-Dichlorobenzene	-	219.6	20	hg/L	200	5.3	107	78	123	221.9	1.04	20	
n-Butylbenzene		268.6	20	hg/L	200	0	134	74	130	269.2	0.223	20	S
1,2-Dichlorobenzene		209.7	20	hg/L	200	0	105	78	121	214.8	2.4	20	
1,2-Dibromo-3-chloropropane	propane	171.7	50	hg/L	200	0	85.8	50	127	175.6	2.25	20	
1,2,4-Trichlorobenzene	ne	200.3	20	hg/L	200	0	100	67	128	198.7	0.802	20	
Hexachlorobutadiene	~	197.3	20	hg/L	200	7.2	95	74	134	198	0.354	20	
Naphthalene		173.7	50	hg/L	200	0	86.8	57	131	178.9	2.95	20	
1,2,3-Trichlorobenzene	ne	185	20	hg/L	200	0	92.5	64	131	181.8	1.74	20	
Surr: Dibromofluoromethane	omethane	266.1	20	hg/L	250	0	106	. 85	119	0	0	0	
Surr: 1,2-Dichloroethane-d4	sthane-d4	242.2	20	hg/L	250	0	96.9	79	131	0	0	0	
Surr: Toluene-d8		252	20	hg/L	250	0	101	06	110	0	0	0	
Surr: 4-Bromofluorobenzene	robenzene	219.3	50	hg/L	250	0	87.7	. 76	117	0	0	0	

R - RPD outside accepted recovery limits J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

ND - Not Detected at the Reporting Limit

Qualifiers:

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

B - Analyte detected in the associated Method Blank

CLIENT:         Saw Environmental & Infrastructure, Inc.         Contention         Contenion         Contentio	AMRO Environmental Laboratories Corp.	ital Laboratories	Corp.								<b>Date:</b> 06-Mar-09	-Mar-09		
Mutricity         Sample Matrix Spi Sample Matrix Sample Matrix Spi Sample Matrix Sample Matrix Spi Sample		vironmental & Infrastru	cture, Inc.							QC SUM	MARY	REPOI	Z	
	-	Textron Gorham	-								Sample I	Matrix Sp	ike	
Immunication         Ranification         Ranificat         Ranification         Ranification <th></th> <th>Batch ID: R41874</th> <th>Test Code:</th> <th></th> <th>Units: µg/L</th> <th></th> <th></th> <th>Analysis D</th> <th>ate 3/5/09 6</th> <th>.58:00 PM</th> <th>Prep Date</th> <th>2/25/09</th> <th></th>		Batch ID: R41874	Test Code:		Units: µg/L			Analysis D	ate 3/5/09 6	.58:00 PM	Prep Date	2/25/09		
Castimpte         Castimpt         Castimpt <th colspa<="" th=""><th></th><th></th><th>Run ID:</th><th></th><th></th><th></th><th></th><th>SeqNo:</th><th>696834</th><th></th><th></th><th></th><th></th></th>	<th></th> <th></th> <th>Run ID:</th> <th></th> <th></th> <th></th> <th></th> <th>SeqNo:</th> <th>696834</th> <th></th> <th></th> <th></th> <th></th>			Run ID:					SeqNo:	696834				
Intermediation         Note         Online         National         Note         Other         Note         Not		QC Sample	ī		C Spike Original			imit imit	-	riginal Sample		timi ICaa	ci C	
122.6         25         µg/L         100         0         123         15         150         0           111.8         25         µg/L         100         0         132         150         0           115.2         25         µg/L         100         0         134         56         147         0           116.5         10         µg/L         100         0         134         7         142         0           116.5         56         µg/L         100         0         134         7         159         0           128.6         10         µg/L         100         0         134         7         159         0           133.2         25         µg/L         100         0         133         16         150         0           133.2         25         µg/L         100         0         133         16         175         144         0         150         0           133.2         25         µg/L         100         0         133         156         147         156         0           133.2         10         µg/L         100         0         133	Analyte	Kesuit	ᆋ		Amount		NEC 2	COWCINI					200	
111.6         26 $\mu\rho/L$ 100         0         132         35         150         0           115.2         25 $\mu\rho/L$ 100         0         135         56         147         0           115.2         25 $\mu\rho/L$ 100         0         135         56         0           115.2         25 $\mu\rho/L$ 100         0         133         57         149         0           133.2         250 $\mu\rho/L$ 100         0         734         16         150         0           133.2         250 $\mu\rho/L$ 100         0         734         16         150         0           133.2         250 $\mu\rho/L$ 100         0         734         16         150         0           133.2         26 $\mu\rho/L$ 100         0         73         70         153         0           133.2         10 $\mu\rho/L$ 100         0         73         70         153         0           133.2         10 $\mu\rho/L$ 100         0         123         0         0	Dichlorodifluoromethane	122.6	25	hg/L	100	0	123	16	150	0				
130.4         10         100         100         130         49         150         0           115.2         25         100         100         116         58         147         0           105.6         10         101         100         0         105         58         147         0           107.3         25         1091         100         0         734         56         136         0           103.3         50         1091         100         0         734         156         0           133.2         25         1091         100         0         734         16         156         0           133.2         25         1091         100         0         734         17         135         0           133.2         25         1091         100         0         133         17         135         0         142         0           133.2         10         1091         100         0         133         17         135         0         136           133.2         10         101         100         0         126         13         0         137     <	Chloromethane	111.8	25	hg/L	100	0	112	35	150	0				
115.2         25         µg/L         100         0         115         86         147         0           105.6         10         µg/L         100         0         129         149         0           105.6         10         µg/L         100         0         129         149         0           107.3         25         µg/L         100         0         133         150         0           133         5.0         µg/L         100         0         133         16         150         0           133.2         25         µg/L         100         0         128         0         0           133.2         25         µg/L         100         0         128         13         0           133.2         25         µg/L         100         0         128         13         0           133.2         25         µg/L         100         0         128         13         0         0           133.2         26         µg/L         100         0         128         13         0         0           133.2         128         10         µg/L         100	Vinyl chloride	130.4	10	hg/L	100	0	130	49	150	0				
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	Chloroethane	115.2	25	hg/L	100	0	115	58	147	0				
1         128.6         10         µg/L         100         0         123         57         149         0           73.45         50         µg/L         100         0         133         70         150         0           73.45         50         µg/L         100         0         133         70         150         0           133.2         50         µg/L         100         0         133         70         150         0           133.2         25         µg/L         100         0         133         66         142         0           133.2         26         µg/L         100         0         126         13         0           90.15         90         10         µg/L         100         0         126         13         0           90.15         90         10         µg/L         100         0         126         142         0           90.16         10         10         10         0         126         131         0         135           90.15         10         µg/L         100         0         126         131         0         135 <td>Bromomethane</td> <td>105.6</td> <td>10</td> <td>hg/L</td> <td>100</td> <td>0</td> <td>106</td> <td>49</td> <td>142</td> <td>0</td> <td></td> <td></td> <td></td>	Bromomethane	105.6	10	hg/L	100	0	106	49	142	0				
107.3         25         µg/L         100         0         73         6         736         0           734.5         50         µg/L         100         0         734         15         0         0           133         5.0         µg/L         100         0         734         16         150         0           133         5.0         µg/L         100         0         73         7         150         0           133.2         25         µg/L         100         0         73         13         66         142         0           108.2         10         µg/L         100         0         73         16         73         0         0           108.2         10         µg/L         100         0         73         13         66         142         0           90.15         50         µg/L         100         0         73         11         74         12         0           1118.2         10         µg/L         100         0         73         14         12         0         0           1118.2         10         µg/L         100         0	Trichlorofluoromethane	128.6	10	hg/L	100	0	129	57	149	0				
7345         50         µg/L         100         0         734         15         0         µg/L         100         0         133         50         µg/L         100         0         133         50         µg/L         100         0         133         70         150         0         0           103.8         10         µg/L         100         0.1         103         55         142         0         0           113.3.2         25         µg/L         100         0.1         126         78         135         0         0           106.2         10         µg/L         100         0.1         126         78         135         0         0           117.6         10         µg/L         100         0.13         117         14         0         0           118.2         10         µg/L         100         0.13         117         14         10         0           118.2         10         µg/L         100         0.13         117         119         80         145         0           118.2         10         µg/L         100         0.13         117         119 <td< td=""><td>Diethyl ether</td><td>107.3</td><td>25</td><td>hg/L</td><td>100</td><td>0</td><td>107</td><td>66</td><td>136</td><td>0</td><td></td><td></td><td></td></td<>	Diethyl ether	107.3	25	hg/L	100	0	107	66	136	0				
133         5.0         µg/L         100         0         133         70         150         0           108.8         10         µg/L         100         0.110         0.51         133         66         142         0           133.2         25         µg/L         100         0.51         133         66         142         0           108.2         10         µg/L         100         0.125         76         131         0           90.15         50         µg/L         100         0         125         76         131         0           90.15         50         µg/L         100         0         125         76         131         0           90.15         50         µg/L         100         0.73         117         74         122         0           114.2         10         µg/L         100         0.73         117         74         123         0           138.9         10         µg/L         100         0.73         117         74         123         0           126.4         10         µg/L         100         0.71         129         0         0	Acetone	79.45	50	hg/L	100	0	79.4	16	150	0				
103.8         10         µg/L         100         0         113         55         µg/L         100         0.51         133         66         142         0           133.2         25         µg/L         100         0.51         133         66         142         0           133.2         10         µg/L         100         0         126         78         135         0           117.6         10         µg/L         100         0         125         76         131         0           90.15         50         µg/L         100         0         126         78         135         0           117.6         10         µg/L         100         0         131         0         0           118.2         10         µg/L         100         0.73         117         74         128         0           138.9         10         µg/L         100         0.73         117         74         128         0           138.4.5         10         µg/L         100         0.73         73         74         128         0           138.4.5         10         µg/L         100	1,1-Dichloroethene	133	5.0	hg/L	100	0	133	. 70	150	0				
133.2         25         µg/L         100         0.51         133         66         142         0           108.2         10         µg/L         100         0         126         78         138         0           124.8         10         µg/L         100         0         126         78         138         0           90.15         50         µg/L         100         0         125         76         131         0           90.15         50         µg/L         100         0         125         76         131         0           1118.2         10         µg/L         100         0.73         117         74         128         0           118.2         10         µg/L         100         0.73         117         74         128         0           138.9         10         µg/L         100         0.73         117         74         128         0           134.5         10         µg/L         100         0.73         77         74         128         0           134.5         10         µg/L         100         0         128         74         128	Carbon disulfide	109.8	10	hg/L	100	0	110	47	135	0				
108.2         10         µg/L         100         0         108         53         138         0           126.2         10         µg/L         100         0         126         78         135         0           90.15         50         µg/L         100         0         125         76         131         0           90.15         50         µg/L         100         0         125         76         131         0           117.6         10         µg/L         100         0         73         117         74         128         0           118.2         10         µg/L         100         0         73         117         74         128         0           105.4         10         µg/L         100         0         74         128         0           125.8         10         µg/L         100         0         77         139         0           134.5         10         µg/L         100         0         77         139         0           141.4         10         µg/L         100         0         74         127         0         0           <	Methylene chloride	133.2	25	hg/L	100	0.51	133	99	142	0				
Increase         126.2         10         Ig/L         100         0         125         78         135         0           90.15         50         Ig/L         100         Ig/L         100         0         125         76         131         0           90.15         50         Ig/L         100         0         125         76         131         0           117.6         10         Ig/L         100         0.73         117         74         128         0           138.9         10         Ig/L         100         20.11         119         80         129         0           138.9         10         Ig/L         100         20.11         119         80         129         0           134.5         10         Ig/L         100         20.11         119         74         127         0           144.4         10         Ig/L         100         0         124         7         136         0           125.6         5.0         Ig/L         100         0         124         7         139         0           111.4         10         Ig/L         100         0	Methyl tert-butyl ether	108.2	10	hg/L	100	0	108	63	138	0	-			
124.8         10 $\mu g/L$ 100         0         125         76         131         0           90.15         50 $\mu g/L$ 100         0         90.2         51         142         0           90.15         50 $\mu g/L$ 100         0         74         142         0           117.6         10 $\mu g/L$ 100         0.73         117         74         128         0           118.2         10 $\mu g/L$ 100         0.73         117         74         128         0           138.9         10 $\mu g/L$ 100         0.73         117         74         128         0           123.2         10 $\mu g/L$ 100         20.11         119         80         129         0           123.2         10 $\mu g/L$ 100         0         123         78         136         0           134.5         10 $\mu g/L$ 100         0         124         74         127         0           114.4         10 $\mu g/L$ 100         0         134         74         127	trans-1,2-Dichloroethene	126.2	10	hg/L	100	0	126	78	135	0				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,1-Dichloroethane	124.8	10	hg/L	100	0	125	76	131	0				
117.6         10 $\mu g/L$ 100         0         118         60         149         0           118.2         10 $\mu g/L$ 100         0.73         117         74         128         0           138.9         10 $\mu g/L$ 100         0.73         117         74         128         0           105.4         50 $\mu g/L$ 100         0         123         78         145         0           123.2         10 $\mu g/L$ 100         0         123         78         130         0           124.5         10 $\mu g/L$ 100         0         124         7         139         0           111.4         10 $\mu g/L$ 100         0         144         7         139         0           111.4         10 $\mu g/L$ 100         0         114         7         139         0           127.6         5.0 $\mu g/L$ 100         0         114         7         139         0           127.6         5.0 $\mu g/L$ 100         0         14         7 <td< td=""><td>2-Butanone</td><td>90.15</td><td>50</td><td>hg/L</td><td>100</td><td>0</td><td>90.2</td><td>51</td><td>142</td><td>0</td><td></td><td></td><td></td></td<>	2-Butanone	90.15	50	hg/L	100	0	90.2	51	142	0				
118.2         10 $\mu g/L$ 100         0.73         117         74         128         0           138.9         10 $\mu g/L$ 100         20.11         119         80         129         0           138.9         10 $\mu g/L$ 100         20.11         119         80         129         0           125.8         10 $\mu g/L$ 100         0         123         78         130         0           125.8         10 $\mu g/L$ 100         0         123         78         130         0           134.5         10 $\mu g/L$ 100         0         124         74         127         0           114.4         10 $\mu g/L$ 100         0         114         73         138         0           114.4         10 $\mu g/L$ 100         0         114         73         138         0           127.6         5.0 $\mu g/L$ 100         0         128         79         0           127.6         5.0 $\mu g/L$ 100         0         128         79         123	2,2-Dichloropropane	117.6	10	hg/L	100	0	118	60	149	0				
138.9       10 $\mu g/L$ 100       20.11       119       80       129       0         105.4       50 $\mu g/L$ 100       0       105       53       145       0         123.2       10 $\mu g/L$ 100       0       123       78       130       0         125.8       10 $\mu g/L$ 100       0       126       77       139       0         134.5       10 $\mu g/L$ 100       0       134       74       127       0         114.4       10 $\mu g/L$ 100       0       114       75       138       0         127.6       5.0 $\mu g/L$ 100       0       128       0       0         ot Detected at the Reporting Limit       5.0 $\mu g/L$ 100       0       128       0         ot Detected below quantitation limits       8.       RP outside accepted recovery limits       79       123       0         ot betected below quantitation limits       8.       Analyte detected in the associated Method Blank         otheredet accepted recovery limits       Analyte detected in the associated Method Blank	cis-1,2-Dichloroethene	118.2	10	hg/L	100	0.73	117	74	128	0				
105.4       50       µg/L       100       0       105       53       145       0         123.2       10       µg/L       100       0       123       78       130       0         125.8       10       µg/L       100       0       126       77       139       0         134.5       10       µg/L       100       0       134       74       127       0         114.4       10       µg/L       100       0       114       73       138       0         127.6       5.0       µg/L       100       0       114       75       130       0         ot Detected at the Reporting Limit       5.0       µg/L       100       0       128       79       123       0         ot Detected below quantitation limits       S - Spike Recovery outside accepted recovery limits $73$ 132       0         ot Detected below quantitation limits       R - RPD outside accepted recovery limits $74$ - Not applicable where J values or ND results occur	Chloroform	. 138.9	10	hg/L	100	20.11	119	80	129	0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tetrahydrofuran	105.4	50	hg/L	100	0	105	53	145	<u>,</u> O				
$ \begin{array}{c ccccc} \hline \begin{tabular}{ccccc} & 10 & \mu g/L & 100 & 0 & 126 & 77 & 139 & 0 \\ 134.5 & 10 & \mu g/L & 100 & 0 & 134 & 74 & 127 & 0 \\ 111.4 & 10 & \mu g/L & 100 & 0 & 114 & 73 & 138 & 0 \\ 114.4 & 10 & \mu g/L & 100 & 0 & 114 & 75 & 130 & 0 \\ 127.6 & 5.0 & \mu g/L & 100 & 0 & 128 & 79 & 123 & 0 \\ \hline \end{tabular} \end{tabular} \label{eq:tected} \end{tabular} tabua$	Bromochloromethane	123.2	10	hg/L	100	0	123	78	130	0				
134.5       10 $\mu g/L$ 100       0       134       74       127       0         111.4       10 $\mu g/L$ 100       0       111       73       138       0         114.4       10 $\mu g/L$ 100       0       114       73       138       0         127.6       5.0 $\mu g/L$ 100       0       128       79       123       0         Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits       0       123       0         Not Detected below quantitation limits       R - RPD outside accepted recovery limits       B - Analyte detected in the associated Method Blank	1,1,1-Trichloroethane	125.8	10	hg/L	100	0	126	11	139	0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1-Dichloropropene	134.5	10	hg/L	100	0	134	74	127	0			S	
Description     114.4     10     μg/L     100     0     114     75     130     0       127.6     5.0     μg/L     100     0     128     79     123     0       rs:     ND - Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits     B - Analyte detected in the associated Method Blank       J - Analyte detected below quantitation limits     R - RPD outside accepted recovery limits     NA - Not applicable where J values or ND results occur	Carbon tetrachloride	111.4	10	hg/L	100	0	111	73	138	0				
127.6     5.0     μg/L     100     0     128     79     123     0       rs:     ND - Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits     B - Analyte detected in the associated Method Blank       J - Analyte detected below quantitation limits     R - RPD outside accepted recovery limits     NA - Not applicable where J values or ND results occur	1,2-Dichloroethane	114.4	10	hg/L	100	0	114	75	130	• • •				
ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         J - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits         R1 - Reporting 1 imit defined as the lowest concentration the laboratory can accurately quantitate.	Benzene	127.6	5.0	hg/L	100	0	128	62	123	0			s	
RPD outside accepted recovery limits laboratory can accurately quantitate.		d at the Reporting Limit	S -	Spike Recove	ry outside accepted	l recovery	limits	B - Analy	te detected in t	he associated Metl	nod Blank			
lahoratory can accurately quantitate.	J - Analyte detect	ed below quantitation limits	, R-		accepted recovery ]	limits		NA - Not	applicable whe	sre J values or ND	results occur			
	DI Denortina I i	imit. defined as the lowest cor	ncentration the		n accurately quanti	tate.				•				

CLIRNT:         Shaw Divirunmental & Infrastructure, Inc.         QC SUMMARY REPORT           Vent Order:         9002072         Sample Matrix Splite           Project:         130/24 Textron Gorham         QC SUMMARY REPORT           Project:         130/24 Textron Gorham         Sample Matrix Splite           Project:         130/24 Textron Gorham         QC SUMMARY REPORT           Project:         130/24 Textron Gorham         263         10         101         200         200           Project:         130/24 Textron Gorham         263         10         100         448         72         79         725         93         91           Project:         130/24 Textron Gorham         263         10         101         100         283         111         92         123         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93	aw Environmental & Infrastructure, Inc.           aw Environmental & Infrastructure, Inc.           02072         128.4         10         µµ/L         100         128         79         126           0274         728.4         10         µµ/L         100         128         76         125           0274         728.2         10         µµ/L         100         0         128         76         125           113.8         10         µµ/L         100         µµ/L         100         0         171         73         127           95.75         50         µµ/L         100         0         128         76         127           113.8         10         µµ/L         100         100         128         76         127           113.8         50         µµ/L         100         0         127         73         127           120         121         100         µµ/L         100         0         127         128           131.2         120         µµ/L         100         0         127         128         128           141         10         µµ/L         100         0	AMRO Environm	AMRO Environmental Laboratories Corp.	Corp.	÷						<b>Date:</b> 06-Mar-09	far-09
0274         Control         Control <thcontrol< th=""> <thcontrol< th=""> <thcont< th=""><th>20072           0.274 Textron Gorham           126.4         10         µg/L         100         4.48         122         73         126           126.8.2         10         µg/L         100         0.43         122         73         123           116.8         10         µg/L         100         0.44         125         73         124           116.8         10         µg/L         100         0         133         73         141           113.4         10         µg/L         100         0         133         73         124           110.2         10         µg/L         100         0         133         73         124           111.2         10         µg/L         100         0         126         73         127           120.2         10         µg/L         100         0         126         73         127           121.2         10         µg/L         100         0         126         123         127           122.2         13         121         130         126         126         123         123           123.2         124</th><th></th><th>Environmental &amp; Infrastru</th><th>cture, Inc.</th><th></th><th></th><th></th><th></th><th></th><th></th><th>QC SUMMARY R</th><th>LEPORT</th></thcont<></thcontrol<></thcontrol<>	20072           0.274 Textron Gorham           126.4         10         µg/L         100         4.48         122         73         126           126.8.2         10         µg/L         100         0.43         122         73         123           116.8         10         µg/L         100         0.44         125         73         124           116.8         10         µg/L         100         0         133         73         141           113.4         10         µg/L         100         0         133         73         124           110.2         10         µg/L         100         0         133         73         124           111.2         10         µg/L         100         0         126         73         127           120.2         10         µg/L         100         0         126         73         127           121.2         10         µg/L         100         0         126         123         127           122.2         13         121         130         126         126         123         123           123.2         124		Environmental & Infrastru	cture, Inc.							QC SUMMARY R	LEPORT
126.4         10 $\mu g/L         100         4.48         122           126.2         10         \mu g/L         100         2.08         111           126.2         10         \mu g/L         100         2.08         111           13.4         10         \mu g/L         100         2.08         111           95.75         50         \mu g/L         100         2         10         126           111.3         5.0         \mu g/L         100         0         126         126           112.2         10         \mu g/L         100         0         126         126           113.3         5.0         \mu g/L         100         0         126         127           107         10         \mu g/L         100         0         126         126           114.4         10         \mu g/L         100     $	126.4         10 $\mu g/L         100         4.48         122           126.2         10         \mu g/L         100         6         126           113.4         10         \mu g/L         100         2.08         111           95.75         50         \mu g/L         100         0         128           111.3         5.0         \mu g/L         100         0         126           95.75         5.0         \mu g/L         100         0         128           111.3         5.0         \mu g/L         100         0         128           111.3         5.0         \mu g/L         100         0         128           111.4         10         \mu g/L         100         0         128           107.2         10         \mu g/L         100         0         126           111.4         10         \mu g/L         100         0         126           98.45         50         \mu g/L         100         0         126           111.4         10         \mu g/L         100         0         126           111.4         10         \mu g/L         100         0       $	rder:	72 4 Textron Gorham								Sample M	atrix Spike
126.2         10         µg/L         100         2.08         111           113.4         10         µg/L         100         2.08         111           95.75         50         µg/L         100         2.08         111           95.75         50         µg/L         100         0         153           95.75         50         µg/L         100         0         133           1133         5.0         µg/L         100         0         107           1133         50         µg/L         100         0         107           107         10         µg/L         100         0         101           114.4         10         µg/L         100         0         101           114.4         10         µg/L         100         0         101           115.6         10         µg/L         100         0         101	126.2         10 $\mu g/L         100         208         111           113.4         10         \mu g/L         100         2.08         111           115.8         10         \mu g/L         100         2.08         111           95.75         50         \mu g/L         100         0         133           113         5.0         \mu g/L         100         0         133           113         5.0         \mu g/L         100         0         133           113         5.0         \mu g/L         100         0         133           107         10         \mu g/L         100         0         133           107         10         \mu g/L         100         0         133           108.45         5.0         \mu g/L         100         0         107           108.45         50         \mu g/L         100         0         107           108.45         50         \mu g/L         100         0         107           108.45         10         \mu g/L         100         0         104           114.4         10         \mu g/L         100         0         $	Trichloroethene	126.4	10	µg/L	100	4.48	122	62	126	0	
113.4         10         µg/L         100         2.08         111           95.75         50         µg/L         100         0         113           95.75         50         µg/L         100         0         113           95.75         50         µg/L         100         0         113           107         107         10         µg/L         100         0         113           107         10         µg/L         100         0         113           107         10         µg/L         100         0         113           107         10         µg/L         100         0         114           107         10         µg/L         100         0         114           107         10         µg/L         100         0         114           108         10         µg/L         100         0         114           108         10         µg/L         100         0         114           10         µg/L         100         µg/L         100         114           108         µg/L         100         µg/L         100         114	113.4         10 $µg/L$ 100         2.08         111           116.8         10 $µg/L$ 100         2.08         111           95.75         50 $µg/L$ 100         0         113           95.75         50 $µg/L$ 100         0         113           120.2         10 $µg/L$ 100         0         113           107.2         10 $µg/L$ 100         0         107           108.4         10 $µg/L$ 100         0         116           114.4         10 $µg/L$ 100         0         116           114.4         10 $µg/L$ 100         0         116           115.2         10         µg/L         100         0	1,2-Dichloropropane	126.2	10	hg/L	100	0	126	76	125	0	S
116.8         10         μg/L         100         0         117           95.75         50         μg/L         100         0         95.8           113         5.0         μg/L         100         0         113           120.2         10         μg/L         100         0         113           120.2         10         μg/L         100         0         113           120.2         10         μg/L         100         0         103           107.2         10         μg/L         100         0         104           102.2         10         μg/L         100         0         114           114.4         10         μg/L         100         0         114           114.4         10         μg/L         100         0         114           114.4         10         μg/L         100         0         114	116.8         10 $\mu g/L$ 100         0         117           85.75         50 $\mu g/L$ 100         0         113           113         5.0 $\mu g/L$ 100         0         113           113         5.0 $\mu g/L$ 100         0         113           113         5.0 $\mu g/L$ 100         0         113           117.2         10 $\mu g/L$ 100         0         107           107.2         10 $\mu g/L$ 100         0         107           114.4         10 $\mu g/L$ 100         0         114           114.4         10 $\mu g/L$ 100         0         116           114.4         10 $\mu g/L$ 100         0         116           114.4         10 $\mu g/L$ 100         0	Bromodichloromethane	113.4	10	hg/L	100	2.08	111	69	119	0	
95.75         50         µg/L         100         0         5.8           113         5.0         µg/L         100         0         113           120.2         10         µg/L         100         0         120           113         5.0         µg/L         100         0         131           107.2         10         µg/L         100         0         107           107.2         10         µg/L         100         0         107           107.2         10         µg/L         100         0         107           107.1         10         µg/L         100         0         107           98.4         10         µg/L         100         0         107           98.4         10         µg/L         100         0         114           114.4         10         µg/L         100         0         116           <	95.75         50 $\mu g/L$ 100         0         5.6.8           113         5.0 $\mu g/L$ 100         0         113           120.2         10 $\mu g/L$ 100         0         120           120.2         10 $\mu g/L$ 100         0         107           107.2         10 $\mu g/L$ 100         0         107           107         10 $\mu g/L$ 100         0         116           114.4         10 $\mu g/L$ 100         116	Dibromomethane	116.8	10	hg/L	100	0	117	76	127	0	
113         5.0 $\mu g/L$ 100         0         113           120.2         10 $\mu g/L$ 100         0         120           120.2         10 $\mu g/L$ 100         0         101           107.2         10 $\mu g/L$ 100         0         101           107.2         10 $\mu g/L$ 100         0         101           107.2         10 $\mu g/L$ 100         0         101           120.2         10 $\mu g/L$ 100         0         101           120         102 $\mu g/L$ 100         0         101           114.4         10 $\mu g/L$ 100         0         114           114.4         10 $\mu g/L$ 100         0         115           114.4         10 $\mu g/L$ 100         0         116           115.2         10 $\mu g/L$ 100         0         116           115.2         10 $\mu g/L$ 100         0         116           115.2         10 $\mu g/L$ 100         0	113         5.0 $\mu g/L$ 100         0         113           120.2         10 $\mu g/L$ 100         0         120           120.2         10 $\mu g/L$ 100         0         120           107.2         10 $\mu g/L$ 100         0         107           107.2         10 $\mu g/L$ 100         0         107           107.2         10 $\mu g/L$ 100         0         107           120         10 $\mu g/L$ 100         0         107           120         100 $\mu g/L$ 100         0         114           114.4         10 $\mu g/L$ 100         0         114           114.4         10 $\mu g/L$ 100         0         116           114.4         10 $\mu g/L$ 100         0         116           1118.8         10 $\mu g/L$ 100         0         116           115.2         11 $\mu g/L$ 100         0         116           115.2         11 $\mu g/L$ 100         0	4-Methyl-2-pentanone	95.75	50	hg/L	100	0	95.8	53	141	0	
120.2         10 $\mu g/L$ 100         0         120           107.2         10 $\mu g/L$ 100         0         101           107.2         10 $\mu g/L$ 100         0         101           107.2         10 $\mu g/L$ 100         0         101           89.45         50 $\mu g/L$ 100         0         101           89.45         50 $\mu g/L$ 100         0         101           120         10 $\mu g/L$ 100         0         114           98.45         10 $\mu g/L$ 100         0         114           114.4         10 $\mu g/L$ 100         0         114           114.4         10 $\mu g/L$ 100         0         114           114.4         10 $\mu g/L$ 100         0         114           115.2         10 $\mu g/L$ 100         0         114           115.2         10 $\mu g/L$ 100         0         114           115.2         10 $\mu g/L$ 100         0	120.2         10 $\mu g/L$ 100         0         120           ne         108.5         5.0 $\mu g/L$ 100         0         107           107.2         10 $\mu g/L$ 100         0         107           107.2         10 $\mu g/L$ 100         0         107           107.2         10 $\mu g/L$ 100         0         107           120.4         10 $\mu g/L$ 100         0         107           120.4         10 $\mu g/L$ 100         0         114           114.4         10 $\mu g/L$ 100         0         115           98.4         10 $\mu g/L$ 100         0         115           114.4         10 $\mu g/L$ 100         0         115           1115.2         10 $\mu g/L$ 100         0         116           115.2         10 $\mu g/L$ 100         0         116           115.2         10 $\mu g/L$ 100         0         116           115.6         10 $\mu g/L$ 100	cis-1,3-Dichloropropene	113	5.0	hg/L	100	0	113	70	119	0	
108.5         5.0         µg/L         100         0         103           107.2         10         µg/L         100         0         107           107         10         µg/L         100         0         107           107         10         µg/L         100         0         107           107         10         µg/L         100         0         107           120         10         µg/L         100         0         120           120         10         µg/L         100         0         114           120         µg/L         100         µg/L         0         114           114.4         10         µg/L         100         0         114           114.4         10         µg/L         100         0         115           114.4         10         µg/L         100         0         116           115.2         10         µg/L         100         0         116           115.2         10         µg/L         100         0         116           115.2         10         µg/L         100         0         120           11	108.5         5.0         µg/L         100         0         107           107.2         10         µg/L         100         0         107           107.2         10         µg/L         100         0         107           107.2         10         µg/L         100         0         107           107         10         µg/L         100         0         89.4           120         10         µg/L         100         0         89.4           120         10         µg/L         100         101         114           120         µg/L         100         µg/L         100         114           114.4         10         µg/L         100         0         114           114.4         10         µg/L         100         0         116           115.5         10         µg/L         100         0         116           115.2         10         µg/L         100         0         116           115.2         10         µg/L         100         0         116           115.2         10         µg/L         100         0         120	Toluene	120.2	10	hg/L	100	0	120	82	124	0	
107.2         10         µg/L         100         0         107           107         10         µg/L         100         0         107           107         10         µg/L         100         0         107           89.45         50         µg/L         100         0         120           89.45         50         µg/L         100         0         120           202.22         10         µg/L         100         105.2         97           98.4         10         µg/L         100         107         0         120           98.4         10         µg/L         100         107         0         114           114.4         10         µg/L         100         0         115           115.2         10         µg/L         100         0         116           113.6         10         µg/L         100         0	107.2         10 $\mu g/L$ 100         0         107           107         10 $\mu g/L$ 100         0         107           107         10 $\mu g/L$ 100         0         107           89.45         50 $\mu g/L$ 100         0         120           89.45         50 $\mu g/L$ 100         0         120           89.45         10 $\mu g/L$ 100         0         120           98.4         10 $\mu g/L$ 100         105.2         97           98.4         10 $\mu g/L$ 100         105.2         97           98.4         10 $\mu g/L$ 100         101         101           114.4         10 $\mu g/L$ 100         0         115           118.8         10 $\mu g/L$ 100         0         116           115.2         10 $\mu g/L$ 100         0         116           115.2         115         10 $\mu g/L$ 100         0         116           115.2         110 $\mu g/L$ 100 <td>trans-1,3-Dichloropropene</td> <td>108.5</td> <td>5.0</td> <td>hg/L</td> <td>100</td> <td>0</td> <td>108</td> <td>64</td> <td>124</td> <td>0</td> <td></td>	trans-1,3-Dichloropropene	108.5	5.0	hg/L	100	0	108	64	124	0	
107         10 $\mu g/L$ 100         0         107           89.45         50 $\mu g/L$ 100         0         89.4           120         10 $\mu g/L$ 100         0         89.4           120         10 $\mu g/L$ 100         0         89.4           120         10 $\mu g/L$ 100         0         120           98.4         10 $\mu g/L$ 100         0         141           104         10 $\mu g/L$ 100         0         141           118.8         10 $\mu g/L$ 100         0         141           118.4         10 $\mu g/L$ 100         0         141           118.8         10 $\mu g/L$ 100         0         141           115.2         10 $\mu g/L$ 100         0         145           115.2         10 $\mu g/L$ 100         0         146           115.2         10 $\mu g/L$ 100         0         146           115.6         10 $\mu g/L$ 100         0 <t< td=""><td>107         10         <math>\mu g/L         100         0         107           89.45         50         $\mu g/L$         100         0         89.4           120         10         $\mu g/L$         100         0         89.4           120         10         $\mu g/L$         100         105.2         97           98.4         10         $\mu g/L$         100         105.2         97           98.4         10         $\mu g/L$         100         104         10           114.4         10         $\mu g/L$         100         0         114           104         10         $\mu g/L$         100         0         114           114.4         10         $\mu g/L$         100         0         114           118.8         10         $\mu g/L$         100         0         116           115.2         10         $\mu g/L$         100         0         116           115.2         10         $\mu g/L$         100         0         136           119.6         10         $\mu g/L$         100         0         136           115.2         10         $\mu g/L$         100         0     </math></td><td>1,1,2-Trichloroethane</td><td>107.2</td><td>10</td><td>hg/L</td><td>100</td><td>0</td><td>107</td><td>73</td><td>127</td><td>0</td><td>·</td></t<>	107         10 $\mu g/L         100         0         107           89.45         50         \mu g/L         100         0         89.4           120         10         \mu g/L         100         0         89.4           120         10         \mu g/L         100         105.2         97           98.4         10         \mu g/L         100         105.2         97           98.4         10         \mu g/L         100         104         10           114.4         10         \mu g/L         100         0         114           104         10         \mu g/L         100         0         114           114.4         10         \mu g/L         100         0         114           118.8         10         \mu g/L         100         0         116           115.2         10         \mu g/L         100         0         116           115.2         10         \mu g/L         100         0         136           119.6         10         \mu g/L         100         0         136           115.2         10         \mu g/L         100         0     $	1,1,2-Trichloroethane	107.2	10	hg/L	100	0	107	73	127	0	·
89.45         50 $\mu g/L$ 100         0         89.4           120         10 $\mu g/L$ 100         0         120           202.2         10 $\mu g/L$ 100         0         98.4           98.4         10 $\mu g/L$ 100         0         141           114.4         10 $\mu g/L$ 100         0         141           114.4         10 $\mu g/L$ 100         0         141           114.4         10 $\mu g/L$ 100         0         141           118.8         10 $\mu g/L$ 100         0         141           118.4         10 $\mu g/L$ 100         0         145           115.2         10 $\mu g/L$ 100         0         146           115.2         10 $\mu g/L$ 100         0         146           115.6         10 $\mu g/L$ 100         0         146           115.6         10 $\mu g/L$ 100         0         146           115.6         10 $\mu g/L$ 100         0	89.45         50 $\mu g/L$ 100         0         89.4           120         10 $\mu g/L$ 100         0         120           202.2         10 $\mu g/L$ 100         0         93.4           98.4         10 $\mu g/L$ 100         0         94.4           114.4         10 $\mu g/L$ 100         0         114.4           104         10 $\mu g/L$ 100         0         114.4           114.4         10 $\mu g/L$ 100         0         114.4           118.8         10 $\mu g/L$ 100         0         115           115.2         10 $\mu g/L$ 100         0         116           115.2         10 $\mu g/L$ 100         0         136           115.2         10 $\mu g/L$ 100         0         136           115.6         10 $\mu g/L$ 100         0         136           115.2         10 $\mu g/L$ 100         0         136           113.6         133.2         10 $\mu g/L$ 100	1,2-Dibromoethane	107	10	hg/L	100	0	107	73	127	, 0	
120       10       µg/L       100       105.2       97         202.2       10       µg/L       100       105.2       97         98.4       10       µg/L       100       0       98.4         114.4       10       µg/L       100       0       114         104       10       µg/L       100       0       114         118.8       10       µg/L       100       0       114         118.8       10       µg/L       100       0       114         118.8       10       µg/L       100       0       115         115.2       10       µg/L       100       0       115         115.2       10       µg/L       100       0       126         115.2       10       µg/L       100       0       136         115.2       10       µg/L       100       0       136         115.2       10       µg/L       100       0       136         113.6       10       µg/L       100       0       136         113.6       10       µg/L       100       0       136         113.6       <	120         10 $\mu g/L$ 100         120           202.2         10 $\mu g/L$ 100         105.2         97           98.4         10 $\mu g/L$ 100         105.2         97           98.4         10 $\mu g/L$ 100         0         114           114.4         10 $\mu g/L$ 100         0         114           118.8         10 $\mu g/L$ 100         0         114           118.8         10 $\mu g/L$ 100         0         114           118.8         10 $\mu g/L$ 100         0         115           115.2         10 $\mu g/L$ 100         0         116           115.2         10 $\mu g/L$ 100         0         116           119.6         10 $\mu g/L$ 100         0         116           119.6         10 $\mu g/L$ 100         0         116           119.6         10 $\mu g/L$ 100         0         120           119.4         10 $\mu g/L$ 100         0         123 <td>2-Hexanone</td> <td>89.45</td> <td>50</td> <td>hg/L</td> <td>100</td> <td>0</td> <td>89.4</td> <td>37</td> <td>145</td> <td>0</td> <td></td>	2-Hexanone	89.45	50	hg/L	100	0	89.4	37	145	0	
202.2       10       μg/L       100       105.2       97         98.4       10       μg/L       100       05.2       98.4         114.4       10       μg/L       100       0       98.4         104       10       μg/L       100       0       114         104       10       μg/L       100       0       114         118.8       10       μg/L       100       0       116         115.0       10       μg/L       100       0       115         115.2       10       μg/L       100       0       126         115.6       10       μg/L       100       0       136         115.6       10       μg/L       100       0       136         115.6       10       μg/L       100       0       136         115.6       10       μg/L       100       0       137         113.2	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1,3-Dichloropropane	120	10	hg/L	100	0	120	76	123	0	
98.4     10     µg/L     100     98.4       114.4     10     µg/L     100     0     114       104     10     µg/L     100     0     114       104     10     µg/L     100     0     114       118.8     10     µg/L     100     0     119       118.8     10     µg/L     100     0     119       115.2     10     µg/L     100     0     115       115.2     10     µg/L     100     0     115       115.2     10     µg/L     100     0     115       115.2     10     µg/L     100     0     136       115.2     10     µg/L     100     0     136       115.6     10     µg/L     100     0     136       113.2     10     µg/L     100     0     133       119.4     10     µg/L     100 </td <td>98.4     10     μg/L     100     0     98.4       114.4     10     μg/L     100     0     114       104     10     μg/L     100     0     114       104     10     μg/L     100     0     114       115.2     10     μg/L     100     0     115       115.2     10     μg/L     100     0     120       115.6     10     μg/L     100     0     136       119.6     10     μg/L     100     0     133       119.7     10     μg/L     100     0     133       119.7     10     μg/L<td>Tetrachloroethene</td><td>202.2</td><td>10</td><td>hg/L</td><td>100</td><td>105.2</td><td>97</td><td>82</td><td>129</td><td>0</td><td></td></td>	98.4     10     μg/L     100     0     98.4       114.4     10     μg/L     100     0     114       104     10     μg/L     100     0     114       104     10     μg/L     100     0     114       115.2     10     μg/L     100     0     115       115.2     10     μg/L     100     0     120       115.6     10     μg/L     100     0     136       119.6     10     μg/L     100     0     133       119.7     10     μg/L     100     0     133       119.7     10     μg/L <td>Tetrachloroethene</td> <td>202.2</td> <td>10</td> <td>hg/L</td> <td>100</td> <td>105.2</td> <td>97</td> <td>82</td> <td>129</td> <td>0</td> <td></td>	Tetrachloroethene	202.2	10	hg/L	100	105.2	97	82	129	0	
114.4       10 $\mu g/L$ 100       0       114         104       10 $\mu g/L$ 100       0       104         104       10 $\mu g/L$ 100       0       104         118.8       10 $\mu g/L$ 100       0       115         223.6       10 $\mu g/L$ 100       0       115         115.2       10 $\mu g/L$ 100       0       115         115.2       10 $\mu g/L$ 100       0       115         115.2       10 $\mu g/L$ 100       0       136         115.2       10 $\mu g/L$ 100       0       136         119.6       10 $\mu g/L$ 100       0       136         113.2.2       10 $\mu g/L$ 100       0       133         133.2       10 $\mu g/L$ 100       0       133         133.2       10 $\mu g/L$ 100       0       133         119.4       10 $\mu g/L$ 100       0       133         119.4       10 $\mu g/L$ 100       0       133     <	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Dibromochloromethane	98.4	10	hg/L	100	0	98.4	59	125	0	
104         10 $\mu g/L$ 100         0         104           118.8         10 $\mu g/L$ 100         0         119           223.6         10 $\mu g/L$ 200         0         115           115.2         10 $\mu g/L$ 100         0         115           115.2         10 $\mu g/L$ 100         0         115           115.2         10 $\mu g/L$ 100         0         115           81.75         10 $\mu g/L$ 100         0         115           81.75         10 $\mu g/L$ 100         0         115           81.75         10 $\mu g/L$ 100         0         126           115.6         10 $\mu g/L$ 100         0         126           113.2         10 $\mu g/L$ 100         0         133           122.8         10 $\mu g/L$ 100         0         126           119.4         10 $\mu g/L$ 100         0         133           119.4         10 $\mu g/L$ 100         0	104         10 $\mu g/L$ 100         0         104           118.8         10 $\mu g/L$ 100         0         119           223.6         10 $\mu g/L$ 200         0         115           115.2         10 $\mu g/L$ 100         0         115           115.2         10 $\mu g/L$ 100         0         115           115.2         10 $\mu g/L$ 100         0         115           119.6         10 $\mu g/L$ 100         0         136           119.4         10 $\mu g/L$ 100         0         133           119.4         10 $\mu g/L$ 100         0         133           119.4         10 $\mu g/L$ 100         0         133           119.4         10 $\mu g/L$ 100         0	Chlorobenzene	114.4	10	hg/L	100	0	114	80	120	0	
118.8       10 $\mu g/L$ 100       0       119         223.6       10 $\mu g/L$ 100       0       115         115       10 $\mu g/L$ 100       0       115         115.2       10 $\mu g/L$ 100       0       115 $115.2$ 10 $\mu g/L$ 100       0       115 $81.75$ 10 $\mu g/L$ 100       0       115 $81.75$ 10 $\mu g/L$ 100       0       116 $81.75$ 10 $\mu g/L$ 100       0       126         oroethane       115.6       10 $\mu g/L$ 100       0       126         oroethane       115.6       10 $\mu g/L$ 100       0       136 $103.6$ 10 $\mu g/L$ 100       0       133 $119.4$ 10 $\mu g/L$ 100       0       136 $119.4$ 10 $\mu g/L$ 100       0       136 $119.4$ 10 $\mu g/L$ 100       0       136 $119.4$ 10 $\mu g/$	118.8       10 $\mu g/L$ 100       0       119         223.6       10 $\mu g/L$ 100       0       115         115       10 $\mu g/L$ 100       0       115         115.2       10 $\mu g/L$ 100       0       115         115.2       10 $\mu g/L$ 100       0       115         s1.75       10 $\mu g/L$ 100       0       136         oroethane       119.6       10 $\mu g/L$ 100       0       136         oroethane       119.4       10 $\mu g/L$ 100       0       133         enzene       119.4       10 $\mu g/L$ 100       0       136         enzene       119.4       10 $\mu g/L$ 100       0       133         enzene       119.4       10 $\mu g/L$	1,1,1,2-Tetrachloroethane	104	10	hg/L	100	0	104	72	124	0	
223.6       10 $\mu g/L$ 200       0       112         115       10 $\mu g/L$ 100       0       115         115.2       10 $\mu g/L$ 100       0       115         81.75       10 $\mu g/L$ 100       0       115         oroethane       119.6       10 $\mu g/L$ 100       0       136         oroethane       119.6       10 $\mu g/L$ 100       0       133         oroethane       119.4       10 $\mu g/L$ 100       0       133         ordetacted       119.4       10 $\mu g/L$ 100       0       133         enzene       119.4       10 $\mu g/L$ 100       0       133         enzene       119	223.6       10 $\mu g/L$ 200       0       112         115       10 $\mu g/L$ 100       0       115         81.75       10 $\mu g/L$ 100       0       115         81.75       10 $\mu g/L$ 100       0       115         rooethane       119.6       10 $\mu g/L$ 100       0       126         rooethane       119.6       10 $\mu g/L$ 100       0       126         opane       115.6       10 $\mu g/L$ 100       0       126         opane       115.6       10 $\mu g/L$ 100       0       126         opane       115.6       10 $\mu g/L$ 100       0       126         e       133.2       10 $\mu g/L$ 100       0       133         e       119.4       10 $\mu g/L$ 100       0       136         enzene       119.4       10 $\mu g/L$ 100       0       133         e       119.4       10 $\mu g/L$ 100       0       133         e       119.4       10 $\mu g/L$	Ethylbenzene	118.8	10	hg/L	100	0	119	83	123	0	
115       10 $\mu g/L$ 100       0       115         115.2       10 $\mu g/L$ 100       0       115         81.75       10 $\mu g/L$ 100       0       115         and the stand of the s	115       10 $\mu g/L$ 100       0       115         115.2       10 $\mu g/L$ 100       0       115         81.75       10 $\mu g/L$ 100       0       115         arrow and the stress of th	m,p-Xylene	223.6	10	hg/L	200	0	112	84	121	0	
115.2       10 $\mu g/L$ 100       0       115         81.75       10 $\mu g/L$ 100       0       81.8         81.75       10 $\mu g/L$ 100       0       81.8         broothane       136.2       10 $\mu g/L$ 100       0       136         oroethane       119.6       10 $\mu g/L$ 100       0       126         oroethane       115.6       10 $\mu g/L$ 100       0       136         oroethane       115.6       10 $\mu g/L$ 100       0       136         oroethane       115.6       10 $\mu g/L$ 100       0       133         enzene       119.4       10 $\mu g/L$ 100       0       123         enzene       119.4       10 $\mu g/L$ 100       0       133         enzene       119.4       10 $\mu g/L$ 100       0       136         enzene       119.4       10 $\mu g/L$ 100       0       136         enzene       119.4       10 $\mu g/L$ 100       0       136         enzene <td>115.2         10         $\mu g/L$         100         0         115           $81.75$         10         $\mu g/L$         100         0         81.8           $81.75$         10         $\mu g/L$         100         0         81.8           oroethane         136.2         10         $\mu g/L$         100         0         136           oroethane         119.6         10         $\mu g/L$         100         0         120           oroethane         115.6         10         $\mu g/L$         100         0         120           oroethane         113.6         10         $\mu g/L$         100         0         133           oroethane         119.4         10         $\mu g/L$         100         0         123           enzene         119.4         10         $\mu g/L$         100         0         133           enzene         119.4         10         $\mu g/L$         100         0         136           enzene         119.4         10         $\mu g/L$         100         0         136           enzene         119.4         10         $\mu g/L$         100         0         126           enzene<td>o-Xylene</td><td>115</td><td>10</td><td>hg/L</td><td>100</td><td>0</td><td>115</td><td>83</td><td>119</td><td>0</td><td></td></td>	115.2         10 $\mu g/L$ 100         0         115 $81.75$ 10 $\mu g/L$ 100         0         81.8 $81.75$ 10 $\mu g/L$ 100         0         81.8           oroethane         136.2         10 $\mu g/L$ 100         0         136           oroethane         119.6         10 $\mu g/L$ 100         0         120           oroethane         115.6         10 $\mu g/L$ 100         0         120           oroethane         113.6         10 $\mu g/L$ 100         0         133           oroethane         119.4         10 $\mu g/L$ 100         0         123           enzene         119.4         10 $\mu g/L$ 100         0         133           enzene         119.4         10 $\mu g/L$ 100         0         136           enzene         119.4         10 $\mu g/L$ 100         0         136           enzene         119.4         10 $\mu g/L$ 100         0         126           enzene <td>o-Xylene</td> <td>115</td> <td>10</td> <td>hg/L</td> <td>100</td> <td>0</td> <td>115</td> <td>83</td> <td>119</td> <td>0</td> <td></td>	o-Xylene	115	10	hg/L	100	0	115	83	119	0	
81.75         10 $\mu g/L$ 100         0         81.8           e         136.2         10 $\mu g/L$ 100         0         136           broethane         119.6         10 $\mu g/L$ 100         0         136           oroethane         115.6         10 $\mu g/L$ 100         0         136           opane         115.6         10 $\mu g/L$ 100         0         146           a         133.2         10 $\mu g/L$ 100         0         133           a         133.2         10 $\mu g/L$ 100         0         133           enzene         119.4         10 $\mu g/L$ 100         0         133           enzene         119.4         10 $\mu g/L$ 100         0         133           enzene         119.4         10 $\mu g/L$ 100         0         113           enzene         119.4         10 $\mu g/L$ 100         0         113           enzene         119.4         10 $\mu g/L$ 100         0         113	81.75         10 $\mu g/L$ 100         0         81.8           e         136.2         10 $\mu g/L$ 100         0         136           oroethane         119.6         10 $\mu g/L$ 100         0         136           oroethane         115.6         10 $\mu g/L$ 100         0         136           opane         115.6         10 $\mu g/L$ 100         0         116           a         133.2         10 $\mu g/L$ 100         0         133           a         133.2         10 $\mu g/L$ 100         0         133           enclene         119.4         10 $\mu g/L$ 100         0         133           enzene         119.4         10 $\mu g/L$ 100         0         119	Styrene	115.2	10	hg/L	100	0	115	80	122	0	
e         136.2         10 $\mu g/L$ 100         0         136           broethane         119.6         10 $\mu g/L$ 100         0         136           opane         115.6         10 $\mu g/L$ 100         0         116           opane         115.6         10 $\mu g/L$ 100         0         116           a         133.2         10 $\mu g/L$ 100         0         133           a         133.2         10 $\mu g/L$ 100         0         133           a         133.2         10 $\mu g/L$ 100         0         133           enzene         119.4         10 $\mu g/L$ 100         0         133           enzene         119.4         10 $\mu g/L$ 100         0         149           enzene         119.4         10 $\mu g/L$ 100         0         119           enzene         119.4         10 $\mu g/L$ 100         0         119           enzene         119.4         10 $\mu g/L$ 100         0         119 <td>e         136.2         10         $\mu g/L$         100         0         136           proethane         119.6         10         $\mu g/L$         100         0         136           opane         115.6         10         $\mu g/L$         100         0         120           opane         115.6         10         $\mu g/L$         100         0         136           133.2         10         $\mu g/L$         100         0         133           133.2         10         $\mu g/L$         100         0         133           enclose         119.4         10         $\mu g/L$         100         0         133           enzene         119.4         10         $\mu g/L$         100         0         119           enzene         116.5         10         $\mu g/L$         100         0         119           enzene<td>Bromoform</td><td>. 81.75</td><td>10</td><td>hg/L</td><td>100</td><td>0</td><td>81.8</td><td>54</td><td>119</td><td>0</td><td></td></td>	e         136.2         10 $\mu g/L$ 100         0         136           proethane         119.6         10 $\mu g/L$ 100         0         136           opane         115.6         10 $\mu g/L$ 100         0         120           opane         115.6         10 $\mu g/L$ 100         0         136           133.2         10 $\mu g/L$ 100         0         133           133.2         10 $\mu g/L$ 100         0         133           enclose         119.4         10 $\mu g/L$ 100         0         133           enzene         119.4         10 $\mu g/L$ 100         0         119           enzene         116.5         10 $\mu g/L$ 100         0         119           enzene <td>Bromoform</td> <td>. 81.75</td> <td>10</td> <td>hg/L</td> <td>100</td> <td>0</td> <td>81.8</td> <td>54</td> <td>119</td> <td>0</td> <td></td>	Bromoform	. 81.75	10	hg/L	100	0	81.8	54	119	0	
Increation       119.6       10 $\mu g/L$ 100       0       120         opane       115.6       10 $\mu g/L$ 100       0       116         opane       103.6       10 $\mu g/L$ 100       0       104 $=$ 103.6       10 $\mu g/L$ 100       0       104 $=$ 133.2       10 $\mu g/L$ 100       0       133 $=$ 119.4       10 $\mu g/L$ 100       0       133         enzene       119.8       10 $\mu g/L$ 100       0       119         enzene       119.4       10 $\mu g/L$ 100       0       119         enzene       119.4       10 $\mu g/L$ 100       0       119         enzene       116.5       10 $\mu g/L$ 100       0       119         enzene       116.5       10 $\mu g/L$ 100       0       119         enzene       119.4       10 $\mu g/L$ 100       0       119         enzene       116.5 $\mu g/L$ 100       0       119	rrote transform         119.6         10 $\mu g/L$ 100         0         120           opane         115.6         10 $\mu g/L$ 100         0         116           opane         103.6         10 $\mu g/L$ 100         0         104 $0.3.6$ 10 $\mu g/L$ 100         0         104 $0.3.2$ $133.2$ 10 $\mu g/L$ 100         0         133 $0.72.8$ 10 $\mu g/L$ 100         0         119 $0.72.9$ $0.72.9$ $0.72.9$ $0.72.9$ $0.72.9$ $0.72.9$ $0.72.9$ $0.72.9$ $0.72.9$ $0.72.9$ $0.72.9$ $0.72.9$ $0.72.9$ $0.72.9$ $0.72.9$	Isopropylbenzene	136.2	10	µg/L	100 -	0	136	75	131	0	S
opane         115.6         10 $\mu g/L$ 100         0         116           103.6         10 $\mu g/L$ 100         0         104           133.2         10 $\mu g/L$ 100         0         104           133.2         10 $\mu g/L$ 100         0         133           122.8         10 $\mu g/L$ 100         0         133           enzene         119.4         10 $\mu g/L$ 100         0         119           enzene         119.8         10 $\mu g/L$ 100         0         119           enzene         119.4         10 $\mu g/L$ 100         0         119           enzene         116.5         10 $\mu g/L$ 100         0         116           Locotected at the Reporting Limit         S - Spike Recovery outside accepted recovery limits         0         116           - Analyte detected below quantitation limits         R - RPD outside accepted recovery limits         0         116	opane         115.6         10 $\mu g/L$ 100         0         116           103.6         10 $\mu g/L$ 100         0         104           133.2         10 $\mu g/L$ 100         0         104           133.2         10 $\mu g/L$ 100         0         133           133.2         10 $\mu g/L$ 100         0         133           enzene         119.4         10 $\mu g/L$ 100         0         123           enzene         119.8         10 $\mu g/L$ 100         0         119           enzene         119.4         10 $\mu g/L$ 100         0         119           enzene         116.5         10 $\mu g/L$ 100         0         116           for $\mu g/L$ 10	1,1,2,2-Tetrachloroethane	119.6	10	µg/L	100	0	120	61	139	0	
$ \begin{array}{c ccccc} 10 & \mu g/L & 100 & 0 & 104 \\ 133.2 & 10 & \mu g/L & 100 & 0 & 133 \\ 122.8 & 10 & \mu g/L & 100 & 0 & 133 \\ 119.4 & 10 & \mu g/L & 100 & 0 & 123 \\ enzene & 119.8 & 10 & \mu g/L & 100 & 0 & 119 \\ enzene & 119.4 & 10 & \mu g/L & 100 & 0 & 119 \\ enzene & 119.5 & 10 & \mu g/L & 100 & 0 & 119 \\ enzene & 116.5 & 10 & \mu g/L & 100 & 0 & 116 \\ 10 - Not Detected at the Reporting Limit & S - Spike Recovery outside accepted recovery limits \\ - Analyte detected below quantitation limits & R - RPD outside accepted recovery limits \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2,3-Trichloropropane	115.6	10	µg/L	100	0	116	66	130	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccc} & 13.2 & 10 & \mu g/L & 100 & 0 & 133 \\ & 122.8 & 10 & \mu g/L & 100 & 0 & 123 \\ & 119.4 & 10 & \mu g/L & 100 & 0 & 119 \\ enzene & 119.8 & 10 & \mu g/L & 100 & 0 & 119 \\ enzene & 119.4 & 10 & \mu g/L & 100 & 0 & 119 \\ enzene & 116.5 & 10 & \mu g/L & 100 & 0 & 116 \\ enzene & 116.5 & 10 & \mu g/L & 100 & 0 & 116 \\ & 10 - Not Detected at the Reporting Limit & S - Spike Recovery outside accepted recovery limits \\ - Analyte detected below quantitation limits & R - RPD outside accepted recovery limits \\ L - Reporting Limit, defined as the lowest concentration the laboratory can accurately quantitate. \\ \end{array} $	Bromobenzene	103.6	10	hg/L	100	0	104	-22	124	0	
122.8       10 $\mu g/L$ 100       0       123         119.4       10 $\mu g/L$ 100       0       119         enzene       116.5       10 $\mu g/L$ 100       0       116         ID - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits       0       116         - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits       0       116	$ \begin{array}{cccccc} 122.8 & 10 & \mu g/L & 100 & 0 & 123 \\ 119.4 & 10 & \mu g/L & 100 & 0 & 123 \\ enzene & 119.8 & 10 & \mu g/L & 100 & 0 & 119 \\ enzene & 119.4 & 10 & \mu g/L & 100 & 0 & 119 \\ enzene & 116.5 & 10 & \mu g/L & 100 & 0 & 116 \\ 10 - Not Detected at the Reporting Limit & S - Spike Recovery outside accepted recovery limits \\ - Analyte detected below quantitation limits & R - RPD outside accepted recovery limits \\ L - Reporting Limit, defined as the lowest concentration the laboratory can accurately quantitate. \\ \end{array}$	n-Propylbenzene	133.2	10	hg/L	100	0	133	76	131	0	S
$\begin{array}{cccccc} 119.4 & 10 & \mu g/L & 100 & 0 & 119\\ enzene & 119.8 & 10 & \mu g/L & 100 & 0 & 120\\ enzene & 119.4 & 10 & \mu g/L & 100 & 0 & 119\\ enzene & 116.5 & 10 & \mu g/L & 100 & 0 & 116\\ MD - Not Detected at the Reporting Limit & S - Spike Recovery outside accepted recovery limits\\ - Analyte detected below quantitation limits & R - RPD outside accepted recovery limits \\ \end{array}$	$ \begin{array}{cccccc} 119.4 & 10 & \mu g/L & 100 & 0 & 119\\ enzene & 119.8 & 10 & \mu g/L & 100 & 0 & 120\\ e & 119.4 & 10 & \mu g/L & 100 & 0 & 120\\ enzene & 116.5 & 10 & \mu g/L & 100 & 0 & 116\\ uD - Not Detected at the Reporting Limit & S - Spike Recovery outside accepted recovery limits & - Analyte detected below quantitation limits & R - RPD outside accepted recovery limits & L - Reporting Limit, defined as the lowest concentration the laboratory can accurately quantitate. \\ \end{array}$	2-Chlorotoluene	122.8	10	hg/L	100	ò	123	78	125	Ö	
119.8     10     µg/L     100     0     120       119.4     10     µg/L     100     0     119       116.5     10     µg/L     100     0     116       Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits     0     116	119.810 $\mu g/L$ 1000120119.410 $\mu g/L$ 1000119116.510 $\mu g/L$ 1000116Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limits77te detected below quantitation limitsR - RPD outside accepted recovery limitsR - RPD outside accepted recovery limits	4-Chlorotoluene	119.4	10	hg/L	100	0	119	75	124	0	
119.4     10     μg/L     100     0     119       116.5     10     μg/L     100     0     116       Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits     0     116	119.4     10     μg/L     100     0     119       116.5     10     μg/L     100     0     116       Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits       te detected below quantitation limits     R - RPD outside accepted recovery limits	1,3,5-Trimethylbenzene	119.8	10	hg/L	100	0	120	29	124	0	
116.5     10     μg/L     100     0     116       Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits     R - RPD outside accepted recovery limits	116.5     10     µg/L     100     0     116       Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits     N - RPD outside accepted recovery limits       orting Limit, defined as the lowest concentration the laboratory can accurately quantitate.	tert-Butylbenzene	119.4	10	hg/L	100	0	119	19	126	0	
ND - Not Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits       J - Analyte detected below quantitation limits     R - RPD outside accepted recovery limits	ND - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits         J - Analyte detected below quantitation limits       R - RPD outside accepted recovery limits         RL - Reporting Limit, defined as the lowest concentration the laboratory can accurately quantitate.	1,2,4-Trimethylbenzene	116.5	10	hg/L	100	0	116	11	124	0	
R - RPD outside accepted recovery limits	R - RPD outside accepted recovery limits oncentration the laboratory can accurately quantitate.		cted at the Reporting Limit	S		ry outside accept	ed recovery	limits	B - Analyte de	tected in th	he associated Method Blank	
	•	J - Analyte det	tected below quantitation limits	R		accepted recovery	/ limits		NA - Not appl	icable whe	are J values or ND results occur	
	KL - REDOTTING LITTIN, UCTINICU as the towest controllutation the tabletand value accutation y quantities.	d Id	a I imite defined on the lower or	contration th	a laboratory car	accurately anan	titata		:		L	

AMRO	AMRO Environmental Laboratories Corp.	aboratori	es Corp.							Date: 06-Mar-09	tr-09
CLIENT:		ental & Infra	structure, Inc.							QC SUMMARY REPORT	EPORT
Work Order: Project:	er: 0902072 130274 Textron Gorham	Gorham								Sample Matrix Spike	trix Spike
sec-Butylbenzene	zene	126.5	10	hg/L	100	0	127	82	128	0	
4-Isopropyltoluene	luene	119.6	10	hg/L	100	0	120	77	128	0	
1,3-Dichlorobenzene	enzene	107.2	10	hg/L	100	0	107	80	122	0	
1,4-Dichlorobenzene	enzene	106.4	10	hg/L	100	0	106	78	123	0	
n-Butylbenzene	ine	133.2	10	hg/L	100	0	133	74	130	0	S
1,2-Dichlorobenzene	enzene	102.2	10	hg/L	100	0	102	78	121	0	
1,2-Dibromo-	1,2-Dibromo-3-chloropropane	101.1	25	hg/L	100	0	101	50	127	0	
1,2,4-Trichlorobenzene	obenzene	93.55	10	hg/L	100	0	93.6	67	128	0	
Hexachlorobutadiene	utadiene	89.35	10	hg/L	100	0	89.4	74	134	0 0	
Naphthalene		94.85	25	µg/L	100	0 0	94.8	۶۲ ۲۹	131	2	
1,2,3-Trichlorobenzene	robenzene	88.35	10	hg/L	100	5	88.4	04	131	5 0	
Surr: Dibro	Surr: Dibromofluoromethane	134.3	10	hg/L	125	0	107	82 1	119	0 0	
Surr: 1,2-C	Surr: 1,2-Dichloroethane-d4	121.8	10	hg/L	125	0	97.4	6/	131	0	
Surr: Toluene-d8	∋ne-d8	124.2	10	µg/L	125	0	99.3	06	110	0	
Surr: 4-Brc	Surr: 4-Bromofluorobenzene	106.4	10	hg/L	125	0	85.1	76	117	0	
								,			
											·
								•			
Qualifiers:	ND - Not Detected at the Reporting Limit	cporting Limit	S		- Spike Recovery outside accepted recovery limits	d recovery		B - Analyte d	letected in the	B - Analyte detected in the associated Method Blank	
•	J - Analyte detected below quantitation limits	quantitation lim	nits R	- RPD outside	- RPD outside accepted recovery limits	limits		NA - Not app	licable where .	NA - Not applicable where J values or ND results occur	
	RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.	ned as the lowes	it concentration th	ie laboratory ca	ın accurately quant	itate.					

	Corp.
•	Laboratories (
	AMRO Environmental

Shaw Environmental & Infrastructure, Inc.

0902072

CLIENT: Work Order:

**Date:** 06-Mar-09

QC SUMMARY REPORT

Sample Matrix Spike Duplicate

<b>Project:</b> 130274 T	130274 Textron Gorham								Sample N	Aatrix Spi	Sample Matrix Spike Duplicate	ate
Sample ID 0902072-18Amsd	Batch ID: R41874	Test Code:	SW8260B	Units: µg/L	g/L		Analysis D	Analysis Date 3/5/09 7:32:00 PM	7:32:00 PM	Prep Date	Prep Date <b>2/25/09</b>	
Client ID: MW-112		Run ID:	V-3_090305A	5A			SeqNo:	696835		,		
	QC Sample		0	QC Spike Orig	Original Sample			U	Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluoromethane	116.6	25	hg/L	100	0	117	16	150	122.6	5.02	20	
Chloromethane	107.5	25	hg/L	100	0	108	35	150	111.8	3.88	20	
Vinyl chloride	128.9	10	hg/L	100	0	129	49	150	130.4	1.16	50	
Chloroethane	106.1	25	hg/L	100	0	106	58	147	115.2	8.18	20	
Bromomethane	95.8	10	hg/L	100	0	95.8	49	142	105.6	9.68	20	
Trichlorofluoromethane	121.8	10	hg/L	100	0	122	57	149	128.6	5.35	20	-
Diethyl ether	105.8	25	hg/L	100	0	106	. 66	136	107.3	1.46	20	
Acetone	82.9	50	hg/L	100	0	82.9	16	150	79.45	4.25	20	
1.1-Dichloroethene	129.3	5.0	hg/L	100	0	129	70	150	133	2.82	20	
Carbon disulfide	107.9	10	hg/L	100	0	108	47	135	109.8	1.79	20	
Methylene chloride	130.8	25	hg/L	100	0.51	130	66	142	133.2	1.78	20	
Methyl tert-butyl ether	110.3	10	hg/L	100	0	110	63	138	108.2	1.97	20	
trans-1,2-Dichloroethene	128.4	10	hg/L	100	0	128	78	135	126.2	1.73	20	
1,1-Dichloroethane	124.4	10	hg/L	100	0	124	76	131	124.8	0.401	20	
2-Butanone	92.5	50	hg/L	100	0	92.5	51	142	90.15	2.57	20	
2,2-Dichloropropane	115.6	10	µg/L	100	0	116	60	149	117.6	1.67	20	
cis-1,2-Dichloroethene	117.6	10	hg/L	100	0.73	117	74	128	118.2	0.466	20	
Chloroform	139.5	10	hg/L	100	20.11	119	80	129	138.9	0.431	20	
Tetrahydrofuran	91.1	50	hg/L	100	0	91.1	53	145	105.4	14.6	20	
Bromochloromethane	129.8	10	hg/L	100	0	130	78	130	123.2	5.22	20	
1,1,1-Trichloroethane	131.2	10	hg/L	100	0	131	77	139	125.8	4.2	20	
1,1-Dichloropropene	132.6	10	hg/L	100	0	133	74	127	134.5	1.46	20	S
Carbon tetrachloride	108.6	10	hg/L	100	0	109	73	138	111.4	2.64	20	
1,2-Dichloroethane	114.6	10	hg/L	100	0	115	. 75	130	114.4	0.175	20	
Benzene	128.5	5.0	hg/L	100	0	128	79	123	127.6	0.703	20	s
Qualifiers: ND - Not Detected	ND - Not Detected at the Reporting Limit	S-	Spike Recov	Spike Recovery outside accepted recovery limits	cpted recovery	' limits	B - Analy	te detected in	B - Analyte detected in the associated Method Blank	hod Blank		
J - Analyte detecte	J - Analyte detected below quantitation limits	R -	RPD outside	RPD outside accepted recovery limits	/ery limits		NA - Not	applicable w	NA - Not applicable where J values or ND results occur	results occur		

10111111

We Environmental & Infrastructure, Inc.         QC SUMMARY REI Sample Matrix Spike DI.           00072         274 Textron Gonham         Partice Spike DI.           0071         1756         10         ppl.         100         126         1034         124           0172         10         ppl.         100         203         125         125         1034         134           1173         10         ppl.         100         011         73         127         1034         134           1134         5.0         ppl.         100         0         113         122         123         134         218           1134         5.0         ppl.         100         0         113         123         127         113         0.035           1134         5.0         ppl.         100         0         113         218         0.025           1132         10         ppl.         100         0         123         123         1133         216           1132         10         ppl.         100         0         123         123         107         123         134           1132         10         101         100				4							, san an a			-
02747         Textron Gorham         126.6         10         µg/L         100         4.48         122         79         126           1177.9         10         µg/L         100         0.48         122         79         126           1177.1         10         µg/L         100         0.117         76         127           117.1         10         µg/L         100         0         117         76         127           117.1         10         µg/L         100         0         117         76         127           93.45         50         µg/L         100         0         113         70         114           113.4         5.0         µg/L         100         0         123         124           113.4         10         µg/L         100         0         123         124           113.5         10         µg/L         100         0         124         124           113.6         10         µg/L         100         0         124         124           113.6         10         µg/L         100         0         124         124           113.6         10	CLIENT:	Shaw Environme	ntal & Infrastruc	ture, Inc.			×				QC SUM	MARY F	LEPOI	RI
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Work Order: Project:	0902072 130274 Textron	Gorham								Sample M	atrix Spike	Duplic	cate
1779         10 $101$ 100 $201$ 100 $201$ 100 $201$ 100 $201$ 100 $201$ 101 $201$ 101 $201$ 101 $201$ 101 $201$ 101 $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ $201$ <	richloroethene		126.6	10	ua/L	100	4.48	122	62	126	126.4	0.0791	20	1
116         10         jgl.         100         208         114         66         191         103         216           117.1         10         jgl.         100         0         117         75         113         0.257         248           83.45         5.0         jgl.         100         0         113         70         119         113         0.257           83.45         5.0         jgl.         100         0         123         70         119         113         0.355           119.8         10         jgl.         100         0         120         86         73         127         107         1.39         0.357           108.4         10         jgl.         100         0         116         73         127         107         1.39           108.4         10         jgl.         100         0         120         0.257         3.3           115.4         10         jgl.         100         101         107         1.39         0.357           116.4         10         jgl.         100         101         107         126         0.37           1116.4         10 <td>.2-Dichloropropa</td> <td>ne</td> <td>127.9</td> <td>10</td> <td>hg/L</td> <td>100</td> <td>0</td> <td>128</td> <td>76</td> <td>125</td> <td>126.2</td> <td>1.34</td> <td>20</td> <td>S</td>	.2-Dichloropropa	ne	127.9	10	hg/L	100	0	128	76	125	126.2	1.34	20	S
117.1         10         lig/L         100         0         117         76         127         116.8         0.257           33.45         50         lig/L         100         0         133         75         141         96.75         2.43           113.4         5.0         lig/L         100         0         123         23         123         0.355         2.43           113.4         5.0         lig/L         100         0         130         63         124         120.2         0.37           168.55         50         lig/L         100         0         108         63         7         127         107         1.39           168.55         50         lig/L         100         0         135         127         107         1.39           86.55         50         lig/L         100         0         133         127         107         1.39           86.55         10         lig/L         100         105.2         74         107         1.39           86.55         10         lig/L         100         105.2         243         3.3           113.64         10         lig/L	3romodichloromet	thane	116	10	hg/L	100	2.08	114	69	119	113.4	2.18	20	
83.45         50         lg/L         100         0         33.4         53         141         85.75         2.43           113.4         5.0         lg/L         100         0         113         70         114         85.75         2.43           113.4         5.0         lg/L         100         0         103         73         127         107.2         2.81           110.2         10         lg/L         100         0         100         73         127         107.2         2.81           86.55         50         lg/L         100         0         168         73         127         107.2         2.81           86.55         50         lg/L         100         0         123         127         107.2         2.81           86.55         10         lg/L         100         105.2         97.8         88.5         123         123         123         123         123         123         123         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133	Dibromomethane		117.1	10	hg/L	100	0	117	76	127	116.8	0.257	20	
113.4         5.0         µg/L         100         0         113         70         113         113         0         033           113.8         10         µg/L         100         0         120         130         131         0         035           110.8         10         µg/L         100         0         110         73         127         107.2         2.81           110.8.4         10         µg/L         100         0         108         73         127         107.2         2.81           108.4         10         µg/L         100         0         108         73         127         107.2         2.81           113.8         10         µg/L         100         0         13         27         107.2         2.81           98.85         10         µg/L         100         0         13         27         107         1.39           115.4         10         µg/L         100         0         13         27         107         1.39           2022         10         µg/L         100         0         115         8         120.2         0.31           115.4 <t< td=""><td>-Methyl-2-pentan</td><td>ione</td><td>93.45</td><td>50</td><td>hg/L</td><td>100</td><td>0</td><td>93.4</td><td>53</td><td>141</td><td>95.75</td><td>2.43</td><td>20</td><td></td></t<>	-Methyl-2-pentan	ione	93.45	50	hg/L	100	0	93.4	53	141	95.75	2.43	20	
113.8         10         µg/L         100         120         124         1222         0.335           107.8         5.0         µg/L         100         0         108         73         127         107.25         0.694           110.2         10         µg/L         100         0         108         73         127         107.25         0.694           108.4         10         µg/L         100         0         108         73         127         107.25         2.81           86.55         50         µg/L         100         0         108         73         127         107         1.39           86.55         10         µg/L         100         0         128         83         45         3.3           113.8         10         µg/L         100         0         118         83         123         138         0.557           98.95         10         µg/L         100         0         118         83         123         138         0.557           115.4         10         µg/L         100         0         118         83         123         138         0.557           115.4<	is-1,3-Dichloropre	opene	113.4	5.0	hg/L	100	0	113	70	119	113	0.353	20	
Allocporpere         107.8         5.0 $\mu gl.         100         0         101         73         124         108.5         0.64           chelhane         103.4         10         \mu gl.         100         0         101         73         127         1072         123           enthane         103.4         10         \mu gl.         100         0         126         73         127         1072         123           enthane         86.55         50         \mu gl.         100         0         126         73         127         1072         123           propane         115.4         10         \mu gl.         100         105.2         97         95         123         123         123         133           propane         115.4         10         \mu gl.         100         106.2         97         93         123         133         133           remethane         98.35         10         \mu gl.         100         \mu gl.         100         101         101         101         101         101         101         101         101         101         101         101         101         101         101         $	oluene	_	119.8	10	hg/L	100	0	120	82	124	120.2	0.375	20	
roethane         110.2         10         µg/L         100         0         110         73         127         107.2         2.81           ethane         86.55         50         µg/L         100         0         108         73         127         107.2         2.81           ethane         86.55         50         µg/L         100         0         128         73         127         107.2         2.81           popene         119.8         10         µg/L         100         105.2         97.8         82         129         0.57           one         113.4         10         µg/L         100         103         72         124         104         0.57           one         113.4         10         µg/L         100         0         113         82         223         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103	rans-1.3-Dichloro	propene	107.8	5.0	hg/L	100	0	108	64	124	108.5	0.694	20	
ethane         108.4         10 $\mu\sigma/L$ 100         108         73         127         107         139           ethane         86.55         50 $\mu\sigma/L$ 100         0         256         37         145         89.45         33           propene         113.8         10 $\mu\sigma/L$ 100         105.2         97.8         82         123         107         133           other         233         10 $\mu\sigma/L$ 100         105.2         97.8         82         123         107         133           other         113.4         10 $\mu\sigma/L$ 100         0         133         222.7         10 $\mu\sigma/L$ 100         103.7         202.2         0.31           condentane         116.6         10 $\mu\sigma/L$ 100         0         133         223.7         10.4         0.51           ethoace         222.7         10 $\mu\sigma/L$ 100         0         113         233.1         10.3           ethoace         222.7         10 $\mu\sigma/L$ 100         121.7         133         136.2         133           ethoace <td>,1,2-Trichloroeth</td> <td>ane</td> <td>110.2</td> <td>10</td> <td>hg/L</td> <td>100</td> <td>0</td> <td>110</td> <td>73</td> <td>127</td> <td>107.2</td> <td>2.81</td> <td>20</td> <td></td>	,1,2-Trichloroeth	ane	110.2	10	hg/L	100	0	110	73	127	107.2	2.81	20	
B6.55         50         µg/L         100         0         86.6         37         145         88.45         3.3           propare         119.8         10         µg/L         100         103         7         7         7         8         2         3.3           rene         203         10         µg/L         100         105         7         7         3         720         0.25           rene         115.4         10         µg/L         100         0         3         7         123         17.4         0.31           commethane         913.4         10         µg/L         100         0         3         7         123         10.2         0.37           constraine         913.4         10         µg/L         100         0         11         83         123         10.4         0.37           echloroethane         116.6         10         µg/L         100         0         11         83         123         114         0.37           echloroethane         115.8         10         µg/L         100         0         117         83         113         114         0.57 <t< td=""><td>,2-Dibromoethan</td><td>e</td><td>108.4</td><td>10</td><td>hg/L</td><td>100</td><td>0</td><td>108</td><td>73</td><td>127</td><td>107</td><td>1.39</td><td>20</td><td></td></t<>	,2-Dibromoethan	e	108.4	10	hg/L	100	0	108	73	127	107	1.39	20	
propane         113.8         10 $\mu g/L$ 100         102         120         123         120         0.25           thene         203         10 $\mu g/L$ 100         105.2         97.8         82         129         0.357           comethane         115.4         10 $\mu g/L$ 100         0         113         80         114.4         0.357           comethane         115.4         10 $\mu g/L$ 100         0         113         80         123         124         0.357           comethane         115.4         10 $\mu g/L$ 100         0         113         83         123         114.4         0.357           e         22227         10 $\mu g/L$ 100         0         111         84         121         223.6         0.381           e         2223         10 $\mu g/L$ 100 $\mu g/L$ 100 $0.57$ 0.51         0.57           e         2223         10 $\mu g/L$ 100 $0.72$ 113.8         0.55         0.51           zene         123         123         123 <td>-Hexanone</td> <td></td> <td>86.55</td> <td>50</td> <td>hg/L</td> <td>100</td> <td>0</td> <td>86.6</td> <td>37</td> <td>145</td> <td>89.45</td> <td>3.3</td> <td>20</td> <td></td>	-Hexanone		86.55	50	hg/L	100	0	86.6	37	145	89.45	3.3	20	
203         10         µg/L         100         105.2         97.8         82         129         202.2         0.37           38.85         10         µg/L         100         0         99         59         125         98.4         0.557           38.85         10         µg/L         100         0         115         80         125         114.4         0.914           115.4         10         µg/L         100         0         117         83         123         114.4         0.567           116.6         10         µg/L         100         0         117         83         123         114.4         0.567           115.8         10         µg/L         100         0         117         83         123         143           115.8         10         µg/L         100         0         117         83         136         0.519           82.255         10         µg/L         100         0         116         80         152         1152         0.519           82.255         10         µg/L         100         0         126         131         136.2         1.31           11	,3-Dichloropropa	ne	119.8	10	µg/L	100	0	120	76	123	120	0.25	20	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	etrachloroethene		203	10	hg/L	100	105.2	97.8	82	129	202.2	0.37	20	
115.4         10         µg/L         100         0         115         80         120         114.4         0.314           roethame         103.4         10         µg/L         100         0         103         72         124         104         0.675           roethame         103.4         10         µg/L         100         0         113         83         123         1138         0.676           222.7         10         µg/L         100         0         117         83         119         115.2         0.519           115.8         10         µg/L         100         0         138         75         131         135.2         0.519           nothhane         12.0.3         10         µg/L         100         0         138         75         131         136.2         131           nothhane         115.4         10         µg/L         100         0         136         136         136.2         131         136.2         131           nothhane         115.4         10         µg/L         100         0         136         136         136         136         136           nothnane	ibromochlorome	thane	98.95	10	hg/L	100	0	66	29	125	98.4	0.557	20	
Incertname         103.4         10         µg/L         100         0         103         72         124         104         0.675           118         10         µg/L         100         0         118         83         123         118.8         0.676           222.7         10         µg/L         100         0         117         83         123         118.8         0.676           222.7         10         µg/L         100         0         117         83         123         118.8         0.676           115.8         10         µg/L         100         0         117         83         115         1.43           115.8         10         µg/L         100         0         122         115.2         0.519           82.25         10         µg/L         100         0         126         131         115.2         0.519           pane         115.4         10         µg/L         100         0         122         1136         0.13           rothmane         115.4         10         µg/L         100         0         122         131         136.2         1.31           rothmane <td>hlorobenzene</td> <td></td> <td>115.4</td> <td>10</td> <td>hg/L</td> <td>100</td> <td>0</td> <td>115</td> <td>80</td> <td>120</td> <td>114.4</td> <td>0.914</td> <td>20</td> <td></td>	hlorobenzene		115.4	10	hg/L	100	0	115	80	120	114.4	0.914	20	
118       10 $\mu g/L$ 100       0       118       83       123       118.8       0.676         222.7       10 $\mu g/L$ 100       0       111       84       121       223.6       0.381         115.8       10 $\mu g/L$ 100       0       117       83       119       115.2       0.519         82.25       10 $\mu g/L$ 100       0       116       80       122       115.2       0.519         notethane       133       10 $\mu g/L$ 100       0       138       75       131       136.2       1.31         notethane       115.4       10 $\mu g/L$ 100       0       115       66       130       115.6       0.13         notethane       126.3       10 $\mu g/L$ 100       0       125       131       136.2       1.31         notethane       126.4       100       0       115       66       130       115.6       0.51         notethane       126       10 $\mu g/L$ 100       0       122       133       136.2       2.68         126.6       10 $\mu $	,1,1,2-Tetrachlor	oethane	103.4	10	hg/L	100	0	103	72	124	104	0.675	20	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	thylbenzene		118	10	hg/L	100	0	118	83	123	118.8	0.676	20	
116.6       10 $\mu g/L$ 100       0       117       83       119       115       143         115.8       10 $\mu g/L$ 100       0       116       80       122       115.2       0.519         82.25       10 $\mu g/L$ 100       0       138       75       131       135.2       1.31         roethane       138       10 $\mu g/L$ 100       0       138       75       131       136.2       1.31         roethane       115.4       10 $\mu g/L$ 100       0       136       75       131       136.2       1.31         roethane       115.4       10 $\mu g/L$ 100       0       115       66       130       115.2       0.519         pane       115.4       10 $\mu g/L$ 100       0       126       133       133.2       2.08         nzene       121.6       10 $\mu g/L$ 100       0       127       77       124       103.6       0.314         nzene       121.6       10 $\mu g/L$ 100       0       122       78       119.4       1.78       1.66	n,p-Xylene		222.7	10	hg/L	200	0	111	84	121	223.6	0.381	20	
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	-Xylene		116.6	10	hg/L	100	0	117	83	119	115	1.43	20	
B2.25         10 $\mu g/L$ 100         0         82.2         54         119         81.75         0.61           roethane         138         10 $\mu g/L$ 100         0         138         75         131         136.2         1.31           roethane         115.4         10 $\mu g/L$ 100         0         126         61         139         119.6         0.584           spane         115.4         10 $\mu g/L$ 100         0         126         66         130         115.6         0.13           spane         106.9         10 $\mu g/L$ 100         0         126         66         130         115.6         0.13           spane         121.6         10 $\mu g/L$ 100         0         122         76         131         133.2         2.08           anzene         121.6         10 $\mu g/L$ 100         0         122         75         124         116.4         2.6           anzene         121.6         10 $\mu g/L$ 100         0         122         75         124         116.4         1.6	tyrene		115.8	10	hg/L	100	0	116	80	122	115.2	0.519	20	
138       10       µg/L       100       0       138       75       131       136.2       1.31         roethane       120.3       10       µg/L       100       0       120       61       139       19.6       0.584         roethane       115.4       10       µg/L       100       0       115       66       130       115.6       0.13         pane       115.4       10       µg/L       100       0       136       77       72       124       103.6       3.14         136       10       µg/L       100       0       135       75       124       103.6       3.14         nzene       121.6       10       µg/L       100       0       122       78       125       12.8       0.982         nzene       121.6       10       µg/L       100       0       123       75       124       119.4       2.6         nzene       121.6       10       µg/L       100       0       123       77       124       119.4       2.6         nzene       121.3       10       µg/L       100       0       123       77       124       1.16	tromoform		82.25	10	hg/L	100	0	82.2	54	119	81.75	0.61	20	
Toethane         120.3         10 $\mu g/L$ 100         0         120         61         139         119.6         0.584           ppane         115.4         10 $\mu g/L$ 100         0         115         66         130         115.6         0.13           ppane         106.9         10 $\mu g/L$ 100         0         115         66         130         115.6         0.13           136         10 $\mu g/L$ 100         0         136         76         131         133.2         2.08           121.6         10 $\mu g/L$ 100         0         122         78         125.8         0.982           anzene         121.3         10 $\mu g/L$ 100         0         123         75         124         119.4         2.6           anzene         121.6         10 $\mu g/L$ 100         0         122         79         124         116.4         2.6           anzene         118.2         10 $\mu g/L$ 100         0         121         79         124         1.16           anzene         118.2         10 <td>sopropylbenzene</td> <td></td> <td>138</td> <td>10</td> <td>hg/L</td> <td>100</td> <td>0</td> <td>138</td> <td>75</td> <td>131</td> <td>136.2</td> <td>1.31</td> <td>20</td> <td>S</td>	sopropylbenzene		138	10	hg/L	100	0	138	75	131	136.2	1.31	20	S
ppane         115.4         10 $µg/L$ 100         0         115         66         130         115.6         0.13           106.9         10 $µg/L$ 100         0         107         77         124         103.6         3.14           136         10 $µg/L$ 100         0         136         76         131         133.2         2.08           121.6         10 $µg/L$ 100         0         122         78         125         122.8         0.982           anzene         121.3         10 $µg/L$ 100         0         122         78         125         122.8         0.982           anzene         121.6         10 $µg/L$ 100         0         122         79         124         116.4         2.6           anzene         118.2         10 $µg/L$ 100         0         122         79         126         116.4         1.16           anzene         118.2         10 $µg/L$ 100         0         122         79         124         1.16         1.16           anzene         118.2	,1,2,2-Tetrachlor	oethane	120.3	10	hg/L	100	0	120	61	139	119.6	0.584	20	
106.9       10 $\mu g/L$ 100       0       107       77       124       103.6       3.14         136       10 $\mu g/L$ 100       0       136       76       131       133.2       2.08         121.6       10 $\mu g/L$ 100       0       122       78       125       122.8       0.982         nzene       121.3       10 $\mu g/L$ 100       0       123       75       124       119.4       2.6         nzene       121.6       10 $\mu g/L$ 100       0       121       79       124       116.4       2.6         nzene       121.6       10 $\mu g/L$ 100       0       122       79       124       1.16         nzene       118.2       10 $\mu g/L$ 100       0       122       79       126       1.16.4       1.76         nzene       118.2       10 $\mu g/L$ 100       0       122       79       124       1.16         0       Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits       Analyte detected in the associated Method Blank       1.165       1.49	,2,3-Trichloropro	pane	115.4	10	hg/L	100	0	115	66	130	115.6	0.13	20	
136       10 $\mu g/L$ 100       0       136       76       131       133.2       2.08         121.6       10 $\mu g/L$ 100       0       122       78       125       122.8       0.982         122.6       10 $\mu g/L$ 100       0       122       78       125       122.8       0.982         anzene       121.3       10 $\mu g/L$ 100       0       121       79       124       119.4       2.6         anzene       121.6       10 $\mu g/L$ 100       0       122       79       126       1.16       1.16         anzene       118.2       10 $\mu g/L$ 100       0       122       79       126       1.16       1.49         anzene       118.2       10 $\mu g/L$ 100       0       118       77       124       1.165       1.49         D - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits       B - Analyte detected in the associated Method Blank       1.49       1.49	sromobenzene		106.9	10	hg/L	100	0	107	77	124	103.6	3.14	20	
121.6       10 $\mu g/L$ 100       0       122       78       125       122.8       0.982         122.6       10 $\mu g/L$ 100       0       123       75       124       119.4       2.6         anzene       121.6       10 $\mu g/L$ 100       0       121       79       124       1.16         anzene       121.6       10 $\mu g/L$ 100       0       122       79       126       1.16         anzene       118.2       10 $\mu g/L$ 100       0       122       79       126       1.16       1.78         anzene       118.2       10 $\mu g/L$ 100       0       118       77       124       1.69       1.49         D - Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits       B - Analyte detected in the associated Method Blank	-Propylbenzene		136	10	hg/L	100	0	136	76	131	133.2	2.08	20	S
122.6       10 $\mu g/L$ 100       0       123       75       124       119.4       2.6         nzene       121.3       10 $\mu g/L$ 100       0       121       79       124       119.8       1.16         nzene       121.6       10 $\mu g/L$ 100       0       122       79       126       1.19.8       1.16         nzene       118.2       10 $\mu g/L$ 100       0       122       79       126       1.19.4       1.78         0. Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits       0       118       77       124       116.5       1.49	-Chlorotoluene		121.6	10	hg/L	100	0	122	78	125	122.8	0.982	20	
nzene       121.3       10 $\mu g/L$ 100       0       121       79       124       119.8       1.16         121.6       10 $\mu g/L$ 100       0       122       79       126       119.4       1.78         nzene       118.2       10 $\mu g/L$ 100       0       118       77       124       116.5       1.49         0. Not Detected at the Reporting Limit       S - Spike Recovery outside accepted recovery limits       0       118       B - Analyte detected in the associated Method Blank	Chlorotoluene	ь.	122.6	10	hg/L	100	0	123	75	124	119.4	2.6	20	
121.610 $\mu g/L$ 100012279126119.41.78nzene118.210 $\mu g/L$ 100011877124116.51.490. Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method Blank	,3,5-Trimethylbe	nzene	121.3	10	hg/L	100	0	121	79	124	119.8	1.16	20	
118.2     10     µg/L     100     0     118       Detected at the Reporting Limit     S - Spike Recovery outside accepted recovery limits     N D D D D D D D D D D D D D D D D D D D	ert-Butylbenzene		121.6	10	hg/L	100	0	122	79	126	119.4	1.78	20	
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	1,2,4-Trimethylbe	nzene	118.2	10	hg/L	100	0	118	77	124	116.5	1.49	20	
D DDD antride accounted accounter limite		) - Not Detected at the Re	sporting Limit	S.	1	ry outside accep	oted recovery	limits	B - Analyte dete	scted in the	e associated Methe	od Blank		
J - Analyte detected below quantitation limits K - KPD outside accepted recovery limits NA - Not annlicable where J values or ND results occur		Analyte detected below o	quantitation limits	24	: - RPD outside	accepted recove	rv limits		Mot Mot annlie		- T unduran on ND -	and to accure		

**Date:** 06-Mar-09

<b>CLIENT:</b>	Shaw Environmental & Infrastructure, Inc.	ital & Infrastru	icture, Inc.						-	OC SUMMARY REPORT	<b>ARY R</b>	EPOR	
Work Order:	0902072										Called and	Dualizat	
Project:	130274 Textron Gorham	Gorham				:				Sample Maury Spike Dupircate	oxide XIII	лирисан	D, I
sec-Butvlbenzene		130.1	10	µg/L	100	0	130	82	128	126.5	2.81	20	s
4-Isopropyltoluene		122	10	hg/L	100	0	122	77	128	119.6.	1.99	20	
1.3-Dichlorobenzene	۵	109.9	10	hg/L	100	0	110	80	122	107.2	2.44	20	
1,4-Dichlorobenzene	Ð	108.4	10	hg/L	100	0	108	78	123	106.4	1.91	20	
n-Butylbenzene		137.4	10	hg/L	100	0	137	74	130	133.2	3.11	20	S
1.2-Dichlorobenzene	Ĵ	104.2	10	hg/L	100	0	104	78	121	102.2	2.03	20	
1.2-Dibromo-3-chloropropane	opropane	101.7	25	hg/L	100	0	102	50	127	101.1	0.543	20	
1,2,4-Trichlorobenzene	ene .	96.1	10	hg/L	100	0	96.1	. 67	128	93.55	2.69	20	
Hexachlorobutadiene	le	92.9	10	hg/L	100	0	92.9	74	134	89.35	3.9	20	
Naphthalene		94.2	25	µg/L	100	0	94.2	57	131	94.85	0.688	20	
1,2,3-Trichlorobenzene	ene	90.5	10	hg/L	100	0	90.5	64	131	88.35	2.4	20	
Surr: Dibromofluoromethane	romethane	135.9	10	hg/L	125	0	109	85	119	0	0	0	
Surr: 1,2-Dichloroethane-d4	bethane-d4	121.2	10	hg/L	125	0	96.9	. 79	131	0	0	0	
Surr: Toluene-d8		127.2	10	hg/L	125	0	102	06	110	0	0	0	
Surr: 4-Bromofiuorobenzene	orobenzene	104.8	10	hg/L	125	0	83.9	76	117	0	0	0	

R - RPD outside accepted recovery limits J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

Qualifiers: , ND - Not Detected at the Reporting Limit

accepted recovery limits NA - Not applicable where J values or ND results occur

B - Analyte detected in the associated Method Blank

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:0902072Project:130274 Textron GorhamLab ID:0902072-19A

Date: 09-Mar-09

Client Sample ID: CW-6 Tag Number: Collection Date: 2/25/2009 2:31:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
TPH BY GC/FID (MODIFIED 8015B)	S	W8015B			Analyst: SD
Gasoline	ND	0.050	mg/L	1	3/5/2009 5:00:00 AM
Mineral Spirits	ND	0.050	mg/L	1	3/5/2009 5:00:00 AM
Kerosene	ND	0.050	mg/L	1	3/5/2009 5:00:00 AM
Diesel Fuel/Fuel Oil #2	ND	0.050	mg/L	1.	3/5/2009 5:00:00 AM
Motor Oil/Hydraulic Oil	ND	0.10	mg/L	1	3/5/2009 5:00:00 AM
Unidentified Hydrocarbons	11 -	0.10	mg/L	1	3/5/2009 5:00:00 AM
Surr: o-Terphenyl	81.6	31-131	%REC	1	3/5/2009 5:00:00 AM

Gasoline cannot be accurately determined by this method. Purge and trap sample introduction into a GC or GCMS is the recommended approach for gasoline. Due to the physical, chemical, and biological processes which affect the chemical composition of fuel mixtures exposed to the environment, the qualitative identity of a hydrocarbon mixture as a fuel product is not always conclusive by this method due to the method's reliance on chromatographic pattern recognition. A result provided for a specific fuel indicates that the mixture present in the sample has a chromatographic pattern similar to the laboratory's reference standard for that fuel mixture under specific GC operating conditions utilized at the time of analysis. A result identified as Unidentified Hydrocarbons is based upon the detector response obtained for the laboratory's Fuel Oil#2 reference standard and includes the entire chromatographic response for the sample between n-Alkanes of carbon numbers C9 to C36.

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

H - Method prescribed holding time exceeded.

R - RPD outside accepted recovery limits

E - Value above quantitation range

B - Analyte detected in the associated Method Blank

# - See Case Narrative

Shaw Environmental & Infrastructure, Inc. **CLIENT:** Lab Order: 0902072 130274 Textron Gorham **Project:** 0902072-20A Lab ID:

Date: 09-Mar-09

Client Sample ID: CW-6 Dupe **Tag Number:** Collection Date: 2/25/2009 2:32:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
TPH BY GC/FID (MODIFIED 8015B)	S	W8015B			Analyst: SD
Gasoline	ND	0.050	mg/L	1.	3/5/2009 4:19:00 AM
Mineral Spirits	NĎ	0.050	mg/L	1	3/5/2009 4:19:00 AM
Kerosene	ND	0.050	mg/L	1	3/5/2009 4:19:00 AM
Diesel Fuel/Fuel Oil #2	ND	0.050	mg/L	1	3/5/2009 4:19:00 AM
Motor Oil/Hydraulic Oil	ND	0.10	mg/L	1	3/5/2009 4:19:00 AM
Unidentified Hydrocarbons	10	0.10	mg/L	1	3/5/2009 4:19:00 AM
Surr: o-Terphenyl	77.7	31-131	%REC	1	3/5/2009 4:19:00 AM

Gasoline cannot be accurately determined by this method. Purge and trap sample introduction into a GC or GCMS is the recommended approach for gasoline. Due to the physical, chemical, and biological processes which affect the chemical composition of fuel mixtures exposed to the environment, the qualitative identity of a hydrocarbon mixture as a fuel product is not always conclusive by this method due to the method's reliance on chromatographic pattern recognition. A result provided for a specific fuel indicates that the mixture present in the sample has a chromatographic pattern similar to the laboratory's reference standard for that fuel mixture under specific GC operating conditions utilized at the time of analysis. A result identified as Unidentified Hydrocarbons is based upon the detector response obtained for the laboratory's Fuel Oil#2 reference standard and includes the entire chromatographic response for the sample between n-Alkanes of carbon numbers C9 to C36.

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Method prescribed holding time exceeded.

# - See Case Narrative

Work Ordon	Chaw F	Shaw Environmental & Infrastructure Inc	ichire Inc										
Project:		0902072 130274 Textron Gorham								QC SUMIMARY REPORT Method Blank		Y KEPUKI Method Blank	<b>KI</b> ank
Sample ID: MB-19141	·19141	Batch ID: 19141	Test Code:	: SW8015B	Units: mg/L			Analysis D	ate: 3/5/2009	Analysis Date: 3/5/2009 2:14:00 AM	Prep Date	Prep Date: 3/4/2009	
Client ID:			Run ID:		_090304A			SeqNo:	696769				
Analyte	•	QC Sample Result	RL	0 Units	QC Spike Original Sample Amount Result		%REC	LowLimit	O HighLimit	Original Sample or MS Result	%RPD	RPDLimit	Qué
Gasoline		9	0.050	mg/L									
Mineral opirits Kerosene		D D	0.050	mg/L									
Diesel Fuel/Fuel Oil #2	Oil #2 :: 0::	QN :	0.050	mg/L									
Motor Oil/Hydraulic Oil Unidentified Hvdrocarbons	ulic Oil trocarbons	D D	0.10	mg/L mg/L									
Surr: o-Terphenyl	enyl	0.09008	0	mg/L	0.1	0	90.1	31	131	0		·	
												•	
										-			
		e*											
					-								
		-											
							÷						•
					-							ι.	
-									-		•		
Qualifiers: N	VD - Not Detect	ND - Not Detected at the Reporting Limit	S-	· Spike Recove	S - Spike Recovery outside accepted recovery limits	ed recovery	limits	B - Analyt	te detected in t	B - Analyte detected in the associated Method Blank	thod Blank		
ſ	- Analyte deter	J - Analyte detected below guantitation limits		. R P D outcide	R - RDD outside accented recovery limits	limite							

AMRO Er	ıvironmen	AMRO Environmental Laboratories Corp.	Corp.			· · · ·		· -			<b>Date:</b> 13-Mar-09	-Mar-09	
CLIENT: Work Order: Project:		Shaw Environmental & Infrastructure, Inc 0902072 130274 Textron Gorham	icture, Inc.						•	QC SUMMARY REPORT Laboratory Control Spike	JMMARY REPORT Laboratory Control Spike	REPOF ontrol Sp	l ike
Sample ID: LCS-19141 Client ID:	-19141	Batch ID: 19141	Test Code: SW8015B Run ID: GC-FING1	SW8015B Units: GC-FING1_090304A	Units: mg/L )90304A [·]			Analysis Da SeqNo:	Analysis Date: 3/5/2009 2:55:00 AM SeqNo: 696756	2:55:00 AM	Prep Date: 3/4/2009	3/4/2009	
Analyte		QC Sample Result	RL	Units QC			%REC	LowLimit	O HighLimit	Original Sample or MS Result	%RPD	RPDLimit	Qui
Diesel Fuel/Fuel Oil #2 Surr: o-Terphenyl	Oil #2 anyl	1.595 0.08776	0.050	mg/L	2 0.1	00	79.8 87.8	42 31	119 131	00			
Sample ÍD: LCSD-19141 Client ID:	iD-19141	Batch ID: 19141	Test Code: SW8015B Run ID: GC-FING1	SW8015B Units GC-FING1_090304A	Units: mg/L )90304A			Analysis Da SeqNo:	Analysis Date: 3/5/2009 3:37:00 AM SeqNo: 696757	3:37:00 AM	Prep Date: 3/4/2009	3/4/2009	Í
Analyte		QC Sample Result	RL	Q Units	QC Spike Original Sample Amount Result		%REC	LowLimit	O	Original Sample or MS Result	%RPD	RPDLimit	Quí
Diesel Fuel/Fuel Oil #2 Surr: o-Terphenyl	⊖oil #2 ∍nyl	1.564 0.08893	0.050	mg/L mg/L	2 0.1	00	78.2 88.9	42 31	119 131	1.595 0	1.98 0	0 0	
		•							·				
			ţ										
3				·									
					-								
				·			-	·					
Qualifiers: N	ND - Not Detected J - Analyte detecte	ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits	S - S	Spike Recovery RPD outside at	<ul><li>S - Spike Recovery outside accepted recovery limits</li><li>R - RPD outside accepted recovery limits</li></ul>	l recovery li limits	imits	B - Analyte NA - Not a	detected in th pplicable when	B - Analyte detected in the associated Method Blank NA - Not applicable where J values or ND results occur	nod Blank results occur		

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

	Shaw Environmental		ure, Inc.		La	b Order:	0902072
Project:	130274 Textron Go	rham					
.ab ID:	0902072-21			Collect	ion Date:	2/25/200	9 3:10:00 PM
		•		Collecti	on Time:		
Client Sample ID:	MW-109D				Matrix:	GROUN	IDWATER
Analyses		Result	RL	Qual Units		DF	Date Analyzed
CP METALS DISS	SOLVED SŴ-846		SW6010B				Analyst: AL
Lead		ND	. 12.0	µg/L	н -	1	3/4/2009 5:42:19 PM
Lab ID:	0902072-22			Collect	ion Date:	2/25/200	)9 3:50:00 PM
				Collecti	on Time:		
Client Sample ID:	GZA-3				Matrix:	GROUN	IDWATER
Analyses		Result	RL	Qual Units	,	DF	Date Analyzed
ICP METALS DISS	SOLVED SW-846		SW6010B				Analyst: AL
Lead		ND	12.0	µg/L		1	3/4/2009 6:08:45 PM
Lab ID:	0902072-23	J.		Collect	ion Date:	2/25/200	09 3:51:00 PM
•*	•			Collect	ion Time:		
Client Sample ID:	GZA-3 Dupe				Matrix:	GROUN	IDWATER
Analyses		Result	RL	Qual Units		DF	Date Analyzed
ICP METALS DISS	SOLVED SW-846		SW6010B			i .	Analyst: AL
Lead		ND	12.0	µg/L		1	3/4/2009 9:59:47 PM

Date: 09-Mar-09

CLIENT:	Shaw Environmental & Infrastructure, Inc.	al & Infrastruc	ture, Inc.				OC SUM	OC SUMMARY REPORT	EPOR
Work Order: Project:	sr: 0902072 130274 Textron Gorham	orham					) ) /	Metł	Method Blank
Sample ID: <b>MB-19143</b> Client ID:	1B-19143 Batch ID: 19143	: 19143	Test Code: SW6010B Units:   Run ID: ICP-OPTIMA_090304A	Units: µg/L ▲_090304A	Analysis SeqNo:	sis Date: 3/4/200 o: 696652	Analysis Date: 3/4/2009 5:28:30 PM SeqNo: 696652	Prep Date: 3/4/2009	1/2009
Analyte	QC	QC Sample Result	Q( RL Units /	QC Spike Original Sample Amount Result %REC	EC LowLimit	mit HighLimit	Original Sample t or MS Result	%RPD RPI	RPDLimit Qué
Lead		QN	12 µg/L						
						·			
			-						
							•		
			,						
•		s.				·	-		
		,							
	и.						. •		
	•								
						·			z
Oualifiers:	ND - Not Detected at the Reporting Limit	vrting Limit	S - Spike Recover	- Spike Recovery outside accepted recovery limits		nalyte detected i	B - Analyte detected in the associated Method Blank	hod Blank	
I		)	-	•					

AMRO Environmental Laboratories Corp.	vironme	ntal Labo	ratories	Corp.		• • •						Date: 13	<b>Date:</b> 13-Mar-09	
CLIENT: Work Order:	Shaw En 0902072	Shaw Environmental & Infrastructure, Inc. 0902072	& Infrastru	ucture, Inc.							QC SUMMARY REPORT Laboratory Control Spike	MARY Sorratory C	JMMARY REPORT Laboratory Control Spike	<b>RT</b> vike
				Todo.	CWEOLOD	llan			Analveie D	ate: 3/4/2000	Analysis Data: 2///2000 5.21.58 DM	Pren Date	Dren Date: 3/4/2009	
Sample ID. LCS-19143 Client ID:	2412		C+10.	Run ID:		AA_0	J		SeqNo:	696653				
Analyte		QC Sample Result	Sample Result	RL	Units	QC Spike Original Sample Amount Result	al Sample Result	%REC	LowLimit	AighLimit	Original Sample or MS Result	%RPD	RPDLimit	Qué
Lead			1888	12	hg/L	1998	0	94.5	80	120	0			
Sample ID: LCSD-19143	)-19143	Batch ID: 19143	19143	Test Code: Run ID:		SW6010B Units: µg/L ICP-OPTIMA 090304A	1		Analysis D SeaNo:	ate: 3/4/2009 696654	Analysis Date: 3/4/2009 5:37:08 PM SegNo: 696654	Prep Date	Prep Date: 3/4/2009	
Analyte		QC Sample Result	3ample Result	RL	Units	QC Spike Original Sample Amount Result		%REC	LowLimit	C HighLimit	Original Sample or MS Result	%RPD	RPDLimit	Qué
Lead			1886	12	hg/L	1998	0	94.4	80	120	1888	0.121	20	
											•			
										•	·			
				-							-			
				1										
		•												
			•										•	
			·	<b>.</b> .										
						-								

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

Drder: 0902072 130274 10: 0902072-21bms 10: 0902072-21bmsd 10: 0902072-21bmsd 10: 0902072-21bmsd	Textron Gorham Batch ID: <b>19143</b> QC Sample Result	Test Code:							こうとう		UC DUMIMARY REPORT	2
Sample ID: 0902072-21bms Client ID: MW-109D Analyte Lead Sample ID: 0902072-21bmsd Client ID: MW-109D Client ID: MW-109D Analyte Lead	Batch ID: <b>19143</b> QC Sample Result 1859	Test Code:					-		,	Sample 1	Sample Matrix Spike	ilke
Analyte www-1090 ead cample ID: 0902072-21bmsd Sample ID: MW-109D Analyte ead	QC Sample Result 1859			Units: µg/L			Analysis Da	ate: 3/4/200	Analysis Date: 3/4/2009 5:57:44 PM	Prep Date: 3/4/2009	3/4/2009	
.ead Sample ID: 0902072-21bmsd Slient ID: MW-109D Analyte .ead	1859	KIL KUNIU.	ICP-OP LIMA_090304A QC Spike Or Units Amount	MA_U90304A QC Spike Original Sample Amount Result	Sample Result %REC	%REC	sequuo: 0900300 LowLimit HighLimit		Original Sample or MS Result	%RPD	RPDLimit	Qué
Sample ID: 0902072-21bmsd Client ID: MW-109D Analyte Lead		12	µg/L	1998	0	93.1	75	125	0		ī	
Analyte .ead	Batch ID: 19143	Test Code: Run ID:	le: SW6010B Units:   ICP-OPTIMA_090304A	Units: - µg/L 090304A			Analysis Da SeqNo:	ate: 3/4/200 696659	Analysis Date: 3/4/2009 6:03:14 PM SeqNo: 696659	Prep Date: 3/4/2009	3/4/2009	
ead	QC Sample Result	RL	QC Units A	QC Spike Original Sample Amount Result	Sample Result	%REC	LowLimit HighLimit		Original Sample or MS Result	%RPD	RPDLimit	Quí
	1860	12	µg/L	1998	0	93.1	75	125	1859	0.00813	20	
									•		••	
		·		•								
•											r	
				•			•					
•					·		,					
		,										
		-		-								
											<u>,</u>	
Oualifiers: ND - Not Detected a	ND - Not Detected at the Reporting Limit	S-S	Spike Recovery	- Spike Recovery outside accepted recovery limits	recoverv li	mits	B - Analyte	e detected in	B - Analyte detected in the associated Method Blank	hod Blank		
	J - Analyte detected below quantitation limits R - RPD outside accepted recovery limit	R-	RPD outside acc	<ul> <li>RPD outside accepted recovery limits</li> </ul>	mits		NA - Not a	tpplicable wh	NA - Not applicable where J values or ND results occur	results occur		

-	х.						· · · · · · · · · · · · · · · · · · ·	•				
AMRO En	vironme	AMRO Environmental Laboratories Corp.	Corp.							<b>Date:</b> 13-Mar-09	-Mar-09	
CLIENT: Work Order: Project:	Shaw En 0902072 130274	Shaw Environmental & Infrastructure, Inc. 0902072 130274 Textron Gorham	ture, Inc.						QC SUMMARY REPORT Sample Duplicate	MARY Samp	ARY REPORT Sample Duplicate	ate <b>T</b>
Sample ID: 0902072-21bd Client ID: MW-109D	:072-21bd 109D	Batch ID: 19143	Test Code: Run ID:		SW6010B Units: µg/L ICP-OPTIMA_090304A		Analysis Da SeqNo:	Analysis Date: 3/4/2009 5:52:27 PM SeqNo: 696657	5:52:27 PM	Prep Date: 3/4/2009	: 3/4/2009	1
Analyte		QC Sample Result	RL	0 Units	QC Spike Original Sample Amount Result	al Sample Result %REC	LowLimit	O HighLimit	Original Sample or MS Result	%RPD	RPDLimit	Qué
Lead		QN	<b>.</b> 12	hg/L	0	0	Ŏ	0	<b>O</b>	0	20	
						•.						
					•							
					I							
						•		·				
						, ,						
·							·					
					•							
							•				•	
					•							
							,					
		•										

 ND - Not Detected at the Reporting Limit
 S - Spike Recovery outside accepted recovery limits

 J - Analyte detected below quantitation limits
 R - RPD outside accepted recovery limits

 RL - Reporting Limit, defined as the lowest concentration the laboratory can accurately quantitate.

Qualifiers:

J

B - Analyte detected in the associated Method Blank
 NA - Not applicable where J values or ND results occur

111