

A World of **Solutions**™

September 19, 2011 Project 130274

Mr. Joseph T. Martella, II Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street Providence, RI 02908-5767

Re: Status Report: August 2011 Activities Former Gorham Manufacturing Facility 333 Adelaide Avenue, Providence, RI

Site Remediation Case No. 97-030

Dear Mr. Martella:

Shaw Environmental, Inc. (Shaw) has prepared this status report on behalf of Textron, Inc. (Textron). This status report is associated with the remediation of tetrachloroethene (PCE) contaminated groundwater at the former Gorham Manufacturing Facility at 333 Adelaide Avenue, Providence, Rhode Island (Figure 1).

PCE is the primary contaminant of concern for groundwater in this area. As discussed in the Remedial Action Work Plan (RAWP) and subsequent revisions, the PCE source area in the vicinity of the former building W is the area of concern with a site-specific remedial goal of 7,700 micrograms per liter (ug/L). This area was treated using in-situ applications of sodium permanganate. Figure 2 shows the most recent treatment area.

This status report describes groundwater monitoring activities conducted in accordance with the proposed groundwater monitoring program submitted to the Rhode Island Department of Environmental Management (RIDEM) in February 2007 (Shaw – Groundwater Monitoring Program letter, dated February 1, 2007).

Mr. Joseph T. Martella, II September 19, 2011 Page 2 of 4

FIELD ACTIVITIES

The following field activities were conducted on August 23, 2011.

Monitoring Activities

Field parameters were measured in treatment area wells and compliance wells on August 23, 2011. Field measurements included oxidation/reduction potential (ORP), dissolved oxygen (DO), pH, temperature, and specific conductance (SC). Groundwater elevation and light non-aqueous phase liquid (LNAPL) thickness measurements were also collected. During the synchronous gauging, light non-aqueous phase liquid (LNAPL) was detected in MW-221S at a thickness of 1.18 feet. Field parameter and gauging results are presented in Tables 1 and 2.

Groundwater Sampling

Groundwater samples were collected for analysis for volatile organic compounds (VOCs) (EPA Method 8260B) on August 23, 2011 from 22 monitoring wells within and around the treatment area, including compliance wells. One duplicate sample was collected from MW-101S (MW-101S DUP) for VOC analysis. One sample was collected for total petroleum hydrocarbon (TPH) analysis (modified EPA Method 8015 B) from monitoring well CW-6. One duplicate sample was collected from CW-6 (CW-6 DUP) for TPH analysis. Samples were collected for lead analysis (EPA Method 6010B) from monitoring wells MW-109D and GZA-3. One duplicate sample was collected from GZA-3 (GZA-3 DUP) for lead analysis. Groundwater samples were delivered to AMRO Environmental Laboratories Corporation in Merrimack, New Hampshire for analysis.

SUMMARY OF ANALYTICAL DATA

A summary of the analytical data associated with the groundwater sampling conducted in August 2011 is contained in Table 3. A copy of the laboratory analytical report is attached to this report. The PCE concentration found in well MW-201D was above the treatment goal at a concentration of 8,400 ug/L.

A summary of the compliance well results is contained in Table 4. The results for the TPH Remediation Area Well indicate an exceedance of the compliance standard for the primary sample. The results for the Adelaide Avenue Wells for MW-112, MW-209D, and MW-218D indicate exceedances for PCE. Due to sample dilution by the laboratory, the reporting limit for 1,1-dichloroethene and vinyl chloride exceed the compliance standard for wells MW-209D and MW-218D.

FUTURE ACTIVITIES

The next sampling event is scheduled for February 2012.

Mr. Joseph T. Martella, II September 19, 2011 Page 3 of 4

If you have any questions regarding this report, please contact Ed Van Doren at (603) 870-4530.

Sincerely,

SHAW ENVIRONMENTAL, INC.

Edward P. Vam Doran

Edward P. Van Doren Project Manager

Attachments:

Figures

Figure 1 – Site Plan

Figure 2 – Injection Well Locations

Tables

Table 1 – Summary Field Parameters

Table 2 – Groundwater Elevations

Table 3 – VOCs in Groundwater

Table 4 – Compliance Wells Analytical Results

Laboratory Analytical Report

cc: Craig Roy, RIDEM OWR
Greg Simpson, Textron
Jamieson Schiff, Textron
Dave Heislein, MACTEC
Thomas Dellar, City of Providence
Jeff Morgan, Stop & Shop
Ronald Ruth, Sherin and Lodgen

Mr. Joseph T. Martella, II September 19, 2011 Page 4 of 4

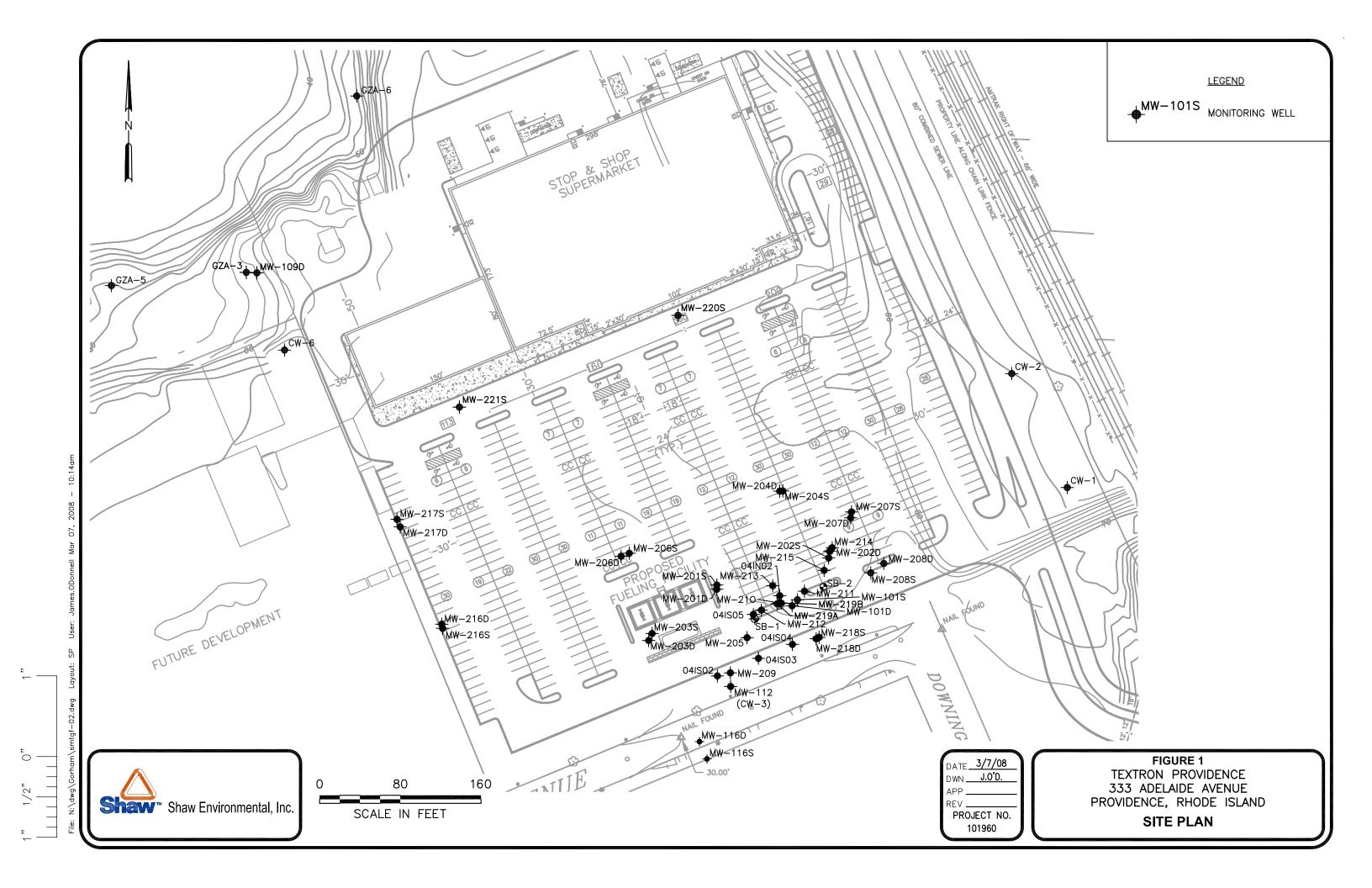
CERTIFICATIONS

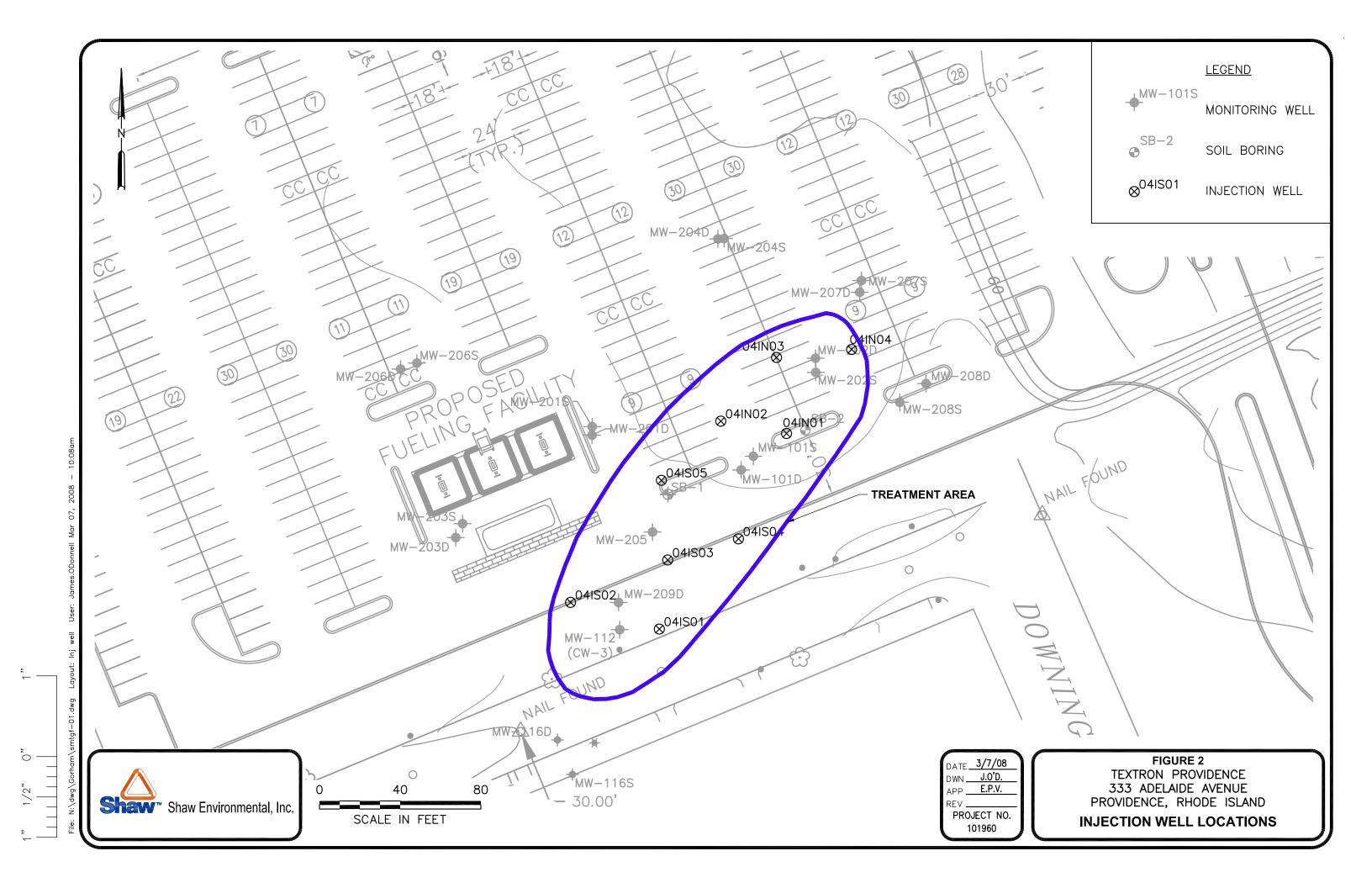
The following certifications are provided pursuant to Rule 9.19 of the Remediation Regulations:

I, Edward P. Van Doren, as an authorized representative of Shaw Environmental, Inc. and the person responsible for the preparation of this Status Report dated September 19, 2011, certify that the information contained in this report is complete and accurate to the best of my knowledge.

Edward P. Van Doren Project Manager

Date:


We, Textron, Inc., as the party responsible for submittal of this Status Report, certify that this report is a complete and accurate representation of the contaminated site and the release, and contains all known facts surrounding the release, to the best of our knowledge.


Certification on behalf of Textron Inc.

Gregory L. Simpson

Project Manager

Date:

Table 1 Summary Field Parameters August 2011

Former Gorham Manufacturing Facility Providence, Rhode Island

					Dissolved	Oxidation Reduction
		рН	Temperature	Conductivity	Oxygen	Potential
Well ID	DATE		(deg. C°)	(mS/cm)	(mg/L)	(mV)
MW-101D	8/23/2011	4.84	14.76	0.028	1.27	198.2
MW-101S	8/23/2011	5.91	15.57	0.611	0.04	-84.1
MW-112	8/23/2011	5.77	13.61	0.539	5.46	113.4
MW-116D	8/23/2011	5.71	14.67	0.285	-2.43	465
MW-116S	8/23/2011	5.49	16.97	0.205	6.21	174.3
MW-201D	8/23/2011	6.42	14.24	0.642	5.77	221.2
MW-202D	8/23/2011	5.68	15.22	0.030	7.56	206.3
MW-202S	8/23/2011	5.61	14.41	0.191	4.00	183.8
MW-207D	8/23/2011	7.95	14.94	0.020	7.65	156.4
MW-207S	8/23/2011	6.67	15.78	0.553	2.25	242.1
MW-209D	8/23/2011	6.24	13.54	0.327	6.69	214.1
MW-216D	8/23/2011	6.14	14.29	0.394	2.17	95.0
MW-216S	8/23/2011	6.32	15.13	0.882	0.87	-98.3
MW-217D	8/23/2011	6.48	14.86	0.389	2.99	78.3
MW-217S	8/23/2011	6.38	14.17	0.775	0.68	-60.3
MW-218D	8/23/2011	5.79	12.7	0.123	0.95	194.4
MW-218S	8/23/2011	6.6	13.41	0.732	-16.31	46.5

Notes:

C° = degrees Celsius

mS/cm = millisiemens per centimeter

mg/L = milligrams per liter

mV = milli volts

Table 2 **Groundwater Elevations** August 2011

Former Gorham Manufacturing Facility Providence, Rhode Island

Well ID	Date	Reference Elevation	Depth to Water	LNAPL Thickness	Groundwater Elevation
	2410	(Feet)	(Feet)	(Feet)	(Feet)
CW-01	8/23/2011	99.52	25.58	0	73.94
CW-02	8/23/2011	98.86	24.78	0	74.08
CW-06	8/23/2011	99.52	25.01	0	74.51
GZA-3	8/23/2011	NA	17.76	0	NA
MW-101D	8/23/2011	98.91	24.75	0	74.16
MW-101S	8/23/2011	98.90	24.75	0	74.15
MW-109D	8/23/2011	NA	17.18	0	NA
MW-112	8/23/2011	100.63	26.52	0	74.11
MW-116D	8/23/2011	98.92	24.83	0	74.09
MW-116S	8/23/2011	99.40	25.30	0	74.10
MW-201D	8/23/2011	98.80	24.69	0	74.11
MW-202D	8/23/2011	98.17	24.04	0	74.13
MW-202S	8/23/2011	98.06	23.95	0	74.11
MW-207D	8/23/2011	98.18	24.10	0	74.08
MW-207S	8/23/2011	98.28	24.20	0	74.08
MW-209D	8/23/2011	99.90	26.30	0	73.60
MW-216D	8/23/2011	98.69	25.53	0	73.16
MW-216S	8/23/2011	99.58	25.52	0	74.06
MW-217D	8/23/2011	98.65	24.97	0	73.68
MW-217S	8/23/2011	98.71	24.99	0	73.72
MW-218D	8/23/2011	99.67	25.51	0	74.16
MW-218S	8/23/2011	99.61	25.42	0	74.19
MW-220S	8/23/2011	99.41	25.35	0	74.06
MW-221S	8/23/2011	98.92	26.67	1.18	73.35

Notes: NM = Not Measured, under snow bank.

Groundwater elevations are based on an arbitrary reference datum established for the site.

Table 3 Groundwater Analytical Results

August 2011

Former Gorham Manufacturing Facility
Providence, Rhode Island

	CW-01	CW-02	CW-06	CW-06	GZA-3	GZA-3	MW-101D	MW-101S	MW-101S	MW-109D	MW-112	MW-116D	MW-116S	MW-201D	MW-202D
	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011
CONSTITUENT	Primary	Primary	Primary	Duplicate	Primary	Duplicate	Primary	Primary	Duplicate	Primary	Primary	Primary	Primary	Primary	Primary
VOC (ug/L)															
1,1-Dichloroethene	70	<1			1.1		<10	<1	<1	<1	<10	<1	<1	<10	<1
1,2,4-Trimethylbenzene	<40	<2			<2		<20	<2	<2	<2	<20	<2	<2	<20	<2
1,3,5-Trimethylbenzene	<40	<2			<2		<20	<2	<2	<2	<20	<2	<2	<20	<2
Acetone	<200	<10			<10		<100	<10	<10	<10	<100	<10	<10	<100	<10
Bromodichloromethane	<40	<2			<2		<20	<2	<2	<2	<20	<2	<2	<20	<2
Chloroform	<40	<2			<2		<20	9.2	8.2	<2	25	<2	<2	<20	16
cis-1,2-Dichloroethene	1600	<2			57		<20	3.3	3.1	<2	<20	<2	<2	<20	2.9
Ethylbenzene	<40	<2			<2		<20	<2	<2	<2	<20	<2	<2	<20	<2
Methyltert-butylether	<40	<2			13		<20	<2	<2	<2	<20	<2	<2	<20	<2
Naphthalene	<100	<5			<5		<50	<5	<5	<5	<50	<5	<5	<50	<5
Tetrachloroethene	<40	<2			<2		3800	34	33	<2	550	<2	<2	8400	210
Toluene	<40	<2			<2		<20	<2	<2	<2	<20	<2	<2	<20	<2
Trichloroethene	480	<2			20		<20	<2	<2	<2	<20	<2	<2	230	<2
Vinyl chloride	<40	<2			6.9		<20	<2	<2	<2	<20	<2	<2	<20	<2
m/p-xylene	<40	<2			<2		<20	<2	<2	<2	<20	<2	<2	<20	<2
o-Xylene	<40	<2			<2		<20	<2	<2	<2	<20	<2	<2	<20	<2
Xylene (total)	<40	<2			<2		<20	<2	<2	<2	<20	<2	<2	<20	<2
TPH (mg/L)															
Unidentified TPH			21	20											
Dissolved Metals (ug/L)															
Lead					<13	<13				<13					

Notes:

< = Less than the laboratory reporting limit

ug/L = Micro grams per liter, parts per billion

mg/L = Milligrams per liter, parts per million

TPH = Total Petroleum Hydrocarbons

--- = Not analyzed for.

N:\Shared\Projects\101960 Gorham\RiDEM Status Rpts\2011\faug 2011\Table 3 GW Aug2011.visx

Table 3

Groundwater Analytical Results

August 2011

Former Gorham Manufacturing Facility
Providence, Rhode Island

	MW-202S	MW-207D	MW-207S	MW-209D	MW-216D	MW-216S	MW-217D	MW-217S	MW-218D	MW-218S
	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011
CONSTITUENT	Primary									
VOC (ug/L)										
1,1-Dichloroethene	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	<2	<2	<2	<20	<2	16	<2	<2	<2	<2
1,3,5-Trimethylbenzene	<2	<2	<2	<20	<2	12	<2	<2	<2	<2
Acetone	<10	<10	<10	<100	<10	<10	<10	<10	<10	61
Bromodichloromethane	<2	<2	<2	<20	<2	<2	<2	<2	3.5	<2
Chloroform	11	2.5	<2	<20	<2	<2	<2	<2	49	27
cis-1,2-Dichloroethene	5.7	30	<2	<20	3	52	9.1	15	<2	<2
Ethylbenzene	<2	<2	<2	<20	<2	3.5	<2	<2	<2	<2
Methyltert-butylether	<2	<2	<2	<20	<2	<2	<2	<2	<2	<2
Naphthalene	<5	<5	<5	<50	<5	24	<5	<5	<5	<5
Tetrachloroethene	56	1100	130	1500	<2	<2	<2	4	300	2.3
Toluene	<2	<2	<2	<20	<2	2	<2	<2	<2	<2
Trichloroethene	<2	23	<2	200	<2	<2	6.2	<2	12	<2
Vinyl chloride	<2	<2	<2	<20	3.9	<2	<2	12	<2	<2
m/p-xylene	<2	<2	<2	<20	<2	8.5	<2	<2	<2	<2
o-Xylene	<2	<2	<2	<20	<2	12	<2	<2	<2	<2
Xylene (total)	<2	<2	<2	<20	<2	21	<2	<2	<2	<2
TPH (mg/L)										
Unidentified TPH										
Dissolved Metals (ug/L)										
Lead										

Notes:

< = Less than the laboratory reporting limit ug/L = Micro grams per liter, parts per billion mg/L = Milligrams per liter, parts per million TPH = Total Petroleum Hydrocarbons

--- = Not analyzed for.

Table 4 Compliance Wells Analytical Results August 2011

Former Gorham Manufacturing Facility Providence, Rhode Island

Mashapaug Pond Complianc	e Wells			
Sample ID	GZA-3	GZA-3	MW-109D	Compliance
Date Collected	8/23/2011	8/23/2011	8/23/2011	Standard ¹
CONSTITUENT		Duplicate		0.00.10.00.0
Metals (mg/L)				
Lead	< 0.013	< 0.013	< 0.013	0.03
VOCs (ug/L)				
1,1-Dichloroethane	<2	NA	<2	50,000
1,1-Dichloroethene	1.1	NA	<1	50,000
cis-1,2-Dichloroethene	57	NA	<2	50,000
Methyl tert-butyl ether	13	NA	<2	50,000
Tetrachloroethene	<2	NA	<2	5,000
Trichloroethene	20	NA	<2	20,000
Vinyl chloride	6.9	NA	<2	1,200

TPH Remediation Area Well			
Sample ID	CW-6	CW-6	Compliance
Date Collected	8/23/2011	8/23/2011	Standard ¹
CONSTITUENT		Duplicate	010.1.0.0.0
TPH (mg/L)	21	20	20

Sample ID	CW-1	CW-2	Compliance
Date Collected	8/23/2011	8/23/2011	Standard ²
CONSTITUENT]
VOCs (ug/L)			
1,1-Dichloroethane	<40	<2	120,000
1,1-Dichloroethene	70	<1	23,000
cis-1,2-Dichloroethene	1,600	<2	69,000
trans-1,2-Dichloroethene	<40	<2	79,000
Tetrachloroethene	<40	<2	NS
Trichloroethene	480	<2	87,000

Adelaide Avenue Wells					
Sample ID	MW-112	MW-209D	MW-218D	MW-218S	Compliance
Date Collected	8/23/2011	8/23/2011	8/23/2011	8/23/2011	Standard ³
CONSTITUENT					
VOCs (ug/L)					
cis-1,2-Dichloroethene	<20	<20	<2	<2	2,400
1,1-Dichloroethene	<10	<10	<1	<1	7
Benzene	<10	<10	<1	<1	140
Chloroform	25	<20	49	27	1,900
Methyl tert-butyl ether	<20	<20	<2	<2	5,000
Tetrachloroethene	550	1,500	300	2.3	150
Trichloroethene	<20	200	12	<2	540
Vinyl chloride	<20	<20	<2	<2	2

Notes:

- 1. These Site specific compliance standards were taken from the approved RAWP dated April 1, 2001 and/or the RIDEM Remediation Regulations.

 Note: the standard for Methyl tert-butyl ether is the Massachusetts Department of Environmental Protection (MassDEP) Method 1 GW-3 standard (310 CMR 40.0974 (2), 12/14/07. The use of the MassDEP Method 1 GW-3 standard is consistent with the approach used in the April 1, 2001 RAWP.
- 2. These compliance standards taken from Table 5 Upper Concentration Limits for GB Groundwater, RIDEM Remediation Regulations.
- 3. These compliance standards taken from Table 4 -GB Groundwater Objectives of the RIDEM Remediation Regulations or in the case of vinyl chloride the compliance standard was taken from Table 3 of the Remediation Regulations and for chloroform the compliance standard was calculated from the algorithm in Appendix F of the Remediation Regulations (calculations attached as Appendix C of Status Report dated September 18, 2007).

mg/L - milligrams per liter ug/L - micrograms per liter

< - compound was not detected below the laboratory reporting limit, concentration shown is the reporting limit.

VOCs - volatile organic compounds

TPH - total petroleum hydrocarbons

NA - Indicates that the analysis was not performed.

NS - Indicates that no applicable standard exists. Compound does not have a lower explosive limit (LEL).

111 Herrick Street, Merrimack, NH 03054 TEL: (603) 424-2022 • FAX: (603) 429-8496 www.amrolabs.com

September 01, 2011

ANALYTICAL TEST REŠULTS

Ed VanDoren

Shaw Environmental & Infrastructure, Inc.

11 Northeastern Boulevard

Salem, NH 030791953

TEL: (603) 870-4530 FAX: (603) 870-4501

Subject:

130274 Textron Providence

Workorder No.: 1108060

Dear Ed VanDoren:

AMRO Environmental Laboratories Corp. received 26 samples on 8/24/2011 for the analyses presented in the following report.

AMRO is accredited in accordance with NELAC and certifies that these test results meet all the requirements of NELAC, where applicable, unless otherwise noted in the case narrative.

The enclosed Sample Receipt Checklist details the condition of your sample(s) upon receipt. Please be advised that any unused sample volume and sample extracts will be stored for a period of 60 days from sample receipt date (90 days for samples from New York). After this time, AMRO will properly dispose of the remaining sample(s). If you require further analysis, or need the samples held for a longer period, please contact us immediately.

This report consists of a total of 105 pages. This letter is an integral part of your data report. All results in this project relate only to the sample(s) as received by the laboratory and documented in the Chain-of-Custody. This report shall not be reproduced except in full, without the written approval of the laboratory. If you have any questions regarding this project in the future, please refer to the Workorder Number above.

Sincerely,

Nancy Stewart

Vice President

State Certifications: NH (NELAC): 1001, MA: M-NH012, CT: PH-0758, NY: 11278 (NELAC), ME: NH012 and

Hard copy of the State Certification is available upon request.

Date: '31-Aug-11

CLIENT: Shaw Environmental & Infrastructure, Inc.

Project: 130274 Textron Providence

Lab Order: 1108060 **Date Received:** 8/24/2011

Work Order Sample Summary

		<u> </u>	
Lab Sample ID	Client Sample ID	Collection Date	Collection Time
1108060-01A	MW-207S	8/23/2011	6:30 AM
1108060-02A	MW-207D	8/23/2011	7:00 AM
1108060-03A	Trip Blank	8/23/2011	12:00 AM
1108060-04A	MW-202D	8/23/2011	7:30 AM
1108060-05A	MW-202S	8/23/2011	8:00 AM
1108060-06A	MW-101D	8/23/2011	8:30 AM
1108060-07A	MW-101S	8/23/2011	9:00 AM
1108060-08A	MW-101S Dup	8/23/2011	9:00 AM
1108060-09A	MW-201D	8/23/2011	9:30 AM
1108060-10A	MW-209D	8/23/2011	10:00 AM
1108060-11A	MW-112	8/23/2011	10:30 AM
1108060-12A	MW-218S	8/23/2011	11:00 AM
1108060-13A	MW-218D	8/23/2011	11:30 AM
1108060-14A	CW-1	8/23/2011	12:00 PM
 1108060-15A	CW-2 - A A A A A A A A A A A A A A A A A A	8/23/2011	12:30 PM
1108060-16A	MW-216D	8/23/2011	1:00 PM
1108060-17A	MW-216S	8/23/2011	1:30 PM
1108060-18A	MW-217D	8/23/2011	2:00 PM
1108060-19A	MW-217S	8/23/2011	2:30 PM
1108060-20A	MW-116D	8/23/2011	10:00 AM
1108060-21A	MW-116S	8/23/2011	10:30 AM
1108060-22A	GZA-3	8/23/2011	11:30 AM
1108060-22B	GZA-3	8/23/2011	11:30 AM
1108060-23A	MW-109D	8/23/2011	12:30 PM
1108060-23B	MW-109D	8/23/2011	12:30 PM
1108060-24A	GZA-3 Dup	8/23/2011	11:35 AM
1108060-25A	CW-6	8/23/2011	1:30 PM
1108060-26A	CW-6 Dup	8/23/2011	2:30 PM

_
-
-on
Au
7
3

Laboratories Corp.	
Environmental	
AMRO	

Lab Order:	1108060							
Client:	Shaw Environmental & Infrastructure, Inc.	cture, Inc.		r de la companya de l	DATE	DATES REPORT		
Project:	130274 Textron Providence							
Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name			Analysis Date	
				Preparatory Test Name		Prep Date	Batch ID	TCLP Date
1108060-01A	MW-207S	8/23/2011 6:30:00 AM	Groundwater	EPA 8260B VOLATILES by GC/MS			8/29/2011	
				EPA 5030B		8/23/2011	R47312	
1108060-02A	MW-207D	8/23/2011 7:00:00 AM		EPA 8260B VOLATILES by GC/MS			8/26/2011	
						8/23/2011	R47299	
				EPA 8260B VOLATILES by GC/MS			8/25/2011	
						8/23/2011	R47290	
1108060-03A	Trip Blank	8/23/2011		EPA 8260B VOLATILES by GC/MS			8/26/2011	
						8/23/2011	R47299	
1108060-04A	MW-202D	8/23/2011 7:30:00 AM		EPA 8260B VOLATILES by GC/MS			8/29/2011	
3						8/23/2011	R47312	
1108060-05A	MW-202S	8/23/2011 8:00:00 AM		EPA 8260B VOLATILES by GC/MS			8/26/2011	
						8/23/2011	R47299	
1108060-06A	MW-101D	8/23/2011 8:30:00 AM		EPA 8260B VOLATILES by GC/MS			8/26/2011	
						8/23/2011	R47299	
				EPA 8260B VOLATILES by GC/MS			8/29/2011	
-	And the second s					8/23/2011	R47312	
1108060-07A	MW-101S	8/23/2011 9:00:00 AM		EPA 8260B VOLATILES by GC/MS	-		8/25/2011	
						8/23/2011	R47290	
1108060-08A	MW-101S Dup			EPA 8260B VOLATILES by GC/MS			8/25/2011	
			-			8/23/2011	R47290	
1108060-09A	MW-201D	8/23/2011 9:30:00 AM		EPA 8260B VOLATILES by GC/MS			8/26/2011	
						8/23/2011	R47299	
				EPA 8260B VOLATILES by GC/MS		-	8/29/2011	
			- >			8/23/2011	R47312	

_
~
7
O.
2
7
~
~

100	orp.
Louis Louis Con	Doratories C
T Lotus	entai La
200 000 000 000 000	VICOUII
	NO EL

Lab Order:	1108060						
Client:	Shaw Environmental & Infrastructure, Inc.	cture, Inc.			DATES REPORT	XT.	
Project:	130274 Textron Providence						
Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name		Analysis Date	
				Preparatory Test Name	Prep Date	Batch ID	TCLP Date
1108060-10A	MW-209D	8/23/2011 10:00:00 AM	Groundwater	EPA 8260B VOLATILES by GC/MS		8/26/2011	
			•	EPA 5030B	8/23/2011	R47299	
1108060-11A	MW-112	8/23/2011 10:30:00 AM		EPA 8260B VOLATILES by GC/MS		8/26/2011	-
					8/23/2011	R47299	
1108060-12A	MW-218S	8/23/2011 11:00:00 AM		EPA 8260B VOLATILES by GC/MS		8/25/2011	
					8/23/2011	R47290	
1108060-13A	MW-218D	8/23/2011 11:30:00 AM		EPA 8260B VOLATILES by GC/MS		8/25/2011	
					8/23/2011	R47290	
1108060-14A	CW-1	8/23/2011 12:00:00 PM		EPA 8260B VOLATILES by GC/MS		8/29/2011	
4					8/23/2011	R47312	
1108060-15A	CW-2	8/23/2011 12:30:00 PM		EPA 8260B VOLATILES by GC/MS		8/25/2011	
					8/23/2011	R47290	
1108060-16A	MW-216D	8/23/2011 1:00:00 PM		EPA 8260B VOLATILES by GC/MS		8/25/2011	
					8/23/2011	R47290	
1108060-17A	MW-216S	8/23/2011 1:30:00 PM		EPA 8260B VOLATILES by GC/MS		8/25/2011	
			_	:	8/23/2011	R47290	
1108060-18A	MW-217D	8/23/2011 2:00:00 PM		EPA 8260B VOLATILES by GC/MS		8/25/2011	
					8/23/2011	R47290	
1108060-19A	MW-217S	8/23/2011 2:30:00 PM		EPA 8260B VOLATILES by GC/MS		8/26/2011	
					8/23/2011	R47299	
1108060-20A	MW-116D	8/23/2011 10:00:00 AM		EPA 8260B VOLATILES by GC/MS		8/26/2011	
N .					8/23/2011	R47299	
1108060-21A	MW-116S	8/23/2011 10:30:00 AM		EPA 8260B VOLATILES by GC/MS		8/26/2011	MAAAAMA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
					8/23/2011	R47299	

I ak Oudem							
Lan Order:	1108060			SGT A C	Tacaaa sat a	Į.	
Client: Project:	Shaw Environmental & Infrastructure, Inc. 130274 Textron Providence	cture, Inc.	•	DAILE	MELOI		
Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name		Analysis Date	
				Preparatory Test Name	Prep Date	Batch ID	TCLP Date
1108060-22A	GZA-3	8/23/2011 11:30:00 AM Groundwater	Groundwater	EPA 8260B VOLATILES by GC/MS		8/26/2011	
				EPA 5030B	8/23/2011	R47299	
1108060-22B			-	EPA 6010B ICP METALS, DISSOLVED		8/30/2011	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	8/30/2011	21589	
1108060-23A	MW-109D	8/23/2011 12:30:00 PM		EPA 8260B VOLATILES by GC/MS		8/26/2011	
				EPA 5030B	8/23/2011	R47299	
1108060-23B				EPA 6010B ICP METALS, DISSOLVED		8/30/2011	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	8/30/2011	21589	
1108060-24A	GZA-3 Dup	8/23/2011 11:35:00 AM		EPA 6010B ICP METALS, DISSOLVED		8/30/2011	
5					8/30/2011	21589	
1108060-25A	CW-6	8/23/2011 1:30:00 PM		TPH by GC/FID (modified 8015B)		8/30/2011	
				AQPREP SEP FUNNEL: FING	8/29/2011	21585	-
1108060-26A	CW-6 Dup	8/23/2011 2:30:00 PM		TPH by GC/FID (modified 8015B)		8/30/2011	-
					8/29/2011	21585	-

CHAIN-OF-CUSTODY RECORD

Office: (603) 424-2022 Fax: (603) 429-8496 web: www.amrolabs.com

60809

AMRO-Environmental Laboratories Corporation 111 Herrick Street Merrimack, NH 03054

Required Reporting Limits: AMRO Project No. CONTAMINATION: Remarks GW-2 GW-3 GW-1 Dissolved Lead PUMPALAN AND PUMPANA Other: S-2 S-3 14 MCP AMROCOC2004, Rev.3 08/18/04 AMRO report package GISKey Format AMRO policy requires notification in writing to the laboratory in cases where the samples were collected from highly contaminated sites. MCP Methods Needed: 0 N EDD required: level needed: 200.7 Other Metals: 23 TAL YES 🗹 Samplers (Signature) YES REQUESTED ANALYSES MCP Presumptive Certainty Required? 13 PPDissolved Metals Field Filtered? 띩 8 RCRA 6010 after 12:00 noon will be tracked and billed as METALS Method: Received By YES Project Manager Ed VanDoren Before submitting samples for expedited TAT, you must PRIORITY TURNÁROUND TIME AÚTHORIZATION have a coded AUTHORIZATION NUMBER received on the following day. Ŋ 2 6 Ø H લ if ef U Crab Comp. S C C C \mathbb{R} 603-870-4501 かん AUTHORIZATION No.: 7-124 2-164 1 2-404 シイクタ 4-4-4 3-4 2-124 Project State: Total # of Cont. & Size Date/Time 121 <u>₹</u> S-H2SO4, Na-NaOH Textron Providence Matrix be logged in and the turnaround time clock will not start until 863/11000 FAX #: SP311/E018 Strajn ose 8143/1/073 Slazin ogn 8/23/11 09.30 Yellow: Client Copy 080 npc/8 8122111 0830 staln ozo Yes No N/A Results Needed by: Date/Time Standard Seal Intact? Sampled Project Name: 187 146 TAT Shaw Environmental, Inc. 11 Northeastern Blvd Salem, NH 03079-1953 Send Results To: Ed VanDoren 603-870-4531 My - 1015 DUD reservative: CI-HCI, MeOH, agos-my May 2071 Main - 202 D acoc min 1441-302 S TRUG BERNIE any ambiguities are resolved MW-2012 101-1015 Sample ID.: **Selin** White: Lab Copy 30274 Project No.: OUOTE #: PHONE #: :#:0: 3-mail:

AMRO-Environmental Laboratories Corporation 111 Herrick-Street Merrimack, NH 03054

Office: (603) 424-2022 Fax: (603) 429-8496 web: www.amrolabs.com	AMRO Project No.:	1108060	Remarks	-																				ved Lead			lired R	Τ		S-3 CW-3	Other:	PAIOWAL CTITE	CONTAMINATION:	
60810 Office Fa	Samplers (Signature):																							Other Metals: Dissolved		YES IVI	Methoc	YES NO	AMRO report package	level needed:		Olskey lormat	ANALO POUCY TEQUIES NOUNCAUOU II WILLING TO the laboratory in cases where the samples were collected from highly contaminated sites.	AMROCOC2004, Rev.3 08/18/04
	Samplers		REQUESTED ANALYSES										-										8 RCRA 13 PP	6010		Dissolved Metals Field Filtered?	MCP Presumptive Certainty Required?	NO						OF
CHAIN-OF-CUSTODY RECORD	Project Manager:	VanDoren		F	7 b	ъд`	10	ha ===	11	H 0,5	5! <u>a</u>					-			•				ORIZATION METALS	T, you must Method:			MCP Presun	YES	A Received By	Lann		となる。	o moon win be nackeu am bine 1y.	SHEET
CHAIN-C	Project	te: RI . Ed			ン(₎ 	• P	zis:	.s .t 	uo _O)o	Total# Comp. Grab	2-64 1 2		<i>*</i>	<i>₽</i>	2-404 2			2-44	200	>	ier	PRIORITY TURNAROUND TIME AUTHORIZATION	Before submitting samples for expedited TAT, you must	ZATION NU	JIN INO.: BY	501			100 101		76 000	samples attiving after 12.00 received on the following day.	
rporation	Pro	Providence State:			·						xirtsM	ВМ		046					•	ď	}	Na-NaOH, O- Otl	PRIORITY TURNA	Before submitting s	have a coded AUTHORIZAT	₹	‡: 603–870–4501	mc J	, Date/Time	803111		11/2/18		y
ital Laboratories Co 154	Project Name:	Textron Pro	Results Needed by:	Standard	TAT	Seal Intact?				Date/Time Sampled		020111/8c/8	all likels	,		 	8/23/11 130	\	8/23/11/40	8/22/11 1430		N-HN03, S-H2SO4,	ren	al, Inc.	Blvd.	-1953	F/	ren@shawgrp.com		The state of the s		The state of the s	impietery. Sampres can n ime clock will not start t	Yellow: Client Copy
AMRO-Environmental Laboratories Corporation 111 Herrick-Street Merrimack, NH 03054	Project No.:	130274	P.O.#: 157431		The state of the s	OUOTE #:				Sample ID.:	1	MW-112	2485	MW-2182	1-10-1	2002	11111-216D	1411-2165	MW-217D	MW-21-5		Preservative: CI-HCI, MeOH, N-HN03, S-H2SO4, Na-NaOH, O- Other	Send Results To: Ed VanDoren	Shaw Environmental	theas	വ	#	E-mail: edward vandoren@shawgrp	Relinguished Bo	The state of the		1 / Mini	Its tease print clearly, regions and completery, samples can not be logged in and the turnaround time clock will not start until lany ambiguities are resolved.	White: Lab Copy

CHAIN-OF-CUSTODY RECORD AMRO Environmental Laboratories Corporation

AMKO Environmental Laboratories Corporation
111 Herrick Street
Merrimack, NH 03054

60811 Office: (6

Office: (603) 424-2022 Fax: (603) 429-8496 web: www.amrolabs.com

Required Reporting Limits: AMRO Project No.: 108001 CONTAMINATION: Dissolved Lead Remarks GW-1 GW-2 GW-3 KNÓWN SITE Other: S-2 S-3 14 MCP AMROCOC2004, Rev.3 08/18/04 AMRO report package AMRO policy requires notification in writing to the laboratory in cases where the samples were collected from highly contaminated sites. GISKey format MCP Methods Needed: 0N EDD required: level needed: 200.7 Other Metals: 23 TAL Samplers (Signature): YES REQUESTED ANÁLYSES MCP Presumptive Certainty Required? 13 PP Dissolved Metals Field Filtered? 위 6010 8 RCRA atter 12:00 noon will be tracked and billed as SHEET METALS Method: Received By YES Project Manager: VanDoren 2800 Before submitting samples for expedited TAT, you must PRIORITY TURNAROUND TIME AUTHORIZATION (000) Dissolved have a coded AUTHORIZATION NUMBER received on the following day. BY: AB Εď ત્ત 3 d 3 Crab Comp. 500 603-870-4501 AUTHORIZATION No.: State: RI Project Total # of Cont. & Size Na-NaOH, O- Other eq d 3 3 Pextron Providence Matrix GΜ be logged in and the turnaround time clock will not start until FAX #: () by () campletely. Samples can not rellow: Client Copy 1000 1330 0801 1330 1130 1430 reservative: CI-HCI, MeOH, N-HN03, S-H2SO4, 135 Yes No N/A Results Needed by: Date/Time Standard Seal Intact? Sampled Project Name: TAT 8.33.11 Shaw Environmental, Inc. Ed VanDoren 03079-1953 11 Northeastern Blvd. induished By 603-870-4531 D4 P any ambiguities are resolved. MW-1160 Mw- 1165 Sample ID.: 130274 157431 Salem, NH アーサスら 60/~ m K White: Lab Copy 0-3 Send Results To: 3 roject No.: JUOTE #: PHONE #: E-maj .0.#:

ġi i

AMRO Environmental Laboratories Corporation

SAMPLE RECEIPT CHECKLIST

111 Herrick Street Merrimack, NH 03054 (603) 424-2022

Client: SHAW D	AMRO ID:	110,000
Project Name: 130274 TEXTRON ROUIDENCE		1108060
Ship via: (circle one) Fed Ex., UPS, AMRO Courier,	Date Due:	3-24-11
Hand Del., Other Courier, Other:	Date Due.	8-31-11
Items to be Checked Upon Receipt	Yes No	
I. Army Samples received in individual plastic bags?	Yes No	NA Comments
2. Custody Seals present?		
3. Custody Seals Intact?		
4. Air Bill included in folder if received?		~
5. Is COC included with samples?		
2 200		
6. Is COC signed and dated by client? 7. Laboratory receipt temperature. TEMP = 30		
7. Laboratory receipt temperature. TEMP = 3		
Samples rec. with ice / ice packs neither		
8. Were samples received the same day they were sampled?		
Is client temperature = or <6°C?	V	
If no obtain authorization from the client for the analyses.		
Client authorization from: Date: Obtained by:		
9. Is the COC filled out correctly and completely?	V	
10. Does the info on the COC match the samples?		
11. Were samples rec. within holding time?		·
12. Were all samples properly labeled?		
13. Were all samples properly preserved?	√	
14. Were proper sample containers used?	<u> </u>	
15. Were all samples received intact? (none broken or leaking)	V	
16. Were VOA yials rec. with no air bubbles?	V	
17. Were the sample volumes sufficient for requested analysis?		
18. Were all samples received?		
19. VPH and VOA Soils only:		
Sampling Method VPH (circle one): M=Methanol, E=EnCore (air-tight container)		
Sampling Method VOA (circle one): M=Methanol, SB=Sodium Bisulfate, E=EnCore	e, B=Bulk	<u> </u>
If M or SB:		
Does preservative cover the soil?		
If NO then client must be faxed.		,
Does preservation level come close to the fill line on the vial?		
If NO then client must be faxed.		
Were vials provided by AMRO?		
If NO then weights MUST be obtained	from client	
Was dry weight aliquot provided?		
If NO then fax client and inform the VC	A lab ASAP.	
20. Subcontracted Samples:		
What samples sent:		
Where sent:		
Date:		
Analysis:		
TAT:		
21. Information entered into:		
Internal Tracking Log?		
Dry Weight Log?	0 11678-25-11	
Client Log?	70 502 17	
Composite Log?		
Filtration Log?		
	<u>-</u>	Date: P-2 <-11
Received By: NS Date: 8-29-1/ Logged in By: MG Labeled By: MG Date: 8-25-1/ Checked By: M	3	Date: 8-25-11 Date: 9-25-11

.ease Circle if:

ÄMRO ID:

1108060

imple= Waste										<u> </u>
	,									Final
					·	List				adjusted
						Preserv.		Volume	Final	pH (afte
		Volume	Preserv.		Acceptable? Y		Solution ID#	Preservative	adjusted	16 or 24
Sample ID	Analysis	Sample	Listed	pH*	or N	AMRO	of Preserv.	Added	pН	hours)
1A-702A		2-40MC					÷4.,		* ,	
3A (TB)	VOC	1-40HL	HCL							
4A723A	VOC	2-40ML	HCL							
2B 23B	METAL	SOOKL	HN03	22	4					
24A	METAL		1403	12						
SA-726A			42504	42						
317 /26FF	1725	X-16 KAND	#2307		7					
										
the state of the s		:								
					i a de la companya d La companya de la companya de	. 65 - 1 - 1 - 1		Constantification and constant of the constant of	anner a forester conserv.	i jago waxawa
			7							
	·									~
•					·····			·		
	<u> </u>									1.
							41 1 (19.34)			an Francisco
							A TATAL MANAGEMENT			en e
										
· ·	,									
	•									
,									· .	<u>-</u>
				, i						·
									·	
	· · · · · · · · · · · · · · · · · · ·							***		
	· · · · · · · · ·									
				•	· · · · · · · · · · · · · · · · · · ·					
		· ·					:			
					- 	7 7				
					(s) for EPA Mei					

I Checked By: Date: 8-25// pH adjusted By: Date:

I Checked By: Date: pH adj.(16 or 24hrs)By: Date:
qc/qcmemos/forms/samplerec Rev.19 04/20/09

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Project:

130274 Textron Providence

Lab Order:

1108060

CASE NARRATIVE

GC/MS-VOLATILES:

- 1. A Laboratory Control Sample (LCS) and Laboratory Sample Duplicate (LCSD) were performed on 08/25/11 (Batch ID: R47290).
- 1.1 The % Recovery for 3 analytes out of 67 analytes in the LCS was outside the laboratory control limits.
- 1.2 The % Recovery for 3 analytes out of 67 analytes in the LCSD was outside the laboratory control limits.
- 2. A Laboratory Control Sample (LCS) was performed on 08/26/11 (Batch ID: R47299).
- 2.1 The % Recovery for 3 analytes out of 67 analytes in the LCS was outside the laboratory control limits.
- 3. A Laboratory Control Sample (LCS) was performed on 08/29/11 (Batch ID: R47312).
- 3.1 The % Recovery for 5 analytes out of 67 analytes in the LCS was outside the laboratory control limits.
- 4. A Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were performed on sample MW-217S (1108060-19) Batch ID: R47299.
- 4.1 The % Recovery for 2 analytes out of 67 analytes in the MS was outside the laboratory control limits.
- 4.2 The % Recovery for 1 analyte out of 67 analytes in the MSD was outside the laboratory control limits.
- 5. A Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were performed on sample MW-207S (1108060-01) Batch ID: R47312.
- 5.1 The % Recovery for 1 analyte out of 67 analytes in the MS was outside the laboratory control limits.

TPH by GC/FID:

1. No OC deviations were noted.

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Project:

130274 Textron Providence

Lab Order:

1108060

CASE NARRATIVE

METALS:

1. No QC deviations were noted.

DATA COMMENT PAGE

Organic Data Qualifiers

- ND Indicates compound was analyzed for, but not detected at or above the reporting limit. J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than the method detection limit. Η Method prescribed holding time exceeded. E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis. В This flag is used when the analyte is found in the associated blank as well as in the sample. R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- # See Case Narrative

Micro Data Qualifiers

TNTC Too numerous to count

Inorganic Data Qualifiers

- ND or U Indicates element was analyzed for, but not detected at or above the reporting limit.
- J Indicates a value greater than or equal to the method detection limit, but less than the quantitation limit.
- H Indicates analytical holding time exceedance.
- B Indicates that the analyte is found in the associated blank, as well as in the sample.
- MSA Indicates value determined by the Method of Standard Addition
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- W Post-digestion spike for Furnace AA analysis is out of control limits (85-115), while sample absorbance is less than 50% of spike absorbance.
- * Duplicate analysis not within control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995
- # See Case Narrative

Report Comments:

- 1. Soil, sediment and sludge sample results are reported on a "dry weight" basis.
- 2. Reporting limits are adjusted for sample size used, dilutions and moisture content, if applicable.

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

1108060

Client Sample ID: MW-207S

Lab Order:

Collection Date: 8/23/2011 6:30:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-01A

Analyses	- 10 - 10	Result	RL (Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES	BY GC/MS	sv	V8260B			Analyst: SK
Dichlorodifluoromethane	•	ND	5.0	μg/L	1	8/29/2011 11:17:00 AM
Chloromethane	•	ND	5.0	μg/L	1	8/29/2011 11:17:00 AM
Vinyl chloride		ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
Chloroethane		ND	5.0	μg/L	• • 1	8/29/2011 11:17:00 AM
Bromomethane		ND	2.0	µg/L	1 .	8/29/2011 11:17:00 AM
Trichlorofluoromethane	·.	ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
Diethyl ether		ND	5.0	μg/L	1	8/29/2011 11:17:00 AM
Acetone	a.	ND	10	μg/L	1	8/29/2011 11:17:00 AM
1,1-Dichloroethene		ND	1.0	μg/L	1	8/29/2011 11:17:00 AM
Carbon disulfide		ND	2.0	µg/L	1	8/29/2011 11:17:00 AM
Methylene chloride		ND	5.0	μg/L	1	8/29/2011 11:17:00 AM
Methyl tert-butyl ether		ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
trans-1,2-Dichloroethene		ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
1,1-Dichloroethane		ND	2.0	μg/L	. 1	8/29/2011 11:17:00 AM
2-Butanone		ND	10	μg/L	1	8/29/2011 11:17:00 AM
2,2-Dichloropropane	The season of	ND	2.0	µg/L	1	8/29/2011 11:17:00 AM
cis-1,2-Dichloroethene	1971年最高数额	ND	2.0	µg/L	1	8/29/2011 11:17:00 AM
Chloroform		ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
Tetrahydrofuran		ND	10	μg/L	1	8/29/2011 11:17:00 AM
Bromochloromethane		ND	2.0	μg/L	· 1	8/29/2011 11:17:00 AM
1,1,1-Trichioroethane		ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
1,1-Dichloropropene		ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
Carbon tetrachloride		ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
1,2-Dichloroethane		ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
Benzene		ND	1.0	μg/L	1	8/29/2011 11:17:00 AM
Trichloroethene		ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
1,2-Dichloropropane		ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
Bromodichloromethane		ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
Dibromomethane		ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
4-Methyl-2-pentanone		ND	10	μg/L	1	8/29/2011 11:17:00 AM
cis-1,3-Dichloropropene		ND	1.0	μg/L	1	8/29/2011 11:17:00 AM
Toluene		ND	2.0	μg/L		8/29/2011 11:17:00 AM
trans-1,3-Dichloropropene		ND	1.0	μg/L	1	8/29/2011 11:17:00 AM
1,1,2-Trichloroethane		ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
1,2-Dibromoethane	•	ND	2.0	µg/L	1	8/29/2011 11:17:00 AM
2-Hexanone		ND	10	μg/L	1	8/29/2011 11:17:00 AM
1,3-Dichloropropane		ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
Tetrachloroethene		130	2.0	μg/L	. 1.	8/29/2011 11:17:00 AM
Dibromochloromethane		ND	2.0	µg/L	1	8/29/2011 11:17:00 AM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-207S

Lab Order:

1108060

Collection Date: 8/23/2011 6:30:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-01A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
Ethylbenzene	ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
m,p-Xylene	ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
o-Xylene	ND	2.0	µg/L	1 .	8/29/2011 11:17:00 AM
Styrene	ND	2.0	µg/L	1	8/29/2011 11:17:00 AM
Bromoform	ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
Isopropylbenzene	ND	2.0	μg/L	. 1	8/29/2011 11:17:00 AM
1,1,2,2-Tetrachloroethane	, ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
Bromobenzene	ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
n-Propylbenzene	ND	2.0	µg/L	. 1	8/29/2011 11:17:00 AM
2-Chlorotoluene	ND	2.0	µg/L	1	8/29/2011 11:17:00 AM
4-Chlorotoluene	ND ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1 1	8/29/2011 11:17:00 AM
tert-Butylbenzene	ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
1,2,4-Trimethylbenzene	ND	. 2.0	μg/L	.1	8/29/2011 11:17:00 AM
sec-Butylbenzene	ND	2.0	µg/L	1 1	8/29/2011 11:17:00 AM
4-Isopropyltoluene	ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	8/29/2011 11:17:00 AM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
n-Butylbenzene	ND	2.0	μg/L	. 1	8/29/2011 11:17:00 AM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	8/29/2011 11:17:00 AM
1,2,4-Trichlorobenzene	. ND	2.0	µg/L	1	8/29/2011 11:17:00 AM
Hexachlorobutadiene	ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
Naphthalene	ND	5.0	μg/L	1	8/29/2011 11:17:00 AM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	8/29/2011 11:17:00 AM
Surr: Dibromofluoromethane	109	82-122	%REC	1	8/29/2011 11:17:00 AM
Surr: 1,2-Dichloroethane-d4	112	73-135	%REC	1	8/29/2011 11:17:00 AM
Surr: Toluene-d8	93.4	82-117	%REC	1	8/29/2011 11:17:00 AM
Surr: 4-Bromofluorobenzene	97.6	77-119	%REC	1	8/29/2011 11:17:00 AM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-207D

Lab Order:

1108060

Project:

Collection Date: 8/23/2011 7:00:00 AM

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-02A

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	S	W8260B				Analyst: SK
Dichlorodifluoromethane	ND	5.0		μg/L	. 1	8/25/2011 12:56:00 PM
Chloromethane	ND	5.0		μg/L	1	8/25/2011 12:56:00 PM
Vinyl chloride	ND	2.0		µg/L	1	8/25/2011 12:56:00 PM
Chloroethane	ND -	5.0		μg/L	. 1	8/25/2011 12:56:00 PM
Bromomethane	ND	2.0		μg/L	1	8/25/2011 12:56:00 PM
Trichlorofluoromethane	ND	2.0		μg/L	1 .	8/25/2011 12:56:00 PM
Diethyl ether	ND	5.0		μg/L	1	8/25/2011 12:56:00 PM
Acetone	ND	10	1	µg/L	1	8/25/2011 12:56:00 PM
1,1-Dichloroethene	ND	1.0	1	µg/L	1	8/25/2011 12:56:00 PM
Carbon disulfide	ND	2.0	I	µg/L	. 1	8/25/2011 12:56:00 PM
Methylene chloride	ND	5:0	1	μg/L	1	8/25/2011 12:56:00 PM
Methyl tert-butyl ether	ND	2.0		μg/L	1 -	8/25/2011 12:56:00 PM
trans-1,2-Dichloroethene	ND	2.0	: 1	µg/L	1	8/25/2011 12:56:00 PM
1,1-Dichloroethane	ND	2.0	1	µg/L	1	8/25/2011 12:56:00 PM
2-Butanone	ND	10	·	µg/L	1	8/25/2011 12:56:00 PM
2,2-Dichloropropane	ND .	2.0	1	µg/L	1	8/25/2011 12:56:00 PM
cis-1,2-Dichloroethene	30	2.0		µg/L	1	8/25/2011 12:56:00 PM
Chloroform	2.5	2.0		μg/L	1	8/25/2011 12:56:00 PM
Tetrahydrofuran	ND	10	1	μg/L	1	8/25/2011 12:56:00 PM
Bromochloromethane	ND	2.0		µg/L	. 1	8/25/2011 12:56:00 PM
1,1,1-Trichloroethane	ND	2.0		µg/L	1	8/25/2011 12:56:00 PM
1,1-Dichloropropene	ND ·	2.0	ı	μg/L	1	8/25/2011 12:56:00 PM
Carbon tetrachloride	ND	2.0		μg/L	1	8/25/2011 12:56:00 PM
1,2-Dichloroethane	ND	2.0		µg/L	1	8/25/2011 12:56:00 PM
Benzene	ND	1.0		µg/L	1	8/25/2011 12:56:00 PM
Trichloroethene	23	2.0		µg/L	1	8/25/2011 12:56:00 PM
1,2-Dichloropropane	ND	2.0		µg/L	1	8/25/2011 12:56:00 PM
Bromodichloromethane	ND	2.0		µg/L	1	8/25/2011 12:56:00 PM
Dibromomethane	ND	2.0		ug/L	1	8/25/2011 12:56:00 PM
4-Methyl-2-pentanone	ND	10		ug/L	1	8/25/2011 12:56:00 PM
cis-1,3-Dichloropropene	ND	1.0		ug/L	1	8/25/2011 12:56:00 PM
Toluene	ND	2.0		ug/L		8/25/2011 12:56:00 PM
trans-1,3-Dichloropropene	ND	1.0		ug/L	1	8/25/2011 12:56:00 PM
1,1,2-Trichloroethane	ND	2.0		ug/L	1	8/25/2011 12:56:00 PM
1,2-Dibromoethane	ND	2.0		ug/L	1	8/25/2011 12:56:00 PM
2-Hexanone	ND	10		ug/L	1	8/25/2011 12:56:00 PM
1,3-Dichloropropane	ND	2.0		ug/L	1	8/25/2011 12:56:00 PM
Tetrachloroethene	1,100	20		ug/L	. 10	8/26/2011 12:00:00 PM
Dibromochloromethane	ND	2.0		ug/L	1	8/25/2011 12:56:00 PM

130274 Textron Providence

Date: 31-Aug-11

CLIENT:

Project:

Shaw Environmental & Infrastructure, Inc.

Lab Order:

1108060

Client Sample ID: MW-207D

Collection Date: 8/23/2011 7:00:00 AM

Matrix: GROUNDWATER

Lab ID:

1108060-02A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
Ethylbenzene	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
m,p-Xylene	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
o-Xylene	ND	2.0	μg/L	1 ,	8/25/2011 12:56:00 PM
Styrene	ND	2.0	μg/L	. 1	8/25/2011 12:56:00 PM
Bromoform	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
Bromobenzene	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
2-Chlorotoluene	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
4-Chlorotoiuene	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1111	8/25/2011 12:56:00 PM
tert-Butylbenzene	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
sec-Butylbenzene	ND	2.0	μg/L	.1	8/25/2011 12:56:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1 1	8/25/2011 12:56:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	8/25/2011 12:56:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
n-Butylbenzene	ND	2.0	μg/L	_ 1	8/25/2011 12:56:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	8/25/2011 12:56:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	. 1	8/25/2011 12:56:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	8/25/2011 12:56:00 PM
Naphthalene	ND	5.0	μg/L	1	8/25/2011 12:56:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1 .	8/25/2011 12:56:00 PM
Surr: Dibromofluoromethane	109	82-122	%REC	1	8/25/2011 12:56:00 PM
Surr: 1,2-Dichloroethane-d4	116	73-135	%REC	1	8/25/2011 12:56:00 PM
Surr: Toluene-d8	93.3	82-117	%REC	1	8/25/2011 12:56:00 PM
Surr: 4-Bromofluorobenzene	96.7	77-119	%REC	1	8/25/2011 12:56:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: Trip Blank

Lab Order:

1108060

Collection Date: 8/23/2011

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-03A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SW8	260B			Analyst: SK
Dichlorodifluoromethane	ND ·	5.0	μg/L	1	8/26/2011 10:51:00 AM
Chloromethane	ND	5.0	μg/L	1	8/26/2011 10:51:00 AM
Vinyl chloride	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
Chloroethane	ND	5.0	μg/L	1	8/26/2011 10:51:00 AM
Bromomethane	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
Trichlorofluoromethane	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
Diethyl ether	ND	5.0	μg/L	1	8/26/2011 10:51:00 AM
Acetone	ND	10	μg/L	1	8/26/2011 10:51:00 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	8/26/2011 10:51:00 AM
Carbon disulfide	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
Methylene chloride	ND	5.0	μg/L	1	8/26/2011 10:51:00 AM
Methyl tert-butyl ether	ND	2.0	μg/L	-1	8/26/2011 10:51:00 AM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	8/26/2011 10:51:00 AM
1,1-Dichloroethane	ND	2.0	μg/L	. 1	8/26/2011 10:51:00 AM
2-Butanone	ND	10	μg/L	1	8/26/2011 10:51:00 AM
2,2-Dichloropropane	ND	2.0	μg/L	1,	8/26/2011 10:51:00 AM
cis-1,2-Dichloroethene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
Chloroform	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
Tetrahydrofuran	ND	10	μg/L	1	8/26/2011 10:51:00 AM
Bromochloromethane	ND	2.0	μg/L	` 1	8/26/2011 10:51:00 AM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
1,1-Dichloropropene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
Carbon tetrachloride	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
1,2-Dichloroethane	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
Benzene	ND	1.0	μg/L	1	8/26/2011 10:51:00 AM
Trichloroethene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
1,2-Dichloropropane	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
Bromodichloromethane	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
Dibromomethane	ND	2.0	µg/L	1	8/26/2011 10:51:00 AM
4-Methyl-2-pentanone	ND	10	μg/L	1	8/26/2011 10:51:00 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/26/2011 10:51:00 AM
Toluene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/26/2011 10:51:00 AM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	8/26/2011 10:51:00 AM
1,2-Dibromoethane	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
2-Hexanone	ND	10	μg/L	1	8/26/2011 10:51:00 AM
1,3-Dichloropropane	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM
Tetrachloroethene	ND	2.0	μg/L	1.	8/26/2011 10:51:00 AM
Dibromochloromethane	ND	2.0	µg/L	1	8/26/2011 10:51:00 AM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: Trip Blank

Lab Order:

1108060

Collection Date: 8/23/2011

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

Surr: Toluene-d8

Surr: 4-Bromofluorobenzene

1108060-03A

Analyses	Result	RL	Qual Units	DF	Date Analyzed	
Chlorobenzene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
Ethylbenzene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
m,p-Xylene	ND	2.0	∙ µg/L	1	8/26/2011 10:51:00 AM	
o-Xylene	ND	2.0	μg/L	1 .	8/26/2011 10:51:00 AM	
Styrene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
Bromoform	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
Isopropylbenzene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
Bromobenzene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
n-Propylbenzene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
2-Chlorotoluene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
4-Chlorotoluene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
1,3,5-Trimethylbenzene	ND	2.0	µg/L	* t * 1	8/26/2011 10:51:00 AM	
tert-Butylbenzene	ND	2.0	μg/L	1. 1	8/26/2011 10:51:00 AM	
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
sec-Butylbenzene	ND .	2.0	µg/L	1	8/26/2011 10:51:00 AM	
4-Isopropyltoluene	ND	2.0	µg/L	. 1	8/26/2011 10:51:00 AM	
1,3-Dichlorobenzene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
1,4-Dichlorobenzene	ND	2.0	μg/L	. 1	8/26/2011 10:51:00 AM	
n-Butylbenzene	ND:	2.0	μg/L	1	8/26/2011 10:51:00 AM	
1,2-Dichlorobenzene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	8/26/2011 10:51:00 AM	
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
Hexachlorobutadiene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
Naphthalene	ND	5.0	μg/L	. 1	8/26/2011 10:51:00 AM	
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	8/26/2011 10:51:00 AM	
Surr: Dibromofluoromethane	105	82-122	%REC	1	8/26/2011 10:51:00 AM	
Surr: 1,2-Dichloroethane-d4	109	73-135	%REC	1	8/26/2011 10:51:00 AM	

82-117

77-119

94.0

97.6

%REC

%REC

8/26/2011 10:51:00 AM

8/26/2011 10:51:00 AM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-202D

Lab Order:

1108060

Project:

Collection Date: 8/23/2011 7:30:00 AM

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-04A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	•	SW8260B		· · · · · · · · · · · · · · · · · · ·	Analyst: SK
Dichlorodifluoromethane	ND ·	5.0	μg/L	1	8/29/2011 1:23:00 PM
Chloromethane	ND	5.0	μg/L	. 1	8/29/2011 1:23:00 PM
Vinyl chloride	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
Chloroethane	ND	5.0	μg/L	1	8/29/2011 1:23:00 PM
Bromomethane	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
Diethyl ether	ND	5.0	μg/L	1	8/29/2011 1:23:00 PM
Acetone	ND	10	μg/L	· 1	8/29/2011 1:23:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	8/29/2011 1:23:00 PM
Carbon disulfide	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
Methylene chloride	ND	5.0	μg/L	. 1	8/29/2011 1:23:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	, · 1	8/29/2011 1:23:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
2-Butanone	ND	10	μg/L	1	8/29/2011 1:23:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
cis-1,2-Dichloroethene	2.9	2.0	μg/L	- 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8/29/2011 1:23:00 PM
Chloroform	16	2.0	μg/L	1	8/29/2011 1:23:00 PM
Tetrahydrofuran	ND	10	μg/L	1	8/29/2011 1:23:00 PM
Bromochloromethane	ND	2.0	μg/L	- 1	8/29/2011 1:23:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	8/29/2011 1:23:00 PM
Carbon tetrachloride	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
Benzene	ND	1.0	μg/L	1	8/29/2011 1:23:00 PM
Trichloroethene	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
1,2-Dichloropropane	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
Bromodichloromethane	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
Dibromomethane	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	8/29/2011 1:23:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/29/2011 1:23:00 PM
Toluene	ND	2.0	µg/L		8/29/2011 1:23:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/29/2011 1:23:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
2-Hexanone	ND	. 10	μg/L μg/L	1	•
1,3-Dichloropropane	ND	2.0		1	8/29/2011 1:23:00 PM
Tetrachloroethene			μg/L		8/29/2011 1:23:00 PM
Dibromochloromethane	210 ND	2.0 2.0	μg/L μg/L	1 1 .	8/29/2011 1:23:00 PM 8/29/2011 1:23:00 PM

Date: '31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-202D

Lab Order:

1108060

Collection Date: 8/23/2011 7:30:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-04A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	. 1	8/29/2011 1:23:00 PM
1,1,1,2-Tetrachloroethane	· ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
Ethylbenzene	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
m,p-Xylene	ND ,	2.0	µg/L	- 1	8/29/2011 1:23:00 PM
o-Xylene	ND	2.0	μg/L	1 .	8/29/2011 1:23:00 PM
Styrene	ND	2.0	μg/L	-1	8/29/2011 1:23:00 PM
Bromoform	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	8/29/2011 1:23:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
Bromobenzene	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
2-Chlorotoluene	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
4-Chlorotoluene	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	• • • • 1	8/29/2011 1:23:00 PM
tert-Butylbenzene	ND	2.0	μg/L	. 1	8/29/2011 1:23:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
sec-Butylbenzene	ND	2.0	μg/L	1.1	8/29/2011 1:23:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	8/29/2011 1:23:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
n-Butylbenzene	ND	2.0	μg/L	_ 1	8/29/2011 1:23:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	8/29/2011 1:23:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
Naphthalene	ND	5.0	μg/L	1	8/29/2011 1:23:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	8/29/2011 1:23:00 PM
Surr: Dibromofluoromethane	104	82-122	%REC	1	8/29/2011 1:23:00 PM
Surr: 1,2-Dichloroethane-d4	113	73-135	%REC	. 1	8/29/2011 1:23:00 PM
Surr: Toluene-d8	92.2	82-117	%REC	1	8/29/2011 1:23:00 PM
Surr: 4-Bromofluorobenzene	94.8	77-119	%REC	1	8/29/2011 1:23:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-202S

Lab Order:

1108060

Collection Date: 8/23/2011 8:00:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-05A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	s	W8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	μg/L	1	8/26/2011 11:25:00 AM
Chloromethane	ND	5.0	μg/L	. 1	8/26/2011 11:25:00 AM
Vinyl chloride	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
Chloroethane	ND	5.0	μg/L	1	8/26/2011 11:25:00 AM
Bromomethane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
Trichlorofluoromethane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
Diethyl ether	ND	5.0	μg/L	1	8/26/2011 11:25:00 AM
Acetone	ND	10	μg/L	1	8/26/2011 11:25:00 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	8/26/2011 11:25:00 AM
Carbon disulfide	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
Methylene chloride	ND	5.0	μg/L	1	8/26/2011 11:25:00 AM
Methyl tert-butyl ether	ND	2.0	μg/L	··· 1 ;	8/26/2011 11:25:00 AM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	8/26/2011 11:25:00 AM
1,1-Dichloroethane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
2-Butanone	ND	10	μg/L	1	8/26/2011 11:25:00 AM
2,2-Dichloropropane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
cis-1,2-Dichloroethene	5.7	2.0	μg/L	ja 1 -	8/26/2011 11:25:00 AM
Chloroform	11	2.0	μg/L	1	8/26/2011 11:25:00 AM
Tetrahydrofuran	ND	10	µg/L	1	8/26/2011 11:25:00 AM
Bromochloromethane	ND	2.0	μg/L	- 1	8/26/2011 11:25:00 AM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
1,1-Dichloropropene	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
Carbon tetrachloride	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
1,2-Dichloroethane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
Benzene	ND	1.0	μg/L	1	8/26/2011 11:25:00 AM
Trichloroethene	ND	2.0	µg/L	1	8/26/2011 11:25:00 AM
1,2-Dichloropropane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
Bromodichloromethane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
Dibromomethane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
4-Methyl-2-pentanone	ND	10	μg/L	1	8/26/2011 11:25:00 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/26/2011 11:25:00 AM
Toluene	. ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/26/2011 11:25:00 AM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
1,2-Dibromoethane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
2-Hexanone	ND	10	μg/L	1	8/26/2011 11:25:00 AM
1,3-Dichloropropane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
Tetrachloroethene	56	2.0	μg/L	1	8/26/2011 11:25:00 AM
Dibromochloromethane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

1108060

Client Sample ID: MW-202S

Lab Order:

Collection Date: 8/23/2011 8:00:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-05A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
Ethylbenzene	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
m,p-Xylene	ND	2.0	µg/L	1	8/26/2011 11:25:00 AM
o-Xylene	ND	2.0	μg/L	1 .	8/26/2011 11:25:00 AM
Styrene	ND	2.0	µg/L	1	8/26/2011 11:25:00 AM
Bromoform	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
Isopropylbenzene	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
Bromobenzene	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
n-Propylbenzene	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
2-Chlorotoluene	ND	2.0	µg/L	1	8/26/2011 11:25:00 AM
4-Chlorotoluene	ND	2.0	µg/L	1	8/26/2011 11:25:00 AM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
tert-Butylbenzene	· ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
sec-Butylbenzene	ND	2.0	μg/L	.1	8/26/2011 11:25:00 AM
4-Isopropyltoluene	ND	2.0	µg/L	1	8/26/2011 11:25:00 AM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	8/26/2011 11:25:00 AM
1,4-Dichlorobenzene	ND	2.0	μg/L	Ή	8/26/2011 11:25:00 AM
n-Butylbenzene	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	8/26/2011 11:25:00 AM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
Hexachlorobutadiene	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
Naphthalene	ND	5.0	μg/L	1	8/26/2011 11:25:00 AM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	8/26/2011 11:25:00 AM
Surr: Dibromofluoromethane	107	82-122	%REC	1	8/26/2011 11:25:00 AM
Surr: 1,2-Dichloroethane-d4	111	73-135	%REC	1	8/26/2011 11:25:00 AM
Surr: Toluene-d8	94.9	82-117	%REC	1	8/26/2011 11:25:00 AM
Surr: 4-Bromofluorobenzene	98.8	77-119	%REC	1	8/26/2011 11:25:00 AM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-101D

Lab Order:

1108060

Collection Date: 8/23/2011 8:30:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-06A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	s	W8260B			Analyst: SK
Dichlorodifluoromethane	ND	50	μg/L	10	8/26/2011 4:04:00 PM
Chloromethane	ND	50	μg/L	10	8/26/2011 4:04:00 PM
Vinyl chloride	ND	20	μg/L	10	8/26/2011 4:04:00 PM
Chloroethane	ND	50	μg/L	10	8/26/2011 4:04:00 PM
Bromomethane	ND	20	μg/L	10	8/26/2011 4:04:00 PM
Trichlorofluoromethane	ND	20	μg/L	10	8/26/2011 4:04:00 PM
Diethyl ether	ND	50	μg/L	10	8/26/2011 4:04:00 PM
Acetone	ND	100	μg/L	10	8/26/2011 4:04:00 PM
1,1-Dichloroethene	ND	10	μg/L	10	8/26/2011 4:04:00 PM
Carbon disulfide	ND	20	μg/L	10	8/26/2011 4:04:00 PM
Methylene chloride	ND	50	μg/L	10	8/26/2011 4:04:00 PM
Methyl tert-butyl ether	ND	20	μg/L	10	8/26/2011 4:04:00 PM
trans-1,2-Dichloroethene	ND	20	μg/L	10	8/26/2011 4:04:00 PM
1,1-Dichloroethane	ND	` 20	μg/L	10	8/26/2011 4:04:00 PM
2-Butanone	. ND	100	μg/L	10	8/26/2011 4:04:00 PM
2,2-Dichloropropane	ND	20	μg/L	10	8/26/2011 4:04:00 PM
cis-1,2-Dichloroethene	ND	20	μg/L	10	8/26/2011 4:04:00 PM
Chloroform	ND	20	μg/L	10	8/26/2011 4:04:00 PM
Tetrahydrofuran	ND	100	μg/L	10	8/26/2011 4:04:00 PM
Bromochloromethane	ND	20	μg/L	- 10	8/26/2011 4:04:00 PM
1,1,1-Trichloroethane	ND	20	μg/L	10	8/26/2011 4:04:00 PM
1,1-Dichloropropene	ND	20	μg/L	10	8/26/2011 4:04:00 PM
Carbon tetrachloride	ND	20	μg/L	10	8/26/2011 4:04:00 PM
1,2-Dichloroethane	ND	20	μg/L	10	8/26/2011 4:04:00 PM
Benzene	ND	10	μg/L	10	8/26/2011 4:04:00 PM
Trichloroethene	ND	20	μg/L	10	8/26/2011 4:04:00 PM
1,2-Dichloropropane	ND	20	μg/L	10	8/26/2011 4:04:00 PM
Bromodichloromethane	ND	20	μg/L	10	8/26/2011 4:04:00 PM
Dibromomethane	ND	20	μg/L	10	8/26/2011 4:04:00 PM
4-Methyl-2-pentanone	ND	100	μg/L	10	8/26/2011 4:04:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	10	8/26/2011 4:04:00 PM
Toluene	ND ND	20	μg/L	10	8/26/2011 4:04:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	10	8/26/2011 4:04:00 PM
1,1,2-Trichloroethane	ND	20	μg/L	10	8/26/2011 4:04:00 PM
1,2-Dibromoethane	ND	20	μg/L	10	8/26/2011 4:04:00 PM
2-Hexanone	ND	100	μg/L	10	8/26/2011 4:04:00 PM
1,3-Dichloropropane	ND	20	μg/L	10	8/26/2011 4:04:00 PM
Tetrachloroethene	3,800	200	μg/L	100	8/29/2011 12:14:00 PM
Dibromochloromethane	3,800 ND	200	μg/L μg/L	100	8/26/2011 4:04:00 PM

130274 Textron Providence

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-101D

Lab Order:

1108060

Collection Date: 8/23/2011 8:30:00 AM

Project:

Matrix: GROUNDWATER

Lab ID:

1108060-06A

Analyses	Result	RL	Qual U	nits	DF	Date Analyzed
Chlorobenzene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
1,1,1,2-Tetrachloroethane	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
Ethylbenzene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
m,p-Xylene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
o-Xylene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
Styrene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
Bromoform	ND	. 20	· μ	g/L	10	8/26/2011 4:04:00 PM
Isopropylbenzene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
1,1,2,2-Tetrachloroethane	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
1,2,3-Trichloropropane	ND	20		g/L	10	8/26/2011 4:04:00 PM
Bromobenzene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
n-Propylbenzene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
2-Chlorotoluene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
4-Chlorotoluene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
1,3,5-Trimethylbenzene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
tert-Butylbenzene	ND	20	μį	g/L	10	8/26/2011 4:04:00 PM
1,2,4-Trimethylbenzene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
sec-Butylbenzene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
4-Isopropyltoluene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
1,3-Dichlorobenzene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
1,4-Dichlorobenzene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
n-Butylbenzene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
1,2-Dichlorobenzene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
1,2-Dibromo-3-chloropropane	ND	50	μ	g/L	10	8/26/2011 4:04:00 PM
1,2,4-Trichlorobenzene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
Hexachlorobutadiene	ND	20	μ	g/L	10	8/26/2011 4:04:00 PM
Naphthalene	ND	50	μ	g/L	10	8/26/2011 4:04:00 PM
1,2,3-Trichlorobenzene	ND	20	μί	g/L	10	8/26/2011 4:04:00 PM
Surr: Dibromofluoromethane	103	82-122	%	REC	10	8/26/2011 4:04:00 PM
Surr: 1,2-Dichloroethane-d4	117	73-135	%	REC	10	8/26/2011 4:04:00 PM
Surr: Toluene-d8	93.8	82-117	%	REC	10	8/26/2011 4:04:00 PM
Surr: 4-Bromofluorobenzene	98.2	77-119	%	REC	10	8/26/2011 4:04:00 PM

Date: '31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-101S

Lab Order:

1108060

Collection Date: 8/23/2011 9:00:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-07A

Analyses	Result	RL (Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	sv	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	μg/L	1	8/25/2011 2:05:00 PM
Chloromethane	ND	5.0	µg/L	1	8/25/2011 2:05:00 PM
Vinyl chloride	ND	2.0	µg/L	1	8/25/2011 2:05:00 PM
Chloroethane	ND	5.0	μg/L	1	8/25/2011 2:05:00 PM
Bromomethane	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	8/25/2011 2:05:00 PM
Diethyl ether	ND	5.0	μg/L	1	8/25/2011 2:05:00 PM
Acetone	ND	10	μg/L	1	8/25/2011 2:05:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	8/25/2011 2:05:00 PM
Carbon disulfide	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
Methylene chloride	ND	5.0	μg/L	1	8/25/2011 2:05:00 PM
Methyl tert-butyl ether	ND .	2.0	μg/L	1 .	8/25/2011 2:05:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	8/25/2011 2:05:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
2-Butanone	ND	10	μg/L	: 1	8/25/2011 2:05:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
cis-1,2-Dichloroethene	3.3	2.0	μg/L	1 1 1	8/25/2011 2:05:00 PM
Chloroform	9.2	2.0	μg/L	1	8/25/2011 2:05:00 PM
Tetrahydrofuran	ND	10	μg/L	1	8/25/2011 2:05:00 PM
Bromochloromethane	ND	2.0	μg/L	· 1	8/25/2011 2:05:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
Carbon tetrachloride	ND	2.0	· μg/L	1	8/25/2011 2:05:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
Benzene	ND	1.0	μg/L	1 .	8/25/2011 2:05:00 PM
Trichloroethene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
1,2-Dichloropropane	ND	2.0	μg/L	1 _	8/25/2011 2:05:00 PM
Bromodichloromethane	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
Dibromomethane	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	8/25/2011 2:05:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/25/2011 2:05:00 PM
Toluene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/25/2011 2:05:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
2-Hexanone	ND	10	µg/L	1	8/25/2011 2:05:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
Tetrachloroethene	34	2.0	μg/L	1	8/25/2011 2:05:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-101S

Lab Order:

1108060

Collection Date: 8/23/2011 9:00:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-07A

Analyses	Result	RL (Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	8/25/2011 2:05:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
Ethylbenzene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
m,p-Xylene	ND	. 2.0	μg/L	1	8/25/2011 2:05:00 PM
o-Xylene	ND.	2.0	μg/L	1 .	8/25/2011 2:05:00 PM
Styrene	ND	2.0	µg/L	1	8/25/2011 2:05:00 PM
Bromoform	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
1,1,2,2-Tetrachioroethane	ND	2.0	μg/L	1.	8/25/2011 2:05:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
Bromobenzene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
2-Chlorotoluene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
4-Chlorotoluene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
tert-Butylbenzene	ND	2.0	μg/Ľ	1	8/25/2011 2:05:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	Í	8/25/2011 2:05:00 PM
sec-Butylbenzene	ND	2.0	μg/L	. 1	8/25/2011 2:05:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
n-Butylbenzene	ND	2.0	μg/L	- 1	8/25/2011 2:05:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	8/25/2011 2:05:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	8/25/2011 2:05:00 PM
Naphthalene	ND	5.0	μg/L	· 1	8/25/2011 2:05:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	8/25/2011 2:05:00 PM
Surr: Dibromofluoromethane	108	82-122	%REC	1	8/25/2011 2:05:00 PM
Surr: 1,2-Dichloroethane-d4	118	73-135	%REC	. 1	8/25/2011 2:05:00 PM
Surr: Toluene-d8	93.2	82-117	%REC	1	8/25/2011 2:05:00 PM
Surr: 4-Bromofluorobenzene	96.1	77-119	%REC	1	8/25/2011 2:05:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Lab Order: 1108060

Project: 130274 Textron Providence

Lab ID:

1108060-08A

Client Sample ID: MW-101S Dup

Collection Date: 8/23/2011 9:00:00 AM

Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SI	W8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	μg/L	1	8/25/2011 2:40:00 PM
Chloromethane	ND	5.0	μg/L	1	8/25/2011 2:40:00 PM
Vinyl chloride	ND .	2.0	μg/L	· 1	8/25/2011 2:40:00 PM
Chloroethane	ND	5.0	μg/L	1	8/25/2011 2:40:00 PM
Bromomethane	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
Diethyl ether	ND	5.0	μg/L	1.	8/25/2011 2:40:00 PM
Acetone	ND	10	μg/L	1 ,	8/25/2011 2:40:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	8/25/2011 2:40:00 PM
Carbon disulfide	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
Methylene chloride	ND	5.0	μg/L	1	8/25/2011 2:40:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
trans-1,2-Dichloroethene	, ND	2.0	µg/L	. 1	8/25/2011 2:40:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
2-Butanone	ND	10	μg/L	1	8/25/2011 2:40:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
cis-1,2-Dichloroethene	3.1	2.0	µg/L	1	8/25/2011 2:40:00 PM
Chloroform	8.2	2.0	μg/L	1	8/25/2011 2:40:00 PM
Tetrahydrofuran	ND	. 10	μg/L	1	8/25/2011 2:40:00 PM
Bromochloromethane	ND	2.0	μg/L	- 1	8/25/2011 2:40:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1 1	8/25/2011 2:40:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
Carbon tetrachloride	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	. 1	8/25/2011 2:40:00 PM
Benzene	ND	1.0	μg/L	1	8/25/2011 2:40:00 PM
Trichloroethene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
1,2-Dichloropropane	ND .	2.0	μg/L	1	8/25/2011 2:40:00 PM
Bromodichloromethane	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
Dibromomethane	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	8/25/2011 2:40:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/25/2011 2:40:00 PM
Toluene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/25/2011 2:40:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	8/25/2011 2:40:00 PM
2-Hexanone	ND	10	μg/L	1	8/25/2011 2:40:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
Tetrachloroethene	33	2.0	μg/L	1	8/25/2011 2:40:00 PM
Dibromochloromethane	ND	2.0	μg/L	1 .	8/25/2011 2:40:00 PM

Date: 31-Aug-11

Matrix: GROUNDWATER

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Lab Order:

1108060

Client Sample ID: MW-101S Dup

Collection Date: 8/23/2011 9:00:00 AM

8/25/2011 2:40:00 PM

8/25/2011 2:40:00 PM

8/25/2011 2:40:00 PM

8/25/2011 2:40:00 PM

8/25/2011 2:40:00 PM 8/25/2011 2:40:00 PM

Project:

130274 Textron Providence

Lab ID:

Naphthalene

1,2,3-Trichlorobenzene

Surr: Toluene-d8

Surr: Dibromofluoromethane

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

1108060-08A

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1 .	8/25/2011 2:40:00 PM
Ethylbenzene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
m,p-Xylene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
o-Xylene	ND	2.0	μg/L	1 .	8/25/2011 2:40:00 PM
Styrene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
Bromoform	ND	2.0	μg/L	1 /	8/25/2011 2:40:00 PM
Isopropylbenzene	ND -	2.0	μg/L	1	8/25/2011 2:40:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
Bromobenzene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
2-Chlorotoluene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
4-Chlorotoluene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
tert-Butylbenzene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	• 1	8/25/2011 2:40:00 PM
sec-Butylbenzene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
n-Butylbenzene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM
1,2-Dibromo-3-chloropropane	ND ·	5.0	μg/L	1	8/25/2011 2:40:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	8/25/2011 2:40:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	8/25/2011 2:40:00 PM

5.0

2.0

82-122

73-135

82-117

77-119

µg/L

µg/L

%REC

%REC

%REC

%REC

ND

ND

112

119

93.6

96.3

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-201D

Lab Order:

1108060

Collection Date: 8/23/2011 9:30:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-09A

Analyses	Result	RL	Qual 1	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		SW8260B				Analyst: SK
Dichlorodifluoromethane	ND	50	ŀ	ıg/L	10	8/26/2011 4:40:00 PM
Chloromethane	ND	50		ıg/L	10	8/26/2011 4:40:00 PM
Vinyl chloride	ND	20		ıg/L	10	8/26/2011 4:40:00 PM
Chloroethane	ND	50		ıg/L	10	8/26/2011 4:40:00 PM
Bromomethane	ND	20		ıg/L	10	8/26/2011 4:40:00 PM
Trichlorofluoromethane	ND	20		ıg/L	10	8/26/2011 4:40:00 PM
Diethyl ether	ND	50		ıg/L	10	8/26/2011 4:40:00 PM
Acetone	ND	100		ıg/L	10	8/26/2011 4:40:00 PM
1,1-Dichloroethene	ND	10		ıg/L	10	8/26/2011 4:40:00 PM
Carbon disulfide	ND	20		ıg/L	10	8/26/2011 4:40:00 PM
Methylene chloride	ND	50		ıg/L	10	8/26/2011 4:40:00 PM
Methyl tert-butyl ether	ND	20		ıg/L	10	8/26/2011 4:40:00 PM
trans-1,2-Dichloroethene	ND	20		ıg/L	10	8/26/2011 4:40:00 PM
1,1-Dichloroethane	ND	20		ıg/L	10	8/26/2011 4:40:00 PM
2-Butanone	ND	100		ıg/L	10	8/26/2011 4:40:00 PM
2,2-Dichloropropane	ND	20		ıg/L	10	8/26/2011 4:40:00 PM
cis-1,2-Dichloroethene	ND	20		ıg/L	10	8/26/2011 4:40:00 PM
Chloroform	ND	20	-	ıg/L	10	8/26/2011 4:40:00 PM
Tetrahydrofuran	ND	100		ıg/L	10	8/26/2011 4:40:00 PM
Bromochloromethane	ND	20		ıg/L	- 10	8/26/2011 4:40:00 PM
1,1,1-Trichloroethane	ND	20		ıg/L	10	8/26/2011 4:40:00 PM
1,1-Dichloropropene	ND	20	Ļ	ıg/L	10	8/26/2011 4:40:00 PM
Carbon tetrachloride	ND	20	Ļ	ıg/L	10	8/26/2011 4:40:00 PM
1,2-Dichloroethane	ND	20	μ	ıg/L	10	8/26/2011 4:40:00 PM
Benzene	ND	10	μ	ıg/L	10	8/26/2011 4:40:00 PM
Trichloroethene	230	20		ıg/L	10	8/26/2011 4:40:00 PM
1,2-Dichloropropane	ND	20		ıg/L	10	8/26/2011 4:40:00 PM
Bromodichloromethane	ND	20		ıg/L.	10	8/26/2011 4:40:00 PM
Dibromomethane	ND	20		ıg/L	10	8/26/2011 4:40:00 PM
4-Methyl-2-pentanone	ND	100		ıg/L	10	8/26/2011 4:40:00 PM
cis-1,3-Dichloropropene	ND	10		ıg/L	10	8/26/2011 4:40:00 PM
Toluene	ND	20.		ıg/L	10	8/26/2011 4:40:00 PM
trans-1,3-Dichloropropene	ND	10		ıg/L	10	8/26/2011 4:40:00 PM
1,1,2-Trichloroethane	ND	20		ıg/L	10	8/26/2011 4:40:00 PM
1,2-Dibromoethane	ND	20		ıg/L	10	8/26/2011 4:40:00 PM
2-Hexanone	ND	100		ıg/L	10	8/26/2011 4:40:00 PM
1,3-Dichloropropane	ND	20		ıg/L	10	8/26/2011 4:40:00 PM
Tetrachloroethene	8,400	200		ıg/L	100	8/29/2011 12:48:00 PM
Dibromochloromethane	ND	20		ıg/L	10	8/26/2011 4:40:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-201D

Lab Order:

1108060

Collection Date: 8/23/2011 9:30:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-09A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
1,1,1,2-Tetrachloroethane	ND	20	μg/L	10	8/26/2011 4:40:00 PM
Ethylbenzene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
m,p-Xylene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
o-Xylene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
Styrene	ND	20	µg/L	10	8/26/2011 4:40:00 PM
Bromoform	ND	20	µg/L	10	8/26/2011 4:40:00 PM
Isopropylbenzene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
1,1,2,2-Tetrachloroethane	ND	20	μg/L	10	8/26/2011 4:40:00 PM
1,2,3-Trichloropropane	ND	20	μg/L	10	8/26/2011 4:40:00 PM
Bromobenzene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
n-Propylbenzene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
2-Chlorotoluene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
4-Chlorotoluene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
1,3,5-Trimethylbenzene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
tert-Butylbenzene	· ND	20	μg/L	10	8/26/2011 4:40:00 PM
1,2,4-Trimethylbenzene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
sec-Butylbenzene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
4-Isopropyltoluene	ND.	20	μg/L	10	8/26/2011 4:40:00 PM
1,3-Dichlorobenzene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
1,4-Dichlorobenzene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
n-Butylbenzene	ND	20	μg/L	10.	8/26/2011 4:40:00 PM
1,2-Dichlorobenzene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
1,2-Dibromo-3-chloropropane	ND	50	μg/L	10	8/26/2011 4:40:00 PM
1,2,4-Trichlorobenzene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
Hexachlorobutadiene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
Naphthalene	ND	50	μg/L	10	8/26/2011 4:40:00 PM
1,2,3-Trichlorobenzene	ND	20	μg/L	10	8/26/2011 4:40:00 PM
Surr: Dibromofluoromethane	106	82-122	%REC	10	8/26/2011 4:40:00 PM
Surr: 1,2-Dichloroethane-d4	114	73-135	%REC	10	8/26/2011 4:40:00 PM
Surr: Toluene-d8	94.7	82-117	%REC	10	8/26/2011 4:40:00 PM
Surr: 4-Bromofluorobenzene	94.6	77-119	%REC	. 10	8/26/2011 4:40:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-209D

Lab Order:

1108060

Collection Date: 8/23/2011 10:00:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-10A

	D 14	DI	<u> </u>					
Analyses	Result	RL	Qual	Units		DF		Date Analyzed
PA 8260B VOLATILES BY GC/MS	s sv	V8260B						Analyst: SK
Dichlorodifluoromethane	ND	50	-	µg/L		10		8/26/2011 5:17:00 PM
Chloromethane	ND	50		μg/L		10		8/26/2011 5:17:00 PM
Vinyl chloride	ND	20	1	μg/L	•	10		8/26/2011 5:17:00 PM
Chloroethane	ND	50		μg/L		10		8/26/2011 5:17:00 PM
Bromomethane	ND	20	.	µg/L		10		8/26/2011 5:17:00 PM
Trichlorofluoromethane	ND	20		μg/L	• , •	10		8/26/2011 5:17:00 PM
Diethyl ether	ND	50		μg/L	1	10		8/26/2011 5:17:00 PM
Acetone	ND	100	1	µg/L		10		8/26/2011 5:17:00 PM
1,1-Dichloroethene	ND	10		μg/L		10		8/26/2011 5:17:00 PM
Carbon disulfide	. ND	20		µg/L		10	-	8/26/2011 5:17:00 PM
Methylene chloride	ND	. 50		µg/L		10		8/26/2011 5:17:00 PM
Methyl tert-butyl ether	ND	20		µg/L		10		8/26/2011 5:17:00 PM
trans-1,2-Dichloroethene	, ND	20		μg/L		10		8/26/2011 5:17:00 PM
1,1-Dichloroethane	ND	20		µg/L		10		8/26/2011 5:17:00 PM
2-Butanone	ND	100		µg/L		10		8/26/2011 5:17:00 PM
2,2-Dichloropropane	ND	20		µg/L		10	, i	8/26/2011 5:17:00 PM
cis-1,2-Dichloroethene	ND:	20		µg/L		10		8/26/2011 5:17:00 PM
Chloroform	ND	20		μg/L		10		8/26/2011 5:17:00 PM
Tetrahydrofuran	ND	100		µg/L		10		8/26/2011 5:17:00 PM
Bromochloromethane	ND	20		μg/L		10		8/26/2011 5:17:00 PM
1,1,1-Trichloroethane	ND	20	j.	μg/L		10		8/26/2011 5:17:00 PM
1,1-Dichloropropene	ND	20	ı	µg/L		10		8/26/2011 5:17:00 PM
Carbon tetrachloride	ND	20	ı	µg/L		10		8/26/2011 5:17:00 PM
1,2-Dichloroethane	ND	20	ı	µg/L		10		8/26/2011 5:17:00 PM
Benzene	ND	10	ı	µg/L		10		8/26/2011 5:17:00 PM
Trichloroethene	200	20	ı	µg/L		10		8/26/2011 5:17:00 PM
1,2-Dichloropropane	ND	20	,	μg/L		10		8/26/2011 5:17:00 PM
Bromodichloromethane	ND	20	1	ug/L		10		8/26/2011 5:17:00 PM
Dibromomethane	ND	20	ŀ	ug/L		10		8/26/2011 5:17:00 PM
4-Methyl-2-pentanone	ND	100	ŀ	ug/L		10		8/26/2011 5:17:00 PM
cis-1,3-Dichloropropene	ND	. 10		ug/L		10		8/26/2011 5:17:00 PM
Toluene	ND	20		ug/L		10		8/26/2011 5:17:00 PM
trans-1,3-Dichloropropene	. ND	10		ug/L		10		8/26/2011 5:17:00 PM
1,1,2-Trichloroethane	ND	20		ug/L		10		8/26/2011 5:17:00 PM
1,2-Dibromoethane	ND	20		ug/L		10		8/26/2011 5:17:00 PM
2-Hexanone	ND	100		ug/L		10		8/26/2011 5:17:00 PM
1,3-Dichloropropane	ND	20		ug/L		10		8/26/2011 5:17:00 PM
Tetrachloroethene	1,500	20		ug/L		10		8/26/2011 5:17:00 PM
Dibromochloromethane	ND	20		ug/L		10		8/26/2011 5:17:00 PM

Date: 31-Aug-11

CLIENT: Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-209D

Lab Order:

1108060

Collection Date: 8/23/2011 10:00:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-10A

analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	` 20	μg/L	10	8/26/2011 5:17:00 PM
1,1,1,2-Tetrachloroethane	ND	20	μg/L	10	8/26/2011 5:17:00 PM
Ethylbenzene	ND	20	μg/L	10	8/26/2011 5:17:00 PM
m,p-Xylene	ND	20	μg/L	10	8/26/2011 5:17:00 PM
o-Xylene	ND	20	μg/L	10	8/26/2011 5:17:00 PM
Styrene	ND	20	µg/L	10	8/26/2011 5:17:00 PM
Bromoform	ND	20	μg/L	¹ 10	8/26/2011 5:17:00 PM
Isopropylbenzene	ND	20	μg/L	10	8/26/2011 5:17:00 PM
1,1,2,2-Tetrachloroethane	ND	20	μg/L	10	8/26/2011 5:17:00 PM
1,2,3-Trichloropropane	ND	20	μg/L	10	8/26/2011 5:17:00 PM
Bromobenzene	ND	20	μg/L	10	8/26/2011 5:17:00 PM
n-Propylbenzene	ND	20	μg/L	10	8/26/2011 5:17:00 PM
2-Chlorotoluene	ND	20	μg/L	10	8/26/2011 5:17:00 PM
4-Chlorotoluene	ND	20	μg/L	10	8/26/2011 5:17:00 PM
1,3,5-Trimethylbenzene	ND	20	μg/L	10,	8/26/2011 5:17:00 PM
tert-Butylbenzene	ND	20	μg/L	10	8/26/2011 5:17:00 PM
1,2,4-Trimethylbenzene	ND	20	μg/L	10	8/26/2011 5:17:00 PM
sec-Butylbenzene	ND	20	μg/L	10	8/26/2011 5:17:00 PM
4-Isopropyltoluene	ND ND	20	μg/L	10	8/26/2011 5:17:00 PM
1,3-Dichlorobenzene	ND	20	μg/L	10	8/26/2011 5:17:00 PM
1,4-Dichlorobenzene	. ND	20	μg/L	10	8/26/2011 5:17:00 PM
n-Butylbenzene	ND	20	μg/L	10	8/26/2011 5:17:00 PM
1,2-Dichlorobenzene	ND	20	μg/L	10	8/26/2011 5:17:00 PM
1,2-Dibromo-3-chloropropane	. ND	50	μg/L	10	8/26/2011 5:17:00 PM
1,2,4-Trichlorobenzene	ND	20	μg/L	10	8/26/2011 5:17:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	8/26/2011 5:17:00 PM
Naphthalene	ND	50	µg/L	10	8/26/2011 5:17:00 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	10	8/26/2011 5:17:00 PM
Surr: Dibromofluoromethane	107	82-122	%REC	10	8/26/2011 5:17:00 PM
Surr: 1,2-Dichloroethane-d4	118	73-135	%REC	10	8/26/2011 5:17:00 PM
Surr: Toluene-d8	93.6	82-117	%REC	10	8/26/2011 5:17:00 PM
Surr: 4-Bromofluorobenzene	95.8	77-119	%REC	10	8/26/2011 5:17:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-112

Lab Order:

1108060

Collection Date: 8/23/2011 10:30:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab	ID:	1108060-11A

Analyses	Result	RL.	Qual U	Jnits	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		SW8260B				Analyst: SK
Dichlorodifluoromethane	ND	50	μ	g/L	10	8/26/2011 5:55:00 PM
Chloromethane	ND	50	μ	g/L	10	8/26/2011 5:55:00 PM
Vinyl chloride	ND	20	. μ	g/L	10	8/26/2011 5:55:00 PM
Chloroethane	ND	50	μ	g/L	10	8/26/2011 5:55:00 PM
Bromomethane	ND	20	·μ	g/L	10	8/26/2011 5:55:00 PM
Trichlorofluoromethane	ND	. 20	μ	g/L	10	8/26/2011 5:55:00 PM
Diethyl ether	ND	50	μ	g/L	10	8/26/2011 5:55:00 PM
Acetone	ND	100	μ	g/L	10	8/26/2011 5:55:00 PM
1,1-Dichloroethene	ND	10	μ	g/L	10	8/26/2011 5:55:00 PM
Carbon disulfide	ND	20	μ	g/L	10	8/26/2011 5:55:00 PM
Methylene chloride	ND	50	μ	g/L	10	8/26/2011 5:55:00 PM
Methyl tert-butyl ether	ND	20	μ	g/L	10	8/26/2011 5:55:00 PM
trans-1,2-Dichloroethene	ND	20	- μ	g/L	10	8/26/2011 5:55:00 PM
1,1-Dichloroethane	ND	20	μ	g/L	10	8/26/2011 5:55:00 PM
2-Butanone	ND	100	μ	g/L	10	8/26/2011 5:55:00 PM
2,2-Dichloropropane	ND	20	μ	g/L	10	8/26/2011 5:55:00 PM
cis-1,2-Dichloroethene	ND	20	μ	g/L	10	8/26/2011 5:55:00 PM
Chloroform	25	20	μ	g/L	10	8/26/2011 5:55:00 PM
Tetrahydrofuran	ND	100	·μ	g/L	10	8/26/2011 5:55:00 PM
Bromochloromethane	ND	20	μ	g/L	- 10	8/26/2011 5:55:00 PM
1,1,1-Trichloroethane	ND	20	μ	g/L	10	8/26/2011 5:55:00 PM
1,1-Dichloropropene	ND	20	μ	g/L	- 10	8/26/2011 5:55:00 PM
Carbon tetrachloride	ND	20	μ	g/L	10	8/26/2011 5:55:00 PM
1,2-Dichloroethane	ND	20	μ	g/L	10	8/26/2011 5:55:00 PM
Benzene	ND	10	μ	g/L	10	8/26/2011 5:55:00 PM
Trichloroethene	ND	20	μ	g/L	10	8/26/2011 5:55:00 PM
1,2-Dichloropropane	ND	20	μ	g/L	· 10	8/26/2011 5:55:00 PM
Bromodichloromethane	ND	20	μ	g/L	10	8/26/2011 5:55:00 PM
Dibromomethane	ND	20	μ	g/L	10	8/26/2011 5:55:00 PM
4-Methyl-2-pentanone	ND	100		g/L	10	8/26/2011 5:55:00 PM
cis-1,3-Dichloropropene	ND	10		g/L	10	8/26/2011 5:55:00 PM
Toluene	ND	20		- g/L	10	8/26/2011 5:55:00 PM
trans-1,3-Dichloropropene	ND .	10		g/L	10	8/26/2011 5:55:00 PM
1,1,2-Trichloroethane	ND	20		g/L	10	. 8/26/2011 5:55:00 PM
1,2-Dibromoethane	ND	20		g/L	10	8/26/2011 5:55:00 PM
2-Hexanone	ND	100		g/L	10	8/26/2011 5:55:00 PM
1,3-Dichloropropane	ND	20		g/L	10	8/26/2011 5:55:00 PM
Tetrachloroethene	550	20		g/L	10	8/26/2011 5:55:00 PM
Dibromochloromethane	ND	20		g/L	10	8/26/2011 5:55:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-112

Lab Order:

1108060

Collection Date: 8/23/2011 10:30:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-11A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	20	µg/L	10	8/26/2011 5:55:00 PM
1,1,1,2-Tetrachloroethane	ND	20	μg/L	10	8/26/2011 5:55:00 PM
Ethylbenzene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
m,p-Xylene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
o-Xylene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
Styrene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
Bromoform	ND	20	μg/L	10	8/26/2011 5:55:00 PM
Isopropylbenzene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
1,1,2,2-Tetrachioroethane	ND	20	μg/L	10	8/26/2011 5:55:00 PM
1,2,3-Trichloropropane	ND	20	μg/L	10	8/26/2011 5:55:00 PM
Bromobenzene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
n-Propylbenzene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
2-Chlorotoluene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
4-Chlorotoluene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
1,3,5-Trimethylbenzene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
tert-Butylbenzene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
1,2,4-Trimethylbenzene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
sec-Butylbenzene	, ND	20	μg/L	10	8/26/2011 5:55:00 PM
4-Isopropyltoluene	ND	20	µg/L	10	8/26/2011 5:55:00 PM
1,3-Dichlorobenzene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
1,4-Dichlorobenzene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
n-Butylbenzene	ND	20	μg/L	_ 10	8/26/2011 5:55:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10	8/26/2011 5:55:00 PM
1,2-Dibromo-3-chloropropane	ND	50	μg/L	10	8/26/2011 5:55:00 PM
1,2,4-Trichlorobenzene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
Hexachlorobutadiene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
Naphthalene	ND	50	μg/L	.10	8/26/2011 5:55:00 PM
1,2,3-Trichlorobenzene	ND	20	μg/L	10	8/26/2011 5:55:00 PM
Surr: Dibromofluoromethane	113	82-122	%REC	10	8/26/2011 5:55:00 PM
Surr: 1,2-Dichloroethane-d4	118	73-135	%REC	10	8/26/2011 5:55:00 PM
Surr: Toluene-d8	94.9	82-117	%REC	10	8/26/2011 5:55:00 PM
Surr: 4-Bromofluorobenzene	97.6	77-119	%REC	10	8/26/2011 5:55:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-218S

Lab Order:

1108060

Collection Date: 8/23/2011 11:00:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-12A

Analyses	Result	RL	Qual Un	its DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		SW8260B	•		Analyst: SK
Dichlorodifluoromethane	ND	5.0	μg/l	_ 1	8/25/2011 3:14:00 PM
Chloromethane	ND	5.0	μg/l		8/25/2011 3:14:00 PM
Vinyl chloride	ND	2.0	μg/l		8/25/2011 3:14:00 PM
Chloroethane	ND	5.0	µg/l		8/25/2011 3:14:00 PM
Bromomethane	ND	2.0	μg/l		8/25/2011 3:14:00 PM
Trichlorofluoromethane	ND	2.0	µg/l		8/25/2011 3:14:00 PM
Diethyl ether	ND	5.0	μg/l		8/25/2011 3:14:00 PM
Acetone	61	10	µg/l		8/25/2011 3:14:00 PM
1,1-Dichloroethene	ND	1.0	μg/l		8/25/2011 3:14:00 PM
Carbon disulfide	ND	2.0	μg/l		8/25/2011 3:14:00 PM
Methylene chloride	ND	5.0	μg/l		8/25/2011 3:14:00 PM
Methyl tert-butyl ether	ND	2.0	µg/l		8/25/2011 3:14:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/l		8/25/2011 3:14:00 PM
1,1-Dichloroethane	ND	2.0	µg/l		8/25/2011 3:14:00 PM
2-Butanone	ND	10	µg/l		8/25/2011 3:14:00 PM
2,2-Dichloropropane	ND	2.0	μg/l		8/25/2011 3:14:00 PM
cis-1,2-Dichloroethene	ND	2.0	μg/l	the state of the s	8/25/2011 3:14:00 PM
Chloroform	27	2.0	μg/l		8/25/2011 3:14:00 PM
Tetrahydrofuran	ND	10	μg/l		8/25/2011 3:14:00 PM
Bromochloromethane	ND	2.0	μg/l		8/25/2011 3:14:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/l		8/25/2011 3:14:00 PM
1,1-Dichloropropene	ND	2.0	μg/l		8/25/2011 3:14:00 PM
Carbon tetrachloride	ND	2.0	μg/i		8/25/2011 3:14:00 PM
1,2-Dichloroethane	ND	2.0	μg/l		8/25/2011 3:14:00 PM
Benzene	ND	1.0	μg/l		8/25/2011 3:14:00 PM
Trichloroethene	ND	2.0	μg/l		8/25/2011 3:14:00 PM
1,2-Dichloropropane	ND	2.0	μg/l		8/25/2011 3:14:00 PM
Bromodichloromethane	ND	2.0	µg/l		8/25/2011 3:14:00 PM
Dibromomethane	ND	2.0	μg/l		8/25/2011 3:14:00 PM
4-Methyl-2-pentanone	ND	10	μg/l		8/25/2011 3:14:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/ l		8/25/2011 3:14:00 PM
Toluene	ND	2.0	μg/l		8/25/2011 3:14:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/l		8/25/2011 3:14:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/l		8/25/2011 3:14:00 PM
1,2-Dibromoethane	ND	2.0	μg/l		8/25/2011 3:14:00 PM
2-Hexanone	ND	10	μg/l		8/25/2011 3:14:00 PM
1,3-Dichloropropane	ND	2.0	μg/l		8/25/2011 3:14:00 PM
Tetrachloroethene	2.3	2.0	μg/l		8/25/2011 3:14:00 PM
Dibromochloromethane	ND	2.0	·µg/L		8/25/2011 3:14:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-218S

Lab Order:

1108060

Collection Date: 8/23/2011 11:00:00 AM

Project:

Matrix: GROUNDWATER

Lab ID:

130274 Textron Providence 1108060-12A

					**	
Analyses	Result	RL (Qual Units	DF	Date Analyzed	
Chlorobenzene	ND	2.0	µg/L	1	8/25/2011 3:14:00 PM	
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	8/25/2011 3:14:00 PM	
Ethylbenzene	ND	2.0	μg/L	.1	8/25/2011 3:14:00 PM	
m,p-Xylene	ND	2.0	μg/L	1.	8/25/2011 3:14:00 PM	
o-Xylene	ND	2.0	μg/L	1 .	8/25/2011 3:14:00 PM	
Styrene	ND.	2.0	μg/L	1	8/25/2011 3:14:00 PM	
Bromoform	ND	2.0	μg/L	1	8/25/2011 3:14:00 PM	
Isopropylbenzene	ND	2.0	μg/L	. 1	8/25/2011 3:14:00 PM	
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1 .	8/25/2011 3:14:00 PM	
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/25/2011 3:14:00 PM	
Bromobenzene	ND	2.0	μg/L	1	8/25/2011 3:14:00 PM	
n-Propylbenzene	ND	2.0	μg/L	1	8/25/2011 3:14:00 PM	
2-Chlorotoluene	ND	2.0	μg/L	1 -	8/25/2011 3:14:00 PM	
4-Chlorotoluene	ND	2.0	μg/L	1	8/25/2011 3:14:00 PM	
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1 ;	8/25/2011 3:14:00 PM	
tert-Butylbenzene	ND	2.0	μg/L	1	8/25/2011 3:14:00 PM	
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	8/25/2011 3:14:00 PM	
sec-Butylbenzene	ND	2.0	μg/L	1.	8/25/2011 3:14:00 PM	
4-Isopropyltoluene	ND	2.0	μg/L		8/25/2011 3:14:00 PM	
1,3-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 3:14:00 PM	
1,4-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 3:14:00 PM	
n-Butylbenzene	ND	2.0	µg/L	_ 1	8/25/2011 3:14:00 PM	
1,2-Dichlorobenzene	ND	2.0	µg/L	1	8/25/2011 3:14:00 PM	
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	8/25/2011 3:14:00 PM	
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	8/25/2011 3:14:00 PM	
Hexachlorobutadiene	ND	2.0	μg/L	1	8/25/2011 3:14:00 PM	
Naphthalene	ND	5.0	μg/L	1	8/25/2011 3:14:00 PM	
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	8/25/2011 3:14:00 PM	
Surr: Dibromofluoromethane	114	82-122	%REC	1	8/25/2011 3:14:00 PM	
Surr: 1,2-Dichloroethane-d4	118	73-135	%REC	1	8/25/2011 3:14:00 PM	
Surr: Toluene-d8	94.6	82-117	%REC	1	8/25/2011 3:14:00 PM	
Surr: 4-Bromofluorobenzene	94.6	77-119	%REC	1	8/25/2011 3:14:00 PM	

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-218D

Lab Order:

1108060

Collection Date: 8/23/2011 11:30:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-13A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		SW8260B		·	Analyst: SK
Dichlorodifluoromethane	ND	5.0	μg/L	1	8/25/2011 3:49:00 PM
Chloromethane	ND	5.0	μg/L	1	8/25/2011 3:49:00 PM
Vinyl chloride	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
Chloroethane	ND	5.0	μg/L	1	8/25/2011 3:49:00 PM
Bromomethane	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
Diethyl ether	ND	5.0	μg/L	1	8/25/2011 3:49:00 PM
Acetone	ND	10	μg/L	1	8/25/2011 3:49:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	8/25/2011 3:49:00 PM
Carbon disulfide	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
Methylene chloride	ND	5.0	μg/L	. 1	8/25/2011 3:49:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	. 1	8/25/2011 3:49:00 PM
trans-1,2-Dichloroethene	, ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
2-Butanone	ND	10	μg/L	1	8/25/2011 3:49:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1.	8/25/2011 3:49:00 PM
cis-1,2-Dichloroethene	ND	2.0	μg/L	1.	8/25/2011 3:49:00 PM
Chloroform	49	2.0	μg/L	1	8/25/2011 3:49:00 PM
Tetrahydrofuran	ND	. 10	μg/L	1	8/25/2011 3:49:00 PM
Bromochloromethane	ND	2.0	μg/L	·- 1	8/25/2011 3:49:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
Carbon tetrachloride	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
Benzene	ND	1.0	μg/L	. 1	8/25/2011 3:49:00 PM
Trichloroethene	12	2.0	μg/L	1	8/25/2011 3:49:00 PM
1,2-Dichloropropane	, ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
Bromodichloromethane	3.5	2.0	μg/L	1	8/25/2011 3:49:00 PM
Dibromomethane	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	8/25/2011 3:49:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	· 1	8/25/2011 3:49:00 PM
Toluene	ND	2.0	μg/L		8/25/2011 3:49:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	. 1	8/25/2011 3:49:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	8/25/2011 3:49:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	8/25/2011 3:49:00 PM
2-Hexanone	ND	10	μg/L	1 .	8/25/2011 3:49:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
Tetrachloroethene	300	2.0	μg/L	1	8/25/2011 3:49:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM

Date: '31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-218D

Lab Order:

1108060

Collection Date: 8/23/2011 11:30:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-13A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
Ethylbenzene	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
m,p-Xylene	ND	2.0	μg/L	. 1	8/25/2011 3:49:00 PM
o-Xylene	ND	2.0	μg/L	1 ,	8/25/2011 3:49:00 PM
Styrene	ND	2.0	μg/L	. 1	8/25/2011 3:49:00 PM
Bromoform	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1 .	8/25/2011 3:49:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
Bromobenzene	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	8/25/2011 3:49:00 PM
2-Chlorotoluene	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
4-Chlorotoluene	ND	2.0	μg/L	. 1	8/25/2011 3:49:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	, 1 ,	8/25/2011 3:49:00 PM
tert-Butylbenzene	ND	2.0	µg/L	. 1	8/25/2011 3:49:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
sec-Butylbenzene	ND	2.0	μg/L	· 1	8/25/2011 3:49:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
n-Butylbenzene	ND	2.0	μg/L	. 1	8/25/2011 3:49:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	8/25/2011 3:49:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
Naphthalene	ND	5.0	μg/L	4 1	8/25/2011 3:49:00 PM
1,2,3-Trichlorobenzene	- ND	2.0	μg/L	1	8/25/2011 3:49:00 PM
Surr: Dibromofluoromethane	111	82-122	%REC	1	8/25/2011 3:49:00 PM
Surr: 1,2-Dichloroethane-d4	119	73-135	%REC	. 1	8/25/2011 3:49:00 PM
Surr: Toluene-d8	92.0	82-117	%REC	. 1	8/25/2011 3:49:00 PM
Surr: 4-Bromofluorobenzene	94.8	77-119	%REC	1	8/25/2011 3:49:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: CW-1

Lab Order:

1108060

Collection Date: 8/23/2011 12:00:00 PM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-14A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		SW8260B			Analyst: SK
Dichlorodifluoromethane	ND	100	μg/L	20	8/29/2011 1:58:00 PM
Chloromethane	ND	100	μg/L	20	8/29/2011 1:58:00 PM
Vinyl chloride	ND	40	μg/L	20	8/29/2011 1:58:00 PM
Chloroethane	ND	100	μg/L	20	8/29/2011 1:58:00 PM
Bromomethane	ND	40	μg/L	20	8/29/2011 1:58:00 PM
Trichlorofluoromethane	ND	40	μg/L	20	8/29/2011 1:58:00 PM
Diethyl ether	ND	100	µg/L	20	8/29/2011 1:58:00 PM
Acetone	ND	200	μg/L	20	8/29/2011 1:58:00 PM
1,1-Dichloroethene	70	20	μg/L	20	8/29/2011 1:58:00 PM
Carbon disulfide	ND	40	μg/L	20	8/29/2011 1:58:00 PM
Methylene chloride	ND.	100	μg/L	20	8/29/2011 1:58:00 PM
Methyl tert-butyl ether	ND	40	μg/L	20	8/29/2011 1:58:00 PM
trans-1,2-Dichloroethene	ND	40	μg/L	20	8/29/2011 1:58:00 PM
1,1-Dichloroethane	ND	40	µg/L	20	8/29/2011 1:58:00 PM
2-Butanone	ND	200	μg/L	20	8/29/2011 1:58:00 PM
2,2-Dichloropropane	ND	40	μg/L	20	8/29/2011 1:58:00 PM
cis-1,2-Dichloroethene	1,600	40	µg/L	20	8/29/2011 1:58:00 PM
Chloroform	ND	40	μg/L	20	8/29/2011 1:58:00 PM
Tetrahydrofuran	ND	200	μg/L	20	8/29/2011 1:58:00 PM
Bromochloromethane	ND	40	μg/L	- 20	8/29/2011 1:58:00 PM
1,1,1-Trichloroethane	ND	40	μg/L	20	8/29/2011 1:58:00 PM
1,1-Dichloropropene	ND	40	μg/L	20	8/29/2011 1:58:00 PM
Carbon tetrachloride	ND	40	μg/L	20	8/29/2011 1:58:00 PM
1,2-Dichloroethane	ND	40	μg/L	20	8/29/2011 1:58:00 PM
Benzene	ND	20	μg/L	20	8/29/2011 1:58:00 PM
Trichloroethene	480	40	μg/L	. 20	8/29/2011 1:58:00 PM
1,2-Dichloropropane	ND	40	μg/L	20	8/29/2011 1:58:00 PM
Bromodichloromethane	ND	40	μg/L	20	8/29/2011 1:58:00 PM
Dibromomethane	ND	40	μg/L	20	8/29/2011 1:58:00 PM
4-Methyl-2-pentanone	ND	200	μg/L	20	8/29/2011 1:58:00 PM
cis-1,3-Dichloropropene	ND	20	μg/L	20	8/29/2011 1:58:00 PM
Toluene	ND	40	μg/L	20	8/29/2011 1:58:00 PM
trans-1,3-Dichloropropene	ND	20	μg/L	20	8/29/2011 1:58:00 PM
1,1,2-Trichloroethane	ND	40	μg/L	20	8/29/2011 1:58:00 PM
1,2-Dibromoethane	ND	40	μg/L	20	8/29/2011 1:58:00 PM
2-Hexanone	ND	200	μg/L	20	8/29/2011 1:58:00 PM
1,3-Dichloropropane	ND	40	μg/L	20	8/29/2011 1:58:00 PM
Tetrachloroethene	ND	40	μg/L	20	8/29/2011 1:58:00 PM
Dibromochloromethane	ND	40	μg/L	20	8/29/2011 1:58:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: CW-1

Lab Order:

1108060

Collection Date: 8/23/2011 12:00:00 PM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-14A

Analyses	Result	RL	Qual I	Units	DF	Date Analyzed
Chlorobenzene	ND	40	ı.	ug/L	20	8/29/2011 1:58:00 PM
1,1,1,2-Tetrachloroethane	ND	40	-	ug/L	20	8/29/2011 1:58:00 PM
Ethylbenzene	ND	40		ug/L	20	8/29/2011 1:58:00 PM
m,p-Xylene	ND	40	-	ıg/L	20	8/29/2011 1:58:00 PM
o-Xylene	ND	40		ug/L	20	8/29/2011 1:58:00 PM
Styrene	ND	40		ug/L	20	8/29/2011 1:58:00 PM
Bromoform	ND	40		ıg/L	20	8/29/2011 1:58:00 PM
Isopropylbenzene	ND	40		ıg/L	20	8/29/2011 1:58:00 PM
1,1,2,2-Tetrachloroethane	ND	40		ıg/L	20	8/29/2011 1:58:00 PM
1,2,3-Trichloropropane	ND	40		ıg/L	20	8/29/2011 1:58:00 PM
Bromobenzene	ND	40	Ļ	ıg/L	20	8/29/2011 1:58:00 PM
n-Propylbenzene	ND	40		ıg/L	20	8/29/2011 1:58:00 PM
2-Chlorotoluene	ND	40	ŀ	ıg/L	20	8/29/2011 1:58:00 PM
4-Chlorotoluene	ND	40	Ļ	ıg/L	20	8/29/2011 1:58:00 PM
1,3,5-Trimethylbenzene	ND	40	ı p	ıg/L	20	8/29/2011 1:58:00 PM
tert-Butylbenzene	ND	40	Ļ	ıg/L	20	8/29/2011 1:58:00 PM
1,2,4-Trimethylbenzene	ND	40		ıg/L	20	8/29/2011 1:58:00 PM
sec-Butylbenzene	ND	40	Ļ	ıg/L	20	8/29/2011 1:58:00 PM
4-Isopropyitoluene	ND	40	Ļ	ıg/L	20	8/29/2011 1:58:00 PM
1,3-Dichlorobenzene	ND	40	Ļ	ug/L	20	8/29/2011 1:58:00 PM
1,4-Dichlorobenzene	ND	40	۲	ug/L	.20	8/29/2011 1:58:00 PM
n-Butylbenzene	ND	40	μ	ug/L	_ 20	8/29/2011 1:58:00 PM
1,2-Dichlorobenzene	ND	40	μ	ıg/L	20	8/29/2011 1:58:00 PM
1,2-Dibromo-3-chloropropane	ND	100	μ	ıg/L	20	8/29/2011 1:58:00 PM
1,2,4-Trichlorobenzene	ND	40	μ	ıg/L	20	8/29/2011 1:58:00 PM
Hexachlorobutadiene	ND	40	μ	ıg/L	20	8/29/2011 1:58:00 PM
Naphthalene	ND	100	μ	ıg/L	20	8/29/2011 1:58:00 PM
1,2,3-Trichlorobenzene	ND	40	μ	ıg/L	20	8/29/2011 1:58:00 PM
Surr: Dibromofluoromethane	105	82-122	9	%REC	20	8/29/2011 1:58:00 PM
Surr: 1,2-Dichloroethane-d4	115	73-135	9	%REC	20	8/29/2011 1:58:00 PM
Surr: Toluene-d8	92.6	82-117	9	%REC	20	8/29/2011 1:58:00 PM
Surr: 4-Bromofluorobenzene	96.8	77-119	9	%REC	20	8/29/2011 1:58:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: CW-2

Lab Order:

1108060

Collection Date: 8/23/2011 12:30:00 PM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-15A

Analyses	Result	RL (Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		W8260B		· · · · · · · · · · · · · · · · · · ·	Analyst: SK
Dichlorodifluoromethane	ND	5.0	μg/L	1	8/25/2011 4:23:00 PM
Chloromethane	ND	5.0	μg/L	1	8/25/2011 4:23:00 PM
Vinyl chloride	ND :	2.0	μg/L	1	8/25/2011 4:23:00 PM
Chloroethane	ND	5.0	μg/L	1	8/25/2011 4:23:00 PM
Bromomethane	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
Diethyl ether	ND	5.0	μg/L	1	8/25/2011 4:23:00 PM
Acetone	ND	10	μg/L	1 ,	8/25/2011 4:23:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	8/25/2011 4:23:00 PM
Carbon disulfide	ND	2.0	µg/L	1	8/25/2011 4:23:00 PM
Methylene chloride	ND	5.0	μg/L	1	8/25/2011 4:23:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
2-Butanone	ND	10	μg/L	1	8/25/2011 4:23:00 PM
2,2-Dichloropropane	ND ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
cis-1,2-Dichloroethene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
Chloroform	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
Tetrahydrofuran	ND ND	10	μg/L	1 '	8/25/2011 4:23:00 PM
Bromochloromethane	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	8/25/2011 4:23:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	8/25/2011 4:23:00 PM
Benzene	ND	1.0	µg/L	1	8/25/2011 4:23:00 PM
Trichloroethene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
1,2-Dichloropropane	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
Bromodichloromethane	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
Dibromomethane	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	8/25/2011 4:23:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/25/2011 4:23:00 PM
Toluene	ND.	2.0	μg/L		8/25/2011 4:23:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/25/2011 4:23:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
2-Hexanone	ND	10	μg/L	1	8/25/2011 4:23:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
Tetrachloroethene	ND	2.0	µg/L	1	8/25/2011 4:23:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: CW-2

Lab Order:

1108060

Collection Date: 8/23/2011 12:30:00 PM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-15A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PN
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	8/25/2011 4:23:00 PN
Ethylbenzene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PN
m,p-Xylene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
o-Xylene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PN
Styrene	ND ND	2.0	µg/L	1	8/25/2011 4:23:00 PM
Bromoform	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	8/25/2011 4:23:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	· 1	8/25/2011 4:23:00 PM
Bromobenzene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
2-Chlorotoluene	ND	2.0	μg/L	. 1	8/25/2011 4:23:00 PM
4-Chlorotoluene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
tert-Butylbenzene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
1,2,4-Trimethylbenzene	, ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
sec-Butylbenzene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	8/25/2011 4:23:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
n-Butylbenzene	ND	2.0	μg/L	. 1	8/25/2011 4:23:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	8/25/2011 4:23:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	8/25/2011 4:23:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	8/25/2011 4:23:00 PM
Naphthalene	ND	5.0	µg/L	· 1	8/25/2011 4:23:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	8/25/2011 4:23:00 PM
Surr: Dibromofluoromethane	112	82-122	%REC	1	8/25/2011 4:23:00 PM
Surr: 1,2-Dichloroethane-d4	122	73-135	%REC	1	8/25/2011 4:23:00 PN
Surr: Toluene-d8	95.2	82-117	%REC	1	8/25/2011 4:23:00 PN
Surr: 4-Bromofluorobenzene	95.6	77-119	%REC	1	8/25/2011 4:23:00 PN

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-216D

Lab Order:

1108060

Collection Date: 8/23/2011 1:00:00 PM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-16A

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	sv	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	μg/L	1	8/25/2011 4:57:00 PM
Chloromethane	ND	5.0	μg/L	1	8/25/2011 4:57:00 PM
Vinyl chloride	3.9	2.0	μg/L	. 1	8/25/2011 4:57:00 PM
Chloroethane	ND	5.0	μg/L	1	8/25/2011 4:57:00 PM
Bromomethane	ND	2.0	μg/L	1.	8/25/2011 4:57:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
Diethyl ether	ND	5.0	μg/L	1	8/25/2011 4:57:00 PM
Acetone	ND	10	μg/L	1	8/25/2011 4:57:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	8/25/2011 4:57:00 PM
Carbon disulfide	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
Methylene chloride	ND	5.0	μg/L	1	8/25/2011 4:57:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1 ,	8/25/2011 4:57:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
2-Butanone	ND	10	μg/L	1	8/25/2011 4:57:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	8/25/2011 4:57:00 PM
cis-1,2-Dichloroethene	3.0	2.0	µg/L	e dia si 1 merek	8/25/2011 4:57:00 PM
Chloroform	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
Tetrahydrofuran	ND	10	μg/L	1 :	8/25/2011 4:57:00 PM
Bromochloromethane	ND	2.0	μg/L	- 1	8/25/2011 4:57:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
Carbon tetrachloride	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
Benzene	ND	1.0	μg/L	1	8/25/2011 4:57:00 PM
Trichloroethene	. ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
1,2-Dichloropropane	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
Bromodichloromethane	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
Dibromomethane	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	8/25/2011 4:57:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/25/2011 4:57:00 PM
Toluene	ND	2.0	μg/L	. 1	8/25/2011 4:57:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/25/2011 4:57:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
2-Hexanone	ND	10	μg/L	1	8/25/2011 4:57:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
Tetrachloroethene	ND	2.0	μg/L μg/L	1	8/25/2011 4:57:00 PM
Dibromochloromethane	ND	2.0	μg/L μg/L	1	8/25/2011 4:57:00 PM

Date: '31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-216D

Lab Order:

1108060

Collection Date: 8/23/2011 1:00:00 PM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID: 1108060-16A

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
Ethylbenzene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
m,p-Xylene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
o-Xylene	ND .	2.0	μg/L	1	8/25/2011 4:57:00 PM
Styrene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
Bromoform	. ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1 .	8/25/2011 4:57:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
Bromobenzene	ND	2.0	µg/L	1	8/25/2011 4:57:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	8/25/2011 4:57:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	8/25/2011 4:57:00 PM
4-Chlorotoluene	ND ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
1,3,5-Trimethylbenzene	· ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
tert-Butylbenzene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
sec-Butylbenzene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1. 1.	8/25/2011 4:57:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
n-Butylbenzene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
1,2-Dichlorobenzene	ND ·	2.0	μg/L	1	8/25/2011 4:57:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	8/25/2011 4:57:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
Naphthalene	ND	5.0	µg/L	4 1	8/25/2011 4:57:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	8/25/2011 4:57:00 PM
Surr: Dibromofluoromethane	· 111	82-122	%REC	1	8/25/2011 4:57:00 PM
Surr: 1,2-Dichloroethane-d4	117	73-135	%REC	1	8/25/2011 4:57:00 PM
Surr: Toluene-d8	92.4	82-117	%REC	1	8/25/2011 4:57:00 PM
Surr: 4-Bromofluorobenzene	96.9	77-119	%REC	1.	8/25/2011 4:57:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-216S

Lab Order:

1108060

Collection Date: 8/23/2011 1:30:00 PM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-17A

Analyses	Result	RL	Qual U	nits	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	sv	V8260B				Analyst: SK
Dichlorodifluoromethane	ND	5.0	þ	g/L	1	8/25/2011 5:32:00 PM
Chloromethane	ND	5.0	μ	g/L	1 .	8/25/2011 5:32:00 PM
Vinyl chloride	ND	2.0	μ	g/L	1	8/25/2011 5:32:00 PM
Chloroethane	ND	5.0	μ	g/Ľ	1 .	8/25/2011 5:32:00 PM
Bromomethane	ND .	2.0	μį	g/L	1	8/25/2011 5:32:00 PM
Trichlorofluoromethane	ND	2.0	μ	g/L	1	8/25/2011 5:32:00 PM
Diethyl ether	ND	5.0	μί	g/L	1	8/25/2011 5:32:00 PM
Acetone	ND	10	μ	g/L	1	8/25/2011 5:32:00 PM
1,1-Dichloroethene	ND	1.0	μ	g/L	1	8/25/2011 5:32:00 PM
Carbon disulfide	ND	2.0	μ	g/L	1	8/25/2011 5:32:00 PM
Methylene chloride	ND	5.0		g/L	1 .	8/25/2011 5:32:00 PM
Methyl tert-butyl ether	ND	2.0		g/L	1	8/25/2011 5:32:00 PM
trans-1,2-Dichloroethene	ND	2.0		g/L	. 1	8/25/2011 5:32:00 PM
1,1-Dichloroethane	ND	2.0		g/L	1	8/25/2011 5:32:00 PM
2-Butanone	ND	10		g/L	1	8/25/2011 5:32:00 PM
2,2-Dichloropropane	ND	2.0		g/L	. 1	8/25/2011 5:32:00 PM
cis-1,2-Dichloroethene	52	2.0		3/L	1	8/25/2011 5:32:00 PM
Chloroform	ND +	2.0		9/L	1	8/25/2011 5:32:00 PM
Tetrahydrofuran	ND	10		g/L	· 1	8/25/2011 5:32:00 PM
Bromochloromethane	ND	2.0		j/L	- 1	8/25/2011 5:32:00 PM
1,1,1-Trichloroethane	ND	2.0		j/L	1	8/25/2011 5:32:00 PM
1,1-Dichloropropene	ND	2.0		j/L	1	8/25/2011 5:32:00 PM
Carbon tetrachloride	ND	2.0		, J/L	1	8/25/2011 5:32:00 PM
1,2-Dichloroethane	ND	2.0		j/L	1	8/25/2011 5:32:00 PM
Benzene	ND	1.0		j/L	1	8/25/2011 5:32:00 PM
Trichloroethene	ND	2.0		;/L	1	8/25/2011 5:32:00 PM
1,2-Dichloropropane	ND	2.0		;/L	1	8/25/2011 5:32:00 PM
Bromodichloromethane	ND	2.0		, J/L.	1	8/25/2011 5:32:00 PM
Dibromomethane	ND	2.0	. μς		1	8/25/2011 5:32:00 PM
4-Methyl-2-pentanone	ND	10		ı/L	1	8/25/2011 5:32:00 PM
cis-1,3-Dichloropropene	ND	1.0		, J/L	. 1	8/25/2011 5:32:00 PM
Toluene	2.0	2.0		, J/L	1	8/25/2011 5:32:00 PM
trans-1,3-Dichloropropene	ND	1.0		, J/L	1 ·	8/25/2011 5:32:00 PM
1,1,2-Trichloroethane	ND	2.0)/L	1	8/25/2011 5:32:00 PM
1,2-Dibromoethane	ND	2.0		/L	1	8/25/2011 5:32:00 PM
2-Hexanone	ND	10)/L	1	8/25/2011 5:32:00 PM
1,3-Dichloropropane	ND	2.0		, /L	1	8/25/2011 5:32:00 PM
Tetrachloroethene	ND	2.0)/L	1	8/25/2011 5:32:00 PM
Dibromochloromethane	ND	2.0	μς		1	8/25/2011 5:32:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-216S

Lab Order:

1108060

Project:

Collection Date: 8/23/2011 1:30:00 PM

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID: 1108060-17A

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	8/25/2011 5:32:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	8/25/2011 5:32:00 PM
Ethylbenzene	3.5	2.0	μg/L	1	8/25/2011 5:32:00 PM
m,p-Xylene	8.5	2.0	μg/L	1	8/25/2011 5:32:00 PM
o-Xylene	12	2.0	μg/L	1	8/25/2011 5:32:00 PM
Styrene	ND	2.0	μg/L	1	8/25/2011 5:32:00 PM
Bromoform	ND	2.0	μg/L	1	8/25/2011 5:32:00 PM
Isopropylbenzene	ND	2.0	μg/L	, 1	8/25/2011 5:32:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/25/2011 5:32:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1 ,	8/25/2011 5:32:00 PM
Bromobenzene	ND	2.0	μg/L	1	8/25/2011 5:32:00 PM
n-Propylbenzene	ND .	2.0	μg/L	1,	8/25/2011 5:32:00 PM
2-Chlorotoluene	ND	2.0	μg/L	1	8/25/2011 5:32:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	8/25/2011 5:32:00 PM
1,3,5-Trimethylbenzene	12	2.0	µg/L	1	8/25/2011 5:32:00 PM
tert-Butylbenzene	ND	2.0	μg/L	. 1	8/25/2011 5:32:00 PM
1,2,4-Trimethylbenzene	16	2.0	μg/L	1	8/25/2011 5:32:00 PM
sec-Butylbenzene	ND	2.0	μg/L	1	8/25/2011 5:32:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	. 1	8/25/2011 5:32:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 5:32:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 5:32:00 PM
n-Butylbenzene	ND	2,0	μg/L	.: 1	8/25/2011 5:32:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 5:32:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	8/25/2011 5:32:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	8/25/2011 5:32:00 PM
Hexachlorobutadiene	ND .	2.0	μg/L	1	8/25/2011 5:32:00 PM
Naphthalene	24	5.0	μg/L	5 1	8/25/2011 5:32:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	8/25/2011 5:32:00 PM
Surr: Dibromofluoromethane	111	82-122	%REC	1	8/25/2011 5:32:00 PM
Surr: 1,2-Dichloroethane-d4	121	73-135	%REC	1	8/25/2011 5:32:00 PM
Surr: Toluene-d8	91.2	82-117	%REC	1	8/25/2011 5:32:00 PM
Surr: 4-Bromofluorobenzene	97.3	77-119	%REC	1	8/25/2011 5:32:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-217D

Lab Order:

1108060

Collection Date: 8/23/2011 2:00:00 PM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-18A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	S	W8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	μg/L	1	8/25/2011 6:06:00 PM
Chloromethane	ND	5.0	μg/L	1	8/25/2011 6:06:00 PM
Vinyl chloride	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
Chloroethane	ND	5.0	μg/L	1	8/25/2011 6:06:00 PM
Bromomethane	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
Diethyl ether	ND	5.0	μg/L	·1 ·	8/25/2011 6:06:00 PM
Acetone	ND	10	μg/L	1	8/25/2011 6:06:00 PM
1,1-Dichloroethene	ND.	1.0	μg/L	1	8/25/2011 6:06:00 PM
Carbon disulfide	ND	2.0	µg/L	1	8/25/2011 6:06:00 PM
Methylene chloride	ND	5.0	µg/L	1	8/25/2011 6:06:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	4	8/25/2011 6:06:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
2-Butanone	ND	10	μg/L	1,	8/25/2011 6:06:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
cis-1,2-Dichloroethene	9.1	2.0	μg/L	1	8/25/2011 6:06:00 PM
Chloroform	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
Tetrahydrofuran	ND	10	μg/L	1	8/25/2011 6:06:00 PM
Bromochloromethane	ND	2.0	μg/L	- 1	8/25/2011 6:06:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
Carbon tetrachloride	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
Benzene	ND	1.0	μg/L	1	8/25/2011 6:06:00 PM
Trichloroethene	6.2	2.0	μg/L	1	8/25/2011 6:06:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	·1 ,	8/25/2011 6:06:00 PM
Bromodichloromethane	ND	2.0	μg/L	1 .	8/25/2011 6:06:00 PM
Dibromomethane	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	8/25/2011 6:06:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/25/2011 6:06:00 PM
Toluene	ND	2.0	μg/L		8/25/2011 6:06:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/25/2011 6:06:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
2-Hexanone	ND	10	μg/L	1	8/25/2011 6:06:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-217D

Lab Order:

1108060

Collection Date: 8/23/2011 2:00:00 PM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-18A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	· 1	8/25/2011 6:06:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
Ethylbenzene	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
m,p-Xylene	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
o-Xylene	ND	2.0	μg/L	1 ,.	8/25/2011 6:06:00 PM
Styrene	ND	2.0	µg/L	1	8/25/2011 6:06:00 PM
Bromoform	ND	2.0	µg/L	1	8/25/2011 6:06:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
Bromobenzene	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
2-Chlorotoluene	ND	2.0	μg/L	1.	8/25/2011 6:06:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	8/25/2011 6:06:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
tert-Butylbenzene	ND	2.0	μg/L	· 1	8/25/2011 6:06:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	. 1	8/25/2011 6:06:00 PM
sec-Butylbenzene	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	8/25/2011 6:06:00 PM
n-Butylbenzene	ND	2.0	µg/L	, 1	8/25/2011 6:06:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	8/25/2011 6:06:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	8/25/2011 6:06:00 PM
Naphthalene	ND	5.0	μg/L	1	8/25/2011 6:06:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1.	8/25/2011 6:06:00 PM
Surr: Dibromofluoromethane	99.3	82-122	%REC	1	8/25/2011 6:06:00 PM
Surr: 1,2-Dichloroethane-d4	101	73-135	%REC	1	8/25/2011 6:06:00 PM
Surr: Toluene-d8	92.7	82-117	%REC	1	8/25/2011 6:06:00 PM
Surr: 4-Bromofluorobenzene	97.2	77-119	%REC	1	8/25/2011 6:06:00 PM

Date: 31-Aug-11

CLIENT: Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-217S

Lab Order: 1108060

Collection Date: 8/23/2011 2:30:00 PM

Project: 130274 Textron Providence

Matrix: GROUNDWATER

Lab ID: 1108060-19A

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SW	/8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	μg/L	1	8/26/2011 12:35:00 PM
Chloromethane	ND	5.0	μg/L	,1	8/26/2011 12:35:00 PM
Vinyl chloride	12	2.0	μg/L	1	8/26/2011 12:35:00 PM
Chloroethane	. ND	5.0	μg/L	1	8/26/2011 12:35:00 PM
Bromomethane	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
Diethyl ether	ND	5.0	μg/L	1	8/26/2011 12:35:00 PM
Acetone	ND	10	μg/L	1	8/26/2011 12:35:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	8/26/2011 12:35:00 PM
Carbon disulfide	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
Methylene chloride	ND	5.0	µg/L	1.	8/26/2011 12:35:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	.1	8/26/2011 12:35:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
2-Butanone	ND	10	μg/L	.1	8/26/2011 12:35:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
cis-1,2-Dichloroethene	15	2.0	μg/L	1	8/26/2011 12:35:00 PM
Chloroform	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
Tetrahydrofuran	ND -	10	μg/L	1	8/26/2011 12:35:00 PM
Bromochloromethane	· ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1,	8/26/2011 12:35:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	8/26/2011 12:35:00 PM
Benzene	ND	1.0	µg/L	1	8/26/2011 12:35:00 PM
Trichloroethene	ND	2.0	µg/L	1	8/26/2011 12:35:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	8/26/2011 12:35:00 PM
Bromodichloromethane	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
Dibromomethane	ND	2.0	μg/L	-1	8/26/2011 12:35:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	8/26/2011 12:35:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/26/2011 12:35:00 PM
Toluene	ND.	2.0	μg/L	1	8/26/2011 12:35:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/26/2011 12:35:00 PM
1,1,2-Trichloroethane	. ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
2-Hexanone	ND	10	μg/L	1	8/26/2011 12:35:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
Tetrachloroethene	4.0	2.0	μg/L	1	8/26/2011 12:35:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
Sistemos includio	110	2.0	P9, ₽	, •	5/25/2011 12.00,00 FW

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-217S

Lab Order:

1108060

Project:

Collection Date: 8/23/2011 2:30:00 PM

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID: 1108060-19A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	8/26/2011 12:35:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	. 1	8/26/2011 12:35:00 PM
Ethylbenzene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
m,p-Xylene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
o-Xylene	ND	2.0	µg/L	1 1	8/26/2011 12:35:00 PM
Styrene	ND	2.0	μg/L	· 1	8/26/2011 12:35:00 PM
Bromoform	ND	2.0	µg/L	1	8/26/2011 12:35:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	8/26/2011 12:35:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
Bromobenzene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
2-Chlorotoluene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
4-Chlorotoluene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
tert-Butylbenzene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
sec-Butylbenzene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1.	8/26/2011 12:35:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
n-Butylbenzene	ND	2.0	µg/L	. 1	8/26/2011 12:35:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	· 1	8/26/2011 12:35:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	· 1	8/26/2011 12:35:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
Naphthalene	ND	5.0	μg/L	1	8/26/2011 12:35:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	8/26/2011 12:35:00 PM
Surr: Dibromofluoromethane	108	82-122	%REC	. 1	8/26/2011 12:35:00 PM
Surr: 1,2-Dichloroethane-d4	113	73-135	%REC	1	8/26/2011 12:35:00 PM
Surr: Toluene-d8	94.5	82-117	%REC	1	8/26/2011 12:35:00 PM
Surr: 4-Bromofluorobenzene	96.6	77-119	%REC	1	8/26/2011 12:35:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-116D

Lab Order:

1108060

Collection Date: 8/23/2011 10:00:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-20A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	μg/L	1	8/26/2011 1:09:00 PM
Chloromethane	ND	5.0	μg/L	1	8/26/2011 1:09:00 PM
Vinyl chloride	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Chloroethane	ND	5.0	μg/L	1	8/26/2011 1:09:00 PM
Bromomethane	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Diethyl ether	ND	5.0	μg/L	1	8/26/2011 1:09:00 PM
Acetone	ND	10	μg/L	1	8/26/2011 1:09:00 PM
1,1-Dichloroethene	ND	- 1.0	μg/L	1	8/26/2011 1:09:00 PM
Carbon disulfide	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Methylene chloride	ND	5.0	μg/L	. 1	8/26/2011 1:09:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
trans-1,2-Dichloroethene	, ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
2-Butanone	ND	10	μg/L	1	8/26/2011 1:09:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	8/26/2011 1:09:00 PM
cis-1,2-Dichloroethene	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Chloroform	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Tetrahydrofuran	ND	10	μg/L	1	8/26/2011 1:09:00 PM
Bromochloromethane	ND	2.0	μg/L	· 1	8/26/2011 1:09:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Carbon tetrachloride	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	8/26/2011 1:09:00 PM
Benzene	ND	1.0	µg/L	1	8/26/2011 1:09:00 PM
Trichloroethene	ND	2.0	µg/L	1	8/26/2011 1:09:00 PM
1,2-Dichloropropane	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Bromodichloromethane	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Dibromomethane	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	8/26/2011 1:09:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/26/2011 1:09:00 PM
Toluene	ND	2.0	μg/L		8/26/2011 1:09:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	8/26/2011 1:09:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	8/26/2011 1:09:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
2-Hexanone	ND	10	μg/L	1	8/26/2011 1:09:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Tetrachloroethene	ND	2.0	μg/L	. 1	8/26/2011 1:09:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM

Date: 31-Aug-11

CLIENT: Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-116D

Lab Order:

1108060

Collection Date: 8/23/2011 10:00:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-20A

Analyses	Result	RL (Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	8/26/2011 1:09:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	8/26/2011 1:09:00 PM
Ethylbenzene	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
m,p-Xylene	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
o-Xylene	ND	2.0	μg/L	1 .	8/26/2011 1:09:00 PM
Styrene	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Bromoform	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Isopropylbenzene	· ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Bromobenzene	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
n-Propylbenzene	ND	2.0	µg/L	_, 1	8/26/2011 1:09:00 PM
2-Chlorotoluene	ND.	2.0	μg/L	1	8/26/2011 1:09:00 PM
4-Chlorotoluene	ND	2.0	μg/L	. 1 .	8/26/2011 1:09:00 PM
1,3,5-Trimethylbenzene	· ND	2.0	μg/L	<u>,</u> 1	8/26/2011 1:09:00 PM
tert-Butylbenzene	· ND	2.0	μg/L	7 1	8/26/2011 1:09:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	8/26/2011 1:09:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
1,3-Dichlorobenzene	ND ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1 .	8/26/2011 1:09:00 PM
n-Butylbenzene	ND ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	8/26/2011 1:09:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Naphthalene	ND	5.0	μg/L	· 1	8/26/2011 1:09:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	8/26/2011 1:09:00 PM
Surr: Dibromofluoromethane	106	82-122	%REC	1	8/26/2011 1:09:00 PM
Surr: 1,2-Dichloroethane-d4	116	73-135	%REC	1	8/26/2011 1:09:00 PM
Surr: Toluene-d8	95.4	82-117	%REC	1	8/26/2011 1:09:00 PM
Surr: 4-Bromofluorobenzene	100	77-119	%REC	1	8/26/2011 1:09:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-116S

Lab Order:

1108060

Collection Date: 8/23/2011 10:30:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-21A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS		SW8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	μg/L	. 1	8/26/2011 1:44:00 PM
Chloromethane	ND	5.0	μg/L	1	8/26/2011 1:44:00 PM
Vinyl chloride	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
Chloroethane	ND	5.0	μg/L	1	8/26/2011 1:44:00 PM
Bromomethane	ND	2.0	μg/L	, 1	8/26/2011 1:44:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1 .	8/26/2011 1:44:00 PM
Diethyl ether	ND	5.0	μg/L	1	8/26/2011 1:44:00 PM
Acetone	ND	. 10	μg/L	1	8/26/2011 1:44:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	8/26/2011 1:44:00 PM
Carbon disulfide	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
Methylene chloride	ND	5.0	μg/L	1	8/26/2011 1:44:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
trans-1,2-Dichloroethene	, ND	2.0	μg/L	1 1	8/26/2011 1:44:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
2-Butanone	ND	10	μg/L	1	8/26/2011 1:44:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
cis-1,2-Dichloroethene	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
Chloroform	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
Tetrahydrofuran	ND	10	µg/L	. 1	8/26/2011 1:44:00 PM
Bromochloromethane	ND	2.0	μg/L	÷ 1	8/26/2011 1:44:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
Carbon tetrachloride	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
Benzene	ND	1.0	μg/L	1	8/26/2011 1:44:00 PM
Trichloroethene	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	8/26/2011 1:44:00 PM
Bromodichloromethane	ND	2.0	ͺ μg/L	1	8/26/2011 1:44:00 PM
Dibromomethane	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
4-Methyl-2-pentanone	··· ND	10	μg/L	1	8/26/2011 1:44:00 PM
cis-1,3-Dichloropropene	· ND	1.0	μg/L	1	8/26/2011 1:44:00 PM
Toluene	ND	2.0	μg/L	1 1.	8/26/2011 1:44:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	8/26/2011 1:44:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
2-Hexanone	ND	10	μg/L	1	8/26/2011 1:44:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
Tetrachloroethene	ND	2.0	µg/L	1	8/26/2011 1:44:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-116S

Lab Order:

1108060

Collection Date: 8/23/2011 10:30:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-21A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
Ethylbenzene	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
m,p-Xylene	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
o-Xylene	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
Styrene	· ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
Bromoform	ND	2.0	μg/L -	1	8/26/2011 1:44:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
Bromobenzene	ND	2.0	µg/L	1	8/26/2011 1:44:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	8/26/2011 1:44:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	8/26/2011 1:44:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	8/26/2011 1:44:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
tert-Butylbenzene	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L [*]	1	8/26/2011 1:44:00 PM
sec-Butylbenzene	ND	2.0	μg/L	1 .	8/26/2011 1:44:00 PM
4-Isopropyltoluene	ND.	2.0	μg/L	1	8/26/2011 1:44:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
n-Butylbenzene	ND	2.0	μg/L	_ 1	8/26/2011 1:44:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	· 1	8/26/2011 1:44:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1.	8/26/2011 1:44:00 PM
Naphthalene	ND	5.0	μg/L	1	8/26/2011 1:44:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	8/26/2011 1:44:00 PM
Surr: Dibromofluoromethane	108	82-122	%REC	1	8/26/2011 1:44:00 PM
Surr: 1,2-Dichloroethane-d4	115	73-135	%REC	1	8/26/2011 1:44:00 PM
Surr: Toluene-d8	93.9	82-117	%REC	1	8/26/2011 1:44:00 PM
Surr: 4-Bromofluorobenzene	99.9	77-119	%REC	1	8/26/2011 1:44:00 PM

Date: '31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: GZA-3

Lab Order:

1108060

Collection Date: 8/23/2011 11:30:00 AM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-22A

Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	sv	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	8/26/2011 2:19:00 PM
Chloromethane	ND	5.0	μg/L	1	8/26/2011 2:19:00 PM
Vinyl chloride	6.9	2.0	µg/L	1	8/26/2011 2:19:00 PM
Chloroethane	ND	5.0	μg/L	1 1	8/26/2011 2:19:00 PM
Bromomethane	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
Diethyl ether	ND	5.0	μg/L	1	8/26/2011 2:19:00 PM
Acetone	ND	10	µg/L	1	8/26/2011 2:19:00 PM
1,1-Dichloroethene	1.1	1.0	µg/L	1 '	8/26/2011 2:19:00 PM
Carbon disulfide	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
Methylene chloride	ND	5.0	μg/L	1	8/26/2011 2:19:00 PM
Methyl tert-butyl ether	13	2.0	μg/L	1	8/26/2011 2:19:00 PM
trans-1,2-Dichloroethene	, ND	2.0	μg/L	. 1	8/26/2011 2:19:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
2-Butanone	ND	10	μg/L	1	8/26/2011 2:19:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
cis-1,2-Dichloroethene	57	2.0	µg/L	1.	8/26/2011 2:19:00 PM
Chloroform	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
Tetrahydrofuran	ND	10	μg/L	1 [.]	8/26/2011 2:19:00 PM
Bromochloromethane	ND.	2.0	μg/L	· 1	8/26/2011 2:19:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
Carbon tetrachloride	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
Benzene	ND	1.0	μg/L	1	8/26/2011 2:19:00 PM
Trichloroethene	20	2.0	μg/L	1	8/26/2011 2:19:00 PM
1,2-Dichloropropane	ND 1	2.0	μg/L	1	8/26/2011 2:19:00 PM
Bromodichloromethane	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
Dibromomethane	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	8/26/2011 2:19:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/26/2011 2:19:00 PM
Toluene	ND	2.0	μg/L		8/26/2011 2:19:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/26/2011 2:19:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
2-Hexanone	ND	10	μg/L	1	8/26/2011 2:19:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
Tetrachloroethene	ND	2.0	μg/L	1:	8/26/2011 2:19:00 PM
Dibromochloromethane	ND	2.0	µg/L	1	8/26/2011 2:19:00 PM

130274 Textron Providence

Date: 31-Aug-11

CLIENT: Lab Order: Shaw Environmental & Infrastructure, Inc.

1108060

Client Sample ID: GZA-3

Collection Date: 8/23/2011 11:30:00 AM

Matrix: GROUNDWATER

Project: Lab ID:

1108060-22A

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	8/26/2011 2:19:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	8/26/2011 2:19:00 PM
Ethylbenzene	ND	2.0	µg/L	1 .	8/26/2011 2:19:00 PM
m,p-Xylene	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
o-Xylene	ND	2.0	µg/L	1 .	8/26/2011 2:19:00 PM
Styrene	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
Bromoform	ND	2.0	μg/L	1 '	8/26/2011 2:19:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
Bromobenzene	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
2-Chlorotoluene	ND	2.0	μg/Ľ	1,	8/26/2011 2:19:00 PM
4-Chlorotoluene	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
tert-Butylbenzene	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
sec-Butylbenzene	ND	2.0	μg/L	. 1	8/26/2011 2:19:00 PM
4-Isopropyltoluene	$\{(x,y,y,y,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,$	2.0	μg/L	1	8/26/2011 2:19:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	8/26/2011 2:19:00 PM
n-Butylbenzene	ND	2.0	μg/L	_ 1	8/26/2011 2:19:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	8/26/2011 2:19:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	8/26/2011 2:19:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	8/26/2011 2:19:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	8/26/2011 2:19:00 PM
Naphthalene	ND	5.0	µg/L	1	8/26/2011 2:19:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	8/26/2011 2:19:00 PM
Surr: Dibromofluoromethane	107	82-122	%REC	1	8/26/2011 2:19:00 PM
Surr: 1,2-Dichloroethane-d4	112	73-135	%REC	1	8/26/2011 2:19:00 PM
Surr: Toluene-d8	93.3	82-117	%REC	. 1	8/26/2011 2:19:00 PM
Surr: 4-Bromofluorobenzene	97.9	77-119	%REC	1	8/26/2011 2:19:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-109D

Lab Order:

1108060

Collection Date: 8/23/2011 12:30:00 PM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-23A

Analyses	Result	RL	Qual U	nits DF	Date Analyzed
EPA 8260B VOLATILES BY GC/M	S	SW8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	μg	/L 1	8/26/2011 2:54:00 PM
Chloromethane	ND	5.0	μg	/L 1	8/26/2011 2:54:00 PM
Vinyl chloride	ND	2.0	μg	/L 1	8/26/2011 2:54:00 PM
Chloroethane	ND	5.0	μg		8/26/2011 2:54:00 PM
Bromomethane	ND	2.0	μg		8/26/2011 2:54:00 PM
Trichlorofluoromethane	ND.	2.0	μg		8/26/2011 2:54:00 PM
Diethyl ether	ND	- 5.0	μg	/L 1	8/26/2011 2:54:00 PM
Acetone	ND	10	μg		8/26/2011 2:54:00 PM
1,1-Dichloroethene	ND	1.0	μg		8/26/2011 2:54:00 PM
Carbon disulfide	. ND	2.0	μg		8/26/2011 2:54:00 PM
Methylene chloride	ND.	5.0	μg		8/26/2011 2:54:00 PM
Methyl tert-butyl ether	ND	2.0	μg		8/26/2011 2:54:00 PM
trans-1,2-Dichloroethene	` ∨ ND	2.0	μg		8/26/2011 2:54:00 PM
1,1-Dichloroethane	, ND	2.0	μg		8/26/2011 2:54:00 PM
2-Butanone	ND	10	μg		8/26/2011 2:54:00 PM
2,2-Dichloropropane	ND	2.0	μg		8/26/2011 2:54:00 PM
cis-1,2-Dichloroethene	ND	2.0	μg		8/26/2011 2:54:00 PM
Chloroform	ND	2.0	μg		8/26/2011 2:54:00 PM
Tetrahydrofuran ,	ND.	10	μg	/L 1	8/26/2011 2:54:00 PM
Bromochloromethane	ND	2.0	μg	/L 1	8/26/2011 2:54:00 PM
1,1,1-Trichloroethane	, ND	2.0	μg		8/26/2011 2:54:00 PM
1,1-Dichloropropene	ND	2.0	μg		8/26/2011 2:54:00 PM
Carbon tetrachloride	ND	2.0	μg	•	8/26/2011 2:54:00 PM
1,2-Dichloroethane	ND	2.0	μg		8/26/2011 2:54:00 PM
Benzene	ND	1.0	μg		8/26/2011 2:54:00 PM
Trichloroethene	ND	2.0	μg		8/26/2011 2:54:00 PM
1,2-Dichloropropane	ND	2.0	μg		8/26/2011 2:54:00 PM
Bromodichloromethane	ND	2.0	μg		8/26/2011 2:54:00 PM
Dibromomethane	ND	2.0	μg	•	8/26/2011 2:54:00 PM
4-Methyl-2-pentanone	ND	10	μg		8/26/2011 2:54:00 PM
cis-1,3-Dichloropropene	ND.	1.0	μg		8/26/2011 2:54:00 PM
Toluene	ND	2.0	μg		8/26/2011 2:54:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg		8/26/2011 2:54:00 PM
1,1,2-Trichloroethane	ND	2.0	μg		8/26/2011 2:54:00 PM
1,2-Dibromoethane	ND	2.0	µg		8/26/2011 2:54:00 PM
2-Hexanone	ND	10	μg		8/26/2011 2:54:00 PM
1,3-Dichloropropane	ND	2.0	μg		8/26/2011 2:54:00 PM
Tetrachloroethene	ND	2.0	μg		8/26/2011 2:54:00 PM
Dibromochloromethane	ND	2.0	μg		8/26/2011 2:54:00 PM

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: MW-109D

Lab Order:

1108060

Collection Date: 8/23/2011 12:30:00 PM

Project:

130274 Textron Providence

Matrix: GROUNDWATER

Lab ID:

1108060-23A

Analyses	Result	RL	Qual U	Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	. μ	ıg/L	1	8/26/2011 2:54:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
Ethylbenzene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
m,p-Xylene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
o-Xylene	ND	2.0	μ	ıg/L	1 .	8/26/2011 2:54:00 PM
Styrene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
Bromoform	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
Isopropylbenzene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μ	ıg/L	1 .	8/26/2011 2:54:00 PM
1,2,3-Trichloropropane	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
Bromobenzene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
n-Propylbenzene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
2-Chlorotoluene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
4-Chlorotoluene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
tert-Butylbenzene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
sec-Butylbenzene	ND.	2.0	μ	ıg/L	1 .	8/26/2011 2:54:00 PM
4-Isopropyltoluene	ND	2.0	μ	ig/L	1	8/26/2011 2:54:00 PM
1,3-Dichlorobenzene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
1,4-Dichlorobenzene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
n-Butylbenzene	ND	2.0	μ	ıg/L	_ 1	8/26/2011 2:54:00 PM
1,2-Dichlorobenzene	ND	2.0	μ	ıg/L	1 .	8/26/2011 2:54:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
Hexachlorobutadiene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
Naphthalene	ND	5.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μ	ıg/L	1	8/26/2011 2:54:00 PM
Surr: Dibromofluoromethane	109	82-122	9	%REC	1	8/26/2011 2:54:00 PM
Surr: 1,2-Dichloroethane-d4	111	73-135	9	%REC	1	8/26/2011 2:54:00 PM
Surr: Toluene-d8	95.6	82-117	9	6REC	1	8/26/2011 2:54:00 PM
Surr: 4-Bromofluorobenzene	96.6	77-119	9,	6REC	1	8/26/2011 2:54:00 PM

Method Blank

QC SUMMARY REPORT

AMRO Environmental Laboratories Corp.

CLIENT:	Shaw Environmental & Infrastructure, Inc.
Work Order:	1108060
Project:	130274 Textron Providence

Sample ID mb-08/25/11	Batch ID: R47290	Test Code	Test Code: SW8260B	Units: ug/L		Analysis I	Date 8/25/11	Analysis Date 8/25/11 10:36:00 AM	Prep Date 8/25/11	8/25/11	
Client ID:		Run ID:	V-3_110825A	5A		SeqNo:	786468				
Analyte	QC Sample Result	Œ	Units	QC Spike Original Sample Amount Result	ial Sample Result %REC	C LowLimit	HiahLimit	Original Sample or MS Result	%RPD	RPDLimit	Qua
or training to	10001	!			-		D				
Dichlorodifluoromethane	ΩN	5.0	hg/L								
Chloromethane	QZ	5.0	hg/L								
Vinyl chloride	Q	2.0	hg/L								
Chloroethane	QN	5.0	J/gr/								
Bromomethane	Q	2.0	hg/L								
Trichlorofluoromethane	Q.	2.0	hg/L								
Diethyl ether	Q	5.0	hg/L								
Acetone	Q	10	µg/L								
1,1-Dichloroethene	QN	1.0	hg/L	#*							
Carbon disulfide	Q	2.0	hg/L								
Methylene chloride	QN	5.0	hg/L	•							
Methyl tert-butyl ether	QN	2.0	hg/L								
trans-1,2-Dichloroethene	QN	2.0	hg/L								
1,1-Dichloroethane	QN	2.0	hg/L								
2-Butanone	QN	10	hg/L								
2,2-Dichloropropane	QN	2.0	µg/L	e.							
cis-1,2-Dichloroethene	QN	2.0	hg/L							٠	
Chloroform	QN	2.0	hg/L								
Tetrahydrofuran	QN	9	hg/L	* * * * * * * * * * * * * * * * * * *					-		
Bromochloromethane	Q	2.0	hg/L								
1,1,1-Trichloroethane	QN	2.0	hg/L								
1,1-Dichloropropene	QN	2.0	hg/L								
Carbon tetrachloride	Q	2.0	hg/L								
1,2-Dichloroethane	QN	2.0	hg/L	٠							
Benzene	QN	1.0	µg/L						• •		
Qualifiers: ND - Not Detect	ND - Not Detected at the Reporting Limit	S	- Spike Reco	S - Spike Recovery outside accepted recovery limits	ted recovery limits		rte detected in	B - Analyte detected in the associated Method Blank	hod Blank		
J - Analyte detec	J - Analyte detected below quantitation limits	2	- RPD outsid	R - RPD outside accepted recovery limits	y limits	NA - Not	: applicable w	NA - Not applicable where J values or ND results occur	results occur		

RL - Reporting Limit, defined as the lowest concentration the laboratory can accurately quantitate.

Work Order: 1108060						TATO TOTAL TATE TATO ON
				_		- CO
Project: 130274 Textron Providence	dence					Method Blank
Trichloroethene	QN	2.0	hg/L			
1,2-Dichloropropane	QN QN	2.0	µg/L			
Bromodichloromethane	ND	2.0	µg/L			
Dibromomethane	ND	2.0	µg/L		0	
4-Methyl-2-pentanone	ND	10	µg/L			
cis-1,3-Dichloropropene	ND	1.0	µg/L			
Toluene	ND	2.0	µg/L			
trans-1,3-Dichloropropene	ND	1.0	µg/L			
1,1,2-Trichloroethane	ND	2.0	µg/L			
1,2-Dibromoethane	ND	2.0	µg/L			
2-Hexanone	ND	10	µg/L			
1,3-Dichloropropane	ND	2.0	µg/L			
Tetrachloroethene	ND	2.0	hg/L			
Dibromochloromethane	ND	2.0	µg/L			
Chlorobenzene	ND	2.0	µg/L			
1,1,1,2-Tetrachloroethane	N	2.0	µg/L			
Ethylbenzene	ND	2.0	hg/L			
m,p-Xylene	ND	2.0	µg/L			
o-Xylene	N Q	2.0	µg/L			
Styrene	ND	2.0	µg/L			
· ·	N Q	2.0	µg/L			
	ND	2.0	µg/L	₩		
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L			
1,2,3-Trichloropropane	ND	2.0	hg/L	- Arman		
Bromobenzene	ND	2.0	µg/L	.		
n-Propylbenzene	ND	2.0	µg/L			
2-Chlorotoluene	ND	2.0	µg/L			
4-Chlorotoluene	ND	2.0	µg/L			
1,3,5-Trimethylbenzene	ND	2.0	µg/L			
tert-Butylbenzene	ND	2.0	µg/L			
1,2,4-Trimethylbenzene	Q	2.0	µg/L			
Qualifiers: ND - Not Detected at the Reporting Limit	g Limit		- Spike Recovery	S - Spike Recovery outside accepted recovery limits	B - Analyte detected in the associated Method Blank	Method Blank
J - Analyte detected below quantitation limits	ation limits	Ħ	t - RPD outside acc	R - RPD outside accepted recovery limits	NA - Not applicable where J values or ND results occur	· ND results occur
				1-1-1-	•	

CLIENT: Shaw En	Shaw Environmental & Infrastructure, In	ructure, Inc.						Ŏ	OC SUMMARY REPORT	REPORT
Work Order: 1108060								Ų.		-41 - 4 D11
Project: 130274 T	130274 Textron Providence								IVI	Method Blank
sec-Butylbenzene	QN	2.0	µg/L							
4-Isopropyltoluene	QN	2.0	µg/L							
1,3-Dichlorobenzene	QN	2.0	µg/Ł							
1,4-Dichlorobenzene	QN	2.0	µg/L				٠.			
n-Butylbenzene	QN	2.0	µg/L							
1,2-Dichlorobenzene	QN	2.0	µg/L							
1,2-Dibromo-3-chloropropane	QV	5.0	µg/L							
1,2,4-Trichlorobenzene	QN	2.0	µg/L	. "						
Hexachlorobutadiene	QN	2.0	µg/L							
Naphthalene	ND	5.0	µg/L							
1,2,3-Trichlorobenzene	QN	2.0	µg/L							
Surr: Dibromofluoromethane	25.63	2.0	µg/L	25	0	103	82	122	.0.	
Surr: 1,2-Dichloroethane-d4	29.26	2.0	µg/L	25	0	117	73	135	0	
Surr: Toluene-d8	23.55	2.0	µg/L	25	0	94.2	82	117	0	
Surr: 4-Bromofluorobenzene	24.11	2.0	µg/L	25	0	96.4	22	119	0 ,	

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

	Shaw Environmental & Infrastructure, Inc.	ucture, Inc.		1					QC SUMMARY REPORT	MARY	REPO	3T
Work Order: 1108060	0									2	Method Rlank	-Juc
Project: 130274	130274 Textron Providence									17	remon Di	
Sample ID mb-08/26/11	Batch ID: R47299	Test Code:	Test Code: SW8260B	Units: µg/L		1	Analysis Da	ate 8/26/11	Analysis Date 8/26/11 10:17:00 AM	Prep Date 8/26/11	8/26/11	
Client ID:		Run ID:	V-3_110826A	6A		0,	SeqNo:	786665				
	QC Sample		0	QC Spike Original Sample	Sample		٠.		Original Sample			
Analyte	Result	R	Units	Amount	Result %	%REC L	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluoromethane	QN	5.0	µg/L	44 T								
Chloromethane	ND	5.0	hg/L	**								
Vinyl chloride	QN	2.0	hg/L		-							
Chloroethane	N	5.0	µg/L									
Bromomethane	QN ·	2.0	hg/L									
Trichlorofluoromethane	QN	2.0	hg/L									
Diethyl ether	QN	5.0	hg/L									
Acetone	QN	10	hg/L									
1,1-Dichloroethene	QN.	1.0	hg/L									
Carbon disulfide	g	2.0	hg/L	*								
Methylene chloride	9	5.0	µg/L									
Methyl tert-butyl ether	Q N	2.0	hg/L									
trans-1,2-Dichloroethene	Q v	2.0	hg/L									
1,1-Dichloroethane	Q	2.0	hg/L									
2-Butanone	9	10	hg/L									
2,2-Dichloropropane	Q	2.0	hg/L									
cis-1,2-Dichloroethene	Q	2.0	, µg/L								•	
Chloroform	<u>Q</u>	2.0	hg/L	•								
Tetrahydrofuran	Q	10	hg/L									
Bromochloromethane	2	2.0	hg/L		•							
1,1,1-Trichloroethane	Q	2.0	µg/L									

B - Analyte detected in the associated Method Blank
NA - Not applicable where J values or ND results occur

S - Spike Recovery outside accepted recovery limits

µg/L µg/L µg/L

2.0 2.0 1.0

9999

1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane R - RPD outside accepted recovery limits

RL - Reporting Limit, defined as the lowest concentration the laboratory can accurately quantitate.

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Benzene Qualifiers:

CLIENT: Shaw Environmental & Infrastructure,	l & Infrastruct	ure, Inc.			00	OC STIMMARY REPORT
Work Order: 1108060					Y	last Distriction
Project: 130274 Textron Providence	vidence					Meniou Dialik
Trichloroethene	ND	2.0	µg/L			
1,2-Dichloropropane	ND	2.0	hg/L			
Bromodichloromethane	ND	2.0	µg/L			
Dibromomethane	ND	2.0	µg/Ł		N.	
4-Methyl-2-pentanone	ND	10	µg/L	i.		
cis-1,3-Dichloropropene	Q	1.0	µg/L			
Toluene	QN	2.0	µg/L			
trans-1,3-Dichloropropene	Q	1.0	µg/L	·		
1,1,2-Trichloroethane	ND	2.0	µg/L			
1,2-Dibromoethane	NO Q	2.0	µg/L			
2-Hexanone	Q	10	µg/L			
1,3-Dichloropropane	ND	2.0	µg/L			
Tetrachloroethene	QN QN	2.0	µg/L			
Dibromochloromethane	Q	2.0	µg/L			
Chlorobenzene	ΩN	2.0	µg/L			
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L			
Ethylbenzene	ΩN	2.0	µg/L			
m,p-Xylene	Q.	2.0	µg/L	•		
o-Xylene	NO	2.0	µg/L			
Styrene	QN	2.0	µg/L			
Bromoform	ND	2.0	µg/L	A		•
Isopropylbenzene	ND	2.0	µg/L ,	10 m		
1,1,2,2-Tetrachloroethane	۵	2.0	µg/L			•
1,2,3-Trichloropropane	ND	2.0	µg/L			
Bromobenzene	Q	2.0	µg/L			
n-Propylbenzene	NO	2.0	µg/L	·		
2-Chlorotoluene	QN	2.0	hg/L			
4-Chlorotoluene	QN.	2.0	pg/L			
1,3,5-Trimethylbenzene	· QN	2.0	µg/L			
tert-Butylbenzene	ND	2.0	µg/L			
1,2,4-Trimethylbenzene	ND	2.0	µg/L			•
Qualifiers: ND - Not Detected at the Reporting Limit	ting Limit	S	- Spike Recovery o	S - Spike Recovery outside accepted recovery limits	B - Analyte detected in the associated Method Blank	ated Method Blank
J - Analyte detected below quantitation limits	ititation limits	24	- RPD outside acce	R - RPD outside accepted recovery limits	NA - Not applicable where J values or ND results occur	es or ND results occur
RI - Renorting Limit- defined as the lowest concentration the Jahoratory can accurately quantitate.	s the lowest conce	entration th	e laboratory can aco	curately quantitate.		
in a second comment of the second comment of			(

CLIENT:	Shaw Environmental & Infrastructure, Inc	ıtal & İnfrastru	ıcture, Inc.						0	SUMMAR	OC SUMMARY REPORT	-
Work Order:	1108060							-) .		Mathad Dlank	
Project:	130274 Textron Providence	rovidence						-			Melliou Dialik	
sec-Butylbenzene		QN	2.0	hg/L								
4-Isopropyltoluene		Q	2.0	hg/L								
1,3-Dichlorobenzene	· (1)	Q	2.0	µg/L								
1,4-Dichlorobenzene	ď	Q	2.0	µg/L				7.0				
n-Butylbenzene		QN	2.0	µg/L								
1,2-Dichlorobenzene	ď	Q	2.0	µg/L								•
1,2-Dibromo-3-chloropropane	opropane	2	5.0	µg/L								
1,2,4-Trichlorobenzene	əne	Q.	2.0	µg/L								
Hexachlorobutadiene	Φ	Q	2.0	µg/L								
Naphthalene		Ω	5.0	µg/L								
1,2,3-Trichlorobenzene	ene	Q.	2.0	µg/L								
Surr: Dibromofluoromethane	vromethane	25.89	2.0	hg/L	. 52	0	104	82	122	0		
Surr: 1,2-Dichloroethane-d4	ethane-d4	26.35	2.0	hg/L	25	0	105	73	135	0		
Surr: Toluene-d8		23.54	2.0	µg/L	25	0	94.2	85	117	0		
Surr: 4-Bromofluorobenzene	orobenzene	24.48	2.0	hg/L	25	0	97.9	7.7	119	0		

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

₩11}

Work Order: 1108060 Project: 1302/4 Textron Providence Method Blank Sample ID in Legizari Result Result Project: 1302/4 Textron Providence Sample ID in Legizari Result Result Prof. Cocksine SwizzooB Units: pgl. Arabysis Date 82291110:36:00 AM Free Date 8229111 Client ID: Cocksine SwizzooB Units: pgl. Arabysis Date 82291110:36:00 AM Free Date 822911 Free Date 822911 Analysis Date 822917 Bestult RL Units: pgl. Arabysis Date 82291110:36:00 AM Free Date Base 822911 Free Date Base 822911 Free Date Base 822911 Free Date Base 822911 Free Date Base 82291 Free Date Base 8	CLIENT: Sha	Shaw Environmental & Infrastructure, Inc.	cture, Inc.			-			OC SUM	OC SUMMARY REPORT	REPOR	
130274 Textron Providence 1302744 Textron Providence 130274 Textron Providence 130274 Textron Providence 130274 Textron Providence 1302744 Textron Providence 1302744 Textron Providence 1302744 Textron Providenc		09080))		41- 4 D 12-	! +
Dambolst2911 Batch Di. R47312 Teat Codes Swa2666 Units: pgt. Availysis Date 829411 10:36:00 AM Prep Date 872911)274 Textron Providence								Me	thod Blai	ž I
Dimbod82911 Batch ID: R47312 Test Codes: SWR200B Units: pgt. Seedlo: 789682 See								2000	***	9	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ı
Part	Sample ID mb-08/29/11		Test Cod	e: SW8260B	Units: µg/L		Analysis	5 Date 8/29/1	11 10:36:00 AM	Prep Date	11/67/9	
CC Sample CC S	Client ID:		Run ID:	V-3_11082	V6		SedNo:		8			
Result R. Units Amount Result %REC LowLinit HighLinit or MS Result %RED Houlting or MS		QC Sample		G	C Spike Original	Sample	5-		Original Sample			
re ND 5.0 µg/L ND 2.0 µg/L Increatene ND 2.0 µg/L	Analyte	Result	RL	Units	Amount						PDLimit	Qua
te ND 5.0 µg/L ND 2.0 µg/L nmethane ND 2.0 µg/L nmethane ND 2.0 µg/L thene ND 1.0 µg/L de ND 1.0 µg/L de ND 2.0 µg/L nothere ND 2.0 <td< td=""><td>Dichlorodifluoromethane</td><td>QN</td><td>5.0</td><td>µg/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Dichlorodifluoromethane	QN	5.0	µg/L								
ND 2.0 μg/L ND 5.0 μg/L nmethane ND 2.0 μg/L nm 2.0 μg/L nm 1.0 μg/L nm 2.0 μg/L nm ND 1.0 μg/L nm ND 2.0 μg/L	Chloromethane	QN	5.0	µg/L								
ND 5.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 2.0 μg/L	Vinyl chloride	QN	2.0	µg/L	. *							
ND 2.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 2.0 μg/L ND μg/L ND μg/L ND	Chloroethane	ΩN	5.0	hg/L	, ;		œ.					
ND 2.0 μg/L ND 5.0 μg/L ND 1.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 2.0 μg/L	Bromomethane	QN	2.0	µg/L								
ND 5.0 μg/L ND 1.0 μg/L ND 2.0 μg/L ND 2.	Trichlorofluoromethane	ΩN	2.0	µg/L	•							
ND 10 μg/L ND 2.0 μg/L ND 2	Diethyl ether	Q	5.0	µg/L								
ND 1.0 μg/L ND 2.0 μg/L ND 5.0 μg/L ND 2.0 μg/L ND 2	Acetone	QN	10	hg/L								
ND 2.0 μg/L ND 2.	1,1-Dichloroethene	ΩZ	1.0	hg/L								
ND 5.0 μg/L ND 2.0 μg/L ND 2	Carbon disulfide	QN	2.0	µg/L	let.							
ND 2.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 2.0 μg/L	Methylene chloride	QN	2.0	µg/L		- 4						
1θ ND 2.0 μg/L ND 3.0 μg/L ND 3.0 μg/L ND 3.0 μg/L ND 4.0 μg/L ND 4.0 μg/L ND 4.0 μg/L ND 5.0 μg/L ND 5.0 μg/L ND 5.0 μg/L ND 6.0 μg/L ND 7.0 μg/L ND 7.0 μg/L ND 6.0 μg/L ND 6.0 μg/L ND 7.0 μg/L ND 7.0 μg/L ND 6.0 μg/L ND 7.0 μg/L ND	Methyl tert-butyl ether	QN	2.0	µg/L		ū.			7 AS			٠. ,
ND 2.0 μg/L ND 3.0 μg/L ND 4.0 μg/L ND 4.0 μg/L ND 5.0 μg/L ND 4.0 μg/L ND 5.0 μg/L ND 5.0 μg/L ND 6.0 μg/L ND 6.0 μg/L ND 7.0 μg/L ND 7.0 μg/L ND 7.0 μg/L ND 6.0 μg/L ND 7.0 μg/L ND 7	trans-1,2-Dichloroethene		2.0	hg/L								
ND 10 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 1.0 μg/L	1,1-Dichloroethane	QN	2.0	µg/L								
ND 2.0 μg/L ND 1.0 μg/L	2-Butanone	QN	10	hg/L								
ND 2.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 3.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L	2,2-Dichloropropane	Q	2.0	µg/L ,								
uran ND 2.0 μg/L omethane ND 2.0 μg/L propene ND 2.0 μg/L achloride ND 2.0 μg/L achloride ND 2.0 μg/L ng/L ng/L ng/L ND 2.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L Analyte detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits Analyte detected below quantitation limits R - RPD outside accepted recovery limits	cis-1,2-Dichloroethene	Q N	2.0	hg/L								
ND 2.0 µg/L ND 3.0 µg/L ND 3.0 µg/L ND 4.0 µg/L ND 5.0 µg/L ND 6.0 µg/L ND 7.0	Chloroform	Q	2.0	µg/L								
ND 2.0 µg/L ND 3.0 µg/L ND 5.0 µg/L ND 4.0 µg/L ND 1.0 µg/L	Tetrahydrofuran	Q	10	hg/L	t							
ND 2.0 µg/L ND 2.0 µg/L ND 2.0 µg/L ND 2.0 µg/L ND 1.0 µg/L NO Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits alyte detected below quantitation limits R - RPD outside accepted recovery limits	Bromochloromethane	Q	2.0	µg/L								
ND 2.0 µg/L ND 2.0 µg/L ND 2.0 µg/L ND 4.0 µg/L NO Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits alyte detected below quantitation limits R - RPD outside accepted recovery limits	1,1,1-Trichloroethane		2.0	µg/L								
ND 2.0 µg/L ND 2.0 µg/L ND 1.0 µg/L Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits alyte detected below quantitation limits R - RPD outside accepted recovery limits	1,1-Dichloropropene	QZ	2.0	µg/L								
oroethane ND 2.0 µg/L ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	Carbon tetrachloride	QN	2.0	hg/L	, e1, 144,e							
rs: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	1,2-Dichloroethane	Q	2.0	hg∕L				-				
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	Benzene	QN	1.0	hg/L								1
R - RPD outside accepted recovery limits		Detected at the Reporting Limit	S		ery outside accepte	d recovery limits		alyte detected	in the associated Met	hod Blank		
of other residents of the second seco	J - Analyt	e detected below quantitation limits	. 11		accepted recovery	limits	N- AN	ot applicable	where J values or ND	results occur		
	\$ - \$			7	1	***		:				•

CLIENT:	Shaw Environmental & Infrastructure,	cture, Inc.	c.		OC SHWMARY REPORT	ORT
Work Order:	1108060					71-10
Project:	130274 Textron Providence				Method Blank	Blank
Trichloroethene	QN	2.0	µg/L			
1,2-Dichloropropane	ND	2.0	hg/L			
Bromodichloromethane	ND en	2.0	μg/L			
Dibromomethane	QN	2.0	µg/L	nd phon	No.	
4-Methyl-2-pentanone	QN	10	hg/L			
cis-1,3-Dichloropropene	ON Pu	1.0	µg/L			
Toluene	QN	2.0	µg/L			
trans-1,3-Dichloropropene		1.0	hg/L			
1,1,2-Trichloroethane	QN	2.0	hg/L			
1,2-Dibromoethane	QN	2.0	µg/L			
2-Hexanone	QN	10	hg/L			
1,3-Dichloropropane	QN 	2.0	hg/L			
Tetrachloroethene	QV	2.0	hg/L			
Dibromochloromethane		2.0	hg/L			
Chlorobenzene	QN	2.0	hg/L			
1,1,1,2-Tetrachloroethane	hane ND	2.0	hg/L			
Ethylbenzene	QN	2.0	hg/L			
m,p-Xylene	QN	2.0	hg/L			
o-Xylene	QN	2.0	hg/L			
Styrene	QN	2.0	hg/L			
Bromoform	QN	2.0	hg/L			
Isopropylbenzene	QN	2.0	hg/L ,			
1,1,2,2-Tetrachloroethane	hane	2.0	hg/L			
1,2,3-Trichloropropane	ND ND	2.0	hg/L			
Bromobenzene	Q	2.0	hg/L			
n-Propylbenzene	QN	2.0	hg/L			
2-Chlorotoluene	QN	2.0	hg/L			
4-Chlorotoluene	QN	2.0	hg/L			
1,3,5-Trimethylbenzene	ND ND	2.0	µg/L			
tert-Butylbenzene	QN	2.0	hg/L			
1,2,4-Trimethylbenzene	ND ND	2.0	µg/L		••	
Qualifiers: ND-N	ND - Not Detected at the Reporting Limit		S - Spike Recove	S - Spike Recovery outside accepted recovery limits	B - Analyte detected in the associated Method Blank	
I - Ans	I - Analyte detected below quantitation limits		R - RPD outside	R - RPD outside accepted recovery limits	NA . Not annicable where I values or ND results occur	
	מולות הכיכה הכיכה ליישיים ביים היים היים היים היים היים היים ה		:		INA - INULAPPINAUTO WITCIE J VAILUOS OI 1912 INOUTIO UNUL	

CLIENT:	Shaw Environmental & Infrastructure, Inc.	ıtal & İnfrastru	ıcture, Inc.						Ŏ	SUMMAI	OC SUMMARY REPORT
Work Order:	1108060								ب ر		Mothod Dlank
Project:	130274 Textron Providence	rovidence									Mediod Biank
sec-Butylbenzene		QN	2.0	µg/L							
4-Isopropyitoluene		Q	2.0	hg/L							
1,3-Dichlorobenzene	4	Q	2.0	hg/L	1.						
1,4-Dichlorobenzene	a.	Q	2.0	hg/L	. ·			ty.			
n-Butylbenzene		QN	2.0	µg/L							
1,2-Dichlorobenzene		Q	2.0	µg/L						•	
1,2-Dibromo-3-chloropropane	opropane	ΩN	5.0	µg/L		-					
1,2,4-Trichlorobenzene	ine	Q	2.0	hg/L							
Hexachlorobutadiene	ď	Q	2.0	µg/L							
Naphthalene		N O	5.0	µg/L							
1,2,3-Trichlorobenzene	ne	Q	2.0	µg/L							
Surr: Dibromofluoromethane	romethane	26.62	2.0	µg/L	25	0	106	82	122	0	
Surr: 1,2-Dichloroethane-d4	ethane-d4	28.5	2.0	µg/L	25	0	114	73	135	0	
Surr: Toluene-d8		22.91	2.0	µg/L	25	0	91.6	82	117	0	
Surr: 4-Bromofluorobenzene	robenzene	24.36	2.0	hg/L	25	0	97.4	2.2	119	0	

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

CLIENT:	Shaw Environmental & Infrastructure, Inc.	OC SUMMARY REPORT
Work Order:	1108060	I observed Control Carife
Project:	130274 Textron Providence	Laboratory Courtor Spine

				١								
Sample ID Ics-08/25/11	Batch ID: R47290	Test Code:	e: SW8260B	Units: µg/L			Analysis [Analysis Date 8/25/11 8:50:00 AM	8:50:00 AM	Prep Date	Prep Date 8/25/11	
Client ID:		Run ID:	V-3_110825A	25A			SeqNo:	786470				
	QC Sample		Ū	QC Spike Original Sample	nal Sample		S.	,	Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluoromethane	21.45	5.0	µg/L	50	0	107	25	168	0			
Chloromethane	16.19	2.0	hg/L	20	0	81	51	149	0			
Vinyl chloride	19.93	2.0	hg/L	50	0	2.66	29	152	0			
Chloroethane	20.2	5.0	µg/L	20	0	101	65	138	0			
Bromomethane	17.38	2.0	µg/L	20	0	86.9	53	128	0			
Trichlorofluoromethane	23.57	2.0	µg/L	20	0	118	26	157	0			
Diethyl ether	14.5	2.0	µg/L	20	0	72.5	73	121	0			S.
Acetone	14.58	19	µg/L	20	0	72.9	44	133	0			
1,1-Dichloroethene	14.62	1.0	µg/L	20	0	73.1	77	139	0			တ
Carbon disulfide	10.73	2.0	µg/L	20	0	53.6	22	129	0			လ
Methylene chloride	17.33	5.0	µg/L	20	0	86.7	77	133	0			
Methyl tert-butyl ether	20.5	2.0	µg/L	20	0	103	99	130	0			
trans-1,2-Dichloroethene	16.27	2.0	µg/L	20	0	81.4	79	128	0			
1,1-Dichloroethane	18.01	2.0	µg/L	20	0	06	81	131	0			
2-Butanone	18.12	10	µg/L	20	0	90.6	47	141	0			
2,2-Dichloropropane	20.73	2.0	µg/L	20	0	104	47	155	0			. •
cis-1,2-Dichloroethene	16.83	2.0	hg/L	20	0	84.2	78	128	0		•	
Chloroform	20.21	2.0	hg/L	20	0	101	69	132	0			
Tetrahydrofuran	20.9	10	µg/L	20	0	104	63	144	0			
Bromochloromethane	18.26	2.0	µg/L	20	0.	91.3	77	138	0			
1,1,1-Trichloroethane	22.96	2.0	µg/L	20	0	115	99	145	0			
1,1-Dichloropropene	19.84	5.0	µg/L	20	0	99.2	71	141	0			
Carbon tetrachloride	22.97	2.0	hg/L	20.	0	115	28	130	0			
1,2-Dichloroethane	20.04	2.0	µg/L	20	0	100	61	140	0			
Benzene	17.64	1.0	hg/L	20	0	88.2	75	129	0	٠.		
Qualifiers: ND - Not Dete	ND - Not Detected at the Reporting Limit		3 - Spike Recov	S - Spike Recovery outside accepted recovery limits	oted recovery	' limits	B - Analy	rte detected in	B - Analyte detected in the associated Method Blank	od Blank		
J - Analyte de	J - Analyte detected below quantitation limits		R - RPD outside	R - RPD outside accepted recovery limits	ary limits		NA - Not	applicable wh	NA - Not applicable where J values or ND results occur	results occur		

#i : }

AMRO Environmental Laboratories Corp.

Project: 1308/060 Project: 130274 Textuno Providence 1.aboratory Control Spike 1.Explored programs 1.62 2.0 1.00 6.2 81 128 1.24 0 1.Explored programs 1.63 2.0 1.00 2.0 8.2 81 1.24 0 1.Explored programs 1.63 2.0 1.00 2.0 8.2 81 1.24 0 1.Explored programs 1.63 2.0 1.00 2.0 8.2 81 1.24 0 0sh 1.5 Octobromorphisms 1.60 1.00 2.0 8.2 81 1.24 0 0sh 1.5 Octobromorphisms 1.60 1.0 1.0 2.0 8.2 1.2 1.2 1.0 1.2 1.	CLIENT: Sh	Shaw Environmental & Infrastructure, Inc	ıcture, İn	ప						OC STIMMARY REPORT	EPORT
130274 Textron Providence 13024		09080									1 Cariles
pane 1924 2.0 μg/L 20 96.2 pane 17.78 2.0 μg/L 20 0 98.9 enthane 18.92 2.0 μg/L 20 0 94.6 anone 17.55 2.0 μg/L 20 0 94.6 propere 18.1 2.0 μg/L 20 0 91.5 propered 18.1 2.0 μg/L 20 0 91.5 propered 18.6 1.0 μg/L 20 0 91.5 propered 18.7 2.0 μg/L 20 0 91.5 propered 18.73 2.0 μg/L 20 0 91.5 propered 21.59 2.0 μg/L 20 0 98.7 propered 22.59 2.0 μg/L 20 0 91.4 propered 22.59 2.0 μg/L 20 0 11.4		2274 Textron Providence								Laboratory Col	iroi spike
17.76 2.0 μg/L 20 0 88.9 18.92 2.0 μg/L 20 0 94.6 19.65 2.0 μg/L 20 0 94.6 18.3 1.0 μg/L 20 0 98.3 18.1 2.0 μg/L 20 0 91.5 18.1 2.0 μg/L 20 0 98.7 19.74 2.0 μg/L 20 0 98.7 19.75 2.0 μg/L 20 0 98.7 22.52 2.0 μg/L 20 0 114 22.52 2.0 μg/L 20 0 114 22.63 2.0 μg/L 20 0 114 22.63 2.0 μg/L 20 0 114 22.63 2.0 μg/L 20 0 114 22.63 2.0 μg/L 20 0 114 22.63 2.0 μg/L 20 0 114 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.65 2.0 μg/L 20 0 117 22.65 2.0 μg/L 20 0 117 22.65 2.0 μg/L 20 0 0 0 117 22.65 2.0 μg/L 20 0 0 0 117 22.65 2.0 μg/L 20 0 0 0 117 22.65 2.0 μg/L 20 0 0 0 117 22.65 2.0 μg/L 20 0 0 0 117 22.65 2.0 μg/L 20 0 0 0 117 22.65 2.0 μg/L 20 0 0 0 117 22.65 2.0 μg/L 20 0 0 0 0 117 22.65 2.0 μg/L 20 0 0 0 0 117 22.65 2.0 μg/L 20 0 0 0 0 117 23.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Trichloroethene	19.24	2.0	hg/L	20	0	96.2	81	129	0	
18.92 2.0 µg/L 20 0 94.6 19.65 2.0 µg/L 20 0 88.2 17.57 10 µg/L 20 0 87.8 18.1 2.0 µg/L 20 0 91.5 18.1 2.0 µg/L 20 0 90.5 18.6 1.0 µg/L 20 0 90.5 19.74 2.0 µg/L 20 0 98.8 22.89 2.0 µg/L 20 0 98.8 22.52 2.0 µg/L 20 0 114 22.52 2.0 µg/L 20 0 114 22.53 2.0 µg/L 20 0 114 22.63 2.0 µg/L 20 0 114 22.63 2.0 µg/L 20 0 114 22.63 2.0 µg/L 20 0 117 21.32 2.0 µg/L 20 0 117 21.32 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.77 2.0 µg/L 20 0 117 22.77 2.0 µg/L 20 0 117 22.35 2.0 µg/L 20 0 117 22.35 2.0 µg/L 20 0 117 22.35 2.0 µg/L 20 0 117 22.35 2.0 µg/L 20 0 117 22.35 2.0 µg/L 20 0 117 22.35 2.0 µg/L 20 0 117 22.35 2.0 µg/L 20 0 117 22.35 2.0 µg/L 20 0 117 22.35 2.0 µg/L 20 0 117 22.35 2.0 µg/L 20 0 0 0 117 22.35 2.0 µg/L 20 0 0 0 117 22.35 2.0 µg/L 20 0 0 0 117 22.36 2.0 µg/L 20 0 0 0 117 22.36 2.0 µg/L 20 0 0 0 117 22.37 2.0 µg/L 20 0 0 0 117 22.39 2.0 µg/L 20 0 0 0 117 22.39 2.0 µg/L 20 0 0 0 0 117	1,2-Dichloropropane	17.78	2.0	µg/L	50.	0	88.9	84	134	0	
19.65 2.0 µg/L 20 0 98.2 17.57 10 µg/L 20 0 91.5 18.3 1.0 µg/L 20 0 91.5 18.6 1.0 µg/L 20 0 93.5 19.74 2.0 µg/L 20 0 98.7 19.75 2.0 µg/L 20 0 98.7 21.59 2.0 µg/L 20 0 98.8 22.89 2.0 µg/L 20 0 114 22.52 2.0 µg/L 20 0 114 22.52 2.0 µg/L 20 0 114 22.52 2.0 µg/L 20 0 114 22.63 2.0 µg/L 20 0 117 21.53 2.0 µg/L 20 0 117 21.53 2.0 µg/L 20 0 117 21.53 2.0 µg/L 20 0 117 21.54 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.77 2.0 µg/L 20 0 117 22.77 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 0 116 22.95 2.0 µg/L 20 0 0 116 22.95 2.0 µg/L 20 0 0 116	Bromodichloromethane	18.92	2.0	hg/L	20	0	94.6	63	118	0	
17.57 10 μg/L 20 0 87.8 18.3 1.0 μg/L 20 0 87.8 18.1 2.0 μg/L 20 0 91.5 18.6 1.0 μg/L 20 0 98.7 19.75 2.0 μg/L 20 0 98.8 21.59 2.0 μg/L 20 0 98.8 22.52 2.0 μg/L 20 0 114 22.52 2.0 μg/L 20 0 114 22.52 2.0 μg/L 20 0 114 22.52 2.0 μg/L 20 0 114 22.53 2.0 μg/L 20 0 114 43.62 2.0 μg/L 20 0 117 21.53 2.0 μg/L 20 0 117 21.53 2.0 μg/L 20 0 117 21.53 2.0 μg/L 20 0 117 21.53 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.63 2.0 μg/L 20 0 117 22.65 2.0 μg/L 20 0 117 23.71 2.0 μg/L 20 0 117 24.64 2.0 μg/L 20 0 117 25.65 2.0 μg/L 20 0 117 26.0 μg/L 20 0 117 27.0 μg/L 20 0 117 27.0	Dibromomethane	19.65	2.0	hg/L	20	0	98.2	92	123	0	
18.3 1.0 µg/L 20 0 91.5 18.1 2.0 µg/L 20 0 90.5 18.6 1.0 µg/L 20 0 98.7 19.74 2.0 µg/L 20 0 98.7 19.75 2.0 µg/L 20 0 98.8 22.89 2.0 µg/L 20 0 114 22.52 2.0 µg/L 20 0 114 22.52 2.0 µg/L 20 0 114 22.52 2.0 µg/L 20 0 114 22.53 2.0 µg/L 20 0 114 22.64 2.0 µg/L 20 0 114 22.65 2.0 µg/L 20 0 114 22.65 2.0 µg/L 20 0 114 22.65 2.0 µg/L 20 0 114 22.65 2.0 µg/L 20 0 114 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.63 2.0 µg/L 20 0 117 22.65 2.0 µg/L 20 0 117 22.65 2.0 µg/L 20 0 117 22.85 2.0 µg/L 20 0 117 22.85 2.0 µg/L 20 0 117 22.85 2.0 µg/L 20 0 117 22.85 2.0 µg/L 20 0 117 22.85 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 117 22.95 2.0 µg/L 20 0 0 0 117 22.95 2.0 µg/L 20 0 0 0 117 22.95 2.0 µg/L 20 0 0 0 117	4-Methyl-2-pentanone	17.57	10	hg/L	20	0	87.8	24	124		
18.1 2.0 μg/L 20 0 90.5 18.6 1.0 μg/L 20 0 93.5 19.74 2.0 μg/L 20 0 98.7 19.74 2.0 μg/L 20 0 98.7 19.75 2.0 μg/L 20 0 98.8 19.75 2.0 μg/L 20 0 98.8 22.89 2.0 μg/L 20 0 11.4 22.52 2.0 μg/L 20 0 11.4 22.03 2.0 μg/L 20 0 11.4 22.03 2.0 μg/L 20 0 11.4 22.03 2.0 μg/L 20 0 11.4 22.08 2.0 μg/L 20 0 11.4 22.08 2.0 μg/L 20 0 11.4 22.03 2.0 μg/L 20 0 11.6 21.32 2.0 μg/L 20 0 11.6 21.32 2.0 μg/L 20 0 11.6 21.53 2.0 μg/L 20 0 11.6 21.63 2.0 μg/L 20 0 11.6 22.18 2.0 μg/L 20 0 11.6 22.18 2.0 μg/L 20 0 11.6 22.18 2.0 μg/L 20 0 11.6 22.18 2.0 μg/L 20 0 11.6 22.18 2.0 μg/L 20 0 11.6 22.15 2.0 μg/L 20 0 11.4 22.25 2.0 μg/L 20 0 11.4 22.25 2.0 μg/L 20 0 11.4 22.25 2.0 μg/L 20 0 11.4 22.25 2.0 μg/L 20 0 11.4 22.25 2.0 μg/L 20 0 11.6 22.25 2.0 μg/L 20 0 11.6 22.25 2.0 μg/L 20 0 11.6 22.25 2.0 μg/L 20 0 0 0 11.6 22.25 2.0 μg/L 20 0 0 0 11.6 22.25 2.0 μg/L 20 0 0 0 11.6 22.25 2.0 μg/L 20 0 0 0 11.6 22.25 2.0 μg/L 20 0 0 0 11.6 22.25 2.0 μg/L 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	cis-1,3-Dichloropropene	18.3	1.0	µg/L	20	0	91.5	92	115	0	
18.6 1.0 μg/L 20 0 93 19.74 2.0 μg/L 20 0 98.7 19.75 2.0 μg/L 20 0 98.8 18.63 10 μg/L 20 0 98.8 21.59 2.0 μg/L 20 0 114 22.89 2.0 μg/L 20 0 114 22.89 2.0 μg/L 20 0 114 22.52 2.0 μg/L 20 0 114 22.03 2.0 μg/L 20 0 114 22.08 2.0 μg/L 20 0 116 21.32 2.0 μg/L 20 0 116 21.44 2.0 μg/L 20 0 116 23.14 2.0 μg/L 20 0 116 23.15 2.0 μg/L 20 0 116 23.17 2.0 μg/L 20 0 116 23.18 2.0 μg/L 20 0 116 23.18 2.0 μg/L 20 0 116 23.19 2.0 μg/L 20 0 116 23.19 2.0 μg/L 20 0 116 23.10 μg/L 20 0 116 23.10 μg/L 20 0 116 23.11 2.0 μg/L 20 0 116 22.15 2.0 μg/L 20 0 0 116 22.15 20 μg/L 20 0 0 116 22.15 20 μg/L 20 0 0 116 22.15 20 μg/L 20 0 0 116 22.15 20 μg/L 20 0 0 116 22.15 20 μg/L 20 0 0 116 22.15 20 μg/L 20 0 0 0 116 22.15 20 μg/L 20 0 0 0 116 22.15 20 μg/L 20 0 0 0 116 22.15 20 μg/L 20 0 0 0 116 22.15 20 μg/L 20 0 0 0 116 22.15 20 μg/L 20 0 0 0 116 22.15 20 μg/L 20 0 0 0 116 22.15 20 μg/L 20 0 0 0 116 22.15 20 μg/L 20 0 0 0 116 22.15 20 μg/L 20 0 0 0 116 22.15 20 μg/L 20 0 0 0 116 22.15 20 μg/L 20 0 0 0 116 22.15 20 μg/L 20 0 0 0 116 22.15 20 μg/L 20 0 0 0 116 22.15 20 μg/L 20 0 0 0 116 22.15 20 μg/L 20 0	Toluene	18.1	2.0	µg/L	20	0	90.5	81	123	0	
nne 19.74 2.0 μg/L 20 0 98.7 a 19.75 2.0 μg/L 20 0 98.8 ne 21.59 2.0 μg/L 20 0 98.8 ne 21.59 2.0 μg/L 20 0 114 bane 22.89 2.0 μg/L 20 0 114 bethane 22.08 2.0 μg/L 20 0 114 43.62 2.0 μg/L 20 0 114 43.62 2.0 μg/L 20 0 116 21.32 2.0 μg/L 20 0 116 21.32 2.0 μg/L 20 0 116 22.63 2.0 μg/L 20 0 116 22.133 2.0 μg/L 20 0 116 22.133 2.0 μg/L 20 116 22.183	trans-1,3-Dichloropropen		1.0	hg/L	20	0	93	52	126	0	
19.75 2.0 μg/L 20 0 98.8 18.63 10 μg/L 20 0 93.2 18.63 2.0 μg/L 20 0 108 22.89 2.0 μg/L 20 0 114 hane 22.52 2.0 μg/L 20 0 118 22.01 2.0 μg/L 20 0 118 22.01 2.0 μg/L 20 0 118 22.08 2.0 μg/L 20 0 118 21.32 2.0 μg/L 20 0 118 21.44 2.0 μg/L 20 0 118 22.63 2.0 μg/L 20 0 118 22.63 2.0 μg/L 20 0 118 22.63 2.0 μg/L 20 0 118 23.73 2.0 μg/L 20 0 118 23.73 2.0 μg/L 20 0 118 23.73 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 23.23 2.0 μg/L 20 0 118 23.23 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 118 22.15 2.0 μg/L 20 0 0 118	1,1,2-Trichloroethane		2.0	µg/L	20	0	98.7	6/	122	0	
ne 18.63 10 μg/L 20 0 93.2 21.59 2.0 μg/L 20 0 108 22.89 2.0 μg/L 20 0 114 hane 22.52 2.0 μg/L 20 0 113 bethane 22.04 2.0 μg/L 20 0 114 22.08 2.0 μg/L 20 0 109 21.32 2.0 μg/L 20 0 118 22.63 2.0 μg/L 20 0 118 22.63 2.0 μg/L 20 0 116 22.63 2.0 μg/L 20 0 116 22.18 2.0 μg/L 20 </td <td>1,2-Dibromoethane</td> <td>19.75</td> <td>2.0</td> <td>hg/L</td> <td>20</td> <td>0</td> <td>98.8</td> <td>71</td> <td>124</td> <td>0</td> <td></td>	1,2-Dibromoethane	19.75	2.0	hg/L	20	0	98.8	71	124	0	
ne 21.59 2.0 μg/L 20 0 108 22.89 2.0 μg/L 20 0 114 hane 22.52 2.0 μg/L 20 0 113 bethane 22.9 2.0 μg/L 20 0 114 22.08 2.0 μg/L 20 0 114 22.08 2.0 μg/L 20 0 114 43.62 2.0 μg/L 20 0 116 21.32 2.0 μg/L 20 0 108 21.53 2.0 μg/L 20 0 113 22.63 2.0 μg/L 20 0 118 22.63 2.0 μg/L 20 0 116 22.63 2.0 μg/L 20 0 116 22.63 2.0 μg/L 20 0 116 22.18 2.2 μg/L 20 <td>2-Hexanone</td> <td>18.63</td> <td>1</td> <td>µg/L</td> <td>20</td> <td>0</td> <td>93.2</td> <td>41</td> <td>138</td> <td>0</td> <td></td>	2-Hexanone	18.63	1	µg/L	20	0	93.2	41	138	0	
22.89 2.0 μg/L 20 114 hane 22.52 2.0 μg/L 20 0 113 bethane 22.01 2.0 μg/L 20 0 114 22.08 2.0 μg/L 20 0 110 43.62 2.0 μg/L 20 0 110 21.32 2.0 μg/L 20 0 109 21.53 2.0 μg/L 20 0 109 22.63 2.0 μg/L 20 0 113 22.63 2.0 μg/L 20 0 116 22.63 2.0 μg/L 20 0 116 22.183 2.0 μg/L 20 0 114 22.185 2.0 μg/L 20 0 114 22.185 2.0 μg/L 20 0 114 22.15 2.0 μg/L 20 0 1	1,3-Dichloropropane	21.59	2.0	µg/L	20	0	108	84	129	0	
22.52 2.0 μg/L 20 0 113 22.01 2.0 μg/L 20 0 110 ne 22.9 2.0 μg/L 20 0 110 43.62 2.0 μg/L 20 0 110 22.08 2.0 μg/L 20 0 110 22.08 2.0 μg/L 20 0 109 21.32 2.0 μg/L 20 0 109 21.53 2.0 μg/L 20 0 109 22.63 2.0 μg/L 20 0 103 22.63 2.0 μg/L 20 0 113 23.1 2.0 μg/L 20 0 113 23.1 2.0 μg/L 20 0 116 23.1 2.0 μg/L 20 0 116 22.15 2.0 μg/L 20 0 116 22.15 2.0 μg/L 20 0 116 22.25 2.0 μg/L 20 0 116 22.25 2.0 μg/L 20 0 116 22.27 2.0 μg/L 20 0 116 22.27 2.0 μg/L 20 0 116 22.32 2.0 μg/L 20 0 116 22.25 2.0 μg/L 20 0 116 22.27 2.0 μg/L 20 0 116 22.25 2.0 μg/L 20 0 116 22.26 2.0 μg/L 20 0 116 22.27 2.0 μg/L 20 0 116 22.26 2.0 μg/L 20 0 116 22.35 2.0 μg/L 20 0 116 22.95 2.0 μg/L 20 0 116 22.95 2.0 μg/L 20 0 116 22.95 2.0 μg/L 20 0 0 116	Tetrachloroethene	22.89	2.0	hg/L	20	0	114	87	137	0	
22.01 2.0 µg/L 20 0 110 22.08 2.0 µg/L 20 0 114 43.62 2.0 µg/L 20 0 110 43.62 2.0 µg/L 20 0 110 21.32 2.0 µg/L 20 0 109 21.53 2.0 µg/L 20 0 108 22.63 2.0 µg/L 20 0 108 22.63 2.0 µg/L 20 0 113 pane 21.74 2.0 µg/L 20 0 118 23.13 2.0 µg/L 20 0 116 23.13 2.0 µg/L 20 0 116 23.23 2.0 µg/L 20 0 116 23.25 2.0 µg/L 20 0 116 23.25 2.0 µg/L 20 0 116 23.25 2.0 µg/L 20 0 116 23.27 2.0 µg/L 20 0 116 22.15 2.0 µg/L 20 0 116 23.27 2.0 µg/L 20 0 114 22.85 2.0 µg/L 20 0 114 22.85 2.0 µg/L 20 0 114 22.85 2.0 µg/L 20 0 114 22.85 2.0 µg/L 20 0 114 22.85 2.0 µg/L 20 0 114 22.85 2.0 µg/L 20 0 114 23.27 2.0 µg/L 20 0 114 23.27 2.0 µg/L 20 0 114 24.85 2.0 µg/L 20 0 114 25.85 2.0 µg/L 20 0 116 26.85 2.0 µg/L 20 0 0 116 27.85 2.0 µg/L 20 0 0 116 28.85 2.0 µg/L 20 0 0 116 28.85 2.0 µg/L 20 0 0 116 29.85 2.0 µg/L 20 0 0 116 20.95 µg/L 20 0 0 116 20.95 µg/L 20 0 0 116 20.95 µg/L 20 0 0 116	Dibromochloromethane	22.52	2.0	hg/L	20	0	113	26	119	0	
roethane 22.9 2.0 μg/L 20 0 114 22.08 2.0 μg/L 20 0 110 43.62 2.0 μg/L 40 0 109 21.32 2.0 μg/L 20 0 109 21.53 2.0 μg/L 20 0 108 22.63 2.0 μg/L 20 0 113 spane 21.74 2.0 μg/L 20 0 116 spane 21.74 2.0 μg/L 20 0 116 spane 22.13 2.0 μg/L 20 0 116 22.23 2.0 μg/L 20 0 114 strzene 22.15 2.0 μg/L 20 0 114 strzene 22.25 2.0 μg/L 20 0 114 strzene 22.35 2.0 μg/L 20 0 114	Chlorobenzene	22.01	2.0	µg/L	20	0	110	98	121	0	
22.08 2.0 µg/L 20 0 110 43.62 2.0 µg/L 40 0 109 21.32 2.0 µg/L 20 0 109 21.53 2.0 µg/L 20 0 108 22.63 2.0 µg/L 20 0 113 24.64 2.0 µg/L 20 0 113 24.64 2.0 µg/L 20 0 113 24.64 2.0 µg/L 20 0 113 22.63 2.0 µg/L 20 0 113 23.1 2.0 µg/L 20 0 116 23.1 2.0 µg/L 20 0 116 23.23 2.0 µg/L 20 0 116 22.15 2.0 µg/L 20 0 114 22.85 2.0 µg/L 20 0 114 22.85 2.0 µg/L 20 0 116 22.77 2.0 µg/L 20 0 116 23.27 2.0 µg/L 20 0 116 22.95 2.0 µg/L 20 0 0 116 22.95 2.0 µg/L 20 0 0 116 22.95 2.0 µg/L 20 0 0 116 22.95 2.0 µg/L 20 0 0 116 22.95 2.0 µg/L 20 0 0 0 116 22.95 2.0 µg/L 20 0 0 0 116 22.95 2.0 µg/L 20 0 0 0 116 22.95 2.0 µg/L 20 0 0 0 116 22.95 2.0 µg/L 20 0 0 0 116 22.95 2.0 µg/L 20 0 0 0 0 116 22.95 2.0 µg/L 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,1,1,2-Tetrachloroethan		2.0	µg/L	50	0	114	65	133	0	
43.62 2.0 μg/L 40 0 109 21.32 2.0 μg/L 20 0 107 21.53 2.0 μg/L 20 0 108 roethane 22.63 2.0 μg/L 20 0 113 ppane 21.74 2.0 μg/L 20 0 116 21.83 2.0 μg/L 20 0 116 21.83 2.0 μg/L 20 0 116 22.15 2.0 μg/L 20 0 116 22.15 2.0 μg/L 20 0 114 strzene 22.77 2.0 μg/L 20 0 114 strzene 22.95 2.0 μg/L 20 0 116 D- Not Detected at the Reporting Limit S- Spike Recovery outside accepted recovery limits 8 - RPD outside accepted recovery limits	Ethylbenzene		2.0	µg/L	20	0	110	81	125	0	
21.32 2.0 µg/L 20 0 107 21.53 2.0 µg/L 20 0 108 22.63 2.0 µg/L 20 0 113 24.64 2.0 µg/L 20 0 113 ppane 21.74 2.0 µg/L 20 0 116 21.83 2.0 µg/L 20 0 116 23.23 2.0 µg/L 20 0 116 22.15 2.0 µg/L 20 0 116 22.15 2.0 µg/L 20 0 116 22.85 2.0 µg/L 20 0 114 anzene 22.77 2.0 µg/L 20 0 114 23.27 2.0 µg/L 20 0 114 22.85 2.0 µg/L 20 0 114 22.85 2.0 µg/L 20 0 114 33.27 2.0 µg/L 20 0 116 33.27 2.0 µg/L 20 0 116 33.27 2.0 µg/L 20 0 116 34.64 Recovery outside accepted recovery limits Analyte detected below quantitation limits Analyte detected below quantitation limits Analyte detected below quantitation limits	m,p-Xylene	43.62	2.0	µg/L	40	0	109	81	125	0	
21.53 2.0 µg/L 20 0 108 22.63 2.0 µg/L 20 0 113 3-4.64 2.0 µg/L 20 0 113 3-1.74 2.0 µg/L 20 0 116 3.3.1 2.0 µg/L 20 0 116 21.83 2.0 µg/L 20 0 116 22.15 2.0 µg/L 20 0 116 22.15 2.0 µg/L 20 0 116 22.85 2.0 µg/L 20 0 114 3.2.85 2.0 µg/L 20 0 114 5. Not Detected at the Reporting Limits Analyte detected below quantitation limits R. RPD outside accepted recovery limits 12.63 2.0 µg/L 20 0 116 22.95 2.0 µg/L 20 0 116 22.95 2.0 µg/L 20 0 116 22.95 2.0 µg/L 20 0 116 22.95 2.0 µg/L 20 0 116 22.95 2.0 µg/L 20 0 116 22.95 2.0 µg/L 20 0 116 22.95 2.0 µg/L 20 0 116 22.95 2.0 µg/L 20 0 116 22.95 2.0 µg/L 20 116 22.95 2.0	o-Xylene	21.32	2.0	µg/L	20	0	107	99	134	0	
22.63 2.0 µg/L 20 0 113 roethane 21.74 2.0 µg/L 20 0 123 roethane 23.1 2.0 µg/L 20 0 109 21.83 2.0 µg/L 20 0 116 22.15 2.0 µg/L 20 0 116 22.15 2.0 µg/L 20 0 111 22.85 2.0 µg/L 20 0 114 22.85 2.0 µg/L 20 0 114 22.85 2.0 µg/L 20 0 114 22.95 2.0 µg/L 20 0 114 22.95 2.0 µg/L 20 0 115 Analyte detected below quantitation limits R- RPD outside accepted recovery limits	Styrene	21.53	2.0	hg/L	20	0	108	99	133	0	
roethane 24.64 2.0 μg/L 20 0 123 roethane 21.74 2.0 μg/L 20 0 109 pane 23.1 2.0 μg/L 20 0 116 21.83 2.0 μg/L 20 0 116 22.15 2.0 μg/L 20 0 111 22.85 2.0 μg/L 20 0 111 22.85 2.0 μg/L 20 0 111 22.85 2.0 μg/L 20 0 114 sinzene 22.77 2.0 μg/L 20 0 116 D- Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits Analyte detected below quantitation limits R - RPD outside accepted recovery limits	Bromoform	22.63	2.0	µg/L	20	0	113	44	115	0	
roethane 21.74 2.0 μg/L 20 0 109 pane 23.1 2.0 μg/L 20 0 116 21.83 2.0 μg/L 20 0 116 23.23 2.0 μg/L 20 0 114 sinzene 22.77 2.0 μg/L 20 0 114 sinzene 22.95 2.0 μg/L 20 0 116 O- Not Detected at the Reporting Limit S- Spike Recovery outside accepted recovery limits Analyte detected below quantitation limits R - RPD outside accepted recovery limits	Isopropylbenzene	24.64	2.0	µg/L	20	0	123	75	139	0	
ppane 23.1 2.0 μg/L 20 0 116 21.83 2.0 μg/L 20 0 109 23.23 2.0 μg/L 20 0 116 22.15 2.0 μg/L 20 0 114 sinzene 22.77 2.0 μg/L 20 0 116 sinzene 22.95 2.0 μg/L 20 0 116 D-Not Detected at the Reporting Limit S-Spike Recovery outside accepted recovery limits Analyte detected below quantitation limits R-RPD outside accepted recovery limits	1,1,2,2-Tetrachloroethan		2.0	hg/L	20	0	109	65	132	0	
21.83 2.0 μg/L 20 0 109 23.23 2.0 μg/L 20 0 114 22.85 2.0 μg/L 20 0 114 sinzene 22.77 2.0 μg/L 20 0 114 sinzene 23.27 2.0 μg/L 20 0 116 D- Not Detected at the Reporting Limit S- Spike Recovery outside accepted recovery limits Analyte detected below quantitation limits R- RPD outside accepted recovery limits	1,2,3-Trichloropropane	23.1	2.0	hg/L	20	0	116	64	139	0	
23.23 2.0 μg/L 20 0 116 22.15 2.0 μg/L 20 0 114 sinzene 22.77 2.0 μg/L 20 0 114 sinzene 23.27 2.0 μg/L 20 0 116 D- Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits Analyte detected below quantitation limits R - RPD outside accepted recovery limits	Bromobenzene	21.83	2.0	hg/L	500	0	109	85	119	0	
22.15 2.0 µg/L 20 0 111 22.85 2.0 µg/L 20 0 114 enzene 22.77 2.0 µg/L 20 0 114 enzene 23.27 2.0 µg/L 20 0 116 enzene 22.95 2.0 µg/L 20 0 116 D- Not Detected at the Reporting Limit S-Spike Recovery outside accepted recovery limits - Analyte detected below quantitation limits R-RPD outside accepted recovery limits	n-Propylbenzene	23.23	2.0	µg/L	200	0	116	73	129	0	
22.85 2.0 μg/L 20 0 114 enzene 22.77 2.0 μg/L 20 0 114 enzene 23.27 2.0 μg/L 20 0 116 ID - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	2-Chlorotoluene	22.15	2.0	µg/L	20	0	111	28	121	0	
22.77 2.0 µg/L 20 0 114 23.27 2.0 µg/L 20 0 116 22.95 2.0 µg/L 20 0 115 Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits	4-Chlorotoluene	22.85	2.0	µg/L	20	0	114	82	122	0	
23.27 2.0 µg/L 20 0 116 22.95 2.0 µg/L 20 0 115 Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits	1,3,5-Trimethylbenzene	22.77	2.0	hg/L	20	0	114	92	125	0	
Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits	tert-Butylbenzene	23.27	2.0	µg/L	20	0	116	69	129	0	
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	1,2,4-Trimethylbenzene	22.95	2.0	µg/L	20	0	115	79	125	. 0	-
R - RPD outside accepted recovery limits	-	Detected at the Reporting Limit		S - Spike Recove	ry outside accep	ted recovery	limits	B - Analyte	detected in the	associated Method Blank	
the left contemp one commetely and that	J - Analyt	e detected below quantitation limits		R - RPD outside	accepted recover	y limits		NA - Not ap	olicable where	J values or ND results occur	
	\$!	8	:								

AMRO Environmental Laboratories Corp.

CLIENT:	Shaw Environmental & Infrastructure, Inc	ıtal & İnfrastru	cture, Inc.							OC SUMMARY REPORT
Work Order:	1108060								I	I shorstory Control Snike
Project:	130274 Textron Providence	rovidence								Laboratory Control Spins
sec-Butylbenzene		23.52	2.0	hg/L	20	0	118	69	132	0
4-Isopropyltoluene		22.56	2.0	µg/L	20	0	113	99	132	0
1,3-Dichlorobenzene		22.17	2.0	µg/L	20	0	111	98	125	. 0
1,4-Dichlorobenzene	•	22.57	2.0	µg/L	20	0	113	.482	126	0
n-Butylbenzene		24.15	2.0	µg/L	20	0	121	29	143	0
1,2-Dichlorobenzene	ď.	22.18	2.0	µg/L	20	0	111	82	123	0
1,2-Dibromo-3-chloropropane	opropane	22.27	5.0	µg/L	20	0	111	44	122	. 0
1,2,4-Trichlorobenzene	,ne	23.62	2.0	µg/L	20	0	118	73	137	0
Hexachlorobutadiene	a)	23.34	2.0	µg/L	20	0	117	20	145	0
Naphthalene		21.03	5.0	µg/L	20	0	105	29	128	0
1,2,3-Trichlorobenzene	, ne	22.56	2.0	µg/L	20	0	113	63	135	0
Surr: Dibromofluoromethane	romethane	26.98	2.0	µg/L	25	0	108	82	122	. 0
Surr: 1,2-Dichloroethane-d4	ethane-d4	29.95	2.0	µg/L	25		120	73	135	0
Surr: Toluene-d8		23.68	2.0	µg/L	25	0	94.7	82	117	0
Surr: 4-Bromofluorobenzene	robenzene	24.98	2.0	hg/L	25	0	6.6	77	119	

NA - Not applicable where J values or ND results occur

B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

	Shaw Environmental & Infrastructure, Inc	ucture, Inc					*		QC SUMMARY REPORT	MARY	REPOI	XT.
Work Order: 11 Project: 13	1108060 130274 Textron Providence		÷						Laboratory Control Spike Duplicate	ontrol Spi	ke Duplic	ate
Sample ID Icsd-08/25/11	11 Batch ID: R47290	Test Coo	Test Code: SW8260B	Units: µg/L			Anafysis D	ate 8/25/11	Analysis Date 8/25/11 9:25:00 AM	Prep Date 8/25/11	8/25/11	
Client ID:		Run ID:	V-3_110825A	. Y			SedNo:	786469				
	QC Sample		Ü	QC Spike Original Sample	al Sample		V.		Original Sample			
Analyte	Result	씸	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluoromethane	e 21.72	5.0	µg/L	20	0	109	25	. 168	21.45	1.25	. 20	
Chloromethane	16.33	5.0	µg/L	20	0	81.7	51	149	16.19	0.861	20	
Vinyl chloride	19.35	2.0	µg/L	20	0	96.8	29	152	19.93	2.95	20	
Chloroethane	19.9	2.0	µg/L	20	0	99.5	65	138	20.2	1.5	20	
Bromomethane	18.44	2.0	µg/L	20	0	92.2	53	128	17.38	5.92	20	
Trichlorofluoromethane	23.06	2.0	µg/L	20	0	115	99	157	23.57	2.19	20	
Diethyl ether	14.66	5.0	µg/L	20	0	73.3	73	121	14.5	1.1	20	
Acetone	15.36	10	µg/L	20	0	76.8	44	133	14.58	5.21	20	
1,1-Dichloroethene	14.99	1.0	µg/L	20	0	75	77	139	14.62	2.5	20	S
Carbon disulfide	10.45	2.0	µg/L	20	0	52.2	55	129	10.73	2.64	50	S
Methylene chloride	18.21	5.0	µg/L	20	0	91	77	133	17.33	4.95	70	
Methyl tert-butyl ether	19.74	2.0	µg/L	20	0	98.7	99	130	20.5	3.78	20	
trans-1,2-Dichloroethene	e 16.28	2.0	µg/L	20	0	81.4	79	128	16.27	0.0614	20	
1,1-Dichloroethane	17.91	2.0	µg/L	20	0	9.68	84	131	18.01	0.557	20	
2-Butanone	17.85	10	µg/L	20	0	89.2	47	141	18.12	1.5	20	
2,2-Dichloropropane	20.87	2.0	µg/L	20	0	104	47	155	20.73	0.673	20	
cis-1,2-Dichloroethene	16.5	2.0	hg/L	200	0	82.5	78	128	16.83	1.98	. 20	
Chloroform	20.67	2.0	µg/L	20	0	103	69	132	20.21	2.25	70	
Tetrahydrofuran	21.3	10	hg/L	20	0	106	. 63	144	20.9	1.9	20	
- Bromochloromethane	18.53	2.0	µg/L	20	0	97.6	77	138	18.26	1.47	70	
1,1,1-Trichloroethane	22.77	2.0	µg/L	20	0	114	99	145	22.96	0.831	70	
1,1-Dichloropropene	19.04	2.0	µg/L	20	0	95.2	71	141	19.84	4.12	8	
Carbon tetrachloride	22.41	2.0	µg/L	20	0	112	28	130	22.97	2.47	70	÷
1,2-Dichloroethane	20.33	2.0	µg/L	20	0	102	61	140	20.04	1.44	70	
Benzene	17.84	1.0	hg/L	20	0	89.2	75	129	17.64	1.13	20	
Qualifiers: ND - No	ND - Not Detected at the Reporting Limit		S - Spike Recov	S - Spike Recovery outside accepted recovery limits	ted recovery	limits	B - Analy	te detected ir	B - Analyte detected in the associated Method Blank	hod Blank		
	J - Analyte detected below quantitation limits	8	R - RPD outside	R - RPD outside accepted recovery limits	y limits		NA - Not	applicable w	NA - Not applicable where J values or ND results occur	results occur		

AMRO Environmental Laboratories Corp.

Project 1030/104 Part Office 1030/104		Shaw Environmental & Infrastructure, Inc	cture, In	.c.				-		QC SUMMARY REPORT	MARY F	REPOF	₩
19.44 2 20 jugl. 20 0 975 81 129 194 1129 20 20 195 195 195 195 195 195 195 195 195 195	rder:	060 74 Textron Providence							Lab	oratory Co	atrol Spike	e Duplic	ate
17.76 2.0 Indition 0 94.2 65.4 17.7 17.7 0.113 20. 1.8.86 2.0 Ingl. 2.0 94.2 65.4 12.4 17.76 0.173 20. 2.0.0 1.0 2.0 0.42 65.4 12.4 17.57 4.43 20. 1.6.83 1.0 1.00L 2.0 0.42 54. 12.4 17.57 4.43 20. 1.6.83 1.0 1.00L 2.0 0.42 54. 12.4 17.57 4.43 20. 1.6.83 1.0 1.00L 2.0 0.42 54. 12.4 17.57 4.43 20. 1.6.84 1.0 1.00L 2.0 0.93 55. 12.4 17.57 4.43 20. 2.0 1.00L 2.0 0.93 7.9 12.4 17.57 4.43 20. 2.0 1.00L 2.0 0.94 1.1 2.0 17.5 12.5	İ	10.40	0.0	1/211	20	-	97.5	2	129	19.24	1.29	20	Ī
18.85 2.0 jight 20 0 942 63 118 1888 0.371 20 20.38 16.83 10.9 jight 20 0 942 64 124 1757 4.3 4.3 4.3 4.3 16.8 18.8 1.0 jight 20 0 942 54 124 1757 4.3 4.3 20 4.8 18.1 1.0 jight 20 0 941 65 115 112 18.1 18.3 0.483 20 18.1 18.1 19.8 19.0 jight 20 0 941 65 115 112 18.1 18.1 0.483 20 20 18.1 18.1 19.8 18.1 18.1 18.1 18.1 18.1	1.2-Dichloropropane	17.76	2.0	ng/L	20	0	88.8	. 18	134	17.78	0.113	20	
20.38 2.0 jight 20 412 76 123 1855 25 20 18.21 1.0 jight 20 642 54 124 1757 4.3 20 18.21 1.0 jight 20 0 91 64 155 155 155 43 20 18.19 2.0 jight 20 91 61 61 175 145 145 150 60 2.0 jight 20 92 71 124 187 4.26 20 2.0 jight 20 92 71 124 187 4.26 20 2.2 10ght 20 92 71 129 186 0.65 20 2.2 10ght 20 91 125 126 4.4 20 2.2 10ght 20 116 61 125 126 144 20 2.2	Bromodichloromethane	18.85	2.0	ng/L	50	0	94.2	63	118	18.92	0.371	20	
16.83 10 pg/L 20 0 94.2 54 124 17.57 4.3 20 18.1 1.0 pg/L 20 0 91 91 91 13.1 13.3 14.1 14	Dibromomethane	20.36	2.0	hg/L	50	0	102	92	123	19.65	3.55	70	
18.21 1.0 1.	4-Methyl-2-pentanone	16.83	10	hg/L	20	0	84.2	24	124	17.57	4.3	70	
18.19 2.0 light 2.0 o 91 81 123 18.1 0.456 2.0 18.74 1.0 light 2.0 0 92 71 123 18.1 0.456 2.0 20.06 2.0 light 2.0 0 92 71 124 19.75 0.505 2.0 18.65 2.0 light 2.0 0 92 71 124 19.75 0.505 2.0 22.56 2.0 light 2.0 0 113 81 123 118.53 0.566 2.0 22.30 2.0 light 2.0 0 113 81 123 12.28 0.392 2.0 22.33 2.0 light 2.0 0 115 87 127 22.89 0.392 2.0 22.44 2.0 light 2.0 0 115 87 127 22.89 0.392 2.0 22.57 2.0 light 2.0 0 115 81 125 22.28 4.44 2.0 22.51 2.0 light 2.0 0 115 81 125 22.0 1.44 2.0 22.51 2.0 light 2.0 0 110 66 134 21.32 2.18 2.0 22.51 2.0 light 2.0 0 110 66 134 21.32 2.18 2.0 22.54 2.0 light 2.0 0 110 66 134 21.32 2.18 2.0 22.54 2.0 light 2.0 0 110 66 134 21.32 2.18 2.0 22.54 2.0 light 2.0 0 110 66 134 21.32 2.18 2.0 22.54 2.0 light 2.0 0 110 65 132 21.74 1.35 2.0 22.54 2.0 light 2.0 0 110 65 132 21.74 1.35 2.0 22.54 2.0 light 2.0 0 110 65 132 21.74 1.35 2.0 22.54 2.0 light 2.0 0 110 65 122 22.83 3.0 3.0 22.55 2.0 light 2.0 0 110 65 122 22.32 3.0 3.0 22.55 2.0 light 2.0 0 110 65 122 22.83 3.0 3.0 22.55 2.0 light 2.0 0 110 65 122 22.83 3.0 3.0 23.55 2.0 light 2.0 0 110 65 122 22.83 3.0 3.0 23.55 2.0 light 2.0 0 110 65 122 22.83 3.0 3.0 23.55 2.0 light 2.0 0 110 2.0 125 22.25 3.0 23.55 2.0 light 2.0 0 110 2.0 2.0 2.0 2.0 24.59 2.0 light 2.0 0 110 2.0 2.0 2.0 2.0 24.59 2.0 light 2.0 0 110 2.0 2.0 2.0 2.0 24.50 2.0 light 2.0 1.0 2.0 2.0 2.0 2.0 2.0	cis-1,3-Dichloropropene	18.21	1.0	µg/L	20	0	91	65	115	18.3	0.493	20	
18.74 1.0 lgg/L 20 0 93.7 55 126 19.74 4.26 20 20.65 2	Toluene	18.19	2.0	µg/L	20	0	91	8	123	18.1	0.496	50	
ane 20.6 2.0 µg/L 2.0 0 103 7.9 122 18.74 4.26 2.0 2.0 µg/L 2.0 0 103 7.9 124 19.74 4.26 2.0 2.0 µg/L 2.0 0 11 124 18.7 18.7 2.0 6.0 2.0 1.0 2.0 0 11 2.0 1.1 1.2 1.8 1.8 2.0 6.0 2.0 1.0 2.0 1.1 1.2 1.8 1.8 2.0 9.0 2.0 9.0 1.1 1.2 1.8 1.8 2.0 9.0 9.0 9.0 1.1 1.2 1.8 1.8 2.0 9.0 9.0 9.0 1.1 1.8 1.1 1.8 2.0 9.0 9.0 9.0 1.1 9.0 1.1 9.0 1.1 9.0 1.1 9.0 1.1 9.0 1.1 9.0 1.1 9.0 1.1 9.0 1.1 9.0 1.1 9.0 1.1	trans-1,3-Dichloropropene	18.74	1.0	µg/L	20	0	93.7	22	126	18.6	0.75	70	
e 19.85 2.0 µg/L 20 0 99.2 71 124 19.75 0.055 20 no 18.31 12.3	1,1,2-Trichloroethane	20.6	2.0	µg/L	50	0	103	79	122	19.74	4.26	20	
18.51 10 pg/L 20 0 92.6 41 138 186.3 0.646 20 22.66 2.0 pg/L 20 0 143 185 185 0.646 20 22.86 2.0 pg/L 20 0 145 87 137 22.89 2.484 20 22.38 2.0 pg/L 20 0 145 89 147 22.89 2.484 20 22.38 2.0 pg/L 20 0 145 86 147 22.89 2.46 2.46 20 22.48 2.46 2.4	1,2-Dibromoethane	19.85	2.0	µg/L	50	0	99.2	71	124	19.75	0.505	70	
nee 22.66 2.0 µg/L 2.0 113 81 129 21.55 4,84 20 thane 22.58 2.0 µg/L 2.0 115 87 137 22.59 4,84 2.0 thane 22.38 2.0 µg/L 2.0 0 112 86 121 22.59 2.46 2.0 celhane 23.38 2.0 µg/L 20 0 120 65 133 22.9 4.4 20 22.4 2.0 µg/L 20 0 120 65 133 22.9 4.4 20 21.79 2.0 µg/L 20 110 66 133 22.0 1.44 20 22.1 2.0 µg/L 2.0 110 66 133 21.32 2.14 20 23.23 2.0 µg/L 2.0 110 2.0 110 44 115 2.13 2.13 2.13 </td <td>2-Hexanone</td> <td>18.51</td> <td>10</td> <td>µg/L</td> <td>20</td> <td>0</td> <td>97.6</td> <td>41</td> <td>138</td> <td>18.63</td> <td>0.646</td> <td>20</td> <td></td>	2-Hexanone	18.51	10	µg/L	20	0	97.6	41	138	18.63	0.646	20	
thane 22.98 2.0 µg/L 20 0 115 87 137 22.88 0.392 20 hand 22.3 8 2.0 µg/L 20 0 115 59 119 22.52 2.46 20 cellular 23.93 2.0 µg/L 20 0 120 65 121 22.01 1.31 20 cellular 23.93 2.0 µg/L 20 0 120 65 120 22.01 1.31 22.01 1.31 20 cellular 22.4 2.0 µg/L 20 0 110 81 125 22.03 1.44 2.0 20 µg/L 20 0 110 81 125 22.03 1.44 2.0 20 µg/L 20 0 110 81 125 22.03 2.61 2.0 2.14 2.0 2.0 µg/L 20 0 110 86 134 21.33 2.61 2.0 2.0 µg/L 20 0 110 81 125 22.63 2.61 2.0 2.0 µg/L 20 0 110 81 125 22.63 2.61 2.0 2.0 µg/L 20 0 110 81 125 22.63 2.61 2.0 2.0 µg/L 20 0 110 81 125 139 2.464 1.85 20 2.0 2.0 µg/L 20 0 117 65 139 2.13 2.13 2.0 1.0 µg/L 20 0 117 65 139 2.13 2.13 2.0 1.2 2.0 2.0 µg/L 20 0 110 81 125 126 2.0 2.0 µg/L 20 0 110 73 129 2.13 3.64 2.0 2.0 µg/L 20 0 110 73 129 2.13 3.64 2.0 2.0 µg/L 20 0 110 73 129 2.2 8 3.06 2.0 2.0 µg/L 20 0 110 78 78 129 2.2 8 3.06 2.0 2.0 µg/L 20 0 110 78 125 2.2 8 3.06 2.0 2.0 µg/L 20 0 110 78 125 2.2 8 3.0 125 2.2 8 3.0 µg/L 20 0 110 78 125	1,3-Dichloropropane	22.66	2.0	hg/L	20	0	113	81	129	21.59	4.84	20	
thane 23.08 2.0 µg/L 20 0 115 59 119 22.52 2.46 20 20 pull 23.3 2.0 µg/L 20 0 112 86 121 22.50 2.46 20 20 oothane 22.4 2.0 µg/L 20 0 120 66 121 22.5 22.8 1.44 20 21.79 2.0 µg/L 20 0 110 81 125 22.08 1.44 20 21.79 2.0 µg/L 20 0 110 81 125 22.08 1.44 20 22.1 µg/L 20 0 110 81 125 22.08 1.44 20 22.1 µg/L 20 0 110 81 125 22.08 1.44 20 22.1 µg/L 20 0 110 81 125 22.08 1.44 120 22.1 µg/L 20 0 110 81 125 132 2.18 2.0 Pull 20 12.1 µg/L 20 0 110 81 125 132 2.18 2.0 Pull 20 12.1 µg/L 20 0 110 81 110 81 125 132 2.18 2.0 Pull 20 12.1 µg/L 20 0 110 81 135 2.1 µg/L 20 110 120 120 120 120 120 120 120 120	Tetrachloroethene	22.98	2.0	µg/L	20	0	115	87	137	22.89	0.392	70	
22.3 2.0 μg/L 20 0 112 86 121 22.01 1.31 20 20 enthane 23.93 2.0 μg/L 20 0 112 86 121 22.01 1.31 20 20 22.4 2 0 μg/L 20 0 112 81 125 22.9 4.4 20 20 22.4 2 0 μg/L 20 0 112 81 125 22.9 4.4 20 20 22.4 2 0 μg/L 20 0 110 81 125 22.9 2.0 2.0 μg/L 20 0 110 81 125 22.9 2.0 23.3 2.1 2 0 μg/L 20 0 110 86 133 21.5 21.8 20 2.1 8 20 23.3 2.1 2 0 μg/L 20 0 110 86 133 21.5 21.8 2.6 2 0 20 23.4 2 20 μg/L 20 0 110 84 115 22.6 3 2.6 2 20 22.4 2 20 μg/L 20 0 111 82 21.9 21.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Dibromochloromethane	23.08	2.0	µg/L	50	0	115	26	119	22.52	2.46	20	
oethane 23.93 2.0 μg/L 20 0 120 65 133 22.9 4.4 20 20 43.0 22.4 20 μg/L 20 0 112 81 125 22.8 1.44 20 20 143.0 22.4 2.0 μg/L 20 0 112 81 125 22.08 1.44 20 20 22.13 22.13 22.18 22.18 22.18 22.1 2.0 μg/L 20 0 110 66 133 21.32 21.32 21.18 20 22.14 20 1g/L 20 0 110 66 133 21.32 21.18 20 22.14 20 1g/L 20 0 110 66 133 21.32 21.18 20 22.14 20 1g/L 20 0 110 66 133 21.32 21.18 20 20 22.14 20 1g/L 20 0 117 65 139 24.44 175 22.63 26.1 20 22.44 20 1g/L 20 0 121 64 139 22.14 1.85 20 20 22.14 20 1g/L 20 0 117 65 139 21.14 1.85 20 20 22.14 20 20 1g/L 20 0 117 64 139 23.13 21.35 20 20 22.14 20 20 1g/L 20 0 116 73 129 23.23 0.172 20 22.19 20 1g/L 20 0 116 73 129 23.23 0.172 20 22.19 20 1g/L 20 0 116 73 129 23.23 0.172 20 22.19 20 1g/L 20 0 119 76 129 22.15 20 22.15 20 1g/L 20 0 119 76 129 22.15 20 22.15 20 1g/L 20 0 119 76 129 22.15 20 22.15 20 1g/L 20 0 119 76 129 22.15 20 22.15 20 22.15 20 1g/L 20 0 119 76 129 22.15 20 22.15 20 1g/L 20 0 119 76 129 22.15 20 22.15 20 1g/L 20 0 119 76 129 22.15 20 22.15 20 1g/L 20 0 119 76 129 22.15 20 22.15 20 22.15 20 1g/L 20 0 119 76 129 22.15 20 22.15 20 22.15 20 22.15 20 1g/L 20 0 119 76 125 22.15 20 22.15	Chlorobenzene	22.3	2.0	hg/L	20	0	112	98	121	22.01	1.31	20	
22.4 2.0 μg/L 20 0 112 81 125 22.08 1.44 20 20 143.85 2.0 μg/L 20 μg/L 20 0 110 81 125 22.08 1.44 20 20 21.75 2.0 μg/L 20 0 110 81 125 21.32 2.18 20 21.32 2.32 2.0 μg/L 20 0 110 66 1133 21.53 2.65 20 20.25.1 20 μg/L 20 0 116 44 115 22.64 1.85 20 20.25.4 20 μg/L 20 μg/L 20 117 65 132 21.74 7.35 20.25.4 20 μg/L 20 μg/L 20 117 65 132 21.74 7.35 20.25.4 20 μg/L 20 μg/L 20 117 65 139 21.74 7.35 20.25.4 20 μg/L 20 μg/L 20 118 82 119 21.83 3.64 20.22.64 20 μg/L 20 μg/L 20 118 82 119 21.83 3.64 20.22.64 20 μg/L 20 μg/L 20 116 73 129 23.3 3.64 20.22.64 20 μg/L 20 μg/L 20 116 78 120 23.3 3.64 20.22.69 20 μg/L 20 μg/L 20 118 82 120 23.3 3.64 20.22.69 20 μg/L 20 μg/L 20 118 82 120 23.3 3.64 20.22.69 20 μg/L 20 μg/L 20 118 82 120 23.3 3.64 20.22.69 20 μg/L 20 μg/L 20 118 82 120 23.3 3.64 20.22.69 20 μg/L 20 μg/L 20 118 82 120 23.3 3.64 20.22.69 20 μg/L 20 μg/L 20 118 82 120 23.3 3.64 20.22.69 20 μg/L 20 μg/L 20 118 82 120 23.3 3.64 20.22.69 20 μg/L 20 μg/L 20 μg/L 20 118 82 120 23.3 3.64 20.22.69 20 μg/L	1,1,1,2-Tetrachloroethane	23.93	2.0	µg/L	20	0	120	65	133	22.9	4.4	70	
43.95 2.0 μg/L 40 0 110 81 125 43.62 0.754 20 21.79 2.0 μg/L 20 109 68 134 21.32 2.18 20 22.1 2.0 μg/L 20 110 66 133 21.53 2.61 20 23.23 2.0 μg/L 20 116 44 115 22.63 2.61 20 pane 23.4 2.0 μg/L 20 0 126 132 21.64 1.85 20 pane 24.23 2.0 μg/L 20 0 121 64 132 21.74 7.35 20 22.64 2.0 μg/L 20 0 121 64 139 23.14 20 20 22.64 2.0 μg/L 20 0 116 73 129 21.84 123 20 20 22.94 2.0 <td>Ethylbenzene</td> <td>22.4</td> <td>2.0</td> <td>µg/L</td> <td>20</td> <td>0</td> <td>112</td> <td>81</td> <td>125</td> <td>22.08</td> <td>1.44</td> <td>50</td> <td></td>	Ethylbenzene	22.4	2.0	µg/L	20	0	112	81	125	22.08	1.44	50	
22.1 2.0 μg/L 20 0 109 68 134 21.32 2.18 20 20 μg/L 20 μg/L 20 0 110 66 133 21.53 2.61 20 23.23 2.0 μg/L 20 0 116 44 115 22.63 2.61 20 20 23.4 2.0 μg/L 20 0 116 44 115 22.63 2.63 2.62 20 23.4 2.0 μg/L 20 0 117 65 139 21.74 1.85 20 20 22.64 2.0 μg/L 20 0 117 65 119 21.83 3.64 2.0 20 22.64 2.0 μg/L 20 0 116 73 129 23.23 3.64 2.0 22.99 2.0 μg/L 20 19/L 20 116 73 129 22.85 3.66 2.0 μg/L 20 19g/L 20 118 82 122 22.85 3.06 2.0 μg/L 20 19g/L 20 118 82 122 22.85 3.06 2.0 μg/L 20 19g/L 20 118 82 122 22.85 3.06 2.0 μg/L 20 19g/L 20 119 76 125 22.85 3.06 20 19g/L 20 19g/L 20 119 76 125 22.95 3.07 23.77 20 μg/L 20 19g/L 20 119 76 125 22.95 3.06 20 19g/L 2	m,p-Xylene	43.95	2.0	hg/L	40	0	110	81	125	43.62	0.754	70	
23.23 2.0 μg/L 20 0 116 66 133 21.53 2.61 20 oethane 23.24 2.0 μg/L 20 0 126 75 139 24.64 1.85 20 20 oethane 23.4 2.0 μg/L 20 0 126 75 139 24.64 1.85 20 20 oethane 23.4 2.0 μg/L 20 0 121 64 139 21.74 7.35 20 20 pane 22.64 2.0 μg/L 20 0 121 64 139 21.83 3.64 20 20 pane 22.64 2.0 μg/L 20 0 113 82 119 21.83 3.64 20 20 pg/L 20 μg/L 20 0 116 73 129 21.83 3.64 20 20 pg/L 20 μg/L 20 0 116 73 129 21.83 3.64 20 20 pg/L 20 μg/L 20 0 116 73 129 21.83 3.64 20 20 pg/L 20 pg/L 20 0 116 73 129 21.83 3.64 20 20 pg/L 20 pg/L 20 0 116 73 129 21.83 3.64 20 pg/L 2	o-Xylene	21.79	2.0	hg/L	20	0	109	89	134	21.32	2.18	70	
25.13 2.0 lg/L 20 0 116 44 115 22.63 2.62 20 20 oethane 23.4 2.0 lg/L 20 0 126 75 139 24.64 1.85 20 20 oethane 23.4 2.0 lg/L 20 0 117 65 132 21.74 7.35 20 pane 24.23 2.0 lg/L 20 0 117 65 132 21.74 7.35 20 20 lg/L 20 0 113 82 119 21.83 3.64 20 20 lg/L 20 lg/L 20 0 116 73 129 23.13 3.64 20 20 lg/L 20 lg/L 20 0 116 73 129 22.18 3.64 20 lg/L 20 lg/L 20 0 116 73 129 22.18 3.64 20 lg/L	Styrene	22.1	2.0	hg/L	20	0	110	99	133	21.53	2.61	70	
25.1 2.0 µg/L 20 126 75 139 24.64 1.85 pane 23.4 2.0 µg/L 20 0 177 65 132 21.74 7.35 pane 24.23 2.0 µg/L 20 0 121 64 139 23.17 7.77 22.64 2.0 µg/L 20 0 113 82 119 21.83 3.64 nzene 22.99 2.0 µg/L 20 0 115 78 121 21.83 3.64 nzene 23.56 2.0 µg/L 20 0 118 82 122 22.15 3.72 nzene 23.82 2.0 µg/L 20 0 129 76 125 22.85 3.06 nzene 23.77 20 µg/L 20 0 129 79 125 22.95 3.51 nzene 23.77 20	Bromoform	23.23	2.0	µg/L	20	0	116	44	115	22.63	2.62	20	S
coethane 23.4 2.0 μg/L 20 0 177 65 132 21.74 7.35 pane 24.23 2.0 μg/L 20 0 121 64 139 23.1 4.77 22.64 2.0 μg/L 20 0 113 82 119 21.83 3.64 23.19 2.0 μg/L 20 0 116 73 129 23.23 0.172 nzene 23.56 2.0 μg/L 20 0 118 82 122 22.15 3.75 nzene 23.82 2.0 μg/L 20 0 123 69 129 22.77 4.51 nzene 23.77 20 μg/L 20 0 123 69 129 22.95 3.51 non Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits R - Analyte detected in the associated Method Blank	Isopropylbenzene	25.1	2.0	hg/L	20	0	126	75	139	24.64	1.85	20	
pane 24.23 2.0 μg/L 20 0 121 64 139 23.1 4.77 22.64 2.0 μg/L 20 0 113 82 119 21.83 3.64 23.19 2.0 μg/L 20 0 116 73 129 22.13 0.172 12.9 22.99 2.0 μg/L 20 0 118 82 121 22.15 3.72 12.9 23.56 2.0 μg/L 20 0 119 76 125 22.15 3.76 12.6 23.82 2.0 μg/L 20 0 123 69 129 22.77 4.51 12.6 23.77 2.0 μg/L 20 0 125 22.95 3.51 12.0 12.1 20 μg/L 20 0 129 125 22.95 3.51 12.0 μg/L 20 20 20 1	1,1,2,2-Tetrachloroethane	23.4	2.0	hg/L	50	0	117	65	132	21,74	7.35	20	
22.64 2.0 µg/L 20 0 113 82 119 21.83 3.64 23.19 2.0 µg/L 20 0 116 73 129 23.23 0.172 22.99 2.0 µg/L 20 0 118 82 121 22.15 3.72 1zene 23.82 2.0 µg/L 20 0 119 76 125 22.85 3.06 1zene 23.77 20 µg/L 20 0 123 69 129 23.77 4.51 1zene 23.77 20 µg/L 20 0 119 79 125 22.95 3.51 1 - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits R - Analyte detected in the associated Method Blank NA - Not applicable where J values or ND results occur	1,2,3-Trichloropropane	24.23	2.0	hg/L	20	0	121	64	139	23.1	4.77	20	
23.19 2.0 µg/L 20 0 115 78 129 23.23 0.172 22.99 2.0 µg/L 20 0 115 78 121 22.15 3.72 23.56 2.0 µg/L 20 0 119 76 125 22.85 3.06 Izene 23.82 2.0 µg/L 20 0 119 76 125 22.77 4.51 Izene 24.59 2.0 µg/L 20 0 119 76 125 22.77 5.51 Izene 23.77 2.0 µg/L 20 0 129 23.27 5.52 Izene 23.77 2.0 µg/L 20 0 119 79 125 22.95 3.51 Izene 33.77 2.0 µg/L 20 0 119 79 125 22.95 3.51 Izene 23.77 2.0 µg/L 20 0 119 79 125 22.95 3.51 Izene 33.77 2.0 µg/L 20 Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur	Bromobenzene	22.64	2.0	hg/L	20	0	113	85	119	21.83	3.64	20	
22.99	n-Propylbenzene	23.19	2.0	µg/L	20	0	116	73	129	23.23	0.172	20	
23.56 2.0 µg/L 20 0 118 82 122 22.85 3.06 128.82 2.0 µg/L 20 0 119 76 125 22.77 4.51 129.85 2.05 µg/L 20 0 119 76 125 22.77 4.51 120.95 2.07 µg/L 20 0 119 76 125 22.77 4.51 120.95 23.77 2.0 µg/L 20 0 119 79 125 22.95 3.51 120.85 Spike Recovery outside accepted recovery limits 120.85 PA Analyte detected in the associated Method Blank 120.85 PA Analyte detected below quantitation limits 120.85 PA Analyte detected in the associated Method Blank 120.85 PA Analyte detected in the associated Method Blank 120.85 PA Analyte detected below quantitation limits 120.85 PA Analyte detected below quantitation limits 120.85 PA Analyte detected below quantitation limits 120.85 PA Analyte detected below quantitation limits 120.85 PA Analyte detected below quantitation limits 120.85 PA Analyte detected below quantitation limits 120.85 PA Analyte detected below quantitation limits 120.85 PA Analyte detected below quantitation limits 120.85 PA Analyte detected below quantitation limits	2-Chlorotoluene	22.99	2.0	µg/L	20	0	115	78	121	22.15	3.72	20	
rizene 23.82 2.0 μg/L 20 0 119 76 125 22.77 4.51 rizene 24.59 2.0 μg/L 20 0 123 69 129 23.27 5.52 rizene 23.77 2.0 μg/L 20 0 119 79 125 22.95 3.51 3 - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur	4-Chlorotoluene	23.56	2.0	hg/L	20	0	118	82	122	22.85	3.06	20	
124.59 2.0 $\mu g/L$ 20 0 123 69 129 23.27 5.52 126 $\mu g/L$ 20 0 119 79 125 22.95 3.51 127 2.05 Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur	1,3,5-Trimethylbenzene	23.82	2.0	µg/L	20	0	119	9/	125	22.77	4.51	20	
Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur	tert-Butylbenzene	24.59	2.0	µg/L	20	0	123	69	129	23.27	5.52	20	
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	1,2,4-Trimethylbenzene	23.77	2.0	hg/L	20	0	119	79	125	22.95	3.51	20	
R - RPD outside accepted recovery limits		tected at the Reporting Limit		S - Spike Recover	y outside accepted	1 recovery	limits	B - Analyte	letected in the a	ssociated Metho	d Blank		
also to be and the second of t	J - Analyte d	etected below quantitation limits		R - RPD outside	accepted recovery	limits		NA - Not ap	olicable where J	values or ND re	sults occur		
	, f	£		1.1	4-1	6404							

AMRO Environmental Laboratories Corp.

CLIENT: Shaw Enviro	Shaw Environmental & Infrastructure, Inc.	ructure, Inc.							OC SUMMARY REPORT	TARY F	EPORT
Work Order: 1108060								, de I	I shorstory Control Snike Dunlicate	trol Snike	Dunlicate
Project: 130274 Text	130274 Textron Providence							י	oratory cor	wrde rem	aparation of
sec-Butylbenzene	24.18	2.0	hg/L	20	0	121	69	132	23.52	2.77	20
4-Isopropyltoluene	23.62	2.0	µg/L	20	0	118	99	132	22.56	4.59	20
1,3-Dichlorobenzene	23.18	2.0	µg/L	20	0	116	98	125	22.17	4.45	20
1,4-Dichlorobenzene	23.34	2.0	µg/L	20.	0	117	85	126	22.57	3.35	20
n-Butylbenzene	24.3	2.0	µg/L	20	0	122	29	143	24.15	0.619	20
1.2-Dichlorobenzene	23	2.0	µg/L	20	0	115	82	123	22.18	3.63	50
1.2-Dibromo-3-chloropropane	23.93	5.0	. hg/L ⋅	20	0	120	44	122	22.27	7.19	20
1,2,4-Trichlorobenzene	24.89	2.0	hg/L	20	0	124	73	137	23.62	5.24	20
Hexachlorobutadiene	23.96	2.0	µg/L	20		120	70	145	23.34	2.62	20
Naphthalene	21.5	5.0	hg/L	20	0	108	29	128	21.03	2.21	20
1,2,3-Trichlorobenzene	23.5	2.0	µg/L	20	0	118	63	135	22.56	4.08	50
Surr: Dibromofluoromethane	27.72	2.0	µg/L	25	0	111	82	122	0	0	0
Surr: 1,2-Dichloroethane-d4	28.41	2.0	µg/L	25	0	114	73	135	0	0	0
Surr: Toluene-d8	23.46	2.0	µg/L	25	0	93.8	82	117	0	0	0
Surr: 4-Bromofluorobenzene	24.38	2.0	µg/L	25	0	97.5	11	119	0	0	0
						·					

B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

NA - Not applicable where J values or ND results occur

:	Spike	
	Contro)
` .	,aporatory	

130274 Textron Providence 130274 Textron Providence 6/11 Batch ID: R47299 Test Code: SW8260B 6/11 Batch ID: R47299 Test Code: SW8260B Run ID: V-3_1108: A.38 5.0 µg/L 18.98 2.0 µg/L 18.98 2.0 µg/L 15.08 10 µg/L 15.08 2.0 µg/L 16.49 5.0 µg/L 16.49 5.0 µg/L 16.49 5.0 µg/L 16.49 5.0 µg/L 16.49 5.0 µg/L 16.31 2.0 µg/L 17.99 10 µg/L 18.93 2.0 µg/L 18.93 2.0 µg/L 19.65 2.0 µg/L 19.66 2.0 µg/L 19.67 2.0 µg/L 19.68 2.0 µg/L 19.69 2.0 µg/L 19.69 2.0 µg/L 19.69 2.0 µg/L 19.60 2.0 µg/L 19.61 2.0 µg/L 17.83 2.0 µg/L	Units: µg/L 26A QC Spike, Original Sample			,		
11 Batch ID: R47299 Test Code: SW8260B CC Sample Result RL Units Result RL Units 18.38 5.0 μg/L 19.66 5.0 μg/L 19.66 5.0 μg/L 13.61 5.0 μg/L 15.08 10 μg/L 16.49 5.0 μg/L 16.49 5.0 μg/L 16.91 2.0 μg/L 16.91 2.0 μg/L 16.91 2.0 μg/L 17.99 10 μg/L 18.93 2.0 μg/L 18.93 2.0 μg/L 18.93 2.0 μg/L 18.93 2.0 μg/L 18.93 2.0 μg/L 18.93 2.0 μg/L 18.93 2.0 μg/L 18.93 2.0 μg/L 18.93 2.0 μg/L 18.93 2.0 μg/L 17.83 2.0 μg/L	Units: µg/L Spike Original Sample			Lab	Laboratory Control Spike	pike
Run ID: V-3_11087 AC Sample Result RL Units 18.38 5.0 µg/L 18.98 2.0 µg/L 19.66 5.0 µg/L 13.61 5.0 µg/L 15.08 10 µg/L 16.49 2.0 µg/L 16.49 5.0 µg/L 16.49 5.0 µg/L 16.21 2.0 µg/L 17.99 10 µg/L 18.93 2.0 µg/L 18.93 2.0 µg/L 18.93 2.0 µg/L 18.93 2.0 µg/L 18.93 2.0 µg/L 18.93 2.0 µg/L 18.93 2.0 µg/L 18.93 2.0 µg/L 18.93 2.0 µg/L 17.83 2.0 µg/L	Spike, Original Sample		Analysis Date	Analysis Date 8/26/11 9:08:00 AM	Prep Date 8/26/11	
AC Sample Result RL Units 18.38 5.0 µg/L 18.98 2.0 µg/L 19.66 5.0 µg/L 13.61 5.0 µg/L 13.61 5.0 µg/L 14.1 1.0 µg/L 16.49 5.0 µg/L 16.49 5.0 µg/L 16.91 2.0 µg/L 16.91 2.0 µg/L 16.91 2.0 µg/L 16.91 2.0 µg/L 17.99 10 µg/L 18.93 2.0 µg/L 18.93 2.0 µg/L 18.93 2.0 µg/L 18.93 2.0 µg/L 17.83 2.0 µg/L	Spike Original Sample		SedNo:	786666		
Result RL Units 18.38 5.0 µg/L 18.9 2.0 µg/L 19.66 5.0 µg/L 13.61 5.0 µg/L 13.61 5.0 µg/L 14.1 1.0 µg/L 16.49 5.0 µg/L 16.49 5.0 µg/L 16.49 5.0 µg/L 16.21 2.0 µg/L 17.99 10 µg/L 18.93 2.0 µg/L 18.93 2.0 µg/L 18.93 2.0 µg/L 19.66 2.0 µg/L 18.93 2.0 µg/L 17.83 2.0 µg/L		ď	•	Original Sample		
18.38 5.0 µg/L 16.03 5.0 µg/L 18.9 2.0 µg/L 16.98 2.0 µg/L 16.98 2.0 µg/L 13.61 5.0 µg/L 14.1 1.0 µg/L 16.08 2.0 µg/L 16.49 5.0 µg/L 16.91 2.0 µg/L 16.91 2.0 µg/L 16.91 2.0 µg/L 17.99 10 µg/L 18.93 2.0 µg/L 19.66 2.0 µg/L 18.93 2.0 µg/L 19.67 2.0 µg/L 17.83 2.0 µg/L 17.83 2.0 µg/L	mount Result	%REC	LowLimit Hig	HighLimit or MS Result	%RPD RPDLimit	Qua
16.03 5.0 µg/L 18.9 2.0 µg/L 16.98 2.0 µg/L 13.61 5.0 µg/L 13.61 5.0 µg/L 14.1 1.0 µg/L 16.49 5.0 µg/L 16.49 5.0 µg/L 17.99 10 µg/L 16.21 2.0 µg/L 18.93 2.0 µg/L 17.83 2.0 µg/L 17.83 2.0 µg/L 17.83 2.0 µg/L 17.83 2.0 µg/L 17.83 2.0 µg/L	20 0	91.9	25	168 0		
18.9 2.0 µg/L 19.66 5.0 µg/L 16.98 2.0 µg/L 13.61 5.0 µg/L 15.08 10 µg/L 16.49 2.0 µg/L 16.49 5.0 µg/L 16.49 5.0 µg/L 17.99 10 µg/L 17.99 10 µg/L 18.93 2.0 µg/L 19.66 2.0 µg/L 19.66 2.0 µg/L 19.66 2.0 µg/L 19.66 2.0 µg/L 17.83 2.0 µg/L 17.83 2.0 µg/L 17.83 2.0 µg/L	20 0	80.2	51	149 0		
19.66 5.0 µg/L 16.98 2.0 µg/L 13.61 5.0 µg/L 15.08 10 µg/L 16.49 5.0 µg/L 16.49 5.0 µg/L 16.21 2.0 µg/L 16.21 2.0 µg/L 16.21 2.0 µg/L 16.21 2.0 µg/L 18.93 2.0 µg/L 17.83 2.0 µg/L 17.83 2.0 µg/L 17.83 2.0 µg/L 17.83 2.0 µg/L	20 0	94.5	29	152 0		
16.98 2.0 µg/L 20.56 2.0 µg/L 13.61 5.0 µg/L 15.08 10 µg/L 10.68 2.0 µg/L 16.49 5.0 µg/L 19.12 2.0 µg/L 16.91 2.0 µg/L 16.91 2.0 µg/L 16.91 2.0 µg/L 19.66 2.0 µg/L 19.65 2.0 µg/L 19.65 2.0 µg/L 19.67 2.0 µg/L 19.67 2.0 µg/L 19.68 2.0 µg/L 16.21 2.0 µg/L 17.89 2.0 µg/L 17.83 2.0 µg/L	20 0	98.3	92	138 0		
20.56 2.0 µg/L 13.61 5.0 µg/L 15.08 10 µg/L 10.68 2.0 µg/L 16.49 5.0 µg/L 19.12 2.0 µg/L 17.99 10 µg/L 19.66 2.0 µg/L 18.93 2.0 µg/L 19.53 10 µg/L 19.53 10 µg/L 19.53 2.0 µg/L	20 0	84.9	53	128 0		
13.61 5.0 µg/L 15.08 10 µg/L 10.68 2.0 µg/L 16.49 5.0 µg/L 16.02 2.0 µg/L 17.99 10 µg/L 17.99 10 µg/L 18.66 2.0 µg/L 18.53 2.0 µg/L 19.66 2.0 µg/L 19.66 2.0 µg/L 19.66 2.0 µg/L 19.66 2.0 µg/L 19.67 2.0 µg/L	20 0	103	56	157 0		
15.08 10 µg/L 14.1 1.0 µg/L 10.68 2.0 µg/L 16.49 5.0 µg/L 19.12 2.0 µg/L 17.99 10 µg/L 19.66 2.0 µg/L 18.93 2.0 µg/L 17.83 2.0 µg/L 20.61 2.0 µg/L	20 0	89	73	121 0		S
14.1 1.0 µg/L 10.68 2.0 µg/L 16.49 5.0 µg/L 19.12 2.0 µg/L 16.91 2.0 µg/L 17.99 10 µg/L 18.93 2.0 µg/L 18.93 2.0 µg/L 17.83 2.0 µg/L 20.61 2.0 µg/L	20 0	75.4	44	133 0		
10.68 2.0 µg/L 16.49 5.0 µg/L 19.12 2.0 µg/L 16.91 2.0 µg/L 17.99 10 µg/L 19.66 2.0 µg/L 18.93 2.0 µg/L 17.83 2.0 µg/L 20.61 2.0 µg/L	20 0	70.5	7.7	139 0		S
16.49 5.0 µg/L 19.12 2.0 µg/L 16.91 2.0 µg/L 17.99 10 µg/L 19.66 2.0 µg/L 18.93 2.0 µg/L 19.53 10 µg/L 20.61 2.0 µg/L	20 0	53.4	55	129 0		လ
19.12 2.0 µg/L 16.02 2.0 µg/L 17.99 10 µg/L 19.66 2.0 µg/L 18.93 2.0 µg/L 18.53 10 µg/L 17.83 2.0 µg/L 20.61 2.0 µg/L	20 0	82.5	77	133 :0		
16.02 2.0 µg/L 16.91 2.0 µg/L 17.99 10 µg/L 19.66 2.0 µg/L 18.93 2.0 µg/L 19.53 10 µg/L 20.61 2.0 µg/L	20 0	92.6	99	130 0		
16.91 2.0 µg/L 17.99 10 µg/L 19.66 2.0 µg/L 18.93 2.0 µg/L 19.53 10 µg/L 20.61 2.0 µg/L	20 0	80.1	42	128 0		
17.99 10 µg/L 19.66 2.0 µg/L 18.93 2.0 µg/L 19.53 10 µg/L 20.61 2.0 µg/L	20 0	84.6	81	131 0		
19.66 2.0 µg/L , 16.21 2.0 µg/L , 18.93 2.0 µg/L 19.53 10 µg/L 17.83 2.0 µg/L 20.61 2.0 µg/L	20 0	6	47	141 0		,
16.21 2.0 µg/L 18.93 2.0 µg/L 19.53 10 µg/L 17.83 2.0 µg/L 20.61 2.0 µg/L	20 0	98.3	47	155 0		
uran 19.53 2.0 μg/L omethane 17.83 2.0 μg/L oroethane 20.61 2.0 μg/L	20 0	8	78	128 0		
19.53 10 µg/L 17.83 2.0 µg/L 20.61 2.0 µg/L	20 0	94.6	69	132 0		
17.83 2.0 µg/L 20.61 2.0 µg/L 40.7 2.0 µg/L	20. 0	97.6	63	144 0		
20.61 2.0 µg/L	20 . 0	89.2	7.7	138 0		
761 00 187	20 0	103	89	145 0		
7.0 µg/L	20 0	93.5	71	141 0		
Carbon tetrachloride 21.09 2.0 µg/L 20	200	105	28	130 0		
1,2-Dichloroethane 17.82 2.0 µg/L 20	20. 0	89.1	61	140 0		
Benzene 17.46 1.0 μg/L 20	20 0	87.3	75	129 0		
Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	outside accepted recover	ry limits	B - Analyte d	B - Analyte detected in the associated Method Blank	nod Blank	
J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	cepted recovery limits		NA - Not ann	NA - Not applicable where I values or ND results occur	results occur	

75

AMRO Environmental Laboratories Corp.

CLIENT:	Shaw Environmental & Infrastructure, Inc	ental & Infrastr	ucture, Inc.							C SIMMARY BEPORT	Taoaa
Work Order:	1108060										
Project:	130274 Textron Providence	Providence								Laboratory Control Spike	ntrol Spike
Trichloroethene		18.75	2.0	µg/L	20	0	93.8	81	129	0	
1,2-Dichloropropane	ē	17.28	2.0	µg/L	. 50	0	86.4	84	134	0	
Bromodichloromethane	nane	17.26	2.0	µg/L	20	0	86.3	63	118	0	. •
Dibromomethane		18.28	2.0	µg/L	20	0	91.4	92	123	0	
4-Methyl-2-pentanone	ne	17.19	10	µg/L	20	0	98	54	124	0	
cis-1,3-Dichloropropene	pene	17.69	1.0	µg/L	20	0	88.4	65	115	0	
Toluene		18.39	2.0	µg/L	20	0	85	81	123	0	
trans-1,3-Dichloropropene	ropene	17.54	1.0	µg/L	20	0	87.7	55	126	0	
1,1,2-Trichloroethane	ne	18.42	2.0	µg/L	20		92.1	26	122	0	
1,2-Dibromoethane		18.64	2.0	µg/L	20	0	93.2	71	124	0	
2-Hexanone		18.15	10	µg/L	50	0	8.06	41	138	0	
1,3-Dichloropropane	Ð	20.23	2.0	µg/L	20	0	101	87	129		
Tetrachloroethene		23.33	2.0	µg/L	20	0	117	87	137	0	
Dibromochloromethane	nane	20.75	2.0	µg/L	20	0	104	29	119	0	
Chlorobenzene		21.57	2.0	µg/L	20	0	108	98	121	0	
1,1,1,2-Tetrachloroethane	ethane	21.33	2.0	µg/L	20	0	107	65	133	0	
Ethylbenzene		21.42	2.0	µg/L	20	0	107	8	125	. 0	
m,p-Xylene		42.86	2.0	µg/L	40	0	107	81	125	0	
o-Xylene		21.45	2.0	hg/L	20	0,	107	89	134	0	
Styrene		21.54	2.0	µg/L	20	0	108	99	133	0	
Bromoform		20.99	2.0	hg/L	20	0	105	44	115	0	
Isopropylbenzene		24.59	2.0	µg/L ,	20	0	123	75	139	0	
1,1,2,2-Tetrachloroethane	ethane	21.36	2.0	hg/L	20	0	107	65	132	. 0	•
1,2,3-Trichloropropane	ane	20.65	2.0	µg/L	20	0	103	64	139	0	
Bromobenzene		22.39	2.0	hg/L	20	0	112	82	119	0	
n-Propylbenzene		22.87	2.0	µg/L	20	0	114	73	129	0	
2-Chlorotoluene		21.83	2.0	µg/L	20	0	109	28	121	0	
4-Chlorotoluene		21.97	2.0	µg/L	20	0	110	82	122	0	
1,3,5-Trimethylbenzene	zene	22.12	2.0	µg/L	20	0	111	92	125	0	
tert-Butylbenzene		22.76	2.0	µg/L	20	0	114	69	129	0	
1,2,4-Trimethylbenzene	zene	22.7	2.0	hg/L	20	0	114	62	125	0	
Qualifiers: ND	ND - Not Detected at the Reporting Limit	eporting Limit	S	- Spike Recover	- Spike Recovery outside accepted recovery limits	d recovery		B - Analyte d	etected in the	- Analyte detected in the associated Method Blank	
A - I	J - Analyte detected below quantitation limits	quantitation limits	Д.	R - RPD outside a	- RPD outside accepted recovery limits	limits		NA - Not app	licable where	NA - Not applicable where I values or ND results occur	
RL.	RL - Reporting Limit: defined as the lowest concentration	ed as the lowest co		he laboratory can	the Jaboratory can accurately quantitate.	tate.					
ļ	,										

AMRO Environmental Laboratories Corp.

CLIENT: Work Order: Project:	Shaw Environmental & Infrastructure, Inc. 1108060 130274 Textron Providence	ıtal & Infrastru rovidence	cture, Inc.						J	OC SUMMARY REPORT Laboratory Control Spike
sec-Butylbenzene		23.16	2.0	hg/L	20	0	116	69	132	0
4-Isopropyltoluene		22.28	2.0	µg/L	20	0	111	99	132	0
1,3-Dichlorobenzene	m	22.24	2.0	µg/L	20	0	111	98	125	0
1,4-Dichlorobenzene	· ds.*	22.7	2.0	µg/L	20	0	114	85	126	0
n-Butylbenzene		23.29	2.0	µg/L	20	0	116	29	143	0
1,2-Dichlorobenzene	an.	21.96	2.0	µg/L	20	0	110	82	123	0
1,2-Dibromo-3-chloropropane	opropane	20.45	5.0	µg/L	20	0	102	44	122	0 0
1,2,4-Trichlorobenzene	ine	23.57	2.0	µg/L	20	0	118	73	137	0 .
Hexachlorobutadiene	Φ	21.2	2.0	µg/L	20	0	106	20	145	0
Naphthalene		20.87	5.0	µg/L	20	0	104	29	128	0
1,2,3-Trichlorobenzene	ine	21.9	2.0	hg/L	20	0	110	63	135	0
Surr: Dibromofluoromethane	romethane	26.12	2.0	µg/L	25	0	104	82	122	.0
Surr: 1,2-Dichloroethane-d4	ethane-d4	26.03	2.0	µg/L	25	0	104	73	135	0
Surr: Toluene-d8		23.7	2.0	µg/L	25	0	94.8	82	117	0
Surr: 4-Bromofluorobenzene	robenzene	25.13	2.0	µg/L	25	0	101	2.2	119	0

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

Von. Contact: 11080600 Project: 130274 Textron Providence Laborationy Control Spike Project: 130274 Textron Providence Laborationy Control Spike Sample Diseased: Run ID: V4.110266 Units: jept. Analysis Date St2411 8-2410 AM Prep Date Date St2411 Client ID: Co. Sample Sample Run ID: V4.2102260 Units: jept. Analysis Date St2411 8-2410 AM Prep Date Date St2411 Analysis Client ID: Co. Sample Sample Run ID: V4.2102260 Units: jept. Analysis Date St2411 8-2410 AM Prep Date Date St2411 Analysis Client ID: Co. Sample Sample Run ID: V4.2102260 Units: jept. Analysis Date St2411 8-2410 AM Prep Date Date St2411 Charcornethane Result R. Luleis Amount II Spt. Zh. Spt. Zh. Spt. Zh. Spt. Zh. Spt. Zh. Spt. Zh. Spt. Zh. Spt. Zh. Spt. Zh. Spt. Zh. Spt. Zh. Spt. Zh. Spt. Zh. Zh. Zh. Zh. Zh. Zh. Zh. Zh. Zh. Zh.	rder:										* * * * * * * * * * * * * * * * * * *		
Page Page	lcs-08/29	0908								-			
Parich D. R4712 Test Code: SW0260B Units: pgrL Annalysis Date 8/29/11 s124:00 AM Prep Date 8/29/11	Sample ID Ics-08/29/11	274 Textron Providence			g*rei					La	boratory (ontrol Sj	oike
11 Barth Dr. R47312 Test Code: SW02c068 Units: pg/L Seq/loc Analysis Date 812410 AM Prep Date 812911 Prep Date 812410 AM Prep Date 812911 Prep	Sample ID Ics-08/29/11												۱
Coc Sample Run ID: V.3_110829A Seaple Criginal Sample Result Result Month Month		Batch ID: R47312	Test Code	SW8260B	Units: µg/L			Analysis D	ate 8/29/11	9:24:00 AM	Prep Date	8/29/11	
CC Sample CC Sample CC Sample CC Sample CC Sample Result Resu	Client ID:		Run ID:	V-3_110829	⋖			SeqNo:	786863				
Mathematical Ressurt Result Mathematical Result Mathematic		QC Sample		ŏ	Spike Original	Sample		t.		Original Sample			
17.32 5.0 µg/L 20 0 86.6 25 168 0 0 146.4 146.4 5.0 µg/L 20 0 73.2 51 149 0 0 0 146.4 146.4 5.0 µg/L 20 0 92.4 65 152 0 0 0 0 0 0 0 0 0	Analyte	Result	R		Amount	- 1	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
14.64 5.0 µg/L 20 0 73.2 51 149 0 14.64 5.0 µg/L 20 0 73.2 51 149 0 14.64 5.0 µg/L 20 0 92.4 65 138 0 14.64 5.0 µg/L 20 0 92.4 65 138 0 14.64 5.0 µg/L 20 0 105 56 157 0 15.83 10 µg/L 20 0 70.5 77 139 0 15.83 10 µg/L 20 0 70.5 77 139 0 16.89 20 µg/L 20 0 70.5 77 139 0 16.90 20 µg/L 20 0 70.5 77 139 0 16.10 µg/L 20 0 70.5 77 130 0 16.10 µg/L 20 0 70.5 77 130 0 16.10 µg/L 20 0 70.5 70 130 0 16.10 µg/L 20 0 70.5 70 130 0 16.10 µg/L 20 0 70.5 70 130 0 16.10 µg/L 20 0 70.5 70 130 0 16.10 µg/L 20 0 70.5 70 130 0 16.10 µg/L 20 0 70.5 70 140 0 16.10 µg/L 20 0 70.5 70 140 0 16.10 µg/L 20 0 70.5 70 140 0 16.10 µg/L 20 0 70.5 70 140 0 16.10 µg/L 20 0 70.5 70 140 0 16.10 µg/L 20 0 70.5 70 140 0 16.10 µg/L 20 0 70.5 70 140 0 16.10 µg/L 20 0 77 140 0 17.10 µg/L 20 0 77 140 0 18.73 20 µg/L 20 0 70.5 70 140 0 18.73 20 µg/L 20 0 70.5 70 140 0 18.73 20 µg/L 20 0 70.5 70 140 0 18.74 141 141 0 18.75 20 µg/L 20 0 70.5 70 140 0 18.75 140 0 70	Dichlorodifluoromethane	17.32	5.0	hg/L	20	0	9.98	25	168	0			
17.56 2.0 µg/L 20 0 87.8 58 152 0 18.46 5.0 µg/L 20 0 65.5 53 128 0 20.99 2.0 µg/L 20 0 65.5 53 128 0 12.71 2.0 µg/L 20 0 65.5 53 128 0 12.71 5.0 µg/L 20 0 79.5 73 121 0 8.69 2.0 µg/L 20 0 79.5 73 121 0 8.69 2.0 µg/L 20 0 79.8 73 121 0 17.58 10 µg/L 20 0 79.8 77 139 0 8.69 2.0 µg/L 20 0 79.8 77 139 0 18.69 2.0 µg/L 20 0 79.8 77 139 0 18.69 2.0 µg/L 20 0 79.8 77 139 0 18.69 2.0 µg/L 20 0 84.4 55 129 0 19.60 1.0 µg/L 20 0 84.4 55 129 0 19.60 1.0 µg/L 20 0 84.1 55 129 0 19.60 1.0 µg/L 20 0 84.1 131 0 19.82 2.0 µg/L 20 0 84.1 131 0 19.82 2.0 µg/L 20 0 89.1 47 141 0 19.82 2.0 µg/L 20 0 99.1 47 144 0 19.82 2.0 µg/L 20 0 144 63 144 0 19.83 2.0 µg/L 20 0 146 63 144 0 19.85 2.0 µg/L 20 0 99.6 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 108 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 145 0 19.85 2.0 µg/L 20 0 106 89 144 0 19.85 2.0 µg/L 20 0 106 89 144 0 19.85 2.0 µg/L 20 0 106 89 144 0 19.85 2.0 µg/L 20 0 106 89 144 0 19.85 2.0 µg/L 20 0 106 89 144 0 19.85 2.0 µg/L 20 0 106 89 144 0 19.85 2.0 µg/L 20 0 106 89 144 0 19.85 2.0 µg/L 20 0 106 89 144 0 19.85 2.0 µg/L 20 0 106 89 144 0 19.85 2.0 µg/L 20 0 106 89 144 0 19.85 2.0 µg/L 20 0 106 89 144 0 19.85 2.0 µg/L 20 0 106 89 144 0 19.85 2.0 µg/L 20 0 106 89 144 0 19.85 2.0 µg/L 20 0 106 89 144 0	Chloromethane	14.64	5.0	hg/L	20	0	73.2	51	149	0			
18.46 5.0 µg/L 20 0 92.4 65 138 0 0 20.99 2.0 µg/L 20 0 105. 56 173 128 0 1.2.71 5.0 µg/L 20 0 105. 56 73 128 0 1.5.83 1.0 µg/L 20 0 105. 73 121 0 1.5.83 1.0 µg/L 20 0 179. 77 139 0 1.6.57 5.0 µg/L 20 0 179. 77 139 0 1.8.99 2.0 µg/L 20 0 179. 77 133 0 1.8.99 2.0 µg/L 20 0 179. 171 133 0 1.8.99 2.0 µg/L 20 0 177 133 0 1.8.50 2.0 µg/L 20 0 107. 20 0 107. 20 0 1.8.50 2.0 µg/L 20 0 107. 20 0 107. 107. 107. 107. 107. 107. 107. 1	Vinyl chloride	17.56	2.0	µg/L	20	0	87.8	29	152	0			
17.1 2.0 µg/L 20 0 105 55 128 0 1 1 1 1 1 1 2 1 µg/L 20 0 105 56 157 0 0 1 1 1 1 1 1 1 2 1 µg/L 20 0 105 56 157 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Chloroethane	18.48	5.0	hg/L	20	0	92.4	65	138	0			
p. 120.99 2.0 µg/L 20 0 165 65 157 0 12.71 5.0 µg/L 20 0 63.6 73 121 0 12.58 1.0 µg/L 20 0 62.9 77 139 0 12.58 1.0 µg/L 20 0 43.4 55 129 0 15.97 2.0 µg/L 20 0 73.6 77 139 0 16.65 2.0 µg/L 20 0 75.6 73 128 0 16.65 2.0 µg/L 20 0 83.3 81 131 0 16.65 2.0 µg/L 20 0 83.3 81 131 0 16.40 2.0 µg/L 20 0 96 73 128 0 16.41 2.0 µg/L 20 0 96 69 132 0<	Bromomethane	17.1	2.0	µg/L	20.	0	85.5	53	128	0			
12.71 5.0 lg/L 20 0 636 73 121 0 0 1 12.71 1 15.83 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Trichlorofluoromethane	20.99	2.0	µg/L	20	0	105	. 56	157	0			
15.83 10 µg/L 20 0 79.2 44 133 0 1 1 1 2.58 1 1 0 µg/L 20 0 62.9 77 139 0 1 1 2.58 1 1 0 µg/L 20 0 62.9 77 139 0 0 1 1 2.58 1 1 0 µg/L 20 0 0 44.4 66 130 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Diethyl ether	12.71	5.0	µg/L	50	0	63.6	73	121	0			တ
12.58 1.0 μg/L 20 0 62.9 77 139 0 0 8.69 2.0 μg/L 20 0 73.4 55 129 0 15.12 2.0 μg/L 20 0 75.6 73 138 0 16.65 2.0 μg/L 20 0 75.6 79 128 0 20.66 10 μg/L 20 0 75.6 79 128 0 19.82 2.0 μg/L 20 0 75.6 79 128 0 19.82 2.0 μg/L 20 0 75.6 79 128 0 19.82 2.0 μg/L 20 0 77 78 128 0 19.82 2.0 μg/L 20 0 77 78 128 0 19.82 2.0 μg/L 20 0 77 78 138 0 22.72 10 μg/L 20 0 96.1 47 141 0 22.272 10 μg/L 20 0 96.1 47 141 0 21.26 2.0 μg/L 20 0 96.0 77 188 0 21.26 2.0 μg/L 20 0 96.0 77 138 0 21.26 2.0 μg/L 20 0 96.0 77 138 0 21.66 3.0 μg/L 20 0 96.0 77 138 0 21.66 3.0 μg/L 20 0 96.0 77 138 0 21.66 9.0 μg/L 20 0 96.0 77 138 0 21.66 9.0 μg/L 20 0 96.0 77 138 0 21.66 9.0 μg/L 20 0 96.0 97 77 138 0 21.66 9.0 μg/L 20 0 96.0 97 77 138 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 96.0 97 77 141 0 21.66 9.0 μg/L 20 0 97 6 μg/L 20 0 9	Acetone	15.83	10	µg/L	20	0,	79.2	44	133	0			
8.69 2.0 μg/L 20 0 43.4 55 129 0 15.97 5.0 μg/L 20 0 79.8 77 133 0 18.89 2.0 μg/L 20 0 776 77 133 0 16.65 2.0 μg/L 20 0 776 78 128 0 19.82 2.0 μg/L 20 0 147 47 155 0 19.82 2.0 μg/L 20 0 99.1 47 155 0 19.2 2.0 μg/L 20 0 99.1 47 155 0 19.2 2.0 μg/L 20 0 96 69 132 0 18.59 2.0 μg/L 20 0 144 63 144 0 18.73 2.0 μg/L 20 9 77 78 143 0	1,1-Dichloroethene	12.58	1.0	µg/L	20	0	67.9	11	139	0			တ
15.97 5.0 μg/L 20 0 79.8 77 133 0 1 15.89 18.89 2.0 μg/L 20 0 94.4 66 130 0 0 1 15.12 2.0 μg/L 20 0 94.4 66 130 0 0 1 12.8 0 12.8 0 1 12.8 0 1 12.8 0 1 12.8 0 1 12.8 0 1 12.8 0 1 12.8 0 1 12.8 0 1 12.8 0 1 12.8 0 1 12.8 0 1 12.8 0 1 12.8 0 1 12.8 0 1 12.	Carbon disulfide	8.69	2.0	µg/L	50	0	43.4	22	129	0			လ
18.89 2.0 μg/L 20 0 94.4 66 130 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Methylene chloride	15.97	5.0	µg/L	20	0	79.8	11	133	0			
16.15 2.0 μg/L 2.0 7.5 7.5 7.9 12.8 0 16.65 2.0 μg/L 2.0 83.3 81 131 0 20.66 10 μg/L 2.0 0 99.1 47 141 0 19.82 2.0 μg/L 2.0 0 99.1 47 155 0 19.2 2.0 μg/L 2.0 0 77 78 128 0 22.72 10 μg/L 2.0 0 90 77 138 0 21.26 2.0 μg/L 2.0 0 90 77 138 0 21.26 2.0 μg/L 2.0 0 90 77 141 0 18.59 2.0 μg/L 2.0 0 93 71 141 0 16.69 1.0 μg/L 2.0 0 93 71 140 0	Methyl tert-butyl ether	18.89	2.0	µg/L	20	0	94.4	99	130				
16.65 2.0 µg/L 20 0 83.3 81 131 0 20.66 10 µg/L 20 0 103 47 141 0 19.82 2.0 µg/L 20 0 99.1 47 155 0 19.2 2.0 µg/L 20 0 96 69 132 0 22.72 10 µg/L 20 0 96 69 132 0 22.72 10 µg/L 20 0 96 69 132 0 21.26 2.0 µg/L 20 0 96 69 144 0 18.59 2.0 µg/L 20 0 96 68 145 0 18.59 2.0 µg/L 20 0 93 71 141 0 18.73 2.0 µg/L 20 0 93 61 140 0	trans-1,2-Dichloroethene	15.12	2.0	hg/L	20	0	75.6	79	128	0			S
20.66 10 μg/L 20 0 103 47 141 0 1 19.82 1.0 μg/L 20 0 99.1 47 155 0 1 15.41 2.0 μg/L 20 0 99.1 47 155 0 0 1 15.41 2.0 μg/L 20 0 96 69 132 0 0 1 14.4 63 14.4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,1-Dichloroethane	16.65	2.0	µg/L	20	0	83.3	. 84	131	0			
19.82 2.0 µg/L 20 0 99.1 47 155 0 15.41 2.0 µg/L 20 0 77 78 128 0 22.72 10 µg/L 20 0 96 69 132 0 22.72 10 µg/L 20 0 114 63 144 0 21.26 2.0 µg/L 20 0 90 77 138 0 18.59 2.0 µg/L 20 0 93 71 141 0 18.59 2.0 µg/L 20 0 93 71 141 0 18.73 2.0 µg/L 20 0 93.6 61 140 0 16.69 1.0 µg/L 20 0 93.6 77 141 0 16.69 1.0 µg/L 20 0 93.6 71 141 0 <td>2-Butanone</td> <td>20.66</td> <td>10</td> <td>µg/L</td> <td>50</td> <td>0</td> <td>103</td> <td>47</td> <td>141</td> <td>0</td> <td></td> <td></td> <td></td>	2-Butanone	20.66	10	µg/L	50	0	103	47	141	0			
15.41 2.0 µg/L 20 0 77 78 128 0 0 22.72 10 µg/L 20 0 96 69 132 0 22.72 10 µg/L 20 0 90 77 138 0 21.26 2.0 µg/L 20 0 90 77 138 0 21.26 2.0 µg/L 20 0 93 77 141 0 21.63 2.0 µg/L 20 0 93 77 141 0 21.63 2.0 µg/L 20 0 93 77 141 0 18.73 2.0 µg/L 20 0 83.6 61 140 0 16.69 132 0 0 16.69 132 0 0 16.69 132 0 0 17. 144 0 0 18.59 0 0 18.59 130 0 0 19.C 20 0 0 0 0 19.C 20 0 0 0 0 0 10.C 20 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 0 0 0 0 0 10.C 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,2-Dichloropropane	19.82	2.0	µg/L ,	20	0	99.1	47	155	0			
uran 22.72 10 μg/L 20 0 96 omethane 18 2.0 μg/L 20 0 114 oroethane 21.26 2.0 μg/L 20 0 90 oroethane 18.59 2.0 μg/L 20 0 93 achloride 21.63 2.0 μg/L 20 0 93.6 oethane 18.73 2.0 μg/L 20 0 93.6 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits S - Spike Recovery outside accepted recovery limits D1 D - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	cis-1,2-Dichloroethene	15.41	2.0	µg/L	20	0	77	78	128	0			S
22.72 10 µg/L 20 0 114 18 2.0 µg/L 20 0 90 21.26 2.0 µg/L 20 0 106 18.59 2.0 µg/L 20 0 106 18.73 2.0 µg/L 20 0 93.6 16.69 1.0 µg/L 20 0 93.6 16.69 1.0 µg/L 20 0 83.4 ot Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits	Chloroform	19.2	2.0	hg/L	20	0	.96	69	132	0			
18 2.0 . µg/L 20 0 90 21.26 2.0 µg/L 20 0 106 18.59 2.0 µg/L 20 0 106 18.73 2.0 µg/L 20 0 93.6 16.69 1.0 µg/L 20 0 93.6 16.69 1.0 µg/L 20 0 83.4 ot Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits lyte detected below quantitation limits R - RPD outside accepted recovery limits	Tetrahydrofuran	. 22.72	10	µg/L	20	0	114	63	144	0			
21.26 2.0 µg/L 20 0 106 18.59 2.0 µg/L 20 0 93 21.63 2.0 µg/L 20 0 93 18.73 2.0 µg/L 20 0 93.6 16.69 1.0 µg/L 20 0 83.4 Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits alyte detected below quantitation limits R - RPD outside accepted recovery limits	Bromochloromethane	18	2.0	· .hg/L	20	0	06	77	138	0			
18.59 2.0 µg/L 20 0 93 21.63 2.0 µg/L 20 0 108 18.73 2.0 µg/L 20 0 108 16.69 1.0 µg/L 20 0 93.6 Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits alyte detected below quantitation limits R - RPD outside accepted recovery limits	1,1,1-Trichloroethane	21.26	2.0	, µg/L	20	0	106	99	145	0			
21.63 2.0 µg/L 20 0 108 18.73 2.0 µg/L 20 0 93.6 16.69 1.0 µg/L 20 0 83.4 Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits alyte detected below quantitation limits R - RPD outside accepted recovery limits	1,1-Dichloropropene	18.59	2.0	µg/L	20	0	93	71	141	0			
oroethane 18.73 2.0 µg/L 20 0 93.6 16.69 1.0 µg/L 20 0 83.4 16.69 1.0 µg/L 20 0 83.4 Inits ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	Carbon tetrachloride	21.63	2.0	µg/Ľ	20	0	108	28	130	0			
1.0 µg/L 20 0 83.4 1.1 µg/L 20 0 83.4 1.2 µg/L 20 0 83.4 1.3 µg/L 20 0 83.4 1.4 Analyte detected at the Reporting Limits	1,2-Dichloroethane	18.73	2.0	hg/L	20	0	93.6	9	140	0			
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	Benzene	16.69	1.0	µg/L	20	0.	83.4	75	129	0	.,		
R - RPD outside accepted recovery limits		etected at the Reporting Limit	S	- Spike Recover	y outside accepted	d recovery	limits	B - Analyt	e detected in	the associated Met	thod Blank		
the Johannton; one commetality amontitute	J - Analyte	detected below quantitation limits		- RPD outside a	ccepted recovery	limits		NA - Not	applicable wl	nere J values or NE	results occur		
CLULIUM COMPANY AND THE COMPANY OF T	ţ,	**************************************		-	.,								

AMRO Environmental Laboratories Corp.

CLIENT: Shaw Environmental & Infrastructure, In	ntal & Infrastru	cture, Inc		-					OC STIMMARY REPORT	FPORT
Work Order: 1108060				÷ .						1 C
Project: 130274 Textron Providence	rovidence								Laboratory Control Spike	irroi spike
Trichloroethene	17.86	2.0	µg/L	20	0	89.3	81	129	0	-
1,2-Dichloropropane	16.87	2.0	µg/L	20	0	84.4	81	134	. 0	
Bromodichloromethane	18.07	2.0	µg/L	20	0	90.4	63	118	0	
Dibromomethane	18.83	2.0	µg/L	20	0	94.2	92	123	0	
4-Methyl-2-pentanone	18.83	9	µg/L	20	0	94.2	75	124	0	
cis-1,3-Dichloropropene	17.42	1.0	hg/L	20	0	87.1	65	115	0	
Toluene	17.61	2.0	µg/L	20	0	88	84	123	0	
trans-1,3-Dichloropropene	18.26	1.0	µg/L	20	0	91.3	22	126	0	
1,1,2-Trichloroethane	19.13	2.0	µg/L	20	0	95.7	6/	122	0	
1,2-Dibromoethane	19.48	2.0	µg/L	20	0	97.4	7	124	. 0	
2-Hexanone	19.36	10	hg/L	20	0	8.96	41	138	0	
1,3-Dichloropropane	19.88	2.0	hg/L	20	0	99.4	81	129	0	
Tetrachloroethene	21.29	2.0	µg/L	20	0	106	87	137	0	
Dibromochloromethane	21.24	2.0	µg/L	20.	0	106	29	119	. 0	
Chlorobenzene	20.03	2.0	µg/L	20	0	100	98	121	0	
1,1,1,2-Tetrachloroethane	20.69	2.0	hg/L	20	0	103	65	133	0	
Ethylbenzene	20.19	2.0	µg/L	20	0	101	84	125	0	
m,p-Xylene	39.73	2.0	µg/L	40	0	99.3	81	125	0	
o-Xylene	19.45	2.0	µg/L	20	0	97.3	89	134	0	
Styrene	20.2	2.0	µg/L	20	0	101	99	133	0	
Bromoform	21.71	2.0	hg/L	20	0	109	44	115	0	
Isopropylbenzene	22.55	2.0	µg/L ,	20	0	113	75	139	0	
1,1,2,2-Tetrachloroethane	21.31	2.0	µg/L	50	0	107	65	132		190 1
1,2,3-Trichloropropane	21.84	2.0	hg/L	.20	0	109	64	139	0	
Bromobenzene	20.78	2.0	µg/l.	20	0	104	82	119	0	
n-Propylbenzene	21.22	2.0	µg/L	20	0	106	73	129	. 0	
2-Chlorotoluene	20.79	2.0	hg/L	20	0	104	78	121	0	
4-Chlorotoluene	20.9	2.0	µg/L	20	0	104	82	122	0	
1,3,5-Trimethylbenzene	20.69	2.0	µg/L	20	0	103	9/	125	0	
tert-Butylbenzene	21.06	2.0	µg/L	20	0	105	69	129	0	
1,2,4-Trimethylbenzene	20.9	2.0	µg/L	20	0	104	62	125	0	
Qualifiers: ND - Not Detected at the Reporting Limit	porting Limit		S - Spike Recover	- Spike Recovery outside accepted recovery limits	recovery	limits	B - Analyte d	etected in the	B - Analyte detected in the associated Method Blank	
J - Analyte detected below quantitation limits	luantitation limits		R - RPD outside accepted recovery limits	ccepted recovery li	imits		NA - Not app	licable where	NA - Not applicable where J values or ND results occur	
RL - Reporting Limit, defined as the lowest concentration the laboratory can accurately quantitate	ed as the lowest cor	ncentration	the laboratory can	accurately quantit	ate.					

AMRO Environmental Laboratories Corp.

CLIENT: Work Order: Project:	Shaw Environmental & Infrastructure, Inc 1108060 130274 Textron Providence	ıtal & İnfrastrı rovidence	ıcture, Inc.						oc:	OC SUMMARY REPORT Laboratory Control Spike	
sec-Butylbenzene		21.26	2.0	µg/L	20	0	106	69	132	0	
4-Isopropyltoluene		20.65	2.0	hg/L	20	0	103	99	132	0	
1,3-Dichlorobenzene	ø	20.57	2.0	hg/L	20	0	103	98	125	0	
1,4-Dichlorobenzene	Φ	21.33	2.0	µg/L	20	0,	107	82	126	0 .	
n-Butylbenzene		21.57	2.0	hg/L	20	0	108	59	143	0	
1,2-Dichlorobenzene	Ð	20.87	2.0	µg/L	20	0	104	82	123	Ó	
1,2-Dibromo-3-chloropropane	ropropane	24.02	5.0	µg/L	20	0	120	44	122	. 0	
1,2,4-Trichlorobenzene	ene	21.65	2.0	µg/L	20	0	108	73	137	0	
Hexachlorobutadiene	<u>e</u>	20.03	2.0	µg/L	. 50	0	100	70	145	0	
Naphthalene		20.33	5.0	hg/L	20	0	102	29	128	0	
1,2,3-Trichlorobenzene	ene	20.31	2.0	hg/L	200	0	102	63	135	0	
Surr: Dibromofluoromethane	vomethane	26.89	2.0	µg/L	25	0	108	82	122	0	
Surr: 1,2-Dichloroethane-d4	ethane-d4	28.5	2.0	hg/L	25	0	114	73	135	0	
Surr: Toluene-d8		22.9	2.0	hg/L	25	0	91.6	82	117	0	
Surr: 4-Bromofluorobenzene	orobenzene	24.16	2.0	µg/L	25	0	9.96	77	119	0	

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

	Shaw Environmental & Infrastructure, Inc.	acture, Inc.	_						QC SUMMARY REPORT	MARY	REPO]	RT
Work Order: 1108060 Project: 130274 7	1108060 130274 Textron Providence						,			Sample	Sample Matrix Spike	ike
	0.01	H	and control		,		Coloubon	140 SIDEIA	Application 000 000 000 000 000 000 000 000 000 0	Dron Date 8/93/14	8/02/44	
_	Batch ID: K4/290		lest Code: SW8Z80B	Offiles, plg/L			Alialysis D	10270 11	0.00.0t.0	בומה השנים		
Client ID: MW-1015	,	Kun ID:	V-3_11U8Z3A	Y C			sedino.	1 00404				,
	QC Sample		•	QC Spike Original Sample	nal Sample		tey.		Original Sample			
Analyte	Result	R	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluoromethane	93.4	25	hg/L	100	0	93.4	22	176	0			
Chloromethane	85.95	25	hg/L	100	0	98	36	144	0			
Vinyl chloride	102.4	10	hg/L	100	0	102	54	156	0			
Chloroethane	105.8	25	µg/L	100	0	106	22	153	0			
Bromomethane	80.7	10	µg/L	100	0	80.7	47	113	0			
Trichlorofluoromethane	105.9	10	µg/L	100	0	106	80	161	0			
Diethyl ether	71.45	25	hg/L	100	0	71.5	22	128	0			
Acetone	65.6	20	hg/L	100	0	. 9.59	22	147	0			
1,1-Dichloroethene	76.7	5.0	hg/L	100	0	76.7	61	146	0			
Carbon disulfide	55.1	10	hg/L	100	0	55.1	33	153	0			
Methylene chloride	93.1	25	µg/L	100	0	93.1	44	147	0			
Methyl tert-butyl ether	94.4	10	µg/L	100	0	94.4	64	137	0			
trans-1,2-Dichloroethene	84.35	9	µg/L	100	0.	84.4	99	140	0			
1,1-Dichloroethane	87.2	10	hg/L	100	o ·	87.2	99	139	0			
2-Butanone	78.25	20	µg/L	100	0	78.2	35	139	0			
2,2-Dichloropropane	90.95	 9	hg/L	100	ķ	91	45	. 165	0,	-		
cis-1,2-Dichloroethene	90.15	9	hg/L	100	3.26	6,98	. 68	132	0			
Chloroform	101.6	10	hg/L	100	9.17	92.4	78	. 136				
Tetrahydrofuran	91.45	20	hg/L	100	0	91.5	27	139	0			
Bromochloromethane	90.35	10	µg/L	100	0	90.4	72	132	0			
1,1,1-Trichloroethane	105.2	10	µg/L	100	0	105	7.8	148	0			
1,1-Dichloropropene	6.76	10	µg/L	100	0	97.9	82	139	0			
Carbon tetrachloride	103.4	10	µg/L	100	0	103	72	143	0			
1,2-Dichloroethane	88.65	10	µg/L	100	0	88.6	72	141	0			
Benzene	91.35	5.0	hg/L	100	0.62	200.7	73	135	0	٠.		
Qualifiers: ND - Not Detecte	ND - Not Detected at the Reporting Limit		S - Spike Recov	S - Spike Recovery outside accepted recovery limits	ted recovery	limits	B - Analy	e detected in	B - Analyte detected in the associated Method Blank	od Blank		
J - Analyte detect	J - Analyte detected below quantitation limits		R - RPD outside	R - RPD outside accepted recovery limits	ry limits		NA - Not	applicable w	NA - Not applicable where J values or ND results occur	results occur		•

AMRO Environmental Laboratories Corp.

	ıtal & Infrastruct	ure, Inc.						J	QC SUMMARY REPORT	EPORT
Work Order: 1108090 Project: 130274 Textron Providence	rovidence			- w -					Sample M	Sample Matrix Spike
Trichloroethene	94.6	10	µg/L	100	0.85	93.8	74	143	0	
1,2-Dichloropropane	90.45	10	hg/L	100	0	90.4	99	136	0	
Bromodichloromethane	84.65	10	hg/L	100	0	84.6	72	132	0	
Dibromomethane	91.1	10	µg/L	100	0	91.1	11	132	0	
4-Methyl-2-pentanone	78.45	20	hg/L	100	0	78.4	34	145		
cis-1,3-Dichloropropene	87.1	5.0	hg/L	100	0	87.1	99	126	0	
Toluene	93.2	10	hg/L	100	0	93.2	7.1	139	0	
trans-1,3-Dichloropropene	84.2	5.0	µg/L	100	0	84.2	89	122	0	
1,1,2-Trichloroethane	94.15	10	hg/L	100	0	94.2	29	129	0	
1,2-Dibromoethane	91.4	10	hg/L	100	0	91.4	29	137	0	
2-Hexanone	87.6	20	µg/L	100	0	9.78	30	134	0	
1,3-Dichloropropane	105.2	10	hg/L	100	0	105	75	126	0	
Tetrachloroethene	145.1	10	hg/L	100	34.16	11	70	150	0	
Dibromochloromethane	106.5	10	µg/L	100	0	106	63	116	0	
Chlorobenzene	114.3	10	hg/L	100	0	114	9/	130	0	
1,1,1,2-Tetrachloroethane	114.2	10	µg/L	100	0	114	62	126	0	
Ethylbenzene	115.2	10	µg/L	100	0	115	80	133	0	
m,p-Xylene	224.5	10	hg/L	200	0	112	84	131	0	
o-Xylene	114.4	10	hg/L	100	0	114	78	130	0	
Styrene	113	10	µg/L	100	0	113	72	140	0	
Bromoform	102	10	µg/L	100	0	102	47	113	0	•
Isopropylbenzene	131.2	10	hg/L	100	0	131	84	144	0	
1,1,2,2-Tetrachloroethane	104.8	10	µg/L	100	0	105	62	133	0	
1,2,3-Trichloropropane	108.2	10	hg/L	100	0	108	09	143	0	
Bromobenzene	118.4	10	hg/L	100	0	118	82	127	0	
n-Propylbenzene	121	10	µg/L	100	0	121	. 9/	142	. 0	
2-Chlorotoluene	115.7	10	µg/L	100	0	116	75	134	0	
4-Chlorotoluene	113.9	10	µg/L	100	0	114	74	133	0	
1,3,5-Trimethylbenzene	118.5	10	µg/L	100	0	118	74	143	0	
tert-Butylbenzene	122.4	10	hg/L	100	O	122	6/	140	0	
1,2,4-Trimethylbenzene	119.4	10	hg/L	100	0 ,	119	72	144	· O	
Qualifiers: ND - Not Detected at the Reporting Limit	porting Limit	S	- Spike Recovery outside accepted recovery limits	outside accepte	d recovery	limits	B - Analyte d	etected in the a	B - Analyte detected in the associated Method Blank	
J - Analyte detected below quantitation limits	uantitation limits	R	RPD outside accepted recovery limits	cepted recovery	limits		NA - Not app	licable where J	NA - Not applicable where J values or ND results occur	
RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate	d as the lowest conc	entration tl	ne laboratory can	accurately quant	itate.					

AMRO Environmental Laboratories Corp.

CLIENT:	Shaw Environmental & Infrastructure, Inc.	ıtal & Infrastru	cture, Inc.						Č	C SIIMMARY REPORT
Work Order:	1108060								ý	CHICAL THE TANK THE COLUMN
Project:	130274 Textron Providence	rovidence								Sample Matrix Spike
sec-Butylbenzene		124.5	10	µg/L	100	0	124	92	149	0
4-Isopropyitoluene		120.2	10	µg/L	100	0	120	80	147	0
1,3-Dichlorobenzene	σ.	117.1	10	µg/L	100	0	117	78	129	0
1,4-Dichlorobenzene	•	118.6	10	µg/L	100	0	119	9.2	134	. 0
n-Butylbenzene		121.8	10	µg/L	100	0	122	89	153	0
1,2-Dichlorobenzene	ø.	116.8	9	ng/L	100	0	117	73	136	0
1,2-Dibromo-3-chloropropane	opropane	98.4	22	hg/L	100	0	98.4	41	123	
1,2,4-Trichlorobenzene	sne sne	121.6	10	µg/L	100	0	122	55	156	0 .
Hexachlorobutadiene	Ð	104.9	10	µg/L	100	0	105	46	136	0
Naphthalene		104.6	25	µg/L	100	0	105	39	153	0
1,2,3-Trichlorobenzene	ane.	110.5	10	hg/L	100	0	110	41	161	0
Surr: Dibromofluoromethane	romethane	124.4	10	hg/L	125	0	99.5	82	122	0
Surr: 1,2-Dichloroethane-d4	ethane-d4	120.3	10	hg/L	125	0	96.2	73	135	0
Surr: Toluene-d8		118.1	9	µg/L	125	0	94.5	82	117	. 0
Surr: 4-Bromofluorobenzene	robenzene	123.8	10	hg/L	125	0	66	77	119	0

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

CLIENT:	Shaw Environmental & Infrastructure, Inc.	OC STIMMARY REPORT
Work Order:	1108060	
Project:	130274 Textron Providence	Sample Maurix Spike Duplicate

Sample ID 1108060-07Amsd	Batch ID: R47290	Test Code	Test Code: SW8260B	Units: µg/L			Analysis D	Analysis Date 8/25/11 7:14:00 PM	7:14:00 PM	Prep Date	Prep Date 8/23/11	
Client ID: MW-101S		Run ID:	V-3_110825A	Y			SeqNo:	786465				
	QC Sample		G	OC Spike Original Sample	l Sample		ţ.	0	Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluoromethane	97.65	25	µg/L	100	0	9.76	22	176	93.4	4.45	. 50	
Chloromethane	90.55	25	hg/L	100	0	90.6	36	144	85.95	5.21	20	
Vinyl chloride	105.2	10	hg/L	100		105	54	156	102.4	2.75	20	
Chloroethane	104.6	25	hg/L	100	0	105	55	153	105.8	1.14	20	
Bromomethane	86.15	10	hg/L	100	0	86.2	47	113	80.7	6.53	20	
Trichlorofluoromethane	106.2	10	hg/L	100	0	106	80	161	105.9	0.236	20	
Diethyl ether	72.25	25	hg/L	100	0	72.2	55	128	71.45	1.11	20	
Acetone	77.85	20	µg/L	100	0	77.8	22	147	65.6	17.1	20	
1,1-Dichloroethene	77.4	2.0	hg/L	100	0	77.4	61	146	7.97	0.909	20	
Carbon disulfide	58.2	10	µg/L	100	0	58.2	39	153	55.1	5.47	20	
Methylene chloride	7.76	25	hg/L	100	0	7.76	44	147	93.1	4.82	20	
Methyl tert-butyl ether	98.15	10	hg/L	100	0	98.2	64	137	94.4	3.9	20	
trans-1,2-Dichloroethene	88.7	10	hg/L	100	0	88.7	99	140	84.35	5.03	20	
1,1-Dichloroethane	90.05	10	hg/L	100	0	96	99	139	87.2	3.22	20	
2-Butanone	90.55	20	hg/L	100	0	9.06	35	139	78.25	14.6	20	
2,2-Dichloropropane	92.45	10	µg/L	100	0	92.5	45	165	90.95	1.64	20	
cis-1,2-Dichloroethene	91.2	10	µg/L	100	3.26	87.9	99	132	90.15	1.16	20	
Chloroform	104.8	10	hg/L	100	9.17	92.6	78	136	101.6	3.1	20	
Tetrahydrofuran	98.1	20	hg/L	100	0	98.1	27	139	91.45	7.02	20	
Bromochloromethane	97.15	10	hg/L	100	0	97.2	72	132	90.35	7.25	20	
1,1,1-Trichloroethane	106.6	10	hg/L	100	0	107	78	148	105.2	1.32	20	
1,1-Dichloropropene	102	10	hg/L	100	0	102	82	139	6.76	4.05	20	
Carbon tetrachloride	105.6	10	µg/L	100	0	106	72	143	103,4	2.11	20	
1,2-Dichloroethane	91.95	10	µg/L	100	0	92	72	141	88.65	3.65	20	
Benzene	94.7	5.0	hg/L	100	0.62	94.1	73	135	91.35	3.6	50	
Qualifiers: ND - Not Detected	ND - Not Detected at the Reporting Limit	S	- Spike Recove	S - Spike Recovery outside accepted recovery limits	d recovery	limits	B - Analy	te detected in	B - Analyte detected in the associated Method Blank	nod Blank		
J - Analyte detecte	J - Analyte detected below quantitation limits	R	- RPD outside	R - RPD outside accepted recovery limits	limits		NA - Not	applicable wh	NA - Not applicable where J values or ND results occur	results occur		

AMRO Environmental Laboratories Corp.

CLIENT:	Shaw Environmental & Infrastructure. Inc	ntal & Infrastrue	cture. Inc.								T A TO A	T. Carrie	E
Work Order	1108060									QC SUMMAKY KEPOKI	MAKY 1	CE FOR	
Project:	130274 Textron Providence	rovidence								Sample Matrix Spike Duplicate	atrix Spik	e Duplica	ite
Trichloroethene		99.85	10	hg/L	100	0.85	66	74	143	94.6	5.4	20	ı
1,2-Dichloropropane		94.05	10	µg/L	100	0	94	99	136	90.45	3.9	20	
Bromodichloromethane	ıne	88.95	10	hg/L	100	0	88	72	132	84.65	4.95	20	
Dibromomethane		99.25	10	µg/L	100	0	99.2	11	132	91.1	8.56	20	
4-Methyl-2-pentanone	ē	82.45	20	hg/L	100	0	82.5	34	145	78.45	4.97	20	
cis-1,3-Dichloropropene	ene	6.06	5.0	µg/L	100	0	6.06	99	126	87.1	4.27	20	
Toluene		96.55	10	µg/L	100	0	9.96	71	139	93.2	3.53	. 20	
trans-1,3-Dichloropropene	obene	87.8	5.0	µg/L	100	0,	87.8	99	122	84.2	4.19	20	
1,1,2-Trichloroethane	Ø	95.05	10	µg/L	100	0	92	29	129	94.15	0.951	20	
1,2-Dibromoethane		97.45	10	µg/L	100	0	97.5	29	137	91.4	6.41	20	
2-Hexanone		93.65	20	hg/L	100	0	93.6	30	134	87.6	6.68	20	
1,3-Dichloropropane		109.4	10	µg/L	100	0	109	75	126	105.2	3.87	20	
Tetrachloroethene		148.8	10	hg/L	100	34.16	115	70	150	145.1	2.48	20	
Dibromochloromethane	ine	109.8	10	µg/L	100	0	110	63	116	106.5	3.05	20	
Chlorobenzene		118.6	10	µg/L	100	0	119	92	130	114.3	3.65	20	
1,1,1,2-Tetrachloroethane	thane	115.6	10	hg/L	100	0	116	42	126	114.2	1.13	20	
Ethylbenzene		118.1	10	µg/L	100	0	118	8	133	115.2	2.44	20	
m,p-Xylene		238.6	19	µg/L	200	0	119	81	131	224.5	6.07	20	
o-Xylene		116.5	10	hg/L	100	0	116	78	130	114.4	1.78	20	
Styrene		117.1	10	µg/L	100	0	117	72	140	113	3.56	20	
Bromoform		105.8	10	µg/L	100	o ,	106	47	113	102	3.71	50	
Isopropylbenzene		138.9	10	µg/L	100	0	139	81	144	131.2	5.74	20	
1,1,2,2-Tetrachloroethane	thane	7-	10	hg/L	100	0	111	62	133	104.8	5.79	. 20	
1,2,3-Trichloropropane	ne ·	111.7	10	hg/L	100	0	112	09	143	108.2	3.14	50	
Bromobenzene		122.4	19	hg/L	100	0	122	82	127	118.4	3.41	20	
n-Propylbenzene		127.8	10	hg/L	100	0	128	9/	142	121	5.47	20	
2-Chlorotoluene		119.8	10	µg/L	100	0	120	75	134	115.7	3.48	20	
4-Chlorotoluene		118.3	10	hg/L	100	0	118	74	133	113.9	3.79	20	
1,3,5-Trimethylbenzene	ene ene	124.2	10	µg/L	100	0	124	74	143	118.5	4.7	20	
tert-Butylbenzene		128.8	10	hg/L	100	0	129	79	140	122.4	5.18	20	
1,2,4-Trimethylbenzene	ene	125.7	10	hg/L	100	0	126	72	144	119.4	5.14	20	
Qualifiers: ND -]	ND - Not Detected at the Reporting Limit	porting Limit	01	S - Spike Recover	- Spike Recovery outside accepted recovery limits	ed recovery	limits	B - Analyte de	stected in th	B - Analyte detected in the associated Method Blank	d Blank		
J - An	J - Analyte detected below quantitation limits	uantitation limits	124	R - RPD outside a	- RPD outside accepted recovery limits	limits		NA - Not appl	icable whe	NA - Not applicable where J values or ND results occur	sults occur		
RL - I	RL - Reporting Limit; defined as the lowest concentration	ed as the lowest con		the laboratory can accurately quantitate	accurately quant	titate.							

AMRO Environmental Laboratories Corp.

CLIENT:	Shaw Environmental & Infrastructure, Inc	ıtal & İnfrastru	cture, Inc.							QC SUMMARY REPORT	[ARY]	REPO	RT
work Order:	1108000									Sample Matrix Snike Dunlicate	triv Cnil	Initial	ingto
Project:	130274 Textron Providence	rovidence								Sample Ivia	arde arn	Idna v	Carc
sec-Butylbenzene		132.5	10	µg/L	100	0	132	92	149	124.5	6.23	20	
4-Isopropyltoluene		123.7	10	hg/L	100	0	124	80	147	120.2	2.91	20	
1,3-Dichlorobenzene	m	121.3	10	hg/L	100	0	121	78	129	117.1	3.57	20	
1,4-Dichlorobenzene	ď	123.4	10	hg/L	100	0	123	92	134	.118.6	3.92	20	
n-Butylbenzene		126.5	10	hg/L	100	0	127	89	153	121.8	3.74	20	*:
1,2-Dichlorobenzene	av.	120.2	10	hg/L	100	0	120	73	136	116.8	2.78	20	•
1,2-Dibromo-3-chloropropane	opropane	106.3	25	hg/L	100	0	106	41	123	98.4	7.72	50	
1,2,4-Trichlorobenzene	эne	126.8	10	hg/L	100	o	127	22	156	121.6	4.19	20	
Hexachlorobutadiene	Ф	113.4	10	hg/L	100	0	113	46	136	104.9	7.83	20	
Naphthalene		115	25	hg/L	100	0	115	39	153	104.6	9.56	20	
1,2,3-Trichlorobenzene	ane.	119.1	10	hg/L	100	0	119	41	161	110.5	7.49	20	
Surr: Dibromofluoromethane	romethane	123.7	10	µg/L	125	0	66	82	122	0	0	0	
Surr: 1,2-Dichloroethane-d4	ethane-d4	118.8	10	hg/L	125	0	92	73	135	0	0	0	
Surr: Toluene-d8		115.8	10	hg/L	125	0	97.6	82	117	0	0	0	
Surr: 4-Bromofluorobenzene	robenzene	120.3	10	hg/L	125	0	96.2	2.2	119	0	0	0	

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

*****l ' }

Sample Matrix Spike

QC SUMMARY REPORT

AMRO Environmental Laboratories Corp.

Shaw Environmental & Infrastructure, Inc. $1108060\,$ CLIENT:

Work Order:

130274 Textron Providence Project:

												1
Sample ID 1108060-19Ams	Batch ID: R47299	Test Code	Test Code: SW8260B	Units: ua/L			Analysis D	ate 8/26/11	Analysis Date 8/26/11 7:09:00 PM	Prep Date 8/23/11	8/23/11	
Client ID: MW-217S		Run ID:	V-3_110826A				SeqNo:	786659				
	QC Sample			QC Spike Original Sample	l Sample		\$º	O	Original Sample			
Analyte	Result	귒	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluoromethane	8.66	25	µg/L	100	0	8.66	22	176	0		-	
Chloromethane	82.9	25	hg/L	100	0	82.9	36	144	0			
Vinyl chloride	110.4	10	hg/L	100	12.31	98.1	54	156	0			
Chloroethane	103.8	25	hg/L	100	0	104	55	153	0			
Bromomethane	87.3	10	µg/L	100	0	87.3	47	113	0			
Trichlorofluoromethane	118.6	10	hg/L	100	0	119	8	161	0			
Diethyl ether	67.95	25	hg/L	100	0	89	22	128	0			
Acetone	82.15	20	hg/L	100	0	82.2	22	147	0			
1,1-Dichloroethene	74.95	5.0	hg/L	100	0	75	61	146	0			
Carbon disulfide	52.75	10	hg/L	100	0	52.8	39	153	0			
Methylene chloride	2.06	25	µg/L	100	0	2.06	44	147	0			
Methyl tert-butyl ether	95.55	10	hg/L	100	0	92.6	64	137	0			
trans-1,2-Dichloroethene	82	10	µg/L	100	0	82	99	140	0			
1,1-Dichloroethane	88.45	10	µg/L	100	0.59	87.9	99	139	0			
2-Butanone	105.2	50	hg/L	1001	0	105	35	139	0			
2,2-Dichloropropane	81.2	10	µg/L	100	0	81.2	45	165	0			
cis-1,2-Dichloroethene	97.2	10	hg/L	100	14.81	82.4	89	132	0			
Chloroform	104.8	10	hg/L	100	0	105	78	136	0			
Tetrahydrofuran	109.3	20	µg/L	100	0	109	27	139	0			
Bromochloromethane	92.6	10	hg/L	100	0	92.6	72	132	0			
1,1,1-Trichloroethane	115.6	10	hg/L	100	0	116	78	148	0			
1,1-Dichloropropene	100.1	10	hg/L	100	0	100	82	139	0			
Carbon tetrachloride	117	10	hg/L	100	0	117	72	143	0			
1,2-Dichloroethane	100	10	hg/L	100	0	100	72	141	0			
Benzene	92.2	5.0	hg/L	100	0	92.2	73	135	.0	٠.		
Qualifiers: ND - Not Detected	ND - Not Detected at the Reporting Limit	S	- Spike Recove	S - Spike Recovery outside accepted recovery limits	d recovery	limits	B - Analyt	e detected in	B - Analyte detected in the associated Method Blank	nod Blank		1
J - Analyte detect	J - Analyte detected below quantitation limits		- RPD outside	R - RPD outside accepted recovery limits	limits		NA - Not a	tpplicable wh	NA - Not applicable where J values or ND results occur	results occur		

AMRO Environmental Laboratories Corp.

	Shaw Environmental & Infrastructure, Inc	cture, Inc			at a				QC SUMMARY REPORT	REPORT
Work Order: 1108060 Project: 1302747	1108060 130274 Textron Providence			•					Sample M	Sample Matrix Spike
Trichloroethene	97.05	10	µg/L	100	99.0	96.4	74	143	0	
1,2-Dichloropropane	92.8	10	µg/L	100	0	92.8	99	136	0	
Bromodichloromethane	92.55	10	hg/L	100	0	97.6	72	132	0	
Dibromomethane	100.1	10	µg/L	100	0	100	77	132	0	
4-Methyl-2-pentanone	97.65	20	µg/L	100	0	97.6	. 2	145	0	
cis-1,3-Dichloropropene	85.65	5.0	hg/L	100	0	85.7	99	126	0	
Toluene	92.7	10	µg/L	100	0	92.7	7.1	139	0	
trans-1,3-Dichloropropene	89.55	2.0	hg/L	100	0	9.68	89	122	0	٠
1,1,2-Trichloroethane	100.5	10	µg/L	100		100	29	129	. 0	
1,2-Dibromoethane	101.9	10	µg/L	100	0	102	29	137	0	
2-Hexanone	110.4	20	µg/L	100	0	110	30	134	0	
1,3-Dichloropropane	114	10	µg/L	100	0	114	75	126	0	
Tetrachloroethene	123.9	10	µg/L	100	3.97	120	70	150	0	
Dibromochloromethane	116.6	10	µg/L	100	0	117	63	116	0	S,
Chlorobenzene	113.1	10	µg/L	100	0	113	92	130	0	
1,1,1,2-Tetrachloroethane	118.1	10	µg/L	100	0	118	79	126	0	
Ethylbenzene	116.8	10	µg/L	100	0.64	116	80	133	0	
m,p-Xylene	226.2	10	µg/L	200	0.59	113	84	131	0	
o-Xylene	112.8	10	µg/L	100	0	113	78	130	0	
Styrene	111.7	10	µg/L	100	0	112	72	140	0	
Bromoform	113.2	. 01	µg/L	100	0	113	47	113	0	Ω
Isopropylbenzene	124.2	10	µg/L	100	0	124	84	144	0	
1,1,2,2-Tetrachloroethane	117.6	10	µg/L	100	0	118	62	133	. 0	
1,2,3-Trichloropropane	121.8	10	µg/L	100	0	122	09	143	0	
Bromobenzene	113.2	10	µg/L	100	0	113	82	127	0	
n-Propylbenzene	115.4	10	µg/L	100	0	115	92	142	0	
2-Chlorotoluene	111.7	10	hg/L	100	0	112	75	134	0	
4-Chlorotoluene	112.5	10	µg/L	100	0	112	74	133	0	
1,3,5-Trimethylbenzene	113	10	µg/L	100	0	113	74	143	0	
tert-Butylbenzene	115.4	10	hg/L	100	0	115	79	140	0	
1,2,4-Trimethylbenzene	115.2	10	hg/L	100	0	115	72	144	ž 0	
Qualifiers: ND - Not De	ND - Not Detected at the Reporting Limit		S - Spike Recovery outside accepted recovery limits	y outside accept	ed recovery	limits	B - Analyte d	etected in the	B - Analyte detected in the associated Method Blank	
J - Analyte c	J - Analyte detected below quantitation limits		R - RPD outside accepted recovery limits	ccepted recovery	/ limits		NA - Not app	licable where	NA - Not applicable where J values or ND results occur	
RL - Report	RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate	centration	the laboratory car	accurately quan	titate.					

AMRO Environmental Laboratories Corp.

CLIENT: Shaw Envir Work Order: 1108060	Shaw Environmental & Infrastructure, In 1108060	ucture, Inc.			-	The state of the s			QC SUMMARY REPORT	AY REPORT
Project: 130274 Tex	130274 Textron Providence								Sam	Sample Matrix Spike
sec-Butylbenzene	116.7	10	hg/Ľ	100	0	117	92	149	0	
4-Isopropyltoluene	111.2	10	µg/L	100	0	111	80	147	0	
1,3-Dichlorobenzene	111.1	10	µg/L	100	0	111	78	129	0	
1,4-Dichlorobenzene	112.5	10	µg/L	100	0	, 112	97	134	0	
n-Butylbenzene	114.3	. 10	µg/L	100	Q	114	89	153	0	
1,2-Dichlorobenzene	112.1	10	µg/L	100	0	112	73	136	0	
1,2-Dibromo-3-chloropropane	122.4	25	ÿg/L	100	0	122	41	123	0	
1,2,4-Trichlorobenzene	113.9	10	µg/L	100	0	114	22	156	0	
Hexachlorobutadiene	101		µg/L	100	0	101	46	136	0	
Naphthalene	112.8	25	µg/L	100	1.95	17	39	153	0	
1,2,3-Trichlorobenzene	112.6	10	µg/L	100	0	113	41	161	0	
Surr: Dibromofluoromethane	133.9	9	hg/L	125	0	107	82	122	0	
Surr: 1,2-Dichloroethane-d4	142.8	10	µg/L	125	0	114	73	135	0	
Surr: Toluene-d8	118.2	9	µg/L	125	0	94.6	82	117	0	
Surr: 4-Bromofluorobenzene	124.2	10	hg/L	125	0	99.4	77	119	0	

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit, defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

QC SUMMARY REPORT

AMRO Environmental Laboratories Corp.

Shaw Environmental & Infrastructure, Inc. CLIENT:

1108060 Work Order:

Qua Sample Matrix Spike Duplicate **RPDLimit** Prep Date 8/23/11 %RPD 1.16 3.33 0.168 8.17 2.16 2.79 3.78 1.18 1.06 3.28 4.28 1.62 4.67 1.43 2.17 0.426 0.491 0.314 3.53 1.07 B - Analyte detected in the associated Method Blank 110.4 103.8 87.3 118.6 67.95 82.15 74.95 52.75 90.7 95.55 88.45 105.2 81.2 97.2 104.8 109.3 92.6 115.6 Original Sample 100.1 or MS Result 117 Analysis Date 8/26/11 7:46:00 PM 786660 HighLimit 128 146 140 139 139 165 132 136 139 148 139 143 153 132 161 147 153 147 137 4 LowLimit 78 27 72 78 78 72 72 SeqNo: %REC 99.2 100 85.9 119 71.2 89.2 73.4 89.6 97.6 82.4 90.4 81.6 83.5 95.3 116 96 52 101 104 113 104 11 S - Spike Recovery outside accepted recovery limits QC Spike Original Sample Result 12.31 14.81 R - RPD outside accepted recovery limits Units: µg/L 8 8 8 8 00 8 00 00 8 00 00 8 8 00 00 Amount V-3_110826A Fest Code: SW8260B hg/L hg/L ýg/L hg/L hg/L hg/L hg/L µg/L µg/L hg/L hg/L µg/L µg/L µg/L hg/L hg/L µg/L µg/L µg/L µg/L hg/L hg/L Run ID: 5.0 10 10 10 10 10 10 9 9 9 20 9 굾 J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit 30274 Textron Providence Batch ID: R47299 Result 85.9 118.8 89.65 81.6 100.4 71.2 89.15 97.65 82.35 90.95 101.2 103.6 110.8 QC Sample 108.3 73.35 98.35 95.3 103.7 115.7 102.2 93.7 113 Sample ID 1108060-19Amsd rans-1,2-Dichloroethene Dichlorodifluoromethane richlorofluoromethane MW-217S cis-1,2-Dichloroethene Methyl tert-butyl ether Bromochloromethane ,1,1-Trichloroethane 2,2-Dichloropropane 1,1-Dichloropropene Carbon tetrachloride ,1-Dichloroethene Methylene chloride 1,1-Dichloroethane 1,2-Dichloroethane Sarbon disulfide **Tetrahydrofuran** Bromomethane Chloromethane Chloroethane Vinyl chloride Diethyl ether 2-Butanone Qualifiers: Chloroform Client ID: Project: Acetone Benzene Analyte

NA - Not applicable where J values or ND results occur

 $\{t, t\}$

AMRO Environmental Laboratories Corp.

CLIENT:	Shaw Environmental & Infrastructure, Inc	ntal & Infrastru	cture, Inc.							OC SUMMARY REPORT	TARY R	EPOR	
Work Order:	1108060									Comple Matrix Snike Dunlicate	triv Cnile	Dumlice	46
Project:	130274 Textron Providence	rovidence								Sample ivid	mide viin	Jupino	3
Trichloroethene		98.7	10	µg/L	100	99.0	86	74	143	97.05	1.69	20	
1,2-Dichloropropane	<u>e</u>	90.35	10	µg/L	100	0	90.4	99	136	92.8	2.68	20	
Bromodichloromethane	hane	95.05	10	µg/L	100	0	92	72	132	92.55	2.67	20	
Dibromomethane		102.8	10	hg/L	100	0	103	7.	132	100.1	5.66	20	
4-Methyl-2-pentanone	one	98.4	20	µg/L	100	0	98.4	34	145	97.65	0.765	70	
cis-1,3-Dichloropropene	pene	88.45	5.0	hg/L	100	0	88.4	99	126	85.65	3.22	70	
Toluene		93.85	10	µg/L	100	0	93.8	71	139	92.7	1.23	50	
trans-1,3-Dichloropropene	ropene	91.2	5.0	µg/L	100	0	91.2	89	122	89.55	1.83	70	
1,1,2-Trichloroethane	ine	100.3	10	µg/L	100	0	100	29	129	100.5	0.149	20	
1,2-Dibromoethane		101.4	10	hg/L	100	0	101	29	137	101.9	0.541	20	
2-Hexanone		104.6	20	µg/L	100	0	105	30	134	110.4	5.44	20	
1,3-Dichloropropane	<u>o</u>	112.5	10	µg/L	100	0	112	75	126	114	1.32	70	
Tetrachloroethene		122.5	10	µg/L	100	3.97	119	20	150	123.9	1.14	20	
Dibromochloromethane	hane	114.8	10	µg/L	100	0	115	63	116	116.6	1.6	20	
Chlorobenzene		112	10	µg/L	100	0	112	9/	130	113.1	0.977	70	-
1,1,1,2-Tetrachloroethane	ethane	115	10	µg/L	100	0	115	6/	126	118.1	2.57	70	
Ethylbenzene		116.2	10	µg/L	100	0.64	116	80	133	116.8	0.515	70	
m,p-Xylene		227.4	10	µg/L	200	0.59	113	8	131	226.2	0.551	20	
o-Xylene		110.2	10	µg/L	100	0	110	78	130	112.8	2.38	20	
Styrene		113.4	10	µg/L	100	0	113	72	140	111.7	1.51	50	
Bromoform		114.6	10	µg/L	100	0	115	47	113	113.2	1.32	20	Ś
Isopropylbenzene		122.4	9	µg/L	100	0	122	81	144	124.2	1.54	70	
1,1,2,2-Tetrachloroethane	ethane	117	10	µg/L	100	0	117	62	133	117.6	0.554	20	
1,2,3-Trichloropropane	ane	122.6	10	µg/L	100	0	123	09	143	121.8	969.0	20	
Bromobenzene		113	10	µg/L	100	0	113	82	127	113.2	0.177	20	
n-Propylbenzene		116.6	10	µg/L	100	0	117	9/	142	115.4	1.12	20	
2-Chlorotoluene		111.3	10	µg/L	100	0	77	75	134	111.7	0.314	70	
4-Chlorotoluene		114.6	10	µg/L	100	0	115	74	133	112.5	1.89	20	
1,3,5-Trimethylbenzene	izene	110.8	10	µg/L	100	0	111	74	143	113	1.88	20	
tert-Butylbenzene		113.4	10	hg/L	100	0	113	79	140	115.4	1.79	20	
1,2,4-Trimethylbenzene	ızene	112.7	10	hg/L	100	0	113	72	144	115.2	2.24	50	
Qualifiers: ND	ND - Not Detected at the Reporting Limit	porting Limit	S	- Spike Recover	S - Spike Recovery outside accepted recovery limits	f recovery l		3 - Analyte de	tected in the	B - Analyte detected in the associated Method Blank	d Blank		
J - L	J - Analyte detected below quantitation limits	uantitation limits	24	RPD outside a	R - RPD outside accepted recovery limits	limits		A - Not appli	icable where	NA - Not applicable where J values or ND results occur	sults occur		
RL	RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.	ed as the lowest cor	ncentration th	te laboratory can	accurately quanti	tate.		•					

AMRO Environmental Laboratories Corp.

CLIENT: Work Order: Project:	Shaw Environmental & Infrastructure, Inc. 1108060 130274 Textron Providence	ental & Infrastru Providence	cture, Inc.							OC SUMMARY REPORT Sample Matrix Spike Duplicate	MARY F atrix Spike	EFOR 1 Duplicat	
sec-Butylbenzene		113.2	10	hg/L	100	0	113	9/	149	116.7	3.09	20	
4-Isopropyltoluene		110.3	10	hg/L	100	0	110	80	147	111.2	0.813	20	
1,3-Dichlorobenzene		112.8	10	µg/L	100	0	113	78	129	111.1	1.52	20	
1,4-Dichlorobenzene		113.2	10	µg/L	100	0	113	9/	134	112.5	0.576	20	
n-Butylbenzene		114.4	10	hg/L	100	0	114	89	153	114.3	0.0875	20	
1,2-Dichlorobenzene		112.4	10	hg/L	100	0	112	73	136	112.1	0.267	70	
1,2-Dibromo-3-chloropropane	propane	120.6	25	µg/L	100	0	121	41	123	122.4	4.	. 20	
1,2,4-Trichlorobenzene	Э	113.1	10	µg/L	100	0	113	22	156	113.9	0.705	20	
Hexachlorobutadiene		99.65	10	µg/L	100	0	9.66	46	136	101	1.3	50	
Naphthalene		110.8	25	µg/L	100	1.95	109	39	153	112.8	1.79	20	
1,2,3-Trichlorobenzene	Э	109	10	µg/L	100	0	109	41	161	112.6	3.25	20	
Surr: Dibromofluoromethane	omethane	135	10	µg/L	125	0	108	82	122	0	0	0	
Surr: 1,2-Dichloroethane-d4	thane-d4	139.7	10	µg/L	125	0	112	73	135	0	0	0	
Surr: Toluene-d8		117.9	10	µg/L	125	0	94.3	82	117	0	0	0	
Surr: 4-Bromofluorobenzene	openzene	127.6	10	hg/L	125	0	102	7.7	119	0	0	0	

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit, defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

Sample Matrix Spike

QC SUMMARY REPORT

AMRO Environmental Laboratories Corp.

Shaw Environmental & Infrastructure, Inc. 1108060 CLIENT:

Work Order:

130274 Textron Providence

Project:

							0:07,1000	0100144	1 5.02.00 DM	Jon acre	Drop Data 9/29/44	
Sample ID 1108060-01Ams	Batch ID: K4/312	lest code:	2W820UB	OIIIIS. hg/L			Allalysis L	19 0/23/11	Alialysis Date orasi i 3.23.00 FIN	רוקט טמוז	0/23/11	
Client ID: MW-207S		Run ID:	V-3_110829A	79A			SeqNo:	786856				
	QC Sample			OC Spike Original Sample	Il Sample		, ¹ ,		Original Sample			
Analyte	Result	R	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluoromethane	89.35	25	µg/L	100	,0	89.4	22	176	0		٠	
Chloromethane	82.8	25	hg/L	100	0	82.8	36	144	0			
Vinyl chloride	106.2	10	µg/L	100	0	106	54	156	0			
Chloroethane	110.4	25	hg/L	100	0	110	25	. 153	0			
Bromomethane	84.1	10	hg/L	100	0	84.1	47	113	0			
Trichlorofluoromethane	109.1	10	hg/L	100	0,	109	80	161	0			
Diethyl ether	73.3	25	hg/L	100	.0	73.3	25	128	0			**
Acetone	83.05	50	. µg/L	100	0	83	22	147	0			
1,1-Dichloroethene	72.95	5.0	hg/L	100	Q	73	61	146				
Carbon disulfide	50.05	10	hg/L	100	0	20	39	153	0			
Methylene chloride	94.75	25	hg/L	100	0.79	94	44	147	0		•	
Methyl tert-butyl ether	96.3	10	hg/L	100	。 ·	96.3	64	137	0			
trans-1,2-Dichloroethene	87.15	10	hg/L	100	0	87.2	. 89	140	0			
1,1-Dichloroethane	91.45	10	hg/L	100	0	91.5	99	139	0			٠.
2-Butanone	9.96	20	hg/L	100	0	9.96	35	139	0			
2,2-Dichloropropane	86.85	10	hg/L	100	0	86.8	45	165	0	11 1.		
cis-1,2-Dichloroethene	88.3	10	hg/L	100	0.67	87.6	68	132	0	-		
Chloroform	99.85	10	hg/L	100	0	8.66	78	136	0			
Tetrahydrofuran	123.5	50	hg/L	100	0	124	27	139	0			
Bromochloromethane	96.65	10	hg/L	100	0	96.7	72	132	0			
1,1,1-Trichloroethane	107.6	10	hg/L	100	0	108	78	148	0			
1,1-Dichloropropene	101	10	hg/L	100	0	101	82	139	0			
Carbon tetrachloride	106	10	hg/L	100	0	106	72	143	0			
1,2-Dichloroethane	94.25	10	hg/L	100	0	94.2	72	141	0			
Benzene	94.55	5.0	hg/L	100	0	94.6	73	135	0			
Qualifiers: ND - Not Detecte	ND - Not Detected at the Reporting Limit	-S	Spike Reco	Spike Recovery outside accepted recovery limits	ed recovery	limits	B - Analy	te detected in	B - Analyte detected in the associated Method Blank	hod Blank		

NA - Not applicable where J values or ND results occur

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

J - Analyte detected below quantitation limits

· 93

Work Order: 1108060 Project: 130274 Textron Providence									OC SUMMARY REPORT	EPORT
	,								Sample Matrix Spike	atrix Spike
	Providence								ordina C	ourd's vira
Trichloroethene	102.8	10	hg/L	100	1.34	101	74	143	0	
1,2-Dichloropropane	96.35	10	µg/L	100	0	96.4	99	136	0	
Bromodichloromethane	93.3	10	hg/L	100	0	93.3	72	132	0	
Dibromomethane	102.4	10	µg/L	100	,0	, 102	77	132	0	
4-Methyl-2-pentanone	100.2	. 20	µg/L	100	0	100	34	145	0	
cis-1,3-Dichloropropene	94.6	5.0	µg/L	100	0	94.6	99	126	0	
Toluene	100.9	10	µg/L	100	0	101	71	139	0	
trans-1,3-Dichloropropene	94.2	5.0	µg/L	100	0	94.2	89	122	0 .	•
1,1,2-Trichloroethane	106.7	9	µg/L	100	0	107	29	129	0	
1,2-Dibromoethane	104.7	10	µg/L	100	0	105	29	137	0	
2-Hexanone	112.6	20	µg/L	100	0	113	30	134	0	
1,3-Dichloropropane	113	10	µg/L	100	0	113	75	126	0	
Tetrachloroethene	246	10	µg/L	100	128.4	118	20	150	0	
Dibromochloromethane	112.4	10	µg/L	100	0	112	63	116	0	
Chlorobenzene	116.8	10	µg/L	100	0	117	92	130	0	•
1,1,1,2-Tetrachloroethane	113.7	10	µg/L	100	0	114	79	126	0	
Ethylbenzene	118.5	10	µg/L	100	0	118	80	133	0	
m,p-Xylene	234.2	9	µg/L	200	0	117	8	131	0	
o-Xylene	117.2	10	µg/L	100	0	117	78	130	0	
Styrene	117.5	10	µg/L	100	0	118	72	140	0	
Bromoform	115.8	10	µg/L	100	0	116	47	113	0.	σ
Isopropylbenzene	133.2	9	hg/L	100	0	133	81	144	. 0	
1,1,2,2-Tetrachloroethane	115.8	10	hg/L	100	0	116	62	133	0	
1,2,3-Trichloropropane	116.9	10	µg/L	100	0	117	09	143	0	
Bromobenzene	119.5	10	hg/L	100	0	120	82	127	0	
n-Propylbenzene	122.8	10	µg/L	, 100	0	123	92	142	0	
2-Chlorotoluene	115.2	10	hg/L	100	0	115	75	134	0	
4-Chlorotoluene	115	10	µg/L	100	0	115	74	133	0	
1,3,5-Trimethylbenzene	119.8	10	µg/L	100	0	120	74	143	0	
tert-Butylbenzene	121.6	10	hg/L	100	0	122	43	140	.0	
1,2,4-Trimethylbenzene	122.8	10	µg/L	100	0	123	72	144	. 0	TO THE PERSON NAMED IN PERSON
Qualifiers: ND - Not Detected at the Reporting Limit	eporting Limit		S - Spike Recovery outside accepted recovery limits	ry outside accep	ted recovery	limits	B - Analyte ö	letected in th	B - Analyte detected in the associated Method Blank	
J - Analyte detected below quantitation limits	quantitation limits		R - RPD outside	- RPD outside accepted recovery limits	y limits		NA - Not apr	dicable wher	NA - Not applicable where J values or ND results occur	
RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.	ned as the lowest co	ncentration	the laboratory ca	n accurately quar	ntitate.			-		

AMRO Environmental Laboratories Corp.

CLIENT: Work Order: Project:	Shaw Environmental & Infrastructure, Inc. 1108060 130274 Textron Providence	ıtal & Infrastrı rovidence	ıcture, Inc.						:	QC SUMMARY REPORT Sample Matrix Spike
sec-Butylbenzene		123.9	10	µg/L	100	0	124	9/	149	0
4-Isopropyltoluene		118.2	10	hg/L	100	0	118	80	147	0
1,3-Dichlorobenzene		118.1	10	hg/L	100	0	118	78	129	0
1,4-Dichlorobenzene		118.7	10	µg/L	100	0	119	92	134	0
n-Butylbenzene		121.3	10	µg/L	100	0	121	. 89	153	0
1,2-Dichlorobenzene		117.6	10	µg/L	100	0	118	73	136	0
1,2-Dibromo-3-chloropropane	propane	114.6	25	µg/L	100	0	115	41	123	. 0
1,2,4-Trichlorobenzene	ne	123.8	10	µg/L	100	0	124	22	156	0
Hexachlorobutadiene	0	112.9	10	hg/L	100		113	46	136	0
Naphthalene		131	25	hg/L	100	0	131	39	153	0
1,2,3-Trichlorobenzene	ne	114.4	10	µg/L	100	0	114	41	161	0
Surr: Dibromofluoromethane	omethane	122.1	10	µg/L	125	0	2.76	82	122	0
Surr: 1,2-Dichloroethane-d4	ethane-d4	121	10	hg/L	125	0	96.8	73	135	0
Surr: Toluene-d8		120.6	10	hg/L	125	0	96.5	82	117	0
Surr: 4-Bromofluorobenzene	robenzene	122.8	10	hg/L	125	0	98.2	2.2	119	0

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

, 4,

Shaw Environmental & Infrastructure, Inc. CLIENT:

QC SUMMARY REPORT

Sample ID 1108060-01Amsd Ba												I
1108060-01Amsd				27								
	Batch ID: R47312	Test Code:	de: SW8260B	Units: µg/L	-		Analysis D	Analysis Date 8/29/11 5:59:00 PM	5:59:00 PM	Prep Date 8/23/11	8/23/11	
Client ID: MW-207S		Run ID:	V-3_110829A	Α(SeqNo:	786857				
	QC Sample		Ø	QC Spike Origina	Original Sample		V-	0	Original Sample			
Analyte	Result	R	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Dichlorodifluoromethane	87.75	25	hg/L	100	0	87.8	22	176	89.35	1.81	. 20	
Chloromethane	81.7	25	hg/L	100	0	81.7	36	144	82.8	1.34	20	
Vinyl chloride	101.1	10	hg/L	100		101	54	156	106.2	4.97	20	
Chloroethane	102	25	hg/L	100	0	102	22	153	110.4	7.96	20	
Bromomethane	83.65	10	µg/L	100	0	83.6	47	113	84.1	0.537	20	
Trichlorofluoromethane	101.5	10	µg/L	100	0	102	80	161	109.1	7.22	20	
Diethyl ether	69.4	25	µg/L	100	0	69.4	25	128	73.3	5.47	20	
Acetone	85.25	20	µg/L	100	0	85.2	22	147	83.05	2.61	20	
1,1-Dichloroethene	69.5	5.0	µg/L	100	0	69.5	61	146	72.95	4.84	20	
Carbon disulfide	47.05	10	µg/L	100	0	47	39	153	50.05	6.18	70	
Methylene chloride	89.9	25	µg/L	1001	0.79	89.1	44	147	94.75	5.25	20	
Methyl tert-butyl ether	93.15	10	µg/L	100	0	93.2	64	137	96.3	3.33	20	
trans-1,2-Dichloroethene	84.8	10	µg/L	1001	0	84.8	89	140	87.15	2.73	20	
1,1-Dichloroethane	86.55	10	µg/L	100	0	9.98	99	139	91.45	5.51	50	
2-Butanone	105.8	20	µg/L	100	0	106	35	139	9.96	9.14	20	
2,2-Dichloropropane	78.55	10	µg/L	100	0	78.6	45	165	86.85	10	50	
cis-1,2-Dichloroethene	85.4	10	hg/L	100	0.67	84.7	99	132	88.3	3.34	70	
Chloroform	95.2	10	µg/L	100	0	95.2	78	136	99.85	4.77	20	
Tetrahydrofuran	115.2	20	µg/L	100	0	115	27	139	123.5	7	50	
Bromochloromethane	92.85	10	µg/L	100	0	92.8	72	132	96.65	4.01	20	
1,1,1-Trichloroethane	101	10	µg/L	100	0	101	78	148	107.6	6.33	20	
1,1-Dichloropropene	92.75	10	µg/L	100	0	92.8	82	139	101	8.47	20	
Carbon tetrachloride	98.55	10	hg/L	100	0	98.6	72	143	106	7.33	20	
1,2-Dichloroethane	89.5	10	µg/L	100	0	89.5	72	141	94.25	5.17	20	
Benzene	91.35	2.0	µg/L	100	0	91.4	73	135	94.55	3.44	20	:
Qualifiers: ND - Not Detected at the Reporting Limit	ne Reporting Limit		S - Spike Recove	- Spike Recovery outside accepted recovery limits	ed recovery	limits	B - Analyt	te detected in t	B - Analyte detected in the associated Method Blank	hod Blank		
J - Analyte detected below quantitation limits	low quantitation limits		R - RPD outside	- RPD outside accepted recovery limits	· limits		NA - Not	applicable who	NA - Not applicable where J values or ND results occur	results occur		
		٠		. •								

4<u>5</u>..

96

130274 Textron Providence 130274 Textron Providence	Work Order: 1108060									
98.65 10 µg/L 100 1.34 g7.3 74 143 102.8 91.35 10 µg/L 100 0 91.4 66 136 96.35 97.5 50 µg/L 100 0 97.5 34 145 100.2 98.85 10 µg/L 100 0 97.5 34 145 100.2 98.85 10 µg/L 100 0 97.5 34 145 100.2 98.85 10 µg/L 100 0 97.5 34 145 100.2 98.85 10 µg/L 100 0 97.5 34 145 100.3 98.85 10 µg/L 100 0 97.5 34 145 100.3 105.2 10 µg/L 100 0 97.5 34 145 100.3 105.2 10 µg/L 100 0 97.5 34 145 100.3 106.5 10 µg/L 100 0 102 67 129 94.6 106.5 10 µg/L 100 0 105 67 129 106.7 106.5 10 µg/L 100 0 106 75 126 116.8 106.5 10 µg/L 100 0 106 75 126 116.8 110.6 10 µg/L 100 0 111 86 116.8 110.6 10 µg/L 100 0 111 86 116.8 110.6 10 µg/L 100 0 111 81 131 234.2 110.6 10 µg/L 100 0 111 81 131 234.2 110.6 10 µg/L 100 0 111 81 131 118.8 112.6 111 81 114.6 114.6 110 µg/L 100 0 114.6 114.4 113.2 111.6 10 µg/L 100 0 114 81 114.8 115.8 111.6 111.6 µg/L 100 0 114.6 63 114.4 113.8 111.6 114.6 10 µg/L 100 0 114.6 63 114.4 114.6 111.6 114.6 10 µg/L 100 0 114.6 63 114.4 114.6 111.6 114.6 10 µg/L 100 0 114.6 63 114.4 114.6 111.6 114.6 10 µg/L 100 0 114.6 63 114.4 114.6 111.7 10 µg/L 100 0 114.7 76 142 115.8 111.7 10 µg/L 100 0 114.7 76 142 115.8 111.7 10 µg/L 100 0 114.7 76 114.7 114.8 111.7 10 µg/L 100 0 114.7 76 114.7 114.8 111.7 10 µg/L 100 0 114.7 76 114.7 114.8 111.7 10 µg/L 100 0 114.7 76 114.7 114.8 111.7 10 µg/L 100 0 114.7 76 114.7 114.8 111.7 11.7 10 µg/L 100 0 119.7 76 114.7 114.8			- 4 25.5					Sample Mat	rix Spike	Duplic
91.35 10 μg/L 100 0 914 66 136 96.35 89.7 10 μg/L 100 0 97.8 77 132 102.4 97.5 50 μg/L 100 0 97.8 71 132 102.4 90.5 5.0 μg/L 100 0 97.5 34 145 100.2 92 5.0 μg/L 100 0 97.5 34 145 100.2 98.85 10 μg/L 100 0 97.5 34 145 100.2 98.85 10 μg/L 100 0 97.5 34 145 100.2 105.2 10 μg/L 100 0 97.5 34 145 100.3 105.2 10 μg/L 100 0 102 67 129 106.7 105.2 10 μg/L 100 0 105 67 129 106.7 105.2 10 μg/L 100 0 105 70 134 112.6 106.5 10 μg/L 100 0 106 75 126 112.6 110.6 10 μg/L 100 0 111 76 116.8 110.6 10 μg/L 100 0 117 76 116.8 110.6 10 μg/L 100 0 117 76 116.8 110.6 10 μg/L 100 0 117 76 116.8 110.8 11 μg/L 100 0 117 76 118.8 111.5 10 μg/L 100 0 118.6 111.6 10 μg/L 100 0 118.6 111.6 10 μg/L 100 0 118.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.7 76 111.6 111.6 111.6 111.7 76 111.6 111.6 111.6 111.6 111.7 76 111.6 111.6 111.6 111.6 111.7 76 111.6 111.6 111.6 111.6 111.6 111.7 76 111.6 111.6 111.6 111.6 111.6 111.7 76 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.7 76 111.6 11.6 1			100	1.34	97.3	74	143	102.8	4.12	20
99.7 10 Jug/L 100 0 99.7 72 132 93.3 93.3 97.5 5.0 Jug/L 100 0 97.6 77 1 132 102.4 90.5 90.5 5.0 Jug/L 100 0 97.5 97.8 77 132 102.4 90.5 90.5 5.0 Jug/L 100 0 97.5 96 126 94.6 100.2 90.8 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5			100	0	91.4	99	136	96.35	5.33	20
97.85 10 μg/L 100 0 97.8 71 132 102.4 97.5 50 μg/L 100 0 97.5 34 145 100.2 98.85 10 μg/L 100 0 97.5 34 145 100.2 98.85 10 μg/L 100 0 92 66 126 94.5 102.2 10 μg/L 100 0 98.8 67 129 106.7 102.2 10 μg/L 100 0 105 13 134 112.6 104.3 10 μg/L 100 0 106 70 134 112.6 104.3 10 μg/L 100 0 104 63 116 112.4 110.6 10 μg/L 100 0 111 76 130 116.8 110.6 10 μg/L 100 0 111 80 133 118.5 221.9 10 μg/L 100 0 111 80 133 118.5 221.9 10 μg/L 100 0 111 80 133 118.5 110.6 10 μg/L 100 0 111 81 131 234.2 110.6 10 μg/L 100 0 116 12 14 133.2 110.6 10 μg/L 100 0 116 12 14 113 115.6 111.5 10 μg/L 100 0 116 12 12 14 115.8 111.6 10 μg/L 100 0 116 12 12 14 113.7 110.8 10 μg/L 100 0 116 12 12 13 116.9 111.6 10 μg/L 100 0 115 62 127 119.5 111.7 10 μg/L 100 0 117 76 142 113.3 111.7 10 μg/L 100 0 113 74 133 116.3 111.7 10 μg/L 100 0 113 74 133 116.3			100	0	89.7	72	135	93.3	3.93	20
97.5 50 µg/L 100 0 97.5 34 145 1002 90.5 5.0 µg/L 100 0 90.5 66 126 94.6 92 5.0 µg/L 100 0 92 68 122 94.6 98.85 10 µg/L 100 0 98 67 129 94.6 102.2 10 µg/L 100 0 102 67 137 104.7 102.2 10 µg/L 100 0 105 75 126 113 105.9 10 µg/L 100 0 106 70 150 246 104.3 10 µg/L 100 0 117 76 130 116.8 10.6 10 µg/L 100 0 117 76 130 116.8 10.6 10 µg/L 100 0 117 76 130 116.8 110.6 10 µg/L 100 0 117 76 130 116.8 110.6 10 µg/L 100 0 117 76 130 116.8 110.6 10 µg/L 100 0 117 76 130 116.8 110.6 10 µg/L 100 0 117 76 130 116.8 110.6 10 µg/L 100 0 117 76 130 116.8 110.6 10 µg/L 100 0 117 76 133 116.8 110.6 10 µg/L 100 0 117 76 133 116.8 110.6 10 µg/L 100 0 117 76 133 116.8 111.5 10 µg/L 100 0 117 76 133 115.8 111.6 10 µg/L 100 0 117 76 144 133.2 111.7 10 µg/L 100 0 117 76 142 112.8 111.7 10 µg/L 100 0 117 76 142 112.8 111.7 10 µg/L 100 0 113 74 133 115.8 111.7 11 µg/L 100 0 113 74 143 118.8			100	0	, 97.8	7.1	132	102.4	4.59	20
90.5 5.0 μg/L 100 0 90.5 66 126 94.6 94.6 97 11 139 100.3 98.8 1 10 μg/L 100 0 97 71 139 100.3 94.2 98.8 1 10 μg/L 100 0 92 68 122 94.2 94.2 105.2 10 μg/L 100 0 102 67 137 104.7 104.7 105.9 10 μg/L 100 0 102 67 137 104.7 104.7 104.3 10 μg/L 100 0 106 75 126 113 112.4 110.6 10 μg/L 100 0 104 63 116 112.4 113.7 114.5 10 μg/L 100 0 111 81 131 234.2 115.8 110 μg/L 100 0 111 81 131 234.2 115.8 116.8 117.5 110.9 μg/L 100 0 112 72 140 117.5	97.5	_	100	0	97.5	34	145	100.2	. 2.68	20
97 10 μg/L 100 97 71 138 100.9 98 50 μg/L 100 92 68 122 94.2 102.2 10 μg/L 100 98.8 67 129 106.7 105.2 10 μg/L 100 0 105 67 129 106.7 105.3 10 μg/L 100 0 105 75 129 106.7 106.9 10 μg/L 100 0 106 75 126 113 106.9 10 μg/L 100 11 76 13 112.4 106.9 10 μg/L 100 0 11 76 13 116.8 10.0 μg/L 100 0 11 76 13 115.8 110.6 10 10 10 10 10 11 11 11 110.0 10 10	90.5	· .	100	0	90.5	99	126	94.6	4.43	20
92 5.0 µg/L 100 92 68 122 94.2 98.85 10 µg/L 100 98.8 67 129 106.7 102.2 10 µg/L 100 0 98.8 67 137 106.7 105.2 50 µg/L 100 0 105 50 134 112.6 233.9 10 µg/L 100 0 106 75 126 113 106.6 10 µg/L 100 0 104 63 116 112.4 106.6 10 µg/L 100 0 107 79 126 113.7 110.6 10 µg/L 100 0 111 80 113.7 114.8 110.6 10 µg/L 100 0 111 80 130 117.2 110.6 10 µg/L 100 0 111 80 130 117.2	26		100	0	26	7.1	139	100.9	3.94	50
98.85 10 µg/L 100 0 98.8 67 129 106.7 102.2 10 µg/L 100 0 102 67 137 104.7 105.2 10 µg/L 100 0 105 30 134 112.6 113.2 105.9 10 µg/L 100 0 106 75 126 113. 112.6 113.	92		100	0	95	89	122	94.2	2.36	20
102.2 10 μg/L 100 0 102 67 137 104.7 105.9 105.9 134 112.6 105.9 10 105.9 134 112.6 105.9 10 μg/L 100 0 105 30 134 112.6 113 113.2 114.6 10 μg/L 100 124 106 75 126 113 112.4 110.9 114.1 114.6 10 μg/L 100 0 114 76 130 114.8 114.8 114.6 10 μg/L 100 0 114 77 113 114.8	98.85		100	0	98:8	29	129	106.7	7.64	20
105.2 50 µg/L 100 0 105 30 134 112.6 105.9 10 µg/L 100 0 106 75 126 113 233.9 10 µg/L 100 0 104 63 116 112.4 110.9 10 µg/L 100 0 111 76 130 116.8 110.6 10 µg/L 100 0 111 76 130 118.5 221.9 10 µg/L 100 0 111 80 133 118.5 221.9 10 µg/L 100 0 111 81 131 234.2 110 10 µg/L 100 0 112 72 140 117.5 110 10 µg/L 100 0 112 72 140 117.5 110.8 10 µg/L 100 0 112 62 133 115.8 111.5 10 µg/L 100 0 115 62 133 115.8 111.6 10 µg/L 100 0 115 62 133 115.8 111.7 10 µg/L 100 0 115 76 133 115.8 112.8 11 µg/L 100 0 115 76 133 115.8 113.9 115.2 113.7 10 µg/L 100 0 113 74 133 115.2			100	0	102	29	137	104.7	2.47	20
105.9 10 μg/L 100 106 75 126 113 233.9 10 μg/L 100 128.4 106 70 150 246 104.3 10 μg/L 100 0 104 63 116 112.4 110.9 10 μg/L 100 0 111 76 130 116.8 110.6 10 μg/L 100 0 111 80 133 118.5 221.9 10 μg/L 100 0 111 81 131 234.2 21.9 10 μg/L 100 0 111 81 131 234.2 110 μg/L 100 0 112 72 140 117.5 112 10 μg/L 100 0 112 72 140 117.5 118.4 133.2 119.5 10 μg/L 100 0 115 82 127 119.5 111.7 10 μg/L 100 0 115 76 133 116.8 111.7 10 μg/L 100 0 115 75 134 115.2 111.7 10 μg/L 100 0 115 75 134 115.2 111.7 10 μg/L 100 0 115 75 134 115.2 111.7 10 μg/L 100 0 113 74 133 115.2			100	0	105	30	134	.112.6	. 6.75	50
233.9 10 μg/L 100 128.4 106 70 150 246) 104.3 10 μg/L 100 0 104 63 116 112.4 110.9 10 μg/L 100 0 111 76 130 116.8 110.6 10 μg/L 100 0 111 80 133 118.5 221.9 10 μg/L 200 0 111 81 131 234.2 110 μg/L 100 0 110 78 130 117.5 108.2 10 μg/L 100 0 112 72 140 117.5 108.2 10 μg/L 100 0 125 81 144 133.2 11.5 10 μg/L 100 0 125 81 144 133.2 11.6 μg/L 100 0 115 82 127 119.5 11.7 10 μg/L 100 0 115 82 127 119.5 117.7 10 μg/L 100 0 117 76 142 122.8 117.7 10 μg/L 100 0 117 76 142 122.8 117.7 10 μg/L 100 0 112 74 133 115.2 117.7 10 μg/L 100 0 112 74 133 115.2 117.7 11.7 11.7 11.7 11.7 11.7 11.7 11.			100	0	106	75	126	113	6.44	20
ne 106.6 10 µg/L 100 0 104 63 116 112.4 110.9 10 µg/L 100 0 111 76 130 116.8 110.6 10 µg/L 100 0 111 76 130 116.8 221.9 10 µg/L 200 0 111 81 131 234.2 110 10 µg/L 100 0 112 72 140 117.5 108.2 10 µg/L 100 0 125 81 144 133.2 115.4 10 µg/L 100 0 125 81 144 133.2 110.8 10 µg/L 100 0 115 62 133 115.8 114.6 10 µg/L 100 0 115 82 127 119.5 114.6 10 µg/L 100 0 115 82 127 119.5 117. 10 µg/L 100 0 115 76 142 152.8 117. 10 µg/L 100 0 115 76 142 115.8 117. 10 µg/L 100 0 115 76 142 115.8 117. 10 µg/L 100 0 115 76 142 115.8 117. 117. 10 µg/L 100 0 113 74 133 115.8			100	, 128.4	106	20	150	246	5.02	20
roethane 10.9 10 µg/L 100 0 111 76 130 116.8 10.6.6 10 µg/L 100 0 177 79 126 113.7 221.9 10 µg/L 100 0 111 80 133 118.5 110 µg/L 100 0 111 81 131 234.2 108.2 10 µg/L 100 0 112 72 140 17.5 108.2 10 µg/L 100 0 125 81 144 133.2 pane 111.5 10 µg/L 100 0 112 62 133 115.8 pane 111.6 10 µg/L 100 0 112 62 133 116.9 pane 11 10 µg/L 100 0 112 62 133 116.9 112.2 10 µg/L 100			100	0	104	63	116	112.4	7.43	70
roethane 106.6 10 μg/L 100 0 107 79 126 113.7 221.9 10 μg/L 200 0 111 80 133 118.5 221.9 10 μg/L 200 0 111 81 131 234.2 110. 10. μg/L 100 0 112 72 140 117.5 108.2 10 μg/L 100 0 125 81 144 133.2 roethane 110.8 10 μg/L 100 0 125 81 144 133.2 spane 110.8 10 μg/L 100 0 115 62 133 116.9 114.6 10 μg/L 100 0 117 76 142 122.8 117 10 μg/L 100 0 113 75 134 115.2 117 10 μg/L 100 0 113 74 133 115.2			100	0	11	92	130	116.8	5.18	50
110.6 10 µg/L 100 0 111 80 133 118.5 221.9 10 µg/L 200 0 111 81 131 234.2 110 µg/L 100 0 112 72 140 117.5 108.2 10 µg/L 100 0 125 81 144 133.2 125.4 10 µg/L 100 0 125 81 144 133.2 109.1 10 µg/L 100 0 112 62 133 115.8 111.5 10 µg/L 100 0 111 60 143 116.9 111.6 10 µg/L 100 0 115 82 127 119.5 111.7 10 µg/L 100 0 117 76 142 122.8 111.7 10 µg/L 100 0 113 74 133 115.8	oroethane		100	0	107	79	126	113.7	6.4	20
221.9 10 μg/L 200 0 111 81 131 234.2 110 10 μg/L 100 0 110 78 130 117.2 108.2 10 μg/L 100 0 112 72 140 117.5 125.4 10 μg/L 100 0 125 81 144 133.2 pane 110.8 10 μg/L 100 0 112 62 133 115.8 114.6 10 μg/L 100 0 115 62 133 116.9 117 10 μg/L 100 0 115 82 127 119.5 119.2 10 μg/L 100 0 117 76 142 122.8 111.7 10 μg/L 100 0 113 74 133 115.8			100	0	11	80	133	118.5	6.9	20
110 10 μg/L 100 0 110 78 130 117.2 108.2 10 μg/L 100 0 125 140 117.5 125.4 10 μg/L 100 0 125 81 144 133.2 ppane 111.5 10 μg/L 100 0 112 62 133 115.8 114.6 10 μg/L 100 0 115 82 127 119.5 117 10 μg/L 100 0 117 76 142 122.8 118.7 10 μg/L 100 0 112 74 133 115.8 117 10 μg/L 100 0 113 74 133 115.8 117 11 10 μg/L 100 0 118 74 133 115.8	221.9		200	0	11	84	131	234.2	5.39	20
112 10 μg/L 100 0 112 72 140 117.5 108.2 10 μg/L 100 0 108 47 113 115.8 roethane 111.5 10 μg/L 100 0 125 81 144 133.2 ppane 110.8 10 μg/L 100 0 111 60 143 116.9 114.6 10 μg/L 100 0 115 82 127 119.5 117 10 μg/L 100 0 109 75 134 115.2 117 10 μg/L 100 0 113 74 133 115.8 115.8 117 10 μg/L 100 0 119 74 133 115.8	110		100	0	110	78	130	117.2	6.3	20
108.2 10 µg/L 100 0 108 47 113 115.8 roethane 111.5 10 µg/L 100 0 125 81 144 133.2 roethane 111.5 10 µg/L 100 0 112 62 133 115.8 roethane 110.8 10 µg/L 100 0 111 60 143 116.9 roethane 110.2 10 µg/L 100 0 115 82 127 119.5 rozene 112.8 rozene 112.7 10 µg/L 100 0 113 74 113 115.8 rozene 112.7 10 µg/L 100 0 113 74 113 119.8	112		100	0	112	72	140	117.5	4.84	20
toethane 11.5 10 μg/L 100 0 125 81 144 133.2- roethane 11.5 10 μg/L 100 0 112 62 133 115.8 ppane 110.8 10 μg/L 100 0 111 60 143 116.9 117 10 μg/L 100 0 117 76 142 122.8 119.2 10 μg/L 100 0 112 74 133 115.2 117 10 μg/L 100 0 113 74 143 119.8	108.2		100	0	108	47	113	115.8	6.74	20
roethane 111.5 10 μg/L 100 0 112 62 133 115.8 ppane 110.8 10 μg/L 100 0 111 60 143 116.9 117 10 μg/L 100 0 117 76 142 12.8 109.2 10 μg/L 100 0 109 75 134 115.2 111.7 10 μg/L 100 0 112 74 133 115 112.7 10 μg/L 100 0 113 74 143 119.8		·.	100	0	125	81	144	133.2-	. 66.3	20
ppane 110.8 10 μg/L 100 0 111 60 143 116.9 114.6 10 μg/L 100 0 115 82 127 119.5 117 10 μg/L 100 0 117 76 142 122.8 111.7 10 μg/L 100 0 112 74 133 115 112.7 10 μg/L 100 0 113 74 143 119.8			100	0	112	62	133	115.8	3.74	50
114.6 10 µg/L 100 0 115 82 127 119.5 117 10 µg/L 100 0 117 76 142 122.8 109.2 10 µg/L 100 0 112 74 133 115 111.7 10 µg/L 100 0 113 74 143 119.8			100	0	<u></u>	. 09	143	116.9	5.31	20
117 10 μg/L 100 0 117 76 142 122.8 109.2 10 μg/L 100 0 109 75 134 115.2 111.7 10 μg/L 100 0 112 74 133 115.8 112.7 10 μg/L 100 0 113 74 143 119.8			100	0	115	82	127	119.5	4.19	50
109.2 10 µg/L 100 0 109 75 134 115.2 111.7 10 µg/L 100 0 112 74 133 115. 112.7 10 µg/L 100 0 113 74 143, 119.8	-		1001	0	117	92	142	122.8	4.84	50
111.7 10 µg/L 100 0 112 74 133 115 and 112 100 0 113 74 143 119.8			100	0	109	75	134	115.2	5.39	20
112.7 10 ud/L 100 0 113 74 143 119.8			100	0	112	74	133	115	2.91	20
	1,3,5-Trimethylbenzene	10 µg/L	100	0	113	74	143	119.8	6.07	20
114.4 10 µg/L 100 0 114 79 140 121.6			100	0	114	79	140	121.6	6.15	20
1,2,4-Trimethylbenzene 115.1 10 μg/L 100 0 115 72 144 122.8 6.4			100	0	115	72	144	122.8	6.43	20
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank	ND - Not Detected at the Reporting Limit	S - Spike Rec	covery outside acce	epted recovery	limits	B - Analyte dete	cted in th	e associated Method	Blank	
J - Analyte detected below quantitation limits R-RPD outside accepted recovery limits NA - Not anniicable where J values or ND results occur	I - Analyte detected below quantitation limits	R - RPD outs	side accepted recov	very limits		NIA Mot annie	-t-10 who	I walnes or MD resi	lte occur	

((1)

AMRO Environmental Laboratories Corp.

CLIENT:	Shaw Environmental & Infrastructure, Inc.	ntal & Infrast	ucture, Inc.							C SUMMARY REPORT	IARY R	EPORT	
Work Order: Project:	1108060 130274 Textron Providence	Providence					٠			Sample Matrix Spike Duplicate	trix Spike	Duplicat	9
sec-Butylbenzene		116.4	10	hg/L	100	0	116	92	149	123.9	6.24	20	
4-Isopropyltoluene		110.4	10	µg/L	100	0	110	80	147	118.2	6.78	20	
1,3-Dichlorobenzene	•	11	10	µg/L	100	0	111	78	129	118.1	6.16	20	
1,4-Dichlorobenzene	4	111.1	10	µg/L	100	0	111	9/	134	118.7	6.61	20	
n-Butylbenzene		114.2	10	hg/L	100	0	114	89	153	121.3	6.07	20	
1,2-Dichlorobenzene,	d'.	110.9	10	µg/L	100	0	111	73	136	117.6	5.86	20	
1,2-Dibromo-3-chloropropane	opropane	108.5	25	µg/L	100	0	108	41	123	114.6	5.51	. 20	
1,2,4-Trichlorobenzene	ine	113.2	10	µg/L	100	0	113	55	156	123.8	8.95	20	
Hexachlorobutadiene	a	107.4	9	µg/L	100	0	107	46	136	112.9	5.04	20	
Naphthalene		113.9	.25	µg/L	100	0	114	39	153	131	14	50	
1,2,3-Trichlorobenzene	ine.	106.6	10 ·	µg/L	100	0	107	41	161	114.4	7.02	20	
Surr: Dibromofluoromethane	romethane	119.5	10	µg/L	125	0	92.6	85	122	0	0	0	
Surr: 1,2-Dichloroethane-d4	ethane-d4	122	10	hg/L	125	0	92.6	73	135	0	0	0	
Surr: Toluene-d8		119.4	10	µg/L	125	0	95.5	82	117	0	0	0	
Surr: 4-Bromofluorobenzene	robenzene	122.6	10	hg/L	125	0	98.1	77	119	0	0	0	

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit, defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: CW-6

Lab Order:

1108060

Tag Number:

Project:

1108000

rag Number:

i roject.

130274 Textron Providence

Collection Date: 8/23/2011 1:30:00 PM

Lab ID:

1108060-25A

Matrix: GROUNDWATER

Analyses	Result	RL Qual	Units	DF	Date Analyzed
TPH BY GC/FID (MODIFIED 8015B)	S	W8015B			Analyst: KAM
Gasoline	ND	0.10	mg/L	2 ~	8/30/2011 4:54:00 PM
Mineral Spirits	. ND	0.10	mg/L	2	8/30/2011 4:54:00 PM
Kerosene	ND	0.10	mg/L	2	8/30/2011 4:54:00 PM
Diesel Fuel/Fuel Oil #2	ND	0.10	mg/L	2	8/30/2011 4:54:00 PM
Motor Oil/Hydraulic Oil	ND	0.20	mg/L	2	8/30/2011 4:54:00 PM
Unidentified Hydrocarbons	21	0.20	mg/L	2	8/30/2011 4:54:00 PM
· Surr: o-Terphenyl	89.3	31-131	%REC	2	8/30/2011 4:54:00 PM

Gasoline cannot be accurately determined by this method. Purge and trap sample introduction into a GC or GCMS is the recommended approach for gasoline. Due to the physical, chemical, and biological processes which affect the chemical composition of fuel mixtures exposed to the environment, the qualitative identity of a hydrocarbon mixture as a fuel product is not always conclusive by this method due to the method's reliance on chromatographic pattern recognition. A result provided for a specific fuel indicates that the mixture present in the sample has a chromatographic pattern similar to the laboratory's reference standard for that fuel mixture under specific GC operating conditions utilized at the time of analysis. A result identified as Unidentified Hydrocarbons is based upon the detector response obtained for the laboratory's Fuel Oil#2 reference standard and includes the entire chromatographic response for the sample between n-Alkanes of carbon numbers C9 to C36.

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

H - Method prescribed holding time exceeded.

- See Case Narrative

Date: 31-Aug-11

CLIENT:

Shaw Environmental & Infrastructure, Inc.

1108060

Lab Order: 11 Project: 13

130274 Textron Providence

Lab ID:

1108060-26A

Client Sample ID: CW-6 Dup

Tag Number:

Collection Date: 8/23/2011 2:30:00 PM

Matrix: GROUNDWATER

Analyses		F	Result	RL	Qual U	nits		DF	Date Analyzed
TPH BY GC/FID (MODIFIED	8015B)			SW8015B					Analyst: KAM
Gasoline			ND	0.10	m	g/L		2	8/30/2011 5:33:00 PM
Mineral Spirits			ND	0.10	m	g/L		2	8/30/2011 5:33:00 PM
Kerosene			ND	0.10	m	g/L		2	8/30/2011 5:33:00 PM
Diesel Fuel/Fuel Oil #2			ND	0.10	m	g/L		2	8/30/2011 5:33:00 PM
Motor Oil/Hydraulic Oil			ND	0.20	m	g/L		2	8/30/2011 5:33:00 PM
Unidentified Hydrocarbons			20	0.20	m	g/L		2	8/30/2011 5:33:00 PM
Surr: o-Terphenyl			84.3	31-131	%	REC	-	2	8/30/2011 5:33:00 PM

Gasoline cannot be accurately determined by this method. Purge and trap sample introduction into a GC or GCMS is the recommended approach for gasoline. Due to the physical, chemical, and biological processes which affect the chemical composition of fuel mixtures exposed to the environment, the qualitative identity of a hydrocarbon mixture as a fuel product is not always conclusive by this method due to the method's reliance on chromatographic pattern recognition. A result provided for a specific fuel indicates that the mixture present in the sample has a chromatographic pattern similar to the laboratory's reference standard for that fuel mixture under specific GC operating conditions utilized at the time of analysis. A result identified as Unidentified Hydrocarbons is based upon the detector response obtained for the laboratory's Fuel Oil#2 reference standard and includes the entire chromatographic response for the sample between n-Alkanes of carbon numbers C9 to C36.

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

H - Method prescribed holding time exceeded.

- See Case Narrative

WI WOLL AND		
CLIENI:	Shaw Environmental & Infrastructure, Inc.	OC SUMMARY REPORT
Work Order:	1108060	1, 1,4
Duoioote	120074 Tartera Deravidance	Method Blank
rioject.		

-												Ī
Sample ID MB-21585	Batch ID: 21585	Test Code	Test Code: SW8015B	Units: mg/L	J/L	⋖	nalysis Da	te 8/30/11	Analysis Date 8/30/11 12:29:00 PM	Prep Date 8/29/11	8/29/11	
Client ID:	٠.	Run ID:	GC-FING1_110830A	110830A		0)	SeqNo:	786982				
	QC Sample		Ø	QC Spike Original Sample	al Sample		4.4	O	Original Sample			
Analyte	Result	RL	Units	Amount	Result %	REC L	owLimit	HighLimit	Result %REC LowLimit HighLimit or MS Result	%RPD	RPDLimit	Qua
Gasoline	QN	0.050	mg/L									** ****
Mineral Spirits	QN	0.050	mg/L									
Kerosene	QN	0.050	mg/L	· , :	·							
Diesel Fuel/Fuel Oil #2	QN	0.050	mg/L									
Motor Oil/Hydraulic Oil	QN	0.10	mg/L									
Unidentified Hydrocarbons	QN	0.10	mg/L									
Surr: o-Terphenyl	0.09473	0	mg/L	0.1	0	94.7	31	131	0			

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit, defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

(i)

	Shaw Environmental & Infrastructure, Inc.	tructure, Inc.							QC SUMMARY REPORT	MARY	REPO	T
Work Order: 1108060 Project: 130274 T	1108060 130274 Textron Providence								Lab	Laboratory Control Spike	ontrol Sp	ike
Sample ID LCS-21585	Batch ID: 21585	Test Code	Test Code: SW8015B	Units: mg/L	ب		Analysis D	ate 8/30/11	Analysis Date 8/30/11 1:07:00 PM	Prep Date 8/29/11	8/29/11	
Client ID:		Run ID:	GC-FING1_110830Å	_110830A			SeqNo:	786983				
	QC Sample		O	QC Spike Original Sample	al Sample				Original Sample			V -
Analyte	Result	RL	Units	Amount	Result %REC		LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Ona
Diesel Fuel/Fuel Oil #2	1.773	0.050	mg/L	5	0	88.7	42	119	0			
Surr: o-Terphenyl	0.09108	0	mg/L	0.1	0	91.1	31	131	0			
Sample ID LCSD-21585	Batch ID: 21585	Test Code	Test Code: SW8015B	Units: mg/L			Analysis D	ate 8/30/11	Analysis Date 8/30/11 1:44:00 PM	Prep Date 8/29/11	8/29/11	,
Client ID:		Run ID:	GC-FING1_110830A	_110830A			SeqNo:	786984				
	QC Sample		J	QC Spike Original Sample	al Sample			O	Original Sample			
Analyte	Result	J.	Units	Amount	Result	%REC	Result %REC LowLimit HighLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Diesel Fuel/Fuel Oil #2	1.711	0:020	mg/L	7	0	85.5	42	119	1.773	3.6	40	
Surr: o-Terphenyi	0.09139	0	mg/L	0.1	0	91.4	31	131	0	0	0	

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit, defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

Date: 31-Aug-11

CLIENT:	Shaw Environmental & I	nfrastruc	ture, Inc.		Lab Order	: 1108060
Project:	130274 Textron Provide	nce				
Lab ID:	1108060-22			Collection	Date: 8/23/20	11 11:30:00 AM
				Collection		·
Client Sample I	D: GZA-3			N	Matrix: GROUN	IDWATER
Analyses		Result	RL	Qual Units	DF	Date Analyzed
ICP METALS DI	SSOLVED SW-846		SW6010B			Analyst: AL
Lead		ND	13.0	μg/L	1	8/30/2011 7:58:20 PM
Lab ID:	1108060-23			Collection	Date: 8/23/20	11 12:30:00 PM
	ty.			Collection	Time:	
Client Sample I	D: MW-109D			N	Matrix: GROUN	IDWATER
Analyses		Result	RL	Qual Units	DF	Date Analyzed
ICP METALS DI	SSOLVED SW-846		SW6010B			Analyst: AL
Lead		ND	13.0	μg/L	.1	8/30/2011 8:04:20 PM
Lab ID:	1108060-24		·	Collection	Date: 8/23/20	11 11:35:00 AM
				Collection	Time:	
Client Sample I	D: GZA-3 Dup			N	Aatrix: GROUN	IDWATER
Analyses		Result	RL	Qual Units	DF	Date Analyzed
ICP METALS DI	SSOLVED SW-846		SW6010B		•	Analyst: AL
Lead		ND	13.0	μg/L	1	8/30/2011 8:26:39 PM

CLIENT:	Shaw Environmental & Infrastructure, Inc.	ructure, Inc.		OC SUMMARY REPORT	RY REPORT
Work Order: 1108060	0908011				,
Project:	130274 Textron Providence				Method Blank
October 14500	500 Detel 10: 24 F00	Total College	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Sample ID mb-21589	Batch ID: 21589	Test Code	SW6010B	Test Code: SW6010B Units: µg/L		Analysis D	Analysis Date 8/30/11 6:44:38 PM	44:38 PM	Prep Date 8/30/11	8/30/11]
Client ID:		Run ID:	ICP-OPTIMA_110830A	_110830A		SeqNo:	787052				
	QC Sample		ğ	QC Spike Original Sample	- <u>o</u>	ts.	Ö	Original Sample			
Analyte	Result	교	Units	Amount Resu	t %REC	LowLimit	Result %REC LowLimit HighLimit or MS Result	or MS Result	%RPD	%RPD RPDLimit Qua	Qua
Lead	Q	. 13	hg/L	•				-	:		

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

CLIENT: Work Order:	Shaw Enviror 1108060	Shaw Environmental & Infrastructure, Inc. 1108060	ucture, Inc.		•					QC SUMMARY REPORT	MARY	REPO]	RT
Project:	130274 Textr	130274 Textron Providence			. <u></u>					Laboratory Control Spike Duplicate	ontrol Spi	ke Duplic	cate
Sample ID Icsd-21589 Client ID:		Batch ID: 21589	Test Code Run ID:	Test Code: SW6010B Run ID: ICP-OPTIN	SW6010B Units: µg/L ICP-OPTIMA_110830A			Analysis D SeqNo:	ate 8/30/11	Analysis Date 8/30/11 7:12:48 PM SeqNo: 787053	Prep Date 8/30/11	8/30/11	
Analyte		QC Sample Result	చ	Units	OC Spike Original Sample Amount Result	l Sample Result %REC	%REC	LowLimit HighLimit	- 1	Original Sample or MS Result	%RPD	RPDLimit	Qua
Lead		1951	13	hg/L	1998	0	7.76	80	120	1937	0.738	50	
Sample ID Ics-21589 Client ID:		Batch ID: 21589	Test Code Run ID:	Test Code: SW6010B Run ID: ICP-OPTIM	SW6010B Units: µg/L ICP-OPTIMA_110830A			Analysis D SeqNo:	ate 8/30/11 787054	Analysis Date 8/30/11 6:50:29 PM SeqNo: 787054	Prep Date 8/30/11	8/30/11	******
Analyte		QC Sample Result	귐	Units	QC Spike Original Sample Amount Result	l Sample Result	%REC	Sample Result %REC LowLimit	HighLimit	Original Sample or MS Result	%RPD	RPDLimit	Qua
Lead		1937	13	µg/L	1998	0	96.9	8	120	0			

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers: