

March 20, 2012 Project 130274

Mr. Joseph T. Martella, II Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street Providence, RI 02908-5767

Re: Status Report: February 2012 Activities Former Gorham Manufacturing Facility 333 Adelaide Avenue, Providence, RI Site Remediation Case No. 97-030

Dear Mr. Martella:

Shaw Environmental, Inc. (Shaw) has prepared this status report on behalf of Textron, Inc. (Textron). This status report is associated with the remediation of tetrachloroethene (PCE) contaminated groundwater at the former Gorham Manufacturing Facility at 333 Adelaide Avenue, Providence, Rhode Island (Figure 1).

PCE is the primary contaminant of concern for groundwater in this area. As discussed in the Remedial Action Work Plan (RAWP) and subsequent revisions, the PCE source area in the vicinity of the former building W is the area of concern with a site-specific remedial goal of 7,700 micrograms per liter (ug/L). This area was treated using in-situ applications of sodium permanganate. Figure 2 shows the most recent treatment area.

This status report describes groundwater monitoring activities conducted in accordance with the proposed groundwater monitoring program submitted to the Rhode Island Department of Environmental Management (RIDEM) in February 2007 (Shaw – Groundwater Monitoring Program letter, dated February 1, 2007).

Mr. Joseph T. Martella, II March 20, 2012 Page 2 of 4

FIELD ACTIVITIES

The following field activities were conducted on February 8 and 9, 2012.

Monitoring Activities

Field parameters were measured in treatment area wells and compliance wells on February 8 and 9, 2012. Field measurements included oxidation/reduction potential (ORP), dissolved oxygen (DO), pH, temperature, and specific conductance (SC). Groundwater elevation and light non-aqueous phase liquid (LNAPL) thickness measurements were also collected. During the synchronous gauging, light non-aqueous phase liquid (LNAPL) was detected in MW-221S at a thickness of 3.42 feet. Field parameter and gauging results are presented in Tables 1 and 2.

Groundwater Sampling

Groundwater samples were collected for analysis for volatile organic compounds (VOCs) (EPA Method 8260B) on February 8 and 9th, 2012 from 22 monitoring wells within and around the treatment area, including compliance wells. One duplicate sample was collected from MW-101S (MW-101S DUP) for VOC analysis. One sample was collected for total petroleum hydrocarbon (TPH) analysis (modified EPA Method 8015 B) from monitoring well CW-6. One duplicate sample was collected from CW-6 (CW-6 DUP) for TPH analysis. Samples were collected for lead analysis (EPA Method 6010B) from monitoring wells MW-109D and GZA-3. One duplicate sample was collected from GZA-3 (GZA-3 DUP) for lead analysis. Groundwater samples were delivered to AMRO Environmental Laboratories Corporation in Merrimack, New Hampshire for analysis.

SUMMARY OF ANALYTICAL DATA

A summary of the analytical data associated with the groundwater sampling conducted in February 2012 is contained in Table 3. A copy of the laboratory analytical report is attached to this report. The PCE concentration found in the source area wells were below the treatment goal. Well MW-201D had the highest PCE result at a concentration of 6,600 ug/L.

A summary of the compliance well results is contained in Table 4. The results for the compliance wells indicate that exceedances occurred for the Adelaide Avenue wells MW-112, MW-209D, and MW-218D for PCE and monitoring well MW-218S for vinyl chloride. Due to sample dilution by the laboratory, the reporting limit for vinyl chloride exceeded the compliance standard for wells MW-112 and MW-209D. There was also an exceedance of the TPH compliance standard in well CW-6.

FUTURE ACTIVITIES

The next sampling event is scheduled for August 2012.

Mr. Joseph T. Martella, II March 20, 2012 Page 3 of 4

Textron anticipates issuing a public notice regarding installation of a groundwater extraction and containment system during the second quarter of 2012.

If you have any questions regarding this report, please contact Ed Van Doren at (617) 589-4030.

Sincerely,

SHAW ENVIRONMENTAL, INC.

Edward P. Van Doran

Edward P. Van Doren Project Manager

Attachments:

Figures Figure 1 – Site Plan Figure 2 – Injection Well Locations

Tables

- Table 1 Summary Field Parameters
- Table 2 Groundwater Elevations

Table 3 – VOCs in Groundwater

 Table 4 – Compliance Wells Analytical Results

Laboratory Analytical Report

cc: Craig Roy, RIDEM OWR Greg Simpson, Textron Jamieson Schiff, Textron Dave Heislein, AMEC Thomas Dellar, City of Providence Jeff Morgan, Stop & Shop Ronald Ruth, Sherin and Lodgen Mr. Joseph T. Martella, II March 20, 2012 Page 4 of 4

CERTIFICATIONS

The following certifications are provided pursuant to Rule 9.19 of the Remediation Regulations:

I, Edward P. Van Doren, as an authorized representative of Shaw Environmental, Inc. and the person responsible for the preparation of this Status Report dated March 20, 2012, certify that the information contained in this report is complete and accurate to the best of my knowledge.

Edward P. Van Doren Project Manager

Date:

We, Textron, Inc., as the party responsible for submittal of this Status Report, certify that this report is a complete and accurate representation of the contaminated site and the release, and contains all known facts surrounding the release, to the best of our knowledge.

Certification on behalf of Textron Inc.

Gregory/L. Simpson Project Manager

Date:

<u>C:\Documents and Settings\gsimps01\Local Settings\Temporary Internet</u> <u>Files\Content.Outlook\0GOW460Q\Feb2012RPT.docN:\Shared\Projects\101960-Gorham\RIDEM-Status-Rpts\2011\Feb 2011\Feb2011RPT.doc</u>

Table 1 Summary Field Parameters February 2012

Former Gorham Manufacturing Facility Providence, Rhode Island

						Oxidation
					Dissolved	Reduction
		рН	Temperature	Conductivity	Oxygen	Potential
Well ID	DATE		(deg. C°)	(mS/cm)	(mg/L)	(mV)
MW-101D	2/8/2012	5.58	15.51	0.122	1.27	17.6
MW-101S	2/8/2012	6.01	15.92	2.36	2.61	-107.3
MW-112	2/9/2012	6.23	15.03	0.425	1.43	-55.3
MW-116D	2/9/2012	6.11	14.82	0.155	4.14	239.4
MW-116S	2/9/2012	5.68	13.31	0.274	6.15	230.5
MW-201D	2/8/2012	6.57	15.25	1.441	1.64	201.6
MW-202D	2/8/2012	6.38	15.18	0.271	1.78	246.2
MW-202S	2/8/2012	6.22	15.55	0.49	0.72	147.7
MW-207D	2/8/2012	6.25	15.57	0.022	0.88	146.9
MW-207S	2/8/2012	6.36	15.1	0.929	1.49	123.2
MW-209D	2/9/2012	6.8	14.25	0.254	1.25	35.1
MW-216D	2/9/2012	6.49	14.95	0.488	1.21	5.1
MW-216S	2/9/2012	6.64	15.23	1.145	2.04	-75.6
MW-217D	2/9/2012	6.84	15.17	0.493	2.1	-55
MW-217S	2/9/2012	6.59	15.59	1.034	0.89	59.5
MW-218D	2/8/2012	6.05	14.42	0.136	2.51	223.1
MW-218S	2/8/2012	6.44	16.17	0.841	0.82	-181.3

Notes:

C° = degrees Celsius

mS/cm = millisiemens per centimeter

mg/L = milligrams per liter

mV = milli volts

Table 2 **Groundwater Elevations** February 2012

Well ID	Date	Reference Elevation (Eeet)	Depth to Water (Feet)	LNAPL Thickness (Feet)	Groundwater Elevation (Feet)
	2/0/2012		24.06	(reel)	(1 eet) 74 56
	2/9/2012	99.52	24.90		74.30
	2/9/2012	90.00	24.10		74.70
	2/9/2012	99.52	24.19		75.33
GZA-3	2/9/2012	NA 00.01	17.00		
NIV-101D	2/8/2012	98.91	24.01		74.90
MW-101S	2/8/2012	98.90	24.07		74.83
MW-109D	2/9/2012	NA	18.40		NA
MW-112	2/9/2012	100.63	25.63		75.00
MW-116D	2/9/2012	98.92	24.01		74.91
MW-116S	2/9/2012	99.40	24.42		74.98
MW-201D	2/8/2012	98.80	23.90		74.90
MW-202D	2/8/2012	98.17	23.35		74.82
MW-202S	2/8/2012	98.06	23.24		74.82
MW-207D	2/8/2012	98.18	23.38		74.80
MW-207S	2/8/2012	98.28	23.47		74.81
MW-209D	2/9/2012	99.90	25.52		74.38
MW-216D	2/9/2012	98.69	24.67		74.02
MW-216S	2/9/2012	99.58	24.63		74.95
MW-217D	2/9/2012	98.65	24.08		74.57
MW-217S	2/9/2012	98.71	24.13		74.58
MW-218D	2/8/2012	99.67	24.78		74.89
MW-218S	2/8/2012	99.61	24.69		74.92
MW-220S	2/8/2012	99.41	24.70		74.71
MW-221S	2/8/2012	98.92	23.42	3.42	75.50
Notes:					

Former Gorham Manufacturing Facility Providence, Rhode Island

NA = Not Available Groundwater elevations are based on an arbitrary reference datum established for the site.

Table 3 Groundwater Analytical Results February 2012

Former Gorham Manufacturing Facility Providence, Rhode Island

	CW-01	CW-02	CW-06	CW-06	GZA-3	GZA-3	MW-101D	MW-101S	MW-101S	MW-109D	MW-112	MW-116D	MW-116S	MW-201D
	2/9/2012	2/9/2012	2/9/2012	2/9/2012	2/9/2012	2/9/2012	2/8/2012	2/8/2012	2/8/2012	2/9/2012	2/9/2012	2/9/2012	2/9/2012	2/8/2012
CONSTITUENT	Primary	Primary	Primary	Duplicate	Primary	Duplicate	Primary	Primary	Duplicate	Primary	Primary	Primary	Primary	Primary
VOC (ug/L)														
1,1-Dichloroethene	130	<0.5			1.2		<5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<5
1,2,4-Trimethylbenzene	<5	<0.5			<0.5		<5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<5
1,3,5-Trimethylbenzene	<5	<0.5			<0.5		<5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<5
Bromodichloromethane	<5	<0.5			<0.5		<5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<5
Chloroform	<5	<0.5			<0.5		<5	8.6	7.4	<0.5	<5	<0.5	<0.5	<5
cis-1,2-Dichloroethene	2600	<0.5			77		<5	14	12	<0.5	<5	<0.5	<0.5	<5
Ethylbenzene	<5	<0.5			<0.5		<5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<5
Methyltert-butylether	<5	<0.5			11		<5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<5
Naphthalene	<10	<1			<1		<10	<1	<1	<1	<10	<1	<1	<10
Tetrachloroethene	20	<0.5			<0.5		490	29	24	<0.5	900	<0.5	<0.5	6600
trans-1,2-Dichloroethene	24	<0.5			<0.5		<5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<5
Trichloroethene	42	<0.5			20		<5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	210
Vinyl chloride	<5	<0.5			7.6		<5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<5
m/p-Xylenes	<5	<0.5			<0.5		<5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<5
o-Xylene	<5	<0.5			<0.5		<5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<5
Xylene (total)	<5	<0.5			<0.5		<5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<5
TPH (mg/L)														
Unidentified TPH			31	33										
Dissolved Metals (ug/L)														
Lead					<13	<13				<13				

Notes:

< = Less than the laboratory reporting limit

ug/L = Micro grams per liter, parts per billion

mg/L = Milligrams per liter, parts per million

TPH = Total Petroleum Hydrocarbons

--- = Not analyzed for.

Table 3 Groundwater Analytical Results February 2012

Former Gorham Manufacturing Facility Providence, Rhode Island

	MW-202D	MW-202S	MW-207D	MW-207S	MW-209D	MW-216D	MW-216S	MW-217D	MW-217S	MW-218D	MW-218S
	2/8/2012	2/8/2012	2/8/2012	2/8/2012	2/9/2012	2/9/2012	2/9/2012	2/9/2012	2/9/2012	2/8/2012	2/8/2012
CONSTITUENT	Primary										
VOC (ug/L)											
1,1-Dichloroethene	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-Trimethylbenzene	<0.5	<0.5	<0.5	<0.5	<5	<0.5	15	<0.5	<0.5	<0.5	<0.5
1,3,5-Trimethylbenzene	<0.5	<0.5	<0.5	<0.5	<5	<0.5	12	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	3.1	<0.5
Chloroform	32	12	<0.5	4.5	<5	<0.5	<0.5	<0.5	<0.5	36	<0.5
cis-1,2-Dichloroethene	<0.5	2.5	<0.5	15	82	<0.5	62	4.6	4.1	2.7	8.5
Ethylbenzene	<0.5	<0.5	<0.5	<0.5	<5	<0.5	2.5	<0.5	<0.5	<0.5	<0.5
Methyltert-butylether	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	<1	<1	<1	<1	<10	<1	19	<1	<1	<1	<1
Tetrachloroethene	610	73	34	530	380	<0.5	<0.5	<0.5	17	230	2.3
trans-1,2-Dichloroethene	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene	<0.5	<0.5	<0.5	23	160	<0.5	<0.5	8.1	<0.5	17	<0.5
Vinyl chloride	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	4.5
m/p-Xylenes	<0.5	<0.5	<0.5	<0.5	<5	<0.5	6.6	<0.5	<0.5	<0.5	<0.5
o-Xylene	<0.5	<0.5	<0.5	<0.5	<5	<0.5	8.3	<0.5	<0.5	<0.5	<0.5
Xylene (total)	<0.5	<0.5	<0.5	<0.5	<5	<0.5	14.9	<0.5	<0.5	<0.5	<0.5
TPH (mg/L)											
Unidentified TPH											
Dissolved Metals (ug/L)											
Lead											

Notes:

< = Less than the laboratory reporting limit

ug/L = Micro grams per liter, parts per billion

mg/L = Milligrams per liter, parts per million

TPH = Total Petroleum Hydrocarbons

--- = Not analyzed for.

Table 4 Compliance Wells Analytical Results February 2012

Former Gorham Manufacturing Facility Providence, Rhode Island

Mashapaug Pond Complianc	e Wells			
Sample ID	GZA-3	GZA-3	MW-109D	Compliance
Date Collected	2/9/2012	2/9/2012	2/9/2012	Standard ¹
CONSTITUENT		Duplicate		
Metals (mg/L)				
Lead	<0.013	<0.013	<0.013	0.03
VOCs (ug/L)				
1,1-Dichloroethane	<2.0	NA	<0.5	50,000
1,1-Dichloroethene	1.2	NA	<0.5	50,000
cis-1,2-Dichloroethene	77	NA	<0.5	50,000
Methyl tert-butyl ether	11	NA	<0.5	50,000
Tetrachloroethene	<0.5	NA	<0.5	5,000
Trichloroethene	20	NA	<0.5	20,000
Vinyl chloride	7.6	NA	< 0.5	1,200

TPH Remediation Area Well			
Sample ID	CW-6	CW-6	Compliance
Date Collected	2/9/2011	2/9/2011	Standard ¹
CONSTITUENT		Duplicate	otandara
TPH (mg/L)	31	33	20

Sewer Interceptor Area Wells			
Sample ID	CW-1	CW-2	Compliance
Date Collected	2/9/2011	2/9/2011	Standard ²
CONSTITUENT			
VOCs (ug/L)			
1,1-Dichloroethane	<20	<0.5	120,000
1,1-Dichloroethene	130	<0.5	23,000
cis-1,2-Dichloroethene	2600	<0.5	69,000
trans-1,2-Dichloroethene	24	<0.5	79,000
Tetrachloroethene	20	<0.5	NS
Trichloroethene	42	<0.5	87,000

Adelaide Avenue Wells					
Sample ID	MW-112	MW-209D	MW-218D	MW-218S	Compliance
Date Collected	2/9/2012	2/9/2012	2/8/2012	2/8/2012	Standard ³
CONSTITUENT					
VOCs (ug/L)					
cis-1,2-Dichloroethene	<5	82	2.7	8.5	2,400
1,1-Dichloroethene	<5	<5	<0.5	<0.5	7
Benzene	<10	<10	<1	<1	140
Chloroform	<5	<5	36	<0.5	1,900
Methyl tert-butyl ether	<5	<5	<0.5	<0.5	5,000
Tetrachloroethene	900	380	230	2.3	150
Trichloroethene	<5	160	17	<0.5	540
Vinyl chloride	<5	<5	<0.5	4.5	2

Notes:

 These Site specific compliance standards were taken from the approved RAWP dated April 1, 2001 and/or the RIDEM Remediation Regulations. Note: the standard for Methyl tert-butyl ether is the Massachusetts Department of Environmental Protection (MassDEP) Method 1 GW-3 standard (310 CMR 40.0974 (2), 12/14/07. The use of the MassDEP Method 1 GW-3 standard is consistent with the approach used in the April 1, 2001 RAWP.

2. These compliance standards taken from Table 5 - Upper Concentration Limits for GB Groundwater, RIDEM Remediation Regulations.

3. These compliance standards taken from Table 4 -GB Groundwater Objectives of the RIDEM Remediation Regulations or in the case of vinyl chloride the compliance standard was taken from Table 3 of the Remediation Regulations and for chloroform the compliance standard was calculated

from the algorithm in Appendix F of the Remediation Regulations (calculations attached as Appendix C of Status Report dated September 18, 2007). mg/L - milligrams per liter

ug/L - micrograms per liter

< - compound was not detected below the laboratory reporting limit, concentration shown is the reporting limit.

VOCs - volatile organic compounds

TPH - total petroleum hydrocarbons

NA - Indicates that the analysis was not performed.

NS - Indicates that no applicable standard exists. Compound does not have a lower explosive limit (LEL).

Environmental Laboratories Corporation

111 Herrick Street, Merrimack, NH 03054 TEL: (603) 424-2022 • FAX: (603) 429-8496 www.amrolabs.com

February 20, 2012

ANALYTICAL TEST RESULTS

Ed VanDoren Shaw Environmental & Infrastructure, Inc. 100 Technology Center Drive Stoughton, MA 02072 TEL: (617) 589-4030 FAX: (617) 589-2160

Subject: 130274 Textron Providence

Workorder No.: 1202034

Dear Ed VanDoren:

AMRO Environmental Laboratories Corp. received 26 samples on 2/10/2012 for the analyses presented in the following report.

AMRO is accredited in accordance with NELAC and certifies that these test results meet all the requirements of NELAC, where applicable, unless otherwise noted in the case narrative.

The enclosed Sample Receipt Checklist details the condition of your sample(s) upon receipt. Please be advised that any unused sample volume and sample extracts will be stored for a period of 60 days from sample receipt date (90 days for samples from New York). After this time, AMRO will properly dispose of the remaining sample(s). If you require further analysis, or need the samples held for a longer period, please contact us immediately.

This report consists of a total of $\underline{97}$ pages. This letter is an integral part of your data report. All results in this project relate only to the sample(s) as received by the laboratory and documented in the Chain-of-Custody. This report shall not be reproduced except in full, without the written approval of the laboratory. If you have any questions regarding this project in the future, please refer to the Workorder Number above.

Sincerely,

Nancy Stewart Vice President

State Certifications: NH (NELAC): 1001, MA: M-NH012, CT: PH-0758, NY: 11278 (NELAC), ME: NH012 and 1001.

Hard copy of the State Certification is available upon request.

Date: 20-Feb-12

CLIENT: Project: Lab Order: Date Received:	Shaw Environmental & Infrastructure, Inc. 130274 Textron Providence 1202034 2/10/2012	Work Order Sa	ample Summary
Lab Sample ID	Client Sample ID	Collection Date	Collection Time
1202034-01A	CW-1	2/9/2012	8:00 AM
1202034-02A	CW-2	2/9/2012	8:30 AM
1202034-03A	MW-112	2/9/2012	10:00 AM
1202034-04A	MW-209D	2/9/2012	10:30 AM
1202034-05A	MW-216S	2/9/2012	11:00 AM
1202034-06A	MW-216D	2/9/2012	11:30 AM
1202034-07A	MW-217S	2/9/2012	12:00 PM
1202034-08A	MW-217D	2/9/2012	12:30 PM
1202034-09A	MW-116S	2/9/2012	3:00 PM
1202034-10A	MW-116D	2/9/2012	3:30 PM
1202034-11A	MW-207S	2/8/2012	1:00 PM
1202034-12A	MW-207D	2/8/2012	1:30 PM
1202034-13A	MW-202S	2/8/2012	2:30 PM
1202034-14A	MW-202D	2/8/2012	2:00 PM
1202034-15A	MW-101S	2/8/2012	3:00 PM
1202034-16A	MW-101S Dup	2/8/2012	3:00 PM
1202034-17A	MW-101D	2/8/2012	3:30 PM
1202034-18A	MW-201D	2/8/2012	4:00 PM
1202034-19A	MW-218S	2/8/2012	5:00 PM
1202034-20A	MW-218D	2/8/2012	5:30 PM
1202034-21A	CW-6	2/9/2012	1:00 PM
1202034-22A	CW-6 Dup	2/9/2012	1:00 PM
1202034-23A	MW-109D	2/9/2012	2:00 PM
1202034-23B	MW-109D	2/9/2012	2:00 PM
1202034-24A	GZA-3	2/9/2012	2:30 PM
1202034-24B	GZA-3	2/9/2012	2:30 PM
1202034-25A	GZA-3 Dup	2/9/2012	2:30 PM
1202034-26A	Trip Blank	2/9/2012	12:00 AM

20-Feb-12

Lab Order:	1202034						
Client: Project:	Shaw Environmental & Infrastru 130274 Textron Providence	cture, Inc.		DA	TES REPOH	XT	
Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name		Analysis Date	
				Preparatory Test Name	Prep Date	Batch ID To	CLP Date
1202034-01A	CW-1	2/9/2012 8:00:00 AM	Groundwater	EPA 8260B VOLATILES by GC/MS		2/15/2012	
				EPA 5030B	2/9/2012	R48355	
1202034-02A	CW-2	2/9/2012 8:30:00 AM		EPA 8260B VOLATILES by GC/MS		2/14/2012	
					2/9/2012	R48344	
1202034-03A	MW-112	2/9/2012 10:00:00 AM		EPA 8260B VOLATILES by GC/MS		2/15/2012	
					2/9/2012	R48355	
1202034-04A	MW-209D	2/9/2012 10:30:00 AM		EPA 8260B VOLATILES by GC/MS		2/15/2012	
					2/9/2012	R48355	
1202034-05A	MW-216S	2/9/2012 11:00:00 AM		EPA 8260B VOLATILES by GC/MS		2/14/2012	
					2/9/2012	R48344	
1202034-06A	MW-216D	2/9/2012 11:30:00 AM		EPA 8260B VOLATILES by GC/MS		2/14/2012	
λ					2/9/2012	R48344	
1202034-07A	MW-217S	2/9/2012 12:00:00 PM		EPA 8260B VOLATILES by GC/MS		2/14/2012	
					2/9/2012	R48344	
1202034-08A	MW-217D	2/9/2012 12:30:00 PM		EPA 8260B VOLATILES by GC/MS		2/14/2012	
					2/9/2012	R48344	
1202034-09A	MW-116S	2/9/2012 3:00:00 PM		EPA 8260B VOLATILES by GC/MS		2/14/2012	
					2/9/2012	R48344	
1202034-10A	MW-116D	2/9/2012 3:30:00 PM		EPA 8260B VOLATILES by GC/MS		2/14/2012	
					2/9/2012	R48344	
1202034-11A	MW-207S	2/8/2012 1:00:00 PM		EPA 8260B VOLATILES by GC/MS		2/15/2012	
					2/9/2012	R48355	
				EPA 8260B VOLATILES by GC/MS		2/15/2012	
					2/9/2012	R48355	

ċ
୍ର
\mathbf{O}
Ś
ï.
- C
Ţ
<u>6</u>
5
, Ô,
्रष्
al
÷
8
ď
I
10
Ľ.
5
E
\varkappa
Ľ
\geq

20-Feb-12

Lab Order: Client:	1202034 Shaw Environmental & Infrastruct	ture Inc		£	A TES DEDOD	E	
Project:	130274 Textron Providence			-			
Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name		Analysis Date	
				Preparatory Test Name	Prep Date	Batch ID	TCLP Date
1202034-12A	MW-207D	2/8/2012 1:30:00 PM G	roundwater	EPA 8260B VOLATILES by GC/MS		2/15/2012	
				EPA 5030B	2/9/2012	R48355	
1202034-13A	MW-202S	2/8/2012 2:30:00 PM		EPA 8260B VOLATILES by GC/MS		2/14/2012	
					2/8/2012	R48344	
1202034-14A	MW-202D	2/8/2012 2:00:00 PM		EPA 8260B VOLATILES by GC/MS		2/15/2012	
					2/9/2012	R48355	
				EPA 8260B VOLATILES by GC/MS		2/15/2012	
					2/9/2012	R48355	
1202034-15A	S101-WM	2/8/2012 3:00:00 PM		EPA 8260B VOLATILES by GC/MS		2/14/2012	
					2/8/2012	R48344	
1202034-16A	MW-101S Dup			EPA 8260B VOLATILES by GC/MS		2/14/2012	
ψG					2/8/2012	R48344	
1202034-17A	MW-101D	2/8/2012 3:30:00 PM		EPA 8260B VOLATILES by GC/MS		2/15/2012	
				•	2/9/2012	R48355	
1202034-18A	MW-201D	2/8/2012 4:00:00 PM		EPA 8260B VOLATILES by GC/MS		2/15/2012	
					2/9/2012	R48355	
				EPA 8260B VOLATILES by GC/MS		2/16/2012	
					2/9/2012	R48363	
1202034-19A	MW-218S	2/8/2012 5:00:00 PM		EPA 8260B VOLATILES by GC/MS		2/14/2012	
					2/8/2012	R48344	
1202034 - 20A	MW-218D	2/8/2012 5:30:00 PM		EPA 8260B VOLATILES by GC/MS		2/15/2012	
					2/9/2012	R48355	
1202034-21A	CW-6	2/9/2012 1:00:00 PM		TPH by GC/FID (modified 8015B)		2/14/2012	
		,	·	AQPREP SEP FUNNEL: FING	2/10/2012	22006	

20-Feb-12

Lab Order:	1202034						
Client:	Shaw Environmental & Infrastruc	cture, Inc.		DATE	S REPOR	L	
Project:	130274 Textron Providence						
Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name		Analysis Date	
				Preparatory Test Name	Prep Date	Batch ID	TCLP Date
1202034-22A	CW-6 Dup	2/9/2012 1:00:00 PM	Groundwater	TPH by GC/FID (modified 8015B)		2/14/2012	
				AQPREP SEP FUNNEL: FING	2/10/2012	22006	
1202034-23A	MW-109D	2/9/2012 2:00:00 PM		EPA 8260B VOLATILES by GC/MS		2/14/2012	
				EPA 5030B	2/9/2012	R48344	
1202034-23B				EPA 6010B ICP METALS, DISSOLVED		2/16/2012	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	2/16/2012	22022	
1202034-24A	GZA-3	2/9/2012 2:30:00 PM		EPA 8260B VOLATILES by GC/MS		2/14/2012	
				EPA 5030B	2/9/2012	R48344	
1202034-24B				EPA 6010B ICP METALS, DISSOLVED		2/16/2012	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	2/16/2012	22022	
1202034-25A	GZA-3 Dup			EPA 6010B ICP METALS, DISSOLVED		2/16/2012	
K					2/16/2012	22022	
1202034-26A	Trip Blank	2/9/2012	Trip Blank	EPA 8260B VOLATILES by GC/MS		2/14/2012	
5				EPA 5030B	2/9/2012	R48344	

Office: (603) 424-2022 Fax: (603) 429-8496 web: www.amrolabs.com	AMRO Project No.:	Remarks																		14 MCP	issolved Lead		ded: Required Reporting Limits:	S-1 GW-1	lckage S-2 GW-2	S-3 GW-3	other:	ting to KNOWN SITE were CONTAMINATION:	08/18/04
60812	Samplers (Signature):	I YSFS)																13 PP 23 TAL [00.7 Other Metals: Dj	YES V NO	uired? MCP Methods Nee	YES NO	AMRO report pa	level needed:	EDD required:	olicy requires notification in write atory in cases where the samples	LULUL ILIGILIY CONTAINTIALED SILES.
(RECORD	ger:	REOUESTED ANA											-							IETALS 8 RCRA	fethod: 6010 2	issolved Metals Field Filtered?	ICP Presumptive Certainty Req	YES NO	ived By	\$		ed and billed as AMRO p the labor	SHEET OF
HAIN-OF-CUSTODY	Project Mana			Гол) {	[097	28	Grab EPA	2	· ·	7		7	7	7	7		X V		ME AUTHORIZATION	xpedited TAT, you must NV NI MAREP	BY: D	V		Rece	NAD		g atter 12:00 noon will be track following day.	
ouration.	Project idence State: RI				9zi2	ont, &		Matrix Total # Comp.	GW Z	d	2	2	2	el	Ч	e(q	4	a-NaOH, O- Other	PRIORITY TURNAROUND TI	Betore submitting samples for e have a coded AUTTHORIZAT	AUTHORIZATION No.:			Date/Time	3/9/17 1700	2/10/22/22/21200	received on the J	
t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Project Name: Textron Provi	Results Needed by:	Standard TAT	Seal Intact?	Yes No N/A		Date/Time		2/9/12 0300	2/9/12 0830	0001 21/6/2	2/9/12 1030	2/9/12 1100	2/9/12 1130	2/9/12 1200	08C1 C1/6/C	3/9/12 1500	2/3/2/12	I, N-HN03, S-H2SO4, N ₅	<u>Joren</u>	Cal, Inc.)2072	30 FAX #:	<u>cen@Shawgrp.com</u>	By:	1		completely. Samples can not time clock will not start unti	Yellow: Client Copy
AMRO Environm 111 Herrick Stree Merrimack, NH 0	Project No.: 130274	P.O.#: 157/31	757872	OUOTE #:			Sample ID.:		CW-1	CW-2	pnu-112	MW-2092	1111-3163	- NW - 216 D	SLIZ-WIN-	CCIC-MW	MU-1165	NW-116D	Preservative: CI-HCI, MeOF	Send Kesults 10: Ed Vanl	100 Technology (Stoughton, MA (PHONE #: 617-589-40	E-mail: Edward.Vandon	Relibutished	Cleard de	Whi Dane	Please print clearly, legibly and of the logical print of the logged in and the turnaround any ambiguities are resolved.	White: Lab Copy

111 Herrick Street Merrimack, NH 0305	tal Laboratories Corj 54	poration	-	CHAI	N-OF-CU	STODY RE	CORD	6080	8	Office: (603) 42 Fax: (603) 42 b: www.amrola	4-2022 9-8496 bs.com
Project No.:	Project Name:		Project		Proj	sct Manager:		Samplers (Sign:	ature).	AMRO	roject No.:
130274	Textron Provi	dence	State: R		Ed VanL	oren	1 lan	rel Le.	les.	120	2034
P.O.#: 157431	Results Needed by:						REQUESTED ^{(A}	NALYSES /		R	emarks
757872	Standard			L				_			
	Cont LAL				ן כ(
:# 71000	Seal Intact? Yes No N/A		əzi2		ביידי קתו						<u>.</u>
			ont. &		7 p. 800						
Sample ID.:	Date/Time Sampled	xir:	D 10 # Le	p. dr	DC840	ΗJ				-	
		Mat	stoT	Con Gra	IC 月	L					
STOC-WIN	28/12 1300	GW	Ц	7	1	-					
CLOE-MW	2/8/12 1330		Ы		7						
SCOC-WW	2/8/12 1430		d		7						
\$ COC - M/1	2/8/2 1400		б		7						
MW-1015	2/8/12/500		Ц		7						
406 2101 - W 61	0251 E1/8/C	,	ଖ		7						
New-101D	2/8/12 1530		al		7						
0105-012	2/8/12/600		el		7						
Mu-2185	20/21 21/8/2		Ч		7						
UNW-218D	2/8/12 1730	\geq	U	Ð	7						
Preservative: CI-HCI, MeOH, N	V-HN03, S-H2SO4, N	a-NaOH, O-	Other								
Send Results To: Ed VanDo	ren	PRIORITY TI	IRNAROUND	TIME AI	JTHORIZATI	DN META	LS 8 RCRA	13 PP	23 TAL	14 MCP	
Shaw Environmental,	Inc.	Before submitt	ing samples fc	r expedite	ed TAT, you n	nust Methoc	: 6010	200.7 🔲 Oth	er Metals: Dis	solved Lead	
Stoughton, MA 0207;		AUTHORIZA	TION No.:	VI ATOTTE	Divider BY:	Dissolv	d Metals Field Filter	ed? VES	Z S	F	
PHONE #: KMXXXXXXXXXXXXXXXXXX	FAX #:	RNXXXX	ØX			MCP P	resumptive Certainty	Required? MCI	P Methods Neede	d: Required R	eporting Limits:
E-mail: 617-589-4030	edward.vandc	oren@sha	wgrp.con			YES		YES		S-1	GW-1 GW-1
Relingdishedby		Date/1	ime			A Received E	Λ_1	AM	RO report pack	age S-2	GW-2
Marriel Con		2/9/12	- 1700	2	218-1	101~		lev	el needed:	S-3	GW-3
		- /· / ·) \ \	4	Ø	EDI	D required:	Other:	
Please print Clearly Leviply and com	mletely Samples can not	7/10/17	1/30					<u>A</u>	SKey For	العل	
be logged in and the turnaround tin any ambiguities are resolved.	ne clock will not start unt	<u>ان</u>	received on th	ie followi	ng day.	т ре цаскец али	t blued as AIMU the L colle	CU poincy requires not aboratory in cases whi cted from highly conti	itication in writin ere the samples w aminated sites.	g to KNUWN Sere CONTAM	ILLE INATION:
White: Lab Copy	Yellow: Client Copy					HE SHE	ET OF	AMRC	OCOC2004, Rev.3 08,	18/04	

 \Box

1 Z Office: (603) 424-2022 Fax: (603) 429-8496 web: www.amrolabs.com	natury: AMRO Project No.:	My 1202034	// Remarks													23 TAL 14 MCP	her Metals: Dissolved Lead]	ES V NO L	CP Methods Needed: Required Reporting Limits:	MR0 renort nackade S.2 CW 2	ivel needed:	OD required: Other:	PISKEY FURMAT	ottification in writing to KNOWN SITE where the samples were CONTAMINATION:	
RECORD 608	ter: Satuplets (Sig	1 Mapel 22	REQUESTED ANALYSES													ETALS 8 RCRA 13 PP	(ethod: 6010 200.7 Ot		issolved Metals Field Filtered? Y	ICP Presumptive Certainty Required?			E		ed and buled as AMKU policy requires n the laboratory in cases w collected from highly co.	I WANNESS IN TAVIA IN VIE IN THE TAVIA IN THE TAVE IN
CHAIN-OF-CUSTODY	oject Project Manag	ILE: KL EG VANDOTEN		(~(92iS	Total # of Cont. & : Comp. Brab DISSOLUED DISSOLUED	2		17	3 2 1			 	÷	her	AROUND TIME AUTHORIZATION	samples for expedited TAT, you must	THORIZATION NUMBER	JN No.: BY: Di	M		1700 11 11 1001-		113 × 1 × 5	iples atrivuig arter 12:00 110011 will be u acke ived on the following day.	
al Laboratories Corporation 4	Project Name: Providence Pr	Devilte Nondod hur	results incerted by.	Standard TAT	Seal Intact? Yes No N/A	Date/Time Sampled	2/9/12 1300 GW	3/6//2/300	air / 2/19/2	02h1 =1/6/6	2/9/12/430	BYCHB		 \rightarrow	-HN03, S-H2SO4, Na-NaOH, O- Ot	n PRIORITY TURN	Inc. Before submitting	er Drive have a coded AU	2 AUTHORIZATI	0 FAX#: nren@Shawarn com		2/9/12		1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2	e clock will not start until	
AMRO Environments 111 Herrick Street Merrimack, NH 0305/	Project No.: 130274		10/8/5/ 4200 mm		QUOTE #:	Sample ID.:	CW-6	CW-6 DUP	11W-109D	6243	624-3 DUP :	The RINK		3	Preservative: CI-HCI, MeOH, N-	Send Results To: Ed VanDorei	Shaw Environmental,	100 Technology Cent	Stoughton, MA 020/	РНОМЕ #: 61/-589-403(E-mail: Edward, VanDo	()	Il have l'all	14,0 0	Please trint Please trint Please trint Please	be logged in and the turnaround time any ambiguities are resolved.	

AMRO Environmental
Laboratories Corporation

SAMPLE RECEIPT CHECKLIST

111 Herrick Street Merrimack, NH 03054

	611/0				(603) 424-	2022
Client:	SHAU	AMRO II):	7	2020.34	
Project Name:	130214 TEXTRON TROUIDENCE	Date Rec.			2-10-12	
Ship via: (circle one) Fed Ex., UPS, AMRO Courier,	· Date Due	·		2-17-12	
Hand Del., Other C	ourier, Other:	-	•			<u> </u>
					······································	
litems to be Checked	Upon Receipt	:- Yes	No	NA	Comments	
II. Army Samples re	ceived in individual plastic bags?	:		.v		·
2. Custody Seals pre	sent?	l'anni i	J .			• • • •
3. Custody Seals Int	act?			V		
4. Air Bill included	n folder if received?			1/		
5. Is COC included	with samples?	1V				
6. Is COC signed and	dated by client?					
7. Laboratory receip	temperature. $TEMP = 30$			<u> </u>		
Sa	imples rec. with ice <i>U</i> ice packs neither	·				
8. Were samples rece	eived the same day they were sampled?					
Is client temperatu	$re = or < 6^{\circ}C$?					· <u> </u>
If no obtain auth	orization from the client for the analyses.					
- Client authorizat	ion from: Date: Obtained by:					
9. Is the COC filled of	out correctly and completely?				· · · · · · · · · · · · · · · · · · ·	
10. Does the info on t	he COC match the samples?					
11. Were samples rec.	within holding time?					
12. Were all samples	property labeled?					
13. Were all samples	properly preserved?					
14. Were proper same	le containers used?					
15 Were all samples i	eceived intect? (none broken or leaking)					
16 Were VOA vials r	eccived infacts (none proken or leaking)	V			•	
17. Were the sample i	volumen sufficient fragmental la late					
118 Were all samples	received?					
10 VPH and VOA Sc						
Simpling Mathed						
Sampling Method	VOA (circle one): M=Methanol, E=EnCore (air-tight container	r)				
	VOA (circle one): M=Methanol, SB=Sodium Bisulfate, E=EnC	Core, B=Bulk				•
Door programsture						;
Does preservative	cover the soil?				······································	<u>u</u> .
, Dana and	If NO then client must be faxed.				· ·	
Does preservation	level come close to the fill line on the vial?	·				·
	If NO then client must be faxed.					· · · · ·
Were vials provide	d by AMRO?				· · ·	
	If NO then weights MUST be obtained	ed from client				
Was dry weight ali	quot provided?	·				
	If NO then fax client and inform the	VOA lab ASA	P.			
				1-1-		
20. Subcontracted Sam	oles:		1			
20. Subcontracted Sam Whi	ples: N samples sent:					
20. Subcontracted Sam What What	ples: א samples sent: די sent:				•	
20. Subcontracted Sam Whi Whe Date	ples: at samples sent: sre sent: 					
20. Subcontracted Sam Whi Whe Date Ana	ples: at samples sent: are sent: :: lysis:					
20. Subcontracted Sam Whi Whi Date Ana TAT	ples: at samples sent: are sent: :: lysis:			·····		
20. Subcontracted Sam Wha Wha Date Ana TAT 21. Information entered	ples: at samples sent: bre sent: t: lysis: 					
20. Subcontracted Sam Wha Wha Date Ana TAT 21. Information entered Inter	ples: at samples sent: bre sent: i: lysis: i into: nal Tracking Log?			· · · ·		
20. Subcontracted Sam Whi Whi Date Ana TAT 21. Information entered Inter Drv	ples: at samples sent: bre sent: lysis: linto: nal Tracking Log? Weight Log?				· · · · · · · · · · · · · · · · · · ·	
20. Subcontracted Sam Whi Date Ana TAT 21. Information entered Inter Dry Clier	ples: at samples sent: bre sent: lysis: linto: nal Tracking Log? Weight Log? t Log?					
20. Subcontracted Sam Whi Date Ana TAT 21. Information entered Inter Dry Clier	ples: at samples sent: bre sent: :: lysis: linto: nal Tracking Log? Weight Log? nt Log? posite Log?					· · · · · · · · · · · · · · · · · · ·
20. Subcontracted Sam Whi Date Ana TAT 21. Information entered Inter Dry Clier Com	ples: at samples sent: bre sent: :: lysis: : linto: nal Tracking Log? Weight Log? posite Log? posite Log?					
20. Subcontracted Sam Whi Date Ana TAT 21. Information entered Inter Dry Clien Com Filtra Seceived By: 4.25	ples: at samples sent: bre sent: :: lysis: : linto: nal Tracking Log? Weight Log? tog? posite Log? tion Log?					

L.,	ลมบาลเบทษอ	\cup	UIPU		• •
			• • •	-	

(003) 424-2022	(603)	424-2022
----------------	-------	----------

						1999 - <u>-</u>	1. 	· · · ((603) 424 <u>-</u> 2	022
ease Circle if: mple= Soil			· · · ·	ار. میں بدو اور او	بر المراجع الم مستحد المراجع ال			12.02	034	
mple= Waste		,	· · · ·	- 1240	and the second second	<u></u>	·.			
		.:		· .						Final
	• • •		••••••••••••••••••••••••••••••••••••••		· · · · · · · · · · · · · · · · · · ·	List		• • • • • • • • • • • • • • • • • • •		adjusted
		Valuma	Drogoriz	Initial	Accontable? V	Preserv.	Solution ID #	Volume	Final	pH (after
Sample ID	Analysis	Sample	Listed	nH*	Acceptable? I	AMRO	of Preserv	Added	nH	hours)
	I DC .	2-ShAL	Hai							
$h \rightarrow 2 4 A$	Vac	DUMAN	HCL	<u> </u>						
iA (TA)	Voc	1-4041	HCL		·			· · · · · · · · · · · · · · · · · · ·		
IA 22A	FING	2-12 And	H2.104	22						
20 24B)				/			14	and the second	
254	Diss Pb	SCOMLS	HN03	62	X	-		•		
ASIT					/					
		· · · · · · · · ·					······································			
		·		· .						
			•		<i>.</i>					-
			•							
							1. D			
						· · · · · · · · · · · · · · · · · · ·				
									•	
			4-19-19 14 III - 14 IIII - 14 IIII				-			
				· .						
					· · · · ·					
							- :			
				<u> </u>			-			
			···							
· · · · · · · · · · · · · · · · · · ·							· · ·			
				ļ					,	
				· · · · ·						
		7								
		· · · · · · · · · · · · · · · · · · ·		<u> </u>						
			<u> </u>							
•. :				<u> </u>			· · · ·			
				· ·						
					····					
							· · ·	·		
if the laborato	ry preserve	es the drin	king water	sample	(s) for EPA Me	ethod 200 ser	ries, sample (s) s	should be held a	it least	
hours prior to d	inalysis or	24 hours	for water s	ample (s).		n 1999 - San	•••2	··· · ·	· .
I Checked By	/:	N^{\pm}	3	Date:	2-10-12	pH adj	usted By: 🔔		Date:	
		MG	7		2-13-12	-				
I Checked By	/:			Date:		pH adj.(16	or 24hrs)By		Date:	
						qc/qc	memos/torms/	samplerec Rev	/.19/04/20/0	19

CLIENT:Shaw Environmental & Infrastructure, Inc.Project:130274 Textron ProvidenceLab Order:1202034

Date: 20-Feb-12

CASE NARRATIVE

GC/MS-VOLATILES:

1. A Laboratory Control Sample (LCS) was performed on 02/16/12 (Batch ID:R48363).

1.1 The % Recovery for 7 analytes out of 67 analytes in the LCS was outside the laboratory control limits.

2. A Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were performed on sample CW-2 (1202034-02) Batch ID: R48344.

2.1 The % Recovery for 4 analytes out of 67 analytes in the MS was outside the laboratory control limits.

2.2 The % Recovery for 2 analytes out of 67 analytes in the MSD was outside the laboratory control limits.

2.3 The %RPD for many analytes was outside the laboratory control limits.

TPH by GC/FID:

1. No QC deviations were noted.

METALS:

1. No QC deviations were noted.

DATA COMMENT PAGE

Organic Data Qualifiers

- ND Indicates compound was analyzed for, but not detected at or above the reporting limit.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than the method detection limit.
- H Method prescribed holding time exceeded.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- # See Case Narrative

Micro Data Qualifiers

TNTC Too numerous to count

Inorganic Data Qualifiers

- ND or U Indicates element was analyzed for, but not detected at or above the reporting limit.
- J Indicates a value greater than or equal to the method detection limit, but less than the quantitation limit.
- H Indicates analytical holding time exceedance.
- B Indicates that the analyte is found in the associated blank, as well as in the sample.
- MSA Indicates value determined by the Method of Standard Addition
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- W Post-digestion spike for Furnace AA analysis is out of control limits (85-115), while sample absorbance is less than 50% of spike absorbance.
- * Duplicate analysis not within control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995
- # See Case Narrative

Report Comments:

- 1. Soil, sediment and sludge sample results are reported on a "dry weight" basis.
- 2. Reporting limits are adjusted for sample size used, dilutions and moisture content, if applicable.

Shaw Environmental & Infrastructure, Inc. **CLIENT:** Lab Order: 1202034 Project: 130274 Textron Providence Lab ID: 1202034-01A

Date: 20-Feb-12

Client Sample ID: CW-1 Collection Date: 2/9/2012 8:00:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	50	µg/L	10	2/15/2012 12:22:00 PM
Chloromethane	ND	50	μg/L	10	2/15/2012 12:22:00 PM
Vinyl chloride	ND	20	μg/L	10	2/15/2012 12:22:00 PM
Chloroethane	ND	50	μg/L	10	2/15/2012 12:22:00 PM
Bromomethane	ND	20	µg/L	10	2/15/2012 12:22:00 PM
Trichlorofluoromethane	ND	20	µg/L	10	2/15/2012 12:22:00 PM
Diethyl ether	ND	50	µg/L	10	2/15/2012 12:22:00 PM
Acetone	ND	100	μg/L	10	2/15/2012 12:22:00 PM
1,1-Dichloroethene	130	10	µg/L	10	2/15/2012 12:22:00 PM
Carbon disulfide	ND	20	μg/L	10	2/15/2012 12:22:00 PM
Methylene chloride	ND	50	µg/L	10	2/15/2012 12:22:00 PM
Methyl tert-butyl ether	ND	20	µg/L	10	2/15/2012 12:22:00 PM
trans-1,2-Dichloroethene	24	20	µg/L	10	2/15/2012 12:22:00 PM
1,1-Dichloroethane	ND	20	µg/L	10	2/15/2012 12:22:00 PM
2-Butanone	ND	100	µg/L	10	2/15/2012 12:22:00 PM
2,2-Dichloropropane	ND	20	µg/L	10	2/15/2012 12:22:00 PM
cis-1,2-Dichloroethene	2,600	20	μg/L	10	2/15/2012 12:22:00 PM
Chloroform	ND	20	µg/L	10	2/15/2012 12:22:00 PM
Tetrahydrofuran	ND	100	µg/L	10	2/15/2012 12:22:00 PM
Bromochloromethane	ND	20	µg/L	10	2/15/2012 12:22:00 PM
1,1,1-Trichloroethane	ND	20	μg/L	10	2/15/2012 12:22:00 PM
1,1-Dichloropropene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
Carbon tetrachloride	ND	20	μg/L	10	2/15/2012 12:22:00 PM
1,2-Dichloroethane	ND	20	µg/L	10	2/15/2012 12:22:00 PM
Benzene	ND	10	μg/L	10	2/15/2012 12:22:00 PM
Trichloroethene	42	20	µg/L	10	2/15/2012 12:22:00 PM
1,2-Dichloropropane	ND	20	μg/L	10	2/15/2012 12:22:00 PM
Bromodichloromethane	ND	20	µg/L	10	2/15/2012 12:22:00 PM
Dibromomethane	ND	20	µg/L	10	2/15/2012 12:22:00 PM
4-Methyl-2-pentanone	ND	100	µg/L	10	2/15/2012 12:22:00 PM
cis-1,3-Dichloropropene	ND	10	µg/L	10	2/15/2012 12:22:00 PM
Toluene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
trans-1,3-Dichloropropene	ND	10	µg/L	10	2/15/2012 12:22:00 PM
1,1,2-Trichloroethane	ND	20	µg/L	10	2/15/2012 12:22:00 PM
1,2-Dibromoethane	ND	20	µg/L	10	2/15/2012 12:22:00 PM
2-Hexanone	ND	100	µg/L	10	2/15/2012 12:22:00 PM
1,3-Dichloropropane	ND	20	µg/L	10	2/15/2012 12:22:00 PM
Tetrachloroethene	20	20	µg/L	10	2/15/2012 12:22:00 PM
Dibromochloromethane	ND	20	µg/L	10	2/15/2012 12:22:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-01A

Date: 20-Feb-12

Client Sample ID: CW-1 Collection Date: 2/9/2012 8:00:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
1,1,1,2-Tetrachloroethane	ND	20	µg/L	10	2/15/2012 12:22:00 PM
Ethylbenzene	ND	20	μg/L	10	2/15/2012 12:22:00 PM
m,p-Xylene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
o-Xylene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
Styrene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
Bromoform	ND	20	µg/L	10	2/15/2012 12:22:00 PM
Isopropylbenzene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
1,1,2,2-Tetrachloroethane	ND	20	μg/L	10	2/15/2012 12:22:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	2/15/2012 12:22:00 PM
Bromobenzene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
n-Propylbenzene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
2-Chlorotoluene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
4-Chlorotoluene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
1,3,5-Trimethylbenzene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
tert-Butylbenzene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
sec-Butylbenzene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
4-IsopropyItoluene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
1,3-Dichlorobenzene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
1,4-Dichlorobenzene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
n-Butylbenzene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
1,2-Dibromo-3-chloropropane	ND	50	µg/L	10	2/15/2012 12:22:00 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
Naphthalene	ND	50	µg/L	10	2/15/2012 12:22:00 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	10	2/15/2012 12:22:00 PM
Surr: Dibromofluoromethane	99.1	82-122	%REC	10	2/15/2012 12:22:00 PM
Surr: 1,2-Dichloroethane-d4	99.7	73-135	%REC	10	2/15/2012 12:22:00 PM
Surr: Toluene-d8	98.7	82-117	%REC	10	2/15/2012 12:22:00 PM
Surr: 4-Bromofluorobenzene	97.1	77-119	%REC	10	2/15/2012 12:22:00 PM

CLIENT: Shaw Environmental & Infrastructure, Inc. Lab Order: 1202034 **Project:** 130274 Textron Providence Lab ID: 1202034-02A

Date: 20-Feb-12

Client Sample ID: CW-2 Collection Date: 2/9/2012 8:30:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/14/2012 12:03:00 PM
Chloromethane	ND	5.0	µg/L	1	2/14/2012 12:03:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
Chloroethane	ND	5.0	µg/L	1	2/14/2012 12:03:00 PM
Bromomethane	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/14/2012 12:03:00 PM
Acetone	ND	10	µg/L	1	2/14/2012 12:03:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/14/2012 12:03:00 PM
Carbon disulfide	ND	2.0	μg/L	1	2/14/2012 12:03:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/14/2012 12:03:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
2-Butanone	ND	10	µg/L	1	2/14/2012 12:03:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
cis-1,2-Dichloroethene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
Chloroform	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/14/2012 12:03:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	2/14/2012 12:03:00 PM
Benzene	ND	1.0	μg/L	1	2/14/2012 12:03:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
Bromodichloromethane	ND	2.0	μg/L	1	2/14/2012 12:03:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/14/2012 12:03:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 12:03:00 PM
Toluene	ND	2.0	μg/L	1	2/14/2012 12:03:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 12:03:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	2/14/2012 12:03:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
2-Hexanone	ND	10	μg/L	1	2/14/2012 12:03:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	2/14/2012 12:03:00 PM
Dibromochloromethane	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-02A

Date: 20-Feb-12

Client Sample ID: CW-2 Collection Date: 2/9/2012 8:30:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
o-Xylene	ND	2.0	μg/L	1	2/14/2012 12:03:00 PM
Styrene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
Bromoform	ND	2.0	µg/L	1 '	2/14/2012 12:03:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	2/14/2012 12:03:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	2/14/2012 12:03:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	2/14/2012 12:03:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/14/2012 12:03:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	2/14/2012 12:03:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
Naphthalene	ND	5.0	μg/L	1	2/14/2012 12:03:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 12:03:00 PM
Surr: Dibromofluoromethane	102	82-122	%REC	1	2/14/2012 12:03:00 PM
Surr: 1,2-Dichloroethane-d4	104	73-135	%REC	1	2/14/2012 12:03:00 PM
Surr: Toluene-d8	101	82-117	%REC	1	2/14/2012 12:03:00 PM
Surr: 4-Bromofluorobenzene	94.3	77-119	%REC	1	2/14/2012 12:03:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-03A

Date: 20-Feb-12

Client Sample ID: MW-112 Collection Date: 2/9/2012 10:00:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	50	µg/L	10	2/15/2012 12:57:00 PM
Chloromethane	ND	50	µg/L	10	2/15/2012 12:57:00 PM
Vinyl chloride	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Chloroethane	ND	50	µg/L	10 `	2/15/2012 12:57:00 PM
Bromomethane	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Trichlorofluoromethane	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Diethyl ether	ND	50	µg/L	10	2/15/2012 12:57:00 PM
Acetone	ND	100	µg/L	10	2/15/2012 12:57:00 PM
1,1-Dichloroethene	ND	10	µg/L	10	2/15/2012 12:57:00 PM
Carbon disulfide	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Methylene chloride	ND	50	µg/L	10	2/15/2012 12:57:00 PM
Methyl tert-butyl ether	ND	20	μg/L	10	2/15/2012 12:57:00 PM
trans-1,2-Dichloroethene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
1,1-Dichloroethane	ND	20	µg/L	10	2/15/2012 12:57:00 PM
2-Butanone	ND	100	µg/L	10	2/15/2012 12:57:00 PM
2,2-Dichloropropane	ND	20	µg/L	10	2/15/2012 12:57:00 PM
cis-1,2-Dichloroethene	ND	20	μg/L	10	2/15/2012 12:57:00 PM
Chloroform	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Tetrahydrofuran	ND	100	µg/L	10	2/15/2012 12:57:00 PM
Bromochloromethane	ND	20	µg/L	10	2/15/2012 12:57:00 PM
1,1,1-Trichloroethane	ND	20	µg/L	10	2/15/2012 12:57:00 PM
1,1-Dichloropropene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Carbon tetrachloride	ND	20	μg/L	10	2/15/2012 12:57:00 PM
1,2-Dichloroethane	ND	20	μg/L	10	2/15/2012 12:57:00 PM
Benzene	ND	10	μg/L	10	2/15/2012 12:57:00 PM
Trichloroethene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
1,2-Dichloropropane	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Bromodichloromethane	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Dibromomethane	ND	20	µg/L	10	2/15/2012 12:57:00 PM
4-Methyl-2-pentanone	ND	100	μg/L	10	2/15/2012 12:57:00 PM
cis-1,3-Dichloropropene	ND	10	µg/L	10	2/15/2012 12:57:00 PM
Toluene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
trans-1,3-Dichloropropene	ND	10	µg/L	10	2/15/2012 12:57:00 PM
1,1,2-Trichloroethane	ND	20	μg/L	10	2/15/2012 12:57:00 PM
1,2-Dibromoethane	ND	20	µg/L	10	2/15/2012 12:57:00 PM
2-Hexanone	ND	100	µg/L	10	2/15/2012 12:57:00 PM
1,3-Dichloropropane	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Tetrachloroethene	900	20	µg/L	10	2/15/2012 12:57:00 PM
Dibromochloromethane	ND	20	μg/L	10	2/15/2012 12:57:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-03A

Date: 20-Feb-12

Client Sample ID: MW-112 Collection Date: 2/9/2012 10:00:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	Dŕ	Date Analyzed
Chlorobenzene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
1,1,1,2-Tetrachloroethane	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Ethylbenzene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
m,p-Xylene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
o-Xylene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Styrene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Bromoform	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Isopropylbenzene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	2/15/2012 12:57:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Bromobenzene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
n-Propylbenzene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
2-Chlorotoluene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
4-Chlorotoluene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
1,3,5-Trimethylbenzene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
tert-Butylbenzene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
sec-Butylbenzene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
4-Isopropyltoluene	ND	20	μg/L	10	2/15/2012 12:57:00 PM
1,3-Dichlorobenzene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
1,4-Dichlorobenzene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
n-Butylbenzene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
1,2-Dibromo-3-chloropropane	ND	50	µg/L	10	2/15/2012 12:57:00 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Naphthalene	ND	50	µg/L	10	2/15/2012 12:57:00 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	10	2/15/2012 12:57:00 PM
Surr: Dibromofluoromethane	97.2	82-122	%REC	10	2/15/2012 12:57:00 PM
Surr: 1,2-Dichloroethane-d4	98.2	73-135	%REC	10	2/15/2012 12:57:00 PM
Surr: Toluene-d8	98.1	82-117	%REC	10	2/15/2012 12:57:00 PM
Surr: 4-Bromofluorobenzene	97.0	77-119	%REC	10	2/15/2012 12:57:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-04A

Date: 20-Feb-12

Client Sample ID: MW-209D Collection Date: 2/9/2012 10:30:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	sv	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	50	µg/L	10	2/15/2012 1:32:00 PM
Chloromethane	ND	50	µg/L	10	2/15/2012 1:32:00 PM
Vinyl chloride	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Chloroethane	ND	50	μg/L	10	2/15/2012 1:32:00 PM
Bromomethane	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Trichlorofluoromethane	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Diethyl ether	ND	50	µg/L	10	2/15/2012 1:32:00 PM
Acetone	ND	100	µg/L	10	2/15/2012 1:32:00 PM
1,1-Dichloroethene	ND	10	µg/L	10	2/15/2012 1:32:00 PM
Carbon disulfide	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Methylene chloride	ND	50	µg/L	10	2/15/2012 1:32:00 PM
Methyl tert-butyl ether	ND	20	µg/L	10	2/15/2012 1:32:00 PM
trans-1,2-Dichloroethene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
1,1-Dichloroethane	ND	20	µg/L	10	2/15/2012 1:32:00 PM
2-Butanone	ND	100	µg/L	10	2/15/2012 1:32:00 PM
2,2-Dichloropropane	ND	20	μg/L	10	2/15/2012 1:32:00 PM
cis-1,2-Dichloroethene	82	20	µg/L	10	2/15/2012 1:32:00 PM
Chloroform	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Tetrahydrofuran	ND	100	µg/L	10	2/15/2012 1:32:00 PM
Bromochloromethane	ND	20	μg/L	10	2/15/2012 1:32:00 PM
1,1,1-Trichloroethane	ND	20	μg/L	10	2/15/2012 1:32:00 PM
1,1-Dichloropropene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Carbon tetrachloride	ND	20	µg/L	10	2/15/2012 1:32:00 PM
1,2-Dichloroethane	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Benzene	ND	10	µg/L	10	2/15/2012 1:32:00 PM
Trichloroethene	160	20	µg/L	10	2/15/2012 1:32:00 PM
1,2-Dichloropropane	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Bromodichloromethane	ND	20	μg/L	10	2/15/2012 1:32:00 PM
Dibromomethane	ND	20	µg/L	10 [`]	2/15/2012 1:32:00 PM
4-Methyl-2-pentanone	ND	100	µg/L	10	2/15/2012 1:32:00 PM
cis-1,3-Dichloropropene	ND	10	µg/L	10	2/15/2012 1:32:00 PM
Toluene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	10	2/15/2012 1:32:00 PM
1,1,2-Trichloroethane	ND	20	µg/L	10	2/15/2012 1:32:00 PM
1,2-Dibromoethane	ND	20	µg/L	10	2/15/2012 1:32:00 PM
2-Hexanone	ND	100	µg/L	10	2/15/2012 1:32:00 PM
1,3-Dichloropropane	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Tetrachloroethene	380	20	µg/L	10	2/15/2012 1:32:00 PM
Dibromochloromethane	ND	20	µg/L	10	2/15/2012 1:32:00 PM

Ü19

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-04A

Date: 20-Feb-12

Client Sample ID: MW-209D Collection Date: 2/9/2012 10:30:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
1,1,1,2-Tetrachloroethane	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Ethylbenzene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
m,p-Xylene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
o-Xylene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Styrene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Bromoform	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Isopropylbenzene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	2/15/2012 1:32:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Bromobenzene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
n-Propylbenzene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
2-Chlorotoluene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
4-Chlorotoluene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
1,3,5-Trimethylbenzene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
tert-Butylbenzene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
sec-Butylbenzene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
4-Isopropyltoluene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
1,3-Dichlorobenzene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
1,4-Dichlorobenzene	ND	20	μg/L	10	2/15/2012 1:32:00 PM
n-Butylbenzene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
1,2-Dibromo-3-chloropropane	ND	50	µg/L	10	2/15/2012 1:32:00 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Naphthalene	ND	50	µg/L	10	2/15/2012 1:32:00 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	10	2/15/2012 1:32:00 PM
Surr: Dibromofluoromethane	100	82-122	%REC	10	2/15/2012 1:32:00 PM
Surr: 1,2-Dichloroethane-d4	99.1	73-135	%REC	10	2/15/2012 1:32:00 PM
Surr: Toluene-d8	99.8	82-117	%REC	10	2/15/2012 1:32:00 PM
Surr: 4-Bromofluorobenzene	94.6	77-119	%REC	10	2/15/2012 1:32:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-05A

Date: 20-Feb-12

Client Sample ID: MW-216S Collection Date: 2/9/2012 11:00:00 AM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/14/2012 7:03:00 PM
Chloromethane	ND	5.0	µg/L	1	2/14/2012 7:03:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Chloroethane	ND	5.0	µg/L	1	2/14/2012 7:03:00 PM
Bromomethane	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Diethyl ether	ND	5.0	μg/L	1	2/14/2012 7:03:00 PM
Acetone	ND	10	µg/L	1	2/14/2012 7:03:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/14/2012 7:03:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/14/2012 7:03:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	2/14/2012 7:03:00 PM
2-Butanone	ND	10	μg/L	1	2/14/2012 7:03:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	2/14/2012 7:03:00 PM
cis-1,2-Dichloroethene	62	2.0	µg/L	1	2/14/2012 7:03:00 PM
Chloroform	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/14/2012 7:03:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Benzene	ND	1.0	μg/L	1	2/14/2012 7:03:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	2/14/2012 7:03:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 7:03:00 PM
Toluene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 7:03:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	2/14/2012 7:03:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
2-Hexanone	ND	10	μg/L	1	2/14/2012 7:03:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	2/14/2012 7:03:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	2/14/2012 7:03:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/14/2012 7:03:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-05A

Date: 20-Feb-12

Client Sample ID: MW-216S Collection Date: 2/9/2012 11:00:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Ethylbenzene	2.5	2.0	µg/L	1	2/14/2012 7:03:00 PM
m,p-Xylene	6.6	2.0	µg/L	1	2/14/2012 7:03:00 PM
o-Xylene	8.3	2.0	µg/L	1	2/14/2012 7:03:00 PM
Styrene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Bromoform	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
1,3,5-Trimethylbenzene	12	2.0	µg/L	1	2/14/2012 7:03:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
1,2,4-Trimethylbenzene	15	2.0	µg/L	1	2/14/2012 7:03:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/14/2012 7:03:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Naphthalene	19	5.0	µg/L	1	2/14/2012 7:03:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 7:03:00 PM
Surr: Dibromofluoromethane	104	82-122	%REC	1	2/14/2012 7:03:00 PM
Surr: 1,2-Dichloroethane-d4	88.2	73-135	%REC	1	2/14/2012 7:03:00 PM
Surr: Toluene-d8	96.8	82-117	%REC	1	2/14/2012 7:03:00 PM
Surr: 4-Bromofluorobenzene	91.6	77-119	%REC	1	2/14/2012 7:03:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-06A

Date: 20-Feb-12

Client Sample ID: MW-216D Collection Date: 2/9/2012 11:30:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/14/2012 12:39:00 PM
Chloromethane	ND	5.0	µg/L	1	2/14/2012 12:39:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
Chloroethane	ND	5.0	µg/L	1	2/14/2012 12:39:00 PM
Bromomethane	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/14/2012 12:39:00 PM
Acetone	ND	10	µg/L	1	2/14/2012 12:39:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/14/2012 12:39:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/14/2012 12:39:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
2-Butanone	ND	10	µg/L	1	2/14/2012 12:39:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
cis-1,2-Dichloroethene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
Chloroform	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/14/2012 12:39:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	2/14/2012 12:39:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
Benzene	ND	1.0	μg/L	1	2/14/2012 12:39:00 PM
Trichloroethene	ND	2.0	μg/L	1	2/14/2012 12:39:00 PM
1,2-Dichloropropane	ND	2.0	μg/L	1	2/14/2012 12:39:00 PM
Bromodichloromethane	ND	2.0	μg/L	1	2/14/2012 12:39:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/14/2012 12:39:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 12:39:00 PM
Toluene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 12:39:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
2-Hexanone	ND	10	µg/L	1	2/14/2012 12:39:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	2/14/2012 12:39:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/14/2012 12:39:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-06A

Date: 20-Feb-12

Client Sample ID: MW-216D Collection Date: 2/9/2012 11:30:00 AM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
o-Xylene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
Styrene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
Bromoform	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
2-Chlorotoluene	ND	2.0	μg/L	1	2/14/2012 12:39:00 PM
4-Chlorotoluene	ND	2.0	μg/L	1	2/14/2012 12:39:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
sec-Butylbenzene	ND	2.0	μg/L	1	2/14/2012 12:39:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/14/2012 12:39:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	2/14/2012 12:39:00 PM
Naphthalene	ND	5.0	µg/L	1	2/14/2012 12:39:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 12:39:00 PM
Surr: Dibromofluoromethane	101	82-122	%REC	1	2/14/2012 12:39:00 PM
Surr: 1,2-Dichloroethane-d4	101	73-135	%REC	1	2/14/2012 12:39:00 PM
Surr: Toluene-d8	96.2	82-117	%REC	1	2/14/2012 12:39:00 PM
Surr: 4-Bromofluorobenzene	94.6	77-119	%REC	1	2/14/2012 12:39:00 PM

Shaw Environmental & Infrastructure, Inc. **CLIENT:** 1202034 Lab Order: **Project:** 130274 Textron Providence Lab ID: 1202034-07A

Date: 20-Feb-12

Client Sample ID: MW-217S Collection Date: 2/9/2012 12:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL (Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/14/2012 1:14:00 PM
Chloromethane	ND	5.0	µg/L	1	2/14/2012 1:14:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Chloroethane	ND	5.0	µg/L	1	2/14/2012 1:14:00 PM
Bromomethane	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/14/2012 1:14:00 PM
Acetone	ND	10	µg/L	1	2/14/2012 1:14:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/14/2012 1:14:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/14/2012 1:14:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
2-Butanone	ND	10	µg/L	1	2/14/2012 1:14:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
cis-1,2-Dichloroethene	4.1	2.0	µg/L	1	2/14/2012 1:14:00 PM
Chloroform	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Tetrahydrofuran	ND	10	μg/L	1	2/14/2012 1:14:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	2/14/2012 1:14:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Carbon tetrachloride	ND	2.0	μg/L	1	2/14/2012 1:14:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Benzene	ND	1.0	μg/L	1	2/14/2012 1:14:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
1,2-Dichloropropane	ND	2.0	μg/L	1	2/14/2012 1:14:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/14/2012 1:14:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	2/14/2012 1:14:00 PM
Toluene	ND	2.0	μg/L	1	2/14/2012 1:14:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 1:14:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
2-Hexanone	ND	10	µg/L	1	2/14/2012 1:14:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Tetrachloroethene	17	2.0	ua/L	1	2/14/2012 1:14:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/14/2012 1:14:00 PM
CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-07A

Date: 20-Feb-12

Client Sample ID: MW-217S Collection Date: 2/9/2012 12:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	2/14/2012 1:14:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
o-Xylene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Styrene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Bromoform	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	2/14/2012 1:14:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
4-Chlorotoluene	ND	2.0	μg/L	1	2/14/2012 1:14:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
4-IsopropyItoluene	ND	2.0	μg/L	1	2/14/2012 1:14:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	2/14/2012 1:14:00 PM
n-Butylbenzene	ND	2.0	μg/L	1	2/14/2012 1:14:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	2/14/2012 1:14:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Naphthalene	ND	5.0	µg/L	1	2/14/2012 1:14:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 1:14:00 PM
Surr: Dibromofluoromethane	104	82-122	%REC	1	2/14/2012 1:14:00 PM
Surr: 1,2-Dichloroethane-d4	103	73-135	%REC	1	2/14/2012 1:14:00 PM
Surr: Toluene-d8	98.4	82-117	%REC	1	2/14/2012 1:14:00 PM
Surr: 4-Bromofluorobenzene	95.3	77-119	%REC	1	2/14/2012 1:14:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-08A

Date: 20-Feb-12

Client Sample ID: MW-217D Collection Date: 2/9/2012 12:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/14/2012 1:49:00 PM
Chloromethane	ND	5.0	µg/L	1	2/14/2012 1:49:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Chloroethane	ND	5.0	µg/L	1	2/14/2012 1:49:00 PM
Bromomethane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/14/2012 1:49:00 PM
Acetone	ND	10	µg/L	1	2/14/2012 1:49:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/14/2012 1:49:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/14/2012 1:49:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	2/14/2012 1:49:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
2-Butanone	ND	10	µg/L	1	2/14/2012 1:49:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
cis-1,2-Dichloroethene	4.6	2.0	µg/L	1	2/14/2012 1:49:00 PM
Chloroform	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/14/2012 1:49:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Carbon tetrachloride	ND	2.0	μg/L	1	2/14/2012 1:49:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Benzene	ND	1.0	µg/L	1	2/14/2012 1:49:00 PM
Trichloroethene	8.1 ·	2.0	µg/L	1	2/14/2012 1:49:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/14/2012 1:49:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 1:49:00 PM
Toluene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 1:49:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
2-Hexanone	ND	10	μg/L	1	2/14/2012 1:49:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Tetrachloroethene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Dibromochloromethane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-08A

Date: 20-Feb-12

Client Sample ID: MW-217D Collection Date: 2/9/2012 12:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Ç	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	2/14/2012 1:49:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
o-Xylene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Styrene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Bromoform	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	2/14/2012 1:49:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
sec-Butylbenzene	ND	2.0	μg/L	1	2/14/2012 1:49:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/14/2012 1:49:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Naphthalene	ND	5.0	µg/L	1	2/14/2012 1:49:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 1:49:00 PM
Surr: Dibromofluoromethane	105	82-122	%REC	1	2/14/2012 1:49:00 PM
Surr: 1,2-Dichloroethane-d4	97.4	73-135	%REC	1	2/14/2012 1:49:00 PM
Surr: Toluene-d8	98.3	82-117	%REC	1	2/14/2012 1:49:00 PM
Surr: 4-Bromofluorobenzene	91.4	77-119	%REC	1	2/14/2012 1:49:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-09A

Date: 20-Feb-12

Client Sample ID: MW-116S Collection Date: 2/9/2012 3:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL (Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/14/2012 2:24:00 PM
Chloromethane	ND	5.0	µg/L	1	2/14/2012 2:24:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
Chloroethane	ND	5.0	µg/L	1	2/14/2012 2:24:00 PM
Bromomethane	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	2/14/2012 2:24:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/14/2012 2:24:00 PM
Acetone	ND	10	µg/L	1	2/14/2012 2:24:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/14/2012 2:24:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/14/2012 2:24:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
2-Butanone	ND	10	µg/L	1	2/14/2012 2:24:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
cis-1,2-Dichloroethene	ND	2.0	μg/L	1	2/14/2012 2:24:00 PM
Chloroform	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/14/2012 2:24:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
Benzene	ND	1.0	µg/L	1	2/14/2012 2:24:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
1,2-Dichloropropane	ND	2.0	μg/L	1	2/14/2012 2:24:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/14/2012 2:24:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 2:24:00 PM
Toluene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 2:24:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
2-Hexanone	ND	10	μg/L	1	2/14/2012 2:24:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	2/14/2012 2:24:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	2/14/2012 2:24:00 PM
Dibromochloromethane	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-09A

Date: 20-Feb-12

Client Sample ID: MW-116S Collection Date: 2/9/2012 3:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
o-Xylene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
Styrene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
Bromoform	ND	2.0	μg/L	1	2/14/2012 2:24:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	2/14/2012 2:24:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/14/2012 2:24:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
Naphthalene	ND	5.0	µg/L	1	2/14/2012 2:24:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 2:24:00 PM
Surr: Dibromofluoromethane	111	82-122	%REC	1	2/14/2012 2:24:00 PM
Surr: 1,2-Dichloroethane-d4	98.2	73-135	%REC	1	2/14/2012 2:24:00 PM
Surr: Toluene-d8	97.7	82-117	%REC	1	2/14/2012 2:24:00 PM
Surr: 4-Bromofluorobenzene	95.5	77-119	%REC	1	2/14/2012 2:24:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-10A

Date: 20-Feb-12

Client Sample ID: MW-116D Collection Date: 2/9/2012 3:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Ç	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/14/2012 2:59:00 PM
Chloromethane	ND	5.0	µg/L	1	2/14/2012 2:59:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Chloroethane	ND	5.0	µg/L	1	2/14/2012 2:59:00 PM
Bromomethane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/14/2012 2:59:00 PM
Acetone .	ND	10	µg/L	1	2/14/2012 2:59:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/14/2012 2:59:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/14/2012 2:59:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
2-Butanone	ND	10	µg/L	1	2/14/2012 2:59:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
cis-1,2-Dichloroethene	ND	2.0	μg/L	1	2/14/2012 2:59:00 PM
Chloroform	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/14/2012 2:59:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
1,1-Dichloropropene	ND	2.0	µg/L ′	1	2/14/2012 2:59:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Benzene	ND	1.0	µg/L	1	2/14/2012 2:59:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/14/2012 2:59:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 2:59:00 PM
Toluene	ND	2.0	µg/L	. 1	2/14/2012 2:59:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 2:59:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
2-Hexanone	ND	10	µg/L	1	2/14/2012 2:59:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Tetrachloroethene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Dibromochloromethane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-10A

Date: 20-Feb-12

Client Sample ID: MW-116D Collection Date: 2/9/2012 3:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
o-Xylene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Styrene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Bromoform	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
lsopropylbenzene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Bromobenzene	ND	2.0	μg/L	1	2/14/2012 2:59:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
4-IsopropyItoluene	ND	2.0	μg/L	1	2/14/2012 2:59:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	2/14/2012 2:59:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/14/2012 2:59:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Naphthalene	ND	5.0	µg/L	1	2/14/2012 2:59:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 2:59:00 PM
Surr: Dibromofluoromethane	100	82-122	%REC	1	2/14/2012 2:59:00 PM
Surr: 1,2-Dichloroethane-d4	98.8	73-135	%REC	1	2/14/2012 2:59:00 PM
Surr: Toluene-d8	100	82-117	%REC	1	2/14/2012 2:59:00 PM
Surr: 4-Bromofluorobenzene	93.5	77-119	%REC	1	2/14/2012 2:59:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-11A

Date: 20-Feb-12

Client Sample ID: MW-207S Collection Date: 2/8/2012 1:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/15/2012 10:37:00 AM
Chloromethane	ND	5.0	µg/L	1	2/15/2012 10:37:00 AM
Vinyl chloride	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
Chloroethane	ND	5.0	µg/L	1	2/15/2012 10:37:00 AM
Bromomethane	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
Diethyl ether	ND	5.0	µg/L	1	2/15/2012 10:37:00 AM
Acetone	ND	10	µg/L	1	2/15/2012 10:37:00 AM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/15/2012 10:37:00 AM
Carbon disulfide	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
Methylene chloride	ND	5.0	µg/L	1	2/15/2012 10:37:00 AM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
1,1-Dichloroethane	ND	2.0	μg/L	1	2/15/2012 10:37:00 AM
2-Butanone	ND	10	µg/L	1	2/15/2012 10:37:00 AM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
cis-1,2-Dichloroethene	15	2.0	μg/L	1	2/15/2012 10:37:00 AM
Chloroform	4.5	2.0	µg/L	1	2/15/2012 10:37:00 AM
Tetrahydrofuran	ND	10	μg/L	1	2/15/2012 10:37:00 AM
Bromochloromethane	ND	2.0	μg/L	1	2/15/2012 10:37:00 AM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	2/15/2012 10:37:00 AM
1,1-Dichloropropene	ND	2.0	μg/L	1	2/15/2012 10:37:00 AM
Carbon tetrachloride	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
Benzene	ND	1.0	µg/L	1	2/15/2012 10:37:00 AM
Trichloroethene	23	2.0	µg/L	1	2/15/2012 10:37:00 AM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
Bromodichloromethane	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
Dibromomethane	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/15/2012 10:37:00 AM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2012 10:37:00 AM
Toluene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2012 10:37:00 AM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
1,2-Dibromoethane	ND	2.0	μg/L	1	2/15/2012 10:37:00 AM
2-Hexanone	ND	10	μg/L	1	2/15/2012 10:37:00 AM
1,3-Dichloropropane	ND	2.0	μg/L	1	2/15/2012 10:37:00 AM
Tetrachloroethene	530	20	µg/L	10	2/15/2012 2:42:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/15/2012 10:37:00 AM

CLIENT: Shaw Environmental & Infrastructure, Inc. Lab Order: 1202034 **Project:** 130274 Textron Providence Lab ID: 1202034-11A

Date: 20-Feb-12

Client Sample ID: MW-207S Collection Date: 2/8/2012 1:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	2/15/2012 10:37:00 AM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
Ethylbenzene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
m,p-Xylene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
o-Xylene	ND	2.0	μg/L	1	2/15/2012 10:37:00 AM
Styrene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
Bromoform	ND	2.0	μg/L	1	2/15/2012 10:37:00 AM
Isopropylbenzene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
Bromobenzene	ND	2.0	μg/L	1	2/15/2012 10:37:00 AM
n-Propylbenzene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
2-Chlorotoluene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
4-Chlorotoluene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
tert-Butylbenzene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
sec-Butylbenzene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	2/15/2012 10:37:00 AM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	2/15/2012 10:37:00 AM
n-Butylbenzene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/15/2012 10:37:00 AM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2012 10:37:00 AM
Hexachlorobutadiene	ND	2.0	μg/L	1	2/15/2012 10:37:00 AM
Naphthalene	ND	5.0	µg/L	1	2/15/2012 10:37:00 AM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	2/15/2012 10:37:00 AM
Surr: Dibromofluoromethane	94.6	82-122	%REC	1	2/15/2012 10:37:00 AM
Surr: 1,2-Dichloroethane-d4	91.2	73-135	%REC	1	2/15/2012 10:37:00 AM
Surr: Toluene-d8	101	82-117	%REC	1	2/15/2012 10:37:00 AM
Surr: 4-Bromofluorobenzene	102	77-119	%REC	1	2/15/2012 10:37:00 AM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-12A

Date: 20-Feb-12

Client Sample ID: MW-207D Collection Date: 2/8/2012 1:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	sv	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/15/2012 3:53:00 PM
Chloromethane	ND	5.0	µg/L	1	2/15/2012 3:53:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
Chloroethane	ND	5.0	µg/L	1	2/15/2012 3:53:00 PM
Bromomethane	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/15/2012 3:53:00 PM
Acetone	ND	10	µg/L	1	2/15/2012 3:53:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	2/15/2012 3:53:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/15/2012 3:53:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
2-Butanone	ND	10	µg/L	1	2/15/2012 3:53:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
cis-1,2-Dichloroethene	ND	2.0	μg/L	1	2/15/2012 3:53:00 PM
Chloroform	ND	2.0	μg/L	1	2/15/2012 3:53:00 PM
Tetrahydrofuran	ND	10	μg/L	1	2/15/2012 3:53:00 PM
Bromochloromethane	ND	2.0	μg/L	1	2/15/2012 3:53:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
Benzene	ND	1.0	µg/L	1	2/15/2012 3:53:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/15/2012 3:53:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2012 3:53:00 PM
Toluene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2012 3:53:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	2/15/2012 3:53:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	1	2/15/2012 3:53:00 PM
2-Hexanone	ND	10	μg/L	1	2/15/2012 3:53:00 PM
1,3-Dichloropropane	ND	2.0	ug/L	1	2/15/2012 3:53:00 PM
Tetrachloroethene	34	2.0	μg/L	1	2/15/2012 3:53:00 PM
Dibromochloromethane	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-12A

Date: 20-Feb-12

Client Sample ID: MW-207D Collection Date: 2/8/2012 1:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
o-Xylene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
Styrene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
Bromoform	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
lsopropylbenzene	ND	2.0	μg/L	1	2/15/2012 3:53:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	2/15/2012 3:53:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/15/2012 3:53:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
Naphthalene	ND	5.0	µg/L	1	2/15/2012 3:53:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2012 3:53:00 PM
Surr: Dibromofluoromethane	99.7	82-122	%REC	1	2/15/2012 3:53:00 PM
Surr: 1,2-Dichloroethane-d4	99.4	73-135	%REC	1	2/15/2012 3:53:00 PM
Surr: Toluene-d8	97.9	82-117	%REC	1	2/15/2012 3:53:00 PM
Surr: 4-Bromofluorobenzene	95.6	77-119	%REC	1	2/15/2012 3:53:00 PM

Shaw Environmental & Infrastructure, Inc. **CLIENT:** Lab Order: 1202034 130274 Textron Providence **Project:** Lab ID: 1202034-13A

Date: 20-Feb-12

Client Sample ID: MW-202S Collection Date: 2/8/2012 2:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/14/2012 5:54:00 PM
Chloromethane	ND	5.0	µg/L	1	2/14/2012 5:54:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Chloroethane	ND	5.0	µg/L	1	2/14/2012 5:54:00 PM
Bromomethane	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/14/2012 5:54:00 PM
Acetone	ND	10	µg/L	1	2/14/2012 5:54:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/14/2012 5:54:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/14/2012 5:54:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	1	2/14/2012 5:54:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
2-Butanone	ND	10	µg/L	1	2/14/2012 5:54:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
cis-1,2-Dichloroethene	2.5	2.0	µg/L	1	2/14/2012 5:54:00 PM
Chloroform	12	2.0	µg/L	1	2/14/2012 5:54:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/14/2012 5:54:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Benzene	ND	1.0	μg/L	1	2/14/2012 5:54:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/14/2012 5:54:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 5:54:00 PM
Toluene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 5:54:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
2-Hexanone	ND	10	µg/L	1	2/14/2012 5:54:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	2/14/2012 5:54:00 PM
Tetrachloroethene	73	2.0	µg/L	1	2/14/2012 5:54:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/14/2012 5:54:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-13A

Date: 20-Feb-12

Client Sample ID: MW-202S Collection Date: 2/8/2012 2:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	μg/L	1	2/14/2012 5:54:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Ethylbenzene	ND	2.0	μg/L	1	2/14/2012 5:54:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
o-Xylene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Styrene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Bromoform	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	2/14/2012 5:54:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	2/14/2012 5:54:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/14/2012 5:54:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Naphthalene	ND	5.0	µg/L	1	2/14/2012 5:54:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 5:54:00 PM
Surr: Dibromofluoromethane	107	82-122	%REC	1	2/14/2012 5:54:00 PM
Surr: 1,2-Dichloroethane-d4	91.7	73-135	%REC	1	2/14/2012 5:54:00 PM
Surr: Toluene-d8	99.5	82-117	%REC	1	2/14/2012 5:54:00 PM
Surr: 4-Bromofluorobenzene	91.0	77-119	%REC	1	2/14/2012 5:54:00 PM

Shaw Environmental & Infrastructure, Inc. **CLIENT:** Lab Order: 1202034 **Project:** 130274 Textron Providence Lab ID: 1202034-14A

Date: 20-Feb-12

Client Sample ID: MW-202D Collection Date: 2/8/2012 2:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL (Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/15/2012 11:12:00 AM
Chloromethane	ND	5.0	µg/L	1	2/15/2012 11:12:00 AM
Vinyl chloride	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Chloroethane	ND	5.0	µg/L	1	2/15/2012 11:12:00 AM
Bromomethane	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Diethyl ether	ND	5.0	µg/L	1	2/15/2012 11:12:00 AM
Acetone	ND	10	µg/L	1	2/15/2012 11:12:00 AM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/15/2012 11:12:00 AM
Carbon disulfide	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Methylene chloride	ND	5.0	μġ/L	1	2/15/2012 11:12:00 AM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
2-Butanone	ND	10	μg/L	1	2/15/2012 11:12:00 AM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
cis-1,2-Dichloroethene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Chloroform	32	2.0	µg/L	1	2/15/2012 11:12:00 AM
Tetrahydrofuran	ND	10	µg/L	1	2/15/2012 11:12:00 AM
Bromochloromethane	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Carbon tetrachloride	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Benzene	ND	1.0	µg/L	1	2/15/2012 11:12:00 AM
Trichloroethene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Bromodichloromethane	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Dibromomethane	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/15/2012 11:12:00 AM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2012 11:12:00 AM
Toluene	ND	2.0	μg/L	1	2/15/2012 11:12:00 AM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2012 11:12:00 AM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	2/15/2012 11:12:00 AM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
2-Hexanone	ND	10	µg/L	1	2/15/2012 11:12:00 AM
1,3-Dichloropropane	ND	2.0	μg/L	1	2/15/2012 11:12:00 AM
Tetrachloroethene	610	20	μg/L	10	2/15/2012 3:17:00 PM
Dibromochloromethane	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-14A

Date: 20-Feb-12

Client Sample ID: MW-202D Collection Date: 2/8/2012 2:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	2/15/2012 11:12:00 AM
Ethylbenzene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
m,p-Xylene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
o-Xylene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Styrene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Bromoform	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Isopropylbenzene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Bromobenzene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
n-Propylbenzene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
2-Chlorotoluene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
4-Chlorotoluene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
tert-Butylbenzene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
sec-Butylbenzene	ND	2.0	μg/L	1	2/15/2012 11:12:00 AM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	2/15/2012 11:12:00 AM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
n-Butylbenzene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/15/2012 11:12:00 AM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Naphthalene	ND	5.0	µg/L	1	2/15/2012 11:12:00 AM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2012 11:12:00 AM
Surr: Dibromofluoromethane	92.6	82-122	%REC	1	2/15/2012 11:12:00 AM
Surr: 1,2-Dichloroethane-d4	94.6	73-135	%REC	1	2/15/2012 11:12:00 AM
Surr: Toluene-d8	101	82-117	%REC	1	2/15/2012 11:12:00 AM
Surr: 4-Bromofluorobenzene	97.6	77-119	%REC	1	2/15/2012 11:12:00 AM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-15A

Date: 20-Feb-12

Client Sample ID: MW-101S Collection Date: 2/8/2012 3:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/14/2012 4:44:00 PM
Chloromethane	ND	5.0	µg/L	1 ·	2/14/2012 4:44:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
Chloroethane	ND	5.0	µg/L	1	2/14/2012 4:44:00 PM
Bromomethane	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/14/2012 4:44:00 PM
Acetone	ND	10	µg/L	1	2/14/2012 4:44:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/14/2012 4:44:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/14/2012 4:44:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
2-Butanone	ND	10	µg/L	1	2/14/2012 4:44:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
cis-1,2-Dichloroethene	14	2.0	µg/L	1	2/14/2012 4:44:00 PM
Chloroform	8.6	2.0	µg/L	1	2/14/2012 4:44:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/14/2012 4:44:00 PM
Bromochloromethane	ND	2.0	μg/L	1	2/14/2012 4:44:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	2/14/2012 4:44:00 PM
Benzene	ND	1.0	µg/L	1	2/14/2012 4:44:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/14/2012 4:44:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 4:44:00 PM
Toluene	ND	2.0	μg/L	1	2/14/2012 4:44:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 4:44:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
2-Hexanone	ND	10	μg/L	1	2/14/2012 4:44:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	2/14/2012 4:44:00 PM
Tetrachloroethene	29	2.0	µg/L	1	2/14/2012 4:44:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/14/2012 4:44:00 PM

Date: 20-1'e0.

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-15A

Date: 20-Feb-12

Client Sample ID: MW-101S Collection Date: 2/8/2012 3:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
o-Xylene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
Styrene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
Bromoform	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
4-isopropyltoluene	ND	2.0	μg/L	1	2/14/2012 4:44:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/14/2012 4:44:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
Naphthalene	ND	5.0	µg/L	1	2/14/2012 4:44:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 4:44:00 PM
Surr: Dibromofluoromethane	97.1	82-122	%REC	1	2/14/2012 4:44:00 PM
Surr: 1,2-Dichloroethane-d4	93.2	73-135	%REC	1	2/14/2012 4:44:00 PM
Surr: Toluene-d8	99.4	82-117	%REC	1	2/14/2012 4:44:00 PM
Surr: 4-Bromofluorobenzene	91.4	77-119	%REC	1	2/14/2012 4:44:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-16A

Date: 20-Feb-12

Client Sample ID: MW-101S Dup Collection Date: 2/8/2012 3:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL (Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	sv	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/14/2012 5:19:00 PM
Chloromethane	ND	5.0	µg/L	1	2/14/2012 5:19:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Chloroethane	ND	5.0	µg/L	1	2/14/2012 5:19:00 PM
Bromomethane	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/14/2012 5:19:00 PM
Acetone	ND	10	µg/L	1	2/14/2012 5:19:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/14/2012 5:19:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/14/2012 5:19:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	2/14/2012 5:19:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
2-Butanone	ND	10	µg/L	1	2/14/2012 5:19:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
cis-1,2-Dichloroethene	12	2.0	µg/L	1	2/14/2012 5:19:00 PM
Chloroform	7.4	2.0	μg/L	1	2/14/2012 5:19:00 PM
Tetrahydrofuran	ND	10	μg/L	1	2/14/2012 5:19:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Benzene	ND	1.0	µg/L	1	2/14/2012 5:19:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	2/14/2012 5:19:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 5:19:00 PM
Toluene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 5:19:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	2/14/2012 5:19:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	1	2/14/2012 5:19:00 PM
2-Hexanone	ND	10	µg/L	1	2/14/2012 5:19:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Tetrachloroethene	24	2.0	µg/L	1	2/14/2012 5:19:00 PM
Dibromochloromethane	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-16A

Date: 20-Feb-12

Client Sample ID: MW-101S Dup Collection Date: 2/8/2012 3:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
o-Xylene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Styrene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Bromoform	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	2/14/2012 5:19:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	2/14/2012 5:19:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/14/2012 5:19:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Naphthalene	ND	5.0	µg/L	1	2/14/2012 5:19:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 5:19:00 PM
Surr: Dibromofluoromethane	101	82-122	%REC	1	2/14/2012 5:19:00 PM
Surr: 1,2-Dichloroethane-d4	89.7	73-135	%REC	1	2/14/2012 5:19:00 PM
Surr: Toluene-d8	98.0	82-117	%REC	1	2/14/2012 5:19:00 PM
Surr: 4-Bromofluorobenzene	93.9	77-119	%REC	1	2/14/2012 5:19:00 PM

CLIENT: Shaw Environmental & Infrastructure, Inc. Lab Order: 1202034 130274 Textron Providence **Project:** Lab ID: 1202034-17A

Date: 20-Feb-12

Client Sample ID: MW-101D Collection Date: 2/8/2012 3:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Analyst: SK
Dichlorodifluoromethane	ND	50	µg/L	10	2/15/2012 4:28:00 PM
Chloromethane	ND	50	µg/L	10	2/15/2012 4:28:00 PM
Vinyl chloride	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Chloroethane	ND	50	μg/L	10	2/15/2012 4:28:00 PM
Bromomethane	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Trichlorofluoromethane	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Diethyl ether	ND	50	μg/L	10	2/15/2012 4:28:00 PM
Acetone	ND	100	μg/L	10	2/15/2012 4:28:00 PM
1,1-Dichloroethene	ND	10	μg/L	10	2/15/2012 4:28:00 PM
Carbon disulfide	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Methylene chloride	ND	50	μg/L	10	2/15/2012 4:28:00 PM
Methyl tert-butyl ether	ND	20	µg/L	10	2/15/2012 4:28:00 PM
trans-1,2-Dichloroethene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
1,1-Dichloroethane	ND	20	μg/L	10	2/15/2012 4:28:00 PM
2-Butanone	ND	100	µg/L	10	2/15/2012 4:28:00 PM
2,2-Dichloropropane	ND	20	μg/L	10	2/15/2012 4:28:00 PM
cis-1,2-Dichloroethene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Chloroform	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Tetrahydrofuran	ND	100	µg/L	10	2/15/2012 4:28:00 PM
Bromochloromethane	ND	20	µg/L	10	2/15/2012 4:28:00 PM
1,1,1-Trichloroethane	ND	20	µg/L	10	2/15/2012 4:28:00 PM
1,1-Dichloropropene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Carbon tetrachloride	ND	20	µg/L	10	2/15/2012 4:28:00 PM
1,2-Dichloroethane	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Benzene	ND	10	µg/L	10	2/15/2012 4:28:00 PM
Trichloroethene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
1,2-Dichloropropane	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Bromodichloromethane	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Dibromomethane	ND	20	µg/L	10	2/15/2012 4:28:00 PM
4-Methyl-2-pentanone	ND	100	µg/Ĺ	10	2/15/2012 4:28:00 PM
cis-1,3-Dichloropropene	ND	10	µg/L	10	2/15/2012 4:28:00 PM
Toluene	ND	20	μg/L	10	2/15/2012 4:28:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	10	2/15/2012 4:28:00 PM
1,1,2-Trichloroethane	ND	20	µg/L	10	2/15/2012 4:28:00 PM
1,2-Dibromoethane	ND	20	µg/L	10	2/15/2012 4:28:00 PM
2-Hexanone	ND	100	μg/L	10	2/15/2012 4:28:00 PM
1,3-Dichloropropane	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Tetrachloroethene	490	20	µg/L	10	2/15/2012 4:28:00 PM
Dibromochloromethane	ND	20	μg/L	10	2/15/2012 4:28:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-17A

Date: 20-Feb-12

Client Sample ID: MW-101D Collection Date: 2/8/2012 3:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
1,1,1,2-Tetrachloroethane	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Ethylbenzene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
m,p-Xylene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
o-Xylene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Styrene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Bromoform	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Isopropylbenzene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	2/15/2012 4:28:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Bromobenzene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
n-Propylbenzene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
2-Chlorotoluene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
4-Chiorotoluene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
1,3,5-Trimethylbenzene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
tert-Butylbenzene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
sec-Butylbenzene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
4-Isopropyltoluene	ND	20	μg/L	10	2/15/2012 4:28:00 PM
1,3-Dichlorobenzene	ND	20	μg/L	10	2/15/2012 4:28:00 PM
1,4-Dichlorobenzene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
n-Butylbenzene	ND	20	μg/L	10	2/15/2012 4:28:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
1,2-Dibromo-3-chloropropane	ŅD	50	µg/L	10	2/15/2012 4:28:00 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Naphthalene	ND	50	µg/L	10	2/15/2012 4:28:00 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	10	2/15/2012 4:28:00 PM
Surr: Dibromofluoromethane	99.5	82-122	%REC	10	2/15/2012 4:28:00 PM
Surr: 1,2-Dichloroethane-d4	99.3	73-135	%REC	10	2/15/2012 4:28:00 PM
Surr: Toluene-d8	98.6	82-117	%REC	10	2/15/2012 4:28:00 PM
Surr: 4-Bromofluorobenzene	94.2	77-119	%REC	10	2/15/2012 4:28:00 PM

Shaw Environmental & Infrastructure, Inc. **CLIENT:** 1202034 Lab Order: **Project:** 130274 Textron Providence Lab ID: 1202034-18A

Date: 20-Feb-12

Client Sample ID: MW-201D Collection Date: 2/8/2012 4:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	50	µg/L	10	2/15/2012 5:03:00 PM
Chloromethane	ND	50	µg/L	10	2/15/2012 5:03:00 PM
Vinyl chloride	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Chloroethane	ND	50	µg/L	10	2/15/2012 5:03:00 PM
Bromomethane	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Trichlorofluoromethane	ND	20	μg/L	10	2/15/2012 5:03:00 PM
Diethyl ether	ND	50	µg/L	10	2/15/2012 5:03:00 PM
Acetone	ND	100	μg/L	10	2/15/2012 5:03:00 PM
1,1-Dichloroethene	ND	10	µg/L	10	2/15/2012 5:03:00 PM
Carbon disulfide	ND	20	μg/L	10	2/15/2012 5:03:00 PM
Methylene chloride	ND	50	µg/L	10	2/15/2012 5:03:00 PM
Methyl tert-butyl ether	ND	20	µg/L	10	2/15/2012 5:03:00 PM
trans-1,2-Dichloroethene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
1,1-Dichloroethane	ND	20	μg/L	10	2/15/2012 5:03:00 PM
2-Butanone	ND	100	µg/L	10	2/15/2012 5:03:00 PM
2,2-Dichloropropane	ND	20	μg/L	10	2/15/2012 5:03:00 PM
cis-1,2-Dichloroethene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Chloroform	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Tetrahydrofuran	ND	100	µg/L	10	2/15/2012 5:03:00 PM
Bromochloromethane	ND	20	µg/L	10	2/15/2012 5:03:00 PM
1,1,1-Trichloroethane	ND	20	µg/L	10	2/15/2012 5:03:00 PM
1,1-Dichloropropene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Carbon tetrachloride	ND	20	µg/L	10	2/15/2012 5:03:00 PM
1,2-Dichloroethane	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Benzene	ND	10	µg/L	10	2/15/2012 5:03:00 PM
Trichloroethene	210	20	µg/L	10	2/15/2012 5:03:00 PM
1,2-Dichloropropane	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Bromodichloromethane	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Dibromomethane	ND	20	µg/L	10	2/15/2012 5:03:00 PM
4-Methyl-2-pentanone	ND	100	µg/L	10	2/15/2012 5:03:00 PM
cis-1,3-Dichloropropene	ND	10	µg/L	10	2/15/2012 5:03:00 PM
Toluene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	10	2/15/2012 5:03:00 PM
1,1,2-Trichloroethane	ND	20	µg/L	10	2/15/2012 5:03:00 PM
1,2-Dibromoethane	ND	20	μg/L	10	2/15/2012 5:03:00 PM
2-Hexanone	ND	100	µg/L	10	2/15/2012 5:03:00 PM
1,3-Dichloropropane	ND	20	μg/L	10	2/15/2012 5:03:00 PM
Tetrachloroethene	6,600	200	μg/L	100	2/16/2012 1:21:00 PM
Dibromochloromethane	ND	20	μg/L	10	2/15/2012 5:03:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-18A

Date: 20-Feb-12

Client Sample ID: MW-201D Collection Date: 2/8/2012 4:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
1,1,1,2-Tetrachloroethane	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Ethylbenzene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
m,p-Xylene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
o-Xylene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Styrene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Bromoform	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Isopropylbenzene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	2/15/2012 5:03:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Bromobenzene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
n-Propylbenzene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
2-Chlorotoluene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
4-Chlorotoluene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
1,3,5-Trimethylbenzene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
tert-Butylbenzene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
1,2,4-Trimethylbenzene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
sec-Butylbenzene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
4-Isopropyltoluene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
1,3-Dichlorobenzene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
1,4-Dichlorobenzene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
n-Butylbenzene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
1,2-Dichlorobenzene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
1,2-Dibromo-3-chloropropane	ND	50	µg/L	10	2/15/2012 5:03:00 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Hexachlorobutadiene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Naphthalene	ND	50	µg/L	10	2/15/2012 5:03:00 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	10	2/15/2012 5:03:00 PM
Surr: Dibromofluoromethane	106	82-122	%REC	10	2/15/2012 5:03:00 PM
Surr: 1,2-Dichloroethane-d4	101	73-135	%REC	10	2/15/2012 5:03:00 PM
Surr: Toluene-d8	97.9	82-117	%REC	10	2/15/2012 5:03:00 PM
Surr: 4-Bromofluorobenzene	93.6	77-119	%REC	10	2/15/2012 5:03:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-19A

Date: 20-Feb-12

Client Sample ID: MW-218S Collection Date: 2/8/2012 5:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/14/2012 6:28:00 PM
Chloromethane	ND	5.0	µg/L	1	2/14/2012 6:28:00 PM
Vinyl chloride	4.5	2.0	µg/L	1	2/14/2012 6:28:00 PM
Chloroethane	ND	5.0	µg/L	1	2/14/2012 6:28:00 PM
Bromomethane	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/14/2012 6:28:00 PM
Acetone	ND	10	µg/L	1	2/14/2012 6:28:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/14/2012 6:28:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Methylene chloride	ND	5.0	μg/L	1	2/14/2012 6:28:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
2-Butanone	ND	10	μg/L	1	2/14/2012 6:28:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	2/14/2012 6:28:00 PM
cis-1,2-Dichloroethene	8.5	2.0	μg/L	1	2/14/2012 6:28:00 PM
Chloroform	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Tetrahydrofuran	ND	10	μg/L	1	2/14/2012 6:28:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	2/14/2012 6:28:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	2/14/2012 6:28:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Benzene	ND	1.0	µg/L	1	2/14/2012 6:28:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/14/2012 6:28:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 6:28:00 PM
Toluene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 6:28:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
2-Hexanone	ND	10	µg/L	1	2/14/2012 6:28:00 PM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Tetrachloroethene	2.3	2.0	µg/L	1	2/14/2012 6:28:00 PM
Dibromochloromethane	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-19A

Date: 20-Feb-12

Client Sample ID: MW-218S Collection Date: 2/8/2012 5:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
o-Xylene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Styrene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Bromoform	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
n-Butylbenzene	ND	2.0	μg/L	1	2/14/2012 6:28:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/14/2012 6:28:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Naphthalene	ND	5.0	µg/L	1	2/14/2012 6:28:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 6:28:00 PM
Surr: Dibromofluoromethane	104	82-122	%REC	1	2/14/2012 6:28:00 PM
Surr: 1,2-Dichloroethane-d4	85.4	73-135	%REC	1	2/14/2012 6:28:00 PM
Surr: Toluene-d8	98.4	82-117	%REC	1	2/14/2012 6:28:00 PM
Surr: 4-Bromofluorobenzene	94.2	77-119	%REC	1	2/14/2012 6:28:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-20A

Date: 20-Feb-12

Client Sample ID: MW-218D Collection Date: 2/8/2012 5:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL (Qual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/15/2012 11:47:00 AM
Chloromethane	ND	5.0	µg/L	1	2/15/2012 11:47:00 AM
Vinyl chloride	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
Chloroethane	ND	5.0	µg/L	1	2/15/2012 11:47:00 AM
Bromomethane	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
Diethyl ether	ND	5.0	µg/L	1	2/15/2012 11:47:00 AM
Acetone	ND	10	μg/L	1	2/15/2012 11:47:00 AM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/15/2012 11:47:00 AM
Carbon disulfide	ND	2.0	μg/L	1	2/15/2012 11:47:00 AM
Methylene chloride	ND	5.0	µg/L	1	2/15/2012 11:47:00 AM
Methyl tert-butyl ether	ND	2.0	μg/L	1	2/15/2012 11:47:00 AM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
2-Butanone	ND	10	µg/L	1	2/15/2012 11:47:00 AM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
cis-1,2-Dichloroethene	2.7	2.0	µg/L	1	2/15/2012 11:47:00 AM
Chloroform	36	2.0	µg/L	1	2/15/2012 11:47:00 AM
Tetrahydrofuran	ND	10	µg/L	1	2/15/2012 11:47:00 AM
Bromochloromethane	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	2/15/2012 11:47:00 AM
1,1-Dichloropropene	ND	2.0	µg/L	· 1	2/15/2012 11:47:00 AM
Carbon tetrachloride	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
1,2-Dichloroethane	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
Benzene	ND	1.0	µg/L	1	2/15/2012 11:47:00 AM
Trichloroethene	17	2.0	µg/L	1	2/15/2012 11:47:00 AM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
Bromodichloromethane	3.1	2.0	μg/L	1	2/15/2012 11:47:00 AM
Dibromomethane	ND	2.0	μg/L	1	2/15/2012 11:47:00 AM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/15/2012 11:47:00 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	2/15/2012 11:47:00 AM
Toluene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2012 11:47:00 AM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
2-Hexanone	ND	10	µg/L	1	2/15/2012 11:47:00 AM
1,3-Dichloropropane	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
Tetrachloroethene	230	2.0	µg/L	1	2/15/2012 11:47:00 AM
Dibromochloromethane	ND	2.0	μg/L	1	2/15/2012 11:47:00 AM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-20A

Date: 20-Feb-12

Client Sample ID: MW-218D Collection Date: 2/8/2012 5:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
Ethylbenzene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
m,p-Xylene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
o-Xylene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
Styrene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
Bromoform	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
Isopropylbenzene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	2/15/2012 11:47:00 AM
Bromobenzene	ND	2.0	μg/L	1	2/15/2012 11:47:00 AM
n-Propylbenzene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
2-Chlorotoluene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
4-Chlorotoluene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
tert-Butylbenzene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
sec-Butylbenzene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
4-isopropyltoluene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
1,3-Dichlorobenzene	ND	2.0	μg/L	1	2/15/2012 11:47:00 AM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
n-Butylbenzene	ND	2.0	μg/L	1	2/15/2012 11:47:00 AM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	2/15/2012 11:47:00 AM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
Naphthalene	ND	5.0	µg/L	1	2/15/2012 11:47:00 AM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/15/2012 11:47:00 AM
Surr: Dibromofluoromethane	95.5	82-122	%REC	1	2/15/2012 11:47:00 AM
Surr: 1,2-Dichloroethane-d4	101	73-135	%REC	1	2/15/2012 11:47:00 AM
Surr: Toluene-d8	99.8	82-117	%REC	1	2/15/2012 11:47:00 AM
Surr: 4-Bromofluorobenzene	99.4	77-119	%REC	1	2/15/2012 11:47:00 AM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-23A

Date: 20-Feb-12

Client Sample ID: MW-109D Collection Date: 2/9/2012 2:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/14/2012 3:34:00 PM
Chloromethane	ND	5.0	µg/L	1	2/14/2012 3:34:00 PM
Vinyl chloride	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
Chloroethane	ND	5.0	µg/L	1	2/14/2012 3:34:00 PM
Bromomethane	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/14/2012 3:34:00 PM
Acetone	ND	10	µg/L	1	2/14/2012 3:34:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	2/14/2012 3:34:00 PM
Carbon disulfide	ND	2.0	μg/L	1	2/14/2012 3:34:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/14/2012 3:34:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
trans-1,2-Dichloroethene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	1	2/14/2012 3:34:00 PM
2-Butanone	ND	10	µg/L	1	2/14/2012 3:34:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
cis-1,2-Dichloroethene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
Chloroform	ND	2.0	μg/L	1	2/14/2012 3:34:00 PM
Tetrahydrofuran	ND	10	µg/L	1	2/14/2012 3:34:00 PM
Bromochloromethane	ND	2.0	μg/L	1	2/14/2012 3:34:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
1,1-Dichloropropene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
Carbon tetrachloride	ND	2.0	μg/L	1	2/14/2012 3:34:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	2/14/2012 3:34:00 PM
Benzene	ND	1.0	µg/L	1	2/14/2012 3:34:00 PM
Trichloroethene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
Dibromomethane	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/14/2012 3:34:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 3:34:00 PM
Toluene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 3:34:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
1,2-Dibromoethane	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
2-Hexanone	ND	10	μg/L	1	2/14/2012 3:34:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	1	2/14/2012 3:34:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	2/14/2012 3:34:00 PM
Dibromochloromethane	ND	2.0	μg/L	1	2/14/2012 3:34:00 PM

.

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-23A

Date: 20-Feb-12

Client Sample ID: MW-109D Collection Date: 2/9/2012 2:00:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
o-Xylene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
Styrene	ND	2.0	μg/L	1	2/14/2012 3:34:00 PM
Bromoform	ND	2.0	μg/L	1	2/14/2012 3:34:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
Bromobenzene	ND	2.0	μg/L	1	2/14/2012 3:34:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
2-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
4-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	1	2/14/2012 3:34:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/14/2012 3:34:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	2/14/2012 3:34:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
Naphthalene	ND	5.0	μg/L	1	2/14/2012 3:34:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 3:34:00 PM
Surr: Dibromofluoromethane	102	82-122	%REC	1	2/14/2012 3:34:00 PM
Surr: 1,2-Dichloroethane-d4	97.6	73-135	%REC	1	2/14/2012 3:34:00 PM
Surr: Toluene-d8	99.5	82-117	%REC	1	2/14/2012 3:34:00 PM
Surr: 4-Bromofluorobenzene	92.6	77-119	%REC	1	2/14/2012 3:34:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-24A

Date: 20-Feb-12

Client Sample ID: GZA-3 Collection Date: 2/9/2012 2:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/14/2012 4:09:00 PM
Chloromethane	ND	5.0	µg/L	1	2/14/2012 4:09:00 PM
Vinyl chloride	7.6	2.0	µg/L	1	2/14/2012 4:09:00 PM
Chloroethane	ND	5.0	µg/L	1	2/14/2012 4:09:00 PM
Bromomethane	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
Diethyl ether	ND	5.0	µg/L	1	2/14/2012 4:09:00 PM
Acetone	ND	10	µg/L	1	2/14/2012 4:09:00 PM
1,1-Dichloroethene	1.2	1.0	µg/L	1	2/14/2012 4:09:00 PM
Carbon disulfide	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
Methylene chloride	ND	5.0	µg/L	1	2/14/2012 4:09:00 PM
Methyl tert-butyl ether	11	2.0	µg/L	1	2/14/2012 4:09:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	1	2/14/2012 4:09:00 PM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
2-Butanone	ND	10	µg/L	1	2/14/2012 4:09:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
cis-1,2-Dichloroethene	77	2.0	μg/L	1	2/14/2012 4:09:00 PM
Chloroform	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
Tetrahydrofuran	ND	10	μg/L	1	2/14/2012 4:09:00 PM
Bromochloromethane	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	2/14/2012 4:09:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	1	2/14/2012 4:09:00 PM
Carbon tetrachloride	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	1	2/14/2012 4:09:00 PM
Benzene	ND	1.0	μg/L	1	2/14/2012 4:09:00 PM
Trichloroethene	20	2.0	μg/L	1	2/14/2012 4:09:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
Bromodichloromethane	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
Dibromomethane	ND	2.0	ug/L	1	2/14/2012 4:09:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	2/14/2012 4:09:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/14/2012 4:09:00 PM
Toluene	ND	2.0	ug/L	1	2/14/2012 4:09:00 PM
trans-1,3-Dichloropropene	ND	1.0	ua/L	1	2/14/2012 4:09:00 PM
1,1,2-Trichloroethane	ND	2.0	ua/L	1	2/14/2012 4:09:00 PM
1,2-Dibromoethane	ND	2.0	ua/L	1	2/14/2012 4:09:00 PM
2-Hexanone	ND	10	ua/L	1	2/14/2012 4:09:00 PM
1.3-Dichloropropane	ND	2.0	ua/L	1	2/14/2012 4:09:00 PM
Tetrachloroethene	ND	2.0	ua/L	1	2/14/2012 4:09:00 PM
Dibromochloromethane	ND	2.0	ua/L	1	2/14/2012 4:09:00 PM
		2.0	49°C	•	2117/2012 7.00.00 F W

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-24A

Date: 20-Feb-12

Client Sample ID: GZA-3 Collection Date: 2/9/2012 2:30:00 PM Matrix: GROUNDWATER

Analyses	Result	RL Ç	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
Ethylbenzene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
m,p-Xylene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
o-Xylene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
Styrene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
Bromoform	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
Isopropylbenzene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	2/14/2012 4:09:00 PM
Bromobenzene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	2/14/2012 4:09:00 PM
2-Chlorotoluene	ND	2.0	μg/L	1	2/14/2012 4:09:00 PM
4-Chlorotoluene	ND	2.0	μg/L	1	2/14/2012 4:09:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	2/14/2012 4:09:00 PM
tert-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
sec-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
4-Isopropyitoluene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	1	2/14/2012 4:09:00 PM
n-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/14/2012 4:09:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	2/14/2012 4:09:00 PM
Naphthalene	ND	5.0	µg/L	1	2/14/2012 4:09:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 4:09:00 PM
Surr: Dibromofluoromethane	103	82-122	%REC	1	2/14/2012 4:09:00 PM
Surr: 1,2-Dichloroethane-d4	96.5	73-135	%REC	1	2/14/2012 4:09:00 PM
Surr: Toluene-d8	98.4	82-117	%REC	1	2/14/2012 4:09:00 PM
Surr: 4-Bromofluorobenzene	94.4	77-119	%REC	1	2/14/2012 4:09:00 PM

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-26A

Date: 20-Feb-12

Client Sample ID: Trip Blank Collection Date: 2/9/2012 Matrix: TRIP BLANK

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA 8260B VOLATILES BY GC/MS	SV	V8260B			Analyst: SK
Dichlorodifluoromethane	ND	5.0	µg/L	1	2/14/2012 11:28:00 AM
Chloromethane	ND	5.0	µg/L	1	2/14/2012 11:28:00 AM
Vinyl chloride	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
Chloroethane	ND	5.0	µg/L	1	2/14/2012 11:28:00 AM
Bromomethane	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
Trichlorofluoromethane	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
Diethyl ether	ND	5.0	µg/L	1	2/14/2012 11:28:00 AM
Acetone	ND	10	μg/L	1	2/14/2012 11:28:00 AM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/14/2012 11:28:00 AM
Carbon disulfide	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
Methylene chloride	ND	5.0	μg/L	1	2/14/2012 11:28:00 AM
Methyl tert-butyl ether	ND	2.0	μg/L	1	2/14/2012 11:28:00 AM
trans-1,2-Dichloroethene	ND	2.0	μg/L	1	2/14/2012 11:28:00 AM
1,1-Dichloroethane	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
2-Butanone	ND	10	μg/L	1	2/14/2012 11:28:00 AM
2,2-Dichloropropane	ND	2.0	µa/L	1	2/14/2012 11:28:00 AM
cis-1,2-Dichloroethene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
Chloroform	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
Tetrahydrofuran	ND	10	ua/L	1	2/14/2012 11:28:00 AM
Bromochloromethane	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
1,1,1-Trichloroethane	ND	2.0	ua/L	1	2/14/2012 11:28:00 AM
1,1-Dichloropropene	ND	2.0	ua/L	1	2/14/2012 11:28:00 AM
Carbon tetrachloride	ND	2.0	ua/L	1	2/14/2012 11:28:00 AM
1,2-Dichloroethane	ND	2.0	ug/L	1	2/14/2012 11:28:00 AM
Benzene	ND	1.0	ua/L	1	2/14/2012 11:28:00 AM
Trichloroethene	ND	2.0	ua/L	1	2/14/2012 11:28:00 AM
1,2-Dichloropropane	ND	2.0	ua/L	1	2/14/2012 11:28:00 AM
Bromodichloromethane	ND	2.0	ua/L	1	2/14/2012 11:28:00 AM
Dibromomethane	ND	2.0	ua/L	1	2/14/2012 11:28:00 AM
4-Methyl-2-pentanone	ND	10	ua/L	1	2/14/2012 11:28:00 AM
cis-1.3-Dichloropropene	ND	1.0	ua/L	1	2/14/2012 11:28:00 AM
Toluene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
trans-1.3-Dichloropropene	ND	1.0	µg/	1	2/14/2012 11:28:00 AM
1.1.2-Trichloroethane	ND	2.0	µg/L ug/l	1	2/14/2012 11:28:00 AM
1 2-Dibromoethane	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
2-Hexanone	ND	10	на/I	1	2/14/2012 11:20:00 AW
1.3-Dichloropropane	ND	20	р 9 /с	1	2/14/2012 11:20:00 AW
Tetrachloroethene	ND	2.0	µg/⊏ ug/l	1	2/14/2012 11:20.00 AN
Dihamaahlaramathana		2.0	μ <u>g</u> /μ	1	2/14/2012 11:20:00 AIV

057

CLIENT:Shaw Environmental & Infrastructure, Inc.Lab Order:1202034Project:130274 Textron ProvidenceLab ID:1202034-26A

Date: 20-Feb-12

Client Sample ID: Trip Blank Collection Date: 2/9/2012 Matrix: TRIP BLANK

Analyses	Result	RL Ç	Qual Units	DF	Date Analyzed
Chlorobenzene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
Ethylbenzene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
m,p-Xylene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
o-Xylene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
Styrene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
Bromoform	ND	2.0	μg/L	1	2/14/2012 11:28:00 AM
Isopropylbenzene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
Bromobenzene	ND	2.0	μg/L	1	2/14/2012 11:28:00 AM
n-Propylbenzene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
2-Chlorotoluene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
4-Chlorotoluene	ND	2.0	μg/L	1	2/14/2012 11:28:00 AM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	2/14/2012 11:28:00 AM
tert-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	2/14/2012 11:28:00 AM
sec-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
4-Isopropyltoluene	ND	2.0	μg/L	1	2/14/2012 11:28:00 AM
1,3-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
1,4-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
n-Butylbenzene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
1,2-Dichlorobenzene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1	2/14/2012 11:28:00 AM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
Hexachlorobutadiene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
Naphthalene	ND	5.0	µg/L	1	2/14/2012 11:28:00 AM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	2/14/2012 11:28:00 AM
Surr: Dibromofluoromethane	100	82-122	%REC	. 1	2/14/2012 11:28:00 AM
Surr: 1,2-Dichloroethane-d4	99.6	73-135	%REC	1	2/14/2012 11:28:00 AM
Surr: Toluene-d8	98.0	82-117	%REC	1	2/14/2012 11:28:00 AM
Surr: 4-Bromofluorobenzene	91.9	77-119	%REC	1	2/14/2012 11:28:00 AM

058

Work Order: 120203- Project: 130274 Sample ID: mb-02/14/12	invironmental & Infrastruc	ture, Inc.				Ŭ	OC SUM	MARY	REPOF	[
Sample ID: mb-02/14/12	4 . Textron Providence					·		M	ethod Bla	굳 I
	Batch ID: R48344	Test Code	e: SW8260B	Units: µg/L	Analysis Dat	e 2/14/2012 1	10:53:00 AM	Prep Date:	2/14/2012	
Cilent IU:		Run ID:	V-3_121214/	-	SeqNo:	805385				
	QC Sample	ā	QC I Inite ∆C	Spike Original Sample	L owl imit	Origi	iinal Sample			Ċ
Allalyte	Inean	ב						MTU M	ארטבונווו	
Dichlorodifluoromethane	QN	5.0	hg/L							
Chloromethane	ΠN	5.0	hg/L							
Vinyl chloride	ΠN	2.0	hg/L							
Chloroethane	ΩN	5.0	hg/L							
Bromomethane	ND	2.0	hg/L							
Trichlorofluoromethane	DN	2.0	µg/L							
Diethyl ether	ND	5.0	hg/L							
Acetone	DN	10	hg/L				·			
1,1-Dichloroethene	QN	1.0	hg/L							
Carbon disulfide	QN	2.0	hg/L							
Methylene chloride	QN	5.0	hg/L							
Methyl tert-butyl ether	ND	2.0	hg/L							
trans-1,2-Dichloroethene	ON.	2.0	hg/L							
1,1-Dichloroethane	QN	2.0	hg/L							
2-Butanone	DN	10	hg/L							
2,2-Dichloropropane	QN	2.0	hg/L							
cis-1,2-Dichloroethene	DN	2.0	hg/L							
Chloroform	DN	2.0	µg/L							
Tetrahydrofuran	QN	10	µg/L							
Bromochloromethane	ND	2.0	hg/L							
1,1,1-Trichloroethane	DN	2.0	µg/L							
1,1-Dichloropropene	DN	2.0	hg/L							
Carbon tetrachloride	DN	2.0	hg/L							
1,2-Dichloroethane	DN	2.0	hg/L							
Benzene	Q	1.0	hg/L							
Qualifiers: ND - Not Detect	ted at the Reporting Limit	S	- Spike Recovery	v outside accepted recovery limits	B - Analyte (detected in the 2	associated Metho	od Blank		1
J - Analyte detec	cted below quantitation limits	R	- RPD outside ac	ccepted recovery limits	NA - Not an	nlicable where.	J values or ND re	esults occur		

ар С. 4. р. С. 4. р. С. 4. р.

AMKU Env	vironmental Lai	ονιαινινο	ł				-1 60-17
LIENT:	Shaw Environment	tal & Infrastruc	cture, Inc	-		OC SUMMARY	REPORT
Vork Urder: roject:	1202034 130274 Textron Pr	ovidence				N	ethod Blank
ichlorothono		CZ	¢	₩œ			
2-Dichloropropar	Je	22	2.0	µg/г µa/L			
romodichlorometi	hane	ND	2.0	hg/L			
ibromomethane		DN ND	2.0	hg/L			
-Methyl-2-pentan	one	ND	10	hg/L			
is-1,3-Dichloroprc	opene	ND	1.0	hg/L			
oluene		ND	2.0	hg/L			
ans-1,3-Dichlorop	propene	QN	1.0	µg/L			
1,2-Trichloroeths	ane	ND	2.0	hg/L			
2-Dibromoethan	Đ	DN	2.0	hg/L			
Hexanone		QN	10	µg/L			
3-Dichloropropar	ne	DN	2.0	hg/L			
etrachloroethene		Ŋ	2.0	hg/L			
ibromochloromet	thane	QN	2.0	hg/L			
hlorobenzene		DN	2.0	, J/gu			
1,1,2-Tetrachlorc	oethane	QN	2.0	hg/L			
thylbenzene		QN	2.0	hg/L			
,p-Xylene		QN	2.0	hg/L			
Xylene		QN	2.0	hg/L			
lyrene		QN	2.0	hg/L			
omoform		QN	2.0	hg/L			
opropylbenzene		QN	2.0	hg/L			
1,2,2-Tetrachlorc	oethane	QN	2.0	hg/L			
2,3-Trichloroprop	oane	QN	2.0	hg/L			
romobenzene		ON ,	2.0	µg/L			
Propylbenzene		DN	2.0	hg/L			
-Chlorotoluene		QN	2.0	µg/L			
Chlorotoluene		<u>ND</u>	2.0	µg/L			
3,5-Trimethylben	Izene	QN	2.0	hg/L			
rt-Butylbenzene		QN	2.0	hg/L			
2,4-Trimethylben	Izene	QN	2.0	hg/Ľ			
Qualifiers: ND	- Not Detected at the Repo	orting Limit		S - Spike Recc	very outside accepted recovery limits	B - Analyte detected in the associated Method Blank	
J + /	Analyte detected below qui	antitation limits		R - RPD outsie	le accepted recovery limits	The source of the second se	

000

ng b Ng b Ng b Ng b Ng b Ng b Ng b

	ental & Infrastructu	te, Inc.						I AAVINI A DA	таоат		
Work Order: 1202034 Project: 130274 Textron	Providence								thod Blank		
sec-Butylbenzene	QN	5.0	hg/L								
4-Isopropyltoluene	QN	2.0	hg/L								
1,3-Dichlorobenzene	QN	0.0	hg/L								
1,4-Dichlorobenzene	DN	0.0	hg/L								
n-Butylbenzene	QN	0.0	µg/L								
1,2-Dichlorobenzene	Ŋ	0.0	hg/L								
1,2-Dibromo-3-chloropropane	ND	5.0	hg/L								
1,2,4-Trichlorobenzene	QN	0.0	µg/L								
Hexachlorobutadiene	DN	0.0	hg/L								
Naphthalene	QN	0.0	hg/L								
1,2,3-Trichlorobenzene	QN	0.0	hg/L					·			
Surr: Dibromofluoromethane	25.35	0.0	µg/L 25	0	101	82	122	0			
Surr: 1,2-Dichloroethane-d4	24.94	5.0	ug/L 25	0	99.8	73	135	0			
Surr: Toluene-d8	24.16	0.0	нд/L 25	0	96.6	82	117	0			
Surr: 4-Bromofluorobenzene	24 14	0.0	µg/L 25	0	96.6	77	119				
						×					
Qualifiers: ND - Not Detected at the Ru	eporting Limit	S - S	pike Recovery outside accep	pted recovery l	limits	B - Analyte de	stected in the a	ssociated Method Blank	-		
J - Analyte detected below (RL - Reporting Limit; defin	quantitation limits ned as the lowest concer	R - F tration the la	PD outside accepted recove horatory can accurately duar	ery limits		NA - Not appl	licable where J	values or ND results occur			
Project: 1302/14 Textron Providence Ample Test Code: Sw2260B Unlis: Jond Analysis Data 275/2012 10:02:00 All Sample Diamond Run ID: V-3121215A Analysis Data Seqvic: 205478 Client ID: Client ID: Adatasis Test Code: Sw2260B Unlis: Jond Seqvic: 2052791 Client ID: Client ID: Adatasis R.L Unlis: Amount Result: Stande Amount Else Jond Client Amount RL Unlis: Amount Result: Orisis Barnie Amount Else Jond Stande Chingratis Amount	CLIENT: Shaw Env Work Order: 1202034	ironmental & Infrastruc	ture, Inc.				ð	C SUM	MARY	REPO	R
---	---	-----------------------------	------------	-----------------	-------------------------------------	-------------	----------------------------	------------------------	------------	-----------	------
Sample ID: mb-02/15/12 Batch ID: R43355 Test Code: SW2260B Units: Jpg/L Analysis Date 2/15/2012 10:02:00 AM Client ID: Amount N-3_121215A SeqNo: 805473 Client ID: OC Sample Run ID: V-3_121215A SeqNo: 805473 Amount Client ID: Amount Run ID: V-3_121215A SeqNo: 805473 Amount Run Units Amount Result RL Units Amount Result Amount Result Amount No SeqNo: 805473 Result Amount Result Amount Result Amount Amount<	Project: 130274 To	extron Providence							M	ethod Bl	lan.
Cleart D:Ran D:V.31215ASeqNo:864/N:N:864/N:N:864/N:N:864/N:864/N:N:N:864/N:N:N:864/N:N:N:864/N: </th <th>Sample ID: mb-02/15/12</th> <th>Batch ID: R48355</th> <th>Test Code</th> <th>SW8260B</th> <th>Units: µg/L</th> <th>Analysis Da</th> <th>te 2/15/2012 10</th> <th>:02:00 AM</th> <th>Prep Date:</th> <th>2/15/2012</th> <th>1</th>	Sample ID: mb-02/15/12	Batch ID: R48355	Test Code	SW8260B	Units: µg/L	Analysis Da	te 2/15/2012 10	:02:00 AM	Prep Date:	2/15/2012	1
Analyte OC Sample Anount Ano	Client ID:		Run ID:	V-3_12121£	ΣA	SeqNo:	805478				
MatrixMatr	Analyta	QC Sample	ā	ntiel C	C Spike Original Sample	timi bud	Origina Hichl imit or A	al Sample MS Bosult	חמם %	timi laa	C
DichlocodifuoromethaneND5.0 $\mu g/L$ ChloromethaneND5.0 $\mu g/L$ ChloromethaneND5.0 $\mu g/L$ ChloromethaneND2.0 $\mu g/L$ EnonomethaneND2.0 $\mu g/L$ Dichty etherND5.0 $\mu g/L$ Action disuftideND2.0 $\mu g/L$ Action disuftideND2.0 $\mu g/L$ Action disuftideND2.0 $\mu g/L$ Methylene chlorideND2.0 $\mu g/L$ Methylene chlorideND2.0 $\mu g/L$ Methylene chlorotheneND2.0 $\mu g/L$ Carbon disuftideND2.0 $\mu g/L$ Methylene chlorotheneND2.0 $\mu g/L$ Carbon disuftideND2.0 $\mu g/L$ Methylene chlorotheneND2.0 $\mu g/L$ Carbon disuftideND2.0 $\mu g/L$ SeltanoneND2.0 $\mu g/L$ ChloroproprimeND2.0 $\mu g/L$ ChloropromethaneND2.0 $\mu g/L$ ChloropromethaneND2.0 $\mu g/L$ TetrahydrofuranND2.0 $\mu g/L$ TetrahydrofuranND2.0 $\mu g/L$ TetrahydrofuranND2.0 $\mu g/L$ Titra	Allalyte	hesuit	ž	SIIIO				MO RESULT	701LD	מרטרווווו	ر
ChloromethaneND5.0 $\mu g/L$ Vinyi chlorideND2.0 $\mu g/L$ Vinyi chlorideND2.0 $\mu g/L$ BromonethaneND2.0 $\mu g/L$ BromonethaneND2.0 $\mu g/L$ Diethyl etherND2.0 $\mu g/L$ TrichlorofluoromethaneND2.0 $\mu g/L$ Diethyl etherND2.0 $\mu g/L$ AcetoneND1.0 $\mu g/L$ 1.1-DichloroethaneND2.0 $\mu g/L$ Methylere chlorideND2.0 $\mu g/L$ Methylere chlorideND2.0 $\mu g/L$ Methylere chlorideND2.0 $\mu g/L$ 1.1-DichloroethaneND2.0 $\mu g/L$ 2.2-DichloroethaneND2.0 $\mu g/L$ 2.1.1.1-TichloroethaneND2.0<	Dichlorodifluoromethane	ND	5.0	µg/L							
Viny choideND 2.0 $\mu g/L$ ChloroethaneND 5.0 $\mu g/L$ EronomethaneND 2.0 $\mu g/L$ EronomethaneND 2.0 $\mu g/L$ TichlorofuctomethaneND 2.0 $\mu g/L$ Distryl etherND 1.0 $\mu g/L$ CactoneND 1.0 $\mu g/L$ AcetoneND 1.0 $\mu g/L$ 1.1 -DichloroetheneND 2.0 $\mu g/L$ 2.2 -DichloroetheneND	Chloromethane	DN	5.0	hg/L							
ChloroethaneND5.0 pg/L BromomethaneND2.0 pg/L TrichlorofluoromethaneND2.0 pg/L TrichlorofluoromethaneND2.0 pg/L TrichloromethaneND2.0 pg/L AcetoneND1.0 pg/L Ti-DichloroetheneND2.0 pg/L Ti-DichloroetheneND2.0 pg/L Methyl tert-butyl etherND2.0 pg/L Methyl tert-butyl etherND2.0 pg/L Tarsn-1,2-DichloroetheneND2.0 pg/L Tarsn-1,2-DichloroetheneND2.0 pg/L Carbon disuffdeND2.0 pg/L TetrahydrofuranND2.0 pg/L Li-DichloroetheneND2.0 pg/L TetrahydrofuranND2.0 pg/L ElonooroetheneND2.0 pg/L TetrahydrofuranND2.0 pg/L EnonochloromethaneND2.0 pg/L TothoroetheneND2.0 pg/L ChloroformND2.0 pg/L EnonochloromethaneND2.0 pg/L TothoroetheneND2.0 pg/L EnonochloromethaneND2.0 pg/L TothoroetheneND2.0 pg/L ChloroformND2.0 pg/L ChloroformND2.0 pg/L EnonochloromethaneND2.0 pg/L Tothoroeth	Vinyl chloride	DN	2.0	hg/L							
BromomethaneND 2.0 pg/L TrichlorofluoromethaneND 2.0 pg/L Diethyl etherND 5.0 pg/L AcetoneND 1.0 pg/L $1,1$ -DichloroethaneND 1.0 pg/L $1,1$ -DichloroethaneND 1.0 pg/L $1,1$ -DichloroethaneND 2.0 pg/L $1,1$ -DichloroethaneND 2.0 pg/L $1,1$ -DichloroethaneND 2.0 pg/L $1,1$ -DichloroethaneND 2.0 pg/L 2.2 -DichloroethaneND 2.0 pg/L $2.1,2$ -DichloroethaneND 2.0 pg/L $2.1,2$ -DichloroethaneND 2.0 pg/L $2.1,2$ -DichloroethaneND 2.0 pg/L $2.1,1$ -DichloroethaneND 2.0 pg/L $2.1,2$ -DichloroethaneND 2.0 pg/L $2.1,1$ -DichloroethaneND 2.0 pg/L $2.1,1,1$ -TirchloroethaneND 2.0 pg/L $2.1,1,1$ -TirchloroethaneND 2.0 pg/L $2.1,1,1$ -DichloroethaneND 2.0 pg/L $2.1,1,1,1$ -TirchloroethaneND 2.0 pg/L $2.1,1,1,1,1$ $2.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$	Chloroethane	ND	5.0	hg/L							
TrichlorofuctomethaneND 2.0 $\mu g/L$ Diethyl etherND 5.0 $\mu g/L$ AcetoneND 1.0 $\mu g/L$ $1,1$ -DichloroetheneND 1.0 $\mu g/L$ $1,1$ -DichloroetheneND 2.0 $\mu g/L$ Carbon disufficeND 2.0 $\mu g/L$ Methylene chlorideND 2.0 $\mu g/L$ Carbon disufficeND 2.0 $\mu g/L$ ChloropthaneND 2.0 $\mu g/L$ 2.2 -DichloroethaneND 2.0 $\mu g/L$ 2.2 -DichloropthaneND 2.0 $\mu g/L$ $2.1-DichloroethaneND2.0\mu g/L2.1-DichloroethaneND2.0\mu g/L2.1-DichloroethaneND$	Bromomethane	ND	2.0	hg/L							
Diethyl etherND5.0 $\mu g/L$ AcetoneND10 $\mu g/L$ 1,1-DichloroetheneND1.0 $\mu g/L$ Carbon disuffideND2.0 $\mu g/L$ Methyl tert-butyl etherND2.0 $\mu g/L$ Methyl tert-butyl etherND2.0 $\mu g/L$ 1,1-DichloroetheneND2.0 $\mu g/L$ 1,1-DichloroetheneND2.0 $\mu g/L$ 1,1-DichloroetheneND2.0 $\mu g/L$ 2:EutanoneND2.0 $\mu g/L$ 2:DichloroetheneND2.0 $\mu g/L$ 1,1-DichloroetheneND2.0 $\mu g/L$ 2:EutanoneND2.0 $\mu g/L$ 2:DichloroetheneND2.0 $\mu g/L$ 2:DichloroetheneND2.0 $\mu g/L$ 1:1-DichloroetheneND2.0 $\mu g/L$ 2:PichloroetheneND2.0 $\mu g/L$ 1:1-DichloroetheneND2.0 $\mu g/L$ ChanytoneND2.0 $\mu g/L$ ChanytoneND2.0 $\mu g/L$ ChanytoneND2.0 $\mu g/L$ 1:1-TichloroetheneND2.0 $\mu g/L$ </td <td>Trichlorofluoromethane</td> <td>ND</td> <td>2.0</td> <td>hg/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Trichlorofluoromethane	ND	2.0	hg/L							
Acetone ND 10 μg/L 1,1-Dichloroethene ND 1.0 μg/L 1,1-Dichloroethene ND 2.0 μg/L Methyl tert-butyl ether ND 2.0 μg/L Methyl tert-butyl ether ND 2.0 μg/L 1,1-Dichloroethene ND 2.0 μg/L 1,1-Dichloroethene ND 2.0 μg/L 1,1-Dichloroethene ND 2.0 μg/L 2-Butanone ND 2.0 μg/L 2-Sultanone ND 2.0 μg/L 2-Sultanone ND 2.0 μg/L 2-Sultanone ND 2.0 μg/L 2-Sultanone ND 2.0 μg/L Chloroethane ND 2.0 μg/L Chloroethane ND 2.0 μg/L Chloroethane ND 2.0 μg/L Chloroethane ND 2.0 μg/L Chloroform ND 2.0 μg/L	Diethyl ether	ND	5.0	hg/L							
1,1-DichloroetheneND1.0 $\mu g/L$ Carbon disuffdeND2.0 $\mu g/L$ Methyl tert-butyl etherND2.0 $\mu g/L$ 1,1-DichloroethaneND2.0 $\mu g/L$ 2-DichloroethaneND2.0 $\mu g/L$ 2-DichloroethaneND2.0 $\mu g/L$ 2-DichloroethaneND2.0 $\mu g/L$ 2-DichloroethaneND2.0 $\mu g/L$ 2,2-DichloroethaneND2.0 $\mu g/L$ ChloroformND2.0 $\mu g/L$ ChloroformethaneND2.0 $\mu g/L$ Carbon retrachlorideND2.0 $\mu g/L$	Acetone	DN	10	hg/L							
Carbon disuffideND 2.0 $\mu g/L$ Methylene chlorideND 5.0 $\mu g/L$ Methyl tert-butyl etherND 2.0 $\mu g/L$ trans-1,2-DichloroetheneND 2.0 $\mu g/L$ 1,1-DichloroetheneND 2.0 $\mu g/L$ 2-ButanoneND 2.0 $\mu g/L$ 2-ButanoneND 2.0 $\mu g/L$ 2-DichloroetheneND 2.0 $\mu g/L$ 2,2-DichloroetheneND 2.0 $\mu g/L$ 2,2-DichloroetheneND 2.0 $\mu g/L$ 2,2-DichloroetheneND 2.0 $\mu g/L$ 2,1-1/ichloroetheneND 2.0 $\mu g/L$ ChloroformND 2.0 $\mu g/L$ ChloroformethaneND 2.0 $\mu g/L$ Carbon tetrachlorideND 2.0 $\mu g/L$ Carbon tetrachlorideND 2.0 $\mu g/L$	1,1-Dichloroethene	QN	1.0	hg/L							
Methylene chlorideND 5.0 $\mu g/L$ Methyl tert-butyl etherND 2.0 $\mu g/L$ Methyl tert-butyl etherND 2.0 $\mu g/L$ trans-1,2-DichloroetheneND 2.0 $\mu g/L$ $1,1$ -DichloroetheneND 2.0 $\mu g/L$ $2,2$ -DichloroetheneND 2.0 $\mu g/L$ $1,1$ -TrichloroetheneND 2.0 $\mu g/L$ $1,1$ -TrichloroethaneND 2.0 $\mu g/L$ $1,1$ -DichloroethaneND 2.0 $\mu g/L$ $1,1$ -DichloroptopeneND 2.0 $\mu g/L$ 2.0 $\mu g/L$ 2.0 $\mu g/L$	Carbon disulfide	ND	2.0	hg/L							
Methyl tert-butyl tert-butyl tert-butyl tert-butyl tert-butyl etherND 2.0 $\mu g/L$ trans-1,2-DichloroetheneND 2.0 $\mu g/L$ 1,1-DichloroethaneND 2.0 $\mu g/L$ 2-ButanoneND 1.0 $\mu g/L$ 2-ButanoneND 2.0 $\mu g/L$ 2-ButanoneND 2.0 $\mu g/L$ 2-ButanoneND 2.0 $\mu g/L$ 2-DichloropropaneND 2.0 $\mu g/L$ ChloroformND 2.0 $\mu g/L$ ChloroformND 2.0 $\mu g/L$ TetrahydrofuranND 2.0 $\mu g/L$ SromochloromethaneND 2.0 $\mu g/L$ 1,1-TrichloroethaneND 2.0 $\mu g/L$ Carbon tetrachlorideND 2.0 $\mu g/L$	Methylene chloride	ND	5.0	hg/L						÷	
trans-1,2-DichloroetheneND2.0 $\mu g/L$ 1,1-DichloroethaneND2.0 $\mu g/L$ 2-ButanoneND2.0 $\mu g/L$ 2.2-DichloroetheneND2.0 $\mu g/L$ 2,2-DichloroetheneND2.0 $\mu g/L$ cis-1,2-DichloroetheneND2.0 $\mu g/L$ ChloroformND2.0 $\mu g/L$ ChloroformND2.0 $\mu g/L$ TetrahydrofuranND2.0 $\mu g/L$ BromochloromethaneND2.0 $\mu g/L$ 1,1-TrichloroethaneND2.0 $\mu g/L$ Carbon tetrachlorideND2.0 $\mu g/L$	Methyl tert-butyl ether	QN	2.0	hg/L							
1,1-DichloroethaneND2.0 $\mu g/L$ 2-ButanoneND10 $\mu g/L$ 2-ButanoneND2.0 $\mu g/L$ 2,2-DichloropropaneND2.0 $\mu g/L$ cis-1,2-DichloroetheneND2.0 $\mu g/L$ ChloroformND2.0 $\mu g/L$ ChloroformND2.0 $\mu g/L$ TetrahydrofuranND2.0 $\mu g/L$ BromochloromethaneND2.0 $\mu g/L$ 1,1-TrichloroethaneND2.0 $\mu g/L$ Arbon tetrachlorideND2.0 $\mu g/L$	trans-1,2-Dichloroethene	DN	2.0	hg/L							
2-ButanoneND10 $\mu g/L$ 2,2-DichloropropaneND2.0 $\mu g/L$ 2,2-DichloroetheneND2.0 $\mu g/L$ cis-1,2-DichloroetheneND2.0 $\mu g/L$ ChloroformND2.0 $\mu g/L$ TetrahydrofuranND10 $\mu g/L$ TetrahydrofuranND2.0 $\mu g/L$ 1,1,1-TrichloroethaneND2.0 $\mu g/L$ 1,1-DichloropeneND2.0 $\mu g/L$ Carbon tetrachlorideND2.0 $\mu g/L$	1,1-Dichloroethane	ND	2.0	µg/L							
2,2-DichloropropaneND2.0 $\mu g/L$ cis-1,2-DichloroetheneND2.0 $\mu g/L$ cis-1,2-DichloroetheneND2.0 $\mu g/L$ ChloroformND2.0 $\mu g/L$ TetrahydrofuranND2.0 $\mu g/L$ BromochloromethaneND2.0 $\mu g/L$ 1,1,1-TrichloroethaneND2.0 $\mu g/L$ 1,1-DichloropeneND2.0 $\mu g/L$ Carbon tetrachlorideND2.0 $\mu g/L$	2-Butanone	n N	10	hg/L							
cis-1,2-Dichloroethene ND 2.0 $\mu g/L$ Chloroform ND 2.0 $\mu g/L$ Tetrahydrofuran ND 2.0 $\mu g/L$ Bromochloromethane ND 2.0 $\mu g/L$ 1,1,1-Trichloroethane ND 2.0 $\mu g/L$ 1,1-Dichloropene ND 2.0 $\mu g/L$ Carbon tetrachloride ND 2.0 $\mu g/L$	2,2-Dichloropropane	DN	2.0	hg/L							
ChloroformND2.0 $\mu g/L$ TetrahydrofuranND10 $\mu g/L$ BromochloromethaneND2.0 $\mu g/L$ 1,1,1-TrichloroethaneND2.0 $\mu g/L$ 1,1-DichloropeneND2.0 $\mu g/L$ Carbon retrachlorideND2.0 $\mu g/L$	cis-1,2-Dichloroethene	ND	2.0	hg/L							
Tetrahydrofuran ND 10 μg/L Bromochloromethane ND 2.0 μg/L 1,1,1-Trichloroethane ND 2.0 μg/L 1,1-Dichloropene ND 2.0 μg/L Carbon tetrachloride ND 2.0 μg/L	Chloroform	ND	2.0	µg/L							
Bromochloromethane ND 2.0 μg/L 1,1.Trichloroethane ND 2.0 μg/L 1,1-Dichloropropene ND 2.0 μg/L Carbon tetrachloride ND 2.0 μg/L	Tetrahydrofuran	QN	10	hg/L							
1,1,1-Trichloroethane ND 2.0 μg/L 1,1-Dichloropropene ND 2.0 μg/L Carbon tetrachloride ND 2.0 μg/L	Bromochloromethane	DN	2.0	hg/L							
1,1-Dichloropropene ND 2.0 μg/L Carbon tetrachloride ND 2.0 μg/L	1,1,1-Trichloroethane	ND	2.0	hg/L							
Carbon tetrachloride ND 2.0 uo/L	1,1-Dichloropropene	DN	2.0	hg/L							
	Carbon tetrachloride	DN N	2.0	hg/L							
1,2-Dichloroethane ND 2.0 μg/L	1,2-Dichloroethane	QN	2.0	hg/L							
Benzene ND 1.0 µg/L	Benzene	QN	1.0	hg/L							
Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated M	Qualifiers: ND - Not Detected	at the Reporting Limit	S	- Spike Recove	ry outside accepted recovery limits	B - Analyte	detected in the ass	sociated Metho	od Blank		
J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not annlicable where I values or NI	J - Analyte detected	I below quantitation limits	R	- RPD outside ;	accented recovery limits		· · ·	:	į		

	Shaw Environmental & Infrastr	ucture, Inc.				
Work Order: Project:	1202034 130274 Textron Providence	•				Method Blan
Trichloroethene	ON	2.0	na/L			
1,2-Dichloropropane	DN	2.0	hg/L			
Bromodichloromethan	ND	2.0	hg/L			
Dibromomethane	QN	2.0	µg/L			
4-Methyl-2-pentanone	ND	10	µg/L			
cis-1,3-Dichloroproper	ne ND	1.0	µg/L			
Toluene	ND	2.0	hg/L			
trans-1,3-Dichloroprop	pene ND	1.0	hg/L			
1,1,2-Trichloroethane	DN	2.0	hg/L			
1,2-Dibromoethane	ON	2.0	µg/L			
2-Hexanone	QN	10	µg/L			
1,3-Dichloropropane	DN	2.0	hg/L			
Tetrachloroethene	ON	2.0	hg/L			
Dibromochloromethar	ne ND	2.0	µg/L			
Chlorobenzene	DN	2.0	µg/L			
1,1,1,2-Tetrachloroeth	lane ND	2.0	hg/L			
Ethylbenzene	ΩN	2.0	hg/L			
m,p-Xylene	DN	2.0	hg/L			
o-Xylene	ND	2.0	µg/L			
Styrene	ON .	2.0	hg/L			
Bromoform	DN	2.0	hg/L			
Isopropylbenzene	DN	2.0	µg/L			
1,1,2,2-Tetrachloroeth	ND	2.0	hg/L			
1,2,3-Trichloropropane	BND	2.0	µg/L			
Bromobenzene	DN	2.0	hg/L			
n-Propylbenzene	DN	2.0	µg/L			
2-Chlorotoluene	DN	2.0	µg/L			
4-Chlorotoluene	QN	2.0	hg/L			
1,3,5-Trimethylbenzer	ND	2.0	hg/L			
tert-Butylbenzene	QN	2.0	hg/L			
1,2,4-Trimethylbenzer	ND	2.0	µg/L			
Qualifiers: ND - N	lot Detected at the Reporting Limit	S	- Spike Recovery out	tside accepted recovery limits	B - Analyte detected in 1	the associated Method Blank
J - Ana	lyte detected below quantitation limits	R	- RPD outside accep	sted recovery limits	NA - Not annlicable wh	ere f values or ND results occur

int. Sector

			The second									
CLIENT:	Shaw Environmental & I	nfrastruct	ture, Inc.							VUS DO	IMARY R	F.POF
Work Order: Project:	1202034 130274 Textron Provide:	JCe							/		Metl	nod Bla
sec-Butylbenzene	N		2.0	µg/L								
4-Isopropyltoluene	N	0	2.0	hg/L								
1,3-Dichlorobenzei	ne NI	0	2.0	hg/L								
1,4-Dichlorobenzei	ne NI	0	2.0	µg/L								
n-Butylbenzene	NC	0	2.0	hg/L								
1,2-Dichlorobenzei	ne	0	2.0	hg/L								
1,2-Dibromo-3-chlc	oropropane		5.0	hg/L								
1,2,4-Trichloroben.	zene NI	0	2.0	µg/L								
Hexachlorobutadie	sne 'NI	0	2.0	µg/L								
Naphthalene	N	~	5.0	hg/L								
1,2,3-Trichloroben:	zene	0	2.0	hg/L								
Surr: Dibromoflu	Joromethane 21.8:	01	2.0	hg/L	25	0	87.3	82	122	0		
Surr: 1,2-Dichlor	roethane-d4 22.6-	**	2.0	hg/L	25	0	90.6	73	135	0		
Surr: Toluene-d	8 25.3	_	2.0	µg/L	25	0	101	82	117	0		
Surr: 4-Bromoflu	uorobenzene 25.18		2.0	hg/L	25	0	101	77	119	0		
												4
Qualifiers: ND	- Not Detected at the Reporting L	imit	S	- Spike Recovery	/ outside accepted	recovery lin	mits	B - Analyte det	tected in the a	ssociated Met	bod Blank	
J - /	Analyte detected below quantitatic	n limits	R	- RPD outside ac	scepted recovery li	mits		NA - Not appli	cable where J	values or ND	results occur	
RL	- Reporting Limit: defined as the i	owest conci	entration the	laboratory can a	ccurately quantita	te.						

CLIENT: Shaw F	Invironmental & Infrastruc	ure, Inc.							
Work Order: 120203	34						MINC J	MAK	NEFU.
Project: 13027 ⁴	4 Textron Providence							M	ethod Bl
Sample ID: mb-02/16/12	Batch ID: R48363	Test Coo	de: SW8260B	Units: µġ/L	Analysis [Date 2/16/20	112 11:35:00 AM	Prep Date:	2/16/2012
Client ID:		Run ID:	V-3_120216A		SeqNo:	805592			
	QC Sample		OC	Spike Original Sample		Ū	Original Sample		
Analyte	Result	RL	Units A	mount Result %REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit
Dichlorodifluoromethane	DN	5.0	µg∕L						
Chloromethane	ΠN	5.0	hg/L						
Vinyl chloride	DN	2.0	µg/L						
Chloroethane	QN	5.0	hg/L						
Bromomethane	DN	2.0	hg/L						
Trichlorofluoromethane	ND	2.0	hg/L						
Diethyl ether	QN	5.0	hg/L						
Acetone	DN	10	hg/L						
1,1-Dichloroethene	ΠN	1.0	hg/L						
Carbon disulfide	QN	2.0	hg/L						
Methylene chloride	QN	5.0	hg/L						
Methyl tert-butyl ether	ND	2.0	hg/L						
trans-1,2-Dichloroethene	DN	2.0	hg/L						
1,1-Dichloroethane	QN	2.0	hg/L						
2-Butanone	DN	10	hg/L						
2,2-Dichloropropane	DN	2.0	hg/L						
cis-1,2-Dichloroethene	ND	2.0	hg/L						
Chloroform	ND	2.0	hg/L						
Tetrahydrofuran	DN	10	hg/L .						
Bromochloromethane	QN	2.0	hg/L						
1,1,1-Trichloroethane	ND	2.0	hg/L						
1,1-Dichloropropene	DN	2.0	hg/L						
Carbon tetrachloride	QN	2.0	hg/L					-	
1,2-Dichloroethane	DN	2.0	J/6rl.						
Benzene	DN	1.0	µg/L						
Qualifiers: ND - Not Detec	ted at the Reporting Limit	0,	S - Spike Recovery	outside accepted recovery limits	B - Analy	te detected in	the associated Metho	od Blank	
J - Analyte dete	cted below quantitation limits	Ι	R RPD outside acc	cepted recovery limits	NA – M∞	dur alderilaae	- UIN or series I state	aculte ocour	
J - Analyle det	cted below quantitation limits	-	K KPD outside acc	cepted recovery lumits	NA - Not	applicable wh	tere J values or ND r	esults occur	

ан (ы) - - --

····	w Environmental & Infrastru	cture, Inc.		OC SIIMMARY REP
Work Order: 120. Project: 130.	2034 274 Textron Providence			Method
Trichloroethene	QN	2.0	μα/L	
1.2-Dichloropropane	DN	2.0	ua/L	
Bromodichloromethane	QN	2.0	hg/L	
Dibromomethane	QN	2.0	ng/L	
4-Methyl-2-pentanone	QN	10	hg/L	
cis-1,3-Dichloropropene	ΠN	1.0	µg/L	
Toluene	ND	2.0	hg/L	
trans-1,3-Dichloropropene	DN	1.0	µg/L	
1,1,2-Trichloroethane	ND	2.0	hg/L	
1,2-Dibromoethane	ND	2.0	hg/L	
2-Hexanone	ND	10	μg/L .	
1,3-Dichloropropane	QN	2.0	hg/L	
Tetrachloroethene	ND	2.0	µg/L	
Dibromochloromethane	ND	2.0	hg/L	
Chlorobenzene	ND	2.0	hg/L	
1,1,1,2-Tetrachloroethane	<u>UN</u>	2.0	hg/L ·	
Ethylbenzene	ND	2.0	µg/L	
m,p-Xylene	ND	2.0	hg/L	
o-Xylene	ΩN	2.0	hg/L	
Styrene	ND	2.0	hg/L	
Bromoform	ND	2.0	µg/L	
Isopropylbenzene	ND	2.0	μg/L	
1,1,2,2-Tetrachloroethane	ND	2.0	hg/L	
1,2,3-Trichloropropane	ON .	2.0	hg/L	
Bromobenzene	GN	2.0	hg/L	
n-Propylbenzene	DN	2.0	hg/L	
2-Chlorotoluene	ND	2.0	hg/L	
4-Chlorotoluene	ΩN	2.0	µg/L	
1,3,5-Trimethylbenzene	ND	2.0	hg/L	
tert-Butylbenzene	DN	2.0	hg/L	
1,2,4-Trimethylbenzene	DN	2.0	hg/L	
Qualifiers: ND - Not De	stected at the Reporting Limit	S	- Spike Recovery outside accepted recovery limits	B - Analyte detected in the associated Method Blank
J - Analyte c	letected below quantitation limits	Я	- RPD outside accented recovery limits	MA - Maranitanda adamatan Ingaran Kibarana

CLIENT Work Or Proiect	: Shaw Enviro der: 1202034 130774 Texti	nmental & Infrastruc on Providence	tture, Inc.							OC SU	IMMAR	X REPOI Method Bl
	1VAT 1 700T											
sec-Butylb	ensene	QN	2.0	µg/L								
4-Isopropyl	toluene	QN	2.0	hg/L								
1,3-Dichlon	obenzene	DN	2.0	, J/gµ								
1,4-Dichlor	obenzene	ND	2.0	hg/L								
n-Butylben:	zene	QN	2.0	hg/L								
1,2-Dichlor	obenzene	QN	2.0	hg/L								
1,2-Dibrom	o-3-chloropropane	DN	5.0	hg/L								
1,2,4-Trichl	orobenzene	QN	2.0	hg/L								
Hexachloro	butadiene	QN	2.0	hg/L								
Naphthalen	6	QN	5.0	hg/L								
1,2,3-Trichl	orobenzene	ΠN	2.0	hg/L								
Surr: Dib	romofluoromethane	24.64	2.0	hg/L	25	0	98.6	82	122		0	
Surr: 1,2	-Dichloroethane-d4	24.1	2.0	hg/L	25	0	96.4	73	135		0	
Surr: Tol	uene-d8	24.53	2.0	hg/L	25	0	98.1	82	117		0	
Surr: 4-E	Iromofluorobenzene	23.78	2.0	hg/L	25	0	95.1	<i>LL</i>	119		0	
067												
											·	
								,				
								·				
Qualifiers:	ND - Not Detected at the I - Analyte detected hel	ie Reporting Limit	S A	- Spike Recovery	/ outside accepte	d recovery limits	/ limits	B - Analyte	detected in the	e associated N	Method Blank	
	RL - Reporting Limit: (lefined as the lowest cond	entration the	lahoratory can				NA - Not a	pplicable wher	e J values or i	ND results occ	ur

CLENT: Situx Environmental & Infrastructure, Inc. OC CUMMARY REPOI Vorte Onder: 1202/14 Texturo Providence I.aboratory Control Sp. Vorte Onder: 1202/14 Texturo Providence I.aboratory Control Sp. Sergine D: head/214/12 Beath D: Measure Analysis Date 21/4/2012 94/200 M Perplexit Laboratory Control Sp. Sergine D: head/214/12 Beath D: Measure Ord Sergine Analysis Date 21/4/2012 94/200 M Perplexit Laboratory Control Sp. Sergine D: head/214/12 Beath D: Measure No. Sergine Optical Sample Optical Sample Optical Sample Analysis Date 21/4/2012 94/200 M Perp Date 21/4/2012 94/200 M													
Laboratory Control StateSample U: Tes-2017d Texton ProvidenceTest Cone: Sw2606Umit: gotAmbles Date2142012 8-42:00 MitFap: Date: 2142012 8-42:00 MitFap:	CLIENT: Work Order:	Shaw Environmental & Infrastr 1202034	ucture, Inc.							QC SUM	MARY	REPOI	ST
Sample ID: tes-671412 Batch ID: Fat334 Test Code: Wa336 Init: Vid: Flag Date: Vid: Vid: <th< th=""><th>Project:</th><th>130274 Textron Providence</th><th></th><th></th><th></th><th>8</th><th></th><th></th><th></th><th>Lal</th><th>poratory Co</th><th>ontrol Sp</th><th>ike</th></th<>	Project:	130274 Textron Providence				8				Lal	poratory Co	ontrol Sp	ike
Client II: Am II: Val 2121 M Service	Sample ID: Ics-02/	/14/12 Batch ID: R48344	Test Code	: SW8260B	Units: µg/L			Analysis Da	ate 2/14/20	12 9:42:00 AM	Prep Date:	2/14/2012	
Organization of the constrained many fraction of the constrained many fractoreconstraine many fraction of the constrained many fr	Client ID:		Run ID:	V-3_121214	A			SeqNo:	805387				
Amplia Health RL Uns Amount Result GMC Mont High Linit G/MS Result S/PDI PDID Dictiononflatene 1300 50 1901 20 0 7 2 169 2 169 2 169 2 169 2 169 2 169 2 169 2 169 2 169 2 169 2 169 2 169 2 169 2 169 2 169 2 169 2 169 2 169 2 169 169 2 169 169 2 169 169 2 169 169 2 169 169 2 169 <		QC Sample		ð	C Spike Origina	l Sample			0	Driginal Sample			
Dictionandmene 1303 50 µgL 20 64.4 25.6 169. 0 143.0 0 Viny chioke 2.357 5.0 µgL 20 101 26 124 0 Viny chioke 2.377 5.0 µgL 20 1 44 55 124 0 Renonmetheme 21.24 5.0 µgL 20 1 46 73 124 0 Nethy chioke 21.24 5.0 µgL 20 1 1 66 73 1 1 1 Nethy chioke 10 µgL 20 µgL 20 1 <t< td=""><td>Analyte</td><td>Result</td><td>RL</td><td>Units</td><td>Amount</td><td>Result</td><td>%REC</td><td>LowLimit</td><td>HighLimit</td><td>or MS Result</td><td>%RPD</td><td>APDLimit</td><td>Quí</td></t<>	Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	APDLimit	Quí
Chloromethane 2057 5.0 µg/L 20 1 <th1< th=""> 1 1 1</th1<>	Dichlorodifluorome	thane 19.09	5.0	µg/L	20	0	95.4	25	168	0			
Viny cholode 21.35 2.0 µg/L 20 0 107 55 152 0 Bronomethane 32.13 2.0 µg/L 20 0 114 65 157 0 0 Frichorollucomethane 312 2.0 µg/L 20 0 116 66 157 0 0 Trichorollucomethane 23.12 2.0 µg/L 20 0 105 77 139 0 0 Action 23.13 2.0 µg/L 20 0 105 77 139 0 0 Action 23.14 1.0 µg/L 20 0 102 77 139 0 0 Action of there 23.25 2.0 µg/L 20 0 122 129 12 129 0 12 Action of there 23.25 2.0 µg/L 20 0 122 129 0 12 12 <t< td=""><td>Chloromethane</td><td>20.57</td><td>5.0</td><td>hg/L</td><td>20</td><td>0</td><td>103</td><td>51</td><td>149</td><td>0</td><td></td><td></td><td></td></t<>	Chloromethane	20.57	5.0	hg/L	20	0	103	51	149	0			
Chlocenthane 22.72 5.0 µg/L 20 114 65 138 0 Trichloollourcmenthane 23.12 2.0 µg/L 20 0 77 53 128 0 Trichloollourcmenthane 23.12 5.0 µg/L 20 0 77 73 129 0 Action 23.12 1.0 µg/L 20 0 125 44 133 0 Action distification 23.12 2.0 µg/L 20 0 125 44 133 0 Action distification 23.24 5.0 µg/L 20 0 125 12<	Vinyl chloride	21.35	2.0	hg/L	20	0	107	59	152	0			
Bernomentane 1954 2.0 pg/L 20 0 77 53 125 0 Tricholondomentane 23.12 5.0 pg/L 20 0 166 73 125 0 Tricholondomentane 21.24 10 pg/L 20 0 166 73 125 0 Acetone 21.24 10 pg/L 20 0 125 13 13 0 Acetone 22.43 5.0 pg/L 20 0 122 77 139 0 Acetone 23.43 2.0 pg/L 20 0 122 13	Chloroethane	22.72	5.0	hg/L	20	0	114	65	138	0			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bromomethane	19.54	2.0	hg/L	20	0	97.7	53	128	0			
Diethyl ether 21.24 5.0 µg/L 20 106 7.3 121 0 Acetone 1.254 10 µg/L 20 0 62.7 44 133 0 1.10/intorethere 21.24 10 µg/L 20 0 12.5 129 0 Acetone 2.7 2.6 µg/L 20 0 125 129 0 Action disulfde 20.7 2.0 µg/L 20 0 122 129 0 Methylere chloride 22.43 5.0 µg/L 20 0 122 129 0 Methylere chloride 20.5 0 9g/L 20 128 47 133 0 Methylere chloride 21.2 0 9g/L 20 9g/L 20 129 0 2.6 Uchloroprotene 13.6 20 9g/L 20 9g/L 20 129 0 2.2 Dichloroprotene 2.2 Dichlorop	Trichlorofluorometh	1ane 23.12	2.0	hg/L	20	0	116	56	157	0			
Acetone 12.44 10 µg/L 20 0 62.7 44 133 0 1.10 1.10 µg/L 20 0 103 77 133 0 Carbon displice 23.14 10 µg/L 20 0 112 77 133 0 Methylene chloride 23.43 20 µg/L 20 0 122 66 130 0 Methylene chloride 23.43 20 µg/L 20 0 122 66 130 0 Methylene 20.59 20 µg/L 20 0 123 14 131 13.10 inforethane 13.33 20 µg/L 20 0 126 127 141 0 2.2-Dichloroethane 23.25 20 µg/L 20 0 128 129 0 2.2-Dichloroethane 23.25 20 µg/L 20 129 128 128 128	Diethyl ether	21.24	5.0	hg/L	20	0	106	73	121	0			
1;1:Dichloroethene 21.04 1:0 µg/L 20 105 17 136 0 Retrylon disultide 20.77 2.0 µg/L 20 104 55 129 0 Metrylo therburk dire 24.31 2.0 µg/L 20 0 122 75 129 0 Metryl therburk dire 24.31 2.0 µg/L 20 0 122 75 129 0 0 1:1.Dichloroethene 20.59 2.0 µg/L 20 0 79 79 129 0 1:1.Dichloroethene 1393 2.0 µg/L 20 0 73 79 141 0 2:-Butanore 1:1.Dichloroethene 23.25 2.0 µg/L 20 73 74 141 0 2:-Jobinoroethene 21.25 2.0 µg/L 20 0 74 141 0 2:-Jobinoroethene 21.28 0 µg/L 20 0	Acetone	12.54	10	µg/L	20	0	62.7	44	133	0			
Carbon disutitie 2.77 2.0 $\mu g/L$ 2.0 10^{4} 5.5 12^{9} <t< td=""><td>1,1-Dichloroethene</td><td>21.04</td><td>1.0</td><td>hg/L</td><td>20</td><td>0</td><td>105</td><td>77</td><td>139</td><td>0</td><td></td><td></td><td></td></t<>	1,1-Dichloroethene	21.04	1.0	hg/L	20	0	105	77	139	0			
Methylene chloride 22.43 5.0 µg/L 20 112 77 133 0 Methylene chloride 23.31 20 µg/L 20 122 66 130 0 11-Dichloroethane 29.33 20 µg/L 20 0 122 66 130 0 11-Dichloroethane 13.83 20 µg/L 20 0 123 73 124 0 2-Dichloroethane 15.97 10 µg/L 20 0 138 141 0 2-Dichloroethane 21.25 20 µg/L 20 146 147 155 0 2-Dichloroethane 21.25 20 µg/L 20 144 0 0 15-Dichloroethane 21.25 10 µg/L 20 0 144 0 0 11-Ji-Tirkhoroethane 21.78 20 10 µg/L 20 0 144 0 0 11-Ji-Ji-	Carbon disulfide	20.77	2.0	hg/L	20	0	104	55	129	0			
Methyl tert-butyl ether 2.431 2.0 $\mu g/L$ 2.0 $\mu g/$	Methylene chloride	22.43	5.0	hg/L	20	0	112	77	133	0			
trans-1,2-Dichloroethene 20.59 2.0 µg/L 2.0 0 103 73 128 0 1,1-Dichloroethane 19.83 2.0 µg/L 20 9.2 81 131 0 2-Butanone 15.97 10 µg/L 20 0 79 141 0 2-Butanone 15.97 10 µg/L 20 0 78 128 0 2-Dichropropane 2.3.25 2.0 µg/L 20 0 78 128 0 1-1-Dichropropane 2.125 2.0 µg/L 20 0 78 128 0 Chorofromethane 2.135 2.0 µg/L 20 0 77 138 0 1,1-Trichloroethane 2.138 2.0 µg/L 20 0 144 0 1,1-Trichloroethane 2.138 2.0 µg/L 20 0 17 138 0 1,1-Trichloroethane 2.13	Methyl tert-butyl et	her 24.31	2.0	hg/L	20	0	122	66	130	0			
1,1-Dichloroethane 19:83 2.0 $\mu gl.$ 2.0 $\mu gl.$ 2.0 $\eta gl.$ 131 0 2.Butanone 15:97 10 $\mu gl.$ 20 0 738 47 141 0 2.Butanone 15:97 10 $\mu gl.$ 20 0 78 47 155 0 2.Polichloropropane 23:25 2.0 $\mu gl.$ 20 1 20 14 0 cis-1.2-Dichloropthane 21:25 2.0 $\mu gl.$ 20 1 20 14 0 Chloropturan 28:52 10 $\mu gl.$ 20 1 20 14 0 Interacholorentane 21:35 2.0 $\mu gl.$ 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20	trans-1,2-Dichloroe	thene 20.59	2.0	µg/L	20	0	103	79	128	0			
2-Butanone 15.97 10 $\mu g/L$ 20 79.8 47 141 0 2,2-Dichloroprane 23.25 2.0 $\mu g/L$ 20 16 47 155 0 cis-1,2-Dichloroprane 23.25 2.0 $\mu g/L$ 20 0 106 78 128 0 cis-1,2-Dichloroptane 21.25 2.0 $\mu g/L$ 20 0 104 68 132 0 Chloroptome 20.81 2.0 $\mu g/L$ 20 0 143 68 144 0 Chloroptomethane 22.35 2.0 $\mu g/L$ 2.0 0 112 77 138 0 1,1-Dichloroptnane 22.35 2.0 $\mu g/L$ 2.0 0 112 77 138 0 1,1-Dichloroptnane 21.3 2.0 $\mu g/L$ 2.0 0 132 0 1,1-Dichloroptnane 2.3.5 2.0 $\mu g/L$ 2.0 0 132	1,1-Dichloroethane	19.83	2.0	µg/L	20	0	99.2	81	131	0			
2,2-Dichloropene 23.25 2.0 $\mu gl.$ 20 16 47 155 0 cis-1,2-Dichloroethene 21.25 2.0 $\mu gl.$ 20 10 10 128 128 0 Chloroform 20.81 2.0 $\mu gl.$ 20 1 20 144 0 Tetrahydrofuran 28.52 10 $\mu gl.$ 20 1 12 77 138 0 Tetrahydrofuran 28.52 10 $\mu gl.$ 20 0 144 0 0 Tetrahydrofuran 28.52 10 $\mu gl.$ 20 0 144 0 0 Bromochloromethane 21.78 2.0 $\mu gl.$ 20 0 144 0 0 1,1-Tichloroethane 21.78 2.0 $\mu gl.$ 20 0 144 0 0 1,1-Dichloroethane 21.78 2.0 $\mu gl.$ 20 0 149 0 0 1,1-Dichloroethane 21.79 129 14 0 0 0 0	2-Butanone	15.97	10	µg/L	20	0	79.8	47	141	0			
cis-1,2-Dichloroethene 21.25 2.0 μgl_{1} 20 μgl_{1} 20 10 128 0 Chloroform 20.81 2.0 μgl_{1} 20 10 143 63 132 0 Tetrahydrofuran 28.52 10 μgl_{1} 20 12 77 138 0 Bromochloromethane 21.78 2.0 μgl_{1} 20 12 77 138 0 1,1,1-Trichloroethane 21.78 2.0 μgl_{1} 20 0 112 77 138 0 1,1,1-Dichloroethane 21.78 2.0 μgl_{1} 20 0 12 77 138 0 1,1-Dichloroethane 21.78 2.0 μgl_{1} 20 0 13 14 0 0 1,1-Dichloroethane 22.53 2.0 μgl_{1} 20 0 13 0 0 (1,1)-Dichloroethane 22.53 2.0 μgl_{1} 20 0 14 0 0 (2 chon tetrachloride 2.0	2,2-Dichloropropan	le 23.25	2.0	µg/L	20	0	116	47	155	0			
	cis-1,2-Dichloroeth	ene . 21.25	2.0	hg/L	20	0	106	78	128	0			
Tetrahydrofurar 28.52 10 $\mu g/L$ 20 143 63 144 0 Bromochloromethane 22.35 2.0 $\mu g/L$ 20 0 112 77 138 0 1,1,1-Trichloroethane 22.35 2.0 $\mu g/L$ 20 0 112 77 138 0 1,1,1-Dichloroethane 22.53 2.0 $\mu g/L$ 20 0 113 71 141 0 1,1-Dichloroethane 22.53 2.0 $\mu g/L$ 20 0 113 71 141 0 1,1-Dichloroethane 22.05 2.0 $\mu g/L$ 20 0 110 58 130 0 1,2-Dichloroethane 22.04 1.0 $\mu g/L$ 20 0 140 0 1,2-Dichloroethane 22.04 1.0 $\mu g/L$ 20 0 0 1,2-Dichloroethane 22.04 1.0 $\mu g/L$ 20 10 0 1,2-Dich	Chloroform	20.81	2.0	hg/L	20	0	104	69	132	0			
Bromochloromethane 22.35 2.0 $µg/L$ 20 0 12 77 138 0 1,1,1-Trichloroethane 21.78 2.0 $µg/L$ 20 0 109 68 145 0 1,1,1-Trichloroethane 21.78 2.0 $µg/L$ 20 0 109 68 145 0 1,1-Dichloroethane 22.53 2.0 $µg/L$ 20 0 110 58 130 0 1,2-Dichloroethane 22.05 2.0 $µg/L$ 20 0 104 61 140 0 1,2-Dichloroethane 22.04 1.0 $µg/L$ 20 0 10 7 140 0 1,2-Dichloroethane 22.04 1.0 $µg/L$ 20 0 1 0 7 1 1 0 0 1,2-Dichloroethane 22.04 1.0 $µg/L$ 20 0 0 0 0 Benzene 22.04 <td< td=""><td>Tetrahydrofuran</td><td>28.52</td><td>10</td><td>hg/L</td><td>20</td><td>0</td><td>143</td><td>63</td><td>144</td><td>0</td><td></td><td></td><td></td></td<>	Tetrahydrofuran	28.52	10	hg/L	20	0	143	63	144	0			
1,1,1-Trichloroethane 21.78 2.0 $µg/L$ 20 0 109 68 145 0 1,1-Dichloroethane 22.53 2.0 $µg/L$ 20 0 113 71 141 0 1,1-Dichloropropene 22.05 2.0 $µg/L$ 20 0 110 58 130 0 1,2-Dichloroethane 22.04 1.0 $µg/L$ 20 0 104 61 140 0 1,2-Dichloroethane 22.04 1.0 $µg/L$ 20 0 104 61 140 0 1,2-Dichloroethane 22.04 1.0 $µg/L$ 20 0 104 61 140 0 Benzene 22.04 1.0 $µg/L$ 20 0 10 75 129 0 Valifiers: ND - Not Detected at the Reporting Limit $S - Spike Recovery outside accepted recovery limits S - Analyte detected in the associated Method Blank 1 - Analyte detected below quantitation limits R - RPD outside accepted recovery limits A - Not applicable where J values or ND results occur J - Analyte detected below quantit$	Bromochlorometha	ine 22.35	2.0	µg/L	20	0	112	11	138	0			
1,1-Dichloropropene 22.53 2.0 $µg/L$ 20 0 13 71 141 0 Carbon tetrachloride 22.05 2.0 $µg/L$ 20 0 100 58 130 0 1,2-Dichloroethane 20.79 2.0 $µg/L$ 20 0 104 61 140 0 1,2-Dichloroethane 20.79 2.0 $µg/L$ 20 0 104 61 140 0 Benzene 22.04 1.0 $µg/L$ 20 0 10 75 129 0 Oualifiers: ND - Not Detected at the Reporting Limit 5 - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits N - Not applicable where J values or ND results occur	1,1,1-Trichloroetha	ne 21.78	2.0	µg/L	20	0	109	68	145	0			
Carbon tetrachloride22.052.0 $\mu g/L$ 200105813001,2-Dichloroethane20.792.0 $\mu g/L$ 200104611400Benzene22.041.0 $\mu g/L$ 200110751290Qualifiers:ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method BlankJ - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsNA - Not applicable where J values or ND results occur	1,1-Dichloropropen	le 22.53	2.0	hg/L	20	0	113	71	141	0			
1,2-Dichloroethane20.792.0 $\mu g/L$ 200104611400Benzene22.041.0 $\mu g/L$ 200110751290Qualifiers:ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method BlankJ - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsNA - Not applicable where J values or ND results occur	Carbon tetrachlorid	le 22.05	2.0	hg/L	20	0	110	58	130	0			
Benzene 22.04 1.0 µg/L 20 0 10 75 129 0 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur	1,2-Dichloroethane	20.79	2.0	hg/L	20	0	104	61	140	0			
Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur	Benzene	22.04	1.0	hg/L -	20	0	110	75	129	0		×	
J - Analyte detected below quantitation limits RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur	Qualifiers: ND	- Not Detected at the Reporting Limit	S -	Spike Recover	y outside accepted	l recovery l	imits	B - Analyte	e detected in t	the associated Meth	lod Blank		
	Д - <u>Г</u>	Analyte detected below quantitation limits	R.	RPD outside a	ccepted recovery	limits		NA - Not a	nnlicable wh	ere I values or ND	results occur		
RI - Renorring Limit defined as the lowest concentration the Jahratony can accurately curanitiate	- I'A	$\mathbf{D}_{1} = \mathbf{D}_{1} = \mathbf{D}_{1} = \mathbf{D}_{2} = \mathbf{D}_{1} = \mathbf{D}_{2} = \mathbf{D}_{1} = \mathbf{D}_{2} = \mathbf{D}_{1} = \mathbf{D}_{2}$	• •	-									

CHINY1: Sinv Environmental & Infrastructure, Inc. Over Chine: 1202/14 Control Data Over Chine: 1202/14 Earlor State Pojet: 1202/14 Earlor State Eaboratory Control Spin Projet: 1202/14 Earlor State Eaboratory Control Spin Projet: 1202/14 Earlor State Eaboratory Control Spin Projet: 1202/14 Earlor State Control Spin Projet: 202 00/1 20 00/2 20 00/2 20 Projet: 202 00/1 20 00/2 20 00/2 20 00/2 20 00/2 20 00/2 20 00/2 20 00/2 20 00/2 20 00/2 20 00/2 20 00/2 20 00/2 20 00/2 20 00/2 20 00/2 20 00/2 20 20 20 20 20 20 20 20 20 20 20 20	AMRO E1	nvironmental L	aboratories	Corp.							Date: 17	⁻ -Feb-12
Table and the production of theproductin of theproduction of the production of the production of	CLIENT: Work Order:	Shaw Environm	ental & Infrastru	icture, Inc	, i						QC SUMMARY	REPORT
Triple function 2.61 2.0 0.0	Project:	130274 Textron	l Providence								Laboratory (Control Spike
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Trichloroethene		21.61	2.0	hg/L	20	0	108	81	129	0	
Bernoteletionentitation 2031 2.0 ppl 20 10 102 55 113 0 Hernonomentitation 10.71 10 ppl 20 0 66.5 54 123 0 Hernonomentitation 21.71 10 ppl 20 0 66.5 54 123 0 Hernonomentitation 21.73 10 ppl 20 0 103 57 123 0 Tass -1.5.0bionropenens 21.73 20 ppl 20 0 123 17 124 0 Tass -1.5.0bionropenens 21.73 20 ppl 20 0 123 124 0 Tass -1.5.0bionropenens 21.73 20 ppl 20 0 173 124 124 0 Tass -1.5.0bionropenens 21.3 20 ppl 20 124 124 0 0 Tass -1.6.0bionropenens 21.4 20 0 124 <td< td=""><td>1,2-Dichloroprop</td><td>Jane</td><td>20.49</td><td>2.0</td><td>hg/L</td><td>20</td><td>0</td><td>102</td><td>81</td><td>134</td><td>0</td><td></td></td<>	1,2-Dichloroprop	Jane	20.49	2.0	hg/L	20	0	102	81	134	0	
	Bromodichlorom	nethane	20.31	2.0	hg/L	20	0	102	63	118	0	
Allotity, 2 pertinone 1371 10 ppl1 20 0 64 124 124 0 Toluene 1373 11 0 ppl1 20 0 106 151 125 0 Toluene 21.12 20 ppl1 20 0 106 151 125 0 1.1.2.Tollonopropene 21.28 10 ppl1 20 0 133 11 124 0 1.1.2.Tollonopropene 21.3 20 ppl1 20 0 133 11 124 0 1.2.Tollonopropene 21.3 20 ppl1 20 0 133 11 124 0 1.2.Tollonopropene 21.11 20 ppl1 20 0 133 133 0 1.2.Tollonopropene 21.11 20 ppl1 20 0 133 0 133 0 1.1.1.2.Tollonopropene 21.11 20 ppl1 20 <	Dibromomethan	Ð	21.57	2.0	hg/L	20	0	108	76	123	0	
(s) (s) <td>4-Methyl-2-pent</td> <td>anone</td> <td>19.71</td> <td>10</td> <td>µg/L</td> <td>20</td> <td>0</td> <td>98.6</td> <td>54</td> <td>124</td> <td>0</td> <td></td>	4-Methyl-2-pent	anone	19.71	10	µg/L	20	0	98.6	54	124	0	
	cis-1,3-Dichloro	oropene	20.75	1.0	hg/L	20	0	104	65	115	0	
	Toluene		21.12	2.0	hg/L	20	0	106	81	123	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	trans-1,3-Dichlo	ropropene	21.28	1.0	µg/L	20	0	106	55	126	.0	
1.2. Chloronothane 2.67 1.0 µµL 2.0 µµL 2.0 1.1 1.2 1.1 1.2 1.1 1.1 1.2 1.2	1,1,2-Trichloroet	thane	21.79	2.0	hg/L	20	0	109	79	122	0	
2-Hearance 17.76 10 pgl 20 gl 41 138 0 1-Jonicontopane 21.62 20 pgl 20 191 20 0 13 0 1-Jonicontopane 21.62 20 pgl 20 191 20 191 0 0 1-Jonicontopane 21.63 20 pgl 20 101 81 125 0 1-Jonicontopane 21.65 20 pgl 20 101 81 125 0 1-Jonicontopane 21.65 20 pgl 20 111 81 125 0 1-Jonicontopane 21.65 20 pgl 20 111 81 125 0 Alphenzene 23.16 20 pgl 20 111 81 125 0 Alphenzene 23.1 20 pgl 20 111 81 125 0 Alphenzene 23.2	1,2-Dibromoeth	ane	22.67	2.0.	µg/L	20	0	113	71	124	0	
15. Oblitomorpoare 2132 2.0 $\mu ql.$ 2.0 2.0	2-Hexanone		17.76	10	hg/L	20	0	88.8	41	138	0	
Tetrachlocorethene 2.3.8 2.0 pg/L 2.0 1.1 3.7 1.37 0 Obtomonohane 21.1 2.0 pg/L 20 0 1.03 59 119 0 Choonoshane 21.11 2.0 pg/L 20 0 1.1 27 0 Choonoshane 21.11 2.0 pg/L 20 0 1.1 28 0 0 Tip, Stratechoroehane 21.45 2.0 pg/L 200 0 110 81 125 0 0 Stronojom 21.45 2.0 pg/L 200 0 110 81 125 0 0 Stronojom 21.45 2.0 pg/L 200 0 110 81 125 0 0 Stronojomone 2.0 pg/L 2.0 pg/L 2.0 101 0 0 0 0 0 0 0 0 0 0 0	1,3-Dichloroprop	Jane	21.52	2.0	hg/L	20	0	108	81	129	0	
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	Tetrachloroethei	ne	23.38	2.0	hg/L	20	0	117	87	137	0	
	Dibromochlorom	nethane	20.52	2.0	hg/L	20	0	103	59	119		
1,1,1,2-Tetrachloroethane 20.83 2.0 $\mu \rho L$ 20 1.0 65 133 0 Ethylbenzeine 21.95 2.0 $\mu \rho L$ 20 1.1 81 1.25 0 Oxylame 4.15 2.0 $\mu \rho L$ 20 0 1.11 81 1.25 0 oxylame 21.95 2.0 $\mu \rho L$ 20 0 1.00 88 1.42 0 0 Sylvene 2.1.95 2.0 $\mu \rho L$ 2.0 0 1.13 88 1.25 0 0 Sylvene 2.3.1 2.0 $\mu \rho L$ 2.0 1.01 88 1.35 0 Biomolemane 2.16 1.02 2.0 $\mu \rho L$ 2.0 1.13 66 1.35 1.13 I.2.5-Trimethylbenzene 2.3.65 2.0 $\mu \rho L$ 2.0 1.25 2 0 Cholorobulane 2.1.6 0 1.25 2 1.15 2 <t< td=""><td>Chlorobenzene</td><td></td><td>21.11</td><td>2.0</td><td>hg/L</td><td>20</td><td>0</td><td>106</td><td>86</td><td>121</td><td>0</td><td></td></t<>	Chlorobenzene		21.11	2.0	hg/L	20	0	106	86	121	0	
Ethylbenzene 21.95 2.0 pg/L 20 110 81 125 0 m_p -Yylene 44.22 2.0 pg/L 40 0 111 81 125 0 Sylene 21.95 2.0 pg/L 20 0 110 66 133 0 Sylene 23.1 2.0 pg/L 20 0 125 75 139 0 Storpylbenzene 23.08 2.0 pg/L 20 0 125 75 139 0 1.1.2.2-Tetrachloroethane 23.68 2.0 pg/L 20 0 125 75 139 0 1.1.2.2-Tetrachloroethane 23.67 2.0 pg/L 20 0 125 75 139 0 1.1.2.2-Tetrachloroethane 23.27 2.0 pg/L 20 0 125 0 1.1.3.5-Timethylbenzene 23.27 2.0 pg/L 20 0 126	1,1,1,2-Tetrachl	oroethane	20.83	2.0	µg/L	20	0	104	65	133	0	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Ethylbenzene		21.95	2.0	hg/L	20	0	110	81	125	0	
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	m,p-Xylene		44.52	2.0	hg/L	40	0	111	81	125	0	
Styrene 23.1 2.0 $\mu g/L$ 2.0 2.0 $\mu g/L$ 2.0 2.0 2.0 2.0 2.0 2.0	o-Xylene		21.95	2.0	hg/L	20	0	110	68	134	0	
Bromoform 20.66 2.0 µg/L 2.0 0 103 44 115 0 Isopropylbenzene 25.08 2.0 µg/L 20 125 75 139 0 1,1,2,2-Tetrachloreethane 22.55 2.0 µg/L 20 0 133 65 132 0 1,1,2,2-Tetrachloreethane 22.55 2.0 µg/L 20 0 133 65 132 0 1,2,3-Trichloropropane 21.48 2.0 µg/L 20 0 116 139 0 Propylbenzene 23.06 2.0 µg/L 20 0 116 73 119 0 2-Chlorotoluene 21.4 2.0 µg/L 20 0 116 78 119 0 1,3,5-Trimethylbenzene 2.3.08 2.0 µg/L 20 0 116 78 129 0 1,3,5-Trimethylbenzene 2.3.08 2.0 µg/L 20 11	Styrene		23.1	2.0	hg/L	20	0	116	66	133	0	
Sopropribenzene 25.08 2.0 $\mu g' L$ 2.0 0 0 2.0 $\mu g' L$ 2.0 $\mu g' L$ 2.0	Bromoform		20.66	2.0	hg/L	20	0	103	44	115	0	
1,1,2,2-Tetrachloroethane 22.55 2.0 $µg/L$ 20 0 13 65 132 0 1,2,3-Trichloroethane 21.83 2.0 $µg/L$ 20 0 106 64 139 0 1,2,3-Trichloroethane 21.33 2.0 $µg/L$ 20 0 116 73 129 0 n-Propybenzene 23.27 2.0 $µg/L$ 20 0 116 73 129 0 2-Chlorotoluene 21.4 2.0 $µg/L$ 20 0 116 78 121 0 4-Chlorotoluene 23.36 2.0 $µg/L$ 20 0 116 78 121 0 1,3,6-Trimethylbenzene 22.36 2.0 $µg/L$ 20 0 115 76 122 0 1,3,6-Trimethylbenzene 23.08 2.0 $µg/L$ 20 0 116 76 125 0 1,3,6-Trimethylbenzene 22.31 2.0 $µg/L$ 20 0 116 76 125 0	lsopropylbenzen	le	25.08	2.0	hg/L	20	0	125	75	139	0	
1,2,3-Trichloropropane 21.83 2.0 µg/L 20 0 64 139 0 Bromobenzene 23.06 2.0 µg/L 20 0 115 82 119 0 Propylbenzene 23.27 2.0 µg/L 20 0 166 73 129 0 2-Chlorotoluene 21.4 2.0 µg/L 20 0 112 82 121 0 4-Chlorotoluene 22.36 2.0 µg/L 20 0 115 82 122 0 1,3,5-Trimethylbenzene 22.36 2.0 µg/L 20 0 115 76 125 0 1,3,5-Trimethylbenzene 23.08 2.0 µg/L 20 0 115 76 125 0 1,2,4-Trimethylbenzene 22.71 2.0 µg/L 20 0 146 76 125 0 1,2,4-Trimethylbenzene 22.71 2.0 µg/L 20 0 147 76 125 0 1,2,4-Trimethylbenzene 22.7	1,1,2,2-Tetrachle	oroethane	22.55	2.0	hg/L	20	0	113	65	132	0	
Bromobenzene23.062.0 $\mu g/L$ 2001582190n-Propylbenzene23.272.0 $\mu g/L$ 2001167312902-Chlorotoluene21.42.0 $\mu g/L$ 2001177812104-Chlorotoluene21.42.0 $\mu g/L$ 2001128212201,3,5-Trimethylbenzene22.952.0 $\mu g/L$ 2001157612501,3,5-Trimethylbenzene23.082.0 $\mu g/L$ 2001167612501,2,4-Trimethylbenzene23.082.0 $\mu g/L$ 2001167612501,2,4-Trimethylbenzene22.712.0 $\mu g/L$ 2001147912501,2,4-Trimethylbenzene22.712.0 $\mu g/L$ 2001147912501,2,4-Trimethylbenzene1,21.21.21.201.201,2,4-Trimethylbenze	1,2,3-Trichlorop	ropane	21.83	2.0	hg/L	20	0	109	64	139	0	
n-Propylbenzene23.272.0µg/L200167312902-Chlorotoluene21.42.0µg/L2001077812104-Chlorotoluene21.362.0µg/L2001128212201,3,5-Trimethylbenzene22.362.0µg/L2001157612501,3,5-Trimethylbenzene23.082.0µg/L2001167612501,2,4-Trimethylbenzene23.082.0µg/L2001147912501,2,4-Trimethylbenzene22.712.0µg/L2001147912501,2,4-Trimethylbenzene22.712.0µg/L2001147912501,2,4-Trimethylbenzene22.712.0µg/L2001147912501,2,4-Trimethylbenzene22.712.0µg/L20101147912501,2,4-Trimethylbenzene22.712.0µg/L20101147912501,2,4-Trimethylbenzene22.712.0µg/L20101147912501,2,4-Trimethylbenzene1,21.21.21.2125001,2,4-Trimethylbenzene1,4791.21.201.21,41,4791.21.200	Bromobenzene		23.06	2.0	hg/L	20	0	115	82	119	0.	
2-Chlorotoluene21.42.0 $\mu g/L$ 2001077812104-Chlorotoluene22.362.0 $\mu g/L$ 2001128212201,3,5-Trimethylbenzene22.952.0 $\mu g/L$ 2001157612501,3,5-Trimethylbenzene22.082.0 $\mu g/L$ 2001157612901,2,4-Trimethylbenzene23.082.0 $\mu g/L$ 2001147912901,2,4-Trimethylbenzene22.712.0 $\mu g/L$ 2001147912501,2,4-Trimethylbenzene22.712.0 $\mu g/L$ 2001147912501,2,4-Trimethylbenzene27.112.0 $\mu g/L$ 2001147912501,2,4-Trimethylbenzene1,2,4-Trimethylbenzene27.12.0 $\mu g/L$ 2010131,2,4-Trimethylbenzene27.12.0 $\mu g/L$ 201147912501,2,4-Trimethylbenzene1,1479125125011,3,14-Trimethylbenzene1,5,1479125111,4,171,411,41791,42111,4,171,411,411,411111,4,171,411,411,411111,4,171,411,411,41111 <t< td=""><td>n-Propylbenzen</td><td>0</td><td>23.27</td><td>2.0</td><td>hg/L</td><td>20</td><td>0</td><td>116</td><td>73</td><td>129</td><td>0</td><td></td></t<>	n-Propylbenzen	0	23.27	2.0	hg/L	20	0	116	73	129	0	
4-Chlorotoluene22.362.0 $\mu g/L$ 2001128212201,3,5-Trimethylbenzene22.952.0 $\mu g/L$ 200115761250tert-Butylbenzene23.082.0 $\mu g/L$ 2001147912901,2,4-Trimethylbenzene22.712.0 $\mu g/L$ 2001147912501,2,4-Trimethylbenzene22.712.0 $\mu g/L$ 2001147912501,2,4-Trimethylbenzene22.712.0 $\mu g/L$ 2001147912501,2,4-Trimethylbenzene27.112.0 $\mu g/L$ 200114791250Qualifiers:ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method Blank1<. Analyte detected below quantitation limits	2-Chlorotoluene		21.4	2.0	hg/L	20	0	107	78	121	0	
1,3,5-Trimethylbenzene22.952.0 $\mu g/L$ 200115761250tert-Butylbenzene23.082.0 $\mu g/L$ 2001156912901,2,4-Trimethylbenzene22.712.0 $\mu g/L$ 200114791250Qualifiers:ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method BlankJ - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsNA - Not applicable where J values or ND results occurR1 - Renorine Limit: defined as the lowest concentration the laboratory can accurately cuantitate.NA - Not applicable where J values or ND results occur	4-Chlorotoluene		22.36	2.0	, hg/L	20	0	112	82	122	0	
tert-Butylbenzene 23.08 2.0 μg/L 20 0 15 69 129 0 1,2,4-Trimethylbenzene 22.71 2.0 μg/L 20 0 14 79 125 0 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur	1,3,5-Trimethylb	enzene	22.95	2.0	hg/L	20	0	115	76	125	0	
1,2,4-Trimethylbenzene 22.71 2.0 μg/L 20 0 114 79 125 0 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur	tert-Butylbenzen	e	23.08	2.0	hg/L	20	0	115	69	129	0	
Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur R1 - Removine Limit: A - Not applicable where J values or ND results occur	1,2,4-Trimethylb	enzene	22.71	2.0	µg/L	20	0	114	79	125	0	
J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur R1 - Removine 1 imit: defined as the lowest concentration the laboratory can accurately quantitate.	Qualifiers: N	VD - Not Detected at the F	keporting Limit		S - Spike Recove	ry outside accept	ed recovery	limits	B - Analyte d	letected in th	he associated Method Blank	
R1Renorting Limit: defined as the lowest concentration the laboratory can accurately quantitate.	.	- Analyte detected below	quantitation limits		R - RPD outside	accepted recover	y limits		NA - Not and	olicable whe	re J values or ND results occur	
	2	'l Renortina l imit [,] defi	ned as the lowest con	ncentration	the lahoratory can	accurately onan:	eteti		***			

U69

CLIENT: Work Ordon	Shaw Environ	mental & Infrastru	sture, Inc.						Ŭ	2C SUMMARY	REPOR
Project:	1202034 130274 Textrc	in Providence								Laboratory C	ontrol Spil
sec-Butylbenzene		23.57	2.0	hg/L	20	0	118	69	132	0	
4-Isopropyltoluene		22.78	2.0	hg/L	20	Ō	114	66	132	0	
1,3-Dichlorobenzene	¢,	21.64	2.0	hg/L	20	0	108	86	125	0	,
1,4-Dichlorobenzene	4	20.81	2.0	hg/L	20	0	104	82	126	0	
n-Butylbenzene		23.34	2.0	hg/L	20	0	117	59	143	0	
1,2-Dichlorobenzene	Û	21.11	2.0	hg/L	20	0	106	82	123	0	
1,2-Dibromo-3-chloru	opropane	23.81	5.0	hg/L	20	0	119	44	122	0	
1,2,4-Trichlorobenze	ene	22.85	2.0	hg/L	20	0	114	73	137	0	
Hexachlorobutadien	e	21.04	2.0	hg/L	20	0	105	70	145	0	
Naphthalene		21.76	5.0	hg/L	20	Ö	109	67	128	0	
1,2,3-Trichlorobenze	ane	23.01	2.0	hg/L	20	0	115	63	135	0	
Surr: Dibromofluo	romethane	25.33	2.0	hg/L	25	0	101	82	122	0	
Surr: 1,2-Dichloro	ethane-d4	24.6	2.0	hg/L	25	0	98.4	73	135	0	
Surr: Toluene-d8		24.8	2.0	hg/L	25	0	99.2	82	117	0	
Surr: 4-Bromofluo	vrobenzene	24.93	2.0	hg/L	25	0	99.7	77	119	0	
											• •
		·									
•		ŗ									
Qualifiers: ND -	Not Detected at the	: Reporting Limit	S	- Spike Recove	ry outside accepted	d recovery lii	mits	B - Analyte d	etected in the a	ssociated Method Blank	
J - An	alyte detected belo	w quantitation limits	R	- RPD outside	accepted recovery	limits		NA - Not app	licable where J	values or ND results occur	
RL - I	Reporting Limit: de	fined as the lowest con	centration the	e lahoratory car	i occurately quantit	0 1 0					

CILINT: Stave Environmental & Infrastructure, Inc. Control Propriet Administrature and A infrastructure, Inc. Work Order: 202014 Elevention Elevention Elevention Work Order: 202014 Elevention Elevention Elevention Support: 130741 Elevention Polycite Elevention Support: 130741 Elevention Polycite Administere Administere<	AMRO En	vironment	al Laboratories	Corp.								Date: 17	7-Feb-12	
Interaction of the control of the contro of the control of the control of the control of the control of t	CLIENT: Work Order:	Shaw Envii	onmental & Infrastru	cture, Inc.							QC SUM	IMARY	REPO	RT
Simple D: lea-QrISr2 Bath D: red/Sr1Sr2 Test Code: SY2S0B Init: Analysis base Test Code: SY2S0B Init: Analysis base Test Date: 215/2012 Fer Date: 215/2012 Clert D: Cod Simple Marking Marking <td< th=""><th>Project:</th><th>130274 Te</th><th>ttron Providence</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>La</th><th>boratory (</th><th>Control Sp</th><th>ike</th></td<>	Project:	130274 Te	ttron Providence								La	boratory (Control Sp	ike
Image:	Sample ID: Ics-0	2/15/12	Batch ID: R48355	Test Code	e: SW8260B	Units: µg/			Analysis D	ate 2/15/20	12 8:52:00 AM	Prep Date	s: 2/15/2012	
Colspan="6">Constant SampleConstant SampleConstant SampleAnothAnothAnothAnotherColspan= SampleDerivationRaudNLUnitsAnothRaudSample	Client ID:			Run ID:	V-3_121215	A			SeqNo:	805479				
Analytic Result RL Units Amount Result RL Units Amount Result RT Units Amount Result RT Units Amount Result RT Units Amount Result RT Result RT Result RT			QC Sample		σ	C Spike Origir	ial Sample			0	Driginal Sample			
Dehtoredification 15.83 5.0 upl. 20 7.32 5.6 16.9 0 Viny chlorida 21.37 5.0 upl. 20 0 732 5.6 16.9 0 Viny chlorida 21.37 5.0 upl. 20 0 732 5.6 137 0 0 Chloresthane 21.37 2.0 upl. 20 0 10.8 5.6 132 0 0 Chloresthane 11.6 20 0 10.9 20 0 9.2 5.7 129 0 0 Rehtyle chul 116.8 10 upl. 20 0 9.2 121 12 1	Analyte		Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qué
	Dichlorodifluorom	ethane	15.83	5.0	hg/L	20	0	79.2	25	168	0			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Chloromethane		19.73	5.0	hg/L	20	0	98.6	51	149	0			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Vinyl chloride		21.38	2.0	hg/L	20	0	107	59	152	0			
Benomenthane 17.77 2.0 $\mu \rho l$ 2.0 0 2.0 2.0 0 2.0 2.0 2.0 2.0	Chloroethane		20.64	5.0	hg/L	20	0	103	65	138	0			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bromomethane		17.77	2.0	hg/L	20	0	88.8	53	128	0			
Detrivention 1337 5.0 upd. 200 0 9.48 7.3 121 0 Accention 1.10 upd. 200 0 9.48 7.3 121 0 Accention 1.10 upd. 200 0 9.45 7.4 133 0 Catchin distribution 1.30 5.0 upd. 200 0 9.45 7.7 133 0 Metrifusion 1.30 2.0 upd. 2.0 0 9.45 7.7 133 0 Metrifusion 1.30 2.0 upd. 2.0 upd. 2.0 0 9.45 1.3 1.3 1.3 Metrifusion 1.10 upd. 2.0 upd. 2.0 0 9.47 1.3	Trichlorofluorome	thane	18.64	2.0	hg/L	20	0	93.2	56	157	0			
Action Action 11.8 10 pg/L 20 6 44 133 0 1.1-Dictionmentene 1.03 1.0 pg/L 20 0 14 133 0 6.1-Dictionmentene 19.20 2.0.75 1.0 pg/L 20 0 14 133 0 Methylene chloride 19.28 2.0 pg/L 20 0 133 0 Methylene chloride 19.87 2.0 pg/L 20 0 133 0 Methylene chloride 19.87 2.0 pg/L 20 0 133 0 Methylene chloride 19.87 2.0 pg/L 20 0 134 13 13 13 13 13 14 14 0 0 2.2-Dichloroentene 19.61 2.0 pg/L 20 0 14 14 0 0 2.2-Dichloroentene 19.7 2.0 pg/L 20 pg/L	Diethyl ether		18.97	5.0	µg/L	20	0	94.8	73	121	0			
1,-Dicktioncethere 20.75 1.0 $\mu ql.$ 20 $\mu gl.$ 20 20 $\mu gl.$ 20 20 $\mu gl.$ 20 20	Acetone		11.86	10	hg/L	20	0	59.3	44	133	0			
Carbon disultiole 13.32 2.0 µg/L 20 9.6 55 12.9 0 Methylene chloride 18.39 5.0 µg/L 20 0 95 77 133 0 Methylene chloride 18.39 5.0 µg/L 20 0 93.6 77 133 0 Methylene chloride 13.87 2.0 µg/L 20 0 33.6 128 0 11-Dichloroethene 15.58 10 µg/L 20 0 77 9 128 0 22-Dichloroethene 15.58 10 µg/L 20 µg/L 20 9 47 15 0 22-Dichloroethene 18.71 2.0 µg/L 20 9 47 15 0 Chloroethene 18.71 2.0 µg/L 20 9 47 15 0 Chloroethene 18.71 2.0 µg/L 20 9 17 14	1,1-Dichloroethen	Đ	20.75	1.0	hg/L	20	0	104	<u>77</u>	139	0			
Methylene chloride 1839 5.0 µg/L 20 9 77 133 0 Methyl terbulyl terbulyl terbuly terb 20.67 2.0 µg/L 20 10 103 66 130 0 11-Dichloroethene 19.87 2.0 µg/L 20 0 93.4 79 128 0 2-Dichloroethene 15.68 10 µg/L 20 0 93.4 79 128 0 2-Dichloroethene 19.61 2.0 µg/L 20 0 93.4 71 141 0 2-Dichloroethene 19.7 2.0 µg/L 20 0 93.5 78 128 0 2-Dichloroethene 19.7 2.0 µg/L 2.0 192/L 20 144 0 11-1-Tirichloroethene 18.34 2.0 µg/L 2.0 112 128 0 11-1-Tirichloroethene 18.34 2.0 µg/L 20 112 132	Carbon disulfide		19.92	2.0	hg/L	20	0	99.6	55	129	0			
Methyl tert-buryl te	Methylene chlorid	Ð	18.99	5.0	hg/L	20	0	95	<u>77</u>	133	0			
tans-1,2-Dichloroethene 1387 2.0 $\mu g/L$ 20 $\theta g/L$ 20 20 20 20 20 20 20 20 <t< td=""><td>Methyl tert-butyl e</td><td>ther</td><td>20.67</td><td>2.0</td><td>hg/L</td><td>20</td><td>0</td><td>103</td><td>99</td><td>130</td><td>0</td><td></td><td></td><td></td></t<>	Methyl tert-butyl e	ther	20.67	2.0	hg/L	20	0	103	99	130	0			
1,1-Dichloroethane 17.86 2.0 µg/L 20 8.3 8.1 131 0 2-Butanone 15.58 10 µg/L 20 0 77.9 47 141 0 2-Butanone 15.58 10 µg/L 20 0 73 47 141 0 22-Dichloroethane 19.7 2.0 µg/L 20 0 88.5 78 128 0 cis-1,2-Dichloroethane 19.7 2.0 µg/L 20 0 84.6 69 132 0 Chloroethane 19.76 2.0 µg/L 20 0 112 68 144 0 11.1-Trichloroethane 18.34 2.0 µg/L 20 0 77 144 0 11.1-Dichloroethane 18.34 2.0 µg/L 20 0 77 144 0 11.1-Dichloroethane 18.34 2.0 µg/L 20 0 77 144 0 12.Dichloroethane 16.68 2.0 µg/L 20 0 <td>trans-1,2-Dichloro</td> <td>ethene</td> <td>19.87</td> <td>2.0</td> <td>hg/L</td> <td>20</td> <td>0</td> <td>99.4</td> <td>. 79</td> <td>128</td> <td>0</td> <td></td> <td></td> <td></td>	trans-1,2-Dichloro	ethene	19.87	2.0	hg/L	20	0	99.4	. 79	128	0			
2-Butanone 15.58 10 $\mu gl.$ 20 20 $\mu gl.$ 20 20	1,1-Dichloroethan	Φ	17.86	2.0	hg/L	20	0	89.3	81	131	0			
2.2-Dichloropropane 19.61 2.0 $\mu g/L$ 2.0 $\mu g/L$ 2.0 98.5 78 155 0 cis-1.2-Dichloroethene 19.7 2.0 $\mu g/L$ 20 0 98.5 78 128 0 chloroethene 19.7 2.0 $\mu g/L$ 20 0 132 0 Tetrahydrofuran 19.76 2.0 $\mu g/L$ 20 0 112 63 144 0 Bromochloromethane 19.76 2.0 $\mu g/L$ 20 0 112 63 144 0 1,1-Trichloroethane 18.34 2.0 $\mu g/L$ 20 0 112 63 144 0 1,1-Dichloroethane 18.34 2.0 $\mu g/L$ 20 0 177 138 0 1,1-Dichloroethane 18.34 2.0 $\mu g/L$ 20 0 177 138 0 1,1-Dichloroethane 18.4 2.0 $\mu g/L$ 20 0 177 141 0 1,2-Dichloroethane 18.4 2.0	2-Butanone		15.58	10	µg/L	20	0	77.9	47	141	0			
cis-1,2-Dichloroethene 19.7 2.0 $\mu g/L$ 2.0 $\mu g/$	2,2-Dichloropropa	ne	19.61	2.0	hg/L	20	0	98	47	155	0			
Chloroform 16.33 2.0 $\mu g/L$ 20 $\theta 4.6$ 63 132 0 Tetrahydrofuran 22.44 10 $\mu g/L$ 20 0 112 63 144 0 Bromochloromethane 19.76 2.0 $\mu g/L$ 20 0 98.8 77 138 0 1,1,1-Trichloroethane 18.34 2.0 $\mu g/L$ 20 0 91.7 68 145 0 1,1-Dichloropene 18.34 2.0 $\mu g/L$ 20 0 97.2 68 145 0 Carbon tetrachloride 19.43 2.0 $\mu g/L$ 20 0 97.2 58 130 0 Carbon tetrachloride 16.68 2.0 $\mu g/L$ 20 0 97.2 58 130 0 L2-Dichloroethane 16.68 2.0 $\mu g/L$ 20 0 130 0 12 Benzene 2.0.53 1.0 $\mu g/L$ 20	cis-1,2-Dichloroeti	hene .	19.7	2.0	hg/L	20	0	98.5	78	128	0			
Tetrahydrofuran 22.44 10 µg/L 20 0 112 63 144 0 Bromochloromethane 19.76 2.0 µg/L 20 0 98.8 77 138 0 1,1,1-Trichloroethane 19.76 2.0 µg/L 20 0 91.7 68 145 0 1,1-Dichloropene 21.38 2.0 µg/L 20 0 91.7 68 145 0 1,1-Dichloropene 21.38 2.0 µg/L 20 0 71 141 0 Carbon tetrachloride 19.43 2.0 µg/L 20 0 71 141 0 Carbon tetrachloride 16.68 2.0 µg/L 20 72 58 130 0 1,2-Dichloropethane 20.53 1.0 µg/L 20 75 129 0 Benzene 20.53 1.0 µg/L 20 0 75 129 0 <	Chloroform		16.93	2.0	hg/L	20	0	84.6	69	132	0			
Bromochloromethane19.762.0 $\mu g/L$ 2098.87713801,1-Trichloroethane18.342.0 $\mu g/L$ 20091.76814501,1-Dichloropone21.382.0 $\mu g/L$ 2007114101,1-Dichloroptone19.432.0 $\mu g/L$ 200711410Carbon tetrachloride19.432.0 $\mu g/L$ 20087.25813001,2-Dichloroethane16.682.0 $\mu g/L$ 20083.46114001,2-Dichloroethane16.682.0 $\mu g/L$ 20083.46114001,2-Dichloroethane20.531.0 $\mu g/L$ 200103751290Benzene20.531.0 $\mu g/L$ 200103751290Valifiers:ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsS - Analyte detected in the associated Method BlankJ - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsN - Not applicable where J values or ND results occurR1 - Renorme Limit - Reference Limit - Reference Concentration LimitsR - Rot of a concentration concentration concentrationN - Not applicable where J values or ND results occur	Tetrahydrofuran		22.44	10	hg/L	20	0	112	63	144	0			
1,1-Trichloroethane18.342.0 $\mu g/L$ 20 0 1.7 68 145 0 1,1-Dichloroethane21.382.0 $\mu g/L$ 20 0 107 71 141 0 (arbon tetrachloride19.432.0 $\mu g/L$ 20 0 97.2 58 130 0 (arbon tetrachloride19.432.0 $\mu g/L$ 20 0 97.2 58 130 0 (brocethane16.682.0 $\mu g/L$ 20 0 33.4 61 140 0 Benzene20.531.0 $\mu g/L$ 20 0 103 75 129 0 Aulifiers:ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method BlankI - Analyte detected below quantitation limits R - RPD outside accepted recovery limits N - Not applicable where J values or ND results occurR1 - Renoring Limit - defined as the lower concentration the laboratory can accurately outsitate N - Not applicable where J values or ND results occur	Bromochlorometh	ane	19.76	2.0	µg/L	20	0	98.8	77	138	0			
1,1-Dichloropropene21.382.0 $\mu g/L$ 20 0 107 71 141 0Carbon tetrachloride19.432.0 $\mu g/L$ 200 97.2 5813001,2-Dichloroethane16.682.0 $\mu g/L$ 200 83.4 611400Benzene20.531.0 $\mu g/L$ 200103751290Qualifiers:ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method BlankI - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsN - Not applicable where J values or ND results occurR1 - Renorine I init' defined as the lower concentration the laboratory can accurately outsideNA - Not applicable where J values or ND results occur	1,1,1-Trichloroeth	ane	18.34	2.0	µg/L	20	0	91.7	68	145	0			
Carbon tetrachloride19.432.0 $\mu g/L$ 20097.25813001,2-Dichloroethane16.682.0 $\mu g/L$ 200 83.4 611400Benzene20.531.0 $\mu g/L$ 200103751290Qualifiers:ND - Not Detected below quantitation limitsS - Spike Recovery utilitiesB - Analyte detected in the associated Method BlankI - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsB - Analyte detected in the associated Method BlankR1 - Renoving Limit - Refined as the lower concentration the laboratory can accurately outsideNA - Not applicable where J values or ND results occur	1,1-Dichloroprope.	пе	21.38	2.0	hg/L	20	0	107	71	141	0			
1,2-Dichloroethane16.682.0 $\mu g/L$ 208.4611400Benzene20.531.0 $\mu g/L$ 200103751290Qualifiers:ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method BlankJ - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsNA - Not applicable where J values or ND results occurR1 - Renoving Limit - Refined as the lower concentration the laboratory can accurately outsideNA - Not applicable where J values or ND results occur	Carbon tetrachlori	de	19.43	2.0	hg/L	20	0	97.2	58	130	0			
Benzene 20.53 1.0 μg/L 20 0 103 75 129 0 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank 0 J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur	1,2-Dichloroethan	Φ	16.68	2.0	hg/L	20	0	83.4	61	140	0			
Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur	Benzene		20.53	1.0	hg/L	20	0	103	75	129	0			
J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur R1 - Renoving 1 imit: defined as the lowest concentration the laboratory can accurately quantitate	Qualifiers: NC) - Not Detected a	t the Reporting Limit	S	- Spike Recover	y outside accept	ed recovery	limits	B - Analyt	e detected in t	the associated Meth	10d Blank		
RI - Renortino I imit: defined as the lawest concentration the laboratory can accurately oughtigate	۔ ر	Analyte detected l	below quantitation limits	R	- RPD outside 2	accepted recover	y limits		NA - Not a	applicable wh	ere J values or ND	results occur		
	Id	- Renortina l imi	t. defined as the lowest con	rentration the	laboratory can	neno vleternove	citor.							

CLIENT: Shaw	Environmental & Infrastruc	ture. Inc.						(
Work Order: 12020	134	5 5						2	C SUMMARY REPOI
Project: 13027	4 Textron Providence								Laboratory Control Sp
Trichloroethene	20.33	2.0	hg/L	20	0	72	81	129	0
1,2-Dichloropropane	18.6	2.0	hg/L	20	0	93	81	134	0
Bromodichloromethane	17.63	2.0	hg/L	20	0 88	5	63	118	0
Dibromomethane	19.05	2.0	hg/L	20	96 0	Q	76	123	0
4-Methyl-2-pentanone	19.57	10	hg/L	20	0 97	8.	54	124	0
cis-1,3-Dichloropropene	19.55	1.0	hg/L	20	0 97	8.	65	115	0
Toluene	20.68	2.0	hg/L	20	0	33	81	123	0
trans-1,3-Dichloropropene	19.23	1.0	hg/L	20	0 90	2	55	126	0
1,1,2-Trichloroethane	20.5	2.0	hg/L	20	0	g	79	122	0
1,2-Dibromoethane	20.61	2.0	hg/L	20	0	33	71	124	0
2-Hexanone	17.95	10	hg/L	20	0 89	8.	41	138	0
1,3-Dichloropropane	18.38	2.0	hg/L	20	0 91	o.	81	129	0
Tetrachloroethene	21.55	2.0	hg/L	20	0	38	87	137	. 0
Dibromochloromethane	17.28	2.0	hg/L	20	0 86	4	59	119	0
Chiorobenzene	19.74	2.0	µg/L	20	0 98	7	86	121	0
1,1,1,2-Tetrachloroethane	18.09	2.0	hg/L	20	06 0	4.	65	133	0
Ethylbenzene	20.64	2.0	hg/L	20	0	33	81	125	0
m,p-Xylene	42.34	2.0	hg/L	40	0 10	<u> </u>	81	125	0
o-Xylene	20.52	2.0	hg/L	20	0	23	68	134	0
Styrene	21.93	2.0	hg/L	20	0	10	66	133	0
Bromoform	18.38	2.0	hg/L	20	0 91	o.	44	115	0
lsopropylbenzene	23.18	2.0	hg/L	20	0	16	75	139	0
1,1,2,2-Tetrachloroethane	18.51	2.0	hg/L	20	0 92	9	65	132	0
1,2,3-Trichloropropane	17.76	2.0	hg/L	20	0 88	8	64	139	0
Bromobenzene	20.44	2.0	hg/L	20	0	02	82	119	0
n-Propylbenzene	21	2.0	hg/L	20	0	<u>)</u> 5	73	129	0
2-Chlorotoluene	18.7	2.0	hg/L	20	0 93	5	78	121	0
4-Chlorotoluene	18.78	2.0	hg/L	20	0 93	6.	82	122	0
1,3,5-Trimethylbenzene	20.14	2.0	hg/L	20	. 0 10	11	76	125	0
tert-Butylbenzene	21.6	2.0	hg/L	20	0 10	38	. 69	129	0
1,2,4-Trimethylbenzene	20.47	2.0	hg/L	20	0	02	79	125	0
Qualifiers: ND - Not Dete	scted at the Reporting Limit	0)	- Spike Recover	y outside accepte	ed recovery limits	В	- Analyte dete	cted in the as	sociated Method Blank
J - Analyte de	tected below quantitation limits	ц	t - RPD outside a	ccepted recovery	limits	Ż	A - Not applic	able where J v	alues or ND results occur

CLIENT: World Orden	Shaw Environ	imental & Infrastruc	ture, Inc.						0	DC SUMMARY R	EPOR'
Project:	. 1202034 130274 Textr	on Providence		·						Laboratory Con	trol Spik
sec-Butylbenze	ne	21.63	2.0	µg/L	20	0	108	69	132	0	
4-Isopropyltolu	ene	21.1	2.0	hg/L	20	0	106	66	132	0	
1,3-Dichlorober	uzene	19.59	2.0	µg∕L	20	0	98	86	125	0	
1,4-Dichlorober	uzene	19.11	2.0	µg∕L	20	0	95.6	82	126	0	
n-Butylbenzene	¢)	21.04	2.0	µg/L	20	0	105	59	143	0	
1,2-Dichlorober	nzene	18.98	2.0	hg/L	20	0	94.9	82	123	0	
1,2-Dibromo-3-	chloropropane	18.81	5.0	µg∕L	20	0	94.1	44	122	0	
1,2,4-Trichlorot	benzene	21.77	2.0	hg/L	20	0	109	73	137	0	
Hexachlorobuta	adiene	18.79	2.0	hg/L	20	0	94	70	145	0	
Naphthalene		20.63	5.0	hg/L	20	0	103	67	128	0	
1,2,3-Trichlorot	benzene	21.47	2.0	µg∕L	20	0	107	63	135	0	
Surr: Dibrom	ofluoromethane	23.15	2.0	hg/L	25	0	92.6	82	122	0	
Surr: 1,2-Dic	hioroethane-d4	20.43	2.0	hg/L	25	0	81.7	73	135	0	
Surr: Toluen	e-d8	25.52	2.0	µg∕L	25	0	102	82	117	0	
Surr: 4-Brom	ofluorobenzene	24.38	2.0	hg/L	25	0	97.5	17	119	0	
				·							
Qualifiers:	ND - Not Detected at th	e Reporting Limit	S -	Spike Recovery	outside accepted	recovery lii	nits B	- Analyte d	etected in the as	ssociated Method Blank	
	J - Analyte detected beld	ow quantitation limits	R -	RPD outside acc	cepted recovery l	imits	2	Id - Not and	licable where I	values or ND results occur	
	PT - Renorting Limit de	offined as the lowest con	contration the	loborotoni and	-			are trocable			

U J

CLIENT:	Shaw Ei	invironmental & Infrastruc	ture, Inc.							QC SUN	IMARY	REPO	R
Project:	er: 120203 130274	Textron Providence								Lai	boratory (Control S	pik
Sample ID: I	cs-02/16/12	Batch ID: R48363	Test Code	: SW8260B	Units: µg/L			Analysis D	ate 2/16/20	112 10:24:00 AM	Prep Date	e: 2/16/2012	
Client ID:			Run ID:	V-3_120216A				SeqNo:	805593				
		QC Sample		QC	Spike Original	l Sample			0	Original Sample			
Analyte	-	Result	RL	Units A	mount	Result '	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	
Dichlorodifluc	oromethane	11.9	5.0	hg/L	20	0	59.5	25	168	0			
Chlorometha.	ne	14.36	5.0	hg/L	20	0	71.8	51	149	0			
Vinyl chloride	Û	14.46	2.0	hg/L	20	0	72.3	59	152	0			
Chloroethane	Ø	16.03	5.0	hg/L	20	0	80.2	65	138	0			
Bromometha	ne	13.8	2.0	hg/L	20	0	69	53	128	0			
Trichlorofluor	romethane	15.99	2.0	µg/L	20	0	80	56	157	0		•	
Diethyl ether		18.1	5.0	hg/L	20	0	90.5	73	121	0			
Acetone		11.45	10	hg/L	20	0	57.2	44	133	0			
1,1-Dichloroe	sthene	16.59	1.0	hg/L	20	0	83	11	139	0			
Carbon disult	fide	15.4	2.0	hg/L	20	0	77	55	129	0			
Methylene ch	nloride	18.53	5.0	µg/L	20	0	92.6	11	133	0			
Methyl tert-bu	utyl ether	20.86	2.0	hg/L	20	0	104	66	130	0			
trans-1,2-Dici	hloroethene	16.14	2.0	hg/L	20	0	80.7	79	128	0			
1,1-Dichloroe	sthane	15.72	2.0	hg/L	20	0	78.6	81	131	0			
2-Butanone		15.51	10	hg/L	20	0	77.6	47	141	0			
2,2-Dichlorop	oropane	17.19	2.0	hg/L	20	0	86	47	155	0			
cis-1,2-Dichlc	oroethene	17.16	2.0	hg/L	20	0	85.8	78	128	0			
Chloroform		15.81	2.0	hg/L	20	0	. 26	69	132	0			
Tetrahydrofui	ran	24.53	10	hg/L	20	0	123	63	144	0			
Bromochloro	methane	19.3	2.0	hg/L	20	0	96.5	17	138	0			
1,1,1-Trichlor	roethane	16.73	2.0	hg/L	20	0	83.6	68	145	0			
1,1-Dichlorop	sropene	16.06	2.0	µg/L	20	0	80.3	71	141	0			
Carbon tetrac	chloride	16.96	2.0	hg/L	20	0	84.8	58	130	0			
1,2-Dichloroe	sthane	17.27	2.0	µg/L	20	0	86.4	61	140	0			
Benzene		17.58	1.0	hg/L	20	0	87.9	75	129	0			
Qualifiers:	ND - Not Detect	ted at the Reporting Limit	-S	Spike Recovery	outside acceptec	l recovery li	mits	B - Analyt	e detected in	the associated Meth	hod Blank		
	J - Analyte detec	sted below quantitation limits	R	· RPD outside ac	cepted recovery i	limits		NA - Not a	dva eldenina	lere I values or ND	need to occur		

AMRO Environmental	l Laboratories	Corp.							Date: 17-F	eb-12
CLIENT: Shaw Enviro	nmental & Infrastr	icture, Inc.							QC SUMMARY R	EPORT
Work Urder: 1202034 Project: 130274 Texti	ron Providence								Laboratory Con	itrol Spike
Trichloroethene	17.24	2.0	hg/L	20	0	86.2	81	129	0	
1,2-Dichloropropane	17.01	2.0	hg/L	20	0	85	81	134	0	
Bromodichloromethane	16.67	2.0	hg/L	20	0	83.4	63	118	0	
Dibromomethane	18.86	2.0	hg/L	20	0	94.3	76	123	0	
4-Methyl-2-pentanone	18.1	10	hg/L	20	0	90.5	54	124	0	
cis-1,3-Dichloropropene	17.46	1.0	hg/L	. 20	0	87.3	65	115	0	
Toluene	16.9	2.0	hg/L	20	0	84.5	81	123	0	
trans-1,3-Dichloropropene	17.81	1.0	hg/L	20	0	89	55	126	0	
1,1,2-Trichloroethane	18.38	2.0	hg/L	20	0	91.9	79	122	0	
1,2-Dibromoethane	19.28	2.0	hg/L	20	Ō	96.4	71	124	0	
2-Hexanone	15.56	10	hg/L	20	0	77.8	41	138	0	
1,3-Dichloropropane	17.75	2.0	hg/L	20	0	88.8	81	129	0	
Tetrachloroethene	17.29	2.0	hg/L	20	0	86.5	87	137	0	S
Dibromochloromethane	16.6	2.0	hg/L	20	0	83	59	119	0.	
Chlorobenzene	17.06	2.0	hg/L	20	0	85.3	86	121	0	S
1,1,1,2-Tetrachloroethane	16.47	2.0	hg/L	20	0	82.4	65	133	0	
Ethylbenzene	16.63	2.0	hg/L	20	0	83.2	81	125	0	
m,p-Xylene	34.77	2.0	hg/L	40	0	86.9	81	125	0	
o-Xylene	17.17	2.0	hg/L	20	0	85.8	68	134	0	
Styrene	18.82	2.0	hg/L	20	0	94.1	66	133	0	
Bromoform	17.61	2.0	hg/L	20	0	88	44	115	0	
Isopropylbenzene	18.03	2.0	hg/L	20	0	90.2	75	139	0	
1,1,2,2-Tetrachloroethane	18.11	2.0	hg/L	20	0	90.6	65	132	0	
1,2,3-Trichloropropane	18.37	2.0	hg/L	20	0	91.8	64	139	Ō	
Bromobenzene	17.88	2.0	· hg/L	20	0	89.4	82	119	0	
n-Propylbenzene	16.2	2.0	hg/L	20	0	81	73	129	. 0	
2-Chlorotoluene	21.13	2.0	hg/L	20	0	106	78	121	0	
4-Chlorotoluene	16.15	2.0	hg/L	20	0	80.8	82	122	O	S
1,3,5-Trimethylbenzene	16.4	2.0	μg/L	20	0	82	76	125	0	
tert-Butylbenzene	17.1	2.0	hg/L	20	0	85.5	69	129	0	
1,2,4-Trimethylbenzene	17.49	2.0	hg/L	20	0	87.5	79	125	. 0	
Qualifiers: ND - Not Detected at th	he Reporting Limit		3 - Spike Recover	y outside accepte	d recovery	limits	B - Analyte de	etected in th	e associated Method Blank	
J - Analyte detected bei	low quantitation limits	I	X - RPD outside 3	accepted recovery	limits		NA - Not ann	licable wher	e I values or ND results occur	
D] Damining [D]	dofined on the lowest of	1	يتمع يستغمسه والم	in a second s					c i vance of the reacted occar	
NL - NEPOILINE LININ, V	מבתותכת אצ חוב והאבצו הר	ncentration u	le laboratory can	accuratery quant	tate.					

	nental & Infrastruc	ture, Inc						-	QC SUMMARY	REPORJ
Project: 130274 Textrol	n Providence								Laboratory C	control Spik
sec-Butylbenzene	16.42	2.0	hg/L	20	0	82.1	69	132	0	
4-Isopropyltoluene	16.28	2.0	hg/L	20	0	81.4	66	132	0	
1, 3-Dichlorobenzene	16.81	2.0	hg/L	20	0	84	86	125	0	
1,4-Dichlorobenzene	15.88	2.0	hg/L	20	0	79.4	82	126	0	
n-Butylbenzene	16.4	2.0	hg/L	20	0	82	59	143	0	
1,2-Dichlorobenzene	16.98	2.0	hg/L	20	0	84.9	82	123	0	
1,2-Dibromo-3-chloropropane	36.41	5.0	hg/L	20	0	182	4	122	0	
1,2,4-Trichlorobenzene	18.21	2.0	hg/L	20	0	91	73	137	0	
Hexachlorobutadiene	14.34	2.0	hg/L	20	0	71.7	70	145	0	
Naphthalene	18.78	5.0	hg/L	20	0	93.9	67	128	0	
1,2,3-Trichlorobenzene	18.48	2.0	hg/L	20	0	92.4	63	135	0	
Surr: Dibromofluoromethane	23.02	2.0	hg/L	25	0	92.1	82	122	0	
Surr: 1,2-Dichloroethane-d4	22.8	2.0	hg/L	25	0	91.2	73	135	0	
Surr: Toluene-d8	25.13	2.0	hg/L	25	0	101	82	117	0	
Surr: 4-Bromofluorobenzene	25.02	2.0	hg/L	25	0	100	77	119	0	
										·
									•	
			·							
Qualifiers: ND - Not Detected at the	Reporting Limit		S - Spike Recover	y outside accepted	1 recovery	limits	B - Analyte	detected in the	associated Method Blank	
J - Analyte detected below	w quantitation limits		R - RPD outside ;	Iccepted recovery l	limits		NA - Not ar	onlicable where	J values or ND results occur	
RL - Reporting Limit: def	fined as the lowest con-	centration	the laboratory can	accurately guantit	ate			. r.		

AMRO]	Environme	ntal Laboratories	Corp.								Date: 17-Feb-12	
CLIENT:	Shaw En	ivironmental & Infrastru	ucture, Inc.							QC SUM	MARY REPO	RT
Project:	er: 1202034	r Textron Providence									Sample Matrix S	pike
Sample ID: 1.	202034-02Ams	Batch ID: R48344	Test Code	e: SW8260B	Units: µg/I			Analysis Da	ate 2/14/2012	2 7:38:00 PM	Prep Date: 2/9/2012	
Client ID: C	:W-2		Run ID:	V-3_121214	P V			SeqNo:	805370			
		QC Sample		σ	iC Spike Origina	al Sample			Ori	iginal Sample		
Analyte		Result	ЯĽ	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD RPDLimit	Qué
Dichlorodifluc	romethane	101.2	25	hg/L	100	0	101	22	176	Ó		
Chloromethar	he	117.9	25	hg/L	100	0	118	36	144	0		
Vinyl chloride		125.2	10	hg/L	100	0	125	54	156	0		
Chloroethane	<i>.</i>	137.2	25	µg/L	100	0	137	55	153	0		
Bromomethar	ne	118	10	, hg/L	100	0	118	47	113	0		S
Trichlorofluon	omethane	123.2	10	hg/L	100	0	123	80	161	0		
Diethyl ether		78.55	25	hg/L	100	0	78.6	55	128	0		
Acetone		41.35	50	hg/L	100	0	41.4	22	147	0		J
1,1-Dichloroe	thene	130.8	5.0	hg/L	100	0	131	61	146	Ö		
Carbon disulf.	ide	132.3	10	hg/L	100	0	132	39	153	0		
Methylene ch.	loride	115.8	25	µg/L	100	0	116	44	147	0		
Methyl tert-bu	utyl ether	87.15	10	hg/L	100	0	87.2	64	137	0		
trans-1,2-Dicł	hloroethene	127	10	hg/L	100	0	127	68	140	0		
1,1-Dichloroe	thane	114.5	10	hg/L	100	0	114	66	139	0	·	
2-Butanone		56.75	50	hg/L	100	0	56.8	35	139	0		
2,2-Dichlorop.	ropane	132.6	10	hg/L	100	0	133	45	165	0		
cis-1,2-Dichla	proethene	124.7	10	hg/L	100	0.53	124	68	132	0		
Chloroform		105.5	10	hg/L	100	0	106	78	136	0		
Tetrahydrofur	an	53.25	50	hg/L	100	0	53.2	27	139	0		
Bromochloror	nethane	103.4	10	hg/L	100	0	103	72	132	0		
1,1,1-Trichlon	oethane	129.8	10	hg/L	100	0	130	78	148	0		
1,1-Dichlorop.	ropene	136.8	10	hg/L	100	0	137	82	139	0		
Carbon tetrac	hloride	128.8	10	hg/L	100	0	129	. 72	143	0	·	
1,2-Dichloroe	thane	81.45	10	hg/L	100	0	81.5	72	141	0		
Benzene		128.1	5.0	hg/L	100	0	128	73	135	0		
Qualifiers:	ND - Not Detecte	ed at the Reporting Limit	S	- Spike Recover	ry outside accepte	ed recovery l	limits	B - Analyte	e detected in the	e associated Meth	od Blank	
	J - Analyte detect	ed below quantitation limits	R	- RPD outside :	accepted recovery	/ limits		NA - Not a	nnlicahle where	e I values or ND i	esults occur	
	RL - Reporting L	imit: defined as the lowest co	incentration the	e laboratory can	accurately quant	itate.						

u77

· 李素素素素素 - 李繁子 - 大

CLENT: Survivormental & Infrastructure, Int. CLENT: Survivormental & Infrastructure, Int. CLENT: Survivormental & Infrastructure, Int. Most Order: Jan Environmental & Infrastructure, Int. Most Order: Jan Environmental & Infrastructure, Int. Survivormental & Infrastructure, Int. Colspan="6">Opt On On One Set One Se	tructure, Inc. 10 10 10 5.0 5.0 10 10 10 10 10	р с с с с с с с с с с с с с с с с с с с		7 126 0 104 0 93.6 0 83.2 0 51.4 0 92.2 0 83.7 0 82.2	74 66 72		QC SUMMARY R	EPORT atrix Spike
Quart Sample Matrix Splits Project Image Project Sample Matrix Splits Project Image Project Project Project Project Project Image Project Project <t< th=""><th>1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>с, с, с</th><th></th><th>7 126 0 104 0 93.6 0 83.2 0 83.2 0 92.2 0 92.2 0 83.7 0 82.2</th><th>74 66 72</th><th></th><th>Completion</th><th>atrix Spike</th></t<>	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	с, с		7 126 0 104 0 93.6 0 83.2 0 83.2 0 92.2 0 92.2 0 83.7 0 82.2	74 66 72		Completion	atrix Spike
Trichlosenteners 138 10 101 103 113 126 143 0 Enrolocionidantes 50.42 10 101 100 101 100 101 </th <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>осси с с с с с с с с с с с с с с с с с с</th> <th>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</th> <th>7 126 0 104 0 93.6 0 83.2 0 51.4 0 92.2 0 83.7 0 83.7</th> <th>74 66 72</th> <th></th> <th>Jampic Jul</th> <th>I</th>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	осси с с с с с с с с с с с с с с с с с с	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 126 0 104 0 93.6 0 83.2 0 51.4 0 92.2 0 83.7 0 83.7	74 66 72		Jampic Jul	I
1.2. Control 1.0. 1.0.1 1.0. 0.0.1 0.0.2 1.2. 0.0.1 0.0.2 0.0.2 0.0 0.0 Diversimentatione 83.6 1.0 0.01 1.00 0 82.2 7.7 1.2.2 0 Diversimentatione 83.5 1.0 0.01 1.00 0 82.2 7.7 1.2.2 0 Attachysic 82.5 0 0.01 1.00 0 82.2 7.7 1.2.2 0 Total 21.3 0 0.01 0 0 22.2 7.7 1.2.2 0 Total 22.3 0 0.01 0.0 0 22.2 7.7 1.2.2 0 1.1.2.Trichtorefishes 82.6 1.0 0.01 1.00 0 22.2 7.7 122 0 0 1.1.2.Trichtorefishes 82.6 1.0 0.01 1.00 0 22 7.7 122 0 0 1.1.2.Trichtor	10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	с, с	00 00 00 00 00 00 00 00 00 00 00 00 00	0 104 0 93.6 0 83.2 0 51.4 0 51.4 0 92.2 0 83.7 0 83.7	66 72	143	0	1
Demondationentitates 65.6 10 101 100 10 101	10 50 10 10 10 10 10 10 10	града с с с с с с с с с с с с с с с с с с	00 00 00 00 00 00 00 00 00 00 00 00 00	0 93.6 0 83.2 0 51.4 0 92.2 0 122 0 83.7 0 83.7	72	136	0	
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	10 5.0 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	год стала стала пода стала стал пода стала стал	00 00 00 00 00 00 00 00 00 00 00 00 00	0 83.2 0 51.4 0 92.2 0 122 0 83.7 0 83.7		132	0	
All Markov pertanence 51.4 50 pg/L 100 51.4 50 14.5 50 14.5 50 14.5 14.5 0 0 Tolene 7.3 Oldnorpropere 87.3 60 19.1 100 0 122 7 129 0 Tolene 87.3 50 19.01 100 0 82.7 50 129 0 0 Tolene 87.3 50 1901 100 0 82.7 50 129 0 0 Tolene 87.3 50 1901 100 0 82.7 50 129 0 0 Tolene 87.9 50 1901 100 0 124 0 129 0 129 0 129 0 129 0 129 0 129 0 129 0 129 129 0 129 129 129 129 129 129 129 129	50 5.0 10 10 10 10 10	г. г. г. г. п. г. г. г. п. г. г. г. г. п. г. г. г. г. г. г. г. г	00 00 00 00 00 00 00 00 00 00 00 00 00	0 51.4 0 92.2 0 122 0 83.7 0 82.2	71	132	0	
Colorencopone 82.55 5.0 ppt 100 0 22 65 126 0 0 Tolencycopene 81.3 6.0 ppt 100 0 82.2 6.0 ppt 100 0 22.5 0 0 22.5 0 22.5 0 22.5 0 22.5 0 22.5 0 22.5 0 22.5 0 22.5 0 22.5 <t< td=""><td>5.0 5.0 10 10 10 20 10</td><td>на/г ла/г ла/г</td><td>00 00 00 00 00 00 00 00 00 00 00 00 00</td><td>0 92.2 0 122 0 83.7 0 82.2</td><td>34</td><td>145</td><td>0</td><td></td></t<>	5.0 5.0 10 10 10 20 10	на/г ла/г ла/г	00 00 00 00 00 00 00 00 00 00 00 00 00	0 92.2 0 122 0 83.7 0 82.2	34	145	0	
X X	10 50 10 10 10 10	нд/Г нд/Г	00 00 00 00 00 00 00 00 00 00 00 00 00	0 122 0 83.7 0 82.2	66	126	0	
trans-13-Dichlocoponene 83.7 6.0 ppl. 100 0 8.2 11	5.0 10 10 10 10	hg/L	100 100 100	0 83.7 0 82.2	71	139	0	
1,1.2.Trichtonorethane 822 10 ppl. 100 822 67 129 0 2.Denomethane 81 10 ppl. 100 0 81 0 13 0 14 0 1 2.Denomethane 81.5 50 ppl. 100 0 81.5 70 159 0 1.3.Denomethane 81.35 10 ppl. 100 0 81.4 10 0 1.3.Denomethane 81.35 10 ppl. 100 0 14.4 10 0 1.3.Denomethane 81.35 10 ppl. 100 0 14.4 10 10 Denomothoromethane 117.5 10 ppl. 100 0 13 16 10 <td< td=""><td>0 0 0 0 0 0</td><td>hg/L</td><td>100 100</td><td>0 82.2</td><td>68</td><td>122</td><td>0</td><td></td></td<>	0 0 0 0 0 0	hg/L	100 100	0 82.2	68	122	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10 10 10 10 10		100		67	129	0	
2 Hotamone 2 Hotamone <th2 hotamone<="" th="" thotamone<=""> <th2 hotamone<="" th=""> <t< td=""><td>50 100</td><td>, J/g/L</td><td>100</td><td>0 81</td><td>67</td><td>137</td><td>0</td><td></td></t<></th2></th2>	50 100	, J/g/L	100	0 81	67	137	0	
13-Dichloropropene 82.6 10 pgL 100 02 82.6 126 0 13-Dichloropropene 81.4.8 10 pgL 100 0 81.4 6 0 0 Diconordinomentane 81.3.5 10 pgL 100 0 14.5 70 150 0 Diconordinomentane 81.3.5 10 pgL 100 0 14.6 76 130 0 11.1.1.2.*Tetachloroprime 81.3 10 pgL 100 0 132 76 130 0 Nordine 255.4 10 pgL 100 0 125 72 131 0 Stytene 132.5 10 pgL 100 0 125 72 131 0 Stytene 132.5 10 pgL 100 0 125 72 131 0 Stytene 132.5 10 pgL 100 0 125 72 141 0 0 Stytene 13.5.7 14.7 10 <td>0 0 0 0 0 0</td> <td>hg/L</td> <td></td> <td>0 49.6</td> <td>30</td> <td>134</td> <td>0</td> <td>ר</td>	0 0 0 0 0 0	hg/L		0 49.6	30	134	0	ר
R action contense 144.8 10 pp/L 100 145 70 150 0 0 Chononchonentane 11.3 10 pg/L 100 0 143 70 150 0 0 Chononchonentane 11.3 10 pg/L 100 0 188 70 150 0 Chononchonentane 11.3 1 pg/L 100 0 188 79 126 0 0 Chononchonentane 132 10 pg/L 100 0 128 13 0 13 0 141 0 0 0 0 13 13 0 141 10 126 10 126 10 126 141 10 126 12	10		100	0 82.6	. 75	126	0	
Dibronnethane 11.35 10 µg/L 100 01 13 13 10 µg/L 100 01 13 10 11.3 10 11.3 11 <th< td=""><td>10</td><td>hg/L</td><td>100</td><td>0 145</td><td>20</td><td>150</td><td>0</td><td></td></th<>	10	hg/L	100	0 145	20	150	0	
Chorocherzene 117.5 10 pg/L 100 11 12 13 10 101 11 12 13 10 11 12 13 10 11 12 10 101 11 12 10 101		, hg/L	100	0 · 81.4	63	116	0	
11,1,2-Tetrachloroethane 106.2 10 µg/L 100 10 12 12 13 10 11 12 11 12 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	10	μg/L	100	0 118	76	130	0	
C Ethylbenzene 132 10 µg/L 100 132 80 133 0 C mp/Mane 253.4 10 µg/L 100 0 133 0 Stytene 125.4 10 µg/L 100 0 126 73 139 0 Stytene 125.4 10 µg/L 100 0 126 73 139 0 Stytene 162.4 10 µg/L 100 0 126 13 13 0 Stytene 162.4 10 µg/L 100 0 126 14 2 13 14 2 Stytene 76.3 10 µg/L 100 0 162 13 14 2 13 L1.1.2.1*TrimeTryleence 13.7 10 µg/L 100 0 2 14 2 13 2 L1.2.5.5 10 µg/L 100 µg/L 100<	10	- hg/L	100	0 106	62	. 126	0	
Length 259.4 10 µg/L 200 131 131 0 Styree 126.2 10 µg/L 100 0 126 72 140 0 Styree 126.2 10 µg/L 100 0 126 72 140 0 Styree 69.4 10 µg/L 100 0 68 4 7 113 0 Bromolom 69.4 10 µg/L 100 0 72 144 0 0 1.1.1.2.3-Trichtororehane 162.4 10 µg/L 100 0 72 144 0 0 1.2.3-Trichtororehane 162.4 10 µg/L 100 0 72 144 0 0 1.2.3-Trinchtororehane 127 10 µg/L 100 0 127 12 12 12 12 12 12 12 12 12 12 12 12 12	10	, μg/L	100	0 132	80	133	0	
	10	hg/L 2	200	0 130	81	131	0	
Stytene 125.4 10 µg/L 100 12 72 140 0 Bromoform 69.4 10 µg/L 100 12 72 140 0 Bromoform 69.4 10 µg/L 100 12 72 140 0 Bromoformane 162.4 10 µg/L 100 0 76.35 10 µg/L 100 0 73 0 0 75 73 0 0 75 73 0 0 75 142 0 75 75 75 175 76 75 75 75 75 75 74 75 75 143 0 75 14 75 17 17 1 17 15 75 142 0 75 17 75 14 75 14 75 14 17 17 17 17 17 17 17 17 17 17	10	hg/L	100	0 126	78	130	0	
Bromoform 69.4 10 $\mu g/L$ 100 123 124 123 0 0 2 2.Chlorotoluene 125.Trimethylbenzene 126. 10 $\mu g/L$ 100 127 76 124 0 1 3.5.Trimethylbenzene 136.2 10 $\mu g/L$ 100<	10	hg/L	100	0 125	72	140	0	
Sopropylbenzene 162.4 10 $\mu g/L$ 100 162 81 144 0 S 1,1,2,2-Tetrachloroethane 76.35 10 $\mu g/L$ 100 0 76.4 62 133 0 5 1,2,3-Trichloroethane 76.35 10 $\mu g/L$ 100 0 76.3 60 143 0 5 1,2,3-Trichloropropane 123.3 10 $\mu g/L$ 100 0 76.3 60 143 0 5 5 5 127 0 5 5 5 124 5<	10	hg/L	100	0 69.4	47	113	0	
1,1,2,2-Tetrachloroethane 76.35 10 $µgL$ 100 0 76.4 62 133 0 1,2,3-Trichloropropane 70.3 10 $µgL$ 100 0 70.3 60 143 0 1,2,3-Trichloropropane 123.3 10 $µgL$ 100 0 70.3 82 127 0 Romobenzene 127 10 µgL 100 0 128 76 142 0 82 82 127 0 82 134 0 82 134 0 82 134 0 13 13 13 13 14 1	. 10	hg/L	100	0 162	81	144	0	S
1,2,3-Trichloropropane 70.3 10 $\mu g/L$ 100 0 70.3 60 143 0 Bromobenzene 123.3 10 $\mu g/L$ 100 0 123 12 0 n-Propylbenzene 147.7 10 $\mu g/L$ 100 0 123 12 0 n-Propylbenzene 147.7 10 $\mu g/L$ 100 0 127 12 12 2-Chlorotoluene 127 10 $\mu g/L$ 100 0 127 75 134 0 4-Chlorotoluene 125.8 10 $\mu g/L$ 100 0 127 12 0 1,3.5-Trimethylbenzene 146.6 10 $\mu g/L$ 100 0 142 74 133 0 1,3.5-Trimethylbenzene 136.2 10 $\mu g/L$ 100 0 147 0 0 0 1,3.5-Trimethylbenzene 146.6 74 133 0 0 0 140 0 0 1,2.4-Trimethylbenzene 136.5 140 0	10	hg/L 19	100	0 76.4	62	133	0	
Bromobenzene 123.3 10 $µg/L$ 100 0 123 82 127 0 n-Propylbenzene 147.7 10 $µg/L$ 100 0 142 0 5 2-Chlorotoluene 127 10 $µg/L$ 100 0 127 75 134 0 2-Chlorotoluene 125.8 10 $µg/L$ 100 0 127 75 134 0 1,3,5-Trimethylbenzene 141.8 10 $µg/L$ 100 0 126 74 133 0 1,3,5-Trimethylbenzene 146.6 10 $µg/L$ 100 0 147 79 140 0 1,2,4-Trimethylbenzene 146.6 10 $µg/L$ 100 0 147 79 140 0 1,2,4-Trimethylbenzene 136.2 10 $µg/L$ 100 0 140 0 0 1,2,4-Trimethylbenzene 136.2 140 79 140 <t< td=""><td>10</td><td>hg/L 19</td><td>100</td><td>0 70.3</td><td>60</td><td>143</td><td>0</td><td></td></t<>	10	hg/L 19	100	0 70.3	60	143	0	
n-Propylbenzene 147.7 10 µg/L 100 0 148 76 142 0 S 2-Chlorotoluene 127 10 µg/L 100 0 127 75 134 0 5 2-Chlorotoluene 125.8 10 µg/L 100 0 126 74 133 0 1,3,5-Trimethylbenzene 141.8 10 µg/L 100 0 147 79 140 0 5 1,3,5-Trimethylbenzene 136.2 10 µg/L 100 0 147 79 140 0 5 1,2,4-Trimethylbenzene 136.2 10 µg/L 100 0 147 79 140 0 5 1 1,2,4-Trimethylbenzene 136.2 10 µg/L 100 0 135 72 144 0 0 1 1 1 1 1 0 1 1 0 1 1 1	10	hg/L	100	0 123	82	127	0	
	10	hg/L	100	0 148	76	142	0	S
4-Chlorotoluene125.810 $\mu g/L$ 10001267413301,3,5-Trimethylbenzene141.810 $\mu g/L$ 10001427414301,3,5-Trimethylbenzene146.610 $\mu g/L$ 10001477914001,2,4-Trimethylbenzene136.210 $\mu g/L$ 10001477914001,2,4-Trimethylbenzene136.210 $\mu g/L$ 10001367214401,2,4-Trimethylbenzene136.210 $\mu g/L$ 10001367214401,2,4-Trimethylbenzene136.210 $\mu g/L$ 1000136721440Qualifiers:ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method Blank1- Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsNA - Not applicable where J values or ND results occur	10	hg/L	100	0 127	75	134	0	
1,3,5-Trimethylbenzene141.810 $\mu g/L$ 1000142741430tert-Butylbenzene146.610 $\mu g/L$ 1000147791400S1,2,4-Trimethylbenzene136.210 $\mu g/L$ 10001367214401,2,4-Trimethylbenzene136.210 $\mu g/L$ 10001367214401,2,4-Trimethylbenzene136.210 $\mu g/L$ 1000136721440Aualifiers: ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method BlankJ - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsNA - Not applicable where J values or ND results occur	10	hg/L	100	0 126	74	133	0	
tert-Butylbenzene146.610µg/L1000147791400S1,2,4-Trimethylbenzene136.210µg/L1000136721440Qualifiers: ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method BlankJ - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsNA - Not applicable where J values or ND results occur	10	hg/L	100	0 142	74	143	0.	
1,2,4-Trimethylbenzene 136.2 10 μg/L 100 0 136 72 144 0 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank 0 J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur	10	hg/L 1	100	0 147	. 62	140	0	S
Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur	10	hg/L	100	0 136	72	144	0	
J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur	IS - S	ike Recovery out	side accepted recov	ery limits	B - Analyte	detected in the a	associated Method Blank	-
	ts R-R	PD outside accep	ted recovery limits		ne not Not	I aradim alderidu	Lyndinee or MD reculte occur.	
			, ·			קעוורמטור אוורור ז	J values of IAD results occur	
עד - עבלסתחנה דינוווה מכווונם או תוב וסאבאר כסווכבחר		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 μg/L 0 μg/L 1 α β/L 1 α β/	$\begin{array}{cccccc} 0 & \mu g/L & 100 \\ 0 & \mu g/L & 100 \\ 0 & \mu g/L & 200 \\ 0 & \mu g/L & 100 \\ 1 & 100 \\ 0 & \mu g/L & 100 \\ 0 & \mu g/$	0 μg/L 100 0 106 0 μg/L 100 0 132 0 μg/L 100 0 132 0 μg/L 100 0 136 0 μg/L 100 0 136 0 μg/L 100 0 126 0 μg/L 100 0 163.4 0 μg/L 100 0 123 0 μg/L 100 0 147 0 μg/L 100 0 <	0 $\mu g/L$ 100 0 132 80 0 $\mu g/L$ 100 0 132 80 0 $\mu g/L$ 100 0 132 80 0 $\mu g/L$ 100 0 126 78 0 $\mu g/L$ 100 0 126 78 0 $\mu g/L$ 100 0 126 78 0 $\mu g/L$ 100 0 60 81 0 $\mu g/L$ 100 0 76 81 0 $\mu g/L$ 100 0 76 74 0 $\mu g/L$ 100 0 127 75 0 $\mu g/L$ 100 0 147 76 0	0 μg/L 100 0 106 79 126 0 μg/L 100 0 132 80 133 0 μg/L 100 0 132 80 133 0 μg/L 100 0 126 78 130 0 μg/L 100 0 126 78 130 0 μg/L 100 0 126 78 130 0 μg/L 100 0 126 72 140 0 μg/L 100 0 162 133 144 0 μg/L 100 0 76.4 62 133 0 μg/L 100 0 127 76 143 0 μg/L 100 0 126 74 133 0 μg/L 100 0 146 76 143 0 μg/L 100 0	0 µg/L 100 0 106 79 126 0 0 µg/L 100 0 132 80 133 0 0 µg/L 100 0 130 81 131 0 0 µg/L 100 0 126 78 130 0 0 µg/L 100 0 125 72 140 0 0 µg/L 100 0 76 143 0 0 0 µg/L 100 0 127 75 142 0 0 µg/L 100 0 126 74 13 0 0 µg/L <td< td=""></td<>

IENT: S	haw Environmental &	č Infrastruct	ıre, İnc.							QC SUMIN	AARY RE	PORT
ject: 1.	30274 Textron Provid	lence									Sample Mat	rix Spike
Butylbenzene	14	8.4	10	µg/L	100	0	148	76	149	0		
spropyltoluene	14	1.4	10	µg/L	100	0	141	80	147	0		
Dichlorobenzene	12	1.4	10	hg/L	100	0	121	78	129	Ō		
Dichlorobenzene		114	10	µg/L	100	0	114	76	134	0		
tylbenzene	. 14	0.3	10	hg/L	100	0	140	68	153	0		
lichlorobenzene	10	8.6	10	hg/L	100	0	109	73	136	0		
ibromo-3-chloropr	ropane 67	.95	25	µg∕L	100	0	68	41	123	0		
-Trichlorobenzene	<i>c</i> ,	111	10	hg/L	100	0	111	55	156	0		
chlorobutadiene	10	7.1	10	hg/L	100	0	107	46	136	0		
thalene	6	7.2	25	hg/L	100	0	97.2	39	153	0		
-Trichlorobenzene	6	8.6	10	hg/L	100	0	98.6	41	161	0		
rr: Dibromofluoror	nethane 11	8.7	10	hg/L	125	0	95	82	122	0		
rr: 1,2-Dichloroeth	1ane-d4 89	.75	10	µg/L	125	0	71.8	73	135	. · 0		S
rr: Toluene-d8	. –	123	10	µg/L	125	0	98.4	82	117	0		
rr: 4-Bromofluorok	benzene 11	9.6	10	hg/L	125	0	95.6	77	119	0		
					-							
	·											
ifiers: ND - No	t Detected at the Reporting	g Limit	S.	Spike Recovery	outside accepted r	ecovery lin	nits	3 - Analyte de	stected in th	e associated Method	Blank	
J - Analy	/te detected below quantita	tion limits	R -	RPD outside acc	cepted recovery lin	nits -	2	VA - Not annl	icable when	e I values or ND rec	ults occur	
DI Dan		o louroat acada		t.			•	ndda nor i nor		C 1 44100 00 1110 100	arts occur	

Project: January Janapie Sample Matrix Spike Duplicate Project: Janapie Bath Di Page Prespike Duplicate Sample Mith Sample Bath Di Page Prespike Duplicate Sample Matrix Spike Duplicate Sample Mith Di Page Bath Di Page Prespike Duplicate Sample Matrix Spike Duplicate Sample Mith Di Page Bath Di Page Prespike Duplicate Sample Matrix Spike Duplicate Sample Mith Di Page Bath Di Page Prespike Duplicate Sample Matrix Spike Duplicate Sample Mith Di Page Matrix Spike Duplicate Sample Matrix Spike Duplicate Sample Matrix Spike Duplicate Answer Bash Mith Mith Mith Mith Mith Mith Mith Mit	CLIENT:	Shaw Env	ironmental & Infrastru	ucture, Inc.							QC SUM	IMARY	REPO]	RT	
	Project:	1202034 130274 T	extron Providence								Sample N	Matrix Spi	ke Dupli	cate	
International condition of the co	Sample ID: 1202	034-02Amsd	Batch ID: R48344	Test Code	: SW8260B	Units:	µg/L		Analysis D)ate 2/14/20	12 8:12:00 PM	Prep Date:	: 2/9/2012		
Original Sample Original Sample AreAly AreAly <th colspa<="" th=""><th>Client ID: CW-2</th><th>2</th><th></th><th>Run ID:</th><th>V-3_12121</th><th>4A</th><th></th><th></th><th>SeqNo:</th><th>805371</th><th></th><th></th><th></th><th></th></th>	<th>Client ID: CW-2</th> <th>2</th> <th></th> <th>Run ID:</th> <th>V-3_12121</th> <th>4A</th> <th></th> <th></th> <th>SeqNo:</th> <th>805371</th> <th></th> <th></th> <th></th> <th></th>	Client ID: CW-2	2		Run ID:	V-3_12121	4A			SeqNo:	805371				
And Transmit Transmit <th< th=""><th></th><th></th><th>QC Sample</th><th>ö</th><th></th><th>C Spike Or</th><th>riginal Samp</th><th>ble 1+ % DTC</th><th></th><th></th><th>Driginal Sample</th><th></th><th></th><th>Ċ</th></th<>			QC Sample	ö		C Spike Or	riginal Samp	ble 1+ % DTC			Driginal Sample			Ċ	
Diethonethane 73.9 25 ppl. 100 0 73.9 23.1 101.2 23.3.5 20.0 17 Ohlorenethane 93.4 25 ppl. 100 0 17.4 54 156 17.7 23.5 20.0 17 Ohlorenethane 93.1 10 ppl. 100 0 111 55 153 153 17.7 20.0 17 Ohlorenethane 93.1 10 ppl. 100 0 111 55 153 17.7 20.0 17 Detry wind 93.7 50 ppl. 100 0 11.4 133.2 137.2 20.0 11.2 Detry wind 93.75 50 ppl. 100 0 11.4 15.3 13.4 23.3 13.2 23.3 20.0 13.1 Detry wind 646 101 100 0 101 101 11.3 13.2 23.3 20.0 20.0 <th< td=""><td>Analyte</td><td></td><td>Hesuit</td><td>- - -</td><td>OUITS</td><td>Amount</td><td>nsan</td><td>II. %HEL</td><td>rowLimit</td><td>HIGNLIMIT</td><td>Or IMS Hesuit</td><td>пчн%</td><td>HPULIMIT</td><td>σ</td></th<>	Analyte		Hesuit	- - -	OUITS	Amount	nsan	II. %HEL	rowLimit	HIGNLIMIT	Or IMS Hesuit	пчн%	HPULIMIT	σ	
Chloromethane 994 25 pg/L 100 0 944 35 144 117.9 17.7 20 92 Chloromethane 107.5 10 pg/L 100 0 111 55 153 23.5 20 17 20 Chloromethane 93.1 10 pg/L 100 0 111 55 153 23.5 20 17 20 17 20 20 17 20 20 17 20 20 17 20 20 17 20 20 17 21 20 11 20 21 </td <td>Dichlorodifluorom</td> <td>lethane</td> <td>79.9</td> <td>25</td> <td>hg/L</td> <td>100</td> <td></td> <td>0 79.5</td> <td>22</td> <td>176</td> <td>101.2</td> <td>23.5</td> <td>20</td> <td>Ľ</td>	Dichlorodifluorom	lethane	79.9	25	hg/L	100		0 79.5	22	176	101.2	23.5	20	Ľ	
Virk of holodie 107 ppl. 100 ppl. 100 107 54 155 152	Chloromethane		99.4	25	hg/L	100	-	0 99.4	36	144	117.9	17	20		
Concretane 111 25 μgh 100 0 111 55 153 137.2 203 <t< td=""><td>Vinyl chloride</td><td></td><td>107.5</td><td>10</td><td>hg/L</td><td>100</td><td>-</td><td>0 107</td><td>54</td><td>156</td><td>125.2</td><td>15.2</td><td>20</td><td></td></t<>	Vinyl chloride		107.5	10	hg/L	100	-	0 107	54	156	125.2	15.2	20		
Biomethane 83.1 10 $pql.$ 100 $pql.$ 100 $pgl.$ 100 $pgl.$ 100 $pgl.$ 100 $pgl.$ 101 23.2 22 23.5 20 R Dirtrionfouromethane 88.75 10 $pgl.$ 100 0 71.7 55 $plr.$ 73.55 22 22 22 20 R Acetone 38.25 50 $pgl.$ 100 0 38.2 22 147 41.35 77.9 20 1 1.1-Oblioromethane 108.7 50 $pgl.$ 100 0 38.2 23 124 20 20 1 1.1-Oblioromethane 90.8 10 $pgl.$ 100 0 47.4 50 $pgl.$ 101 20 20 4 124 124 20 20 20 20 20 20 20 20 20 20 20 21 20 20 21	Chloroethane		111.2	25	hg/L	100	-	0 111	55	153	137.2	20.9	20	Щ	
Trichloromethane 98.75 10 pg/L 100 98.8 80 161 123.2 22 200 H Diethyl ether 71.7 25 pg/L 100 0 71.7 55 128 759 20 1 Action 38.35 50 pg/L 100 0 71.7 55 128 759 20 1 Action 38.35 50 pg/L 100 0 71 44 130.8 18.4 20 1 Action disulfide 104.7 10 pg/L 100 0 71 44 147 115.8 24.3 20 1 Methylene 76.9 10 pg/L 100 0 77 44 147 115.8 24.3 20 1 20 1 22 23.1 20 1 20 124.1 20 24 20 24 20 24 20 24 20	Bromomethane		93.1	10	hg/L	100	-	0 93.1	47	113	118	23.5	20	ш	
Deletion T17 25 updl 100 0 71.7 55 128 7.79 20 1 Deletion denome 38.25 50 updl 100 0 71.7 55 128 7.79 20 1 1/1-Definitionethene 104.8 10 updl 100 0 105 39 153 12.3 20 12 20 1 Metritytione chloride 104.8 10 updl 100 0 105 39 153 12.43 20 12 20 1 Metritytione chloride 101.7 10 updl 100 0 17 64 137 15.8 23.1 20 1 Metritytione chloride 101.7 10 updl 100 0 17 64 137 15.8 23.1 20 21 21 20 21 21 21 21 21 21 21 21 21 2	Trichlorofluorome	sthane	98.75	10	hg/L	100		0 98.6	80	161	123.2	22	20	ц	
Action 33.5 50 $\mu gl.$ 100 0 38.2 22 14.7 41.35 7.79 20 1 1.1-Dichloroethene 106.7 5.0 $\mu gl.$ 100 0 00.5 61 14.6 13.4 20 1 20 1 1.1-Dichloroethene 106.7 5.0 $\mu gl.$ 100 0 0.7 64 137 87.15 23.1 20 1 Methylene chloride 90.7 10 $\mu gl.$ 100 0 0.7 64 137 87.15 21.4 20 1 1.1-Dichloroethene 91.7 10 $\mu gl.$ 100 0 92.2 14.7 115.8 23.1 20 1 1.1-Dichloroethene 91.7 10 $\mu gl.$ 100 0 92.2 14.8 12.4 20 1 20 12.4 20 1 21.2 21.1 20 12.4 20 12.4 20 12.4	Diethyl ether		7.17	25	hg/L	100		0 71.7	55	128	78.55	9.12	20		
1, -Uncludenciation 108.7 5.0 $\mu\rhoL$ 100 0 103 14.4 15.0 18.4 20 Carbon distribution 0.0.10 $\mu\rhoL$ 100 0 105 14.4 13.0.8 18.4 20 Carbon distribution 0.0.3 10 $\mu\rhoL$ 100 0 77 64 137 81.5. 23.1 20 R Methylene choice 90.8 10 $\mu\rhoL$ 100 0 77 64 137 81.5. 22.2 20 R Methylene choice 90.8 10 $\mu\rhoL$ 100 0 47.4 35 132 14.5 12.4 20 R 1, -Dichloroethene 90.2 10 $\mu\rhoL$ 100 0.47.4 35 132.4 20 R R 20 2.1Dichloroethene 90.8 10 $\mu\rhoL$ 100 0.47.4 35 132.4 20 21 22 22 20 R	Acetone		38.25	. 50	hg/L	100	-	0 38.2	22	147	41.35	7.79	20	ſ	
Carbon disufficie 104.8 10 $\mu g/L$ 100 0 105 33 153 132.3 23.1 20 R Metrylener choride 90.7 25 $\mu g/L$ 100 0 77 64 137 87.15 24.3 20 R Metrylener buryl enterburyl enter 75.95 10 $\mu g/L$ 100 0 77 64 137 87.15 22.4 20 R 1.1-Dichloroethene 017 10 $\mu g/L$ 100 0 47.4 35 132 53.1 20 R 2.2-Dichloroethene 017 10 $\mu g/L$ 100 0 47.4 35 132 53.1 20 R 2.2-Dichloroethene 90.8 10 $\mu g/L$ 100 0 47.4 35 143 145 145 212 20 R 2.2-Dichloroethene 91 100 07 45 135 66.75 147 20 <td>1,1-Dichloroether</td> <td>Je</td> <td>108.7</td> <td>5.0</td> <td>hg/L</td> <td>100</td> <td></td> <td>0 100</td> <td>61</td> <td>146</td> <td>130.8</td> <td>18.4</td> <td>20</td> <td></td>	1,1-Dichloroether	Je	108.7	5.0	hg/L	100		0 100	61	146	130.8	18.4	20		
Metrylene chloride 90.7 25 µg/L 100 0 77 64 147 115.8 24.3 20 R Metrylene chloride 90.7 10 µg/L 100 0 77 64 137 87.15 12.4 20 R Taras-1.2-Dichloroethane 101.7 10 µg/L 100 0 90.8 66 139 114.5 22.2 20 R 1.1-Dichloroethane 97.8 50 µg/L 100 0 97.4 35 139 56.75 739 20 R 2-Dichloropethane 95.2 10 µg/L 100 0 84.6 78 132 147 26.8 20 R 2-Dichloropethane 95.2 10 µg/L 100 0.5 84.6 78 132 21.2 20 R 2-Dichloropethane 95.2 10 µg/L 100 0.5 84.6 78 132 20 <td>Carbon disulfide</td> <td></td> <td>104.8</td> <td>10</td> <td>hg/L</td> <td>1:00</td> <td>-</td> <td>0 105</td> <td>39</td> <td>153</td> <td>132.3</td> <td>23.1</td> <td>20</td> <td>ш</td>	Carbon disulfide		104.8	10	hg/L	1:00	-	0 105	39	153	132.3	23.1	20	ш	
Methyl tert-buly tert-	Methylene chloric	le	90.7	25	hg/L	100		0 90.7	44	147	115.8	24.3	20	ш	
trans-1,2-Dichloroethene 101.7 10 $\mu g/L$ 100 102.5 212.9 20 P Chordorethane 101.3 10 $\mu g/L$ 100 0 12 129.3	Methyl tert-butyl e	sther	76.95	10	hg/L	100		0 77	64	137	87.15	12.4	20		
1,1-Dichloroethane 90.8 10 $µgl.$ 100 0.3 66 139 114.5 23.1 20 H 2-Butanone 47.45 50 $µgl.$ 100 0 47.4 35 139 56.75 17.9 20 J 2-Butanone 47.45 50 $µgl.$ 100 0 47.4 35 132 56.75 17.9 20 J 22-Dichropropane 99.25 10 $µgl.$ 100 0 34.7 68 132 124.7 26.8 20 J Citrofum 84.6 10 $µgl.$ 100 0 34.7 68 132 124.7 26.8 20 J Ritahydrofuran 65.9 50 $µgl.$ 100 0 34.7 78 136.7 218.1 21.2 21.8 $11.4, 5, 21.8$ 21.2 21.8 21.2 21.8 21.2 21.2 21.6 $11.1,$	trans-1,2-Dichlord	oethene	101.7	10	hg/L	100	1	0 102	68	140	127	22.2	20	Щ	
2-Butanone 47.45 50 $\mu g/L$ 100 0 47.4 35 139 56.75 17.9 20 J 22-Dichloropropane 99.25 10 $\mu g/L$ 100 0.53 94.7 68 132.6 28.8 20 R cis-1,2-Dichloroptione 95.2 10 $\mu g/L$ 100 0.53 94.7 68 132 124.7 26.8 20 R chloroptione 95.2 10 $\mu g/L$ 100 0.53 94.7 68 132 124.7 26.8 20 R chloroptione 95.2 10 $\mu g/L$ 100 0 84.6 78 136 105.5 22 20 R Fatrahydrofuran 65.9 50 $\mu g/L$ 100 0 11 72 138 212.2 20 R Horoptionentane 11 10 $\mu g/L$ 100 0 12 138 24.2 20 R<	1,1-Dichloroethar	Je	90.8	10	hg/L	100		0 90.6	66	139	114.5	23.1	20	ш	
2.2-Dichloropropane 99.25 10 $\mu g/L$ 100 0 99.2 45 165 132.6 28.8 20 R cis-1,2-Dichloropropane 95.2 10 $\mu g/L$ 100 0.53 94.7 68 132 124.7 26.8 20 R chloropropane 95.2 10 $\mu g/L$ 100 0.53 94.7 68 132 124.7 26.8 20 R Chloroform 84.6 10 $\mu g/L$ 100 0.53 92.7 132 124.7 26.8 20 R Tetrahydrofuran 65.9 50 $\mu g/L$ 100 0 81 72 132 103.4 24.7 20 R 1,1-1 1 10 $\mu g/L$ 100 0 81 72 132 132.8 24.7 20 R 1,1-1 1 1 101 72 132 123.8 24.7 20 R 14 122.8 124.7 26 21 21 21 21 21 <td< td=""><td>2-Butanone</td><td></td><td>47.45</td><td>50</td><td>hg/L</td><td>100</td><td>-</td><td>0 47.4</td><td>. 35</td><td>139</td><td>56.75</td><td>17.9</td><td>20</td><td><u>ل</u></td></td<>	2-Butanone		47.45	50	hg/L	100	-	0 47.4	. 35	139	56.75	17.9	20	<u>ل</u>	
cis-1,2-Dichloroethene 95.2 10 $\mu g/L$ 100 0.53 94.7 68 132 124.7 26.8 20 R Chloroform 84.6 10 $\mu g/L$ 100 0 84.6 78 136 105.5 22 20 R Tetrahydrofuran 65.9 50 $\mu g/L$ 100 0 81 72 139 53.25 21.2 20 R Tetrahydrofuran 65.9 50 $\mu g/L$ 100 0 81 72 139 53.25 21.2 20 R 1,1-Trichloroethane 101.3 10 $\mu g/L$ 100 0 11 72 132 136.8 23.7 20 R 1,1-Dichloropene 107.8 10 $\mu g/L$ 100 0 102 72 148 129.8 23.7 20 R 1,1-Dichloropene 66.8 10 $\mu g/L$ 100 0 102 72 143 128.8 23.7 20 R 1,2-Dichloropethane 66.8 <td>2,2-Dichloroprope</td> <td>ane</td> <td>99.25</td> <td>10</td> <td>hg/L</td> <td>. 100</td> <td>-</td> <td>0 99.2</td> <td>45</td> <td>165</td> <td>132.6</td> <td>28.8</td> <td>20</td> <td>Щ</td>	2,2-Dichloroprope	ane	99.25	10	hg/L	. 100	-	0 99.2	45	165	132.6	28.8	20	Щ	
Chloroform 84.6 10 $\mu g/L$ 100 $B4.6$ 78 136 105.5 22 20 R Tetrahydrofuran 65.9 50 $\mu g/L$ 100 0 65.9 27 139 53.25 21.2 20 R Romochloromethane 81 10 $\mu g/L$ 100 0 81 72 139 53.25 21.2 20 R 1,1,1-Trichloroethane 81 10 $\mu g/L$ 100 0 101 78 148 129.8 23.7 20 R 1,1,1-Trichloroethane 107.8 10 $\mu g/L$ 100 0 101 78 148 129.8 23.7 20 R 1,1,1-Dichloroethane 107.8 10 $\mu g/L$ 100 0 102 72 148 128.8 23.7 20 R 1,1,2-Dichloroethane 66.8 10 $\mu g/L$ 100 0 102 72 141	cis-1,2-Dichloroet	hene	95.2	10	hg/L	100	0.5	3 94.7	68	132	124.7	26.8	20	ЦĽ,	
Tetrahydrofuran 65.9 50 µg/L 100 0 65.9 27 139 53.25 21.2 20 R Bromochloromethane 81 10 µg/L 100 0 81 72 139 53.25 21.2 20 R 1,1,1-Trichloroethane 81 10 µg/L 100 0 101 78 148 129.8 24.7 20 R 1,1-Dichloroethane 101.3 10 µg/L 100 0 101 78 148 129.8 23.7 20 R 1,1-Dichloroethane 102.4 10 µg/L 100 0 102 72 143 128.8 23.7 20 R Carbon tetrachloride 102.4 10 µg/L 100 0 102 72 141 81.45 19.8 20 8 1,2-Dichloroethane 66.8 10 µg/L 100 0 102 72 141 81.45 19.8 20 8 1,2-Dichloroethane 66.8 10 <td>Chloroform</td> <td></td> <td>84.6</td> <td>10</td> <td>hg/L</td> <td>100</td> <td>-</td> <td>0 84.6</td> <td>78</td> <td>136</td> <td>105.5</td> <td>22</td> <td>20</td> <td>Щ</td>	Chloroform		84.6	10	hg/L	100	-	0 84.6	78	136	105.5	22	20	Щ	
Bromochloromethane 81 10 $\mu g/L$ 100 0 81 72 132 103.4 24.2 20 R 1,1,1-Trichloroethane 101.3 10 $\mu g/L$ 100 0 101 78 148 129.8 24.7 20 R 1,1,1-Dichloroethane 107.8 10 $\mu g/L$ 100 0 101 78 148 129.8 23.7 20 R 1,1-Dichloroethane 107.8 10 $\mu g/L$ 100 0 102 72 143 136.8 23.7 20 R 1,2-Dichloroethane 66.8 10 $\mu g/L$ 100 0 102 72 143 128.8 20 S 1,2-Dichloroethane 66.8 10 $\mu g/L$ 100 0 102 72 141 81.45 19.8 20 S 1,2-Dichloroethane 66.8 72 141 81.45 19.8 20 S	Tetrahydrofuran		. 65.9	20	hg/L	100	7	0 65.9	27	139	53.25	21.2	20	Ц,	
1,1,1-Trichloroethane 101.3 10 $\mu g/L$ 100 0 101 78 148 129.8 24.7 20 R 1,1-Dichloroethane 107.8 10 $\mu g/L$ 100 0 108 82 136.8 23.7 20 R 1,1-Dichloropropene 107.4 10 $\mu g/L$ 100 0 102 72 143 128.8 22.8 20 R 1,2-Dichloroethane 66.8 10 $\mu g/L$ 100 0 66.8 72 141 81.45 19.8 20 8 1,2-Dichloroethane 66.8 10 $\mu g/L$ 100 0 66.8 72 141 81.45 19.8 20 8 1,2-Dichloroethane 66.8 10 $\mu g/L$ 100 0 102 72 141 81.45 19.8 20 8 1,2-Dichloroethane 101.7 5.0 $\mu g/L$ 100 0 102 72 141 81.45 12.8 20 8 Paralyte detected at the Reporting Limit	Bromochlorometh	lane	81	10	hg/L	100	-	0 81	72	132	103.4	24.2	20	Щ	
1,1-Dichloropropene 107.8 10 $\mu g/L$ 100 0 108 82 139 136.8 23.7 20 R Carbon tetrachloride 102.4 10 $\mu g/L$ 100 0 102 72 143 128.8 22.8 20 R 1,2-Dichloroethane 66.8 10 $\mu g/L$ 100 0 66.8 72 141 81.45 19.8 20 R 1,2-Dichloroethane 66.8 10 $\mu g/L$ 100 0 66.8 72 141 81.45 19.8 20 R Benzene 101.7 5.0 $\mu g/L$ 100 0 102 72 141 81.45 19.8 20 R Analyte detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits S - Analyte detected in the associated Method Blank 23 20 R J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits N A maniculation transport of the cover of the sociated Method Blank 1 23 20 R	1,1,1-Trichloroeth	lane	101.3	10	hg/L	100	_	0 101	78	148	129.8	24.7	20	Щ	
Carbon tetrachloride 102.4 10 $\mu g/L$ 100 0 102 72 143 128.8 22.8 20 R 1,2-Dichloroethane 66.8 10 $\mu g/L$ 100 0 66.8 72 141 81.45 19.8 20 R 1,2-Dichloroethane 66.8 10 $\mu g/L$ 100 0 66.8 72 141 81.45 19.8 20 R Benzene 101.7 5.0 $\mu g/L$ 100 0 102 73 135 128.1 23 20 R Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank 20 R J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA Analyte detected in the associated Method Blank 21 23 20 R	1,1-Dichloroprope	sne	107.8	10	hg/L	100	-	0 108	82	139	136.8	23.7	20	С,	
1,2-Dichloroethane66.810 $\mu g/L$ 100066.87214181.4519.820SBenzene101.75.0 $\mu g/L$ 100010273135128.12320RQualifiers:ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method BlankJ - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsNANA Analyte detected in the associated Method Blank	Carbon tetrachlor	ide	102.4	10	hg/L	100)	0 102	72	143	128.8	22.8	20	æ	
Benzene 101.7 5.0 μg/L 100 0 102 73 135 128.1 23 20 R Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA	1,2-Dichloroethar	le	66.8	10	hg/L	100)	0 66.8	72	141	81.45	19.8	20	S	
Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA NA <td>Benzene</td> <td></td> <td>101.7</td> <td>5.0</td> <td>hg/L</td> <td>100</td> <td>-</td> <td>0 102</td> <td>13</td> <td>135</td> <td>128.1</td> <td>23</td> <td>20</td> <td>Щ</td>	Benzene		101.7	5.0	hg/L	100	-	0 102	13	135	128.1	23	20	Щ	
J - Analyte detected below quantitation limits RPD outside accepted recovery limits	Qualifiers: NI) - Not Detected	at the Reporting Limit	- S -	Spike Recove	rry outside act	cepted recove	ary limits	B - Analy	te detected in 1	the associated Meth	rod Blank			
	, ,	Analyte detected	l below quantitation limits	- a	DDD autoida	contract take	the second s								

AMRO Envi	ironmental Labora	ories Co	orp.								Date: 17-F	eb-12	
CLIENT:	Shaw Environmental & I	nfrastructur	e, Inc.							QC SUMA	IARY R	[EPO]	RT
work Uraer: Project:	1202034 130274 Textron Provide	nce								Sample Ma	ıtrix Spike	Duplic	cate
Trichloroethene	102.		10	hg/L	100	1.7	100	74	143	128	22.6	20	œ
1,2-Dichloropropane	84.8	LO	10	hg/L	100	0	84.8	66	136	104.2	20.5	20	£
Bromodichlorometh	ane 76.5		10	hg/L	100	0	76.6	72	132	93.6	20	20	œ
Dibromomethane	71.3	د	10	р9/Г	100	0	71.4	71	132	83.25	15.4	20	
4-Methyl-2-pentanor	ne 56.	i 2	50	hg/L	100	0	56.7	34	145	51.4	9.81	20	
cis-1,3-Dichloroprop	sene 77.	4	0.0	hg/L	100	0	77.4	66	126	92.25	17.5	20	
Toluene	98.	თ	10	hg/L	100	0	98.9	71	139	121.8	20.7	20	ш
trans-1,3-Dichloropr	opene 69.7.		0.	hg/L	100	0	69.8	68	122	83.7	18.2	20	
1,1,2-Trichloroethan	ne 71.		10	hg/L	100	0	71.4	67	129	82.2	14.1	20	
1,2-Dibromoethane	70.	თ	10	hg/L	100	0	70.9	67	137	81	13.3	20	
2-Hexanone	57.2		50	hg/L	100	0	57.2	30	134	49.65	14.2	20	
1,3-Dichloropropane	ç 71.2	G	10	hg/L	100	0	71.2	75	126	82.6	14.8	20	S
Tetrachloroethene	113.		10	hg/L	100	0	114	70	150	144.8	24.1	20	œ
Dibromochlorometh	ane 68.	LO	10	hg/L	100	0	68.5	63	116	81.35	17.2	20	
Chlorobenzene	97.7	io	10	hg/L.	100	0	97.8	76	130	117.6	18.5	20	
1,1,1,2-Tetrachloroe	ethane 8		10	hg/L	100	0	86	79	126	106.2	21	20	œ
Ethylbenzene	107.		10	hg/L	100	0	108	80	133	132	20.3	20	с
m,p-Xylene	213.	ന	10	hg/L	200	0	107	81	131	259.4	19.5	20	
o-Xylene	10		10	hg/L	100	0	105	78	130	126.2	18.3	20	
Styrene	103.		10	hg/L	100	0	104	. 72	140	125.4	19	20	
Bromoform	63.9		10	µg/L	100	0	64	47	113	69.4	8.17	20	
Isopropylbenzene	134.		10	hg/L	100	0	134	81	144	162.4	18.9	20	
1,1,2,2-Tetrachloroe	ethane 73.5		10	hg/L	100	0	73.6	62	133	76.35	3.74	20	
1,2,3-Trichloropropa	10°.	თ	10	hg/L	100	0	70.8	60	143	70.3	0.709	20	
Bromobenzene	102.		10	hg/L	100	0	102	82	127	123.3	18.8	20	
n-Propylbenzene	120.	თ	10	µg/L	100	0	121	76	142	147.7	20	20	
2-Chlorotoluene	103.	ŝ	10	µg/L	100	0	104	75	134	127	20.1	20	œ
4-Chlorotoluene	103.		10	hg/L	100	0	103	74	133	125.8	19.5	20	
1,3,5-Trimethylbenz	ene 118.		10	hg/L	100	0	118	74	143	141.8	18	20	
tert-Butylbenzene	122.		10	, hg/L	100	0	123	79	140	146.6	17.8	20	
1,2,4-Trimethylbenz	ene 111.	n	10	µg/L	100	0	112	72	144	136.2	19.6	20	
Qualifiers: ND -	Not Detected at the Reporting L	imit	- S	Spike Recovery	outside accepted	recovery lin	mits	3 - Analyte detec	sted in the	associated Method	Blank		
J - AI	nalyte detected below quantitatic	on limits	R -	RPD outside ac	cepted recovery li	mits	_	VA Not applica	ihle where	I values or ND resi	ults occur		
RL - I	Reporting Limit; defined as the	lowest concent	tration the l	aboratory can a	ccurately quantita	ie.							

.

Date: 17-Feb-12

AMRO Environmental Laboratories Corp.

CLIENT:	Shaw Environment	tal & Infrastruc	cture, Inc.						-			LaCan	٢
Work Order:	1202034												
Project:	130274 Textron P1	rovidence								Sample Ma	trix Spike	Duplicate	O
sec-Butylbenzene		123.6	10	µg/L	100	0	124	76	149	148.4	18.2	20	1
4-Isopropyltoluene		119.6	10	µg/L	100	0	120	80	147	141.4	16.7	20	
1,3-Dichlorobenzen	c)	102.3	10	hg/L	100	0	102	78	129	121.4	17	20	
1,4-Dichlorobenzen	¢	94.7	10	hg/L	100	0	94.7	76	134	114	18.5	20	
n-Butylbenzene		117.8	10	hg/L	100	0	118	68	153	140.3	17.4	20	
1,2-Dichlorobenzen	()	91.4	10	hg/L	100	0	91.4	73	136	108.6	17.2	20	
1,2-Dibromo-3-chlor	opropane	67.25	25	hg/L	100	0	67.2	41	123	67.95	1.04	20	
1,2,4-Trichlorobenz(ene	99.9	10	µg/L	100	0	99.9	55	156	111	10.5	20	
Hexachlorobutadien	e	101.8	10	hg/L	100	0	102	46	136	107.1	5.07	20	
Naphthalene [`]		88.3	25	hg/L	100	0	88.3	39	153	97.2	9.6	20	
1,2,3-Trichlorobenze	ene	92.2	10	hg/L	100	0	92.2	41	161	98.6	6.71	20	
Surr: Dibromofluc	romethane	111.1	10	hg/L	125	0	88.9	82	122	0	0	0	
Surr: 1,2-Dichlorc	ethane-d4	84.5	10	hg/L	125	0	67.6	73	135	0	0	0	S
Surr: Toluene-d8		125.4	10	hg/L	125	0	100	82	117	0	0	0	
Surr: 4-Bromofluc	orobenzene	120.8	10	hg/L	125	0	96.7	77	119	0	0	0	

082

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

RL - Reporting Limit: defined as the lowest concentration the laboratory can accurately quantitate.

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

ار برد ارتبار ارتبار ارتبار المهنية المهنية

CLERYT: Shaw Environmental & Infratructure, Int. Overk Order: 200044 Project: 200014 Sample Matrix Splite Description: 2000143 Sample Matrix Splite Project: 2000143 Control Project: 2000143 Control Project: Papers: Sample Matrix Splite Project: 2000143 Control Project: Matrix Splite Matrix Splite Matrix Splite Control Project: Provincit Matrix Splite Matrix Splite Matrix Splite Matrix Splite Control Project: Provincit Sample Matrix Splite Matrix Splite Matrix Splite Matrix Splite Control Project: Provincit Sample Matrix Sample Matrix Splite Matrix Splite Control Project: Provincit Matrix Splite Matrix Splite Matrix Splite Control Project: Provincit Sample Matrix Sample Matrix Splite Matrix Splite Control Project: Provincit Provincit Sample Matrix Sample Matrix Provincit Control Project: Provincit Provincit Provincit Provincit Provincit Provincit	CLIRINT: Sinva Environmental & Inframeture. In: Vote Contex: CONTINIARY REPORT Proper 2002/11 Second Invironmental & Inframeture. In: 2002/11 Second Invironmental & Inframeture. In: 2002/2002/2002 (Inframeture. Intrameture. Intrameture	AMRO Envir	onmental Laboratories	Corp.								Date: 17-Feb-12	
Matrix Spring Analysis of the second se	Matrix Spring International Sector Structure (1) NU24 Textor Providence Annotation Sector Structure (1) NU24 Textor Providence Sample (1) NU24 Textor Providence Sample (1) NU24 Textor Providence Sector Structure (1) NU2490 Each ID, NU24 Each ID, NU24 Annotation Sector Providence Page Data Structure (1) NU24 Textor Providence	CLIENT: Work Order:	Shaw Environmental & Infrastru 1202034	cture, Inc.							QC SUM	MARY REPORT	
Simple U: Table State And I: Table And I: <th>Simple ID: Zabon-diame Each ID: Radio Image Data Zabon-zabon Fer Data Zabon-zabon Choremethene 176,0 50 111 Zon-zabon 6 111 Zon-zabon 6 200</th> <th>Project:</th> <th>130274 Textron Providence</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Sample Matrix Spike</th> <th>• ()</th>	Simple ID: Zabon-diame Each ID: Radio Image Data Zabon-zabon Fer Data Zabon-zabon Choremethene 176,0 50 111 Zon-zabon 6 111 Zon-zabon 6 200	Project:	130274 Textron Providence									Sample Matrix Spike	• ()
Client II. Mi-2001 Am/10. V-2.1213.4. SeqUe.	Clinct II. Mu.200 Am ID. V.J.2121A Series	Sample ID: 1202034-	04Ams Batch ID: R48355	Test Coc	le: SW8260B	Units: µg/L			Analysis Dá	ate 2/15/201	2 5:38:00 PM	Prep Date: 2/9/2012	I
Antional problem CS/shile optimel Sample Antional sample	Analysis CCS/plike Original Sample Anomatic CCS/plike Original Sample Anomatic	Client ID: MW-209L		Run ID:	V-3_12121	δA			SeqNo:	805475			
Anote Result R.L. Out Description Crick Result Result RepL Re	Analyse Beault RL Units Anound Result Arr High Linit or KLS Result SePD in the Result SeP		QC Sample			t Spike Origina	l Sample			0	riginal Sample		
Dictionantiane 176 / 16 90 102 / 16 206 00 103 54 126 0 Choronethane 256.6 50 101 206 10 103 56 114 0 Choronethane 256.6 50 101 200 0 103 56 153 0 Choronethane 275.6 50 101 200 0 113 56 153 0 Choronethane 273.1 20 101 200 0 102 52 144 0 Methynether 273.1 20 101 200 0 102 20 10 Methynether 273.1 20 101 200 0 102 20 10 Methynether 273.2 20 101 200 0 104 20 0 Methynether 273.2 100 101 200 0 101 10 101	Dickloordiffuctomethane 176.7 50 191 200 6 176 0 Viny cholode 2056 60 1901 2000 6 144 0 Viny cholode 2056 60 1901 2000 0 138 64 153 0 Cholodefhane 2266 50 1901 2000 0 144 10 0 Cholodefhane 2264 50 1901 2000 0 144 10 0 Findoreflame 2345 50 1901 2000 0 144 147 1 Findoreflame 2164 20 1901 2000 0 144 147 0 Cholodeflame 2164 20 1901 2000 0 144 147 0 Cholodeflame 2164 20 1901 2000 0 142 169 0 Cholodeflame 2164 169 200 112	Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD RPDLimit Qu	ž I
Chronentane 205.6 50 ppdl 200 10 144 0 Vnyi chrone 206.2 20 ppdl 200 0 136 54 156 0 Chronenthane 226.6 50 ppdl 200 0 133 55 153 0 Chronenthane 227.1 20 ppdl 200 0 144 0 0 Dehyl effer 226.6 50 ppdl 200 0 144 0 0 Dehyl effer 226.6 50 ppdl 200 0 144 0 0 Dehyl effer 204.6 50 ppdl 200 0 144 17 169 0 Dehyl effer 206 ppdl 200 0 102 200 161 161 0 174 0 174 0 174 0 174 16 174 16 174 161 174 161	Optimization 206.6 0 upl. 200 0 144 0 Chronenthane 286.5 50 upl. 200 0 133 55 153 0 Chronenthane 286.5 50 upl. 200 0 133 55 133 0 Forthinenthane 227.1 20 upl. 200 0 144 17 113 0 Enronenthane 227.1 20 upl. 200 0 144 0 144 0 Anatoria 206.5 100 upl. 200 0 124 147 0 Anatoria 203.8 0 upl. 200 0 144 147 0 Anatoria 213.2 20 upl. 200 0 144 147 0 Anatoria 213.2 20 upl. 200 0 120 120 120 Anatoria 213.2	Dichlorodifluorometha	ane 176.7	50	hg/L	200	0	88.4	52	176	0		
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	Virwit direction 25.5 2 ppl bit of the constraints 5 4 15 6 0 Enronmentation 26.6 20 ppl 200 0 113 5 15 0 0 The thorotethere 22.7 20 ppl 200 0 114 80 161 0 The thorotethere 22.4 0 ppl 200 0 122 22 147 0 The thorotethere 23.3 10 ppl 200 0 123 2 146 0 Acetone 218.3 50 ppl 200 0 120 124 0 Acetone 218.4 20 ppl 200 0 126 146 0 Acetone 213.2 20 ppl 200 0 126 146 0 Acetone 213.2 20 ppl 200 0 126 147 0 0 Acetone 213.2 20 ppl 200 112	Chloromethane	206.6	50	hg/L	200	0	103	36	144	. 0		
Chlonorethane 226.6 0 upl L 200 0 113 55 153 0 Remonenhane 120.1 200 upl L 200 0 113 55 153 0 Refined/intermethane 227.1 20 upl L 200 0 112 55 123 0 Refined/intermethane 227.1 20 upl L 200 0 122 55 123 0 Refined 214.3 20 upl L 200 0 122 55 124 0 Refined 213.4 20 upl L 200 0 122 55 124 0 Refined 213.2 20 upl L 200 0 122 124 0 Refined 213.2 20 upl L 200 124 213 124 0 Refined 213.2 20 upl L 200 125 124 0 <t< td=""><td>Chloroorthane 28.6 50 ppl 200 13 55 153 0 Thehorouthane 227.1 20 ppl 200 0 114 80 113 0 Thehorouthane 227.1 20 ppl 200 0 114 80 0 Debyt etter 244.6 50 ppl 200 0 122 55 128 0 Debyt etter 244.6 50 ppl 200 0 120 55 128 0 Carbon distribution 218.4 20 ppl 200 0 120 56 147 0 Carbon distribution 213.5 20 ppl 200 0 120 66 147 0 Methy ter-buty diter 223.7 20 ppl 200 0 120 66 147 0 Carbon distribution 21.5 100 ppl 200 120 120 120<!--</td--><td>Vinyl chloride</td><td>205.2</td><td>20</td><td>hg/L</td><td>200</td><td>0</td><td>103</td><td>54</td><td>156</td><td>0</td><td></td><td></td></td></t<>	Chloroorthane 28.6 50 ppl 200 13 55 153 0 Thehorouthane 227.1 20 ppl 200 0 114 80 113 0 Thehorouthane 227.1 20 ppl 200 0 114 80 0 Debyt etter 244.6 50 ppl 200 0 122 55 128 0 Debyt etter 244.6 50 ppl 200 0 120 55 128 0 Carbon distribution 218.4 20 ppl 200 0 120 56 147 0 Carbon distribution 213.5 20 ppl 200 0 120 66 147 0 Methy ter-buty diter 223.7 20 ppl 200 0 120 66 147 0 Carbon distribution 21.5 100 ppl 200 120 120 120 </td <td>Vinyl chloride</td> <td>205.2</td> <td>20</td> <td>hg/L</td> <td>200</td> <td>0</td> <td>103</td> <td>54</td> <td>156</td> <td>0</td> <td></td> <td></td>	Vinyl chloride	205.2	20	hg/L	200	0	103	54	156	0		
Benomethane 100 201 417 113 0 Trinbloomethane 2271 20 101 200 114 80 10 Dirthly elhen 1065 100 102 222 124 0 Acetone 1065 100 101 200 0 120 65 127 0 Acetone 17-10/biorethane 240.8 10 101 200 0 120 65 127 0 Acetone 214.1 200 101 200 0 120 65 127 0 Acetone 218.9 50 101 200 0 120 147 0 Methylene choicide 218.9 50 101 200 0 127 147 0 Methylene 2162 100 101 200 0 127 147 0 Acetone 2163 20 101 200 101 126	Bortomethane 160 20 191 200 0 147 113 0 Trichlonothane 204 6 104 70 104 00 0 Defly terles 204 0 1001 200 0 104 0 0 Anotholonomethane 204.6 50 1001 200 0 128 0 0 Anotholonomethane 218.4 20 1001 200 0 128 0 0 Anotholonomethane 218.4 20 1001 200 0 128 2 147 0 Anotholonomethane 218.4 20 1001 200 0 112 0 114 Anotholonomethane 218.4 20 1001 200 112 20 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114	Chloroethane	226.6	50	hg/L	200	0	113	55	153	0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bromomethane	180.9	20	hg/L	200	0	90.4	47	113	0		
Diethylether 204.6 50 µg/L 200 0 72 55 128 0 11-Dioblocethere 10 µg/L 200 0 102 55 128 0 11-Dioblocethere 218.4 20 µg/L 200 0 109 53.2 147 0 Carbon disultio 218.4 20 µg/L 200 0 109 54 157 0 Methylene chorde 213.5 20 µg/L 200 0 107 68 147 0 Methylene chorde 213.5 20 µg/L 200 0 107 68 149 0 Methylene chorde 213.2 100 µg/L 200 0 107 68 149 0 2.2-Dichloroethene 216.5 20 µg/L 200 0 107 68 139 0 2.1-Dichloroethene 216.5 20 µg/L 200 104	Diethylether 24.6 50 pgl 200 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2	Trichlorofluoromethan	le	20	hg/L	200	0	114	80	161	0		
Action 106 pp/L 200 0 522 127 0 1.1-Dichloroethene 240.8 10 pp/L 200 0 129 54 147 0 6thon distinds 218.9 50 pp/L 200 0 129 54 147 0 Methylene chloride 218.9 50 pp/L 200 0 129 64 137 0 Methylene chloride 213.5 20 pp/L 200 0 107 68 139 0 2.2-Dichloroethene 233.2 100 pg/L 200 0 107 68 139 0 2.2-Dichloroethene 238.8 20 pg/L 200 0 115 45 165 0 2.2-Dichloroethene 238.8 20 pg/L 200 0 167 64 137 0 0 2.2-Dichloroethene 238.8 20 pg/L 200 116	Actione 1.1-Dictioncenteree 106.5 100 µg/L 200 0 53.2 22 14.7 0 Gaton dist/rifed 218.4 20 µg/L 200 0 129 64 147 0 Gaton dist/rifed 218.4 20 µg/L 200 0 129 64 147 0 Methy dist/rifed 218.3 20 µg/L 200 0 172 64 147 0 Methy dist/rifed 213.5 20 µg/L 200 0 109 44 147 0 1.1-Dictoncentarie 213.5 20 µg/L 200 0 106 66 35 139 0 2-Butarione 207.8 20 µg/L 200 0 106 139 129 0 2-Butarione 203.4 20 µg/L 200 0 139 139 139 139 139 139 139 139 139	Diethyl ether	204.6	50	hg/L	200	0	102	55	128	0		
1,-10:Inforethere 240.8 10 pg/L 200 0 146 146 0 Carbon disuffide 213.5 20 pg/L 200 0 109 39 153 0 Methylerectoria 213.5 20 pg/L 200 0 109 44 147 0 Methylerectoria 213.5 20 pg/L 200 0 107 68 147 0 1,10:Inforethere 213.5 20 pg/L 200 0 107 68 139 0 1,11:Inforethere 213.5 20 pg/L 200 0 107 68 139 0 2-Dichoropropene 223.2 109 120 200 0 103 25 139 0 2-Dichoropropene 233.4 20 pg/L 200 0 103 27 139 0 2-Dichoropropene 233.4 20 pg/L 200 0	1,1-Unchloroenthene 24.08 10 $pgl.$ 200 0 146 16 146 0 Methylene 218.4 20 $pgl.$ 200 0 109 39 153 0 Methylene 218.4 20 $pgl.$ 200 0 112 64 137 0 Methylene 213.5 20 $pgl.$ 200 0 126 68 139 0 Instrast-1.2-Dichloroethene 213.5 20 $pgl.$ 200 0 126 68 139 0 1.1-Dichloroethene 213.2 100 $pgl.$ 200 0 146 66 139 0 1.1-Dichloroethene 229.9 20 $pgl.$ 200 0 132 169 0 1.1-Dichloroethene 288.8 20 $pgl.$ 200 132 132 0 1.1-Dichloroethene 288.8 20 $pgl.$ 200 12 132	Acetone	106.5	100	hg/L	200	0	53.2	22	147	0		
Carbon disulfide 218.4 20 µg/L 200 103 35 153 0 Metrylene chloride 218.9 50 µg/L 200 0 109 44 147 0 Metrylene chloride 213.5 20 µg/L 200 0 107 68 140 0 11-Dichloroethane 213.5 20 µg/L 200 0 104 66 139 0 11-Dichloroethane 213.5 20 µg/L 200 0 104 66 139 0 2-Butanore 233.8 20 µg/L 200 0 166 135 136 0 2-Dichloroethane 238.8 20 µg/L 200 0 166 139 0 2-Dichloroethane 288.8 20 µg/L 200 169 166 139 0 2-Dichloroethane 28.1 100 197 200 141 167 166 </td <td>Carbon disultide 218.4 20 pg/L 200 0 133 133 0 147 0 Metrylene chloride 213.3 20 pg/L 200 0 109 44 147 0 Tarar-1.2-Dichloroethene 213.5 20 pg/L 200 0 109 66 139 0 1.1-Dichloroethene 213.5 20 pg/L 200 0 109 66 139 0 2.1-Dichloroethene 213.2 100 pg/L 200 0 106 106 0 2.1-Dichloroethene 288.8 20 pg/L 200 0 116 /td> <td>1,1-Dichloroethene</td> <td>240.8</td> <td>10</td> <td>hg/L</td> <td>200</td> <td>0</td> <td>120</td> <td>61</td> <td>146</td> <td>0</td> <td></td> <td></td>	Carbon disultide 218.4 20 pg/L 200 0 133 133 0 147 0 Metrylene chloride 213.3 20 pg/L 200 0 109 44 147 0 Tarar-1.2-Dichloroethene 213.5 20 pg/L 200 0 109 66 139 0 1.1-Dichloroethene 213.5 20 pg/L 200 0 109 66 139 0 2.1-Dichloroethene 213.2 100 pg/L 200 0 106 106 0 2.1-Dichloroethene 288.8 20 pg/L 200 0 116	1,1-Dichloroethene	240.8	10	hg/L	200	0	120	61	146	0		
Metrylene chloride 218.9 50 µg/L 200 10 14 147 0 trans-1.2-Dichloroethene 223.7 20 µg/L 200 0 112 64 137 0 1.1-Dichloroethene 213.5 20 µg/L 200 0 112 64 137 0 2-Dichloroethene 233.2 100 µg/L 200 0 115 45 165 0 2-Dichloroethene 238.8 20 µg/L 200 0 115 45 165 0 2-Dichloroethene 238.8 20 µg/L 200 0 115 45 165 0 6in-13-Dichloroethene 288.8 20 µg/L 200 0 132 0 0 6in-13-Dichloroethene 28.0 µg/L 200 0 132 0 0 11.1-17/ichloroethene 28.1 20 µg/L 200 102 132 0		Carbon disulfide	218.4	20	hg/L	200	0	109	39	153	0		
Methyl terher 223.7 20 µg/L 200 0 112 64 137 0 trans-1,2-Dichloroethene 213.5 20 µg/L 200 0 107 68 140 0 2-Dichloroethene 213.5 20 µg/L 200 0 104 66 139 0 2-Dichloroethene 323.2 100 µg/L 200 0 115 66 35 159 0 2-Dichloroethene 228.8 20 µg/L 200 0 105 75 159 0 2-Dichloroethene 288.8 20 µg/L 200 0 106 78 155 0 1.1-Dirloroethene 288.8 20 µg/L 200 0 107 78 156 0 Iterahydrofuran 206.7 100 µg/L 200 0 17 178 178 0 Iterahydrofuran 200.4 20 µg/L <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>Methylene chloride</td> <td>218.9</td> <td>50</td> <td>hg/L</td> <td>200</td> <td>0</td> <td>109</td> <td>44</td> <td>147</td> <td>0</td> <td></td> <td></td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Methylene chloride	218.9	50	hg/L	200	0	109	44	147	0		
trans-1.2-Dichloroethene 213.5 20 µg/L 200 0 107 68 140 0 0 1.1-Dichloroethane 27.8 20 µg/L 200 0 104 66 139 0 2.2-Dichloroethane 133.2 100 µg/L 200 0 166 0 0 2.2-Dichloroethane 229.9 20 µg/L 200 0 165 139 0 2.2-Dichloroethane 229.9 20 µg/L 200 0 165 139 0 2.2-Dichloroethane 238.8 20 µg/L 200 0 103 127 135 0 Chloroform 206.7 100 µg/L 200 0 103 27 139 0 Etrahydrofuran 206.7 100 µg/L 200 0 103 17 132 0 0 Horotothane 23.6 20 µg/L 200 0	trans-1.2-Dichloroethene 213.5 20 $\mu gl.$ 200 0 107 68 140 0 1.1-Dichloroethane 207.8 20 $\mu gl.$ 200 0 146 68 139 0 2-Butanone 133.2 100 $\mu gl.$ 200 0 145 45 159 0 2-Dichloroethane 288.8 20 $\mu gl.$ 200 0 165 35 139 0 6i-1.2.Dichloroethane 288.8 20 $\mu gl.$ 200 0 105 75 139 0 Citoroform 200.4 20 $\mu gl.$ 200 0 103 27 139 0 Citoroform 200.4 20 $\mu gl.$ 200 0 103 27 139 0 Introlooethane 210.6 $\mu gl.$ 200 $\mu gl.$ 20 14 0 1 I.1-Trichloroethane 233.4 20 $\mu gl.$ 20	Methyl tert-butyl ether	223.7	20	hg/L	. 500	0	112	64	137	0		
1,1-Dichloroethane 207.8 20 $\mu gl.$ 200 0 66 133 0 0 2-Butanone 133.2 100 $\mu gl.$ 200 0 66.6 35 139 0 2-Butanone 133.2 100 $\mu gl.$ 200 0 115 45 165 0 2-Dichloroethane 229.9 20 $\mu gl.$ 200 82.2 103 68 132 0 Chloroform 206.7 100 $\mu gl.$ 200 82.2 103 78 138 0 Chloroptopene 236.3 100 $\mu gl.$ 200 0 114 78 138 0 1,1-Dichloroethane 238.6 20 $\mu gl.$ 200 0 114 78 148 0 1,1-Dichloroethane 233.4 20 $\mu gl.$ 200 0 114 78 148 0 1,1-Dichloroethane 233.4 20 $\mu gl.$ 200 0 117 72 143 0 1,2-Dichloroethane </td <td>1,1-Dichlocoethane 207.8 20 $\mu g/L$ 200 0 66 133 133 0 2-Butanone 133.2 100 $\mu g/L$ 200 0 166 35 133 0 2.2-Dichloroethane 239.9 20 $\mu g/L$ 200 0 115 45 165 0 2.2-Dichloroethane 288.8 20 $\mu g/L$ 200 0 113 45 165 0 2.2-Dichloroethane 288.8 20 $\mu g/L$ 200 0 123 0 0 1.1-Trichloroethane 288.5 20 $\mu g/L$ 200 0 103 27 139 0 1.1-Trichloroethane 233.6 20 $\mu g/L$ 200 0 116 72 132 0 1.1-Trichloroethane 233.4 20 $\mu g/L$ 200 0 112 72 132 0 0 1.1-Trichloroethane 233.4 20 $\mu g/L$</td> <td>trans-1,2-Dichloroethe</td> <td>ene 213.5</td> <td>20</td> <td>hg/L</td> <td>200</td> <td>0</td> <td>107</td> <td>68</td> <td>140</td> <td>0</td> <td></td> <td></td>	1,1-Dichlocoethane 207.8 20 $\mu g/L$ 200 0 66 133 133 0 2-Butanone 133.2 100 $\mu g/L$ 200 0 166 35 133 0 2.2 -Dichloroethane 239.9 20 $\mu g/L$ 200 0 115 45 165 0 2.2 -Dichloroethane 288.8 20 $\mu g/L$ 200 0 113 45 165 0 2.2 -Dichloroethane 288.8 20 $\mu g/L$ 200 0 123 0 0 1.1 -Trichloroethane 288.5 20 $\mu g/L$ 200 0 103 27 139 0 1.1 -Trichloroethane 233.6 20 $\mu g/L$ 200 0 116 72 132 0 1.1 -Trichloroethane 233.4 20 $\mu g/L$ 200 0 112 72 132 0 0 1.1 -Trichloroethane 233.4 20 $\mu g/L$	trans-1,2-Dichloroethe	ene 213.5	20	hg/L	200	0	107	68	140	0		
2-Butanone 133.2 100 $\mu g/L$ 200 0 66.6 35 133 0 2.2-Dichloropropane 229.9 20 $\mu g/L$ 200 0 115 45 165 0 chlorofrom 22-Dichloroethene 288.8 20 $\mu g/L$ 200 82.2 103 68 132 0 chlorofrom 200.4 20 $\mu g/L$ 200 82.2 103 68 132 0 chloropropene 280.3 100 $\mu g/L$ 200 0 103 27 139 0 11.1-Trichloroptopene 232.6 20 $\mu g/L$ 200 0 105 72 139 0 11.1-Dichloroptome 233.4 20 $\mu g/L$ 200 0 116 82 149 0 11.1-Dichloroptome 233.4 20 $\mu g/L$ 200 0 117 72 141 0 12Dichloroptome 233.4 20 $\mu g/L$ 200 0 116 72 141 0	2-Butanone 133.2 100 µg/L 200 0 66.6 35 139 0 2.2-Dichloropropane 22.9 20 µg/L 200 0 115 45 165 0 0 chloropropane 22.9 20.4 20 µg/L 200 0 100 78 132 0 chloropropane 288.8 20 µg/L 200 0 100 78 132 0 chloropropane 286.7 100 µg/L 200 0 103 27 139 0 transhytoritarian 206.7 100 µg/L 200 0 104 78 148 0 1.1-Dichloropropene 283.5 20 µg/L 200 0 114 78 148 0 1.1-Dichloropropene 233.4 20 µg/L 200 0 117 72 143 0 1.2-Dichloropropene 233.4 20 µg/L 200 0 117 72 143 0 1.2-Di	1,1-Dichloroethane	207.8	20	hg/L	200	0	104	66	139	0		
2,2-Dichloropropane 229,3 20 $\mu g/L$ 200 0 115 45 165 0 cis-1,2-Dichloroethene 288.8 20 $\mu g/L$ 200 82.2 103 68 132 0 chloroethene 288.8 20 $\mu g/L$ 200 82.2 103 68 132 0 Chloroethene 288.8 20 $\mu g/L$ 200 0 100 78 136 0 Tetrahydrofuran 206.7 100 $\mu g/L$ 200 0 103 27 139 0 Bromochloromethane 210.6 20 $\mu g/L$ 200 0 103 27 139 0 1,1-Trichloroethane 233.4 20 $\mu g/L$ 200 0 116 28 143 0 1,1-Dichloroethane 233.4 20 $\mu g/L$ 200 0 116 27 143 0 1,2-Dichloroethane 23.3.4 20 197 20 0 117 72 143 0 0 <t< td=""><td>2.2-Dichloropropane 229.9 20 $\mu gl.$ 200 15 45 165 0 cis-1.2-Dichloroethene 288.8 20 $\mu gl.$ 200 82.2 103 68 132 0 chloroform 206.7 100 $\mu gl.$ 200 82.2 103 78 136 0 Tetrahydrofuran 206.7 100 $\mu gl.$ 200 0 105 72 139 0 Tetrahydrofuran 206.7 100 $\mu gl.$ 200 0 105 72 139 0 11-Dichloroethane 232.6 20 $\mu gl.$ 200 0 114 72 149 0 11-Dichloroethane 233.4 20 $\mu gl.$ 200 0 117 72 141 0 12-Dichloroethane 233.4 20 $\mu gl.$ 200 0 116 72 141 0 12-Dichloroethane 136 0 113 73 135 0 0 22-Dichloroethane 233.4 20</td><td>2-Butanone</td><td>133.2</td><td>100</td><td>hg/L</td><td>200</td><td>0</td><td>66.6</td><td>35</td><td>139</td><td>0</td><td></td><td></td></t<>	2.2-Dichloropropane 229.9 20 $\mu gl.$ 200 15 45 165 0 cis-1.2-Dichloroethene 288.8 20 $\mu gl.$ 200 82.2 103 68 132 0 chloroform 206.7 100 $\mu gl.$ 200 82.2 103 78 136 0 Tetrahydrofuran 206.7 100 $\mu gl.$ 200 0 105 72 139 0 Tetrahydrofuran 206.7 100 $\mu gl.$ 200 0 105 72 139 0 11-Dichloroethane 232.6 20 $\mu gl.$ 200 0 114 72 149 0 11-Dichloroethane 233.4 20 $\mu gl.$ 200 0 117 72 141 0 12-Dichloroethane 233.4 20 $\mu gl.$ 200 0 116 72 141 0 12-Dichloroethane 136 0 113 73 135 0 0 22-Dichloroethane 233.4 20	2-Butanone	133.2	100	hg/L	200	0	66.6	35	139	0		
cis-1,2-Dichloroethene 28.8 20 $\mu g/L$ 200 82.2 103 68 132 0 Chloroform 200.4 20 $\mu g/L$ 200 0 78 136 0 Tetrahydrofuran 206.7 100 $\mu g/L$ 200 0 103 27 139 0 Homochloromethane 210.6 20 $\mu g/L$ 200 0 104 78 148 0 1,1-Trichloroethane 210.6 20 $\mu g/L$ 200 0 114 78 148 0 1,1-Dichloroethane 233.6 20 $\mu g/L$ 200 0 114 78 148 0 1,1-Dichloroethane 233.4 20 $\mu g/L$ 200 0 117 72 139 0 1,2-Dichloroethane 233.4 20 $\mu g/L$ 200 0 117 72 141 0 1,2-Dichloroethane 233.4 10 $\mu g/L$ <td>cis-1,2-Dichloroethene 288.8 20 $\mu g/L$ 200 82.2 103 68 132 0 Chloroform 200.4 20 $\mu g/L$ 200 0 100 78 136 0 Tetrahydrofuran 206.7 100 $\mu g/L$ 200 0 103 27 139 0 Bromochloromethane 210.6 20 $\mu g/L$ 200 0 114 78 148 0 1,1-Trichloroethane 233.6 20 $\mu g/L$ 200 0 114 78 148 0 1,1-Dichloroethane 233.4 20 $\mu g/L$ 200 0 114 78 148 0 1,1-Dichloroethane 233.4 20 $\mu g/L$ 200 0 114 78 148 0 1,2-Dichloroethane 133.6 20 $\mu g/L$ 200 0 114 72 143 0 1,2-Dichloroethane 133.6 10</td> <td>2,2-Dichloropropane</td> <td>229.9</td> <td>20</td> <td>hg/L</td> <td>200</td> <td>0</td> <td>115</td> <td>45</td> <td>165</td> <td>0</td> <td></td> <td></td>	cis-1,2-Dichloroethene 288.8 20 $\mu g/L$ 200 82.2 103 68 132 0 Chloroform 200.4 20 $\mu g/L$ 200 0 100 78 136 0 Tetrahydrofuran 206.7 100 $\mu g/L$ 200 0 103 27 139 0 Bromochloromethane 210.6 20 $\mu g/L$ 200 0 114 78 148 0 1,1-Trichloroethane 233.6 20 $\mu g/L$ 200 0 114 78 148 0 1,1-Dichloroethane 233.4 20 $\mu g/L$ 200 0 114 78 148 0 1,1-Dichloroethane 233.4 20 $\mu g/L$ 200 0 114 78 148 0 1,2-Dichloroethane 133.6 20 $\mu g/L$ 200 0 114 72 143 0 1,2-Dichloroethane 133.6 10	2,2-Dichloropropane	229.9	20	hg/L	200	0	115	45	165	0		
Chloroform 200.4 20 µg/L 200 0 78 136 0 Tetrahydrofuran 206.7 100 µg/L 200 0 103 27 139 0 Bromochloromethane 210.6 20 µg/L 200 0 103 27 139 0 1,1,1-Trichloroethane 210.6 20 µg/L 200 0 114 78 148 0 1,1,1-Trichloroethane 223.6 20 µg/L 200 0 117 78 148 0 1,1-Dichloropropene 233.4 20 µg/L 200 0 117 72 143 0 1,2-Dichloroethane 193.6 20 µg/L 200 0 117 72 143 0 1,2-Dichloroethane 28.6.4 10 µg/L 200 0 133 0 0 1,2-Dichloroethane 28.6.4 10 µg/L 200 0 <	Chloroform 200.4 20 $\mu g/L$ 200 0 100 78 136 0 Tetrahydrofuran 206.7 100 $\mu g/L$ 200 0 103 27 139 0 Bromochloromethane 210.6 20 $\mu g/L$ 200 0 105 72 139 0 1,1-Trichloroethane 210.6 20 $\mu g/L$ 200 0 114 78 148 0 1,1-Dichloroethane 232.6 20 $\mu g/L$ 200 0 117 78 148 0 1,1-Dichloroethane 233.4 20 $\mu g/L$ 200 0 117 72 143 0 1,2-Dichloroethane 233.4 20 $\mu g/L$ 200 0 117 72 143 0 1,2-Dichloroethane 133.6 20 $\mu g/L$ 200 0 117 72 143 0 1,2-Dichloroethane 138.6 0 1	cis-1,2-Dichloroethent	e 288.8	20 -	hg/L	200	82.2	103	68	132	0		
Tetrahydrofuran 206.7 100 $\mu g/L$ 200 0 103 27 139 0 Bromochloromethane 210.6 20 $\mu g/L$ 200 0 105 72 132 0 1,1,1-Trichloroethane 228.5 20 $\mu g/L$ 200 0 114 78 148 0 1,1-Dichloroethane 232.6 20 $\mu g/L$ 200 0 117 72 139 0 Carbon tetrachloride 233.4 20 $\mu g/L$ 200 0 117 72 143 0 1,2-Dichloroethane 193.6 20 $\mu g/L$ 200 0 117 72 143 0 1,2-Dichloroethane 226.4 10 $\mu g/L$ 200 0 113 72 141 0 Benzene 226.4 10 $\mu g/L$ 200 113 73 135 0 J-Analyte detected below quantitation limits 8< - RPO outside accepted recovery	Tetrahydrofuran206.7100µg/L2000133271390Bromochloromethane210.620µg/L20001057213201,1,1-Trichloroethane228.520µg/L20001147814801,1,1-Trichloroethane232.620µg/L20001177213901,1-Dichloropene233.420µg/L2000117721430Carbon tetrachloride233.420µg/L20001177214301,2-Dichloroethane193.620µg/L2000117721430Benzene226.410µg/L2000113731350OutliffersiND - Not Detected at the Reporting Limit $S - Spike Recovery outside accepted recovery limitsS - Snike Recovery outside accepted recovery limitsS - Snike Recovery limitsN - Not applicable where J values or ND results occurJ - Analyte detected below quantifation limitsR - RPD outside accepted recovery limitsN - Not applicable where J values or ND results occurRL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantifate.NA - Not applicable where J values or ND results occur$	Chloroform	200.4	20	hg/L	200	0	100	78	136	0		
Bromochloromethane210.620 $\mu g/L$ 20001057213201,1,1-Trichloroethane228.520 $\mu g/L$ 20001147814801,1,1-Trichloroethane233.620 $\mu g/L$ 20001177814301,1,1-Trichloroethane233.420 $\mu g/L$ 20001177214301,2-Dichloroethane193.620 $\mu g/L$ 20001177214301,2-Dichloroethane193.620 $\mu g/L$ 20001137214101,2-Dichloroethane193.620 $\mu g/L$ 20001137313501,2-Dichloroethane26.410 $\mu g/L$ 200011373135020altifiers:ND - Not Detected at the Reporting Limit $S - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method Blank1 - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsA - Not applicable where J values or ND results occurRL - Renortine Limit: defined as the lowest concentration the laborator can accurately onantitate.A - Not applicable where J values or ND results occur$	Bromochloromethane210.620 $\mu g/L$ 20001057213201,1,1-Tichloroethane228.520 $\mu g/L$ 20001147814801,1-Dichloroethane232.620 $\mu g/L$ 2000117721390Carbon tetrachloride233.420 $\mu g/L$ 20001177214301,2-Dichloroethane193.620 $\mu g/L$ 2000117721430Benzene226.410 $\mu g/L$ 2000113721410OutliffersNot Detected at the Reporting Limit28721410J - Analyte detected blow quantifation limitsS - Spike Recovery outside accepted recovery limitsN - Not applicable where J values or ND results occurJ - Analyte detected blow quantifation limitsR - RPD outside accepted recovery limitsNA - Not applicable where J values or ND results occurR - Reporting Limit, defined as the lowest concentration the laboratory can accurately quantitate.NA - Not applicable where J values or ND results occur	Tetrahydrofuran	206.7	100	hg/L	200	0	103	27	139	0		
1,1,1-Trichloroethane228.520 $\mu g/L$ 20001147814801,1-Dichloropropene232.620 $\mu g/L$ 2000116821390Carbon tetrachloride233.420 $\mu g/L$ 20001177214301,2-Dichloropthane193.620 $\mu g/L$ 20001177214101,2-Dichloropthane193.620 $\mu g/L$ 2000113721410Penzene226.410 $\mu g/L$ 2000113731350Oualitiers:ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method BlankJ - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsN - Not applicable where J values or ND results occurRL - Reporting Limit: defined as the lowest concentration the laboratory can accurately outside.NA - Not applicable where J values or ND results occur	1,1,1-Trichloroethane228.520 $µg/L20001147814801,1-Dichloropropene232.620µg/L2000116821390Carbon tetrachloride233.420µg/L20001177214301,2-Dichloroethane193.620µg/L20001177214101,2-Dichloroethane193.620µg/L2000113721410Piczone226.410µg/L2000113731350OualifiersN - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsN - Not applicable where I values or ND results occurJ - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsN - Not applicable where I values or ND results occurR - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.NA - Not applicable where I values or ND results occur$	Bromochloromethane	210.6	20	hg/L	200	0	105	72	132	0		
1,1-Dichloropropene232.620 $\mu g/L$ 2000116821390Carbon tetrachloride233.420 $\mu g/L$ 20001177214301,2-Dichloroethane193.620 $\mu g/L$ 2000117721410Benzene226.410 $\mu g/L$ 2000113731350Qualifiers:ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method BlankJ - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsN - Not applicable where J values or ND results occurRL - Reporting Limit: defined as the lowest concentration the laboratory can accurately ounstide.NA - Not applicable where J values or ND results occur	1,1-Dichloropropene232.620 $\mu g/L$ 2000116821390Carbon tetrachloride233.420 $\mu g/L$ 20001177214301,2-Dichloroethane193.620 $\mu g/L$ 2000113721410Benzene226.410 $\mu g/L$ 2000113721410Qualifiers:ND - Not Detected at the Reporting Limit $r < rot $	1,1,1-Trichloroethane	228.5	20	hg/L	200	0	114	78	148	0		
Carbon tetrachloride233.420 $\mu g/L$ 20001177214301,2-Dichloroethane193.620 $\mu g/L$ 200096.8721410Benzene226.410 $\mu g/L$ 2000113731350Qualifiers:ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method BlankJ - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsN - Not applicable where J values or ND results occurR1 - Reporting Limit: defined as the lowest concentration the laboratory can accurately ounnitate.NA - Not applicable where J values or ND results occur	Carbon tetrachloride233.420 $\mu g/L$ 20001177214301,2-Dichloroethane193.620 $\mu g/L$ 200096.8721410Benzene226.410 $\mu g/L$ 2000113731350Qualifiers:ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method BlankJ - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsNA - Not applicable where J values or ND results occurRL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.NA - Not applicable where J values or ND results occur	1,1-Dichloropropene	232.6	20	hg/L	200	0	116	82	139	0		
1,2-Dichloroethane193.620 $\mu g/L$ 200096.8721410Benzene226.410 $\mu g/L$ 2000113731350Qualifiers:ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method BlankJ - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsNA - Not applicable where J values or ND results occurR1 - Reporting Limit: defined as the lowest concentration the laboratory can accurately ounnitate.NA - Not applicable where J values or ND results occur	1,2-Dichloroethane193.620 $\mu g/L$ 200096.8721410Benzene226.410 $\mu g/L$ 2000113731350Qualifiers:ND - Not Detected at the Reporting LimitS - Spike Recovery outside accepted recovery limitsB - Analyte detected in the associated Method Blank0J - Analyte detected below quantitation limitsR - RPD outside accepted recovery limitsNA - Not applicable where J values or ND results occurRL - Reporting Limit: defined as the lowest concentration the laboratory can accurately quantitate.NA - Not applicable where J values or ND results occur	Carbon tetrachloride	233.4	20	hg/L	200	0	117	72	143	0		
Benzene 226.4 10 μg/L 200 0 113 73 135 0 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur RL - Reporting Limit: defined as the lowest concentration the laboratory can accurately ounnitate. NA - Not applicable where J values or ND results occur	Benzene 226.4 10 µg/L 200 0 135 0 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank 0 J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate. NA - Not applicable where J values or ND results occur	1,2-Dichloroethane	193.6	20	hg/L	200	0	96.8	72	141	0		
Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur R1 - Reporting Limit: defined as the lowest concentration the laboratory can accurately ounnitate. NA - Not applicable where J values or ND results occur	Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur RL - Reporting Limit: defined as the lowest concentration the laboratory can accurately quantitate. NA - Not applicable where J values or ND results occur	Benzene	226.4	10	hg/L	200	0	113	73	135	0		
J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur RL - Reporting Limit: defined as the lowest concentration the laboratory can accurately quantitate.	J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits NA - Not applicable where J values or ND results occur RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.	Qualifiers: ND - N	lot Detected at the Reporting Limit	0)	: - Spike Recove	ry outside accepted	l recovery	limits	B - Analyte	e detected in t	he associated Meth	od Blank	1
RL - Reporting Limit: defined as the lowest concentration the laboratory can accurately quantitate.	RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.	J - Ana	lyte detected below quantitation limits	ł	K - RPD outside	accepted recovery	limits		NA - Not a	pplicable whe	re J values or ND	results occur	
		RI - R(eporting I imit defined as the lowest cor	rentration th	e lahoratory can	accurately quantit	91e			;			

Work Order: 1202034 Project: 130274 Textron Providence Project: 130274 Textron Providence Trichloroethene 371 20 $\mu g/L$ 200 156. Arrow of chloropropane 198.7 20 $\mu g/L$ 200 156. Stomodichloromethane 197.8 20 $\mu g/L$ 200 156. Stomodichloromethane 197.8 20 $\mu g/L$ 200 156. Stomodichloromethane 197.4 10 $\mu g/L$ 200 156. Stomodichloromethane 175.9 100 $\mu g/L$ 200 156. Stomodichloropene 193.4 10 $\mu g/L$ 200 156. Stomodichloropene 133.4 10 $\mu g/L$ 200 Stomodichloropene 133.4 10 $\mu g/L$ 200 Isomodethane 233.8 20 $\mu g/L$ 200 Isomodethane 233.3 20 $\mu g/L$ 200 Hoxanone 134.5	156.3 156.3 0 375.6 0 375.6	107 99.4 98.9 98.9 88 96.7 119 97.2 97.2 97.2 111 113	74 72 72 72 74 74 73 66 73 67 73 67 73 75 73 75 75 75 75 75 75 75 75 75 75 75 75 75	Sample Mi Sample Mi Sample Mi Sample Mi
Tichloroethene 371 20 $\mu g/L$ 200 156 . ,2-Dichloropropane 198.7 20 $\mu g/L$ 200 156 . Sromodichloromethane 197.8 20 $\mu g/L$ 200 156 . Sromodichloromethane 197.8 20 $\mu g/L$ 200 126 . Jibromomethane 175.9 100 $\mu g/L$ 200 197.4 200 Methyl-2-pentanone 175.9 100 $\mu g/L$ 200 197.4 200 $\mu g/L$ 200 -Methyl-2-pentanone 193.4 10 $\mu g/L$ 200 $\mu g/L$ 200 -Methyl-2-pentanone 193.4 10 $\mu g/L$ 200 $\mu g/L$ 200 -Methyl-2-pentanone 194.4 10 $\mu g/L$ 200 $\mu g/L$ 200 oluene 238.8 20 $\mu g/L$ 200 $\mu g/L$ 200 ,1/2-Trichloroethane 206.4 20 $\mu g/L$	156.3 156.3 0 0 375.6 0 375.6	107 99.4 98.9 98.9 88 88 96.7 119 102 103 102 112 111	74 66 72 72 71 73 66 71 68 72 67 73 67 73 73 70 13 45 75 12% 75 73 70	8, 9, 9, 9, 9, 9, 5, 4, 9, 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2. Dichloroptone 198.7 20 $\mu g/L$ 200 informomethane 197.8 20 $\mu g/L$ 200 Methyl-2-pentanone 175.9 100 $\mu g/L$ 200 Methyl-2-pentanone 175.9 100 $\mu g/L$ 200 Methyl-2-pentanone 133.4 10 $\mu g/L$ 200 Methyl-2-pentanone 193.4 10 $\mu g/L$ 200 Sis-1,3-Dichloropropene 194.4 10 $\mu g/L$ 200 ans-1,3-Dichloropropene 194.4 10 $\mu g/L$ 200 ans-1,3-Dichloropropene 194.4 10 $\mu g/L$ 200 ans-1,3-Dichloropropene 238.8 20 $\mu g/L$ 200 1,12-Trichloroethane 206.4 20 $\mu g/L$ 200 2-Dibromoethane 146.5 100 $\mu g/L$ 200 .1.5-Dichloroptopane 186.5 20 $\mu g/L$ 200 .1.0 $\mu g/L$ 200 $\mu g/L$ 200 .1.1.2-Trichloroethane 186.5 20 $\mu g/L$ 200	3375.6 0 0 375.6 0 0 0 0 0	99.4 104 104 98.9 97.2 97.2 103 103 103 113 111	72 72 74 66 73 66 73 67 73 75 73 75 73 75 73 72 73 75 73 75 73 75 75 75 75 75 75 75 75 75 75 75 75 75	9 9 9 9 9 9 9 9 9 5 7 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
romodichloromethane 197.8 20 $\mu g/L$ 200 ibromomethane 175.9 100 $\mu g/L$ 200 Methyl-2-pentanone 175.9 100 $\mu g/L$ 200 Methyl-2-pentanone 133.4 10 $\mu g/L$ 200 Se1,3-Dichloropropene 193.4 10 $\mu g/L$ 200 oluene 238.8 20 $\mu g/L$ 200 ans-1,3-Dichloropropene 194.4 10 $\mu g/L$ 200 1,2-Trichloroethane 238.8 20 $\mu g/L$ 200 2,2-Dibromoethane 191 20 $\mu g/L$ 200 2,2-Dibromoethane 146.5 100 $\mu g/L$ 200 2,2-Dibromoethane 191 20 $\mu g/L$ 200 ,1,2-Trichloroethane 185.5 20 $\mu g/L$ 200 ,2-Dibromoethane 185.5 20 $\mu g/L$ 200 ,1,2-Trichloroethene 191 20 $\mu g/L$ 200 Bioronochlorometh	375.6 0 0 0 0 0 0 0 0 0	98.9 104 88 97.2 97.2 103 73.2 95.5 111	72 133 74 143 66 128 66 128 67 138 67 138 70 138 71	9 9 9 9 9 9 9 5 7 9 9 0 0 0 0 0 0 0 0 0 0 0 0
Ibromomethane 208.9 20 $\mu g/L$ 200 Methyl-2-pentanone 175.9 100 $\mu g/L$ 200 s -1,3-Dichloropropene 193.4 10 $\mu g/L$ 200 s -1,3-Dichloropropene 193.4 10 $\mu g/L$ 200 $ans-1,3$ -Dichloropropene 194.4 10 $\mu g/L$ 200 $ans-1,3$ -Dichloropropene 194.4 10 $\mu g/L$ 200 $ans-1,3$ -Dichloropropene 206.4 20 $\mu g/L$ 200 $ans-1,3$ -Dichloropropene 203.7 20 $\mu g/L$ 200 $ans-1,3$ -Dichloropropene 146.5 100 $\mu g/L$ 200 $antonoethane146.5100\mu g/L200antonoethane185.520\mu g/L200antonochloromethane185.520\mu g/L200antonochloromethane187.820\mu g/L200antonochloromethane197.820\mu g/L200antonochloromethane197.820\mu g/L200antonochloromethane219.620\mu g/L200antonochloromethane219.620\mu g/L200antonochloromethane219.620\mu g/L200antonochloromethane219.620\mu g/L200antonochloromethane219.620\mu g/L200antonochloromethane219.620\mu g/L200$	0 0 375.6 0	104 88 96.7 119 97.2 103 102 73.2 95.5 111	71 13 34 144 66 124 66 124 68 124 67 13 30 13 75 123 75 13 75 13 75 13 75 13 76 13 75 13 76 13 76 13 76 13 77 13 76 13 77 13 76 13 77 13 77 13 77 13 77 13 77 14 77 15 77 15 7	9 9 9 9 9 9 5 4 9 9 0 0 0 0 0 0 0 0 0 0 0 0
Methyl-2-pentanone 175.9 100 $\mu g/L$ 200 s-1,3-Dichloropropene 193.4 10 $\mu g/L$ 200 sluene 238.8 20 $\mu g/L$ 200 ans-1,3-Dichloropropene 194.4 10 $\mu g/L$ 200 ans-1,3-Dichloropropene 194.4 10 $\mu g/L$ 200 ans-1,3-Dichloropropene 194.4 10 $\mu g/L$ 200 1,2-Trichloroptopene 206.4 20 $\mu g/L$ 200 1,2-Trichloroptopene 205.3 20 $\mu g/L$ 200 2-Dibromoethane 146.5 100 $\mu g/L$ 200 3-Dichloroptopane 191 20 $\mu g/L$ 200 3-Dichloroptopane 185.5 20 $\mu g/L$ 200 Informochloromethane 185.5 20 $\mu g/L$ 200 Inforbenzene 219.6 20 $\mu g/L$ 200 20 Inforbenzene 219.6 20 $\mu g/L$ 200 20	0 0 0 375.6 0 0	88 96.7 119 97.2 103 73.2 95.5 111	34 144 66 124 68 124 68 124 67 133 30 134 75 133 75 133 75 134 75 134 75 134	47 98 93 61 93 12 4 98 6 0 0 0 0 0 0 0 0 0 0 0
s-1,3-Dichloropropene 193.4 10 $\mu g/L$ 200 Jluene 238.8 20 $\mu g/L$ 200 ans-1,3-Dichloropropene 194.4 10 $\mu g/L$ 200 ans-1,3-Dichloropropene 194.4 10 $\mu g/L$ 200 1,2-Trichloroethane 206.4 20 $\mu g/L$ 200 2-Dibromoethane 203.7 20 $\mu g/L$ 200 3-Dichloropropane 191 20 $\mu g/L$ 200 3-Dichloropropane 191 20 $\mu g/L$ 200 3-Dichloropropane 185.5 20 $\mu g/L$ 200 anochloromethane 185.5 20 $\mu g/L$ 200 ihronobenzene 219.6 20 $\mu g/L$ 200 1,1,2-Tetrachloroethane 219.6 20 $\mu g/L$ 200 .0.Vklene 219.6 20 $\mu g/L$ 200 200	0 375.6 0 0 3 3 75.6 0 0 0 0 0 0 0 0	96.7 119 97.2 103 103 73.2 95.5 111	66 127 71 138 67 128 67 128 67 128 75 129 75 129 75 129 75 129 75 129	9 8 9 9 9 7 4 9 9
Juluene 238.8 20 $\mu g/L$ 200 I.as-1,3-Dichloropropene 194.4 10 $\mu g/L$ 200 I.2-Trichloroethane 206.4 20 $\mu g/L$ 200 2-Dibromoethane 203.7 20 $\mu g/L$ 200 2-Dibromoethane 203.7 20 $\mu g/L$ 200 2-Dibromoethane 146.5 100 $\mu g/L$ 200 3-Dichloropropane 191 20 $\mu g/L$ 200 3-Dichloropropane 197.8 20 $\mu g/L$ 200 horobenzene 219.6 20 $\mu g/L$ 200 hylbenzene 219.6 20 $\mu g/L$ 200 D-Xviene 213.6 20 $\mu g/L$ 200	0 375.6 0	119 97.2 103 102 73.2 95.5 111	71 13 68 67 122 67 122 30 13 75 123 75 123 76 13	00000000
ans-1,3-Dichloropropene 194.4 10 $\mu g/L$ 200 1,2-Trichloroethane 206.4 20 $\mu g/L$ 200 2-Dibromoethane 203.7 20 $\mu g/L$ 200 2-Dibromoethane 203.7 20 $\mu g/L$ 200 3-Dichloropropane 146.5 100 $\mu g/L$ 200 3-Dichloropropane 191 20 $\mu g/L$ 200 3-Dichloropropane 185.5 20 $\mu g/L$ 200 3-Dichloropropane 185.5 20 $\mu g/L$ 200 Inforoberzene 17.2.Tetrachloroethane 187.8 20 $\mu g/L$ 200 Inforberzene 219.6 20 $\mu g/L$ 200 $\mu g/L$ 200 Inforberzene 219.6 20 $\mu g/L$ 200 $\mu g/L$ 200 Arklene 219.6 20 $\mu g/L$ 200 $\mu g/L$ 200	0 375.6 0	97.2 103 73.2 95.5 111	68 12 67 12 67 13 30 13 75 12 75 12 70 15	000000
1,2-Trichloroethane 206.4 20 $\mu g/L$ 200 2-Dibromoethane 203.7 20 $\mu g/L$ 200 Hexanone 146.5 100 $\mu g/L$ 200 3-Dichloropropane 146.5 100 $\mu g/L$ 200 3-Dichloropropane 191 20 $\mu g/L$ 200 3-Dichloropropane 597.3 20 $\mu g/L$ 200 artachloroethene 597.3 20 $\mu g/L$ 200 horobenzene 185.5 20 $\mu g/L$ 200 horobenzene 197.8 20 $\mu g/L$ 200 hylbenzene 219.6 20 $\mu g/L$ 200 $0Xvitene$ 276 20 $\mu g/L$ 200	375.6 0 0	103 102 95.5 111	67 12% 67 13 30 134 75 12% 70 15	6 7 9 9 0 0 0 0 0 0 0 0 0 0
2-Dibromoethane 203.7 20 $\mu g/L$ 200 Hexanone 146.5 100 $\mu g/L$ 200 Hexanone 146.5 100 $\mu g/L$ 200 3-Dichloropropane 191 20 $\mu g/L$ 200 strachloropthene 597.3 20 $\mu g/L$ 200 bromochloromethane 185.5 20 $\mu g/L$ 200 bromochloromethane 185.5 20 $\mu g/L$ 200 horobenzene 206.3 20 $\mu g/L$ 200 $1, 1, 2$ -Tetrachloroethane 197.8 20 $\mu g/L$ 200 hylbenzene 219.6 20 $\mu g/L$ 200 $D-Xvitene$ 275.0 $\mu g/L$ 200	.0 375.6 0	102 73.2 95.5 111	67 13 30 13-3 75 12(70 15(7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Hexanone 146.5 100 μg/L 200 3-Dichloropropane 191 20 μg/L 200 3-Dichloropropane 191 20 μg/L 200 strachloroethene 597.3 20 μg/L 200 bromochloromethane 185.5 20 μg/L 200 375. hlorobenzene 185.5 20 μg/L 200 375. hlorobenzene 197.8 20 μg/L 200 375. hylbenzene 219.6 20 μg/L 200 μg/L 200 hylbenzene 219.6 20 μg/L 200 μg/L 200 norViene 27.6 20 μg/L 200 μg/L 200	0 375.6 0	73.2 95.5 111 02.8	30 13- 75 12(70 15(4 9 0 0 0 0
3-Dichloropropane 191 20 μg/L 200 strachloroethene 597.3 20 μg/L 200 375. bromochloromethane 185.5 20 μg/L 200 375. hlorobenzene 185.5 20 μg/L 200 375. hlorobenzene 187.8 20 μg/L 200 375. hlybenzene 206.3 20 μg/L 200 375. hlybenzene 197.8 20 μg/L 200 200 hlybenzene 219.6 20 μg/L 200 200 hlybenzene 213.6 20 μg/L 200 200	0 375.6 0 0	95.5 111 02 8	75 126 70 150	0
trachloroethene 597.3 20 μg/L 200 375. bromochloromethane 185.5 20 μg/L 200 hlorobenzene 206.3 20 μg/L 200 1,1,2-Tetrachloroethane 197.8 20 μg/L 200 hylbenzene 219.6 20 μg/L 200 μg/L 200	375.6 0 0	111 8 co	70 15(c
bromochloromethane 185.5 20 μg/L 200 Norobenzene 206.3 20 μg/L 200 1,1,2-Tetrachloroethane 197.8 20 μg/L 200 hylbenzene 219.6 20 μg/L 200 p-Xviene 437.6 20 μg/L 400	000	а со а		0 0
liorobenzene 206.3 20 μg/L 200 1,1,2-Tetrachloroethane 197.8 20 μg/L 200 hylbenzene 219.6 20 μg/L 200 p-Xviene 437.6 20 μg/L 400	0 0	0.10	63 11(6 0
1,1,2-Tetrachloroethane 197.8 20 μg/L 200 hylbenzene 219.6 20 μg/L 200 p-Xvlene 437.6 20 μg/L 400	c	103	76 13(0 0
ylbenzene 219.6 20 μg/L 200 p-Xviene 437.6 20 μg/L 400	D	98.9	79 12(.6 O
p-Xvlene 437.6 20 μg/L 400	0	110	80 13(33 0
	0	109	81 13	0
kylene 213.1 20 μg/L 200	0	107	78 13(0
yrene 224 · 20 μg/L 200	0	112	72 14(0
omoform 186.6 20 μg/L 200	0	93.3	47 11:	3 0
ppropylbenzene 244.3 20 μg/L 200	0	122	81 14	4 0
1,2,2-Tetrachloroethane 197.2 20 μg/L 200	0	98.6	62 133	33 0
2,3-Trichloropropane 190.5 20 μg/L 200	0	95.2	60 14:	0
omobenzene 211.6 20 μg/L 200	0	106	82 12	0 23
Propylbenzene 228.2 20 µg/L 200	0	114	76 142	2
Chlorotoluene 207.6 20 μg/L 200	0	104	75 134	0 0
Chlorotoluene 211.3 20 µg/L 200	0	106	74 13(33 . 0
3,5-Trimethylbenzene 218.5 20 μg/L 200	0	109	74 14	0
t-Butylbenzene 220.3 20 μg/L 200	0	110	79 14(0
2,4-Trimethylbenzene 213.9 20 μg/L 200	0	107	72 14,	0
Jualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recov	d recovery li	mits H	3 - Analyte detected	l in the associated Method Blank
J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	limits	~	VA - Not applicable	where I values or ND results occur

CLIENT: Xoolt Oodoor	Shaw Environn	ıental & Infrastru	cture, Inc.							QC SUMMARY	REPORT	
vork Oruer: Project:	1202034 130274 Textroi	1 Providence								Sample	Matrix Spike	
ec-Butylbenzene	0	223.1	20	hg/L	200	0	112	76	149	0		
-Isopropyltoluen	Je	212.7	20	hg/L	200	0	106	80	147	0		
,3-Dichlorobenz	ene	199.5	20	hg/L	200	0	99.8	. 78	129	0		
,4-Dichlorobenz	ene	193.8	20	hg/L	200	0	96.9	76	134	0		
-Butylbenzene		216.5	20	hg/L	200	0	108	68	153	0		
,2-Dichlorobenz	ene	193.8	20	hg/L	200	0	96.9	73	136	0		
2-Dibromo-3-ch	nloropropane	188	50	hg/L	200	0	94	41	123	0		
2,4-Trichlorobe	nzene	197.3	20	hg/L	200	0	98.6	55	156	0		
exachlorobutadi	iene	172.8	20	hg/L	200	0	86.4	46	136	0	,	
aphthalene		170.5	50	hg/L	200	0	85.2	39	153	0		
2,3-Trichlorobe	nzene	186.6	20	hg/L	. 200	0	93.3	41	161	0		,
Surr: Dibromof	fluoromethane	242.8	20	hg/L	250	0	97.1	82	122	0		
Surr: 1,2-Dichle	oroethane-d4	238.8	20	hg/L	250	0	95.5	73	135	0		
Surr: Toluene-	d8	253.6	20	hg/L	250	0	101	82	117	0		
Surr: 4-Bromot	fluorobenzene	246.9	20	hg/L	250	0	98.8	77	119	0		
			•									
		·		•								
Qualifiers: NI	D - Not Detected at the	Reporting Limit	S	Spike Recover	y outside accepted r	ecovery li	mits	B - Analyte dı	etected in th	e associated Method Blank		
J -	- Analyte detected below	/ quantitation limits	R	- RPD outside a	ccepted recovery lin	nits		NA - Not app	licable whe	re J values or ND results occur		
								:				

alada a agada a alada a gada a gada a agada aga

AMRO Environn	lental Laboratories	Corp.								Date: 17	-Feb-12	
CLIENT: Shaw	Environmental & Infrastru	cture, Inc.							QC SUM	IMARY	REPOH	ZT
Work Urder: 12020 Project: 13027	4 Textron Providence								Sample N	Aatrix Spi	lke Duplic	ate
Sample ID: 1202034-04Am	sd Batch ID: R48355	Test Code	: SW8260B	Units: µg/L			Analysis Da	tte 2/15/201	2 6:13:00 PM	Prep Date	: 2/9/2012	
Client ID: MW-209D		Run ID:	V-3_121215₽	_			SeqNo:	805476				
Analyte	QC Sample Result	RL	QC Units A	Spike Original a mount	Sample Result	6REC	LowLimit	O HighLimit	riginal Sample or MS Result	%RPD	RPDLimit	Qué
Dichlorodifluoromethane	171.9	50	µg/L	200	0	86	22	176	176.7	2.75	20	
Chloromethane	209.8	50	hg/L	200	0	105	36	144	206.6	1.54	20	
Vinyl chloride	213	20	hg/L	200	0	106	54	156	205.2	3.73	20	
Chloroethane	206.7	50	hg/L	200	0	103	55	153	226.6	9.19	20	
Bromomethane	179	20	hg/L	200	0	89.5	47	113	180.9	1.06	20	
Trichlorofluoromethane	230.4	20	hg/L	200	0	115	80	161	227.1	1.44	20	
Diethyl ether	198.9	50	hg/L	200	0	99.4	55	128	204.6	2.83	50	
Acetone	104.6	100	hg/L	200	0	52.3	22	147	106.5	1.8	20	
1,1-Dichloroethene	232	10	hg/L	200	0	116	61	146	240.8	3.72	20	
Carbon disulfide	224	20	hg/L	200	0	112	39	153	218.4	2.53	20	
Methylene chloride	218.6	50	hg/L	200	0	109	44	147	218.9	0.137	20	
Methyl tert-butyl ether	217.9	20	hg/L	200	0	109	64	137	223.7	2.63	20	
trans-1,2-Dichloroethene	219.9	20	hg/L	200	0	110	68	140	213.5	2.95	20	
1,1-Dichloroethane	208.1	20	hg/L	200	0	104	66	139	207.8	0.144	20	
2-Butanone	134.2	100	hg/L	200	0	67.1	35	139	133.2	0.748	20	
2,2-Dichloropropane	232	20	hg/L	200	0	116	45	165	229.9	0.909	20	
cis-1,2-Dichloroethene	290.5	20	hg/L	200	82.2	104	68	132	288.8	0.587	20	
Chloroform	200.9	20	hg/L	200	0	100	78	136	200.4	0.249	20	
Tetrahydrofuran	229.2	100	hg/L	200	0	115	27	139	206.7	10.3	20	
Bromochloromethane	216	20	hg/L	200	0	108	72	132	210.6	2.53	20	
1,1,1-Trichloroethane	224.8	20	, µg/L	200	0	112	78	148	228.5	1.63	20	
1,1-Dichloropropene	225.9	20	hg/L	200	0	113	82	139	232.6	2.92	20	
Carbon tetrachloride	240	20	µg/L	200	0	120	72	143	233.4	2.79	20	
1,2-Dichloroethane	197.2	20.	hg/L	200	0	98.6	72	141	193.6	1.84	20	
Benzene	229.3	10	µg/L	200	0	115	73	135	226.4	1.27	20	
Qualifiers: ND - Not Detu	ected at the Reporting Limit	S	- Spike Recovery	outside accepted	recovery li	mits	B - Analyte	detected in th	he associated Meth	nod Blank		
J - Analyte de	tected below quantitation limits	R	- RPD outside ac	cepted recovery li	mits		NA - Not a	pplicable whe	rre J values or ND	results occur		

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

AMRO Env	rironmental L	aboratories	Corp.								Date: 17-1	reb-12
CLIENT: World Ordon	Shaw Environm	iental & Infrastri	ucture, Inc.							QC SUM	MARY I	REPORT
Project:	130274 Textron	1 Providence								Sample M	atrix Spik	e Duplicate
Trichloroethene		379.6	20	hg/L	200.	156.3	112	74	143	371	2.29	20
1,2-Dichloropropar	le	204.5	20	hg/L	200	0	102	66	136	198.7	2.88	20
Bromodichloromet	hane	197.3	20	hg/L	200	0	98.6	72	132	197.8	0.253	20
Dibromomethane		204.3	20	hg/L	200	0	102	71	132	208.9	2.23	20
4-Methyl-2-pentan	one	166.6	100	hg/L	200	0	83.3	34	145	175.9	5.43	20
cis-1,3-Dichloroprc	pene	194.6	10	hg/L	200	0	97.3	66	126	193.4	0.619	20
Toluene		239.4	20	hg/L	200	0	120	71	139	238.8	0.251	20
trans-1,3-Dichlorop	oropene	191	10	hg/L	200	0	95.5	68	122	194.4	1.76	20
1,1,2-Trichloroeths	tne	202.9	20	hg/L	200	0	101	67 .	129	206.4	1.71	20
1,2-Dibromoethan	0	209.8	20	hg/L	200	0	105	67	137	203.7	2.95	20
2-Hexanone		145.9	100	hg/L	200	0	73	30	134	146.5	0.41	20
1,3-Dichloropropar	ЭС	190.7	- 20	hg/L	200	0	95.4	75	126	191	0.157	20
Tetrachloroethene		595.3	20	hg/L	200	375.6	110	70	150	597.3	0.335	20
Dibromochloromet	hane	183.3	20	hg/L	200	0	91.7	63	116	185.5	1.19	20
Chlorobenzene		210.6	20	hg/L	200	0	105	76	130	206.3	2.06	20
1,1,1,2-Tetrachlorc	oethane	199.7	20	, µg/L	200	0	99.8	79	126	197.8	0.956	20
Ethylbenzene		220.9	20	hg/L	200	0	110	80	133	219.6	0.59	20
m,p-Xylene		436.4	20	hg/L	400	0	109	81	131	437.6	0.275	20
o-Xylene		215	20	hg/L	200	0	108	78	130	213.1	0.888	20
Styrene		222.2	20	hg/L	200	0	111	72	140	224	0.807	20
Bromoform		179.7	20	hg/L .	200	0	89.8	47	113	186.6	3.77	20
Isopropylbenzene		252.4	20	hg/L	200	0	126	81	144	244.3	3.26	20
1,1,2,2-Tetrachlorc	oethane	197.7	20	hg/L	200	0	98.8	62	133	197.2	0.253	20
1,2,3-Trichloroprop	ane	189.5	20	hg/L	200	0	94.8	60	143	190.5	0.526	20
Bromobenzene .		216.1	20	hg/L	- 200	0	108	82	127	211.6	2.1	20
n-Propylbenzene		229.3	20	hg/L	200	0	115	76	142	228.2	0.481	20
2-Chlorotoluene		208.6	20	hg/L	200	0	104	75	134	207.6	0.481	20
4-Chlorotoluene		211.9	20	hg/L	200	0	106	74	133	211.3	0.284	20
1,3,5-Trimethylben	izene	223.1	20	hg/L	200	0	112	74	143	218.5	2.08	20
tert-Butylbenzene		227.7	20	hg/L	200	0	114	79	140	220.3	3.3	20
1,2,4-Trimethylber	Izene	220.3	20	µg/L	200	0	110	72	144	213.9	2.95	20
Qualifiers: ND	- Not Detected at the I	Reporting Limit	S	- Spike Recove	ary outside accel	pted recovery	limits	B - Analyte det	tected in the	e associated Methoo	d Blank	
J - 1	Analyte detected below	quantitation limits	R	- RPD outside	accepted recove	ery limits		NA - Not annli	rahle when	• I values or ND re-	sults occur	
Id	Red minni I a minna a d	t - d an d-a lannaat ar	ماء مم نعمه مع م	t-l-automotory					-4015	a values of the tar	auto occur	
KL	 Reporting Limit: aeri 	ined as the lowest co	oncentration the	: laboratory can	accurately qua	ntitate.						

AMRO Environmental Laboratories Corp.

Date: *17-Feb-12*

CLIENT:	Shaw Environmen	ntal & Infrastru	cture, Inc.									LaVa
Vork Order:	1202034								>		U I VIVIT	
Project:	130274 Textron I	Providence			·					Sample Ma	trix Spike	Duplicate
ec-Butylbenzene		231.6	20	hg/L	200	0	116	76	149	223.1	3.74	20
-Isopropyltoluene		220.2	20	hg/L	200	0	110	80	147	212.7	3.47	20
,3-Dichlorobenzene	4	202.3	20	µg∕L	200	0	101	78	129	199.5	1.39	20
,4-Dichlorobenzene		207.1	20	hg/L	200	0	104	76	134	193.8	6.64	20
-Butylbenzene		222.8	20	hg/L	200	0	111	68	153	216.5	2.87	20
,2-Dichlorobenzene		197	20	hg/L	200	0	98.5	73	136	193.8	1.64	20
,2-Dibromo-3-chlor	opropane	187.8	50	hg/L	200	0	93.9	41	123	188	0.106	20
,2,4-Trichlorobenze	ine	198.7	20	hg/L	200	0	99.4	55	156	197.3	0.707	20
lexachlorobutadien.	¢,	183.1	20	hg/L	200	0	91.6	46	136	172.8	5.79	20
laphthalene	÷	179.8	50	hg/L	200	0	89.9	39	153	170.5	5.31	20
,2,3-Trichlorobenze	ne	190.9	20	hg/L	200	0	95.4	41	161	186.6	2.28	20
Surr: Dibromofluo	romethane	241.9	20	hg/L	250	0	96.8	82	122	0	0	0
Surr: 1,2-Dichloro	ethane-d4	239.4	20	hg/L	250	0	95.8	73	135	0	0	0
Surr: Toluene-d8		255.3	20	hg/L	250	0	102	82	117	0	0	0
Surr: 4-Bromofluo	robenzene	243.9	20	hg/L	250	0	97.6	77	119	0	0	0

088

1

B - Analyte detected in the associated Method Blank
 NA - Not applicable where J values or ND results occur

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

CLIENT: Lab Order: Project: Lab ID:	Shaw Environmental 1202034 130274 Textron Prov 1202034-21A	& Infrastructur idence	e, Inc.	Client Sample Tag Nun Collection I Ma	e ID: CW-6 hber: Date: 2/9/20 trix: GRO)12 1:00:00 PM UNDWATER
Analyses		Result	RL Q	ual Units	DF	Date Analyzed
TPH BY GC/FII	D (MODIFIED 8015B)	S	W8015B			Analyst: KAM
Gasoline		ND	0.50	mg/L	10	2/14/2012 10:30:00 AM
Mineral Spirits		ND	0.50	mg/L	10	2/14/2012 10:30:00 AM
Kerosene		ND	0.50	mg/L	10	2/14/2012 10:30:00 AM
Diesel Fuel/Fue	el Oil #2	ND	0.50	mg/L	10	2/14/2012 10:30:00 AM
Motor Oil/Hydra	aulic Oil	ND	1.0	mg/L	10	2/14/2012 10:30:00 AM
Unidentified Hy	drocarbons	31	1.0	mg/L	10	2/14/2012 10:30:00 AM
Surr: o-Terph	nenvl	57.9	31-131	%REC	10	2/14/2012 10:30:00 AM

AMRO Environmental Laboratories Corp.

Gasoline cannot be accurately determined by this method. Purge and trap sample introduction into a GC or GCMS is the recommended approach for gasoline. Due to the physical, chemical, and biological processes which affect the chemical composition of fuel mixtures exposed to the environment, the qualitative identity of a hydrocarbon mixture as a fuel product is not always conclusive by this method due to the method's reliance on chromatographic pattern recognition. A result provided for a specific fuel indicates that the mixture present in the sample has a chromatographic pattern similar to the laboratory's reference standard for that fuel mixture under specific GC operating conditions utilized at the time of analysis. A result identified as Unidentified Hydrocarbons is based upon the detector response obtained for the laboratory's Fuel Oil#2 reference standard and includes the entire chromatographic response for the sample between n-Alkanes of carbon numbers C9 to C36.

Qualifiers:

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limitsE Value above quantitation range
- B Analyte detected in the associated Method Blank
- H Method prescribed holding time exceeded.
- # See Case Narrative

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 20-Feb-12

Lab Order: Project: Lab ID:	1202034 130274 Textron Provi 1202034-22A	idence		Tag Nur Collection Ma	nber: Date: 2/9/20 atrix: GRO	012 1:00:00 PM UNDWATER
Analyses		Result	RL Qı	ıal Units	DF	Date Analyzed
TPH BY GC/FI	D (MODIFIED 8015B)	SV	V8015B			Analyst: KAM
Gasoline		ND	0.50	mg/L	10	2/14/2012 11:07:00 AM
Mineral Spirits		ND	0.50	mg/L	10	2/14/2012 11:07:00 AM
Kerosene		ND	0.50	mg/L	10	2/14/2012 11:07:00 AM
Diesel Fuel/Fue	I Oil #2	ND	0.50	mg/L	10	2/14/2012 11:07:00 AM
Motor Oil/Hydra	ulic Oil	ND	1.0	mg/L	10	2/14/2012 11:07:00 AM
Unidentified Hy	drocarbons	33	1.0	mg/L	10	2/14/2012 11:07:00 AM

31-131

%REC

61.3

AMRO Environmental Laboratories Corp.

Shaw Environmental & Infrastructure, Inc.

CLIENT:

Surr: o-Terphenyl

Gasoline cannot be accurately determined by this method. Purge and trap sample introduction into a GC or GCMS is the recommended approach for gasoline. Due to the physical, chemical, and biological processes which affect the chemical composition of fuel mixtures exposed to the environment, the qualitative identity of a hydrocarbon mixture as a fuel product is not always conclusive by this method due to the method's reliance on chromatographic pattern recognition. A result provided for a specific fuel indicates that the mixture present in the sample has a chromatographic pattern similar to the laboratory's reference standard for that fuel mixture under specific GC operating conditions utilized at the time of analysis. A result identified as Unidentified Hydrocarbons is based upon the detector response obtained for the laboratory's Fuel Oil#2 reference standard and includes the entire chromatographic response for the sample between n-Alkanes of carbon numbers C9 to C36.

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded.

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

- See Case Narrative

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

090

Date: 20-Feb-12

10

2/14/2012 11:07:00 AM

Client Sample ID: CW-6 Dup

AMRO	Environme	ntal Laboratorie	s Corp.							Date: 14-	.Feb-12	
CLJENT: Work Ord Project:	Shaw E Shaw E 1202034 130274	nvironmental & Infrast 4 Textron Providence	tructure, Inc.						QC SUM	MARY	REPOR ethod Bla	R T
Sample ID: A Client ID:	AB-22006	Batch ID: 22006	Test Code Run ID:	s: SW8015B GC-FING1_	Units: mg/L 120213A		Analysis SeqNo:	Date 2/13/2(805202	312 3:05:00 PM	Prep Date:	2/10/2012	1
Analyte		QC Sample Result	RL	Units	C Spike Original Sa Amount Re	ample [.] ssult %RE(C LowLimit	HighLimit	Original Sample or MS Result	%RPD	RPDLimit	Qué
Gasoline Mineral Spirit Kerosene Diesel Fuel/F Motor Oil/Hyv Unidentified I Surr: o-Tei	s uel Oil #2 draulic Oil Phenyl	UN UN UN 0.07355 0.0	0.050 0.050 0.050 0.10 0.10		С. О		с Эл	<u>6</u>	0			
Qualifiers:	ND - Not Detects J - Analyte detect	ed at the Reporting Limit ted below quantitation limit	s S-	. Spike Recover . RPD outside a	y outside accepted rec- ccepted recovery limit	overy limits ts	B - Analy NA - Not	∕te detected in ∶applicable wh	the associated Metho tere J values or ND re	od Blank esults occur		

.

091

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

AMRO En	vironmer	ntal Laboratorie	s Corp.								Date: 14	-Feb-12	
CLIENT: Work Order:	Shaw En 1202034	wironnental & Infrast	ructure, Inc.							QC SUM	MARY	REPOI	RT
Project:	130274	Fextron Providence								Lat	ooratory C	Control Sp	ike
Sample ID: LCS-:	22006	Batch ID: 22006	Test Code	: SW8015B	Units: mg/L			Analysis D	ate 2/13/20	12 3:42:00 PM	Prep Date	: 2/10/2012	
Client ID:			Run ID:	GC-FING1_1	120213 A			SeqNo:	805203				
Analyte		OC Sample Result	RL	Q(Units →	C Spike Original Amount	l Sample Result	%REC	LowLimit) HiahLimit	Original Sample or MS Result	APD %	RPDI imit	Ő
Diesel Fuel/Fuel (Surr: o-Terpher	0il #2 ⊓yl	1.453 0.07209	0.050 0	mg/L mg/L	2 0.1	00	72.7 72.1	42 31	119 131	00			
Sample ID: LCSD)-22006	Batch ID: 22006	Test Code	: SW8015B	Units: mg/L			Analysis D	ate 2/13/20	12 4:19:00 PM	Prep Date	: 2/10/2012	
Client ID:			Run ID:	GC-FING1_1	120213A			SeqNo:	805204				
Analyte		QC Sample Result	RL	QC Units	Spike Original Amount	l Sample Result	%REC	LowLimit	HighLimit	Driginal Sample or MS Result	%RPD	RPDLimit	Qué
Diesel Fuel/Fuel C)ii #2	1 494	0.050	l/pm	۰ د	c	L 1 L	ę	011		Î		
Surr: o-Terpher	lyn	0.07121	0	mg/L	0.1		71.2	31	131	0	2.74 0	0 0	
						·							
										·			
		ŗ											
Qualifiers: ND) - Not Detected	1 at the Reporting Limit	S -	Spike Recovery	' outside accepted	I recovery li	imits	B - Analyte	e detected in t	he associated Meth	od Blank		
J-,	Analyte detecte	ed below quantitation limits	R -	RPD outside ac	cepted recovery l	imits		NA - Not a	pplicable who	ere J values or ND r	esults occur		

',

1

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

CLIENT: Project:	Shaw Environmental 130274 Textron Prov	& Infrastructure	e, Inc.		Lab Order:	1202034
Lab ID:	1202034-23			Collectio	on Date: 2/9/2012	2:00:00 PM
Client Sample ID	• MW 100D			Collectio	n Time: Matrix: GROUN	
Analyses	. WW-109D	Result	RL	Qual Units	DF	DwATER Date Analyzed
ICP METALS DISS	SOLVED SW-846	SI	V6010B			Analyst: AL
Lead		ND	13.0	µg/L	1	2/16/2012 7:16:13 PM
Lab ID:	1202034-24			Collectio Collectio	on Date: 2/9/2012 n Time:	2:30:00 PM
Client Sample ID:	GZA-3				Matrix: GROUN	DWATER
Analyses		Result	RL	Qual Units	DF	Date Analyzed
ICP METALS DISS	SOLVED SW-846	SV	V6010B			Analyst: AL
Lead		ND	13.0	µg/L	1	2/16/2012 7:47:04 PM
Lab ID:	1202034-25			Collectio	n Date: 2/9/2012	2:30:00 PM
Client Sample ID:	GZA-3 Dup			Collection	n Time: Matrix: GROUNI	OWATER
Analyses	1	Result	RL	Qual Units	DF	Date Analyzed
CP METALS DISS	OLVED SW-846	SV	6010B			Analyst: AL
Lead		ND	13.0	µg/L	1	2/16/2012 7:53:02 PM

AMRO Environmental Laboratories Corp.

Date: 20-Feb-12

AMRO) Environme	ental Laboratories	Corp.				Date: 17-Fe	b-12
CLIENT: Work Ord Project:	der: 120203	invironmental & Infrastru 4 Textron Providence	acture, Inc.			QC SUN	MMARY RI Meth	EPORT nod Blank
Sample ID Client ID:	mb-22022	Batch ID: 22022	Test Code Run ID:	: SW6010B ICP-OPTIM	Units: µg/L IA 120216A	Analysis Date 2/16/12 6:59:12 PM SedNo: 805635	Prep Date 2/1	6/12
Analyte		QC Sample Result	RL	C Units	C Spike Original Sample Amount Result %REC	Original Sample LowLimit HighLimit or MS Result	KPD RP	DI imit O
Lead		Ð	τ <u>τ</u>	нg/L	·			
Qualifiers:	ND - Not Detect	ted at the Reporting Limit	S.	Spike Recove	ry outside accented recovery limits	R - Analytic detected in the according Ma	othod Dlout	
	J - Analyte detec	cted below quantitation limits	א א	RPD outside	accepted recovery limits	D - Autabue detected in the associated Mc NA - Not applicable where J values or NL	ethod Blank D results occur	
	RL - Reporting]	Limit; defined as the lowest col	ncentration the	laboratory cai	n accurately quantitate.			

AMRO Envi	ronmental Labor	atories (Corp.								Date: 17	-Feb-12	
CLIENT: Work Order:	Shaw Environmental & 1202034	& Infrastruc	ture, Inc.							QC SUM	MARY	REPO	RT
Project:	130274 Textron Provid	dence								Lab	oratory C	Control SI	pike
Sample ID Ics-220;	22 Batch ID: 22	2022	Test Code:	SW6010B	Units: µg/L			Analysis D	late 2/16/12	7:03:49 PM	Prep Date	2/16/12	
Client ID:			Run ID:	ICP-OPTIN	IA_120216A			SeqNo:	805636		-		
Analyte	QC Sarr Rei	nple sult	RL	0 Units	2C Spike Original Amount	Sample Result	%REC	LowLimit) HighLimit	Driginal Sample or MS Result	%RPD	RPDLimit	Qua
Lead	21	013	13	hg/L	1998	0	101	80	120	0			
Sample ID Icsd-22	022 Batch ID: 22	2022	Test Code:	SW6010B	Units: µg/L			Analysis D	ate 2/16/12	7:09:57 PM	Prep Date	2/16/12	
Client ID:			Run ID:	ICP-OPTIN	IA_120216A			SeqNo:	805637				
Analyte	QC Sarr Rei	1ple sult	RL	C Units	2C Spike Original Amount	Sample Result	%REC	LowLimit) HighLimit	Driginal Sample or MS Result	%RPD	RPDLimit	Qua
Lead	15	982	13	hg/L	1998	0	99.2	80	120	2013	1.57	50	

B - Analyte detected in the associated Method Blank NA - Not applicable where J values or ND results occur

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

Environme	ntal Laboratories	Corp.								Date:	17-Feb-12	
Shaw Ei 1202034	avironmental & Infrastr	ucture, Inc.						•	QC SU	MMAR	Y REPO	RT
130274	Textron Providence									San	aple Dupl	icate
L-23bd D	Batch ID: 22022	Test Code: Run ID:	SW6010B ICP-OPTIM/	Units: µg/L A_120216A			Analysis D SeqNo:	late 2/16/12 805640	: 7:28:29 PM	Prep Da	te 2/16/12	
	QC Sample Result	RL	Q(Units ↓	C Spike Origina Amount	il Sample Result	%REC	LowLimit	(HighLimit	Driginal Sample or MS Resul	e KPD	RPDI imit	Old
	QN	13	µg/L	0	0	0	0	0			20	8

U9**6**

•

B - Analyte detected in the associated Method Blank NA - Not applicable where J values or ND results occur

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

AMRO Environmen	ital Laboratories	Corp.								Date: 17	-Feb-12	
CLIENT: Shaw Env Work Order: 1202034	vironmental & Infrastru	acture, Inc.							QC SUM	MARY	REPO	L Z
Project: 130274 T	extron Providence									Sample	Matrix Sp	ike
Sample ID 1202034-23bms	Batch ID: 22022	Test Code:	SW6010B	Units: µg/L			Analysis D	ate 2/16/12	7:34:43 PM	Prep Date	2/16/12	
Client ID: MVV-109D		Run ID:	ICP-OPTIM	A_120216A			SeqNo:	805641				
Analyte	QC Sample Result	RL	Units	C Spike Origina Amount	l Sample Result	%REC	LowLimit	0 HighLimit	Driginal Sample or MS Result	%RPD	RPDLimit	Qua
Lead	1911	13	hg/L	1998	0	95.7	75	125	0			
Sample ID 1202034-23bmsd	Batch ID: 22022	Test Code:	SW6010B	Units: µg/L			Analysis D	ate 2/16/12	7:40:57 PM	Prep Date	2/16/12	
Client ID: MW-109D		Run ID:	ICP-OPTIM	A_120216A			SeqNo:	805642				
Analyte	QC Sample Result	RL	Units	C Spike Origina Amount	l Sample Result	%REC	LowLimit	0 HighLimit	Driginal Sample or MS Result	%RPD	RPDLimit	Oua
Lead	1943	13	hg/L	1998	0	97.2	75	125	1911	1.63	50	

,

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers: