

SITE INVESTIGATION REPORT FOR FORMER COFFEY'S TEXACO 48 TOURO STREET NEWPORT, RHODE ISLAND

PROJECT NO. NS0502

APRIL 2016

Prepared by:

Newport Environmental, Inc. PO Box 957 N. Scituate, RI 02857 Phone: 401.497.8240 Prepared for:

Mr. Stephen Ostiguy Church Community Housing Corp. 50 Washington Square Newport, RI 02840

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	OBJECTIVE	1
2.0	BACKGROUND	1
3.0	HISTORICAL USE AND OWNERSHIP HISTORY	2
4.0	PREVIOUS INVESTIGATION	2
5.0	SITE DESCRIPTION	2
5 5 5 5 5 5 5	SITE LOCATION AND LOCAL LAND USES	3 3 3 3 3 3 3 4 4 4
6.0	GENERAL SITE AND AREA CHARACTERISTICS	4
6.1 6.2 6.3 6.4 6.5 6.6 6.7	USGS TOPOGRAPHIC MAPS USGS BEDROCK GEOLOGY MAP SURFICIAL GEOLOGY SURFACE WATER BODIES SENSITIVE ENVIRONMENTAL RECEPTORS POTABLE AND PUBLIC WATER SUPPLIES AREA PROPERTY USE	4 5 5 5 5
7.0	CLASSIFICATION OF SURFACE WATER & GROUNDWATER	5
7.1 7.2	SURFACE WATER CLASSIFICATIONGROUNDWATER CLASSIFICATION	
8.0	DESCRIPTION OF CONTAMINATION RESULTING FROM THE RELEASE	6
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	FREE LIQUIDS LNAPL/DNAPL CONCENTRATIONS OF HAZARDOUS SUBSTANCES WHICH POSE A THREAT TO HUMAN HEALTH. POTENTIAL FOR IMPACT TO ENVIRONMENTALLY SENSITIVE AREAS CONTAMINATION OF MAN-MADE STRUCTURES ODORS OR STAINED SOIL STRESSED VEGETATION PRESENCE OF EXCAVATED OR STOCKPILED MATERIALS	6 6 6 6 6 6
9.0	SUBSURFACE INVESTIGATION, SOIL ANALYSIS & FINAL DUE DILIGENCE	
9. 9.	SOIL BORING PROGRAM .1.1 Soil Screening .1.2 Soil Sampling and Analysis .1.3 Summary of Soil Analytical Results .1.4 Concentration Gradients for Soil GROUNDWATER SAMPLING AND ANALYSIS	8 8 8 9

9.2. 9.2. 9.3 9.4		<i>10</i>
10.0	SITE SPECIFIC HYDROGEOLOGICAL PROPERTIES	
10.1 10.2 10.3 10.4	DEPTH TO WATER PRESENCE AND EFFECTS OF NATURAL AND MAN-MADE BARRIERS SOIL CHARACTERISTICS & BEDROCK CHARACTERIZATION GROUNDWATER FLOW CONDITIONS	
11.0	CHARACTERIZATION OF TOPOGRAPHY & RUNOFF PATTERNS	
12.0	POTENTIAL FOR VOLATILIZATION INTO INDOOR AIR	
13.0	POTENTIAL FOR ENTRAINMENT BY WIND OR EROSION	
14.0 MATER	ENVIRONMENTAL FATE AND TRANSPORT OF OIL AND/OR HAZARDO	
15.0	SOURCES OF IMPACT	
16.0	SUMMARY OF FINDINGS	
17.0	EVALUATION OF REMEDIAL ALTERNATIVES	
18.0	LIMITATIONS	
19.0	CERTIFICATION	
FIGURE	S	
Figure 1 Figure 2 Figure 3 Figure 4	Site Location Map Site Vicinity Annotated Aerial Site Plan	

Figure 5 Water Table Elevation Contour Map

TABLES

Table 1	Soil Screening Results Summary	

- Table 2
 Soil Analytical Results Summary
- Table 3
 Groundwater Analytical Results Summary

APPENDICES

- Appendix A Voluntary Procedure Letter, 2015
- Appendix B No Further Action Letter, 2011
- Appendix C Soil Boring/Monitoring Well Construction Logs
- Appendix D Soil Laboratory Analytical Data Report
- Appendix E Historical Groundwater Analytical Results
- Appendix F Groundwater Laboratory Analytical Data Report
- Appendix G Water Level Gauging Sheets
- Appendix H AST Removal Documentation, Transfer of Ownership Form and UST Temporary Closure Application
- Appendix I SIR Checklist

1.0 INTRODUCTION

NEWPORT was retained by the Church Community Housing Corp. (CCHC) to conduct a Combined Phase I Environmental Site Assessment and Phase II Limited Subsurface Investigation of the property located at 48 Touro Street in Newport, Rhode Island, hereafter referred to as the Site. The Site totals approximately 0.14 acres and is occupied by the Former Coffey's Texaco gasoline station. Commercial, municipal, federal, religious, and residential uses make up the majority of the surrounding land usage. A Site Location Map is presented as **Figure 1** and a Site Vicinity Annotated Aerial Photo showing the subject Site and surrounding area is included as **Figure 2**.

The scope of work was performed in the summer of 2014 in accordance with NEWPORT's May 12, 2014 proposal. The site was purchased by CCHC in January 2015 and additional site investigatory activity has been performed since that time consistent with the requirements of Rhode Island Department of Environmental Management (RIDEM) Rules and Regulations for the Investigation and Remediation of Hazardous Materials Releases (Remediation Regulations).This Site Investigation Report (SIR) summarizes the work performed and was completed in accordance with Rule 7.08, and other applicable sections of the Remediation Regulations.

1.1 Objective

The objective of this SIR is to define the source(s), nature, degree and extent of contamination, and identify threats to the public health and environment if any, resulting from releases of Total Petroleum Hydrocarbons (TPH), lead and several semi-volatile organic compounds (SVOCs) at the Site and to distinguish those not related to underground storage tanks (USTs) and associated pipelines. Releases from UST systems are regulated by the Department's Leaking Underground Storage Tank section and therefore are not subject to the requirements of the Remediation Regulations.

As part of this investigation, a total of eight soil borings were advanced at the Site, and three new monitor wells were installed. Soil samples were screened in the field for the presence of total organic vapors (TOVs) using a photoionization detector (PID). Soil and groundwater samples collected from the Site were submitted to New England Testing Laboratory in North Providence, Rhode Island. Eight (8) soil samples were analyzed for volatile organic compounds (VOCs) via EPA method 8260; six (6) samples were analyzed for SVOCs compounds via EPA method 8270; the RCRA 8 metals; and polychlorinated biphenyls (PCBs) via EPA method 8082; and three (3) samples were analyzed for VOCs. The soil and groundwater data were utilized to discern contaminant sources and to evaluate an appropriate remedial strategy to achieve compliance. The results of the investigation identified releases from USTs and non-UST sources. Non-UST release sources identified appear to be associated with former automotive hydraulic lifts and urban fill.

2.0 BACKGROUND

A group of individuals unofficially known as the Newport Spring Leadership Committee (NSLC) recognized the historical significance of this property which contains the site of the original Town Spring and were determined to preserve it. After performing environmental due diligence, the NSLC, with Church Community Housing Corp acting as its fiduciary, purchased the Site in January 2015. Their intention is to eventually redevelop the Site as open space for public use (which RIDEM considers a form of active recreation).

As part of their due diligence effort prior to purchase, a Phase I Site Assessment and Phase II Limited Subsurface Investigation were performed. The Phase II Limited Subsurface Investigation (Phase II LSI) identified several compounds that appeared to be unrelated to the existing or former underground storage tanks (USTs) on the Site that exceeded reportable concentrations. On February 9, 2015, a completed Hazardous Materials Release Notification Form was transmitted to RIDEM. On February 16, 2015, RIDEM issued a Voluntary Procedure Letter (VPL) for the Site. A copy of the VPL is included as **Appendix A**.

3.0 HISTORICAL USE AND OWNERSHIP HISTORY

The Site has been used as a gasoline filling station since the 1920's. The station was most likely originally developed by the Colonial Beacon Oil Company. There is a plaque, erected by the Colonial Beacon Oil Company which commemorates the location of the "Old Town Spring" on the Site, circa 1640. The current Site building was constructed circa 1940 by Standard Oil of New Jersey. According to the Newport Tax Assessor's online records, the Site was acquired by Texaco Inc. in April 1973. The Site was sold to Neill and Diane Coffey in May 1985 who operated the gas station until its sale to Church Community Housing Corp. in January 2015.

4.0 PREVIOUS INVESTIGATION

A Phase I Site Assessment and a Phase II Limited Subsurface Investigation dated June 9, 2014 and June 16, 2014 were completed for the Site by NEWPORT. These documents were previously submitted to RIDEM on February 9, 2015 along with a completed Hazardous Materials Release Notification Form. The Site has also been the subject of a long-term remediation project conducted by several companies since the 1980's with oversight from the RIDEM's Leaking Underground Storage Tank Section. Documented petroleum releases were identified on the Site in 1984 and 1994, with subsequent remediation and site closure in 2011 under the RIDEM UST Management Program, documented with a No Further Action Letter. However, this letter also requires that on-Site soil contamination surrounding the USTs be removed at the time of UST closures, which at this time are anticipated to occur in Fall 2016. The No Further Action Letter also states "The DEM reserves the right to require additional investigation and/or remediation if contamination attributable to this site is discovered in the future, or if the land use changes." A copy of the 2011 No Further Action Letter is included as **Appendix B**. A summary of the findings of the 2014 investigations are included in this SIR.

5.0 SITE DESCRIPTION

5.1 Site Location and Local Land Uses

The Site address is 48 Touro Street in Newport, Newport County, Rhode Island. According to information obtained from the City of Newport Tax Assessor, the Site is identified as Map 17 / Lot 230 and totals approximately 0.14 acres. The Site is occupied by the Former Coffey's Texaco. Access to the Site is via entrances off Touro, Spring and Courthouse Streets. A Site Vicinity Annotated Aerial showing the Site and surrounding area is included as **Figure 2**. A Site Plan is included as **Figure 3**.

The Site is zoned for commercial use, and area properties are utilized for commercial, residential, municipal and religious purposes. A summary of the adjacent land use is presented below:

	ADJACENT LAND USE SUMMARY										
Direction from Site	Current Use	Potential Environmental Conditions									
West	Courthouse (Florence K. Murray Judicial Building) and former state house (Colony House)	None									
North	Two-story office building (One Courthouse Square)	None									
South	Fix-it shop, dentist office, music shop, and other commercial and residential spaces	None									
East	Art gallery, book store, antiques store and the Touro Synagogue National Historic Site	None									

5.2 Site Reconnaissance

The purpose of the site reconnaissance was to visually and physically observe the Site and any on-Site structures to try to identify recognized environmental conditions associated with the Site, and to aid planning the Site investigation activities. NEWPORT conducted the Site reconnaissance on March 17, 2014, accompanied by Mr. Neill Coffey, one of the Site owners, at that time.

5.2.1 Site Observations

The Site totals approximately 0.14 acre of land and is occupied by the Former Coffey's Texaco building, which totals 1,646 square feet and was constructed circa 1940. Asphalt paved driveway and parking areas, and a small landscaped area comprise the remainder of the Site.

5.2.2 Utilities

At the time of Site Reconnaissance the Site building was heated by a fuel oil-fired boiler. [Note: Since purchase by CCHC, the aboveground fuel oil tank (described in **Section 5.2.7.2**) has been removed as described in **Section 9.4**.] The building is connected to the municipal sanitary and storm sewer systems, and the municipal water supply. Underground utilities enter the building, at the approximate locations shown in **Figure 3**.

5.2.3 Stains or Corrosion

No evidence of staining or corrosion was observed on the Site.

5.2.4 Drains and Sumps

No evidence of drains or sumps was observed on the Site.

5.2.5 Pits, Ponds, or Lagoons

No waste pits, ponds, or lagoons was observed at the Site.

5.2.6 Non-Sanitary Wastewater

No non-sanitary wastewater is generated, treated or discharged at the Site. The Site building is connected to the Newport municipal sanitary sewer system.

www.NewportEnv.com

5.2.7 Storage Tanks

5.2.7.1 Underground Storage Tanks

NEWPORT observed two (2) 10,000-gallon single-walled fiberglass USTs in use on the Site. A summary of the existing USTs is presented below:

	EXISTING UST SUMMARY													
Location	Year Installed	Construction Materials	Contents	Capacity (gallons)	Use Status	Registration	Leak Detection & Prevention							
Adjacent to Spring Street	1979	FRP	Gasoline	10,000	Out of Service	Yes	Yes							
Adjacent to Court House Street	1977	FRP	Gasoline	10,000	Out of Service	Yes	Yes							

[Note: Since purchase by CCHC, the USTs have been emptied and the dispensers removed, as described in **Section 9.4**.]

5.2.7.2 Aboveground Storage Tanks

NEWPORT observed two (2) 275-gallon ASTs at the Site. One in the garage near the boiler room used to store #2 heating oil and a second at the southern end of the mechanics pit used to store waste oil. No staining or odors were observed in the vicinity of the ASTs except for *de minimis* amounts on the floor under the tanks. [Note: Since purchase by CCHC, the ASTs have been removed, as described in **Section 9.4**.]

5.2.8 Hazardous Material Storage

NEWPORT did not observe the use, storage or disposal of hazardous substances on the Site, except for cleaning products, paints and lubricants used for routine maintenance. These materials were stored in original manufacturer's containers of less than five gallons capacity, and were observed to be in good condition with no leaks, stains or odors.

6.0 GENERAL SITE AND AREA CHARACTERISTICS

6.1 USGS Topographic Maps

The Site is depicted on the USGS Topographic Map, Newport, Rhode Island Quadrangle Map. Elevation at the Site is approximately 35 feet above mean sea level. Topography in the Site vicinity slopes downward to the west-northwest towards Newport Harbor, which is located approximately 1,300 feet west of the Site. A copy of the topographic map is included as **Figure 1**.

6.2 USGS Bedrock Geology Map

Based on a review of the 1994 USGS Bedrock Geology map of Rhode Island, bedrock in the vicinity of the Site is identified as Pennsylvanian Rock of the Narragansett Bay Group, Rhode Island Formation. This bedrock formation consists of arenite and shale.

NEWPORT did not observe bedrock outcroppings at the Site but bedrock/weathered bedrock was encountered during the advancement of the soil borings at a depth of 11 to 12 feet below grade.

6.3 Surficial Geology

Based on a review of the 1981 Soil Survey of Rhode Island, soil at the Site is classified as Urban land complex. This complex consists of moderately well to excessively drained soils that have been disturbed by cutting or filling, and areas that are covered by buildings or pavement. Included with this unit in mapping are small, intermingled areas of Udorthents. The soil in the immediate area of the Site to the east, south and west is classified as Newport-Urban land complex, which in the substratum layer has slow to very slow permeability thereby impeding the downward movement of water, and also is medium to very strongly acid.

6.4 Surface Water Bodies

There are no surface water bodies located within 500 feet of the Site. Based upon the review of the USGS topographic map depicting the Site (Figure 1) and area groundwater data, groundwater at the Site is anticipated to flow generally to the west-northwest towards Newport Harbor located approximately 1,300 feet west-southwest of the Site.

6.5 Sensitive Environmental Receptors

According to the Rhode Island Geographical Information System data available from the RIDEM website, there are no sensitive environmental receptors on or in the vicinity of the Site. There are no rare or endangered species habitats, private or public drinking water wells within 500 foot radius of the Site.

6.6 Potable and Public Water Supplies

Municipal water services the property and surrounding properties. Water is distributed by the City of Newport Water Department, which receives water from a number of bedrock wells. There are no known public or private drinking water supply wells located within a 0.5-mile radius of the Site.

6.7 Area Property Use

The Site lies in an area utilized for commercial, residential, religious and municipal government usage.

7.0 CLASSIFICATION OF SURFACE WATER & GROUNDWATER

7.1 Surface Water Classification

The classification of the closest downgradient surface water body, Newport Harbor, is SB. These seawaters are designated for primary and secondary contact recreational activities; shellfish harvesting for controlled relay and depuration; and fish and wildlife habitat. They are suitable for aquacultural uses, navigation, and industrial cooling. These waters have good aesthetic value.

7.2 Groundwater Classification

According to a review of the RIDEM groundwater classification map available on-line, the Site and surrounding area are located within an area with a "GB" groundwater classification. GB

groundwater is defined as groundwater that is presumed not suitable for public or private drinking water use without pretreatment. Apparent groundwater flow at the Site and areas immediately downgradient thereof has been determined to be to the west-northwest.

The nearest GA groundwater classification area is located greater than 1,800 feet east (upgradient) of the Site.

8.0 DESCRIPTION OF CONTAMINATION RESULTING FROM THE RELEASE

8.1 Free Liquids

No free liquids were observed on the land surface of the Site during this investigation.

8.2 LNAPL/DNAPL

No separate phase petroleum was evident in any of the monitor wells monitored during the performance of the June 2014 Combined Phase I and Phase II Limited Subsurface Investigation or any subsequent monitoring. A total of seven monitor wells; three newly installed wells and four pre-existing wells were monitored during the performance of the Phase II investigation.

8.3 Concentrations of Hazardous Substances which Pose a Threat to Human Health

There are currently no direct exposure pathways which have the potential to impact human receptors in the release area. Impacted soils in the release area are covered by the existing building and asphalt pavement.

8.4 Potential for Impact to Environmentally Sensitive Areas

According to data from the Rhode Island Geographical Information Service, available online from RIDEM, there are no environmentally sensitive areas on or in the vicinity of the Site.

8.5 Contamination of Man-Made Structures

No man-made structures have been impacted by non-UST related contaminant sources at the Site.

8.6 Odors or Stained Soil

Odors and stained soil were observed during the advancement of soil borings NSB-1 and elevated headspace readings were identified during advancement of NSB-1 and NMW-1. These odors and stained soils appear to be directly related to the present and/or former UST systems on the Site. No other odors or stained soil were observed at the Site during NEWPORT's site investigation.

8.7 Stressed Vegetation

No stressed vegetation was observed at the site during NEWPORT's site investigation.

8.8 Presence of Excavated or Stockpiled Materials

No excavated or stockpiled soil or materials were observed at the Site during NEWPORT's assessment.

www.NewportEnv.com	n
--------------------	---

9.0 SUBSURFACE INVESTIGATION, SOIL ANALYSIS & FINAL DUE DILIGENCE

Subsurface investigations were performed to identify and define the extent of impacted soil and groundwater at the Site. Details are discussed in the following sections.

9.1 Soil Boring Program

On April 25, 2014, NEWPORT supervised the advancement of eight soil borings, three of which were completed as monitor wells, using a geoprobe direct-push rig equipped with a 4-foot macrocore sampler operated by Martin Geo-Environmental LLC of Belchertown, Massachusetts. The boring/monitor well locations are denoted on the Site Plan (**Figure 3**), and the rationale for installation at each location is described below:

BORING/M	BORING/MONITOR WELL LOCATION, INSTALLATION RATIONALE, AND SOIL ANALYSES SUMMARY												
Boring	Boring Location	Rationale		Analys	Analyses Performed *								
Identification	Borning Education	Katonale	VOC	SVOC	RCRA 8	PCB	TPH						
NMW-1	Adjacent to north side of pump island	Installed to evaluate extent of petroleum in soil to determine future tank removal excavation extents to the north	X 0 - 2' & 5' - 7'	x	x	x							
NMW-2	Former location of waste oil UST removed from the Site in 1994	Installed to evaluate residual waste oil impact(s), if any, to soil and groundwater	х	x	х	Х	X 5' - 7'						
NMW-3	Downgradient of abandoned hydraulic lifts	Installed to evaluate potential soil and groundwater impacts from hydraulic lifts and garage maintenance activity	X 5' - 6'	x	x	x	X 5' - 6'						
NSB-1	Former gasoline UST area outside of the 2009 remedial excavation limits	Installed to assess residual impact from former UST area	X 0 - 2' & 6' - 8'	x	x	x	Ι						
NSB-2	Downgradient of the former gasoline UST area and within the 2009 remedial excavation limits	Installed to evaluate whether or not significant petroleum migration has occurred into clean fill material since 2009 remedial excavation	x	x	x	x	_						
NSB-3	Downgradient of abandoned hydraulic lifts	Installed to evaluate potential soil and groundwater impacts from hydraulic lifts and garage maintenance activity	X 4' - 5'	x	x	x	X 4' - 5'						
NSB-4	Installed north of NMW -1	Installed in response to high headspace reading in NMW -1 to evaluate potential vapor migration pathway to building	_	_	_	_	_						
NSB-5	Downgradient of the former gasoline UST area and within the 2009 remedial excavation limits	Installed to evaluate whether or not significant petroleum migration has occurred into clean fill material since 2009 remedial excavation	_	_	_		_						

* All samples obtained from the 0 - 2' soil horizon except where noted otherwise.

Locations of select soil borings were further refined in the field by evaluating site conditions apparent at the time of drilling, access restrictions, underground utility lines and hydrogeologic features (i.e., the likely location of the spring).

Soil borings NMW-1, NMW-2, NMW-3 and NSB-4 were advanced to a depth of 12 feet below grade, and borings NSB-2, NSB-3, NSB-4 and NSB-5 were advanced to depths of 13, 5, 3 and 11 feet below grade, respectively.

Shallow soils observed at the Site, above approximately 5 feet below grade, generally consisted of medium to coarse sand and granules, with some very coarse sand and pebbles, and also contained some to few fragments of brick, glass, coal and coal ash indicative of fill material. Below this layer and down to the refusal depths, which ranged from 3 to 13 feet bgl, silts with shale fragments and weathered bedrock were encountered. Petroleum staining and/or strong petroleum-like odors were observed in samples from below 5 feet in borings NSB-1 and NMW-1. Saturated soils were encountered during the soil sampling activities at an approximate depth of 5.5 feet below ground surface. Geologic and hydrogeologic conditions, as well as PID measurements were recorded on the soil boring logs, which are provided in **Appendix C**.

9.1.1 Soil Screening

Soil samples were collected continuously using a stainless steel sampler with an acetate liner. The soil samples were field screened using a photoionization detector equipped with a 10.6 eV lamp using the "Jar Headspace Technique" to determine the potential presence or absence of total organic vapors. TOVs were absent in the soil samples collected from NSB-3 and NSB-4. Minimal TOVs (<2.1 ppm) were detected in the headspace of some of the samples collected from NSB-2 and NSB-5. Concentrations of TOVs greater than 40 ppm were detected in the samples from NSB-1 and NMW-1. A summary of the soil screening results is provided in **Table°1**.

9.1.2 Soil Sampling and Analysis

Select soil samples from six of the borings were collected at a depth of approximately 4 to 7 feet below grade, and also from 0 to 2 feet below grade, and placed in laboratory-cleaned and prepreserved sample containers, which were placed in a cooler on ice and transported under Chain of Custody to New England Testing Laboratory, Inc. in North Providence, Rhode Island. Eight (8) samples were submitted for analysis of VOCs via EPA method 8260, six (6) samples for SVOCs via EPA method 8270, RCRA 8 metals, and PCBs via EPA method 8082, and three (3) samples for TPH via EPA method 8100M.

9.1.3 Summary of Soil Analytical Results

In five of the six near-surface (0 to 2 feet) soil samples collected, at least one SVOC exceeded the RIDEM Remediation Regulations Residential Direct Exposure Criteria (R-DEC). In the near-surface soil samples from borings NSB-1 and NSB-2, some SVOCs exceeded the Industrial/Commercial Direct Exposure Criteria (I/C-DEC). In one of the three soil samples collected (NWW-3 at 5 to 6 feet) the TPH concentration (3,173 mg/kg) exceeded the R-DEC, I/C-DEC and GB Leachability criteria.

VOCs and metals detected in soil were compliant with the I/C-DEC, except for benzene and total xylenes at 6 to 8 feet in NSB-1 and near-surface lead in NSB-3, which exceeded the R-DEC. All other VOCs and metals detected, in seven and five samples, respectively, were compliant with the R-DECs. PCBs were not reported above the laboratory method detection limits in any of the samples. A summary of the soil laboratory analytical results are presented in **Table 2**. A map showing the locations and concentrations of the constituents detected above the DECs is presented as **Figure 4**. The soil laboratory report is included in **Appendix D**.

9.1.4 Concentration Gradients for Soil

No significant concentration gradients were detected for soil, as evidenced by the lack of migration of contaminants into the clean fill material placed into the former UST area during remedial excavations managed by DEM's LUST Section completed in 2009.

9.2 Groundwater Sampling and Analysis

Three soil borings (NMW-1, NMW-2, and NMW-3) were completed as groundwater monitor wells. Groundwater was encountered at approximately 5.5 feet below ground surface during the well installation.

The monitor wells were constructed with one-inch diameter, polyvinyl chloride (PVC) pipe. The lower portion of the PVC piping consisted of seven to eight feet of 0.01 inch, machine slotted pipe (well screen) set at an approximate depth of twelve (12) feet below ground surface with a solid riser extending to the ground surface. The well screen was placed at an appropriate depth to intercept and straddle the water table. The annulus around the PVC well pipe was backfilled with uniform grade silica sand to approximately one foot above the screen section. Approximately one foot of bentonite was placed around the PVC riser pipe above the silica sand to prevent local surface water runoff and infiltration from directly entering into the well. The borehole was backfilled with native soils from the top of the bentonite seal to the surface. A water-tight road box with locking expansion cap was placed over the well at the ground surface. The road box was cemented in-place to provide additional protection to the well head. Monitoring well construction diagrams are presented in **Appendix C**.

Subsequent to the construction and installation of the monitor wells, the wells were developed to enhance the hydraulic connection between the well screen and the natural formation or fill by removing fine soil material and drill cuttings. On June 4, 2014 Newport Environmental personnel collected groundwater samples from the three newly installed monitor wells and from four of the existing on-site wells (monitor wells MW-2, MW-3, MW-29 and MW-30). On June 18, 2015 groundwater samples were collected from NMW-3, MW-2, MW-3, MW-29, MW-30 and MW-31. Prior to sampling, the static water level was gauged in all on-site wells using an ORS probe. An ORS probe is capable of detecting light non-aqueous phase liquid (LNAPL) as well as the air/water interface. No separate phase petroleum was evident in any of the monitor wells. Prior to collecting groundwater samples, the volume of standing water was calculated and a minimum of three well volumes was purged using a dedicated polyethylene bailer for each monitor well location.

The groundwater samples were placed in laboratory-cleaned and pre-preserved sample containers, which were placed in a cooler on ice and transported under Chain of Custody to New England Testing Laboratory, Inc. in North Providence, Rhode Island. All groundwater samples were submitted for analysis of VOCs via EPA method 8260.

9.2.1 Summary of Groundwater Analytical Results

Benzene was reported above the RIDEM Method I Objective for GB Groundwater in a single sample collected on June 4, 2014 from MW-30 which yielded a benzene concentration of 1120 ug/L. Benzene concentrations in the remaining six samples were near or below the laboratory method detection limit. All other VOCs detected in groundwater were compliant with the GB Groundwater Objective, including naphthalene, trimethylbenzene and xylenes which were detected in NMW-1, MW-29 and MW-30. In addition, methyl tertiary butyl ether (MTBE) was detected in all samples except for MW-2, and was highest in NMW-1.

Benzene was also reported above the GB Objective in a single sample collected on June 18, 2015, but from MW-29, not MW-30. Benzene was detected at 304 ug/L in MW-29, and the

concentration in MW-30 decreased to 86 ug/L, which is less than the GB Objective of 140 ug/L. All other VOCs detected in groundwater were compliant with the GB Groundwater Objective, including toluene, naphthalene, trimethylbenzene and xylenes which were detected in MW-29, MW-30 and MW-31. In addition, MTBE was detected in all samples except for NMW-3 and MW-2, and was highest in MW-29 (21 ug/L). These results are consistent with historical results, except for the concentration of benzene in MW-29 which is the highest detection for that well. The historical groundwater analytical results are presented in **Appendix E**.

On both sample dates only one or two VOCs were detected above the laboratory method detection limit in NMW-2, NMW-3, MW-2 and MW-3, including chloroform in MW-2 and acetone in NMW-3. RIDEM has not promulgated GB Groundwater quality standards for chloroform or acetone. Chloroform is a common byproduct of water chlorination and acetone is a common laboratory contaminant.

A summary of the groundwater laboratory results are presented in **Table 3**. The groundwater laboratory reports are included in **Appendix F**.

9.2.2 Concentration Gradients for Groundwater

No significant concentration gradients were detected for groundwater.

9.3 Background Conditions

Analytical results obtained during this assessment indicate that background soil concentrations are below method detection limits with respect to TPH, SVOCs, and VOCs. Therefore, background conditions for these constituents in soil at the Site are assumed to be characterized by no detectable compounds. Background concentrations for RCRA metals were not determined since all the concentrations detected, except for one sample for lead, were less than the R-DECs. All RCRA metal concentrations were less than the I/C-DECs.

9.4 Final Due Diligence and Post-Purchase Activity

In December 2014 in preparation for the closing, the Coffey's Service Station continued normal operations until petroleum product could no longer be drawn from the two USTs (discussed in **Section 5.2.7.1**), leaving a small residual volume present in each UST. With NEWPORT's assistance Neill Coffey arranged to have the USTs completely emptied using a vacuum tanker. On January 21, 2015 Western Oil of Lincoln, RI removed a total of 353 gallons of gasoline from the two 10,000-gallon USTs.

In February 2015 CCHC engaged the services of Rhode Island Hydraulics of North Kingstown to disconnect electric power to the dispensers, remove the dispensers and secure the pipelines. Once this work was complete CCHC completed a Transfer of Ownership form and an Underground Storage Tank (UST) Temporary Closure Application. Copies of these documents are included in **Appendix H**.

In July 2015 NEWPORT supervised the cleaning and removal of the two ASTs (discussed in Section 5.2.7.2). Documentation is included in **Appendix H.**

10.0 SITE SPECIFIC HYDROGEOLOGICAL PROPERTIES

10.1 Depth to Water

On June 4, 2014, Newport Environmental personnel gauged the depth to groundwater in all onsite monitor wells using an ORS probe. LNAPL was not detected in any of the monitor wells gauged on June 4, 2014 and June 18, 2015. Groundwater depths ranged from 4.77 feet to 6.45 feet below grade on June 4, 2014 and from 4.87 feet to 6.58 feet on June 18, 2015. The Water Level Gauging Sheets are included in **Appendix G**.

10.2 Presence and Effects of Natural and Man-Made Barriers

Currently, the entire release area is covered by the existing building and asphalt pavement. These surfaces provide a barrier against direct exposure to the impacted soil identified at the Site. No other man-made or natural barriers exist at the Site.

10.3 Soil Characteristics & Bedrock Characterization

Soils observed at the Site generally consist of approximately five (5) feet of medium to coarse sand and granules, with some very coarse sand and pebbles and also contained some to few fragments of brick, glass, coal and coal ash (fill material). From five to seven feet below grade is silt and fine sand, some medium sand, few coarse to very coarse sand. Below this layer and down to refusal depths of 12 feet bgl, was mostly silts with shale fragments and weathered bedrock. Soil samples were collected continuously during drilling. Bedrock/weathered bedrock was encountered during the advancement of the soil borings at a depth of 11 to 12 feet below grade.

10.4 Groundwater Flow Conditions

Based on the area topography, the general groundwater flow direction in the Site vicinity is anticipated to be to the west-northwest towards Newport Harbor. Based on the potentiometric surface contours calculated using the June 4, 2014 gauging data, the localized groundwater flow direction in the release area is indicated as away from the former UST area towards the west-northwest, as shown on **Figure 5**.

11.0 CHARACTERIZATION OF TOPOGRAPHY & RUNOFF PATTERNS

The local topography is relatively flat going from south to north in this area. There is a slight rise in elevation to the east of the Site with a general overall topographic gradient to the west-northwest down to the Newport Harbor from the Site.

Storm water runoff from asphalt paved areas is anticipated to flow westerly towards Courthouse and Touro Streets.

12.0 POTENTIAL FOR VOLATILIZATION INTO INDOOR AIR

Based on the recent laboratory groundwater analytical data, the previous removal of a large amount of impacted soils from the Site and the discontinued use of the USTs on the Site, it is unlikely that migration of VOCs into indoor air will occur.

13.0 POTENTIAL FOR ENTRAINMENT BY WIND OR EROSION

Currently, the Site in its entirety is covered by the Site building and asphalt pavement. Therefore, the potential for entrainment of the impacted soil by wind or erosion is very low. There are future plans to perform excavation activities at this Site, so this will need to be addressed at that time.

14.0 ENVIRONMENTAL FATE AND TRANSPORT OF OIL AND/OR HAZARDOUS MATERIAL

14.1 Fate and Transport Mechanisms

Primary fate and transport mechanisms for contaminants of concern include the following:

- Erosion of particulate-bound contaminants from soil
- Leaching from soil with infiltrating water

14.1.1 Erosion Processes

Erosion processes can substantially affect the distribution of soil bound particulates in the environment which influences the distribution of soil contaminants. Winds and runoff can scour fine particles from the soil surface and redistribute these particles. The entire Site is currently covered by the Site building and asphalt pavement which currently limit the erosion of the underlying impacted soil. There are future plans to perform excavation activities at this Site, so this will need to be addressed at that time.

14.1.2 Leaching

The contaminants in soil on the Site have the potential to migrate to greater depths with infiltrating water. As rainwater infiltrates, contaminants may be leached from the soil and carried to greater depths and potentially to groundwater. The degree to which a contaminant is leached is strongly influenced by the contaminant's tendency to partition to the solid or aqueous phases, which is largely a function of the chemical's solubility and particle affinity.

The contaminants of concern include VOCs, SVOCs, TPH, and lead in soil. None of the concentrations reported exceeded the applicable Method 1 GB Leachability Criteria, except for TPH in one sample (NMW-3 at 5 to 6 feet). Of the contaminants of concern, only TPH would have a tendency to leach from soil. Impacted soil in this vicinity will be removed to the extent possible during the future removal of the hydraulic lifts. In the interim however, the Site will remain entirely covered by the Site buildings and asphalt pavement which creates an impervious barrier limiting the potential for leaching into the groundwater.

14.1.2.1 Solubility

The fate and transport of a compound in soil is affected by its solubility in water. Compounds with high water solubility tend to desorb from soils, are less likely to volatilize from water, and are susceptible to biodegradation. Conversely, compounds with low solubility tend to adsorb onto soils, volatilize more readily from water, and bioaccumulate in aquatic organisms.

Both the SVOCs and lead have low solubility and therefore are likely to remain adsorbed to soil and sediment. Lower molecular weight TPH constituents have a higher water solubility and are more likely to desorb from soils into water.

14.1.2.2 Adsorption

The aqueous concentration of chemicals in soil systems can also be substantially influenced by adsorption reactions to the soil matrix. Adsorption is the ability of a substance to bind to the surface of soil particles as a result of reactions that occur between the chemical and the soil particle surface. The tendency for a chemical to be adsorbed is a function of the nature of the chemical and the site-specific soil properties.

Petroleum is moderately adsorbed by soil and sediment. SVOCs and metals are relatively immobile and are likely to remain adsorbed to soil and sediment.

15.0 SOURCES OF IMPACT

The likely sources of the VOC, SVOC, TPH, and lead impacted soil identified on the Site may be from the placement of urban fill on the Site, and/or the past use of the Site as a gasoline service station and repair facility.

16.0 SUMMARY OF FINDINGS

The results of the investigation in the area of the USTs which was investigated and remediated under the UST program are consistent with the historical results. Based on these findings and given the current regulatory status of the Site, it would appear that exceedances of reporting thresholds at locations related to the former UST releases would not give rise to a new release notification condition. In contrast, the following exceedances of release notification thresholds appear to be unrelated to USTs and therefore need to be addressed to obtain regulatory closure:

- The 3173 ppm TPH concentration exhibited by the soil sample obtained from NMW-3, downgradient of the abandoned hydraulic lifts and automotive service area.
- The 159 ppm lead concentration exhibited by the soil sample collected from NSB-3, obtained from beneath the concrete floor in the east service bay.
- Exceedances of several SVOC compounds identified more or less site-wide in the shallow soil samples (four locations exterior to the building NSB-1, NSB-2, NMW-1, NMW-2) and one interior location (NSB-3).

Other significant findings include the following:

- Benzene was the only VOC detected at a concentration greater than the RIDEM Method 1 Objective for GB Groundwater on the Site. Benzene was detected in only one of the six wells sampled in 2014 (MW-30) and 2015 (MW-29) at concentrations of 1,120 ug/L and 304 ug/L, which are consistent with historical results for well MW-30, but is a historical high for MW-29. Based on comparison to historical data for these wells, it is concluded that petroleum source material persists upgradient toward the former and current UST release areas. This condition is expected to be remediated via soil excavation to be conducted during future UST closures.
- PCBs were not reported above the laboratory method detection limits in any of the soil samples.

- There is little potential for the volatilization of site contaminants to impact the on or off-site structures due to low groundwater concentrations and the removal of the majority of the impacted subsurface soils.
- There is no evidence of off-site migration of the detected VOCs or TPH from non UST-related sources.

17.0 EVALUATION OF REMEDIAL ALTERNATIVES

NEWPORT evaluated at least three remedial alternatives for the site as required in RIDEM's Remediation Regulations. Each option was evaluated based on the remedial technologies cost effectiveness and technical feasibility as specified in Section 7.04 of the Remediation Regulations. The planned change in use of the site from a gasoline station to a public park was also included in this evaluation. Possible remedial alternatives for the Site are discussed below:

17.1 No Action – Natural Attenuation

Natural attenuation is a viable remedial option most of the compounds of concern except for lead. The lack of benzene in most of the soil and groundwater samples indicates that natural attenuation has likely occurred on-site, but the most recent data indicates that the groundwater concentrations have not decreased significantly in the last five years. Natural attenuation at the site would allow slow degradation of VOC compounds in soil and groundwater over time, which meets the requirements of the Site Remediation Regulations. However, this remedial alternative would not institute a mechanism to prevent a future change in use of the Site to residential which could result in potentially greater exposure to Site soils.

17.2 Excavation

Excavation of soil is a possible remedial alternative for the impacted soils. However, excavation of soil is not considered a practical alternative for all of the impacts at this Site since current results suggest SVOC impacts may be due to urban fill which probably extends off-Site and is ubiquitous in this area. Excavation will be employed to address any residual impacts in the area of the USTs when they are removed and to address the area of TPH impact at NWW-3 (5 to 6 feet).

17.3 In-situ Chemical Oxidation (ISCO)

Chemical oxidation is a viable remedial option for TPH and petroleum VOCs in soil and groundwater. Injection of a chemical oxidant through several injection points in the area of impact would accelerate degradation of the contaminants in saturated soil and groundwater through direct oxidation and increased aerobic bacterial degradation. In-situ chemical oxidation could be performed with limited disruption of Site operations. However, the majority of site contaminants are located at shallow depths in the unsaturated zone. ISCO is generally not as effective in the unsaturated zone.

17.4 ELUR and Capping

Capping the site with a barrier and/or a clean fill cap, coupled with an Environmental Land Usage Restriction (ELUR) which would require maintenance of the cap is a potential remedial alternative. The purpose of capping would be to prevent people who might be present at the Site from coming in contact with the impacted soil.

Site conditions make implementation of this alternative easy to accomplish. The entire area of impacted soils is already covered with asphalt or concrete. This combination of an ELUR with a cap, whose maintenance is mandated by the ELUR, will prevent people from coming in contact with soil containing contaminants above the Residential DECs both under current and future conditions.

17.5 Preferred Remedial Alternative

Based on the Site conditions and review of feasible remedial actions for the Site, NEWPORT believes that a combination of some of the above alternatives is the most appropriate remedial alternative for the Site. The proposed remedial alternative will utilize a combination of limited excavation and site-wide capping to minimize future direct exposure and leachability concerns. The development and recording of an appropriate ELUR will ensure remedial objectives continue to be met in the future.

18.0 LIMITATIONS

The opinions and recommendations presented in this report are based upon the scope of services and information obtained through the performance of the services described herein. This report is an instrument of professional service and was prepared in accordance with the Rhode Island Department of Environmental Management (RIDEM) Rules and Regulations for the Investigation and Remediation of Hazardous Materials Releases (Remediation Regulations) and the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry. No representations are intended or given beyond those required in the Remediation Regulations. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, shall be at the user's sole risk.

Results of any investigations or testing and any findings presented in this report apply solely to conditions existing at the time when NEWPORT's investigative work was performed. It must be recognized that any such investigative or testing activities are inherently limited and may not represent a 100% conclusive or complete characterization of all conditions at the site. Conditions in other parts of the site may vary from those at the locations where data were collected. NEWPORT's ability to interpret investigation results is related to the availability and validity of the data and the extent of the investigation activities.

NEWPORT does not provide any guarantees, certifications, or warranties regarding any conclusions regarding environmental contamination of any such property.

19.0 CERTIFICATION

Statement of Certification by the Site Investigation Report Preparer

I hereby certify and attest that the information provided is true and accurate to the best of our knowledge.

Signature:

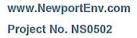
Bruce Clark Senior Project Manager

Business Name: Business Address: Newport Environmental, Inc PO Box 957 N. Scituate, RI 02857

Telephone Number:

(401) 497-8240

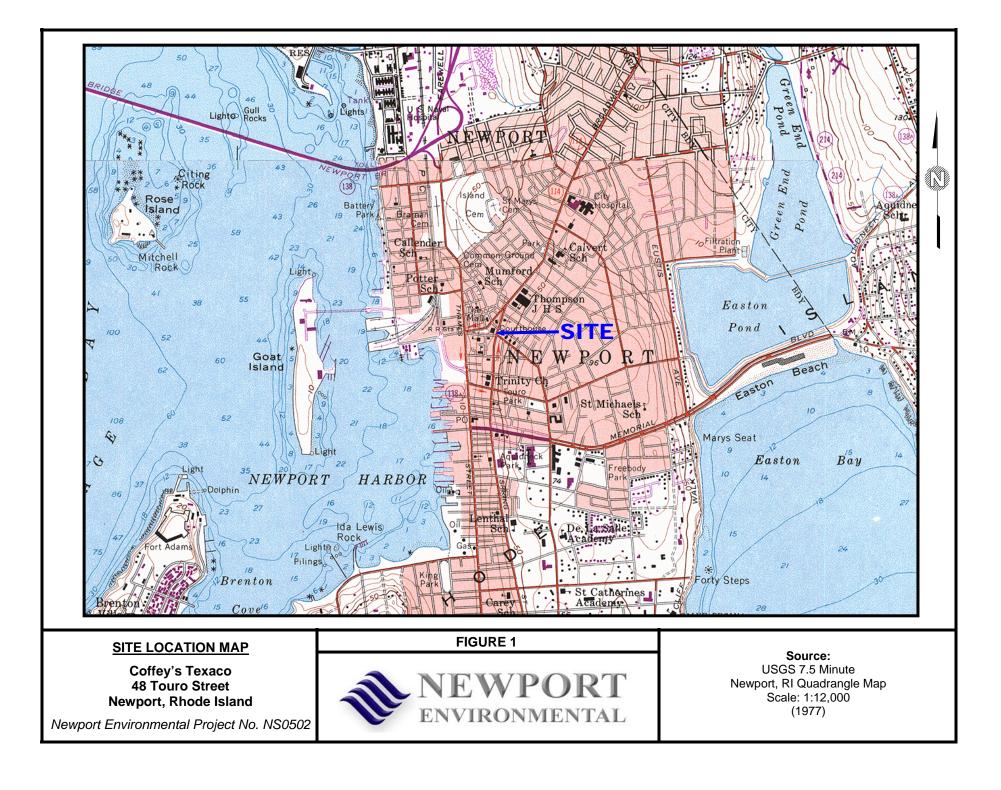
Statement of Certification by the Performing Party

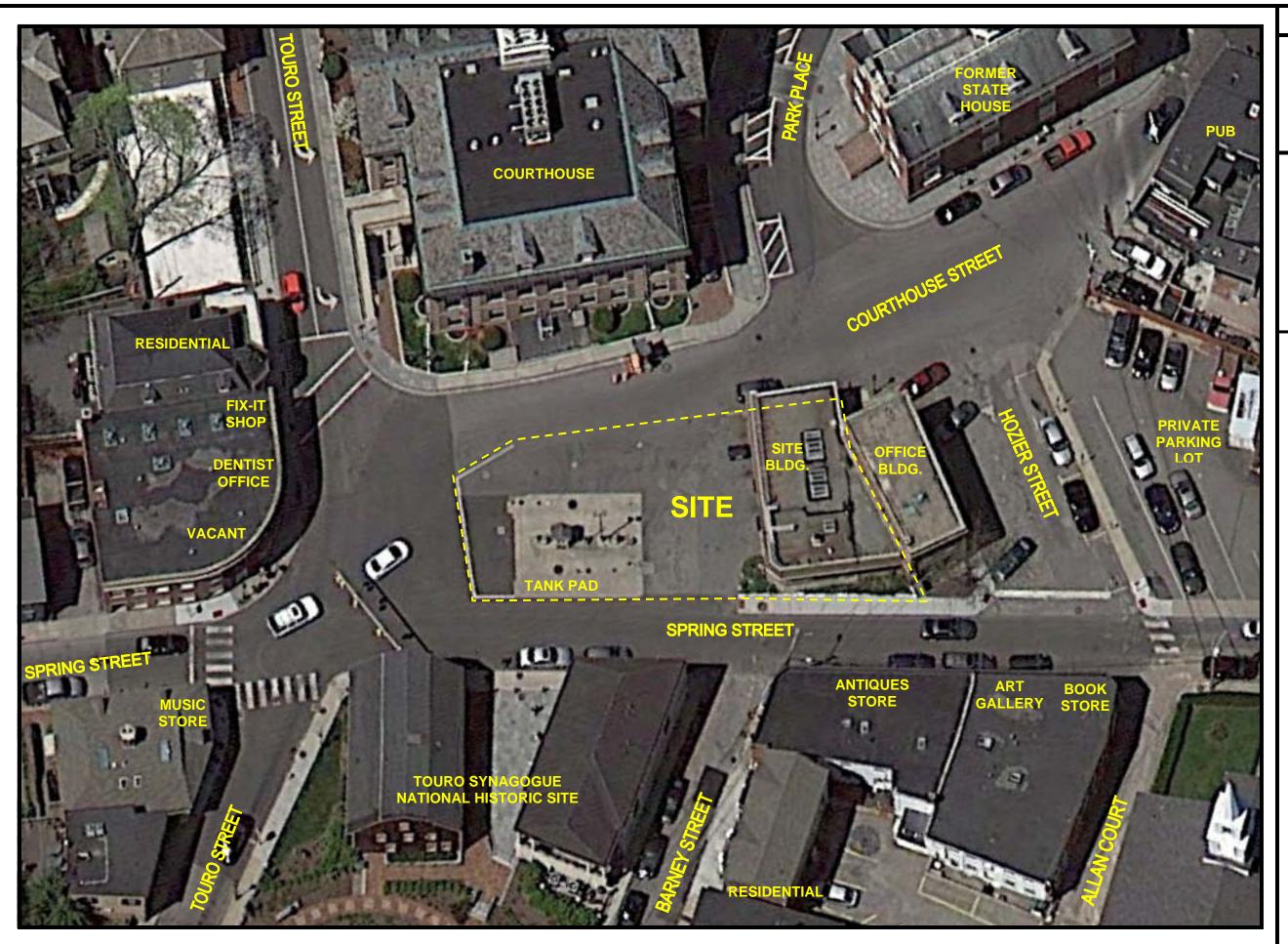

I hereby certify and attest that the information provided is a complete and accurate representation of the site and the release and contains all known facts surrounding the release to the best of my knowledge.

Signature: Ostiguy, Exec. Pirector hew

Business Name: Business Address: Church Community Housing Corp. 50 Washington Square Newport, RI 02840

Telephone Number:


(401) 846-5114



FIGURES

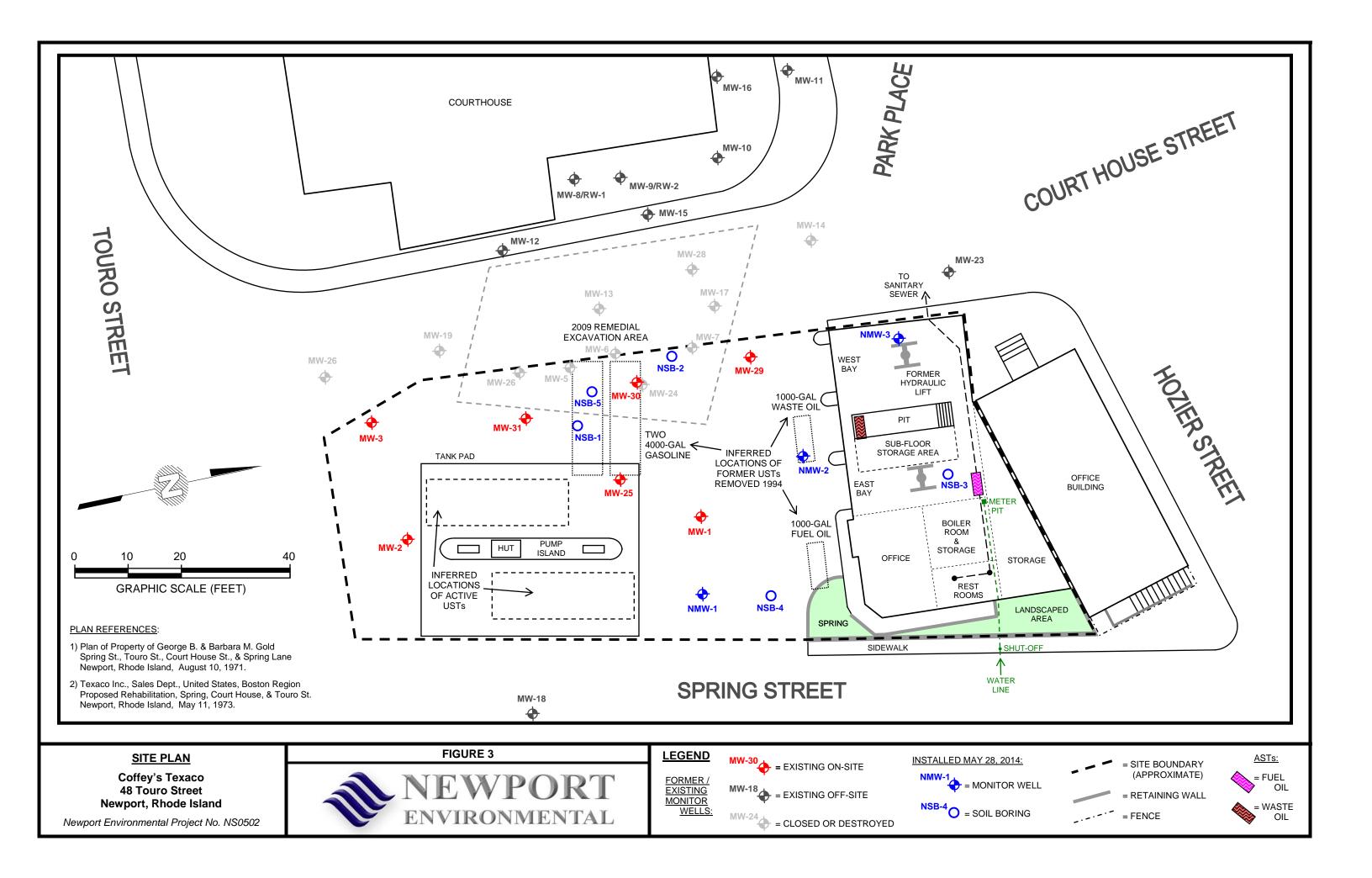
FIGURE 2

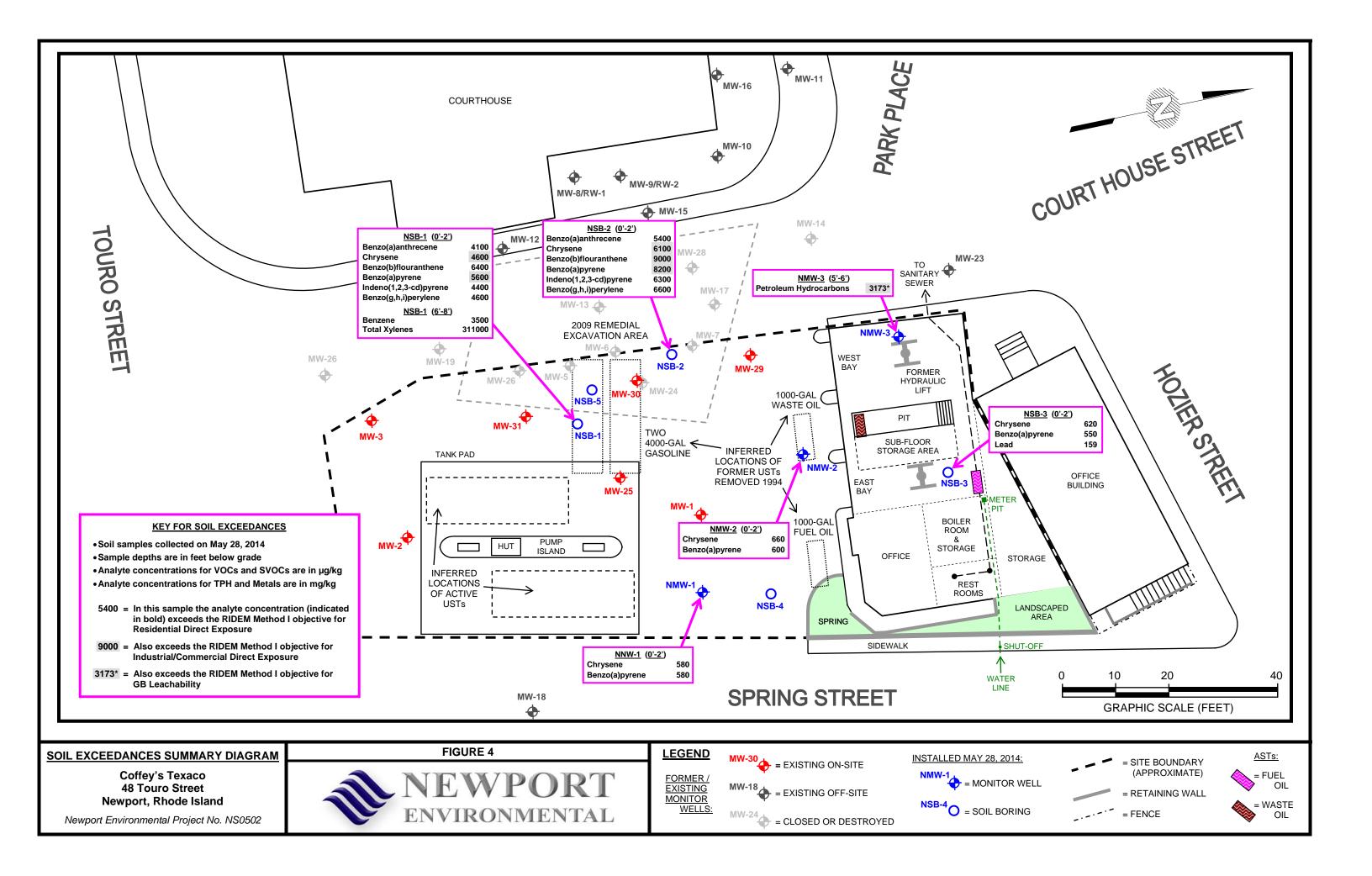
SITE VICINITY ANNOTATED AERIAL

Coffey's Texaco 48 Touro Street Newport, Rhode Island

Newport Environmental Project No. NS0502

LEGEND




= SITE BOUNDARY (APPROXIMATE)

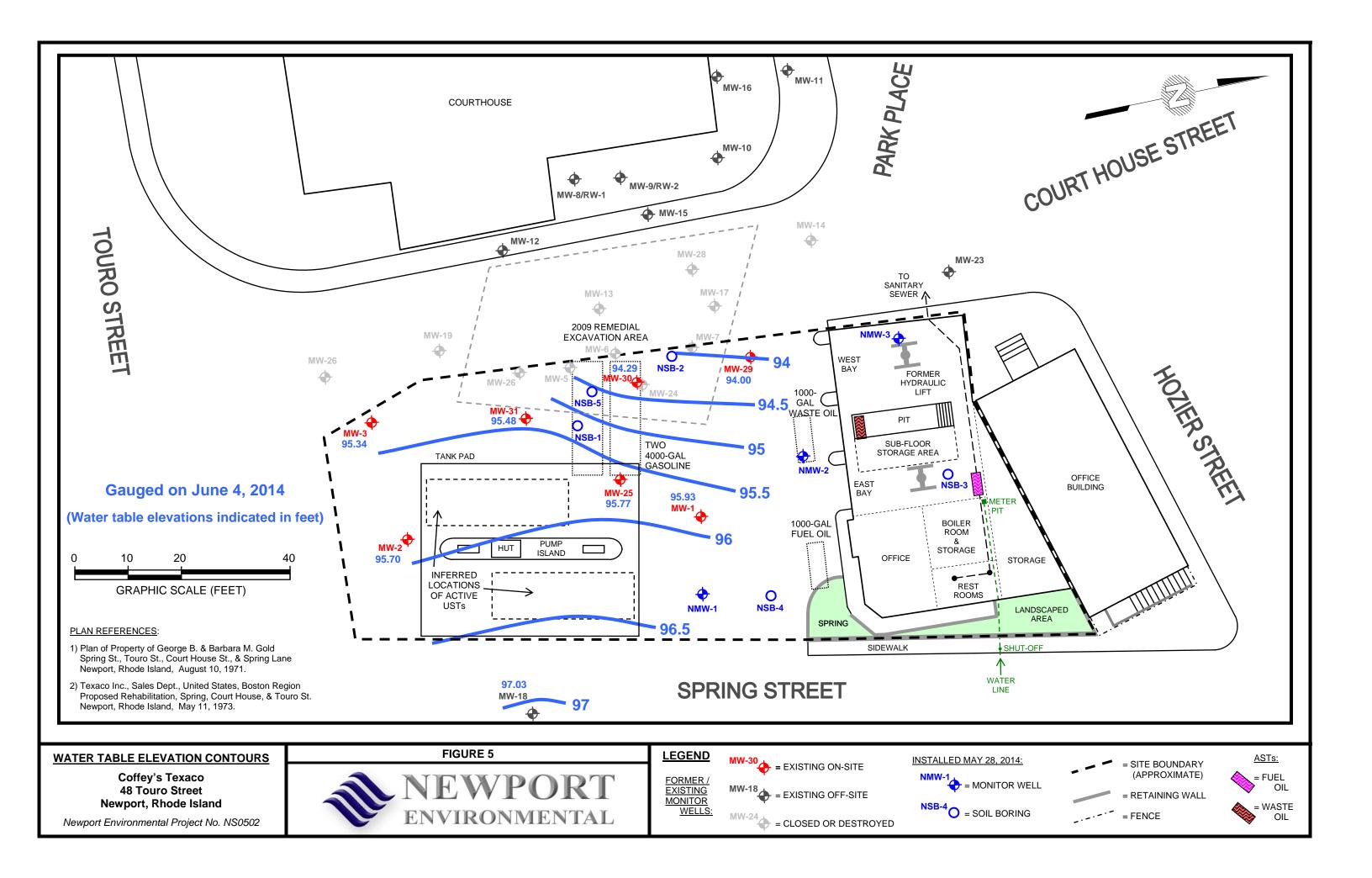

ADJOINING PROPERTY USAGES AS OBSERVED FROM SITE DURING SITE INSPECTION ON MAY 16, 2014

IMAGE DATE: APRIL 27, 2013 IMAGE CREDIT: GOOGLE EARTH

TABLES

TABLE 1Soil Screening Results SummaryMay 28, 2014Coffey's Texaco48 Touro StreetNewport, Rhode Island

NSB-	1	NSB-2	2	NSB-3	3	NSB-4	1	NSB-	5	NMW-	1	NMW-	2	NMW-	NMW-3	
Interval	ppm	Interval	ppm	Interval	ppm	Interval	ppm	Interval	ppm	Interval	ppm	Interval	ppm	Interval	ppm	
0-2	0.5	0-2	ND	0-2	ND	0-3	ND	0-2	ND	0-2	3.2	0-2	ND	0-2	ND	
2-4	0.5	2-4	ND	2-4	ND			2-4	ND	2-4	6.9	2-4	ND	2-4	ND	
4-6	4.3	4-7	2.1	4-5	ND			4-6	ND	4-5	NS	4-5	ND	4-5	4.6	
6-8	>1500	7-8	2.0					6-8	1.5	5-7	>2500	5-7	39.4	5-8	ND	
8-11	NS	8-12	1.6					8-11	0.8	7-8	NS	7-8	0.6	8-10	ND	
11-12	30.5	0-12	1.0							8-12	7.2	8-12	0.4	10-12	1.5	
bedrock @ 12		bedrock @	D 13	refusal @	95	refusal @	23	bedrock @	D 11	bedrock (2 12	bedrock (2 12	bedrock (@ 12	

- Results collected via the jar headsace technique using a MiniRAE 2000 equipped with a 10.6 eV lamp

- Depth indicated in feet below grade level

TABLE 2 Soil Analytical Data Summary May 28, 2014 Coffey's Texaco 48 Touro Street Newport, Rhode Island

					Sar	nple Identifica	ation					DIDE		
			E	xterior Sample	es				Interior	Samples		RIDEN	/ Method 1 Obj	ectives
Analyte	NSB-1 (0'-2')	NSB-1 (6'-8')	NSB-2 (0'-2')	NMW-1 (0'-2')	NMW-1 (5'-7')	NMW-2 (0'-2')	NMW-2 (5'-7')	NMW-3 (0'-2')	NMW-3 (5'-6')	NSB-3 (0'-2')	NSB-3 (4'-5')	Residential Direct Exposure	Industrial/ Commercial Direct Exposure	GB Leachabilty
Volatile Organic Compounds by 8260B							Concent	ration (ug/kg)						
Benzene	<53	3500	<62	220	<45	<61	-	-	<56	-	<48	2500	200000	4300
Toluene	<53	48800	<62	<76	<45	<61	-	-	<56	-	<48	190000	1000000	54000
Ethylbenzene	<53	50200	<62	<76	<45	<61	-	-	<56	-	<48	71000	1000000	62000
m,p-Xylenes	<110	227000	<120	<150	1100	<120	-	-	<110	-	<96	Total 2	Kylenes	n/a
o-Xylene	<53	84000	<62	<76	<45	<61	-	-	<56	-	<48	100000	1000000	n/a
Isopropylbenzene	<53	7400	<62	<76	420	<61	-	-	<56	-	<48	27000	1000000	n/a
n-Propylbenzene	<53	12000	<62	<76	1500	<61	-	-	<56	-	<48	n/a	n/a	n/a
1,3,5-Trimethylbenzene	85	30700	<62	<76	4600	<61	-	-	<56	-	<48	n/a	n/a	n/a
tert-Butylbenzene	<53	15000	<62	<76	2200	<61	-	-	<56	-	<48	n/a	n/a	n/a
1,2,4-Trimethylbenzene	85	109000	<62	<76	8200	<61	-	-	<56	-	97	n/a	n/a	n/a
sec-Butylbenzene	<53	1400	<62	<76	1400	<61	-	-	<56	-	88	n/a	n/a	n/a
p-Isopropyltoluene	<53	8200	<62	<76	1500	<61	-	-	<56	-	<48	n/a	n/a	n/a
n-Butylbenzene	<53	15500	<62	<76	2500	<61	-	-	<56	-	<48	n/a	n/a	n/a
Naphthalene	78	6200	120	<76	2700	<61	-	-	<56	-	<48	54000	1000000	n/a
Semivolatile Organic Compounds by 8270D							Concent	ration (ug/kg)						
Phenanthrene	<3500	-	<3400	470	-	270	-	670	-	510	-	40000	1000000	n/a
Fluoranthene	5800	-	6700	480	-	950	-	590	-	900	-	20000	1000000	n/a
Pyrene	8300	-	12000	810	-	1100	-	780	-	1300	-	13000	1000000	n/a
Benzo(a)anthracene	4100	-	5400	550	-	630	-	330	-	530	-	900	7800	n/a
Chrysene	4600	-	6100	580	-	660	-	360	-	620	-	400	800	n/a
Benzo(b)fluoranthene	6400	-	9000	730	-	830	-	430	-	710	-	900	7800	n/a
Benzo(k)fluoranthene	<3500	-	<3400	<333	-	300	-	<160	-	240	-	900	7800	n/a
Benzo(a)pyrene	5600	-	8200	580	-	600	-	310	-	550	-	400	800	n/a
Indeno(1,2,3-cd)pyrene	4400	-	6300	440	-	450	-	200	-	380	-	900	7800	n/a
Benzo(g,h,i)perylene	4600	-	6600	470	-	490	-	180	-	360	-	800	1000000	n/a
TPH by 8100M							Concentr	ation (mg/kg)						
Total PHC	-	-	-	-	-	-	474	-	3173	-	199	500	2500	2500
Total Metals by 6010C		Concentration (mg/kg)												
Arsenic	5.69	-	3.61	4.11	-	4.13	-	3.72	-	3.74	-	7	7	n/a
Barium	19.4	-	17.7	50.4	-	61.2	-	50.8	-	47.2		5500	10000	n/a
Cadmium	<0.51	-	<0.52	<0.55	-	0.77	-	0.66	-	<0.62	-	39	1000	n/a
Chromium	6.91	-	6.4	6.48	-	8.77	-	8.31	-	7.84	-	390	10000	n/a
Lead	47.8	-	39	113	-	126	-	132	-	159	-	150	500	n/a
Mercury	<0.072	-	<0.073	<0.629	-	0.283	-	0.711	-	0.278	-	23	610	n/a

To match the laboratory method, the RIDEM objectives have been converted from ppm to ppb, where necessary.

n/a = No applicable objective has been established for this analyte

<2 = In this sample the analyte was not detected at or above the laboratory quantitation limit (indicated in italic)

3500 = In this sample the analyte concentration (indicated in bold) exceeds the RIDEM Method I objective for Residential Direct Exposure

8200 = Also exceeds the RIDEM Method I objective for Industrial/Commercial Direct Exposure

3173 = Also exceeds the RIDEM Method I objective for GB Leachability

= Not analyzed

-

TABLE 3 Groundwater Analytical Data Summary Coffey's Texaco 48 Touro Street Newport, Rhode Island

						Sample	Identification a	and Date							
Analyte	NMW-1	NMW-2	NMW-3		MW-2		MW-3		MW-29		MW-30		MW-31	RIDEM Method 1 GB Groundwater	RIDEM Groundwater
	6/4/2014	6/4/2014	6/4/2014	6/18/2015	6/4/2014	6/18/2015	6/4/2014	6/18/2015	6/4/2014	6/18/2015	6/4/2014	6/18/2015	6/18/2015	Objective	UCL
Volatile Organic Compounds by 8260B															
Acetone	<5	<5	8.3	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	n/a	n/a
tert-Butyl methyl ether (MTBE)	218	2.3	1.8	<1	<1	<1	7.3	4.5	20	31	48	20	21	5000	n/a
Chloroform	<1	<1	<1	<1	1.4	1.1	<1	<1	<1	<1	<1	<1	<1	n/a	n/a
Benzene	<1	<1	<1	<1	<1	<1	<1	<1	1.5	304	1120	86	2.1	140	18000
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	5.5	2.2	5.4	2.2	2.2	1700	21000
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	72	<1	2.1	77	49	1600	16000
m,p-Xylenes	7.6	<2	<2	<2	<2	<2	<2	<2	110	2.3	8.8	38	97	n/a	n/a
o-Xylene	<1	<1	<1	<1	<1	<1	<1	<1	51	<1	1.7	3.9	9.3	n/a	n/a
Isopropylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	9.5	4.8	11	41	10	n/a	n/a
n-Propylbenzene	2.2	<1	<1	<1	<1	<1	<1	<1	23	3.3	6.3	110	21	n/a	n/a
1,3,5-Trimethylbenzene	8.4	<1	<1	<1	<1	<1	<1	<1	27	<1	<1	12	35	n/a	n/a
1,2,4-Trimethylbenzene	30	<1	<1	<1	<1	<1	<1	<1	267	<1	1.3	7	140	n/a	n/a
sec-Butylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	4.4	<1	<1	17	2.9	n/a	n/a
p-Isopropyltoluene	<1	<1	<1	<1	<1	<1	<1	<1	3.4	<1	<1	3.8	1.5	n/a	n/a
tert butyl alcohol	<1	21	<1	<5	<1	<5	<1	<5	11	130	233	20	16	n/a	n/a
Diethyl Ether	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.2	<1	<1	n/a	n/a
n-Butylbenzene	1.8	<1	<1	<1	<1	<1	<1	<1	9.9	<1	<1	26	7.4	n/a	n/a
Naphthalene	4.7	<1	<1	<1	<1	<1	<1	<1	38	<1	1.5	77	54	n/a	n/a
Tert-amyl Methyl Ether	14	<1	<1	<1	<1	<1	<1	<1	<1	3	4.3	2.3	<1	n/a	n/a
Ethyl Tert-butyl ether	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2.2	<1	<1	n/a	n/a
Diisopropyl Ether	<1	<1	<1	<1	<1	<1	<1	<1	<1	4.4	9.4	<1	<1	n/a	n/a

To match the laboratory method, the RIDEM objectives have been converted from ppm to ppb.

n/a = No applicable objective has been established for this analyte

<2 = In this sample the analyte was not detected at or above the laboratory quantitation limit (indicated in italic)</p>

1120 = In this sample the analyte concentration (indicated in bold) exceeds the RIDEM Method I objective for GB Groundwater

APPENDIX A

Voluntary Procedure Letter, 2015

Rhode Island

Department Of Environmental Management

235 Promenade Street, Providence, RI 02908-5767

TDD 401-222-4462

VOLUNTARY PROCEDURE LETTER File No. SR-22-1765

February 16, 2015

CERTIFIED MAIL

Mr. Stephen Ostiguy Church Community Housing Corp.(CHCC) 50 Washington Square Newport, Rhode Island 02840

RE: Coffey's Texaco (former) 48 Touro Street Newport, Rhode Island Plat Map 17 / Lot 230

Dear Mr. Ostiguy:

On November 9, 2011, the Rhode Island Department of Environmental Management (the Department) enacted the amended <u>Rules and Regulations for the Investigation and Remediation</u> <u>of Hazardous Material Releases</u> (the <u>Remediation Regulations</u>). The purpose of these Regulations is to create an integrated program requiring reporting, investigation, and remediation of contaminated sites in order to eliminate and/or control threats to human health and the environment in a timely and cost-effective manner. A Voluntary Procedure Letter (VPL) is a preliminary document used to define the relationship between the Department and a Performing Party under the <u>Remediation Regulations</u>. In the case of a Voluntary Procedure Letter, a Performing Party may be a Voluntary Party or a Bona Fide Prospective Purchaser.

Please be advised of the following facts:

- 1. The above referenced property is located at 48 Touro Street, Newport, Rhode Island (the Site). The Site is further identified by the City of Newport Tax Assessor's Office as Plat Map 17 / Lot230.
- 2. The Department is in receipt of the following documents:
 - a. <u>Office of Waste Management Site Remediation Section's Hazardous Material</u> <u>Release Form</u> (Appendix C), received via Email by the Department on February 9, 2015, and prepared by Newport Environmental (NE);
 - b. <u>Phase I Environmental Site Assessment</u>, dated June 9, 2014, received by the Department on February 13, 2015 and prepared by NE; and

- c. <u>Phase II Limited Subsurface Investigation</u>, dated June 16, 2014, received by the Department on February 13, 2015 and prepared by NE.
- 3. The above referenced documents identify concentrations of *Total Petroleum Hydrocarbons (TPH), Lead and various Semi-Volatile Organic Compounds (SVOCs)¹* in Site soils that exceed the Department's Method 1 Direct Exposure Criteria, as referenced in the <u>Remediation Regulations</u>.
- 4. Based on the presence and nature of these Hazardous Substances and petroleum hydrocarbons, the Department concurs that a Release of Hazardous Materials has occurred as defined by Rules 3.33, 3.34, 3.59 and 3.63 of the <u>Remediation Regulations</u>.

The Department requests that Church Community Housing Corporation, as Performing Party, provide the Department with the requested information listed below in order to complete the requirements of Section 7.00 of the <u>Remediation Regulations</u>:

1. If necessary, prior to the implementation of any additional site investigation field activities and in accordance with Rule 7.07(A)(i) of the <u>Remediation Regulations</u>, Church Community Housing Corporation must notify all abutting property owners, tenants, easement holders, and the municipality that an investigation is about to occur. The notice should briefly indicate the purpose of the investigation, the work to be performed, and the approximate scheduled dates of activities. Please submit a draft notification to the Department via E-mail for review and approval prior to distribution. A boilerplate notification to be distributed can be found online at:

...http://www.dem.ri.gov/programs/benviron/waste/topicrem.htm#process.

- The Department will require a copy of the public notice letter and a list of all recipients. Failure to comply with the aforementioned items may result in enforcement actions as specified in Rhode Island General Laws 23-19.1-17 and 23-19.1-18.
- 2. In accordance with the above referenced Industrial Property Remediation and Reuse Act, prior to the establishment of a final scope of investigation for the Site and after the completion of All Appropriate Inquiries (AAI), hold a public meeting for the purposes of obtaining information about conditions at the Site and the environmental history at the Site that may be useful in establishing the scope of the investigation and/or establishing the objectives for the environmental clean-up of the Site.
 - a. The public meeting shall be held in the City or Town in which the Site is located.
 - b. Public notice shall be given of the meeting at least ten (10) business days prior to the meeting.

¹ SVOCs which were identified in exceedance of the Department's Method 1 Direct Exposure Criteria are: Benzo(a)anthrecene, Chrysene, Benzo(b)flouranthene, Benzo(k)flouranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene and Benzo(g,h,i)perylene.

- c. Following the meeting, the record of the meeting shall be open for a period of not less than ten (10) and not more than twenty (20) business days for the receipt of public comment.
- d. The results of all appropriate inquiries, analysis and the public meeting, including the comment period and responses to all comments received, shall be documented in a written report submitted to the Department.

No work (remediation or construction) shall be permitted at the property until the public meeting and comment period regarding the Site's proposed reuse has closed. The above detailed required public notice, meeting and comment period shall be in addition to any other requirements for public notice and comment relating to the investigation or remedy of the Site and may be part of another meeting pertaining to the Site provided that the minimum standards established by RIGL Section 23-19.14-5 for notice and comment are met.

- 3. Conduct further investigation of the Site soil and groundwater, if warranted, in accordance with Section 7.00 of the <u>Remediation Regulations</u>.
- 4. Upon completion of the additional site investigation submit a Site Investigation Report (SIR) in accordance with Section 7.00 of the <u>Remediation Regulations</u> within ninety (90) days from the date of this letter. Given that some limited environmental investigation has already been performed at the Site, you may incorporate portions of the information already gathered and work already performed to address the items covered in Section 7.00. The SIR should include at least two remedial alternatives other than no action/natural attenuation and include future plans for the re-use or redevelopment (if applicable) of the property.
- 5. Submit an SIR checklist in accordance with Rule 7.08 of the <u>Remediation Regulations</u>. The SIR checklist was created as a supplemental tool to expedite the review and approval process by cross-referencing the specific sections and pages within the SIR that provide the detailed information that addresses each stated requirement within Section 7.00 of the <u>Remediation Regulations</u>.
- 6. Upon approval by the Department of the SIR, be prepared to bring the Site into compliance with the <u>Remediation Regulations</u>.

Please be advised that Church Community Housing Corporation, as the Performing Party, is responsible for the proper investigation and remediation of hazardous substances and petroleum hydrocarbons at this site. Also be advised that any remedial alternative that proposes to leave contaminated media on-site at levels which exceed the Department's Residential Direct Exposure Criteria, applicable Leachability Criteria, or applicable Groundwater Criteria will, at a minimum, necessitate the recording of an institutional control in the form of an Environmental Land Usage Restriction (ELUR) on the deed for the site, and will likely require implementation of additional engineered controls to restrict human exposure.

Please notify this office within seven days of the receipt of this letter of your plans to address these items. All correspondences should be sent to the attention of:

Brian Menard RIDEM / Office of Waste Management 235 Promenade Street Providence, RI 02908

If you have any questions regarding this letter or would like the opportunity to meet with Department personnel, please contact me by telephone at (401) 222-2797 ext. 7163 or by E-mail at brian.menard@dem.ri.gov.

Sincerely,

Brian M. Menard, É.I.T. Sanitary Engineer Office of Waste Management

÷ .

cc: Bruce W. Clark - Newport Environmental Kelly Owens – RIDEM, Supervising Sanitary Engineer Jeffrey Crawford – RIDEM, Senior Environmental Scientist Ashley Blauvelt – RIDEM, Senior Sanitary Engineer

 $(a,b) \in [a,b]$

1.1

Coffey's Texaco (former) – 48 Touro Street, Newport, RI, 02840 Voluntary Procedure Letter February 16, 2015 Page 4 of 4

APPENDIX B

No Further Action Letter, 2011

Rhode Island Department Of Environmental Management

235 Promenade Street, Providence, RI 02908-5767

TDD 401-222-4462

December 28, 2011

Mr. Neill Coffey Coffey's Texaco 48 Touro Street Newport, RI 02840

RE: No Further Action Coffey's Texaco, 48 Touro Street, Newport LUST Case No.: LS-2209; RFR (UST Fund) No.: 141; UST Facility ID: 0734

Dear Mr. Coffey:

The Underground Storage Tank (UST) Management Program has reviewed a *Status Report For the Period of May Through August 2011* dated December 19, 2011 for the above-referenced facility, which was prepared and submitted by SAGE Environmental on your behalf. Based on the results of this report along with the environmental specifics of the site, the UST Management Program is not requiring further environmental action at this site. The site's status as a Leaking Underground Storage Tank ("LUST") site will be changed from "active" to "inactive" for Department purposes only. The LUST file will remain on-record at the Department and will be available for public review.

Neither the Department's decision to halt further remedial work nor its deactivation of the site's LUST status should be construed as a determination by the Department that the site is "clean" or otherwise free of petroleum or other contaminants. Contaminated soil and/or groundwater may still be present in the or around the area known to have been impacted by the release. Any contaminated soil or groundwater that may be encountered as a result of future excavation, trenching, grading or drilling activities in or near the area impacted by the release must be managed in accordance with RIDEM's *Oil Pollution Control Regulations* and *Solid Waste Regulations*. The Department of Environmental Management reserves the right to require additional investigation and/or remediation if contamination attributable to this site is discovered in the future or if the land use changes.

The groundwater monitoring wells that are no longer in use must be closed in accordance with Section 8, Appendix 1 of RIDEM's *Rules and Regulations for Groundwater Quality*. Please advise the Department in writing when the monitoring wells have been closed. If you wish to retain access to any monitoring wells, please notify the Department in writing of the purpose for which the well(s) are to be retained.

If you have any questions, please contact the undersigned at (401) 222-2797, extension 7125.

Sincerely,

aula

Paula-Jean Therrien Principal Environmental Scientist

Cc: Kevin Gillen, RIDEM / OWM/ UST Michaela Brockman, RIDEM / OWM / RIUST Fund Tracey Tyrrell, RIDEM / OCI / UST Bruce Clark, SAGE APPENDIX C

Soil Boring/Monitoring Well Construction Logs

	I	EN	EW	IMEN	П	A	L		s		KING LOG A	AND COMP	LETION RE	PURI
					Dr	illed E	By: M	ARTIN GE	O-ENVIRONM	ENTAL LLC	Project #: NS050)2		
					Dr	illing	Metho	d: GEOPI	ROBE 6620DT		Boring / Well Ider	ntification: NMW-1		
					Sa	amplir	ng Me	thod: 4-FC	DOT MACROC	ORE	Location: COFFE	Y'S TEXACO, 48	TOURO ST., NEW	PORT, RI
					Sc	reeni	ing Ins	strument:	MINIRAE 2000) (10.6 eV)	Date: 5/28/2014			
					De	epth t	o Wat	er: ≈5.5'			Logged By: EG			
	Riser:	Type: PVC			Dia	amete	er: 2		Length: 4'		Well Seal: BENT	ONITE		Hole Diameter: 4.25
	Screen:	Type: PVC	Slot:	0.10"	Dia		er: 2		Length: 8'		Sand Pack: #2 S	SAND		Total Depth: 12
DEPTH	SAMPLING	SAMPLE	MOISTURE	SCREENING		WEL	L					/ REMARKS		
(FEET)	ID	RECOVERY	CONTENT	RESULTS	ſ	CONS	эт.	- Locking	g plug and flusł	n-mount roadb	юх			
1_	NMW-1			3.2			(0 - 0.5' As	phalt					
2_	(0'-2')	18"												
3_			Dry	6.9			o					and pebble, few b	rick fragments and	1
4								g	glass shards, d	ark brown, sor	ne black			
5				NS										
6_	NMW-1	36"	Moist	>2500				5' - 7' Mer	dium & coarse	SAND some (coarse sand few v	verv coarse sand a	nd granule, brown,	odor
7	(5'-7')	00	Wolst	2000								icry course sund a	na granaic, brown,	
8_				NS										
9								7' 11' CII	TY SHALE FR	ACMENTS 6	oigo			
10		40"	Wet	7.0				/ - 11 31L	LIT SHALE FR	AGMENTS, D	leige			
11		48"		7.2										
12							1	1' - 12' W	EATHERED SI	HALE BEDRO	CK, grey, some or	range		
13						~								
14								-	EOB at 12'					
15								-	Well set at 12'					
16														
10_														
18														
10_														
20														
20_ 21														
_														
22_														
23_														
24_														
25_														
26_														
27_					-									
28_														
29_														
30														
	NOTES:	NS =	None detected of 0.2 parts Not screened End of boring		stru	iment	t's det	ection limit			Well Legend Concrete Bentonite Sand Pack Native	Riser Screen		

	J			PO			SOIL BOF	RING LOG AN		REPORT
					Drilled By	: MARTIN GE	EO-ENVIRONMENTAL LLC	Project #: NS0502		
					Drilling M	ethod: GEOP	ROBE 6620DT	Boring / Well Identifi	cation: NMW-2	
					Sampling	Method: 4-FC	DOT MACROCORE	OT MACROCORE Location: COFFEY'S TEXACO, 48 TOURO ST.,		NEWPORT, RI
					Screening	Instrument:	MINIRAE 2000 (10.6 eV)	Date: 5/28/2014		
						Water: ≈5.5'	· · ·	Logged By: EG		
	Riser:	Type: PVC			Diameter		Length: 4'	Well Seal: BENTON	ITE	Hole Diameter: 4.25
	Screen:	Type: PVC	Slot:	0.10"	Diameter		Length: 8'	Sand Pack: #2 SAN		Total Depth: 12
							LETION AND SAMPLE D			•
DEPTH (FEET)	SAMPLING ID	SAMPLE RECOVERY	MOISTURE CONTENT	SCREENING RESULTS	WELL CONST.	Locking	g plug and flush-mount roadb	LITHOLOGY / R	EMARKS	
1 2 3 4_	NMW-2 (0'-2')	- 36"	Dry	ND ND			<u>.</u>		nd, granule and pebble, few t	prick and
5				ND						
6_ 7	NMW-2 (5'-7')	20"	Wet	39.4		5' - 7' SIL	T & fine SAND, some mediur	n sand, few coarse &	very coarse sand and granul	e, grey, some odor
8				0.6						
9_ 10_ 11_ 12_		40"	Moist	0.4		7' - 12' SIL	.TY SHALE FRAGMENTS, b	eige, some orange a	nd grey, few black	
13										
14						-	EOB at 12'			
15					1	-	Well set at 12'			
16										
_										
17_										
18_					-					
19					-					
20					-					
21_					4					
22					1					
23										
24										
25										
26					-					
					-					
27_					-					
28_										
29										
30										
	NOTES:	NS =	None detected of 0.2 parts Not screened End of boring	per million.	strument's	detection limit		Well Legend Concrete Bentonite Sand Pack Native	Riser Screen	

	J	N] EN		PO			Г L		S	SOIL BOR	RING LOG A	AND COMPLETIO	N REPORT
					Dr	illed E	By: N	MARTIN GE	O-ENVIRONN	IENTAL LLC	Project #: NS050)2	
					Dr	illing	Meth	nod: GEOP	ROBE 6620D1	г	Boring / Well Ider	ntification: NMW-3	
					Sa	mplir	ng Me	ethod: 4-FC	DOT MACROC	ORE	Location: COFFE	Y'S TEXACO, 48 TOURO S	T., NEWPORT, RI
					Sc	reeni	ing Ir	nstrument:	MINIRAE 200	0 (10.6 eV)	Date: 5/28/2014		
					De	pth t	o Wa	ater: ≈5.5'			Logged By: EG		
	Riser:	Type: PVC			Dia	amete	er:	2"	Length: 4'		Well Seal: BENT	ONITE	Hole Diameter: 4.25
	Screen:	Type: PVC	Slot:	0.10"	Dia	amete			Length: 8'		Sand Pack: #2 S	AND	Total Depth: 12
		1		1	1	В	ORI	NG COMP	LETION ANI	D SAMPLE D	ΑΤΑ		
DEPTH (FEET)	SAMPLING ID	SAMPLE RECOVERY	MOISTURE CONTENT	SCREENING RESULTS		WEL		- Locking	n plug and flue	h-mount roadbo		/ REMARKS	
									ncrete floor	n-mount roadbo	0.0		
1_	NMW-3 (0'-2')			ND									
2_		20"	Dry		-								
3_			,	ND				0.5' - 5' Fin	ie SAND & CC	AL ASH, some	coal fragments, b	prown and white, some orang	le
4_	NMW-3	-	-	4.6	-								
5_	(4'-5')		Maint	4.0	-						ck fragments, bro		
6_		38"	Moist					5-6 FI	ne & medium a	SAND, Some to	ck tragments, bro	wh, some grey	
7_				ND				6' - 8' Fii	ne & medium S	SAND, few coai	rse sand, granule,	pebble, rock fragments, grey	y
8			Wet		_								
9_				ND				8' - 10' Co	oarse & very o	parse SAND, so	ome medium sand	and granule, grey	
10_		48"											
11_			Moist	1.5				10' - 12' SI	LTY SHALE F	RAGMENTS &	WEATHERED SH	HALE BEDROCK, grey and li	ght grey
12						$\overline{\nabla}$	ļ						
13													
14								-	EOB at 12'				
15								-	Well set at 12'				
16													
17													
18													
19													
20													
21													
22													
23													
2324													
_													
25_													
26_													
27_					-								
28_													
29_					-								
30													
	NOTES:	NS =	None detected of 0.2 parts Not screened End of boring	per million.	istru	ment	i's de	etection limit	:		Well Legend Concrete Bentonite Sand Pack Native	Riser Screen	

	J		EW	PO	RT		SOIL BO	RING LOG A	AND COMPLETION REPORT
					Drilled By:	MARTIN GE	O-ENVIRONMENTAL LLC	Project #: NS050	02
					Drilling Met	hod: GEOP	ROBE 6620DT	Boring / Well Ider	ntification: NSB-1
					Sampling N	lethod: 4-FC	DOT MACROCORE	Location: COFFE	Y'S TEXACO, 48 TOURO ST., NEWPORT, RI
					Screening	nstrument:	MINIRAE 2000 (10.6 eV)	Date: 5/28/2014	
					Depth to W	ater: ≈5.5'		Logged By: EG	
	Riser:	Type: PVC			Diameter:		Length:	Well Seal:	Hole Diameter: 4.25
	Screen:	Type: PVC	Slo	ot:	Diameter:		Length:	Sand Pack:	Total Depth: 12
					BOR	ING COMP	LETION AND SAMPLE	DATA	
DEPTH (FEET)	SAMPLING ID	SAMPLE RECOVERY	MOISTURE CONTENT	SCREENING RESULTS	WELL CONST.			LITHOLOGY	/ / REMARKS
1_	NSB-1 (0'-2')			0.5		0 - 0.5' As	phalt		
23		- 36"	Dry	0.5			dium & coarse SAND and o		ery coarse sand and pebble, few brick,
45							bar and rook ragmono, or		
5_ 6_		- 36"		4.3					
7_ 8	NSB-1 (6'-8')		Moist	>1500					
9_						6' - 11' M	edium SAND, some fine & d	coarse sand, few ver	ry granule and pebble, brown, staining, strong odor
10		48"	Wet	NS					
12				30.5		11' - 12' SI	LTY SHALE FRAGMENTS	& WEATHERED SH	HALE BEDROCK, greyish-brown
13					Boring only				
14					No	-	EOB at 12'		
					well set				
15_					_				
16_					_				
17_					_				
18_					_				
19_					_				
20_					-				
21_					_				
22_					_				
23_									
24									
25					_				
26									
27									
28									
29									
30					1				
	NOTES:	NS =	None detected of 0.2 parts Not screened End of boring	per million.	strument's d	etection limit		Well Legend Concrete Bentonite Sand Pack Native	Riser Screen

	J		EW	PO.	RT		SOIL BO	RING LOG A	AND COMPLETION REPORT
					Drilled Bv:	MARTIN GE	O-ENVIRONMENTAL LLC	Project #: NS050	02
							ROBE 6620DT		ntification: NSB-2
							DOT MACROCORE		Y'S TEXACO, 48 TOURO ST., NEWPORT, RI
							MINIRAE 2000 (10.6 eV)	Date: 5/28/2014	
					Depth to W	ater: ≈5.5'		Logged By: EG	
	Riser:	Type: PVC			Diameter:		Length:	Well Seal:	Hole Diameter: 4.25
	Screen:	Type: PVC	Slo	ot:	Diameter:		Length:	Sand Pack:	Total Depth: 13
					BOR	ING COMP	LETION AND SAMPLE	DATA	
DEPTH (FEET)	SAMPLING ID	SAMPLE RECOVERY	MOISTURE CONTENT	SCREENING RESULTS	WELL CONST.			LITHOLOGY	/ / REMARKS
1_	NSB-2			ND		0-0.5' As	phalt		
2_	(0'-2')	- 36"							
3				ND					
4			Dry	ND		0.5' - 8' Me	dium & coarse SAND and 0	GRANULE, some ve	ery coarse sand and pebble, few coal,
5						ę	plass and rock fragments, b	rown, some black	
6				2.1					
7		30"							
، 8			Moist	2.0					
_					-				
9_									
10_		24"	Wet	1.6		8' - 12' Coa	arse & very coarse SAND, s	ome medium sand,	granule and pebble, brown
11_									
12_		8"	-	NS		12' - 13' SI			HALE BEDROCK, greyish-brown
13_		0		113	Boring	12 - 13 - 31		& WEATHERED SI	IALE BEDROCK, GIEVISIPOIOWIT
14					only		EOB at 13'		
15					No well	-	EOD at 15		
16					set				
17					_				
18					-				
19									
20					_				
21									
22									
23									
24					1				
25									
26									
27									
28									
29									
30					1				
	NOTES:	NS =	None detected of 0.2 parts Not screened End of boring	above the in per million.	strument's d	etection limit		Well Legend Concrete Bentonite Sand Pack Native	Riser Screen

	J			PO NMEN	RT		SOIL BOI	RING LOG A	AND COMPLETION REPORT
					Drilled By:	MARTIN GE	O-ENVIRONMENTAL LLC	Project #: NS050	02
					Drilling Met	hod: GEOP	ROBE 6620DT	Boring / Well Ider	ntification: NSB-3
					Sampling N	lethod: 4-FC	OOT MACROCORE	Location: COFFE	EY'S TEXACO, 48 TOURO ST., NEWPORT, RI
					Screening I	nstrument:	MINIRAE 2000 (10.6 eV)	Date: 5/28/2014	
					and			Logged By: EG	
	Riser:	Type: PVC			Diameter:		Length:	Well Seal:	Hole Diameter: 4.25*
	Screen:	Type: PVC	Slo	ot:	Diameter:		Length:	Sand Pack:	Total Depth: 5
					BOR	ING COMP	LETION AND SAMPLE	АТА	
DEPTH (FEET)	SAMPLING ID	SAMPLE RECOVERY	MOISTURE CONTENT	SCREENING RESULTS	WELL CONST.			LITHOLOGY	//REMARKS
1_	NSB-3			ND		0 - 0.5' As	phalt		
2	(0'-2')	12"							
3_	-		Dry	ND			edium & coarse SAND, some coal ash, brown, some beig		e sand and granule, few pebble and
4	NSB-3	10"	-	ND					
5_	(4'-5')				Boring				
6_					only No	-	Refusal and EOB at 5'		
7_					well				
8_									
9_									
10_									
11_									
12_					_				
13									
14_					_				
15									
16					_				
17					-				
18									
19									
20									
21									
22									
23									
24									
25					-				
 26									
20_					-				
27_					-				
_									
²⁹ _ 30					-				
	NOTES:	NS =	None detected of 0.2 parts Not screened End of boring	per million.	I strument's d	l etection limit		Well Legend Concrete Bentonite Sand Pack Native	Riser Screen

	J	N] EN	EW	PO Imen	RT		SOIL BOF	RING LOG AND COMPLETIO	N REPORT
					Drilled By:	MARTIN GE	O-ENVIRONMENTAL LLC	Project #: NS0502	
							ROBE 6620DT	Boring / Well Identification: NSB-4	
							DOT MACROCORE	Location: COFFEY'S TEXACO, 48 TOURO S	T., NEWPORT, RI
							MINIRAE 2000 (10.6 eV)	Date: 5/28/2014	
					and			Logged By: EG	
	Riser:	Type: PVC			Diameter:		Length:	Well Seal:	Hole Diameter: 4.25"
	Screen:	Type: PVC	Slo	ot:	Diameter:		Length:	Sand Pack:	Total Depth: 3
		71					LETION AND SAMPLE D		
DEPTH (FEET)	SAMPLING ID	SAMPLE RECOVERY	MOISTURE CONTENT	SCREENING RESULTS	WELL CONST.			LITHOLOGY / REMARKS	
1						0 - 0.5' As	phalt		
1_	-	10"	Dry	NS					
2_						0.5' - 3' Me	edium & coarse SAND, some	fine sand, granule and pebble, brown	
3_					Boring				
4_					only				
5_					No well	-	Refusal and EOB at 3'		
6_					set				
7_									
8									
9									
10									
11_									
12_									
13_					-				
14					-				
15					-				
16					-				
17									
18									
19									
20					1				
20_					1				
_					1				
22_					-				
23									
24_					-				
25_					-				
26					-				
27									
28									
29									
30]				
	NOTES:	NS =	None detected of 0.2 parts Not screened End of boring	per million.	strument's d	etection limit		Well Legend Concrete Bentonite Sand Pack Native Screen	

	J	EN	EW	PO.	RT		SOIL BOF	RING LOG A	AND COMPLETION REPORT
					Drilled Bv:	MARTIN GE	O-ENVIRONMENTAL LLC	Project #: NS050)2
							ROBE 6620DT		ntification: NSB-5
					Sampling N	lethod: 4-FC	DOT MACROCORE	Location: COFFE	Y'S TEXACO, 48 TOURO ST., NEWPORT, RI
							MINIRAE 2000 (10.6 eV)	Date: 5/28/2014	
					Depth to W			Logged By: EG	
	Riser:	Type: PVC			Diameter:		Length:	Well Seal:	Hole Diameter: 4.25
	Screen:	Type: PVC	Slo	ot:	Diameter:		Length:	Sand Pack:	Total Depth: 1
					BOR	ING COMP	LETION AND SAMPLE D	ΑΤΑ	
DEPTH (FEET)	SAMPLING ID	SAMPLE RECOVERY	MOISTURE CONTENT	SCREENING RESULTS	WELL CONST.			LITHOLOGY	//REMARKS
1				ND		0 - 0.5' As	phalt		
2		401		ND					
3		40"	_			0.5'-6' M	edium & coarse SAND and G	RANULE some v	ery coarse sand and pebble, few brick,
۳ 4			Dry	ND			coal and rock fragments, brow		
				ND					
6		40"			-				
7_			Moist	1.5					
8_					_	6' - 10' M	edium SAND, some fine & co	oarse sand, few ver	ry granule and pebble, brown
9_		32"	Wet	0.8					
10_		02		0.0		10' - 11' SI			HALE BEDROCK, greyish-brown
11_					Boring	10 - 11 - 31	ETT SHALL TRAGMENTS 8	WEATHERED SI	IALE BEDROCK, GIEVISITOIOWIT
12					only				
13_					No well	-	EOB at 11'		
14					set				
15_									
16_									
17_									
18					_				
19									
20									
21									
22									
23_									
24									
25									
26									
27									
28									
29					1				
29_ 30					1				
	NOTES:	NS =	None detected of 0.2 parts Not screened End of boring	per million.	strument's d	etection limit		Well Legend Concrete Bentonite Sand Pack Native	Riser Screen

APPENDIX D

Soil Laboratory Analytical Data Report

REPORT OF ANALYTICAL RESULTS

NETLAB Case Number A0528-24

Prepared for:

Newport Environmental PO BOX 957 North Seituate, RI 02857

Report Date: June 3, 2014

Reviewed by:

Richard Warila Laboratory Director

Lab # RI010

NEW ENGLAND TESTING LABORATORY, INC. 1254 Douglas Avenue, North Providence, RI 02904 (401) 353-3420

SAMPLES SUBMITTED and REQUEST FOR ANALYSIS:

The samples listed in Table I were submitted to New England Testing Laboratory on May 28, 2014. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the samples provided to us by the client which are indicated on the custody record. The case number for this sample submission is A0528-24.

Custody records are included in this report.

Sample ID	Date Sampled	Matrix	Analysis Requested
NSB-1 (0'-2')	5/28/14	Soil	Table II
NSB-1 (6'-8')	5/28/14	Soil	VOC's Only
NSB-2 (0'-2')	5/28/14	Soil	Table II
NMW-1 (0'-2')	5/28/14	Soil	Table II
NMW-1 (5'-7')	5/28/14	Soil	VOC's Only
NMW-2 (0'-2')	5/28/14	Soil	Table II
NMW-2 (5'-7')	5/28/14	Soil	TPH Only
NMW-3 (0'-2')	5/28/14	Soil	Table IV
NMW-3 (5'-6')	5/28/14	Soil	Table III
NSB-3 (0'-2')	5/28/14	Soil	Table II
NSB-3 (0'-2')	5/28/14	Soil	Table IV
NSB-3 (4'-5')	5/28/14	Soil	Table III

Site: Coffey's Texaco

TABLE I, Samples Submitted

TABLE II, Analysis and Methods

ANALYSIS	DETERMINATIVE METHOD
Volatile Organic Compounds	8260B
PAHs	8270D
PCBs	8082A
Total Metals	
Arsenic	6010C
Barium	6010C
Cadmium	6010C
Chromium	6010C
Lead	6010C
Mercury	7471A
Selenium	6010C
Silver	6010C

New England Testing Laboratory, Inc.

TABLE III, Analysis and Methods

ANALYSISDETERMINATIVE METHODTotal Petroleum Hydrocarbons8100 Mod.Volatile Organic Compounds8260B

TABLE IV, Analysis and Methods

ANALYSIS	DETERMINATIVE METHOD
PAHs	8270D
PCBs	8082A
Total Metals	
Arsenic	6010C
Barium	6010C
Cadmium	6010C
Chromium	6010C
Lead	6010C
Mercury	7471A
Selenium	6010C
Silver	6010C

These methods are documented in:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, USEPA/OSW.

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

<u>Metals</u>

All analyses were performed according to NETLAB's documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory established acceptance criteria. The samples were received, processed, and reported with no anomalies.

Semi-volatile Compounds

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

Samples "NSB-1 (0-2), NSB-2 (0-2), and NMW-1 (0-2)" have elevated detection limits and one surrogate outside quality control limits due to matrix interference.

Total Petroleum Hydrocarbons

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

Volatile Organic Compounds

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Metals Analysis Department certifies that the results included in this section have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

New England Testing Laboratory, Inc.

Case Number:	A0528-24		
Sample ID:	NSB-1 (0'-2')		
Date collected:	5/28/14		
Matrix	SOIL		
Solids, %	94.8	Analyst	MM/JC/JM
Sample Type:	Total		

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	5.69	1.03	mg/kg	5/29/14	5/30/14
Barium	7440-39-3	3051A	6010C	19.4	0.51	mg/kg	5/29/14	5/30/14
Cadmium	7440-43-9	3051A	6010C	ND	0.51	mg/kg	5/29/14	5/30/14
Chromium	7440-47-3	3051A	6010C	6.91	0.51	mg/kg	5/29/14	5/30/14
Lead	7439-92-1	3051A	6010C	47.8	0.51	mg/kg	5/29/14	5/30/14
Mercury	7439-97-6	NA	7471B	ND	0.072	mg/kg	5/29/14	5/29/14
Selenium	7782-49-2	3051A	6010C	ND	1.03	mg/kg	5/29/14	5/30/14
Silver	7440-22-4	3051A	6010C	ND	0.51	mg/kg	5/29/14	5/30/14

ND indicates Not Detected.

Case Number:	A0528-24		
Sample ID:	NSB-2 (0'-2')		
Date collected:	5/28/14		
Matrix	SOIL		
Solids, %	94.65	Analy	st <u>MM/JC/JM</u>
Sample Type:	Total		

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	3.61	1.04	mg/kg	5/29/14	5/30/14
Barium	7440-39-3	3051A	6010C	17.7	0.52	mg/kg	5/29/14	5/30/14
Cadmium	7440-43-9	3051A	6010C	ND	0.52	mg/kg	5/29/14	5/30/14
Chromium	7440-47-3	3051A	6010C	6.40	0.52	mg/kg	5/29/14	5/30/14
Lead	7439-92-1	3051A	6010C	39.0	0.52	mg/kg	5/29/14	5/30/14
Mercury	7439-97-6	NA	7471B	ND	0.073	mg/kg	5/29/14	5/29/14
Selenium	7782-49-2	3051A	6010C	ND	1.04	mg/kg	5/29/14	5/30/14
Silver	7440-22-4	3051A	6010C	ND	0.52	mg/kg	5/29/14	5/30/14

ND indicates Not Detected.

Case Number:	A0528-24	
Sample ID:	NMW-1 (0'-2')	
Date collected:	5/28/14	
Matrix	SOIL	
Solids, %	85.58	Analyst MM/JC/JM
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	4.11	1.10	mg/kg	5/29/14	5/30/14
Barium	7440-39-3	3051A	6010C	50.4	0.55	mg/kg	5/29/14	5/30/14
Cadmium	7440-43-9	3051A	6010C	ND	0.55	mg/kg	5/29/14	5/30/14
Chromium	7440-47-3	3051A	6010C	6.48	0.55	mg/kg	5/29/14	5/30/14
Lead	7439-92-1	3051A	6010C	113	0.55	mg/kg	5/29/14	5/30/14
Mercury	7439-97-6	NA	7471B	0.629	0.080	mg/kg	5/29/14	5/29/14
Selenium	7782-49-2	3051A	6010C	ND	1.10	mg/kg	5/29/14	5/30/14
Silver	7440-22-4	3051A	6010C	ND	0.55	mg/kg	5/29/14	5/30/14

ND indicates Not Detected.

Case Number:	A0528-24			
Sample ID:	NMW-2 (0'-2')			
Date collected:	5/28/14			
Matrix	SOIL			
Solids, %	84.44		Analyst	MM/JC/JM
Sample Type:	Total			

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	4.13	1.17	mg/kg	5/29/14	5/30/14
Barium	7440-39-3	3051A	6010C	61.2	0.58	mg/kg	5/29/14	5/30/14
Cadmium	7440-43-9	3051A	6010C	0.77	0.58	mg/kg	5/29/14	5/30/14
Chromium	7440-47-3	3051A	6010C	8.77	0.58	mg/kg	5/29/14	5/30/14
Lead	7439-92-1	3051A	6010C	126	0.58	mg/kg	5/29/14	5/30/14
Mercury	7439-97-6	NA	7471B	0.283	0.080	mg/kg	5/29/14	5/29/14
Selenium	7782-49-2	3051A	6010C	ND	1.17	mg/kg	5/29/14	5/30/14
Silver	7440-22-4	3051A	6010C	ND	0.58	mg/kg	5/29/14	5/30/14

ND indicates Not Detected.

Case Number:	A0528-24	
Sample ID:	NMW-3 (0'-2')	
Date collected:	5/28/14	
Matrix	SOIL	
Solids, %	81.07	Analyst <u>MM/JC/JM</u>
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	3.72	1.22	mg/kg	5/29/14	5/30/14
Barium	7440-39-3	3051A	6010C	50.8	0.61	mg/kg	5/29/14	5/30/14
Cadmium	7440-43-9	3051A	6010C	0.66	0.61	mg/kg	5/29/14	5/30/14
Chromium	7440-47-3	3051A	6010C	8.31	0.61	mg/kg	5/29/14	5/30/14
Lead	7439-92-1	3051A	6010C	132	0.61	mg/kg	5/29/14	5/30/14
Mercury	7439-97-6	NA	7471B	0.711	0.082	mg/kg	5/29/14	5/29/14
Selenium	7782-49-2	3051A	6010C	ND	1.22	mg/kg	5/29/14	5/30/14
Silver	7440-22-4	3051A	6010C	ND	0.61	mg/kg	5/29/14	5/30/14

ND indicates Not Detected.

Case Number:	A0528-24		
Sample ID:	NSB-3 (0'-2')		
Date collected:	5/28/14		
Matrix	SOIL		
Solids, %	78.6	Analyst	MM/JC/JM
Sample Type:	Total		

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	3.74	1.24	mg/kg	5/29/14	5/30/14
Barium	7440-39-3	3051A	6010C	47.2	0.62	mg/kg	5/29/14	5/30/14
Cadmium	7440-43-9	3051A	6010C	ND	0.62	mg/kg	5/29/14	5/30/14
Chromium	7440-47-3	3051A	6010C	7.84	0.62	mg/kg	5/29/14	5/30/14
Lead	7439-92-1	3051A	6010C	159	0.62	mg/kg	5/29/14	5/30/14
Mercury	7439-97-6	NA	7471B	0.278	0.088	mg/kg	5/29/14	5/29/14
Selenium	7782-49-2	3051A	6010C	ND	1.24	mg/kg	5/29/14	5/30/14
Silver	7440-22-4	3051A	6010C	ND	0.62	mg/kg	5/29/14	5/30/14

ND indicates Not Detected.

Sample ID:	Preparation Blank		
Matrix	SOIL		
Solids, %	100	Analyst	MM/JC/JM
Sample Type:	Total		

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	ND	0.97	mg/kg	5/29/14	5/30/14
Barium	7440-39-3	3051A	6010C	ND	1.00	mg/kg	5/29/14	5/30/14
Cadmium	7440-43-9	3051A	6010C	ND	0.48	mg/kg	5/29/14	5/30/14
Chromium	7440-47-3	3051A	6010C	ND	0.48	mg/kg	5/29/14	5/30/14
Lead	7439-92-1	3051A	6010C	ND	0.48	mg/kg	5/29/14	5/30/14
Mercury	7439-97-6	NA	7471B	ND	0.067	mg/kg	5/29/14	5/29/14
Selenium	7782-49-2	3051A	6010C	ND	0.97	mg/kg	5/29/14	5/30/14
Silver	7440-22-4	3051A	6010C	ND	0.48	mg/kg	5/29/14	5/30/14

ND indicates Not Detected.

LABORATORY CONTROL SAMPLE RECOVERY

				Internal			
Parameter	True Value	Result	Units	Recovery, %	LCL, %	UCL, %	Date Analyzed
	10.0	11.0		0.5	0.0	100	
Arsenic	13.3	11.3	mg/kg	85	80	120	5/30/14
Barium	66.7	54.7	mg/kg	82	80	115	5/30/14
Cadmium	66.7	58.1	mg/kg	87	80	113	5/30/14
Chromium	66.7	59.0	mg/kg	88	80	115	5/30/14
Lead	66.7	54.6	mg/kg	82	80	114	5/30/14
Mercury	0.133	0.145	mg/kg	109	80	120	5/29/14
Selenium	13.3	11.4	mg/kg	86	80	120	5/30/14
Silver	26.7	22.7	mg/kg	85	80	120	5/30/14

New England Testing Laboratory, Inc.

RESULTS: PCBs

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

Sample: NSB-1 (0-2')		Analyst's Initials: BJ
Case No.: A0528-24		
Date Collected: 5/28/14		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	6/2/14	6/2/14
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	62	45-109
DCBP	61	53-127

Sample: NSB-2 (0-2')		Analyst's Initials: BJ
Case No.: A0528-24		
Date Collected: 5/28/14		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	6/2/14	6/2/14
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	54	45-109
DCBP	53	53-127

Sample: NMW-1 (0-2')		Analyst's Initials: BJ
Case No.: A0528-24		
Date Collected: 5/28/14		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	6/2/14	6/2/14
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	52	45-109
DCBP	60	53-127

Sample: NMW-2 (0-2')		Analyst's Initials: BJ
Case No.: A0528-24		
Date Collected: 5/28/14		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	6/2/14	6/2/14
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	72	45-109
DCBP	79	53-127

Sample: NMW-3 (0-2')		Analyst's Initials: BJ
Case No.: A0528-24		
Date Collected: 5/28/14		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	6/2/14	6/2/14
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	77	45-109
DCBP	65	53-127

Sample: NSB-3 (0-2')		Analyst's Initials: BJ
Case No.: A0528-24		
Date Collected: 5/28/14		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	6/2/14	6/2/14
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	63	45-109
DCBP	63	53-127

Sample: Method Blank		Analyst's Initials: BJ
Case No.: A0528-24		
Date Collected: NA		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	6/2/14	6/2/14
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg (ppb)	ug/kg (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	82	45-109
DCBP	90	53-127

N.D. = Not Detected

Subject: PCB	Date Extracted			Date Analyzed
Prep Method: EPA 3546	6/2/14			6/2/14
Analytical Method: EPA 8082A				
Compound	Amount Spiked	Result	Recovery	Recovery
	mg/kg	mg/kg	%	Limits
Aroclor 1016	0.500	0.467	93	53-140
Aroclor 1260	0.500	0.500	100	60-126
Surrogates:				
Compound	% Recovery	Limits		
ТСМХ	76	45-109		
DCBP	82	53-127		

PCB Laboratory Control Spike

RESULTS: SEMIVOLATILE ORGANIC COMPOUNDS

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

86-73-7

85-01-8

120-12-7

206-44-0

129-00-0

56-55-3

218-01-9

205-99-2

207-08-9 50-32-8

193-39-5

53-70-3

191-24-2

Fluorene

Pyrene

Chrysene

Phenanthrene

Anthracene

Fluoranthene

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

Benzo(a)pyrene

EPA SAMPLE NO.

3500

3500

3500

5800 8300

4100

4600

6400

3500

5600

4400 3500

4600

U

U

U

U

U

	SEN				ALYSIS DA		т	r	
	SEN			ANICS AN	AL 1313 DA		- 1	NO	
Lab Name:	New Eng	gland Testi	ng Labo	ratory	Contract:	Coffey's	Те	NSE	8-1 (0'-2')
Lab Code:	RI010	Ca	se No.:	A0528-24	SAS No	.: Newpo	_ SD	G No.:	Newport E
Matrix: (soil/w	vater)	SOIL	_		Lat	o Sample	ID: N	NSB-1 ((0'-2')
Sample wt/vc	ol:	15.063	(g/ml)	G	Lat	File ID:	E	3060214	1.D
Level: (low/n	ned)	LOW	_		Da	te Receiv	ed: 5	5/28/201	4
% Moisture:	5.2	de	canted:(Y/N)N	L Da	te Extract	ed: 5	5/29/201	4
Concentrated Extract Volume: 5000 (uL)			Da	te Analyz	ed: 6	6/2/2014			
Injection Volu	ıme: <u>1</u> .	0(uL)			Dil	ution Fact	tor: 5	5.0	
GPC Cleanup	o: (Y/N)	N	pH:						
					CONC	ENTRATI	ON U	NITS:	
CAS NO).	COMP	OUND		(ug/L o	r ug/Kg)	UG/	KG	Q
91-20-	3	Nanh	thalene					3500	U
91-57-				thalene				3500	U
208-96			aphthyle					3500	U
83-32-			aphthen					3500	U
132-64			nzofuran					3500	U

1	R
I.	D

EPA SAMPLE NO.

B

NE

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET						
Lab Name:	New Engla	and Te	sting Laboratory	Contract:	Coffey's Te	NSB-2 (0'-2')
Lab Code:	RI010	(Case No.: <u>A0528-24</u>	SAS No	.: <u>Newpo</u> SI	DG No.: Newport E
Matrix: (soil/	water) S	SOIL		Lat	Sample ID:	NSB-2 (0'-2')
Sample wt/vo	ol: <u>1</u>	15.37	(g/ml) <u>G</u>	Lab	File ID:	B060213.D
Level: (low/r	med) <u>L</u>	WO		Dat	te Received:	5/28/2014
% Moisture:	5.35	_ (decanted:(Y/N) N	Dat	te Extracted:	5/29/2014
Concentrated	d Extract Vo	olume:	<u>5000</u> (uL)	Dat	te Analyzed:	6/2/2014
Injection Volu	ume: <u>1.0</u>	(uL)		Dilu	ution Factor:	5.0
GPC Cleanu	p: (Y/N)	Ν	pH:			
CAS NO).	COM	IPOUND		ENTRATION	UNITS: 6/KGQ

91-20-3	Naphthalene	3400	U
91-57-6	2-Methylnaphthalene	3400	U
208-96-8	Acenaphthylene	3400	U
83-32-9	Acenaphthene	3400	U
132-64-9	Dibenzofuran	3400	U
86-73-7	Fluorene	3400	U
85-01-8	Phenanthrene	3400	U
120-12-7	Anthracene	3400	U
206-44-0	Fluoranthene	6700	
129-00-0	Pyrene	12000	
56-55-3	Benzo(a)anthracene	5400	
218-01-9	Chrysene	6100	
205-99-2	Benzo(b)fluoranthene	9000	
207-08-9	Benzo(k)fluoranthene	3400	U
50-32-8	Benzo(a)pyrene	8200	
193-39-5	Indeno(1,2,3-cd)pyrene	6300	
53-70-3	Dibenz(a,h)anthracene	3400	U
191-24-2	Benzo(g,h,i)perylene	6600	

EPA SAMPLE NO.

B

						TA SHEET	NMW	-1 (0'-2')
Lab Name:	New Eng	gland Testi	ng Labo	oratory	Contract:	Coffey's Te	_	
Lab Code:	RI010	Ca	se No.:	A0528-24	SAS No	.: <u>Newpo</u> S	DG No.: 1	Newport E
Matrix: (soil/w	water)	SOIL	_		Lat	o Sample ID:	NMW-1 (0)'-2')
Sample wt/vo	ol:	15.214	(g/ml)	G	Lat	o File ID:	B060212.	D
Level: (low/r	ned)	LOW	_		Da	te Received:	5/28/2014	<u>ا</u>
% Moisture:	14.42	2dec	canted:(Y/N)N	Da	te Extracted:	5/29/2014	1
Concentrated	d Extract '	Volume:	5000	(uL)	Da	te Analyzed:	6/2/2014	
Injection Volu	ume: <u>1</u> .	0 (uL)			Dilu	ution Factor:	2.0	
GPC Cleanu	p: (Y/N)	N	рН: _					
					CONCI	ENTRATION	UNITS:	
CAS NO	Э.	COMP	OUND		(ug/L o	r ug/Kg) UC	G/KG	Q

91-20-3	Naphthalene	333	U
91-57-6	2-Methylnaphthalene	333	U
208-96-8	Acenaphthylene	333	U
83-32-9	Acenaphthene	333	U
132-64-9	Dibenzofuran	333	U
86-73-7	Fluorene	333	U
85-01-8	Phenanthrene	470	
120-12-7	Anthracene	333	U
206-44-0	Fluoranthene	480	
129-00-0	Pyrene	810	
56-55-3	Benzo(a)anthracene	550	
218-01-9	Chrysene	580	
205-99-2	Benzo(b)fluoranthene	730	
207-08-9	Benzo(k)fluoranthene	333	U
50-32-8	Benzo(a)pyrene	580	
193-39-5	Indeno(1,2,3-cd)pyrene	440	
53-70-3	Dibenz(a,h)anthracene	333	U
191-24-2	Benzo(g,h,i)perylene	470	

	-
1	ю

EPA SAMPLE NO.

	051						
Lab Name:			esting Labo			ATA SHEET	NMW-2 (0'-2')
Lab Hamo.							
Lab Code:	RI010		Case No.:	A0528-24	SAS N	lo.: <u>Newpo</u> S	DG No.: Newport E
Matrix: (soil/v	vater)	SOIL			L	ab Sample ID:	NMW-2 (0'-2')
Sample wt/vo	ol:	15.053	(g/ml)	G	_ L	ab File ID:	B060211.D
Level: (low/n	ned)	LOW			C	ate Received:	5/28/2014
% Moisture:	15.56	i <u> </u>	decanted:((Y/N)N		ate Extracted:	5/29/2014
Concentrated	d Extract V	Volume	: 1000	(uL)	C	ate Analyzed:	6/2/2014
Injection Volu	ume: <u>1</u> .	0(uL	_)		C	ilution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH:				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
91-20-3	Naphthalene		160	U
91-57-6	2-Methylnaphthalene		160	U
208-96-8	Acenaphthylene		160	U
83-32-9	Acenaphthene		160	U
132-64-9	Dibenzofuran		160	U
86-73-7	Fluorene		160	U
85-01-8	Phenanthrene		270	
120-12-7	Anthracene		160	U
206-44-0	Fluoranthene		950	
129-00-0	Pyrene		1100	
56-55-3	Benzo(a)anthracene		630	
218-01-9	Chrysene		660	
205-99-2	Benzo(b)fluoranthene		830	
207-08-9	Benzo(k)fluoranthene		300	
50-32-8	Benzo(a)pyrene		600	
193-39-5	Indeno(1,2,3-cd)pyrene		450	
53-70-3	Dibenz(a,h)anthracene		160	U
191-24-2	Benzo(g,h,i)perylene		490	

1B

EPA SAMPLE NO.

	0514						0. JEET			
Lab Name:			TILE ORGA		Contrac		SHEET	NM	N-3 (0'-2')	
Lub Humo.				latory	Contrac		Jiley e re	. L		
Lab Code:	RI010		Case No.:	A0528-24	SAS	No.: <u>N</u>	Newpo SI	DG No.:	Newport E	Ξ_
Matrix: (soil/v	vater) <u>S</u>	SOIL			l	Lab Sa	ample ID:	NMW-3	(0'-2')	
Sample wt/vo	ol: <u>1</u>	15.31	(g/ml)	G	_ l	Lab Fil	le ID:	B06020	9.D	
Level: (low/n	ned) L	WO			[Date F	Received:	5/28/20	14	
% Moisture:	18.89		decanted:(Y/N)	<u>ا ا</u>	Date E	Extracted:	5/29/20	14	
Concentrated	d Extract Vo	olume:	1000	(uL)	[Date A	analyzed:	6/2/2014	1	
Injection Volu	ume: <u>1.0</u>	(uL)		[Dilutio	n Factor:	1.0		
GPC Cleanu	p: (Y/N) _	N	pH:							

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
91-20-3	Naphthalene		160	U
91-57-6	2-Methylnaphthalene		160	U
208-96-8	Acenaphthylene		160	U
83-32-9	Acenaphthene		160	U
132-64-9	Dibenzofuran		160	U
86-73-7	Fluorene		160	U
85-01-8	Phenanthrene		670	
120-12-7	Anthracene		160	U
206-44-0	Fluoranthene		590	
129-00-0	Pyrene		780	
56-55-3	Benzo(a)anthracene		330	
218-01-9	Chrysene		360	
205-99-2	Benzo(b)fluoranthene		430	
207-08-9	Benzo(k)fluoranthene		160	U
50-32-8	Benzo(a)pyrene		310	
193-39-5	Indeno(1,2,3-cd)pyrene		200	
53-70-3	Dibenz(a,h)anthracene		160	U
191-24-2	Benzo(g,h,i)perylene		180	

	_
1	D
	в
	<u> </u>

EPA SAMPLE NO.

	SEN	MIVOLATII	_E ORG	ANICS AN	ALYSI	S DA	TA SHEET		
Lab Name:	New En	gland Test	ing Labo	oratory	Contr	act:	Coffey's Te	NSB-3 (0	-2')
Lab Code:	RI010	Ca	ase No.:	A0528-24	SA	S No	.: <u>Newpo</u> S	DG No.: New	port E
Matrix: (soil/v	vater)	SOIL				Lat	o Sample ID:	NSB-3 (0'-2')	
Sample wt/vo	ol:	15.108	(g/ml)	G	_	Lat	o File ID:	B060210.D	
Level: (low/n	ned)	LOW				Da	te Received:	5/28/2014	
% Moisture:	21.4	de	ecanted:((Y/N)	١	Da	te Extracted:	5/29/2014	
Concentrated	d Extract	Volume:	1000	(uL)		Da	te Analyzed:	6/2/2014	
Injection Volu	ume: <u>1</u>	.0 (uL)				Dilu	ution Factor:	1.0	
GPC Cleanu	p: (Y/N)	N	pH:						
					СС	ONCI	ENTRATION	UNITS:	
CAS NC) .	COMF	POUND		(u	g/L o	r ug/Kg) <u>U</u>	G/KG	Q

91-20-3	Naphthalene	170	U
91-57-6	2-Methylnaphthalene	170	U
208-96-8	Acenaphthylene	170	U
83-32-9	Acenaphthene	170	U
132-64-9	Dibenzofuran	170	U
86-73-7	Fluorene	170	U
85-01-8	Phenanthrene	510	
120-12-7	Anthracene	170	U
206-44-0	Fluoranthene	900	
129-00-0	Pyrene	1300	
56-55-3	Benzo(a)anthracene	530	
218-01-9	Chrysene	620	
205-99-2	Benzo(b)fluoranthene	710	
207-08-9	Benzo(k)fluoranthene	240	
50-32-8	Benzo(a)pyrene	550	
193-39-5	Indeno(1,2,3-cd)pyrene	380	
53-70-3	Dibenz(a,h)anthracene	170	U
191-24-2	Benzo(g,h,i)perylene	360	

	_
- 1	D
- 1	D

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET							500050044
Lab Name:	New En	gland Te	sting Labora	atory	Contract:	Coffey's Te	BSS052914
Lab Code:	RI010	(Case No.: <u>/</u>	\0528-24	SAS No	.: <u>Newpo</u> S	DG No.: <u>Newport E</u>
Matrix: (soil/v	vater)	SOIL			Lat	Sample ID:	BSS052914
Sample wt/vo	ol:	15	(g/ml)	G	Lat	File ID:	B060203.D
Level: (low/n	ned)	LOW			Dat	te Received:	5/28/2014
% Moisture:	0	(decanted:(Y	7/N) N	I Dat	te Extracted:	5/29/2014
Concentrated	dExtract	Volume:	1000 (uL)	Dat	te Analyzed:	6/2/2014
Injection Volu	ume: <u>1</u>	.0 (uL)	1		Dilu	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH:				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
91-20-3	Naphthalene		130	U
91-57-6	2-Methylnaphthalene		130	U
208-96-8	Acenaphthylene		130	U
83-32-9	Acenaphthene		130	U
132-64-9	Dibenzofuran		130	U
86-73-7	Fluorene		130	U
85-01-8	Phenanthrene		130	U
120-12-7	Anthracene		130	U
206-44-0	Fluoranthene		130	U
129-00-0	Pyrene		130	U
56-55-3	Benzo(a)anthracene		130	U
218-01-9	Chrysene		130	U
205-99-2	Benzo(b)fluoranthene		130	U
207-08-9	Benzo(k)fluoranthene		130	U
50-32-8	Benzo(a)pyrene		130	U
193-39-5	Indeno(1,2,3-cd)pyrene		130	U
53-70-3	Dibenz(a,h)anthracene		130	U
191-24-2	Benzo(g,h,i)perylene		130	U

2 SOIL SEMIVOLATILE SURROGATE RECOVERY

Lab	New Eng	gland Tes	ting Labo	oratory	Contract	Coffey's Texaco	i i i i i i i i i i i i i i i i i i i
Lab	RI010	С	ase	A0528-24	SAS	Newpo SDG	Newport
Level:	LO	W					
	EPA	S1	S2	S3	TOT		
SAM	1PLE	#	#	#	OUT		
01 BSS	052914	108	107	123	0		
02 LSS0)52914	95	89	119	0		
03 NMV	/-3 (0'-2')	87	89	112	0		
04 NSB	-3 (0'-2')	86	92	117	0		
05 NMV	/-2 (0'-2')	95	101	115	0		
06 NMV	/-1 (0'-2')	90	111	140 *	1		
07 NSB	-2 (0'-2')	100	125	150 *	1		
08 NSB	-1 (0'-2')	100	125	175 *	1		

			QC LIMITS
S1	=	Nitrobenzene-d5	(30-130)
S2	=	2-Fluorobiphenyl	(30-130)
S3	=	Terphenyl-d14	(30-130)

Column to be used to flag recovery values * Values outside of contract required QC limits D Surrogate diluted out

FORM II SV-2

OLM03.0

Semivolatile Soil Laboratory Control Spike

Date Extracted:	5/29/2014
Date Analyzed:	6/2/2014

	Amount Spiked	Result,	Recovery	Lower Recovery	Upper Recovery
	ug/Kg	ug/Kg	%	Limit	Limit
Naphthalene	3333	2688	81	40	140
2-Methylnaphthalene	3333	2705	81	40	140
Acenaphthylene	3333	2683	80	40	140
Acenaphthene	3333	2635	79	40	140
Dibenzofuran	3333	2657	80	40	140
Fluorene	3333	2406	72	40	140
Phenanthrene	3333	2609	78	40	140
Anthracene	3333	2720	82	40	140
Fluoranthene	3333	2630	79	40	140
Pyrene	3333	3251	98	40	140
Benzo(a)anthracene	3333	2746	82	40	140
Chrysene	3333	2921	88	40	140
Benzo(b)fluoranthene	3333	3084	93	40	140
Benzo(k)fluoranthene	3333	3094	93	40	140
Benzo(a)pyrene	3333	2895	87	40	140
Indeno(1,2,3-cd)pyrene	3333	2705	81	40	140
Dibenz(a,h)anthracene	3333	2859	86	40	140
Benzo(g,h,i)perylene	3333	2715	81	40	140

Sample: NMW-3 (5'-6')		Analyst's Initials: BJ
Case No. A0528-24		
Date Collected: 5/28/14		
Sample Matrix: Soil		
Prep Method: EPA 3546	Date Extracted	Date Analyzed
Analytical Method:	5/29/14	5/30/14
EPA 8100 mod.		
Compound	Concentration, mg/kg* (ppm)	Reporting Limit
$C_9 - C_{18}$	184	15
$C_{19} - C_{40}$	3746	15
Total Petroleum	3930	33
Hydrocarbons		
Surrogates:		
Compound	% Recovery	Limits
Chlorooctadecane	80	62-151

Sample: NSB-3 (4'-5')		Analyst's Initials: BJ
Case No. A0528-24		
Date Collected: 5/28/14		
Sample Matrix: Soil		
Prep Method: EPA 3546	Date Extracted	Date Analyzed
Analytical Method:	5/29/14	5/30/14
EPA 8100 mod.		
Compound	Concentration,	Reporting Limit
	mg/kg* (ppm)	
	<15.0	15
$C_9 - C_{18}$		-
$C_{19} - C_{40}$	351	15
Total Petroleum	351	30
Hydrocarbons		
Surrogates:		
Compound	% Recovery	Limits
Chlorooctadecane	95	62-151

*Dry Weight Basis

Sample: NMW-2 (5'-7')		Analyst's Initials: BJ
Case No. A0528-24		
Date Collected: 5/28/14		
Sample Matrix: Soil		
Prep Method: EPA 3546	Date Extracted	Date Analyzed
Analytical Method:	5/29/14	6/2/14
EPA 8100 mod.		
Compound	Concentration,	Reporting Limit
	mg/kg* (ppm)	
$C_9 - C_{18}$	133	15
$C_{19} - C_{40}$	451	15
Total Petroleum	548	30
Hydrocarbons		
Surrogates:		
Compound	% Recovery	Limits
Chlorooctadecane	113	62-151

*Dry Weight Basis N.D.= Not Detected

RESULTS: VOLATILE ORGANIC COMPOUNDS

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

Case No.: A0528-24	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: NSB-1 (0-2)
Matrix: (soil/water) SOIL	Lab File ID: D053027.D
Sample wt/vol: <u>9.9</u> (g/ml) <u>G</u>	Date Sampled: 5/28/2014
% Moisture 5.2	Date Analyzed: 5/30/2014
Soil Extract Volume: (uL)	Dilution Factor: <u>1.0</u>
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
75-01-4	Vinyl Chloride		53	U
74-83-9	Bromomethane		53	U
75-00-3	Chloroethane		53	U
67-64-1	Acetone		270	U
75-35-4	1,1-Dichloroethene		53	U
75-15-0	Carbon Disulfide		53	U
75-09-2	Methylene Chloride		53	U
1634-04-4	tert-Butyl methyl ether		53	U
156-60-5	trans-1,2 Dichloroethene		53	U
75-34-3	1,1-Dichloroethane		53	U
78-93-3	2-Butanone		270	U
594-20-7	2,2-Dichloropropane		53	U
156-59-2	cis-1,2-Dichloroethene		53	U
67-66-3	Chloroform		53	U
74-97-5	Bromochloromethane		53	U
71-55-6	1,1,1-Trichloroethane		53	U
563-58-6	1,1- Dichloropropene		53	U
56-23-5	Carbon Tetrachloride		53	U
71-43-2	Benzene		53	U
107-06-2	1,2-Dichloroethane		53	U
79-01-6	Trichloroethene		53	U
78-87-5	1,2-Dichloropropane		53	U
75-27-4	Bromodichloromethane		53	U
74-95-3	Dibromomethane		53	U
108-10-1	4-Methyl-2-pentanone		270	U
106-93-4	Ethylene Dibromide		53	U
10061-01-5	cis-1,3-Dichloropropene		53	U
108-88-3	Toluene		53	U
10061-02-6	Trans-1,3-Dichloropropene		53	U
79-00-5	1,1,2-Trichloroethane		53	U
591-78-6	2-Hexanone		270	U
127-18-4	Tetrachloroethene		53	U
124-48-1	Chlorodibromomethane		53	U
108-90-7	Chlorobenzene		53	U
630-20-6	1,1,1,2-Tetrachloroethane		53	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	NSB-1 (0-2)	
Matrix: (soil/water) SOIL	Lab File ID:	D053027.D	
Sample wt/vol: <u>9.9</u> (g/ml) <u>G</u>	Date Sampled:	5/28/2014	
% Moisture 5.2	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ıme:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
100-41-4	Ethylbenzene		53	U
1330-20-7	m & p-Xylene		110	U
95-47-6	o-Xylene		53	U
100-42-5	Styrene		53	U
75-25-2	Bromoform		53	U
98-82-8	Isopropylbenzene		53	U
79-34-5	1,1,2,2-Tetrachloroethane		53	U
108-86-1	Bromobenzene		53	U
96-18-4	1,2,3-Trichloropropane		53	U
95-49-8	2-Chlorotoluene		53	U
103-65-1	n-Propylbenzene		53	U
108-67-8	1,3,5-Trimethylbenzene		85	
106-43-4	4-Chlorotoluene		53	U
98-06-6	tert-Butylbenzene		53	U
95-63-6	1,2,4-Trimethylbenzene		85	
135-98-8	sec-Butylbenzene		53	U
99-87-6	p-lsopropyltoluene		53	U
75-87-3	Chloromethane		53	U
75-65-0	tert butyl alcohol		53	U
541-73-1	1,3-Dichlorobenzene		53	U
109-99-9	Tetrahydrofuran		53	U
106-46-7	1,4-Dichlorobenzene		53	U
60-29-7	Diethyl Ether		53	U
104-51-8	n-butyl Benzene		53	U
95-50-1	1,2-Dichlorobenzene		53	U
96-12-8	1,2-Dibromo-3-chloropropane		53	U
120-82-1	1,2,4-Trichlorobenzene		53	U
87-68-3	Hexachlorobutadiene		53	U
91-20-3	Naphthalene		78	
87-61-6	1,2,3-Trichlorobenzene		53	U
994-05-8	Tert-amyl Methyl Ether		53	U
75-71-8	Dichlorodifluoromethane		53	U
142-28-9	1,3-Dichloropropane		53	U
75-69-4	Trichlorofluoromethane		53	U
637-92-3	Ethyl Tert-butyl ether		53	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	mental
Method: 8260	Lab Sample ID:	NSB-1 (0-2)	
Matrix: (soil/water) SOIL	Lab File ID:	D053027.D	
Sample wt/vol: <u>9.9</u> (g/ml) <u>G</u>	Date Sampled:	5/28/2014	
% Moisture 5.2	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Vol	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
108-20-3	Diisopropyl Ether		53	U
123-91-1	1,4-Dioxane		27000	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: <u>NSB-1 (6-8)</u>
Matrix: (soil/water) SOIL	Lab File ID: D053030.D
Sample wt/vol: <u>7.7</u> (g/ml) <u>G</u>	Date Sampled: 5/28/2014
% Moisture 12.99	Date Analyzed: 5/30/2014
Soil Extract Volume: (uL)	Dilution Factor: 1.0, 10
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
75-01-4	Vinyl Chloride		75	U
74-83-9	Bromomethane		75	U
75-00-3	Chloroethane		75	U
67-64-1	Acetone		370	U
75-35-4	1,1-Dichloroethene		75	U
75-15-0	Carbon Disulfide		75	U
75-09-2	Methylene Chloride		75	U
1634-04-4	tert-Butyl methyl ether		75	U
156-60-5	trans-1,2 Dichloroethene		75	U
75-34-3	1,1-Dichloroethane		75	U
78-93-3	2-Butanone		370	U
594-20-7	2,2-Dichloropropane		75	U
156-59-2	cis-1,2-Dichloroethene		75	U
67-66-3	Chloroform		75	U
74-97-5	Bromochloromethane		75	U
71-55-6	1,1,1-Trichloroethane		75	U
563-58-6	1,1- Dichloropropene		75	U
56-23-5	Carbon Tetrachloride		75	U
71-43-2	Benzene		3500	
107-06-2	1,2-Dichloroethane		75	U
79-01-6	Trichloroethene		75	U
78-87-5	1,2-Dichloropropane		75	U
75-27-4	Bromodichloromethane		75	U
74-95-3	Dibromomethane		75	U
108-10-1	4-Methyl-2-pentanone		370	U
106-93-4	Ethylene Dibromide		75	U
10061-01-5	cis-1,3-Dichloropropene		75	U
108-88-3	Toluene		48800	
10061-02-6	Trans-1,3-Dichloropropene		75	U
79-00-5	1,1,2-Trichloroethane		75	U
591-78-6	2-Hexanone		370	U
127-18-4	Tetrachloroethene		75	U
124-48-1	Chlorodibromomethane		75	U
108-90-7	Chlorobenzene		75	U
630-20-6	1,1,1,2-Tetrachloroethane		75	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name: Newport Environmental	_
Method: 8260	Lab Sample ID: <u>NSB-1 (6-8)</u>	
Matrix: (soil/water) SOIL	Lab File ID: D053030.D	
Sample wt/vol: <u>7.7</u> (g/ml) <u>G</u>	Date Sampled: 5/28/2014	
% Moisture 12.99	Date Analyzed: 5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor: 1.0, 10	
Analyst's Initials: MM	Soil Aliquot Volume: (uL)	

CAS NO.	COMPOUND	UNITS: UG/KG	Q
100-41-4	Ethylbenzene	50200	
1330-20-7	m & p-Xylene	227000	
95-47-6	o-Xylene	84000	
100-42-5	Styrene	75	U
75-25-2	Bromoform	75	U
98-82-8	Isopropylbenzene	7400	
79-34-5	1,1,2,2-Tetrachloroethane	75	U
108-86-1	Bromobenzene	75	U
96-18-4	1,2,3-Trichloropropane	75	U
95-49-8	2-Chlorotoluene	75	U
103-65-1	n-Propylbenzene	12000	
108-67-8	1,3,5-Trimethylbenzene	30700	
106-43-4	4-Chlorotoluene	75	U
98-06-6	tert-Butylbenzene	15000	
95-63-6	1,2,4-Trimethylbenzene	109000	
135-98-8	sec-Butylbenzene	1400	
99-87-6	p-Isopropyltoluene	8200	
75-87-3	Chloromethane	75	U
75-65-0	tert butyl alcohol	75	U
541-73-1	1,3-Dichlorobenzene	75	U
109-99-9	Tetrahydrofuran	75	U
106-46-7	1,4-Dichlorobenzene	75	U
60-29-7	Diethyl Ether	75	U
104-51-8	n-butyl Benzene	15500	
95-50-1	1,2-Dichlorobenzene	75	U
96-12-8	1,2-Dibromo-3-chloropropane	75	U
120-82-1	1,2,4-Trichlorobenzene	75	U
87-68-3	Hexachlorobutadiene	75	U
91-20-3	Naphthalene	6200	
87-61-6	1,2,3-Trichlorobenzene	75	U
994-05-8	Tert-amyl Methyl Ether	75	U
75-71-8	Dichlorodifluoromethane	75	U
142-28-9	1,3-Dichloropropane	75	U
75-69-4	Trichlorofluoromethane	75	U
637-92-3	Ethyl Tert-butyl ether	75	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name: Newport Environmental
Method: <u>8260</u>	Lab Sample ID: <u>NSB-1 (6-8)</u>
Matrix: (soil/water) SOIL	Lab File ID: D053030.D
Sample wt/vol: 7.7 (g/ml) G	Date Sampled: 5/28/2014
% Moisture 12.99	Date Analyzed: 5/30/2014
Soil Extract Volume: (uL)	Dilution Factor: 1.0, 10
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
108-20-3	Diisopropyl Ether		75	U
123-91-1	1,4-Dioxane		37000	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	NSB-2 (0-2)	
Matrix: (soil/water) SOIL	Lab File ID:	D053026.D	
Sample wt/vol: 8.5 (g/ml) G	Date Sampled:	5/28/2014	
% Moisture 5.35	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
75-01-4	Vinyl Chloride		62	U
74-83-9	Bromomethane		62	U
75-00-3	Chloroethane		62	U
67-64-1	Acetone		310	U
75-35-4	1,1-Dichloroethene		62	U
75-15-0	Carbon Disulfide		62	U
75-09-2	Methylene Chloride		62	U
1634-04-4	tert-Butyl methyl ether		62	U
156-60-5	trans-1,2 Dichloroethene		62	U
75-34-3	1,1-Dichloroethane		62	U
78-93-3	2-Butanone		310	U
594-20-7	2,2-Dichloropropane		62	U
156-59-2	cis-1,2-Dichloroethene		62	U
67-66-3	Chloroform		62	U
74-97-5	Bromochloromethane		62	U
71-55-6	1,1,1-Trichloroethane		62	U
563-58-6	1,1- Dichloropropene		62	U
56-23-5	Carbon Tetrachloride		62	U
71-43-2	Benzene		62	U
107-06-2	1,2-Dichloroethane		62	U
79-01-6	Trichloroethene		62	U
78-87-5	1,2-Dichloropropane		62	U
75-27-4	Bromodichloromethane		62	U
74-95-3	Dibromomethane		62	U
108-10-1	4-Methyl-2-pentanone		310	U
106-93-4	Ethylene Dibromide		62	U
10061-01-5	cis-1,3-Dichloropropene		62	U
108-88-3	Toluene		62	U
10061-02-6	Trans-1,3-Dichloropropene		62	U
79-00-5	1,1,2-Trichloroethane		62	U
591-78-6	2-Hexanone		310	U
127-18-4	Tetrachloroethene		62	U
124-48-1	Chlorodibromomethane		62	U
108-90-7	Chlorobenzene		62	U
630-20-6	1,1,1,2-Tetrachloroethane		62	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	NSB-2 (0-2)	
Matrix: (soil/water) SOIL	Lab File ID:	D053026.D	
Sample wt/vol: 8.5 (g/ml) G	Date Sampled:	5/28/2014	
% Moisture 5.35	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
100-41-4	Ethylbenzene		62	U
1330-20-7	m & p-Xylene		120	U
95-47-6	o-Xylene		62	U
100-42-5	Styrene		62	U
75-25-2	Bromoform		62	U
98-82-8	Isopropylbenzene		62	U
79-34-5	1,1,2,2-Tetrachloroethane		62	U
108-86-1	Bromobenzene		62	U
96-18-4	1,2,3-Trichloropropane		62	U
95-49-8	2-Chlorotoluene		62	U
103-65-1	n-Propylbenzene		62	U
108-67-8	1,3,5-Trimethylbenzene		62	U
106-43-4	4-Chlorotoluene		62	U
98-06-6	tert-Butylbenzene		62	U
95-63-6	1,2,4-Trimethylbenzene		62	U
135-98-8	sec-Butylbenzene		62	U
99-87-6	p-Isopropyltoluene		62	U
75-87-3	Chloromethane		62	U
75-65-0	tert butyl alcohol		62	U
541-73-1	1,3-Dichlorobenzene		62	U
109-99-9	Tetrahydrofuran		62	U
106-46-7	1,4-Dichlorobenzene		62	U
60-29-7	Diethyl Ether		62	U
104-51-8	n-butyl Benzene		62	U
95-50-1	1,2-Dichlorobenzene		62	U
96-12-8	1,2-Dibromo-3-chloropropane		62	U
120-82-1	1,2,4-Trichlorobenzene		62	U
87-68-3	Hexachlorobutadiene		62	U
91-20-3	Naphthalene		120	
87-61-6	1,2,3-Trichlorobenzene		62	U
994-05-8	Tert-amyl Methyl Ether		62	U
75-71-8	Dichlorodifluoromethane		62	U
142-28-9	1,3-Dichloropropane		62	U
75-69-4	Trichlorofluoromethane		62	U
637-92-3	Ethyl Tert-butyl ether		62	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	mental
Method: 8260	Lab Sample ID:	NSB-2 (0-2)	
Matrix: (soil/water) SOIL	Lab File ID:	D053026.D	
Sample wt/vol: 8.5 (g/ml) G	Date Sampled:	5/28/2014	
% Moisture 5.35	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Vol	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
108-20-3	Diisopropyl Ether		62	U
123-91-1	1,4-Dioxane		31000	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	NMW-1 (0-2)	
Matrix: (soil/water) SOIL	Lab File ID:	D053025.D	
Sample wt/vol: <u>7.6</u> (g/ml) <u>G</u>	Date Sampled:	5/28/2014	
% Moisture 14.42	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ıme:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
75-01-4	Vinyl Chloride		76	U
74-83-9	Bromomethane		76	U
75-00-3	Chloroethane		76	U
67-64-1	Acetone		380	U
75-35-4	1,1-Dichloroethene		76	U
75-15-0	Carbon Disulfide		76	U
75-09-2	Methylene Chloride		76	U
1634-04-4	tert-Butyl methyl ether		76	U
156-60-5	trans-1,2 Dichloroethene		76	U
75-34-3	1,1-Dichloroethane		76	U
78-93-3	2-Butanone		380	U
594-20-7	2,2-Dichloropropane		76	U
156-59-2	cis-1,2-Dichloroethene		76	U
67-66-3	Chloroform		76	U
74-97-5	Bromochloromethane		76	U
71-55-6	1,1,1-Trichloroethane		76	U
563-58-6	1,1- Dichloropropene		76	U
56-23-5	Carbon Tetrachloride		76	U
71-43-2	Benzene		220	
107-06-2	1,2-Dichloroethane		76	U
79-01-6	Trichloroethene		76	U
78-87-5	1,2-Dichloropropane		76	U
75-27-4	Bromodichloromethane		76	U
74-95-3	Dibromomethane		76	U
108-10-1	4-Methyl-2-pentanone		380	U
106-93-4	Ethylene Dibromide		76	U
10061-01-5	cis-1,3-Dichloropropene		76	U
108-88-3	Toluene		76	U
10061-02-6	Trans-1,3-Dichloropropene		76	U
79-00-5	1,1,2-Trichloroethane		76	U
591-78-6	2-Hexanone		380	U
127-18-4	Tetrachloroethene		76	U
124-48-1	Chlorodibromomethane		76	U
108-90-7	Chlorobenzene		76	U
630-20-6	1,1,1,2-Tetrachloroethane		76	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	mental
Method: 8260	Lab Sample ID:	NMW-1 (0-2)	
Matrix: (soil/water) SOIL	Lab File ID:	D053025.D	
Sample wt/vol: <u>7.6</u> (g/ml) <u>G</u>	Date Sampled:	5/28/2014	
% Moisture 14.42	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UG/KG	Q
100-41-4	Ethylbenzene	76	U
1330-20-7	m & p-Xylene	150	U
95-47-6	o-Xylene	76	U
100-42-5	Styrene	76	U
75-25-2	Bromoform	76	U
98-82-8	Isopropylbenzene	76	U
79-34-5	1,1,2,2-Tetrachloroethane	76	U
108-86-1	Bromobenzene	76	U
96-18-4	1,2,3-Trichloropropane	76	U
95-49-8	2-Chlorotoluene	76	U
103-65-1	n-Propylbenzene	76	U
108-67-8	1,3,5-Trimethylbenzene	76	U
106-43-4	4-Chlorotoluene	76	U
98-06-6	tert-Butylbenzene	76	U
95-63-6	1,2,4-Trimethylbenzene	76	U
135-98-8	sec-Butylbenzene	76	U
99-87-6	p-Isopropyltoluene	76	U
75-87-3	Chloromethane	76	U
75-65-0	tert butyl alcohol	76	U
541-73-1	1,3-Dichlorobenzene	76	U
109-99-9	Tetrahydrofuran	76	U
106-46-7	1,4-Dichlorobenzene	76	U
60-29-7	Diethyl Ether	76	U
104-51-8	n-butyl Benzene	76	U
95-50-1	1,2-Dichlorobenzene	76	U
96-12-8	1,2-Dibromo-3-chloropropane	76	U
120-82-1	1,2,4-Trichlorobenzene	76	U
87-68-3	Hexachlorobutadiene	76	U
91-20-3	Naphthalene	76	U
87-61-6	1,2,3-Trichlorobenzene	76	U
994-05-8	Tert-amyl Methyl Ether	 76	U
75-71-8	Dichlorodifluoromethane	 76	U
142-28-9	1,3-Dichloropropane	 76	U
75-69-4	Trichlorofluoromethane	 76	U
637-92-3	Ethyl Tert-butyl ether	76	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	mental
Method: 8260	Lab Sample ID:	NMW-1 (0-2)	
Matrix: (soil/water) SOIL	Lab File ID:	D053025.D	
Sample wt/vol: 7.6 (g/ml) G	Date Sampled:	5/28/2014	
% Moisture 14.42	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
108-20-3	Diisopropyl Ether		76	U
123-91-1	1,4-Dioxane		38000	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	NMW-1 (5-7)	
Matrix: (soil/water) SOIL	Lab File ID:	D053028.D	
Sample wt/vol: <u>12.4</u> (g/ml) <u>G</u>	Date Sampled:	5/28/2014	
% Moisture 9.62	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ıme:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
75-01-4	Vinyl Chloride		45	U
74-83-9	Bromomethane		45	U
75-00-3	Chloroethane		45	U
67-64-1	Acetone		220	U
75-35-4	1,1-Dichloroethene		45	U
75-15-0	Carbon Disulfide		45	U
75-09-2	Methylene Chloride		45	U
1634-04-4	tert-Butyl methyl ether		45	U
156-60-5	trans-1,2 Dichloroethene		45	U
75-34-3	1,1-Dichloroethane		45	U
78-93-3	2-Butanone		220	U
594-20-7	2,2-Dichloropropane		45	U
156-59-2	cis-1,2-Dichloroethene		45	U
67-66-3	Chloroform		45	U
74-97-5	Bromochloromethane		45	U
71-55-6	1,1,1-Trichloroethane		45	U
563-58-6	1,1- Dichloropropene		45	U
56-23-5	Carbon Tetrachloride		45	U
71-43-2	Benzene		45	U
107-06-2	1,2-Dichloroethane		45	U
79-01-6	Trichloroethene		45	U
78-87-5	1,2-Dichloropropane		45	U
75-27-4	Bromodichloromethane		45	U
74-95-3	Dibromomethane		45	U
108-10-1	4-Methyl-2-pentanone		220	U
106-93-4	Ethylene Dibromide		45	U
10061-01-5	cis-1,3-Dichloropropene		45	U
108-88-3	Toluene		45	U
10061-02-6	Trans-1,3-Dichloropropene		45	U
79-00-5	1,1,2-Trichloroethane		45	U
591-78-6	2-Hexanone		220	U
127-18-4	Tetrachloroethene		45	U
124-48-1	Chlorodibromomethane		45	U
108-90-7	Chlorobenzene		45	U
630-20-6	1,1,1,2-Tetrachloroethane		45	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	NMW-1 (5-7)	
Matrix: (soil/water) SOIL	Lab File ID:	D053028.D	
Sample wt/vol: <u>12.4</u> (g/ml) <u>G</u>	Date Sampled:	5/28/2014	
% Moisture 9.62	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	me:	(uL)

CAS NO.	COMPOUND	UNITS: UG/KG	Q
100-41-4	Ethylbenzene	45	U
1330-20-7	m & p-Xylene	1100	
95-47-6	o-Xylene	45	U
100-42-5	Styrene	45	U
75-25-2	Bromoform	45	U
98-82-8	Isopropylbenzene	420	
79-34-5	1,1,2,2-Tetrachloroethane	45	U
108-86-1	Bromobenzene	45	U
96-18-4	1,2,3-Trichloropropane	45	U
95-49-8	2-Chlorotoluene	45	U
103-65-1	n-Propylbenzene	1500	
108-67-8	1,3,5-Trimethylbenzene	4600	
106-43-4	4-Chlorotoluene	45	U
98-06-6	tert-Butylbenzene	2200	
95-63-6	1,2,4-Trimethylbenzene	8200	
135-98-8	sec-Butylbenzene	1400	
99-87-6	p-Isopropyltoluene	1500	
75-87-3	Chloromethane	45	U
75-65-0	tert butyl alcohol	45	U
541-73-1	1,3-Dichlorobenzene	45	U
109-99-9	Tetrahydrofuran	45	U
106-46-7	1,4-Dichlorobenzene	45	U
60-29-7	Diethyl Ether	45	U
104-51-8	n-butyl Benzene	2500	
95-50-1	1,2-Dichlorobenzene	45	U
96-12-8	1,2-Dibromo-3-chloropropane	45	U
120-82-1	1,2,4-Trichlorobenzene	45	U
87-68-3	Hexachlorobutadiene	45	U
91-20-3	Naphthalene	2700	
87-61-6	1,2,3-Trichlorobenzene	45	U
994-05-8	Tert-amyl Methyl Ether	45	U
75-71-8	Dichlorodifluoromethane	45	U
142-28-9	1,3-Dichloropropane	45	U
75-69-4	Trichlorofluoromethane	45	U
637-92-3	Ethyl Tert-butyl ether	45	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	mental
Method: 8260	Lab Sample ID:	NMW-1 (5-7)	
Matrix: (soil/water) SOIL	Lab File ID:	D053028.D	
Sample wt/vol: <u>12.4</u> (g/ml) <u>G</u>	Date Sampled:	5/28/2014	
% Moisture 9.62	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Vol	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
108-20-3	Diisopropyl Ether		45	U
123-91-1	1,4-Dioxane		22000	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: <u>NMW-2 (0-2)</u>
Matrix: (soil/water) SOIL	Lab File ID: D053024.D
Sample wt/vol: <u>9.8</u> (g/ml) <u>G</u>	Date Sampled: 5/28/2014
% Moisture 15.56	Date Analyzed: 5/30/2014
Soil Extract Volume: (uL)	Dilution Factor: <u>1.0</u>
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UG/KG	Q
75-01-4	Vinyl Chloride	61	U
74-83-9	Bromomethane	61	U
75-00-3	Chloroethane	61	U
67-64-1	Acetone	310	U
75-35-4	1,1-Dichloroethene	61	U
75-15-0	Carbon Disulfide	61	U
75-09-2	Methylene Chloride	61	U
1634-04-4	tert-Butyl methyl ether	61	U
156-60-5	trans-1,2 Dichloroethene	61	U
75-34-3	1,1-Dichloroethane	61	U
78-93-3	2-Butanone	310	U
594-20-7	2,2-Dichloropropane	61	U
156-59-2	cis-1,2-Dichloroethene	61	U
67-66-3	Chloroform	61	U
74-97-5	Bromochloromethane	61	U
71-55-6	1,1,1-Trichloroethane	61	U
563-58-6	1,1- Dichloropropene	61	U
56-23-5	Carbon Tetrachloride	61	U
71-43-2	Benzene	61	U
107-06-2	1,2-Dichloroethane	61	U
79-01-6	Trichloroethene	61	U
78-87-5	1,2-Dichloropropane	61	U
75-27-4	Bromodichloromethane	61	U
74-95-3	Dibromomethane	61	U
108-10-1	4-Methyl-2-pentanone	310	U
106-93-4	Ethylene Dibromide	61	U
10061-01-5	cis-1,3-Dichloropropene	61	U
108-88-3	Toluene	61	U
10061-02-6	Trans-1,3-Dichloropropene	61	U
79-00-5	1,1,2-Trichloroethane	61	U
591-78-6	2-Hexanone	310	U
127-18-4	Tetrachloroethene	61	U
124-48-1	Chlorodibromomethane	61	U
108-90-7	Chlorobenzene	61	U
630-20-6	1,1,1,2-Tetrachloroethane	61	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	mental
Method: 8260	Lab Sample ID:	NMW-2 (0-2)	
Matrix: (soil/water) SOIL	Lab File ID:	D053024.D	
Sample wt/vol: <u>9.8</u> (g/ml) <u>G</u>	Date Sampled:	5/28/2014	
% Moisture 15.56	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
100-41-4	Ethylbenzene		61	U
1330-20-7	m & p-Xylene		120	U
95-47-6	o-Xylene		61	U
100-42-5	Styrene		61	U
75-25-2	Bromoform		61	U
98-82-8	Isopropylbenzene		61	U
79-34-5	1,1,2,2-Tetrachloroethane		61	U
108-86-1	Bromobenzene		61	U
96-18-4	1,2,3-Trichloropropane		61	U
95-49-8	2-Chlorotoluene		61	U
103-65-1	n-Propylbenzene		61	U
108-67-8	1,3,5-Trimethylbenzene		61	U
106-43-4	4-Chlorotoluene		61	U
98-06-6	tert-Butylbenzene		61	U
95-63-6	1,2,4-Trimethylbenzene		61	U
135-98-8	sec-Butylbenzene		61	U
99-87-6	p-lsopropyltoluene		61	U
75-87-3	Chloromethane		61	U
75-65-0	tert butyl alcohol		61	U
541-73-1	1,3-Dichlorobenzene		61	U
109-99-9	Tetrahydrofuran		61	U
106-46-7	1,4-Dichlorobenzene		61	U
60-29-7	Diethyl Ether		61	U
104-51-8	n-butyl Benzene		61	U
95-50-1	1,2-Dichlorobenzene		61	U
96-12-8	1,2-Dibromo-3-chloropropane		61	U
120-82-1	1,2,4-Trichlorobenzene		61	U
87-68-3	Hexachlorobutadiene		61	U
91-20-3	Naphthalene		61	U
87-61-6	1,2,3-Trichlorobenzene		61	U
994-05-8	Tert-amyl Methyl Ether		61	U
75-71-8	Dichlorodifluoromethane		61	U
142-28-9	1,3-Dichloropropane		61	U
75-69-4	Trichlorofluoromethane		61	U
637-92-3	Ethyl Tert-butyl ether		61	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environm	mental
Method: 8260	Lab Sample ID:	NMW-2 (0-2)	
Matrix: (soil/water) SOIL	Lab File ID:	D053024.D	
Sample wt/vol: <u>9.8</u> (g/ml) <u>G</u>	Date Sampled:	5/28/2014	
% Moisture 15.56	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
108-20-3	Diisopropyl Ether		61	U
123-91-1	1,4-Dioxane		31000	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: <u>NMW-3 (5-6)</u>
Matrix: (soil/water) SOIL	Lab File ID: D053022.D
Sample wt/vol: <u>9.8</u> (g/ml) <u>G</u>	Date Sampled: 5/28/2014
% Moisture 9.08	Date Analyzed: 5/30/2014
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
75-01-4	Vinyl Chloride		56	U
74-83-9	Bromomethane		56	U
75-00-3	Chloroethane		56	U
67-64-1	Acetone		280	U
75-35-4	1,1-Dichloroethene		56	U
75-15-0	Carbon Disulfide		56	U
75-09-2	Methylene Chloride		56	U
1634-04-4	tert-Butyl methyl ether		56	U
156-60-5	trans-1,2 Dichloroethene		56	U
75-34-3	1,1-Dichloroethane		56	U
78-93-3	2-Butanone		280	U
594-20-7	2,2-Dichloropropane		56	U
156-59-2	cis-1,2-Dichloroethene		56	U
67-66-3	Chloroform		56	U
74-97-5	Bromochloromethane		56	U
71-55-6	1,1,1-Trichloroethane		56	U
563-58-6	1,1- Dichloropropene		56	U
56-23-5	Carbon Tetrachloride		56	U
71-43-2	Benzene		56	U
107-06-2	1,2-Dichloroethane		56	U
79-01-6	Trichloroethene		56	U
78-87-5	1,2-Dichloropropane		56	U
75-27-4	Bromodichloromethane		56	U
74-95-3	Dibromomethane		56	U
108-10-1	4-Methyl-2-pentanone		280	U
106-93-4	Ethylene Dibromide		56	U
10061-01-5	cis-1,3-Dichloropropene		56	U
108-88-3	Toluene		56	U
10061-02-6	Trans-1,3-Dichloropropene		56	U
79-00-5	1,1,2-Trichloroethane		56	U
591-78-6	2-Hexanone		280	U
127-18-4	Tetrachloroethene		56	U
124-48-1	Chlorodibromomethane		56	U
108-90-7	Chlorobenzene		56	U
630-20-6	1,1,1,2-Tetrachloroethane		56	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environm	ental
Method: 8260	Lab Sample ID:	NMW-3 (5-6)	
Matrix: (soil/water) SOIL	Lab File ID:	D053022.D	
Sample wt/vol: <u>9.8</u> (g/ml) <u>G</u>	Date Sampled:	5/28/2014	
% Moisture 9.08	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UG/KG	Q
100-41-4	Ethylbenzene	56	U
1330-20-7	m & p-Xylene	110	U
95-47-6	o-Xylene	56	U
100-42-5	Styrene	56	U
75-25-2	Bromoform	56	U
98-82-8	Isopropylbenzene	56	U
79-34-5	1,1,2,2-Tetrachloroethane	56	U
108-86-1	Bromobenzene	56	U
96-18-4	1,2,3-Trichloropropane	56	U
95-49-8	2-Chlorotoluene	56	U
103-65-1	n-Propylbenzene	56	U
108-67-8	1,3,5-Trimethylbenzene	56	U
106-43-4	4-Chlorotoluene	56	U
98-06-6	tert-Butylbenzene	56	U
95-63-6	1,2,4-Trimethylbenzene	56	U
135-98-8	sec-Butylbenzene	56	U
99-87-6	p-Isopropyltoluene	56	U
75-87-3	Chloromethane	56	U
75-65-0	tert butyl alcohol	56	U
541-73-1	1,3-Dichlorobenzene	56	U
109-99-9	Tetrahydrofuran	56	U
106-46-7	1,4-Dichlorobenzene	56	U
60-29-7	Diethyl Ether	56	U
104-51-8	n-butyl Benzene	56	U
95-50-1	1,2-Dichlorobenzene	56	U
96-12-8	1,2-Dibromo-3-chloropropane	56	U
120-82-1	1,2,4-Trichlorobenzene	56	U
87-68-3	Hexachlorobutadiene	56	U
91-20-3	Naphthalene	 56	U
87-61-6	1,2,3-Trichlorobenzene	56	U
994-05-8	Tert-amyl Methyl Ether	56	U
75-71-8	Dichlorodifluoromethane	56	U
142-28-9	1,3-Dichloropropane	56	U
75-69-4	Trichlorofluoromethane	 56	U
637-92-3	Ethyl Tert-butyl ether	56	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: <u>NMW-3 (5-6)</u>
Matrix: (soil/water) SOIL	Lab File ID: D053022.D
Sample wt/vol: <u>9.8</u> (g/ml) <u>G</u>	Date Sampled: 5/28/2014
% Moisture 9.08	Date Analyzed: 5/30/2014
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
108-20-3	Diisopropyl Ether		56	U
123-91-1	1,4-Dioxane		28000	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	NSB-3 (4-5)	
Matrix: (soil/water) SOIL	Lab File ID:	D053023.D	
Sample wt/vol: <u>11.9</u> (g/ml) <u>G</u>	Date Sampled:	5/28/2014	
% Moisture 12.52	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ıme:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
75-01-4	Vinyl Chloride		48	U
74-83-9	Bromomethane		48	U
75-00-3	Chloroethane		48	U
67-64-1	Acetone		240	U
75-35-4	1,1-Dichloroethene		48	U
75-15-0	Carbon Disulfide		48	U
75-09-2	Methylene Chloride		48	U
1634-04-4	tert-Butyl methyl ether		48	U
156-60-5	trans-1,2 Dichloroethene		48	U
75-34-3	1,1-Dichloroethane		48	U
78-93-3	2-Butanone		240	U
594-20-7	2,2-Dichloropropane		48	U
156-59-2	cis-1,2-Dichloroethene		48	U
67-66-3	Chloroform		48	U
74-97-5	Bromochloromethane		48	U
71-55-6	1,1,1-Trichloroethane		48	U
563-58-6	1,1- Dichloropropene		48	U
56-23-5	Carbon Tetrachloride		48	U
71-43-2	Benzene		48	U
107-06-2	1,2-Dichloroethane		48	U
79-01-6	Trichloroethene		48	U
78-87-5	1,2-Dichloropropane		48	U
75-27-4	Bromodichloromethane		48	U
74-95-3	Dibromomethane		48	U
108-10-1	4-Methyl-2-pentanone		240	U
106-93-4	Ethylene Dibromide		48	U
10061-01-5	cis-1,3-Dichloropropene		48	U
108-88-3	Toluene		48	U
10061-02-6	Trans-1,3-Dichloropropene		48	U
79-00-5	1,1,2-Trichloroethane		48	U
591-78-6	2-Hexanone		240	U
127-18-4	Tetrachloroethene		48	U
124-48-1	Chlorodibromomethane		48	U
108-90-7	Chlorobenzene		48	U
630-20-6	1,1,1,2-Tetrachloroethane		48	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	NSB-3 (4-5)	
Matrix: (soil/water) SOIL	Lab File ID:	D053023.D	
Sample wt/vol: <u>11.9</u> (g/ml) <u>G</u>	Date Sampled:	5/28/2014	
% Moisture 12.52	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ime:	(uL)

CAS NO.	COMPOUND	UG/KG	Q
100-41-4	Ethylbenzene	48	U
1330-20-7	m & p-Xylene	96	U
95-47-6	o-Xylene	48	U
100-42-5	Styrene	48	U
75-25-2	Bromoform	48	U
98-82-8	Isopropylbenzene	48	U
79-34-5	1,1,2,2-Tetrachloroethane	48	U
108-86-1	Bromobenzene	48	U
96-18-4	1,2,3-Trichloropropane	48	U
95-49-8	2-Chlorotoluene	48	U
103-65-1	n-Propylbenzene	48	U
108-67-8	1,3,5-Trimethylbenzene	48	U
106-43-4	4-Chlorotoluene	48	U
98-06-6	tert-Butylbenzene	48	U
95-63-6	1,2,4-Trimethylbenzene	97	
135-98-8	sec-Butylbenzene	88	
99-87-6	p-Isopropyltoluene	48	U
75-87-3	Chloromethane	48	U
75-65-0	tert butyl alcohol	48	U
541-73-1	1,3-Dichlorobenzene	48	U
109-99-9	Tetrahydrofuran	48	U
106-46-7	1,4-Dichlorobenzene	48	U
60-29-7	Diethyl Ether	48	U
104-51-8	n-butyl Benzene	48	U
95-50-1	1,2-Dichlorobenzene	48	U
96-12-8	1,2-Dibromo-3-chloropropane	48	U
120-82-1	1,2,4-Trichlorobenzene	48	U
87-68-3	Hexachlorobutadiene	48	U
91-20-3	Naphthalene	48	U
87-61-6	1,2,3-Trichlorobenzene	48	U
994-05-8	Tert-amyl Methyl Ether	48	U
75-71-8	Dichlorodifluoromethane	48	U
142-28-9	1,3-Dichloropropane	48	U
75-69-4	Trichlorofluoromethane	48	U
637-92-3	Ethyl Tert-butyl ether	48	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	mental
Method: 8260	Lab Sample ID:	NSB-3 (4-5)	
Matrix: (soil/water) SOIL	Lab File ID:	D053023.D	
Sample wt/vol: <u>11.9</u> (g/ml) <u>G</u>	Date Sampled:	5/28/2014	
% Moisture 12.52	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
108-20-3	Diisopropyl Ether		48	U
123-91-1	1,4-Dioxane		24000	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	VBLK053014	
Matrix: (soil/water) SOIL	Lab File ID:	D053007.D	
Sample wt/vol: 10.0 (g/ml) G	Date Sampled:	5/28/2014	
% Moisture 0	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
75-01-4	Vinyl Chloride		50	U
74-83-9	Bromomethane		50	U
75-00-3	Chloroethane		50	U
67-64-1	Acetone		250	U
75-35-4	1,1-Dichloroethene		50	U
75-15-0	Carbon Disulfide		50	U
75-09-2	Methylene Chloride		50	U
1634-04-4	tert-Butyl methyl ether		50	U
156-60-5	trans-1,2 Dichloroethene		50	U
75-34-3	1,1-Dichloroethane		50	U
78-93-3	2-Butanone		250	U
594-20-7	2,2-Dichloropropane		50	U
156-59-2	cis-1,2-Dichloroethene		50	U
67-66-3	Chloroform		50	U
74-97-5	Bromochloromethane		50	U
71-55-6	1,1,1-Trichloroethane		50	U
563-58-6	1,1- Dichloropropene		50	U
56-23-5	Carbon Tetrachloride		50	U
71-43-2	Benzene		50	U
107-06-2	1,2-Dichloroethane		50	U
79-01-6	Trichloroethene		50	U
78-87-5	1,2-Dichloropropane		50	U
75-27-4	Bromodichloromethane		50	U
74-95-3	Dibromomethane		50	U
108-10-1	4-Methyl-2-pentanone		250	U
106-93-4	Ethylene Dibromide		50	U
10061-01-5	cis-1,3-Dichloropropene		50	U
108-88-3	Toluene		50	U
10061-02-6	Trans-1,3-Dichloropropene		50	U
79-00-5	1,1,2-Trichloroethane		50	U
591-78-6	2-Hexanone		250	U
127-18-4	Tetrachloroethene		50	U
124-48-1	Chlorodibromomethane		50	U
108-90-7	Chlorobenzene		50	U
630-20-6	1,1,1,2-Tetrachloroethane		50	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0528-24	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	VBLK053014	
Matrix: (soil/water) SOIL	Lab File ID:	D053007.D	
Sample wt/vol: 10.0 (g/ml) G	Date Sampled:	5/28/2014	
% Moisture 0	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ıme:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
100-41-4	Ethylbenzene		50	U
1330-20-7	m & p-Xylene		100	U
95-47-6	o-Xylene		50	U
100-42-5	Styrene		50	U
75-25-2	Bromoform		50	U
98-82-8	Isopropylbenzene		50	U
79-34-5	1,1,2,2-Tetrachloroethane		50	U
108-86-1	Bromobenzene		50	U
96-18-4	1,2,3-Trichloropropane		50	U
95-49-8	2-Chlorotoluene		50	U
103-65-1	n-Propylbenzene		50	U
108-67-8	1,3,5-Trimethylbenzene		50	U
106-43-4	4-Chlorotoluene		50	U
98-06-6	tert-Butylbenzene		50	U
95-63-6	1,2,4-Trimethylbenzene		50	U
135-98-8	sec-Butylbenzene		50	U
99-87-6	p-Isopropyltoluene		50	U
75-87-3	Chloromethane		50	U
75-65-0	tert butyl alcohol		50	U
541-73-1	1,3-Dichlorobenzene		50	U
109-99-9	Tetrahydrofuran		50	U
106-46-7	1,4-Dichlorobenzene		50	U
60-29-7	Diethyl Ether		50	U
104-51-8	n-butyl Benzene		50	U
95-50-1	1,2-Dichlorobenzene		50	U
96-12-8	1,2-Dibromo-3-chloropropane		50	U
120-82-1	1,2,4-Trichlorobenzene		50	U
87-68-3	Hexachlorobutadiene		50	U
91-20-3	Naphthalene		50	U
87-61-6	1,2,3-Trichlorobenzene		50	U
994-05-8	Tert-amyl Methyl Ether		50	U
75-71-8	Dichlorodifluoromethane		50	U
142-28-9	1,3-Dichloropropane		50	U
75-69-4	Trichlorofluoromethane		50	U
637-92-3	Ethyl Tert-butyl ether		50	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

VOLATILE ORGANICS ANALYSIS DATA SHEET

Case No.: A0528-24	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	VBLK053014	
Matrix: (soil/water) SOIL	Lab File ID:	D053007.D	
Sample wt/vol: 10.0 (g/ml) G	Date Sampled:	5/28/2014	
% Moisture 0	Date Analyzed:	5/30/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
108-20-3	Diisopropyl Ether		50	U
123-91-1	1,4-Dioxane		25000	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

New England Testing Laboratory, Inc.

SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name:	New Englan	d Testing Lab		Contract:	Coffey's Texaco	
Lab Code:	RI010	Case No.:	A0528-24	SAS No.	: SDG No.:	Newport E
Level: (low/m	ned) MED					

	EPA	SMC1	SMC2	SMC3	тот
	SAMPLE NO.	#	#	#	OUT
01	VLCS053014	97	105	106	0
02	VBLK053014	92	106	102	0
03	NMW-3 (5-6)	89	104	94	0
04	NSB-3 (4-5)	91	103	104	0
05	NMW-2 (0-2)	91	101	92	0
06	NMW-1 (0-2)	90	114	105	0
07	NSB-2 (0-2)	88	107	104	0
08	NSB-1 (0-2)	91	97	99	0
09	NMW-1 (5-7)	103	99	95	0
10	NSB-1 (6-8)	104	98	93	0

			QC LIMITS
SMC1	=	4-Bromofluorobenzene	(70-130)
SMC2	=	Toluene-D8	(70-130)
SMC3	=	1,2-Dichloroethane-D4	(70-130)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

New England Testing Laboratory, Inc.

Volatile Organics Laboratory Control Spike

Date Analyzed: 05/30/2014

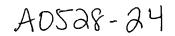
Sample ID: VLCS053014

	Spike	Spike	Recovery,	Lower Control	Upper Control
Compound	Added	Result	%	Limit, %	Limit, %
1,1-Dichloroethene	50.0	54.5	109	70	129
Benzene	50.0	54.7	109	73	129
Trichloroethene	50.0	54.8	110	77	122
Toluene	50.0	55.1	110	75	123
Chlorobenzene	50.0	53.1	106	73	125

NEW ENGLAND TESTING LABORATORY, INC.

1254 Douglas Avenue

North Providence, RI 02904


1-888-863-8522

CHAIN OF CUSTODY RECORD

PROJ. N	.0.	PRC	JECT N	AME/LOCATION											Τ		/	7	7	- 7	1 1 1		
1.	502	(Coff	ey's Texaco										P R E			/	5	\rightarrow	/.	/// -		
ÇLIENT	New	port	- Er	ievis Texaco Invironmenta										E S E		*2/	/ /_	AN S	/	/ /			
REPOR	ГТО: 0	40#	to	ARLANG + PANIL (1)	<u>م</u>					l ĝ	s o	ļ ģ	NO.			TESTS		FL	/	/			
INVOICE		-	8	newportenu.cu	•/					Ĕ	1	O T H E R	OF	A T				100		/ /	/ /		
DATE	TIME	C M P	G R A B			MPLE I.D.	•				L	R	CONTAINERS	E E		2/2				E/		REMARKS	
5/28/	49:29)	X	MSI	3-1 (0'-2	()`	0 8	•		X		3	Meoh	X	X	X	X					
	9:33			N5E	` `	[6'-8		8	•		Д		2	Meon	X						HOLD		
	10:12					(0'-'		• •	•		Х		-	MEOH	Ķ	Х	X	X					
	10:55	<u>.</u>		NMU		(0'-'		•	•		Х		3	MEON	X	X	Д	Х					
	11:0	<u> </u>	<u> </u>	NMI		(5'-			•		X		2	Meoy	X						HOLD		
	11:45	<u>. </u>			W-2			8	••		Х		ى ا	Meon	X	X	Х	X					
	11:54	ע			W-2			۰. 	٠		X							,	Х		HOLD		
	12:54	8			W-3		· · · · ·	6			X	,	××2			Х	Х	X	,				
	13:02	2	\square		N-3			6	•		X		2	MeoH	Х				X				
	13:50	<u>،</u>			5B-3				8		Х				•	Х	X	X					
\mathbf{V}	13:54	1	\mathbb{V}	NS	B-3	(4-	-51)	•	•		X		2	Meoy	Х		•		X				
							·				!												
											!											+	
<u> </u>																							
Sample	d by: (Signa	kare)		d	Date/Time	Red	eceived by: (S	lignature)					Date/Time		orator	y Rema	arks:	1			Special Instructions: List Specific Detection	<u> </u>	
4		-		1/28	14 See 14 abov Date/Time	re									ied 🗆	eiveu.		1			Limit Requirements:		
Relinqui	ished by: (S	ignature	3)	5/20	Date/Time	Red	eceived by: (S	3ignature)				+	Date/Time										
M	IJ,			128	Date/Time	אג אי																	
Relinqu	ished by: (S	Jignatur	a)		Date/Time	Be	ceived for La	aboratory by:	(Signatu	re)		-	Date/Time										
							Ju	R	٨ /	、 、		1	28/14/16	08									
			<u>۱</u>			\square	<u>71 W</u>	$, F \vee$	\bigcirc	<u>`</u>		<u></u>	5-011110	00							Turnaround (Busines	s Days)	

**Netlab subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates

-344-

APPENDIX E

Historical Groundwater Analytical Results

Historical Groundwater Data Summary Monitor Well MW-1 (Installed 12/3/84) Coffey's Texaco Newport, Rhode Island

P		2.157.			1					Date Sampled				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			1.1.4			RIDEM GB Groundwater	RIDEM UCL
Analyte	12/21&24/84	2/12/85	3/20/85	5/9/85	6/28/85	10/9/85	1/15/86	3/18/86	7/9/86	9/22/86	11/5/86	11/22/86	12/17/86	1/20/87	2/24/87	5/7/87	6/9/87	7/15/87	8/24/87	Objective	
Benzene	4670	3210	250	20	4070	4350	5280	10	4760	2980	1520	1290	4220	5430	6330	<10	2960	6940	<10	140	18000
Ethylbenzene	190	50	<10	<10	<10	300	370	<10	300	310	90	60	540	70	50	<10	480	1280	<10	1600	16000
MTBE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	210	3570	<10	5000	NE
Toluene	210	540	<10	<10	270	330	380	<10	290	130	30	20	1350	780	530	<10	NA	NA	NA	1700	21000
Total Xylenes	830	920	<10	<10	1460	690	540	<10	550	300	70	110	1400	1440	1280	<10	1300	4900	<10	NE	NE
Total BTEX	5900	4720	250	20	5800	5670	6570	10	5900	3720	1710	1480	7510	7720	8190	<10	4950	16690	<10	NE	NE

			Na statis			1,			10 - Filt	Date Sample	d								2 ²⁴ 2 27 23	RIDEM GB Groundwater	RIDEM
Asalyte	9/21/87	11/21/87	1/11/88	2/5/88	4/19/88	4/15/94	2/1/96	4/2/99	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	5/12/04	Objective	
Benzene	3570	860	1620	300	2810	220	5	NS	< 2	<	<10	ব	16	4	SFR	ব	<4	<4	SFR	140	18000
Ethylbenzene	720	160	<10	<10	590	160	<1		<2	<	14	ব	270	16		39	20	36		1600	16000
MTBE	NA	NA	NA	NA	NA	1600	400		150	140	320	160	640	160		540	430	370		5000	NE
Toluene	1130	90	30	<10	660	280	<1		<	<	<10	<	43	3		<5	<4	<4		1700	21000
Total Xylenes	2530	<10	460	50	1640	660	<1		⊲	4	<10	<	1700	110		45	61	<4		NE	NE
Total BTEX	7950	1110	2110	350	5700	1320	5			<	14	<	2029	126		84	81	36		NE	NE

	$\left\{ \begin{array}{l} \sum_{i=0,\ldots,n-1}^{n-1} \left[\sum_{i=0,\ldots,n-1$	segrati e juliti i			1-100 C					Date Sample			- <u></u>		Step 1.			Yenisi		RIDEM GB Groundwater	RIDEM UCL
Analyte	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	Objective	- 111月1日日本語語
Benzene	3.2	SFR	SFR	5.5	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene	52			19																1600	16000
MTBE	380			500																5000	NE
Toluene	<			<4																1700	21000
Total Xylenes				6.8																NE	NE
Total BTEX	133.2			31.3																NE	NE

	State States	97 N 81 2 0	Date S	ampled		65.2	RIDEM GB Groundwater	RIDEM
Anslyte	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	
Benzene	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene							1600	16000
MTBE		1					5000	NE
Toluene							1700	21000
Total Xylenes							NE	NE
Total BTEX							NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-2 (Installed 12/3/84) Coffey's Texaco Newport, Rhode Island

	1		1913 I. 1923 (S. 19				State State			Date Sample	a 🖉	6 8 344		机动动动 医月	1.14			isto ik dist	<u> 290 - 19</u>	RIDEM GB Groundwater	RIDEM
Analyte	2/21&24/8	2/12/85	3/20/85	5/9/85	6/28/85	10/9/85	1/15/86	3/18/86	7/9/86	9/22/86	11/5/86	11/22/86	12/17/86	1/20/87	2/24/87	5/7/87	6/9/87	7/15/87	8/24/87	Objective	
Benzene	<10	<10	1890	1310	<10	<10	<10	<10	<10	<10	10	<10	30	20	<10	<10	20	<10	4620	140	18000
Ethylbenzene	<10	<10	60	70	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	960	1600	16000
MTBE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NÄ	NA	NA	NA	5000	NE
Toluene	<10	<10	1620	490	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	1560	1700	21000
Total Xylenes	<10	<10	1430	1110	<10	<10	<10	<10	<10	<10	<10	<10	80	<10	<10	<10	<10	<10	3420	NE	NE
Total BTEX	<10	<10	5000	2980	<10	<10	<10	<10	<10	<10	<10	<10	110	20	<10	<10	20	<10	10560	NE	NE

	1	a 18 899	4.8 × 1940				14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			Date Sample	d	A.S.1941						ge Gale	1.45.1.1.1.1	RIDEM GB Groundwater	RIDEM
Aaslyte	9/21/87	11/21/87	1/11/88	2/5/88	4/19/88	4/15/94	2/1/96	4/2/99	11/16/00	12/26/02	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	5/12/04	Objective	
Benzene	<10	<10	<10	<10	<10	26	<1	NS	<0.5	<1	<1	<1	<	<1	SFR	<1	<1	<1	SFR	140	18000
Ethylbenzene	<10	<10	<10	<10	<10	7.4	<1		<0.5	<1	<1	<1	<1	<1		<1	<1	<1		1600	16000
MTBE	NA	NA	NA	NA	NA	76	2		<1	<1	<1	<1	<1	<1	1	<1	<1	<1		5000	NE
Toluene	<10	<10	50	<10	<10	22	<1		<0.5	<1	<1	<1	<1	<1	1	<1	<1	<1		1700	21000
Total Xylenes	<10	<10	<10	<10	<10	35	<1		<0.5	<1		<1	<1	<1		<1	<1	<1		NE	NE
Total BTEX	<10	<10	50	<10	<10	90.4	<1		<0.5	<1	<1	<1	<1	<1		<1	<1	<1		NE	NE

	\$. 20 Jo	a the second	il e terre e				Second a second	394 × - 5.		Date Sample	d P	the second				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	in aller		an a	RIDEM GB Groundwater	RIDEM UCL
Analyte	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	Objective	
Benzene	<1	SFR	SFR	<1	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR.	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene	<1			<1																1600	16000
MTBE	<l< td=""><td></td><td></td><td><1</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5000</td><td>NE</td></l<>			<1						1										5000	NE
Toluene	<1			<																1700	21000
Total Xylenes	<			<1																NE	NE
Total BTEX	<i< td=""><td></td><td></td><td><1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NE</td><td>ŇE</td></i<>			<1																NE	ŇE

	$\frac{226\pi}{26}$	1947 - M	Date S	ampled		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	RIDEM GB Groundwater	RIDEM UCL
Assiyte	11/24/09	3/19/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	
Benzene	SFR	SFR	SFR	SFR	SFR.	SFR	140	18000
Ethylbenzene							1600	16000
MTBE							5000	NE
Toluene							1700	21000
Total Xylenes							NE	NE
Total BTEX							NE	NE

1

ł

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-3 (Installed 12/3/84) Coffey's Texaco Newport, Rhode Island

1

		2.33333	Na sanatar	204	grada de r	Post i	1. 19 M		Date S	ampled					100 CON 100	Maria a	en e esta	S. F. S.	RIDEM GB Groundwater	RIDEM
Analyte	2/21&24/8	2/12/85	3/20/85	5/9/85	6/28/85	10/9/85	1/15/86	3/18/86	7/9/86	9/22/86	11/5/86	11/22/86	12/17/86	1/20/87	2/24/87	5/7/87	7/15/87	6/9/87	Objective	
Benzene	<10	<10	<10	<10	30	<10	<10	<10	10	<10	<10	<10	<10	10	<10	<10	<10	<10	140	18000
Ethylbenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	1600	16000
MTBE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5000	NE
Toluene	<10	<10	<10	<10	<10	<10	<10	<10	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	1700	21000
Total Xylenes	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NE	NE
Total BTEX	<10	<10	<10	<10	30	<10	<10	<10	20	<10	<10	<10	<10	10	<10	<10	<10	<10	NE	NE

					- <u>G</u> . (* 1917)				Date S	ampled			(A) (9)	Registeren.	द्वार्थ में जिस्स इ.स. में जिस्स		get aget a	1. T. T.	RIDEM GB Groundwater	RIDEM UCL
Analyte	8/24/87	9/21/87	11/23/87	1/11/88	2/5/88	4/19/88	4/15/94	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	5/12/04	Objective	
Benzene	<10	<10	<10	<10	<10	<10	<25	<1	< 2	<	<	<1	<1	SFR	<1	<1	<]	SFR	140	18000
Ethylbenzene	<10	<10	<10	<10	<10	<10	<25	<1	< 2	<7	ব	<1	<1		<1	<1	<1		1600	16000
MTBE	NA	NA	NA	NA	NA	NA	2200	47	160	200	170	37	21		120	48	7.5		5000	NE
Toluene	<10	<10	<10	<10	<10	<10	<25	<1	<	<7	<	<1	<1		<1	<1	<1		1700	21000
Total Xylenes	<10	<10	<10	<10	<10	<10	<25	<1	<2	<	<	<1	<1		<1	1.2	<1		NE	NE
Total BTEX	<10	<10	<10	<10	<10	<10	<25	<1	< 2	4	<	<1	<]		<1	1.2	<1		NE	NE

	(† 1423) 17 - 1423		Martini	11. A 20	1. Q R 4	\$	(1) (1) (1) (1) (1)	S 5 7	Date S	ampled	1. N.				이 이 것같?			1.1487	RIDEM GB Groundwater	RIDEM UCL
Analyte	8/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	Objective	
Benzene	<1	SFR	<]	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene	<1		<1																1600	16000
MTBE	16		59					1											5000	NE
Toluene	<1		<1																1700	21000
Total Xylenes	<1		<1																NE	NE
Total BTEX	<1		<1																NE	NE

	11/04/00			ampled			RIDEM GB Groundwater	RIDEM UCL
Analyte	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11		
Benzene	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene							1600	16000
MTBE							5000	NE
Toluene					i .		1700	21000
Total Xylenes							NE	NÉ
Total BTEX							NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

ł

}

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-4 (Destroyed) (Installed 12/3/84) Coffey's Texaco Newport, Rhode Island

1

			Date Sampled				RIDEM GB Groundwater	RIDEM UCL
Date	6/28/85	10/9/85	1/15/86	3/18/86	7/9/86	2/1/96	Objective	
Benzene	18990 ^u	19460 ^m	24600 [°]	23020 ^u	16920	Destroyed	140	18000
Ethylbenzene	3410	4090	4800	4780	3430		1600	16000
MTBE	NA	NA	NA	NA	NA		5000	NE
Toluene	41250 ^u	40380 ^u	51400 ^u	53090"	34540 ^u		1700	21000
Total Xylenes	21180	22320	26000	26740	17050		NE	NE
Total BTEX	84830	86250	106800	107630	71940		NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

}

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<x: Indicates analyte concentration not detected at or above laboratory quantitation limit (x).

u: Analyte concentration in this sample exceeds the RIDEM Upper Concentration Limit.

Historical Groundwater Data Summary Monitor Well MW-5 (Destroyed) (Installed 12/3/84) Coffey's Texaco Newport, Rhode Island

)

Ì

) (september)	이 동생은 것이 같은		ala si si si	1/56	Date S	ampled	1999		(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		12 8 <i>3</i> 4	RIDEM GB Groundwater	RIDEM UCL
Analyte	12/21&24/84	2/12/85	3/20/85	5/9/85	6/28/85	1/15/86	3/18/86	7/9/86	2/1/96	10/21/97	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	Objective	
Benzene	550	4800	4880	4780	4570	9590	9050	3320	720	12400	4100	1100	3300	1500	1500	880	550	1600	140	18000
Ethylbenzene	10	30	30	30	40	1080	320	210	240	1400	520	160	210	170	190	150	240	240	1600	16000
MTBE	NA	NA	NA	NA	NA	NA	NA	NA	1500	10500	1700	250	1400	400	350	720	380	220	5000	NE
Toluene	190	280	410	530	990	2860	2960	1260	49	400	140	46	88	52	59	46	26	44	1700	21000
Total Xylenes	430	1550	650	1500	1580	3770	4600	1320	1000	3900	840	240	530	330	520	370	530	560	NE	NE
Total BTEX	1180	6660	5970	6840	7180	17300	16930	6110	2009	18100	5600	1546	4128	2052	2269	1446	1346	2444	NE	NE

			×		Service -	1 (S.).	6 S		Date S	ampled	- 46.28 ⁶ - 1.5.5		1. - Alteria		and the second	*6.5°	Y CA	신간 (조금)	RIDEM GB Groundwater	RIDEM UCL
Analyte	2/4/04	5/12/04	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	Objective	
Benzene	1400	1300	2000	1600	1100	660	900	2800	1600	4.1	660	880	1600	390	1200	1500	2000	2700	140	18000
Ethylbenzene	220	210	440	280	180	240	170	510	240	3	190	870	240	78	200	320	380	610	1600	16000
MTBE	130	360	310	260	180	110	110	400	270	<1	100	67	340	84	170	160	480	380	5000	NE
Toluene	55	49	190	150	87	69	45	240	93	2.5	77	3900	69	16	48	74	84	130	1700	21000
Total Xylenes	450	440	980	660	360	500	370	1200	620	9.3	780	7800	630	210	420	790	710	1300	NE	NE
Total BTEX	2125	1999	3610	2690	1727	1469	1485	4750	2553	18.9	1707	the second s	2539	694	1868	2684	3174	4740	NE	NE

		Date Si	mpled		RIDEM GB Groundwater	RIDEM UCL
Analyte	11/5/08	3/18/09	7/15/09	11/24/09	Objective	
Benzene	2000	1000	100	Destroyed	140	18000
Ethylbenzene	400	260	200		1600	16000
MTBE	280	180	67		5000	NE
Toluene	81	55	39		1700	21000
Total Xylenes	830	920	423		NE	NE
Total BTEX	3311	2235	762		NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-6 (Destroyed) (Installed 12/3/84) Coffey's Texaco Newport, Rhode Island

		ntes a periode a	1. (j. (j. 1. (j	S. A. S.	2 1 - ¹ - 1	Date Sampled	1		a kata a	63	Press T.	RIDEM GB Groundwater	RIDEM -UCL
Analyte	10/9/85	7/9/86	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	Objective	
Benzene	8280	9850	2900	3100	3100	2800	2900	280	360	8.7	35	140	18000
Ethylbenzene	910	1210	640	1200	930	2800	1400	260	160	20	68	1600	16000
MTBE	NA	NA	1200	1100	1200	640	620	2200	180	1.2	36	5000	NE
Toluene	3540	7350	130	640	130	6600	1300	110	53	3.3	22	1700	21000
Total Xylenes	3520	11090	3400	6100	3400	22000	7600	1200	660	110	410	NE	NE
Total BTEX	16250	29500	7070	11040	7560	34200	13200	1850	1233	142	535	NE	NE

	S. A.	14 4 4			14. T	Date Sample	1 -569 - 487					RIDEM GB Groundwater	RIDEM UCL
Analyte	5/12/04	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	Objective	
Benzene	90	390	130	6.6	16	750	1800	840	28	1900	3500	140	18000
Ethylbenzene	81	280	85	9.8	15	510	1100	560	53	1000	1100	1600	16000
MTBE	65	43	68	2.4	5.4	120	220	100	6.5	250	630	5000	NE
Toluene	26	120	25	2.4	3.1	61	190	580	12	240	140	1700	21000
Total Xylenes	620	1400	470	46	44	2200	4200	2200	120	3600	3700	NE	NE
Total BTEX	817	2190	710	64.8	78.1	3521	7290	4180	213	6740	8440	NE	NE

	(C	6	Anton Maria		Date S	ampled			492 S	· 不定注意。	RIDEM GB Groundwater	RIDEM UCL
Analyte	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	Objective	
Benzene	730	30	1500	240	3100	1800	1100	150	49	Destroyed	140	18000
Ethylbenzene	180	34	630	140	850	890	430	180	43		1600	16000
MTBE	160	2.4	460	28	710	210	350	23	<5		5000	NE
Toluene	43	4	48	22	320	110	42	20	<5		1700	21000
Total Xylenes	530	100	1600	730	1900	2100	1000	250	61		NE	NE
Total BTEX	1483	168	3778	1132	6170	4900	2572	600	153		NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

j

Historical Groundwater Data Summary Monitor Well MW-7 (Destroyed) (Installed 12/3/84) Coffey's Texaco Newport, Rhode Island

1

	약주 그 않겠	1997 (k. 1							. Alta i	Date S							61212-22		Sec.		RIDEM GB Grossdwater	RIDEM
Analyte	12/21&24/84	2/12/85	3/20/85	5/9/85	6/28/85	10/9/85	1/15/86	3/18/86	7/9/86	4/15/94	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	5/12/04	Objective	
Benzene	200	<10	<10	<10	<10	30	30	<10	200	57	290	1400	870	710	650	630	450	370	670	650	140	18000
Ethylbenzene	70	<10	<10	<10	<10	<10	<10	<10	20	690	<100	<100	<150	<70	<100	<50	<40	<100	<50	<100	1600	16000
MTBE	NA	NA	NA	NA	NA	NA	ŇA	NA	NA	4600	5200	8000	7700	4000	5600	5100	3700	11000	5300	8500	5000	NE
Toluene	180	<10	<10	<10	<10	<10	<10	<10	30	58	<100	<100	<150	73	<100	<50	<40	<100	<50	<100	1700	21000
Total Xylenes	690	<10	<10	<10	<10	<10	<10	<10	<10	3600	<100	130	<150	220	120	<50	<40	<100	<50	130	NE	NE
Total BTEX	1140	<10	<10	<10	<10	30	30	<10	250	4405	290	1530	870	1003	770	630	450	370	670	980	NE	NE

								S BRAND		Date S	ampled	1115			3 2 V V V		200	all and a star		and the second	RIDEM GB Grossdwater	RIDEM
Analyte	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	Objective	
Benzene	300	470	140	12	530	430	200	13	800	100	400	440	460	420	630	620	630	480	590	Destroyed	140	18000
Ethylbenzene	<100	<50	<20	<1	13	7.9	<20	<1	260	<5	1300	25	25	11	73	13	<5	<5	<20	20000,00	1600	16000
MTBE	9200	4600	2000	55	1600	540	2100	67	2300	530	1100	1700	840	240	630	350	190	220	120			10000
Toluene	<100	<50	<20	<1	<10	<5.0		<1	260	<5	2500	1/00		5.6	0.50	550	100	220	150		5000	NE
Total Xvienes	<100	<50	<20	<1	<10	16	~20	1.6	790		2300			5.5		<8		<>	<20		1700	21000
Total BTEX	100	< 30				10	<20	1.3	/80	<	8000	76	83	46	8	21	<5	<5	5.7		NE	NE
TOTAL DIEX	300	470	140	12	543	453.9	200	14.5	2100	100	12200	563	595	482.5	645.3	654	630	480	595,7		NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-8 (RW-1) (Installed 12/3/84) Coffey's Texaco Newport, Rhode Island

	1	N CFU C SOUT																		RIDEM	RIDEM
Analyte	12/21&24/84	2/12/85	3/20/85	5/9/85	6/28/85	10/9/85	1/15/86	3/18/86	7/9/86	Date Sample 9/22/86	d 12/17/86	1/20/87	2/24/87	5/7/87	6/9/87	7/15/87	8/24/87	9/21/87	11/23/87	GB Groundwater Objective	UCL
Benzene	<10	<10	<10	<10	<10	550	520	200	120	960	110	<10	90	<10	260	570	<10		610		18000
Ethylbenzene	<10	<10	<10	<10	<10	180	140	60	10	900	50	<10	60	<10	190	420	<10	940	670	1600	16000
MTBE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5000	NE
Toluene	<10	<10	<10	<10	<10	190	570	380	30	990	70	<10	120	<10	140	300	<10	960	200	1700	21000
Total Xylenes	<10	<10	20	<10	<10	490	590	360	140	5520	990	<10	1000	<10	1360	2010	<10	8100	8190	NE	NE
Total BTEX	<10	<10	20	<10	<10	1410	1820	1000	300	8370	1220	<10	1270	<10	1950	3300	<10	11020	9670	NE	NE

	1177 (B.)	di second			14.5	n i g na S		ann a	Date S	ampled		- 16				a secondaria de la compañía de la co			RIDEM GB Groundwater	RIDEM
Analyte	2/5/88	4/19/88	4/15/94	9/6/94	1/30/95	2/1/96	11/16/00	12/26/01	5/14/02	8/15/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	5/12/04	8/11/04	11/11/04	Objective	
Benzene	<10	<10	380	320	80	27	20	NS	29	52	16	SFR	9.6	<1	35	SFR	31	SFR	140	18000
Ethylbenzene	<10	210	190	190	630	180	87		60	93	49	11 1	94	70	140		270		1600	16000
MTBE	NA	NÄ	3500	210	1000	3	5.2		<1	36	1.3	11 1	12	<1	<1		6.6		5000	NE
Toluene	<10	40	39	54	71	6	16		1.3	3.6	2.9	1	<1	1.6	2.7		5.9		1700	21000
Total Xylenes	560	2960	970	420	1200	290	34		26	29	20		20	17	16		44		NE	NE
Total BTEX	560	3210	1579	984	1981	503	157		116.3	177.6	87.9		123.6	88.6	1937		350.9		NE	NE

		1. S. & B.		a _{Asto} ria	04. Q.A.S		1. 2. 1. 1. 3	an a					1 4 1 G 8	us e	- 6.13%	25 S		an an gara	RIDEM GB Groundwater	RIDEM UCL
Analyte	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	Objective	いたななない
Benzene	SFR	7.3	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene		110																	1600	16000
MTBE		13														1			5000	NE
Toluene		<1				!													1700	21000
Total Xylenes		20																	NE	NE
Total BTEX		137.3																	NE	NE

	s Cator		Date Sample	a series and		RIDEM GB Groundwater	RIDEM
Analyte	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	
Benzene	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene						1600	16000
MTBE						5000	NE
Toluene						1700	21000
Total Xylenes						NE	NE
Total BTEX						NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<x: Indicates analyte concentration not detected at or above laboratory quantitation limit (x).

Sample Results:

d: Although analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives.

u: Analyte concentration in this sample exceeds the RIDEM Upper Concentration Limit.

Historical Groundwater Data Summary Monitor Well MW-9 (RW-2) (Installed 4/19/94) Coffey's Texaco Newport, Rhode Island

- {

	- A.P. S.	이 이 같은 것이 하는 것	1.725 ¥.5		<u> </u>	- 	Date S	ampled	a new constant	- States				e ja kutora kata d	RIDEM GB Groundwater	RIDEM. UCL
Analyte	4/2/99	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	5/12/04	8/11/04	11/11/04	Objective	
Benzene	390	130	680	300	400	230	300	120	260	190	220	120	230	150	140	18000
Ethylbenzene	1400	1000	2900	1800	1800	880	1400	480	1100	930	1200	630	2300	680	1600	16000
MTBE	<100	<100	<600	<50	72	33	<50	77	140	58	<20	380	54	83	5000	NE
Toluene	<50	<50	<600	<50	<50	<30	<50	8.8	20	18	62	25	<20	52	1700	21000
Total Xylenes	7700	5700	14000	8300	7800	4800	5800	2200	3800	3300	4400	2200	5000	4200	NE	NE
Total BTEX	9490	6830	17580	10400	10000	5910	7500	2808.8	5180	4438	5882	2975	7530	5082	NE	NE

		a internet	242.52	1 - B.			Date S	ampled		a ji te a k				1.5852 5.2	RIDEM GB Groundwater	RIDEM UCL
Analyte	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	Objective	
Benzene	140	82	180	31	25	80	51	3.9	140	120	120	43	100	160	140	18000
Ethylbenzene	900	480	1200	200	170	500	320	60	240	340	140	270	170	600	1600	16000
MTBE	38	84	110	160	310	17	57	2.6	67	260	72	7.2	14	26	5000	NE
Toluene	76	28	62	<2	9.3	13	12	3	8.1	9.7	20	5	18	28	1700	21000
Total Xylenes	2800	1200	3000	400	360	880	760	140	380	580	570	460	370	1200	NE	NE
Total BTEX	3916	1790	4442	631	564.3	1473	1143	206.9	768.1	1049.7	850	778	658	1988	NE	NE

		Parket 41.			i estas i	Date Sample	les the			New John		RIDEM GB Groundwater	RIDEM UCL
Analyte	11/5/08	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	11/10/10	3/8/11	7/26/11	Objective	
Benzene	100	15	27	13	37	48	62	92	62	92	SFR	140	18000
Ethylbenzene	700	300	230	160	220	240	130	200	130	200		1600	16000
MTBE	<10	<4	<10	14	63	41	73	100	73	100		5000	NE
Toluene	<10	<4	2.8	<10	<10	<10	6.2	10	6.2	10		1700	21000
Total Xylenes	1500	480	290	160	290	250	140	240	140	240		NE	NE
Total BTEX	2300	795	549.8	333	547	538	338.2	542	338.2	542		NE	NE

1

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<x: Indicates analyte concentration not detected at or above laboratory quantitation limit (x).

Sample Results:

d: Although analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives.

u: Analyte concentration in this sample exceeds the RIDEM Upper Concentration Limit.

S:\Jobs\R\R0001-R0050\R0020\Tables\Historical GW data\2011-07-26 R020 Historical data tables.xis

Historical Groundwater Data Summary Monitor Well MW-10 (Installed 4/19/94) Coffey's Texaco Newport, Rhode Island

1

I

															RIDEM	RIDEM
	19月2日						Date S	ampled							GB Groundwater	UCL
Analyte	4/22/94	9/6/94	1/30/95	10/21/97	4/2/99	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	Objective	
Benzene	1100	310	430	2900	<25	140	320	7.9	170	19	15	11	52	130	140	18000
Ethylbenzene	590	410	470	850	380	300	110	37	41	43	20	35	32	76	1600	16000
MTBE	4300	4300	4300	930	<50	180	1100	1.5	420	6	20	9.4	59	130	5000	NE
Toluene	2500	1300	870	100	<25	<5	<20	8.8	<10	5.1	2.5	<1	<1	7.3	1700	21000
Total Xylenes	3200	2700	2400	3100	1210	730	130	25	16	17	6.8	44	18	52	NE	NE
Total BTEX	7390	4720	4170	6950	1590	1170	560	78.7	227	84.1	44.3	90	102	265.3	NE	NE

			- (1945 - 1 946)	2			Date S	ampled				5 28/~ /		19 (M 19 AR)	RIDEM GB Groundwater	RIDEM UCL
Analyte	2/14/04	5/12/04	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	Objective	
Benzene	58	5.9	44	57	84	84	350	SFR	SFR	34	55	52	SFR	64	140	18000
Ethylbenzene	74	7.3	81	48	46	140	73			100	110	110		64	1600	16000
MTBE	150	<1	25	60	220	86	770			14	23	19		19	5000	NE
Toluene	13	3.9	7.2	15	7.3	17	18			6.5	9.6	<1		6.2	1700	21000
Total Xylenes	100	18	29	25	22	54	120			130	88	98		44	NE	NE
Total BTEX	245	35.1	161.2	145	159.3	295	561			270.5	262.6	260		178.2	NE	NE

			n de Varen					Date Sample	6 9 5 7 9 7			REERE.		- 2, 6 M - M.	<u></u>	RIDEM GB Groundwater	RIDEM UCL
Analyte	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	高齢性になった。
Benzene	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene																1600	16000
MTBE																5000	NE
Toluene																1700	21000
Total Xylenes																NE	NE
Total BTEX																NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-11 (Installed 4/20/94) Coffey's Texaco Newport, Rhode Island

T

1

					5 4.43	shi natroda	Date S	ampled 👾 🔬		Sayets .			in space of the	Sec Alt	RIDEM GB Groundwater	RIDEM UCL
Analyte	4/22/94	9/6/94	1/30/95	2/1/96	4/2/99	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	Objective	
Benzene	90	52	49	<1	<0.5	<1	<1	<1	<1	<1	<1	SFR	<1	<1	140	18000
Ethylbenzene	32	44	51	<1	<0.5	<1	<]	<1	<1	<1	<1		<1	<1	1600	16000
MTBE	440	920	1100	84	61	73	78	34	84	24	45		22	35	5000	NE
Toluene	32	18	19	<1	<0.5	<1	<1	<1	<1	<1	<1		<1	<1	1700	21000
Total Xylenes	32	34	71	<1	<0.5	<1	<1	<1	<1	<1	<1		<1	<1	NE	NE
Total BTEX	186	148	190	<1	<0.5	<1	<1	<1	<1	<1	<1		<1	<1	NE	NE

							Date S	ampled		tan pa	ž da š			્ય સંવ	RIDEM GB Groundwater	RIDEM UCL
Analyte	2/4/04	5/12/04	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	Objective	議会になったよう。
Benzene	<3	SFR	<1	SFR	SFR	<1	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene	<3		<1			<1									1600	16000
MTBE	350		26			4.4									5000	NE
Toluene	<		<1			<1									1700	21000
Total Xylenes	<3		<1			<1									NE	NE
Total BTEX	<3		<1			<1									NE	NE

(<u></u>							Date Sample	dan e		kari ku s				RIDEM GB Groundwater	RIDEM UCL
Analyte	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	
Benzene	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene	1													1600	16000
MTBE														5000	NE
Toluene														1700	21000
Total Xylenes							L							NE	NE
Total BTEX														NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

. |

Historical Groundwater Data Summary Monitor Well MW-12 (Installed 4/20/94) Coffey's Texaco Newport, Rhode Island

ì

1

T

T

				5	1. Y. W. S.	N. N. L. Ø	Date S	ampled	and the second sec		1		N 1983 E	(11)的日春曦)	RIDEM GB Groundwater	RIDEM UCL
Analyte	4/22/94	9/6/94	1/30/95	2/1/96	10/21/97	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	Objective	
Benzene	<25	<100	<100	<1	<1	<25	<50	<50	<50	<40	<25	SFR	<10	<10	140	18000
Toluene	<25	<100	<100	<]	<1	33	<50	<50	<50	<40	<25		<10	<10	1600	16000
Ethylbenzene	<25	<100	<100	<1	<]	<25	<50	<50	<50	<40	<25		<10	<10	5000	NE
Total Xylenes	<25	<100	<100	<1	<1	41	<50	<50	<50	<40	<25		64	<10	1700	21000
MTBE	2800	5500	6100	1500	2800	4100	3500	2200	3700	1600	1800		1400	11000	NE	NE
Total BTEX	<25	<100	<100	<1	<1	74	<50	<50	<50	<40	<25		64	<10	NE	NE

	- WELL			- ME 11 - ME	省城市		Date S	ampled		ê Cêler x	t and the		921.0 S		RIDEM GB Groundwater	RIDEM UCL
Analyte	2/4/04	5/12/04	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	Objective	
Benzene	<10	SFR	<20	SFR	SFR	<5	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Toluene	<10		<20			<5									1600	16000
Ethylbenzene	<10		<20			<5									5000	NE
Total Xylenes	<10		26			<5									1700	21000
MTBE	1500		1900			660									NE	NE
Total BTEX	<10		26			<5									NE	NE

		de la desta	AND STREET	885 - <u>1</u> .		(1) (1) (1)	Date Sample	d 🦾		V. S. A. S.				RIDEM GB Groundwater	RIDEM UCL
Analyte	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	
Benzene	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Toluene		1												1600	16000
Ethylbenzene														5000	NE
Total Xylenes														1700	21000
MTBE														NE	NE
Total BTEX														NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

. |

.

1

Historical Groundwater Data Summary Monitor Well MW-13 (Destroyed) (Installed 5/3/94) Coffey's Texaco Newport, Rhode Island

	a the second		1. S. A. F.	No Charles		Date Si	mpled		ang ng si karang si k	and a give		in the second	RIDEM GB Groundwater	RIDEM UCL
Analyte	5/6/94	9/6/94	1/30/95	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	4900	Objective	경험 승규는 것
Benzene	5400	5400	4700	5600	5700	5900	5500	4900	5200	5400	5100	1400	140	18000
Ethylbenzene	<500	560	950	1400	1900	1800	1600	1700	1400	1400	1200	3200	1600	16000
MTBE	26000	27000	3600	5400	4900	5700	4500	3400	4200	3600	3400	340	5000	NE
Toluene	770	2100	4100	240	980	430	1000	880	530	290	440	5200	1700	21000
Total Xylenes	590	2800	5100	2400	7800	4200	4900	6900	6200	3900	3800	11840	NE	NE
Total BTEX	6760	10860	14850	9640	16380	12330	13000	14380	13330	10990	10540	10540	NE	NE

			1.000	sa di santa ing		Date S	mpled	in the second	ar fan te san ar s		trate >		RIDEM GB Groundwater	RIDEM UCL
Analyte	5/12/04	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	Objective	
Benzene	4800	5400	4800	5200	2400	5000	4800	4600	4300	5200	5600	2600	140	18000
Ethylbenzene	1600	920	1000	1700	860	1100	1200	2000	2100	2000	2800	1100	1600	16000
MTBE	2800	2800	2000	2500	1200	1900	1800	1400	1800	1700	2100	1000	5000	NE
Toluene	460	230	290	520	290	220	490	440	440	200	630	130	1700	21000
Total Xylenes	6100	2800	2800	5800	3800	3700	3500	5500	7300	4800	7100	2500	NE	NE
Total BTEX	12960	9350	8890	13220	7350	10020	9990	12540	14140	12200	16130	6330	NE	NE

:	21 (27 AQ) 3	- 1 <i>54</i> 2	Maria							RIDEM GB Groundwater	RIDEM UCL
Analyte	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	Objective	
Benzene	4700	4600	5000	4700	4600	6200	5100	4200	Destroyed	140	18000
Ethylbenzene	3000	1500	800	1600	840	1800	1900	1200	-	1600	16000
MTBE	1400	1500	1200	1700	1000	1500	1100	640		5000	NE
Toluene	260	76	200	270	120	340	280	120		1700	21000
Total Xylenes	6600	1600	1400	4200	1900	2600	4100	2130		NE	NE
Total BTEX	14560	7776	7400	10770	7460	10940	11380	7650		NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

. i

I.

1

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-14 (Installed 5/4/94) Coffey's Texaco Newport, Rhode Island

- F

	N. 1993.					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Date Sampled				- 	1.5% 37		RIDEM GB Groundwater	RIDEM UCL
Analyte	5/6/94	9/6/94	1/30/95	2/1/96	4/2/99	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	Objective	
Benzene	3500	120	<250	230	<50	<62	<5	<1	Dry	Dry	<1	NS	NS	140	18000
Ethylbenzene	<250	<100	<250	45	<50	<62	<5	<1			<1			1600	16000
MTBE	6100	7100	8000	9000	6500	3700	350	<1			<1			5000	NE
Toluene	2600	<100	<250	19	<50	<62	<5	<1			<1			1700	21000
Total Xylenes	1400	<100	<250	99	<50	<62	<5	<1			<1			NE	NE
Total BTEX	13600	7220	<250	9393	<50	<62	<5	<1			<1			NE	NE

	지지 않는	1	an in their			and the second	Date Sample	d a fuera			. 144 g (j 1)			RIDEM GB Groundwater	RIDEM UCL
Analyte	11/25/03	2/4/04	5/12/04	8/11/04	11/11/04	2/8/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	Objective	
Benzene	NS	NS	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	140	18000
Ethylbenzene														1600	16000
MTBE														5000	NE
Toluene														1700	21000
Total Xylenes														NE	NE
Total BTEX														NE	NE

6-10-1			a and a second		877 . Y	. The figs	Date S	ampled		- <u></u>			e e constante de la constante d	e state a state de	RIDEM GB Groundwater	RIDEM UCL
Analyte	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	
Benzene	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	SFR	140	18000
Ethylbenzene					1										1600	16000
MTBE	4														5000	NE
Toluene	4														1700	21000
Total Xylenes															NE	NE
Total BTEX															NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

. .

1

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-15 (Installed 5/4/94) Coffey's Texaco Newport, Rhode Island

1

			1 5 4 N 2 2 3			3 (5 7 C 7 B R	Date Sample	ed and a state	laan too too	a second	an a			RIDEM GB Groundwater	RIDEM UCL
Analyte	5/6/94	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	5/12/04	8/11/04	11/11/04	Objective	그는 말 물건을 받았다.
Benzene	300	370	160	SPP	SPP	SPP	900	SPP	SPP	SPP	SPP	SPP	240	140	18000
Ethylbenzene	<50	730	730				1700						710	1600	16000
MTBE	14000	<50	<50				58						<50	5000	NE
Toluene	<50	230	260				5500						900	1700	21000
Total Xylenes	510	6800	7200				23000						14000	NE	NE
Total BTEX	810	8130	8350				31100						15850	NE	NE

		, i Solita Sec	a de la composición d	- - 1. 166 - 414	iji kati ta kati	e Jest	Date Sample	ed a la constant	n A ar ing			in the second	Falses e	RIDEM GB Groundwater	RIDEM UCL
Analyte	2/8/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	Objective	
Benzene	170	SPP	530	SPP	290	430	520	400	430	1000	SPP	960	800	140	18000
Ethylbenzene	750		1200		1000	1200	1400	1200	1800	4100		3200	1800	1600	16000
MTBE	<40		<50		<50	<50	<50	<50	<100	<100		<100	<120	5000	NE
Toluene	1000		1600		780	940	610	1100	1400	780		600	390	1700	21000
Total Xylenes	20000		16000		18000	20000	21000	19000	27000	34000		36000	19000	NE	NE
Total BTEX	21920		19330		20070	22570	23530	21700	30630	39880		40760	21990	NE	NE

			ene ha	hate .	Date Sample	ed		an a		RIDEM GB Groundwater	RIDEM UCL
Analyte	11/5/08	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	
Benzene	850	380	490	360	<120	370	460	180	500	140	18000
Ethylbenzene	1800	1500	1300	960	750	1200	1500	750	1100	1600	16000
MTBE	81	<50	<400	<400	<120	<250	<100	<160	<50	5000	NE
Toluene	300	480	330	140	<120	110	100	54	78	1700	21000
Total Xylenes	17000	20000	14900	11100	8000	13800	9600	9100	11500	NE	NE
Total BTEX	19950	22360	17020	12560	8750	15480	11660	10084	13178	NE	NE

ł

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-16 (Installed 5/4/94) Coffey's Texaco Newport, Rhode Island

				. 194			y have	Date Sample	d		17 March 1	1.1.6084		ter an	i galan ing	RIDEM GB Groundwater	RIDEM UCL
Analyte	2/1/96	4/2/99	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	5/12/04	8/11/04	11/11/04	Objective	
Benzene	1	12	30	Dry	3.5	110	Dry	4.6	78	NS	<10	NS	12	140	<1	140	18000
Ethylbenzene	4	57	140		8.7	530		15	2000		980		160	1700	<1	1600	16000
MTBE	2	<1.0	12		1	<10		<1	80		29		<2	26	2 7	5000	NE
Toluene	<1	3.6	8.6		1	32		2.2	49		21		5.9	65	<1	1700	21000
Total Xylenes	9	96.8	190		1.5	120		8.7	1100		490		76	570	<1	NE	NE
Total BTEX	14	169.4	368.6		14.7	792		30.5	3227		1491		253.9	2475		NE	NE

		6 2003		16 F		et i se estas		Date Sample	d			1.1.1.1.1.1.1			4. M.A	RIDEM GB Groundwater	RIDEM
Analyte	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	Objective .	
Benzene	73	8.1	39	43	<1	9.5	58	9.8	26	14	100	19	<1	35	63	140	18000
Ethylbenzene	1500	32	400	380	9.6	28	640	18	17	140	760	110	2.8	240	350		16000
MTBE	<10	4.8	<3	<3	1.2	2.5	12	3.5	15	8.4	32	7.1	<1	14	25	5000	NE
Toluene	82	3	15	18	<1	2.2	26	1.8	6.9	1.9	38	4.6	<1	10	19	1700	21000
Total Xylenes	580	12	55	150	11	7.2	95	6.5	10	16	88	62	2	17	48	NE	NE
Total BTEX	2235	55.1	509	591	20.6	46.9	819	36.1	59,9	171.9	986	195.6	4,8	302	480	NE	NE

	- <u>6 -</u>			Date S	ampled		e Maria		RIDEM GB Groundwater	RIDEM UCL
Analyte	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	and the second
Benzene	<1	16	43	46	54	84	59	SFR	140	18000
Ethylbenzene	<1	22	550	240	970	600	1300		1600	16000
MTBE	<1	<5	<20	13	15	36	23		5000	NE
Toluene	<1	<5	<20	13	15	20	20		1700	21000
Total Xylenes	<1	7.4	100	40	90	117	67		NE	NE
Total BTEX	<1	45.4	693	339	1129	821	1446		NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-17 (Destroyed) (Installed 8/30/94) Coffey's Texaco Newport, Rhode Island

			L			Date Sample	d 😒 👷		K a land data s		Sec. 1997	RIDEM GB Groundwater	RIDEM UCL
Analyte	9/6/94	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	5/12/04	Objective	
Benzene	290	440	280	600	350	290	210	340	340	190	270	140	18000
Ethylbenzene	170	550	48	510	650	320	340	610	390	180	490	1600	16000
MTBE	11000	3800	510	8000	850	3600	370	2100	1800	1600	1100	5000	NE
Toluene	970	560	880	340	880	170	540	350	400	170	210	1700	21000
Total Xylenes	1300	10000	11000	8600	12000	5300	7900	11000	7600	4000	8500	NE	NE
Total BTEX	2730	11550	12208	10050	13880	6080	8990	12300	8730	4540	9470	NE	NE

		228년 11월 3			1	Date Sample	4 条款 信令 行					RIDEM GB Groundwater	RIDEM UCL
Analyte	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	Objective	
Benzene	340	380	290	230	280	240	320	290	480	580	540	140	18000
Ethylbenzene	500	290	390	300	340	350	500	370	490	590	340	1600	16000
MTBE	1800	1800	1100	320	770	390	520	370	710	720	630	5000	NE
Toluene	190	95	250	200	290	320	290	340	300	310	180	1700	21000
Total Xylenes	8600	4400	9500	7400	8000	7800	11000	8800	8000	12000	6800	NE	NE
Total BTEX	9630	5165	10430	8130	8910	8710	12110	9800	9270	13480	7860	NE	NE

					Date Sample	B irtheoreach an		Na kana	an a she	RIDEM GB Groundwater	RIDEM UCL
Analyte	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	Objective	
Benzene	610	520	530	340	340	430	670	290	Destroyed	140	18000
Ethylbenzene	460	410	420	430	430	310	1500	360		1600	16000
MTBE	480	410	280	120	130	170	<100	69		5000	NE
Toluene	220	130	120	150	180	81	510	68		1700	21000
Total Xylenes	11000	8600	8300	12000	10000	5500	31000	4900		NE	NE
Total BTEX	12290	9660	9370	12920	10950	6321	33680	5618		NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-18 (Installed 8/30/94) Coffey's Texaco Newport, Rhode Island

				New A Table				Date S	ampled	1 Andrews			4 S S		調を進入し	Phone Star	RIDEM GB Groundwater	RIDEM
Analyte	9/6/94	2/1/96	10/21/97	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	5/12/04	8/11/04	11/11/04	- Objective	- 「「「「「「「」」」」
Benzene	<0.5	<1	<1	<0.5	<1	<1	<1	<1	<1	SFR	<1	<1	<1	SFR	<1	SFR	140	18000
Ethylbenzene	<0.5	<1	<1	<0.5	<1	<1	<1	<1	<1		<1	<1	<1		<1		1600	16000
MTBE	<2	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1		<1		5000	NE
Toluene	<0.5	<1	2	<0.5	<1	<1	<1	<1	<1		<1	<1	<1		<1		1700	21000
Total Xylenes	<0.5	<1	<1	<0.5	<1	<1	<1	<1	<1		<1	<1	<1		<1		NE	NE
Total BTEX	<0.5	<]	2	<0.5	<1	<]	<1	<1	<1		<1	<1	<1		<1		NE	NE

		. 15	1 - P		8 T 14 T 1	3 5. 5. 5. 5. 5 5. ga 5	571	Date Sample	d			A	1		211	RIDEM GB Groundwater	RIDEM UCL
Analyte	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	Objective	
Benzene	SFR	<1	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene		<1														1600	16000
MTBE	1	<1											}			5000	NE
Toluene		<1														1700	21000
Total Xylenes		<1														NE	NE
Total BTEX		<1													(NE	NE

	a na kata kata kata kata kata kata kata		1.295 - X.S	Date S	ampled		AN LINES BY	<u>.</u>	RIDEM GB Groundwater	RIDEM UCL
Analyte	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	
Benzene	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene									1600	16000
MTBE									5000	NE
Toluene									1700	21000
Total Xylenes									NE	NE
Total BTEX									NĒ	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-19 (Destroyed) (Installed 8/30/94) Coffey's Texaco Newport, Rhode Island

						Date Si	mpled			은 것 같 한 -			RIDEM GB Groundwater	RIDEM UCL
Analyte	9/6/94	1/30/95	2/1/96	10/21/97	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	Objective	
Benzene	140	<50	84	4	65	80	58	50	41	14	SFR	<1	140	18000
Ethylbenzene	100	<50	48	<1	4.6	8.7	37	4.6	12	6.4		28	1600	16000
MTBE	980	320	370	205	170	200	170	140	81	61		52	5000	NÉ
Toluene	30	<50	7	3	<2.5	<5	2.4	<2	<1	<1		3.4	1700	21000
Total Xylenes	240	<50	15	6	<2.5	<5	2.5	2.6	1.1	1.9		6.5	NE	NE
Total BTEX	510	<50	154	13	69.6	88.7	99.9	57.2	54.1	22.3		37.9	NE	NE

						Date S	ampled			Andrea (m. 1997)		승운지가 좋아	RIDEM GB Groundwater	RIDEM UCL
Analyte	11/25/03	2/4/04	5/12/04	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	Objective	
Benzene	8	5.3	SFR	28	SFR	SFR	60	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene	2.6	3,8		9.2			32						1600	16000
MTBE	43	41		56			54						5000	NE
Toluene	<1	<1		<1			2.1						1700	21000
Total Xylenes	<1	<1		<1			1.5						NE	NE
Total BTEX	10.6	9.1		37.2			95.6						NE	NE

·			in in t		建制的东南	Date Sample	d - Estat			ki tosta	1 - NG4 & L	RIDEM GB Groundwater	RIDEM UCL
Analyte	11/16/06	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	Objective	
Benzene	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	Destroyed	140	18000
Ethylbenzene												1600	16000
MTBE												5000	NE
Toluene												1700	21000
Total Xylenes												NE	NE
Total BTEX												NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

ł

<x: Indicates analyte concentration not detected at or above laboratory quantitation limit (x).

S:\Jobs\R\R0001-R0050\R0020\Tables\Historical GW data\2011-07-26 R020 Historical data tables.xis

Historical Groundwater Data Summary Monitor Well MW-20 (Installed 8/31/94) Coffey's Texaco Newport, Rhode Island

		1.1.200 P. (.			an tright an thing		Date Sample	d	i ve sven	ing the second states	Jugi I Cala	199 <u>7</u> - 643-		RIDEM GB Groundwater	RIDEM UCL
Analyte	9/6/94	1/30/95	2/1/96	4/2/99	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	Objective	
Benzene	<0.5	<5	<1	<0.5	<0.5	<1	<1	<1	<1	<1	SFR	<1	<1	140	18000
Ethylbenzene	2.3	33	8	<0.5	2.4	<1	1.6	<1	<1	1		<1	<1	1600	16000
MTBE	18	11	<1	<1.0	<1.0	16	<1	20	<1	<1		<1	<1	5000	NE
Toluene	0.84	<5	<1	<0.5	<0.5	<1	<1	<1	<1	<1		<1	<1	1700	21000
Total Xylenes	3.6	39	5	<0.5	0.91	<1	1	<1	<1	<1		<1	<1	NE	NE
Total BTEX	6.74	72	13	<0.5	3.31	<1	1.6	<1	<1	1		<1	<1	NE	NE

[$\frac{d}{d_1} = \frac{d}{d_1} + \frac{d}$		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		i și și l	Date Sample	d				server and the server of the		RIDEM GB Groundwater	RIDEM UCL
Analyte	2/4/04	5/12/04	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	Objective	
Benzene	<1	SFR	<1	SFR	SFR	<1	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene	<1		<1			<1								1600	16000
MTBE	5.1		<1			<1								5000	NE
Toluene	<1		<1			<1								1700	21000
Total Xylenes	<1		<1			<1								NE	NE
Total BTEX	<1		<1			<1								NE	NE

[N E PAR		Date S	ampled			1.444.6	- 			RIDEM GB Groundwater	RIDEM UCL
Analyte	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	
Benzene	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene															1600	16000
MTBE															5000	NE
Toluene									-						1700	21000
Total Xylenes											L				NE	NE
Total BTEX															NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-21 (Installed 8/31/94) Coffey's Texaco Newport, Rhode Island

			ar francis 1997 - Standard Standard				Date Si	mpled	section 2	e sa anti	and the second			e de la calega	RIDEM GB Groundwater	RIDEM UCL
Analyte	9/6/94	1/30/95	2/1/96	10/21/97	4/2/99	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	Objective	
Benzene	<0.5	<0.5	<1	1	<0.5	<0.5	<1	<1	<1	<1	<1	SFR	<1	<1	140	18000
Ethylbenzene	<0.5	<0.5	12	<1	<0.5	<0.5	<1	<1	<1	<1	<1		<1	<1	1600	16000
MTBE	56	39	<1	192	1.7	1.5	6.2	<1	4.9	3.7	<1		<1	2.2	5000	NE
Toluene	<0.5	<0.5	<1	1	<0.5	<0.5	<1	<1	<1	<1	<1		<1	<1	1700	21000
Total Xylenes	<0.5	<0.5	<1	<1	<0.5	<0.5	<1	<1	<1	<1	<1		<1	<1	NE	NE
Total BTEX	<0.5	<0.5	12	2	<0.5	<0.5	<1	<1	<1	<1	<1		<1	<1	NE	NE

			ζ. Δ.)		in di second	25657	Date S	ampled		7 - 42 - 13 -	an a		Maria da seria da se		RIDEM GB Groundwater	RIDEM UCL
Analyte	2/4/04	5/12/04	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	Objective	승규는 것을 가려졌다.
Benzene	<1	SFR	<1	SFR	SFR	<1	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene	<1		<1			<1									1600	16000
MTBE	9.2		<1			2.4									5000	NE
Toluene	<1		<1			<1									1700	21000
Total Xylenes	<1		<1			<1									NE	NE
Total BTEX	<1		<1			<1									NE	NE

			je stalina stali				Date Sample	d	1943 - 1944 1943 - 1944	er en state filmeliet				RIDEM GB Groundwater	RIDEM
Analyte	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	
Benzene	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene														1600	16000
MTBE														5000	NE
Toluene														1700	21000
Total Xylenes														NE	NE
Total BTEX														NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method. < x: Indicates analyte concentration not detected at or above laboratory quantitation limit (x).

. 1

S:\Jobs\R\R0001-R0050\R0020\Tables\Historical GW data\2011-07-26 R020 Historical data tables.xls

Historical Groundwater Data Summary Monitor Well MW-22 (Installed 8/31/94) Coffey's Texaco Newport, Rhode Island

1

															RIDEM	RIDEM
	(水衡(水))					a an	Date S	ampled				き : 200 単言	9 - E. S.		GB Groundwater	UCL
Analyte	9/6/94	1/30/95	2/1/96	10/21/97	4/2/99	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	Objective	
Benzene	20	<100	6	3	<5.0	<20	<10	2.5	4.6	1.8	1.9	SFR	2.3	2	140	18000
Ethylbenzene	<10	<100	<1	<1	30	<20	<10	<1	<3	1.6	4.3		<1	<1	1600	16000
MTBE	1500	1300	490	1150	320	1400	420	81	180	22	18		28	35	5000	NE
Toluene	<10	<100	<1	1	<5.0	<20	<10	<1	<3	<1	<1		<1	<1	1700	21000
Total Xylenes	<10	<100	<1	2	100	<20	<10	<1	<3	<]	3.1		<1	<1	NE	NE
Total BTEX	20	<100	6	6	130	<20	<10	2.5	4.6	3.4	9.3		2.3	2	NE	NE

•	1945 - S	1960 - 1960 - 19	- 1. 1			a	Date S	ampled			4 . ⁻ 4				RIDEM GB Groundwater	RIDEM UCL
Analyte	2/14/04	5/12/04	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	Objective	
Benzene	2.2	SFR	2.1	SFR	SFR	2.5	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene	<1		<1			<1									1600	16000
MTBE	70		69			45									5000	NE
Toluene	<1		5.2			<1									1700	21000
Total Xylenes	<1		<1			<1									NE	NE
Total BTEX	2.2		7.3			2.5									NE	NE

1			L Stage to the	<u>i</u> service		1. e.	Date Sampled	1						RIDEM GB Groundwater	RIDEM UCL
Analyte	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	
Benzene	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene														1600	16000
MTBE														5000	NE
Toluene														1700	21000
Total Xylenes														NE	NE
Total BTEX														NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-23 (Installed 8/31/94) Coffey's Texaco Newport, Rhode Island

Ţ

				19 48 - 1975			Date Sample	a			tion and the second		-	RIDEM GB Groundwater	RIDEM UCL
Analyte	9/6/94	1/30/95	2/1/96	4/2/99	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	Objective	
Benzene	<25	<100	2	<25	<25	<30	<5	<20	<7	<5	SFR	3	<2	140	18000
Ethylbenzene	<25	<100	43	<25	<25	<30	16	<20	13	<5		5.8	3.3	1600	16000
MTBE	2000	2000	1700	2100	1500	1100	320	700	340	360		280	240	5000	NE
Toluene	<25	<100	<1	<25	<25	<30	<5	<20	<7	<5		<3	<2	1700	21000
Total Xylenes	<25	<100	26	<25	<25	<30	<5	<20	28	6.7		3.1	3	NE	NE
Total BTEX	<25	<100	71	<25	<25	<25	16	<20	41	6.7		8.9	6.3	NE	NE

			tel production	生成的变形			Date Sample	i terestere	a de la composición d			1. 1		RIDEM GB Groundwater	RIDEM UCL
Analyte	2/4/04	5/12/04	8/11/04	11/10/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	Objective	동물과 집 문문에
Benzene	<1	SFR	NS	SFR	SFR	NS	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene	<1													1600	16000
MTBE	140													5000	NE
Toluene	<1	(access blocke	d)	(access blocke	d)							1700	21000
Total Xylenes	<1													NE	NE
Total BTEX	<1													NE	NE

,	<u> </u>	n Panak	1948	a sector de de			Date S	ampled	4.4		anse.	4 M. A. A.		diverse M	RIDEM GB Groundwater	RIDEM UCL
Analyte	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	
Benzene	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Ethylbenzene															1600	16000
MTBE															5000	NE
Toluene															1700	21000
Total Xylenes															NE	NE
Total BTEX															NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-24 (Destroyed) Coffey's Texaco Newport, Rhode Island

		. C. S. Martin										RIDEM	RIDEM
Analyte	1/30/95	2/1/96	12/26/01	5/14/02	8/15/02	Date Sample 11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	GB Groundwater	UCL
Benzene	SPP	SPP	4400	SPP	4000	3000	SPP	1300	NS	NS	1600	140	18000
Ethylbenzene			2400		1800	1500		1000			1500	1600	16000
MTBE			1400		1800	970		150			940	5000	NE
Toluene			460		290	1200		3900			6000	1700	21000
Total Xylenes			17000		7300	5800		8600			12000	NE	NE
Total BTEX			24260		13390	11500		14800			21100	NE	NE

			the state of the second	210 Jan 199 . 10 27 Tan	1.140	Date Samples	l internet					RIDEM GB Groundwater	RIDEM UCL
Analyte	5/12/04	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	Objective	
Benzene	1800	2300	2000	1400	1400	2800	2600	2500	3000	2800	2900	140	18000
Ethylbenzene	1400	1800	1600	1200	1400	2400	2900	3100	2800	3500	4000	1600	16000
MTBE	530	420	350	210	200	350	320	380	360	310	320	5000	NE
Toluene	7400	6900	6000	4400	4800	6600	6400	3900	3300	1900	2900	1700	21000
Total Xylenes	12000	15000	12000	12000	12000	16000	17000	18000	16000	18000	20000	NE	NE
Total BTEX	22600	26000	21600	19000	19600	27800	28900	27500	25100	26200	29800	NE	NE

•					Date S	ampled	45			£ 10 \$ 400)	RIDEM GB Groundwater	RIDEM UCL
Analyte	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	Objective	对于我们 在1993年
Benzene	2600	SPP	2300	2300	SFR	2000	2200	2300	1900	Destroyed	140	18000
Ethylbenzene	3300		3400	3000		3000	3000	3200	2800	-	1600	16000
MTBE	490		350	340		220	330	430	150		5000	NE
Toluene	780		1800	1500		1300	860	1800	610		1700	21000
Total Xylenes	16000		16000	13000		14000	19000	18000	10200		NE	NE
Total BTEX	22680		23500	19800		20300	25060	25300	15510		NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<x: Indicates analyte concentration not detected at or above laboratory quantitation limit (x).

S:\Jobs\R\R0001-R0050\R0020\Tables\Historical GW data\2011-07-26 R020 Historical data tables.xls

Historical Groundwater Data Summary Monitor Well MW-25 Coffey's Texaco Newport, Rhode Island

ì

		A MARINE	E net So			Date S	mpled		Acas -			ăt i	RIDEM GB Groundwater	RIDEM UCL
Analyte	1/30/1995	2/1/96	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	5/12/04	Objective	には得る。こので書い
Benzene	SPP	SPP	160	840	SPP	600	500	480	310	180	240	590	140	18000
Ethylbenzene			820	1200		760	700	620	460	260	400	280	1600	16000
MTBE			100	2600		1500	1100	1200	810	640	890	1300	5000	NE
Toluene			<100	200		100	<100	100	<40	<50	<50	92	1700	21000
Total Xylenes			19000	21000		15000	18000	19000	18000	15000	12000	12000	NE	NE
Total BTEX			20080	23240		16460	20300	20200	18770	16080	12640	14262	NE	NE

		n jarre	1 - 1 - 1	219) 1		Date S	ampled	- दर्ष हे र फ				2. 2. (1)	RIDEM GB Groundwater	RIDEM
Analyte	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	Objective	観日記に対した。
Benzene	290	250	210	250	200	300	190	150	200	530	200	280	140	18000
Ethylbenzene	190	190	240	190	260	200	290	220	220	770	250	210	1600	16000
MTBE	960	<25	690	670	610	490	430	340	360	310	290	260	5000	NE
Toluene	62	54	67	84	<50	69	52	30	45	340	45	59	1700	21000
Total Xylenes	17000	12000	16000	13000	15000	9500	11000	8700	11000	12000	10000	8300	NE	NE
Total BTEX	11790	12494	17207	14194	16070	10559	11962	9440	11825	13950	10495	8849	NE	NE

			ar kar ar		÷	1	Date Sample	d	t de la companya de la		(後)		£	RIDEM GB Groundwater	
Analyte	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	
Benzene	170	170	140	140	210	160	120	120	61	24	17	58	SFR	140	18000
Ethylbenzene	210	280	140	190	240	250	180	220	190	66	44	240		1600	16000
MTBE	160	140	200	120	120	100	51	<50	<25	16	8.2	12		5000	NE
Toluene	34	22	<100	22	<25	24	12	<50	<25	<5	<5	5.4		1700	21000
Total Xylenes	6800	6400	3800	4800	4100	3900	2040	1260	1010	201	74	444		NE	NE
Total BTEX	7214	6872	4080	5152	4550	4342	2372	1600	1293	323	167	774		NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

. .

ľ

i

Historical Groundwater Data Summary Monitor Well MW-26 (Destroyed) Coffey's Texaco Newport, Rhode Island

						Date Sampled						RIDEM GB Groundwater	RIDEM UCL
Analyte	1/30/95	2/1/96	12/26/01	5/14/02	8/15/2002	11/25/2002	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	Objective	
Benzene	950	SPP	SPP	SPP	SPP	1800	980	1200	1100	890	860	140	18000
Ethylbenzene	3300					2700	2100	3600	2500	1700	2000	1600	16000
MTBE	19000					810	680	600	610	1000	1100	5000	NE
Toluene	4000					5600	1300	5300	1500	1900	700	1700	21000
Total Xylenes	13000					17000	11000	23000	10000	10000	8900	NE	NE
Total BTEX	21250					27100	15380	33100	15100	14490	12460	NE	NE

					Mass 1	Date Sample	1		99 (RIDEM GB Groundwater	RIDEM UCL
Analyte	5/12/04	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	Objective	
Benzene	1000	680	590	1100	770	880	640	840	730	680	960	140	18000
Ethylbenzene	2000	1800	2200	3000	2200	2200	1800	1800	1900	2700	2900	1600	16000
MTBE	560	740	530	250	210	490	450	560	130	560	530	5000	NE
Toluene	1800	810	760	4600	1900	1000	830	990	3200	600	2800	1700	21000
Total Xylenes	9200	8500	12000	22000	12000	9800	7500	8300	12000	15000	19000	NE	NE
Total BTEX	14000	11790	15550	30700	16870	13880	10770	11930	17830	18980	25660	NE	NE

			2.479.81		Date S	ampled					RIDEM GB Groundwater	RIDEM UCL
Analyte	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	Objective	
Benzene	750	820	960	1100	1100	900	620	1200	480	Destroyed	140	18000
Ethylbenzene	2200	1500	1600	1700	3100	1700	1200	2600	1200		1600	16000
MTBE	780	380	550	500	270	330	340	250	94		5000	NE
Toluene	240	1300	500	310	2500	730	100	590	94		1700	21000
Total Xylenes	13000	8300	6800	5900	21000	8900	3400	16000	3310		NE	NE
Total BTEX	16190	11920	9860	9010	27700	12230	5320	20390	5084		NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

ł

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-27 (Destroyed) Coffey's Texaco Newport, Rhode Island

					1990 - S.	Date S	ampled						RIDEM GB Groundwater	RIDEM UCL
Analyte	1/30/95	2/1/96	10/21/97	4/2/99	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	Objective	
Benzene	10	<1	<1	<0.5	<0.5	<1	<1	<1	<1	<1	<1	<1	140	18000
Toluene	<5	<1	<1	<0.5	<0.5	<1	<1	<1	<1	<1	3.3	<1	1600	16000
Ethylbenzene	13	<1	<1	<0.5	< 0.5	<1	<1	<1	<1	<1	4.1	<1	5000	NE
Total Xylenes	36	<1	<1	<0.5	<0.5	<1	<1	<1	<1	<1		<1	1700	21000
MTBE	99	58	56	30	5.1	15	22	10	1.3	11	<1	12	NE	NE
Total BTEX	59	<1	<1	<0.5	<0.5	<1	<1	<1	<1	<1	42.4	<1	NE	NE

r Statistics						Date S	ampled		$\cdots \in \mathcal{F}^{(n)}$				RIDEM GB Groundwater	RIDEM UCL
Analyte	11/25/03	2/4/04	5/12/04	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	Objective	
Benzene	<1	<1	SFR	<1	SFR	SFR	<1	SFR	SFR	SFR	SFR	SFR	140	18000
Toluene	<1	<1		<1			<1						1600	16000
Ethylbenzene	<1	<1		<1			<1						5000	NE
Total Xylenes	<1	<1		<1			<1						1700	21000
MTBE	8	15		4.8			<1						NE	NE
Total BTEX	<1	<1		<1			<1						NE	NE

			.4	Na sei		Date Sample	d - C-Se			1. A.		RIDEM GB Groundwater	RIDEM UCL
Analyte	11/16/06	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	Objective	時期に行った。
Benzene	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	Destroyed	140	18000
Toluene												1600	16000
Ethylbenzene												5000	NE
Total Xylenes												1700	21000
MTBE												NE	NE
Total BTEX												NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-28 (Destroyed) Coffey's Texaco Newport, Rhode Island

		S. E. S. S.		Y at		Date Sample	1					RIDEM GB Groundwater	RIDEM UCL
Analyte	1/30/95	2/1/96	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	Objective	
Benzene	2600	SPP	2900	1500	5000	940	1200	2000	2300	1300	990	140	18000
Ethylbenzene	<1000		900	3100	880	1200	1100	1800	1600	760	690	1600	16000
MTBE	12000		5700	770	9200	400	1400	980	2700	780	1100	5000	NE
Toluene	2400		210	840	150	500	1800	2000	1700	810	860	1700	21000
Total Xylenes	2200		9900	25000	4100	10000	13000	20000	14000	10000	8800	NE	NE
Total BTEX	7200		13910	30440	10130	12640	17100	25800	19600	12870	11340	NE	NE

						Date Sample	d	ter de la calega		1. S. S. S.		RIDEM GB Groundwater	RIDEM UCL
Analyte	5/12/04	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	Objective	
Benzene	SPP	1900	1600	1000	730	2400	1700	2000	1900	2500	2300	140	18000
Ethylbenzene		1400	1100	1300	840	1100	1400	1400	1700	2000	2400	1600	16000
MTBE		940	8300	320	200	1600	350	440	300	820	420	5000	NE
Toluene		2200	1600	2100	710	520	780	1600	1800	830	800	1700	21000
Total Xylenes		16000	12000	16000	11000	14000	15000	15000	15000	17000	18000	NE	NE
Total BTEX		22440	16300	20400	13280	18020	18880	20000	20400	22330	23500	NE	NE

		-		te de la constance	Date S	ampled			k. C. Hann		RIDEM GB Groundwater	RIDEM
Analyte	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	Objective	
Benzene	2700	2300	1800	690	1900	1200	1200	1000	460	Destroyed	140	18000
Ethylbenzene	2300	2400	2000	1100	1900	1500	980	530	910		1600	16000
MTBE	910	580	280	64	200	140	<50	<40	<250		5000	NE
Toluene	440	1300	390	280	1000	310	250	210	200		1700	21000
Total Xylenes	18000	19000	14000	11000	19000	14000	14000	10000	11600		NE	NE
Total BTEX	23440	25000	18190	13070	23800	17010	16430	11740	13170		NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

1

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<x: Indicates analyte concentration not detected at or above laboratory quantitation limit (x).

S:\Jobs\R\R0001-R0050\R0020\Tables\Historical GW data\2011-07-26 R020 Historical data tables.xls

Historical Groundwater Data Summary Monitor Well MW-29 Coffey's Texaco Newport, Rhode Island

	医脑 法公选		·雪雪》:"啊!			Date S	ampled						RIDEM GB Groundwater	RIDEM UCL
Analyte	2/1/96	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	5/12/04	Objective	ALL PROPERTY.
Benzene	11	3.9	2.1	<5	13	22	4.9	SFR	19	4.6	1.8	SFR	140	18000
Ethylbenzene	690	63	11	<5	51	62	41		130	44	16		1600	16000
MTBE	1100	240	200	170	150	140	<2		110	100	120		5000	NE
Toluene	400	6.1	<2	<5	16	19	16		98	18	8.6		1700	21000
Total Xylenes	5200	230	80	14	230	340	290		1000	380	180		NE	NÉ
Total BTEX	6301	303	93.1	14	310	443	351.9		1247	446.6	206.4		NE	NE

						Date S	ampled					THE VERY	RIDEM GB Groundwater	RIDEM UCL
Analyte	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07*	Objective	
Benzene	17	SFR	SFR	24	SFR	SFR	SFR	SFR	SFR	SFR	SFR	14	140	18000
Ethylbenzene	210			160								120	1600	16000
MTBE	48			37								58	5000	NE
Toluene	69			280								55	1700	21000
Total Xylenes	1600			2500								1800	NE	NE
Total BTEX	3440			2964								1989	NE	NE

]	to and						Date Sample	d		8 - 1 J - 5 4				RIDEM GB Groundwater	RIDEM UCL
Analyte	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	[1] [how] [2] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4
Benzene	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	<25	<5	<5	<5	SFR	140	18000
Ethylbenzene									160	100	57	43		1600	16000
MTBE									<25	44	30	32		5000	NE
Toluene									<25	<5	<5	<5		1700	21000
Total Xylenes									1340	282	134	104		NE	NE
Total BTEX									1500	382	191	147		NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<x: Indicates analyte concentration not detected at or above laboratory quantitation limit (x).

* Sampled on 5/23/07 due to SPP detected on 2/21/07

S:\Jobs\R\R0001-R0050\R0020\Tables\Historical GW data\2011-07-26 R020 Historical data tables.xls

Historical Groundwater Data Summary Monitor Well MW-30 (Installed 11/4/10) Coffey's Texaco Newport, Rhode Island

1

i

Analyte	2/1/96	11/16/00	12/26/01	5/14/02	8/15/02	Date S	ampled 2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	5/12/04	RIDEM GB Groundwater Objective	RIDEM UCL
Benzene	2.1750	11/10/00		0/14/02	0/10/02		TALLED	5/25/05	0/20/00				140	18000
Ethylbenzene													1600	16000
MTBE													5000	NE
Toluene													1700	21000
Total Xylenes													NE	NE
Total BTEX													NE	NE

				·注意得在新闻4	1. 1 (A)	Date S	ampled	a ter k		1.72 H 1.2	1 King Same	- <u>(</u>	RIDEM GB Groundwater	RIDEM UCL
Analyte	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	Objective	and the second
Benzene						NOT IN	STALLED						140	18000
Ethylbenzene													1600	16000
MTBE													5000	NE
Toluene													1700	21000
Total Xylenes													NE	NE
Total BTEX				_									NE	NE

	A. C.			1. 4. 2. Y			Date Sample	d	. Se Astro				王宫 家族的名法	RIDEM GB Groundwater	RIDEM UCL
Analyte	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	
Benzene					NOT INS	TALLED					660	100	680	140	18000
Ethylbenzene	1										43	23	34	1600	16000
MTBE	1										46	7.1	23	5000	NE
Toluene	1										<5	<5	<8	1700	21000
Total Xylenes	1										45	11	15	NE	NĒ
Total BTEX]										748	134	729	NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

Historical Groundwater Data Summary Monitor Well MW-31 (Installed 11/4/10) Coffey's Texaco Newport, Rhode Island

ł

	an a			Sala 2874	aria	Date Sa	mpled		an gine Kari	an a	an a	a second and a second	RIDEM GB Groundwater	RIDEM UCL
Analyte 🔴	2/1/96	11/16/00	12/26/01	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	5/12/04	Objective	
Benzene						NOT INS	TALLED						140	18000
Ethylbenzene													1600	16000
MTBE													5000	NE
Toluene													1700	21000
Total Xylenes													NE	NE
Total BTEX													NE	NE

	Filt.			Q.	terte artesa	Date S	ampled			Marian		a de la composición d	RIDEM GB Groundwater	RIDEM UCL
Analyte	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	2/21/07	5/23/07	Objective	승수님과 가지 지지 않는
Benzene						NOT INS	STALLED						140	18000
Ethylbenzene													1600	16000
MTBE													5000	NE
Toluene													1700	21000
Total Xylenes													NE	NE
Total BTEX	L												NE	NE

			te Barn	No. 1	建 清学 (11) [1]		Date Sample	d	2 - 1 Ta -	er y sjega de			- Arristan	RIDEM GB Groundwater	RIDEM UCL
Analyte	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	
Benzene					NOT INS	TALLED					500	240	330	140	18000
Ethylbenzene											650	700	720	1600	16000
MTBE											220	90	95	5000	NE
Toluene											48	19	14	1700	21000
Total Xylenes											1310	740	518	NE	NE
Total BTEX											2508	1699		NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<x: Indicates analyte concentration not detected at or above laboratory quantitation limit (x).

S:\Jobs\R\R0001-R0050\R0020\Tables\Historical GW data\2011-07-26 R020 Historical data tables.xls

Historical Groundwater Data Summary SP-1/Courthouse Basement Coffey's Texaco Newport, Rhode Island

i

1

		() : ()	1.			Sec. 200	line and the			Date Sample						an san suu	1 - A.S			RIDEM GB Groundwater	RIDEM
Analyte	5/14/02	8/15/02	11/25/02	2/21/03	5/29/03	8/28/03	11/25/03	2/4/04	5/12/04	8/11/04	11/11/04	2/8/05	5/10/05	8/10/05	11/7/05	2/28/06	5/16/06	8/16/06	11/16/06	Objective	
Benzene	<4	<1	NS	<1	<5	<	NS	<2	<	NS	NS	13	<	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Toluene	<4	<1		<1	<5	<	7	<2			4	ব	<5							1600	16000
Ethylbenzene	<4	<1		<1	<	<		<2	~		1 1	690	<							5000	NE
Total Xylenes	<4	<1		<1	<5	<		<2	<8			ব	<5							1700	21000
MTBE	180	34		100	640	560		220	700			<	630							NE	NE
Total BTEX	<4	<1		<1	<5	<		4	4			703	<							NE	NE

	A Contractor	al in a star		ti korda k			2. 2. 2. 4. 8. 18							14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	liter e a series a s	RIDEM GB Groundwater	RIDEM UCL
Analyte	2/21/07	5/23/07	8/20/07	11/13/07	3/24/08	7/16/08	11/5/08	3/18/09	7/15/09	11/24/09	3/16/10	7/14/10	11/10/10	3/8/11	7/26/11	Objective	방송을 가지만 하지 .
Benzene	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	SFR	140	18000
Toluene																1600	16000
Ethylbenzene																5000	NE
Total Xylenes																1700	21000
MTBE																NE	NE
Total BTEX		L														NE	NE

NA - Not Analyzed

NE - No allowable limit is established for this substance.

NS - Not Sampled

SFR - Not sampled due to a reduction in the sampling frequency of the monitor well.

SPP - Separate Phase Petroleum present.

Bolded value indicates an exceedance of RIDEM GB Groundwater Objective.

All results expressed in ug/L.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<x: Indicates analyte concentration not detected at or above laboratory quantitation limit (x).

APPENDIX F

Groundwater Laboratory Analytical Data Report

REPORT OF ANALYTICAL RESULTS

NETLAB Case Number A0604-27

Prepared for:

Newport Environmental PO BOX 957 North Scituate, RI 02857

Report Date: June 10, 2014

Reviewed by:

Richard Warila Laboratory Director

Lab # RI010

NEW ENGLAND TESTING LABORATORY, INC. 1254 Douglas Avenue, North Providence, RI 02904 (401) 353-3420

SAMPLES SUBMITTED and REQUEST FOR ANALYSIS:

The samples listed in Table I were submitted to New England Testing Laboratory on June 4, 2014. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the samples provided to us by the client which are indicated on the custody record. The case number for this sample submission is A0604-27.

Custody records are included in this report.

Site: Colfrey's Texaco

Sample ID	Date Sampled	Matrix	Analysis Requested
NMW-1	6/4/14	Water	Table II
NMW-2	6/4/14	Water	Table II
NMW-3	6/4/14	Water	Table II
MW-2	6/4/14	Water	Table II
MW-3	6/4/14	Water	Table II
MW-29	6/4/14	Water	Table II
MW-30	6/4/14	Water	Table II

TABLE I, Samples Submitted

TABLE II, Analysis and Methods

ANALYSIS	PREPARATION METHOD	DETERMINATIVE METHOD
Volatile Organic Compounds	5035	8260B

These methods are documented in:

Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water, USEPA/EMSL.

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Volatile Organic Compounds

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

RESULTS: VOLATILE ORGANIC COMPOUNDS

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

Case No.: A0604-27	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: <u>NMW-1</u>
Matrix: (soil/water) WATER	Lab File ID: C060522.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/4/2014
% Moisture	Date Analyzed: 6/5/2014
Soil Extract Volume: (uL)	Dilution Factor: 1.0, 4.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
75-01-4	Vinyl Chloride		1.0	U
74-83-9	Bromomethane		1.0	U
75-00-3	Chloroethane		1.0	U
67-64-1	Acetone		5.0	U
75-35-4	1,1-Dichloroethene		1.0	U
75-15-0	Carbon Disulfide		1.0	U
75-09-2	Methylene Chloride		1.0	U
1634-04-4	tert-Butyl methyl ether		218	
156-60-5	trans-1,2 Dichloroethene		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
78-93-3	2-Butanone		5.0	U
594-20-7	2,2-Dichloropropane		1.0	U
156-59-2	cis-1,2-Dichloroethene		1.0	U
67-66-3	Chloroform		1.0	U
74-97-5	Bromochloromethane		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
563-58-6	1,1-Dichloropropene		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
71-43-2	Benzene		1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
79-01-6	Trichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
75-27-4	Bromodichloromethane		1.0	U
74-95-3	Dibromomethane		1.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
106-93-4	Ethylene Dibromide		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	U
108-88-3	Toluene		1.0	U
10061-02-6	Trans-1,3-Dichloropropene		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
591-78-6	2-Hexanone		5.0	U
127-18-4	Tetrachloroethene		1.0	U
124-48-1	Chlorodibromomethane		1.0	U
108-90-7	Chlorobenzene		1.0	U
630-20-6	1,1,1,2-Tetrachloroethane		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	NMW-1	
Matrix: (soil/water) WATER	Lab File ID:	C060522.D	
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled:	6/4/2014	
% Moisture	Date Analyzed:	6/5/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0, 4.0	
Analyst's Initials: MM	Soil Aliquot Volu	me:	(uL)

CAS NO.	COMPOUND	UNITS: ug/L	Q
100-41-4	Ethylbenzene	1.0	U
1330-20-7	m & p-Xylene	7.6	
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
98-82-8	Isopropylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
108-86-1	Bromobenzene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
103-65-1	n-Propylbenzene	2.2	
108-67-8	1,3,5-Trimethylbenzene	8.4	
106-43-4	4-Chlorotoluene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	30	
135-98-8	sec-Butylbenzene	1.0	U
99-87-6	p-Isopropyltoluene	1.0	U
75-87-3	Chloromethane	1.0	U
75-65-0	tert butyl alcohol	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
109-99-9	Tetrahydrofuran	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
60-29-7	Diethyl Ether	1.0	U
104-51-8	n-Butylbenzene	1.8	
95-50-1	1,2-Dichlorobenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
91-20-3	Naphthalene	4.7	
87-61-6	1,2,3-Trichlorobenzene	1.0	U
994-05-8	Tert-amyl Methyl Ether	14	
75-71-8	Dichlorodifluoromethane	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
637-92-3	Ethyl Tert-butyl ether	1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name:	Newport Environmental	
Method: 8260	Lab Sample ID:	NMW-1	
Matrix: (soil/water) WATER	Lab File ID:	C060522.D	
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled:	6/4/2014	
% Moisture	Date Analyzed:	6/5/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0, 4.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume: (uL)	

CAS NO.	COMPOUND	UNITS:ug/L	Q
108-20-3	Diisopropyl Ether	1.0	U
123-91-1	1,4-Dioxane	500	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	NMW-2	
Matrix: (soil/water) WATER	Lab File ID:	C060517.D	
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled:	6/4/2014	
% Moisture	Date Analyzed:	6/5/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ıme:	(uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
75-01-4	Vinyl Chloride		1.0	U
74-83-9	Bromomethane		1.0	U
75-00-3	Chloroethane		1.0	U
67-64-1	Acetone		5.0	U
75-35-4	1,1-Dichloroethene		1.0	U
75-15-0	Carbon Disulfide		1.0	U
75-09-2	Methylene Chloride		1.0	U
1634-04-4	tert-Butyl methyl ether		2.3	
156-60-5	trans-1,2 Dichloroethene		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
78-93-3	2-Butanone		5.0	U
594-20-7	2,2-Dichloropropane		1.0	U
156-59-2	cis-1,2-Dichloroethene		1.0	U
67-66-3	Chloroform		1.0	U
74-97-5	Bromochloromethane		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
563-58-6	1,1-Dichloropropene		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
71-43-2	Benzene		1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
79-01-6	Trichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
75-27-4	Bromodichloromethane		1.0	U
74-95-3	Dibromomethane		1.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
106-93-4	Ethylene Dibromide		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	U
108-88-3	Toluene		1.0	U
10061-02-6	Trans-1,3-Dichloropropene		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
591-78-6	2-Hexanone		5.0	U
127-18-4	Tetrachloroethene		1.0	U
124-48-1	Chlorodibromomethane		1.0	U
108-90-7	Chlorobenzene		1.0	U
630-20-6	1,1,1,2-Tetrachloroethane		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name: Ne	ewport Environm	nental
Method: 8260	Lab Sample ID: N	IMW-2	
Matrix: (soil/water) WATER	Lab File ID: C	060517.D	
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled: 6/	/4/2014	
% Moisture	Date Analyzed: 6/	/5/2014	
Soil Extract Volume: (uL)	Dilution Factor: 1.	.0	
Analyst's Initials: MM	Soil Aliquot Volume	e:	(uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
100-41-4	Ethylbenzene		1.0	U
1330-20-7	m & p-Xylene		2.0	U
95-47-6	o-Xylene		1.0	U
100-42-5	Styrene		1.0	U
75-25-2	Bromoform		1.0	U
98-82-8	Isopropylbenzene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
108-86-1	Bromobenzene		1.0	U
96-18-4	1,2,3-Trichloropropane		1.0	U
95-49-8	2-Chlorotoluene		1.0	U
103-65-1	n-Propylbenzene		1.0	U
108-67-8	1,3,5-Trimethylbenzene		1.0	U
106-43-4	4-Chlorotoluene		1.0	U
98-06-6	tert-Butylbenzene		1.0	U
95-63-6	1,2,4-Trimethylbenzene		1.0	U
135-98-8	sec-Butylbenzene		1.0	U
99-87-6	p-Isopropyltoluene		1.0	U
75-87-3	Chloromethane		1.0	U
75-65-0	tert butyl alcohol		21	
541-73-1	1,3-Dichlorobenzene		1.0	U
109-99-9	Tetrahydrofuran		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
60-29-7	Diethyl Ether		1.0	U
104-51-8	n-Butylbenzene		1.0	U
95-50-1	1,2-Dichlorobenzene		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
87-68-3	Hexachlorobutadiene		1.0	U
91-20-3	Naphthalene		1.0	U
87-61-6	1,2,3-Trichlorobenzene		1.0	U
994-05-8	Tert-amyl Methyl Ether		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
142-28-9	1,3-Dichloropropane		1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
637-92-3	Ethyl Tert-butyl ether		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name:	Newport Environr	mental
Method: 8260	Lab Sample ID:	NMW-2	
Matrix: (soil/water) WATER	Lab File ID:	C060517.D	
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled:	6/4/2014	
% Moisture	Date Analyzed:	6/5/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	ıg/L Q	
108-20-3	Diisopropyl Ether		1.0 U	
123-91-1	1,4-Dioxane	Ę	500 U	

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	NMW-3	
Matrix: (soil/water) WATER	Lab File ID:	C060521.D	
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled:	6/4/2014	
% Moisture	Date Analyzed:	6/5/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ıme:	(uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
75-01-4	Vinyl Chloride		1.0	U
74-83-9	Bromomethane		1.0	U
75-00-3	Chloroethane		1.0	U
67-64-1	Acetone		8.3	
75-35-4	1,1-Dichloroethene		1.0	U
75-15-0	Carbon Disulfide		1.0	U
75-09-2	Methylene Chloride		1.0	U
1634-04-4	tert-Butyl methyl ether		1.8	
156-60-5	trans-1,2 Dichloroethene		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
78-93-3	2-Butanone		5.0	U
594-20-7	2,2-Dichloropropane		1.0	U
156-59-2	cis-1,2-Dichloroethene		1.0	U
67-66-3	Chloroform		1.0	U
74-97-5	Bromochloromethane		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
563-58-6	1,1-Dichloropropene		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
71-43-2	Benzene		1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
79-01-6	Trichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
75-27-4	Bromodichloromethane		1.0	U
74-95-3	Dibromomethane		1.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
106-93-4	Ethylene Dibromide		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	U
108-88-3	Toluene		1.0	U
10061-02-6	Trans-1,3-Dichloropropene		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
591-78-6	2-Hexanone		5.0	U
127-18-4	Tetrachloroethene		1.0	U
124-48-1	Chlorodibromomethane		1.0	U
108-90-7	Chlorobenzene		1.0	U
630-20-6	1,1,1,2-Tetrachloroethane		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name: Newport Environmer	ntal
Method: 8260	Lab Sample ID: <u>NMW-3</u>	
Matrix: (soil/water) WATER	Lab File ID: C060521.D	
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled: 6/4/2014	
% Moisture	Date Analyzed: 6/5/2014	
Soil Extract Volume: (uL)	Dilution Factor: 1.0	
Analyst's Initials: MM	Soil Aliquot Volume: (uL	_)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
100-41-4	Ethylbenzene		1.0	U
1330-20-7	m & p-Xylene		2.0	U
95-47-6	o-Xylene		1.0	U
100-42-5	Styrene		1.0	U
75-25-2	Bromoform		1.0	U
98-82-8	Isopropylbenzene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
108-86-1	Bromobenzene		1.0	U
96-18-4	1,2,3-Trichloropropane		1.0	U
95-49-8	2-Chlorotoluene		1.0	U
103-65-1	n-Propylbenzene		1.0	U
108-67-8	1,3,5-Trimethylbenzene		1.0	U
106-43-4	4-Chlorotoluene		1.0	U
98-06-6	tert-Butylbenzene		1.0	U
95-63-6	1,2,4-Trimethylbenzene		1.0	U
135-98-8	sec-Butylbenzene		1.0	U
99-87-6	p-lsopropyltoluene		1.0	U
75-87-3	Chloromethane		1.0	U
75-65-0	tert butyl alcohol		1.0	U
541-73-1	1,3-Dichlorobenzene		1.0	U
109-99-9	Tetrahydrofuran		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
60-29-7	Diethyl Ether		1.0	U
104-51-8	n-Butylbenzene		1.0	U
95-50-1	1,2-Dichlorobenzene		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
87-68-3	Hexachlorobutadiene		1.0	U
91-20-3	Naphthalene		1.0	U
87-61-6	1,2,3-Trichlorobenzene		1.0	U
994-05-8	Tert-amyl Methyl Ether		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
142-28-9	1,3-Dichloropropane		1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
637-92-3	Ethyl Tert-butyl ether		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: <u>NMW-3</u>
Matrix: (soil/water) WATER	Lab File ID: <u>C060521.D</u>
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/4/2014
% Moisture	Date Analyzed: 6/5/2014
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	ug/L	Q
108-20-3	Diisopropyl Ether	1.0	U
123-91-1	1,4-Dioxane	500	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	MW-2	
Matrix: (soil/water) WATER	Lab File ID:	C060516.D	
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled:	6/4/2014	
% Moisture	Date Analyzed:	6/5/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ıme:	(uL)

CAS NO.	COMPOUND	ug/L	Q
75-01-4	Vinyl Chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
67-64-1	Acetone	5.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U
75-09-2	Methylene Chloride	1.0	U
1634-04-4	tert-Butyl methyl ether	1.0	U
156-60-5	trans-1,2 Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
78-93-3	2-Butanone	5.0	U
594-20-7	2,2-Dichloropropane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.4	
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
74-95-3	Dibromomethane	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
106-93-4	Ethylene Dibromide	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
108-88-3	Toluene	1.0	U
10061-02-6	Trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
591-78-6	2-Hexanone	5.0	U
127-18-4	Tetrachloroethene	1.0	U
124-48-1	Chlorodibromomethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	MW-2	
Matrix: (soil/water) WATER	Lab File ID:	C060516.D	
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled:	6/4/2014	
% Moisture	Date Analyzed:	6/5/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ıme:	(uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
100-41-4	Ethylbenzene		1.0	U
1330-20-7	m & p-Xylene		2.0	U
95-47-6	o-Xylene		1.0	U
100-42-5	Styrene		1.0	U
75-25-2	Bromoform		1.0	U
98-82-8	Isopropylbenzene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
108-86-1	Bromobenzene		1.0	U
96-18-4	1,2,3-Trichloropropane		1.0	U
95-49-8	2-Chlorotoluene		1.0	U
103-65-1	n-Propylbenzene		1.0	U
108-67-8	1,3,5-Trimethylbenzene		1.0	U
106-43-4	4-Chlorotoluene		1.0	U
98-06-6	tert-Butylbenzene		1.0	U
95-63-6	1,2,4-Trimethylbenzene		1.0	U
135-98-8	sec-Butylbenzene		1.0	U
99-87-6	p-lsopropyltoluene		1.0	U
75-87-3	Chloromethane		1.0	U
75-65-0	tert butyl alcohol		1.0	U
541-73-1	1,3-Dichlorobenzene		1.0	U
109-99-9	Tetrahydrofuran		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
60-29-7	Diethyl Ether		1.0	U
104-51-8	n-Butylbenzene		1.0	U
95-50-1	1,2-Dichlorobenzene		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
87-68-3	Hexachlorobutadiene		1.0	U
91-20-3	Naphthalene		1.0	U
87-61-6	1,2,3-Trichlorobenzene		1.0	U
994-05-8	Tert-amyl Methyl Ether		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
142-28-9	1,3-Dichloropropane		1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
637-92-3	Ethyl Tert-butyl ether		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name:	Newport Environm	mental
Method: 8260	Lab Sample ID:	MW-2	
Matrix: (soil/water) WATER	Lab File ID:	C060516.D	
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled:	6/4/2014	
% Moisture	Date Analyzed:	6/5/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS: ug/L	Q
108-20-3	Diisopropyl Ether	1.0	U
123-91-1	1,4-Dioxane	500	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name:	Newport Environr	nental
Method: 8260	Lab Sample ID:	MW-3	
Matrix: (soil/water) WATER	Lab File ID:	C060518.D	
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled:	6/4/2014	
% Moisture	Date Analyzed:	6/5/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
75-01-4	Vinyl Chloride		1.0	U
74-83-9	Bromomethane		1.0	U
75-00-3	Chloroethane		1.0	U
67-64-1	Acetone		5.0	U
75-35-4	1,1-Dichloroethene		1.0	U
75-15-0	Carbon Disulfide		1.0	U
75-09-2	Methylene Chloride		1.0	U
1634-04-4	tert-Butyl methyl ether		7.3	
156-60-5	trans-1,2 Dichloroethene		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
78-93-3	2-Butanone		5.0	U
594-20-7	2,2-Dichloropropane		1.0	U
156-59-2	cis-1,2-Dichloroethene		1.0	U
67-66-3	Chloroform		1.0	U
74-97-5	Bromochloromethane		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
563-58-6	1,1-Dichloropropene		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
71-43-2	Benzene		1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
79-01-6	Trichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
75-27-4	Bromodichloromethane		1.0	U
74-95-3	Dibromomethane		1.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
106-93-4	Ethylene Dibromide		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	U
108-88-3	Toluene		1.0	U
10061-02-6	Trans-1,3-Dichloropropene		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
591-78-6	2-Hexanone		5.0	U
127-18-4	Tetrachloroethene		1.0	U
124-48-1	Chlorodibromomethane		1.0	U
108-90-7	Chlorobenzene		1.0	U
630-20-6	1,1,1,2-Tetrachloroethane		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name: New	wport Environmental
Method: 8260	Lab Sample ID: MV	N-3
Matrix: (soil/water) WATER	Lab File ID: <u>C0</u>	060518.D
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled: 6/4	4/2014
% Moisture	Date Analyzed: 6/5	5/2014
Soil Extract Volume: (uL)	Dilution Factor: 1.0)
Analyst's Initials: MM	Soil Aliquot Volume:	: (uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
100-41-4	Ethylbenzene		1.0	U
1330-20-7	m & p-Xylene		2.0	U
95-47-6	o-Xylene		1.0	U
100-42-5	Styrene		1.0	U
75-25-2	Bromoform		1.0	U
98-82-8	Isopropylbenzene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
108-86-1	Bromobenzene		1.0	U
96-18-4	1,2,3-Trichloropropane		1.0	U
95-49-8	2-Chlorotoluene		1.0	U
103-65-1	n-Propylbenzene		1.0	U
108-67-8	1,3,5-Trimethylbenzene		1.0	U
106-43-4	4-Chlorotoluene		1.0	U
98-06-6	tert-Butylbenzene		1.0	U
95-63-6	1,2,4-Trimethylbenzene		1.0	U
135-98-8	sec-Butylbenzene		1.0	U
99-87-6	p-Isopropyltoluene		1.0	U
75-87-3	Chloromethane		1.0	U
75-65-0	tert butyl alcohol		1.0	U
541-73-1	1,3-Dichlorobenzene		1.0	U
109-99-9	Tetrahydrofuran		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
60-29-7	Diethyl Ether		1.0	U
104-51-8	n-Butylbenzene		1.0	U
95-50-1	1,2-Dichlorobenzene		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
87-68-3	Hexachlorobutadiene		1.0	U
91-20-3	Naphthalene		1.0	U
87-61-6	1,2,3-Trichlorobenzene		1.0	U
994-05-8	Tert-amyl Methyl Ether		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
142-28-9	1,3-Dichloropropane		1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
637-92-3	Ethyl Tert-butyl ether		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name:	Newport Environr	mental
Method: 8260	Lab Sample ID:	MW-3	
Matrix: (soil/water) WATER	Lab File ID:	C060518.D	
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled:	6/4/2014	
% Moisture	Date Analyzed:	6/5/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS: ug/L	Q
108-20-3	Diisopropyl Ether	1.0	U
123-91-1	1,4-Dioxane	500	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: MW-29
Matrix: (soil/water) WATER	Lab File ID: C060523.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/4/2014
% Moisture	Date Analyzed: 6/5/2014
Soil Extract Volume: (uL)	Dilution Factor: 1.0, 4.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
75-01-4	Vinyl Chloride		1.0	U
74-83-9	Bromomethane		1.0	U
75-00-3	Chloroethane		1.0	U
67-64-1	Acetone		5.0	U
75-35-4	1,1-Dichloroethene		1.0	U
75-15-0	Carbon Disulfide		1.0	U
75-09-2	Methylene Chloride		1.0	U
1634-04-4	tert-Butyl methyl ether		20	
156-60-5	trans-1,2 Dichloroethene		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
78-93-3	2-Butanone		5.0	U
594-20-7	2,2-Dichloropropane		1.0	U
156-59-2	cis-1,2-Dichloroethene		1.0	U
67-66-3	Chloroform		1.0	U
74-97-5	Bromochloromethane		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
563-58-6	1,1-Dichloropropene		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
71-43-2	Benzene		1.5	
107-06-2	1,2-Dichloroethane		1.0	U
79-01-6	Trichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
75-27-4	Bromodichloromethane		1.0	U
74-95-3	Dibromomethane		1.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
106-93-4	Ethylene Dibromide		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	U
108-88-3	Toluene		5.5	
10061-02-6	Trans-1,3-Dichloropropene		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
591-78-6	2-Hexanone		5.0	U
127-18-4	Tetrachloroethene		1.0	U
124-48-1	Chlorodibromomethane		1.0	U
108-90-7	Chlorobenzene		1.0	U
630-20-6	1,1,1,2-Tetrachloroethane		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name:	Newport Environmental
Method: 8260	Lab Sample ID:	MW-29
Matrix: (soil/water) WATER	Lab File ID:	C060523.D
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled:	6/4/2014
% Moisture	Date Analyzed:	6/5/2014
Soil Extract Volume: (uL)	Dilution Factor:	1.0, 4.0
Analyst's Initials: MM	Soil Aliquot Volu	ume: (uL)

CAS NO.	COMPOUND	ug/L	Q
100-41-4	Ethylbenzene	72	
1330-20-7	m & p-Xylene	110	
95-47-6	o-Xylene	51	
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
98-82-8	Isopropylbenzene	9.5	
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
108-86-1	Bromobenzene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
103-65-1	n-Propylbenzene	23	
108-67-8	1,3,5-Trimethylbenzene	27	
106-43-4	4-Chlorotoluene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	267	
135-98-8	sec-Butylbenzene	4.4	
99-87-6	p-Isopropyltoluene	3.4	
75-87-3	Chloromethane	1.0	U
75-65-0	tert butyl alcohol	11	
541-73-1	1,3-Dichlorobenzene	1.0	U
109-99-9	Tetrahydrofuran	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
60-29-7	Diethyl Ether	1.0	U
104-51-8	n-Butylbenzene	9.9	
95-50-1	1,2-Dichlorobenzene	 1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	 1.0	U
120-82-1	1,2,4-Trichlorobenzene	 1.0	U
87-68-3	Hexachlorobutadiene	 1.0	U
91-20-3	Naphthalene	 38	
87-61-6	1,2,3-Trichlorobenzene	1.0	U
994-05-8	Tert-amyl Methyl Ether	 1.0	U
75-71-8	Dichlorodifluoromethane	 1.0	U
142-28-9	1,3-Dichloropropane	 1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
637-92-3	Ethyl Tert-butyl ether	1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: MW-29
Matrix: (soil/water) WATER	Lab File ID: C060523.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/4/2014
% Moisture	Date Analyzed: 6/5/2014
Soil Extract Volume: (uL)	Dilution Factor: 1.0, 4.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS: ug/L	Q
108-20-3	Diisopropyl Ether	1.0	U
123-91-1	1,4-Dioxane	500	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: MW-30
Matrix: (soil/water) WATER	Lab File ID: C060525.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/4/2014
% Moisture	Date Analyzed: 6/5/2014
Soil Extract Volume: (uL)	Dilution Factor: <u>1.0, 8.</u> 0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	ug/L	Q
75-01-4	Vinyl Chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
67-64-1	Acetone	5.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U
75-09-2	Methylene Chloride	1.0	U
1634-04-4	tert-Butyl methyl ether	48	
156-60-5	trans-1,2 Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
78-93-3	2-Butanone	5.0	U
594-20-7	2,2-Dichloropropane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
71-43-2	Benzene	1120	
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	 1.0	U
74-95-3	Dibromomethane	 1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
106-93-4	Ethylene Dibromide	 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
108-88-3	Toluene	5.4	
10061-02-6	Trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
591-78-6	2-Hexanone	5.0	U
127-18-4	Tetrachloroethene	 1.0	U
124-48-1	Chlorodibromomethane	 1.0	U
108-90-7	Chlorobenzene	 1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: MW-30
Matrix: (soil/water) WATER	Lab File ID: C060525.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/4/2014
% Moisture	Date Analyzed: 6/5/2014
Soil Extract Volume: (uL)	Dilution Factor: 1.0, 8.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS: ug/L	Q
100-41-4	Ethylbenzene	2.1	
1330-20-7	m & p-Xylene	8.8	
95-47-6	o-Xylene	1.7	
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
98-82-8	Isopropylbenzene	11	
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
108-86-1	Bromobenzene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
103-65-1	n-Propylbenzene	6.3	
108-67-8	1,3,5-Trimethylbenzene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.3	
135-98-8	sec-Butylbenzene	1.0	U
99-87-6	p-lsopropyltoluene	1.0	U
75-87-3	Chloromethane	1.0	U
75-65-0	tert butyl alcohol	233	
541-73-1	1,3-Dichlorobenzene	1.0	U
109-99-9	Tetrahydrofuran	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
60-29-7	Diethyl Ether	1.2	
104-51-8	n-Butylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
91-20-3	Naphthalene	1.5	
87-61-6	1,2,3-Trichlorobenzene	1.0	U
994-05-8	Tert-amyl Methyl Ether	4.3	
75-71-8	Dichlorodifluoromethane	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
637-92-3	Ethyl Tert-butyl ether	2.2	

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name: Newport	Environmental
Method: 8260	Lab Sample ID: MW-30	
Matrix: (soil/water) WATER	Lab File ID: <u>C06052</u>	5.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/4/2014	1
% Moisture	Date Analyzed: 6/5/2014	1
Soil Extract Volume: (uL)	Dilution Factor: <u>1.0, 8.</u> 0	
Analyst's Initials: MM	Soil Aliquot Volume:	(uL)

CAS NO.	COMPOUND	UNITS: ug/L	Q
108-20-3	Diisopropyl Ether	9.4	
123-91-1	1,4-Dioxane	500	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name:	Newport Environr	mental
Method: 8260	Lab Sample ID:	VBLK060514	
Matrix: (soil/water) WATER	Lab File ID:	C060507.D	
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled:	6/4/2014	
% Moisture	Date Analyzed:	6/5/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ıme:	(uL)

CAS NO.	COMPOUND	UNITS: ug	<u>/L</u> Q
75-01-4	Vinyl Chloride	1.	0 U
74-83-9	Bromomethane	1.	0 U
75-00-3	Chloroethane	1.	0 U
67-64-1	Acetone	5.	0 U
75-35-4	1,1-Dichloroethene	1.	0 U
75-15-0	Carbon Disulfide	1.	0 U
75-09-2	Methylene Chloride	1.	0 U
1634-04-4	tert-Butyl methyl ether	1.	0 U
156-60-5	trans-1,2 Dichloroethene	1.	0 U
75-34-3	1,1-Dichloroethane	1.	0 U
78-93-3	2-Butanone	5.	0 U
594-20-7	2,2-Dichloropropane	1.	0 U
156-59-2	cis-1,2-Dichloroethene	1.	0 U
67-66-3	Chloroform	1.	0 U
74-97-5	Bromochloromethane	1.	0 U
71-55-6	1,1,1-Trichloroethane	1.	0 U
563-58-6	1,1-Dichloropropene	1.	0 U
56-23-5	Carbon Tetrachloride	1.	0 U
71-43-2	Benzene	1.	0 U
107-06-2	1,2-Dichloroethane	1.	0 U
79-01-6	Trichloroethene	1.	0 U
78-87-5	1,2-Dichloropropane	1.	
75-27-4	Bromodichloromethane	1.	
74-95-3	Dibromomethane	1.	
108-10-1	4-Methyl-2-pentanone	5.	
106-93-4	Ethylene Dibromide	1.	
10061-01-5	cis-1,3-Dichloropropene	1.	
108-88-3	Toluene	1.	
10061-02-6	Trans-1,3-Dichloropropene	1.	
79-00-5	1,1,2-Trichloroethane	1.	0 U
591-78-6	2-Hexanone	5.	
127-18-4	Tetrachloroethene	1.	
124-48-1	Chlorodibromomethane	1.	0 U
108-90-7	Chlorobenzene	1.	
630-20-6	1,1,1,2-Tetrachloroethane	1.	0 U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name:	Newport Environn	nental
Method: 8260	Lab Sample ID:	VBLK060514	
Matrix: (soil/water) WATER	Lab File ID:	C060507.D	
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled:	6/4/2014	
% Moisture	Date Analyzed:	6/5/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ıme:	(uL)

CAS NO.	COMPOUND	UNITS: ug/L	Q
100-41-4	Ethylbenzene	1.0	U
1330-20-7	m & p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
98-82-8	Isopropylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
108-86-1	Bromobenzene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
99-87-6	p-Isopropyltoluene	1.0	U
75-87-3	Chloromethane	1.0	U
75-65-0	tert butyl alcohol	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
109-99-9	Tetrahydrofuran	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
60-29-7	Diethyl Ether	1.0	U
104-51-8	n-Butylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U
994-05-8	Tert-amyl Methyl Ether	1.0	U
75-71-8	Dichlorodifluoromethane	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
637-92-3	Ethyl Tert-butyl ether	1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: A0604-27	Client Name:	Newport Environr	mental
Method: 8260	Lab Sample ID:	VBLK060514	
Matrix: (soil/water) WATER	Lab File ID:	C060507.D	
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled:	6/4/2014	
% Moisture	Date Analyzed:	6/5/2014	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	ug/L	Q
108-20-3	Diisopropyl Ether	1.0	U
123-91-1	1,4-Dioxane	500	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name:	New England	Festing Laboratory	Contract:	Colfey's Texaco
Lab Code:	RI010	Case No.: A0604-27	SAS No	.: SDG No.: Newport E

	EPA	SMC1	SMC2	SMC3	тот
	SAMPLE NO.	#	#	#	OUT
01	VLCS060514	107	105	98	0
02	VBLK060514	104	104	102	0
03	MW-2	101	103	99	0
04	NMW-2	102	102	99	0
05	MW-3	98	102	100	0
06	NMW-3	100	101	104	0
07	NMW-1	101	100	100	0
08	MW-29	102	103	98	0
09	MW-30	100	103	100	0

			QC LIMITS
SMC1	=	4-Bromofluorobenzene	(70-130)
SMC2	=	Toluene-D8	(70-130)
SMC3	=	1,2-Dichloroethane-D4	(70-130)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

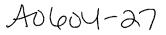
Volatile Organics Laboratory Control Spike

Date Analyzed: 06/05/2014

Sample ID: VLCS060514

	Spike	Spike	Recovery,	Lower Control	Upper Control
Compound	Added	Result	%	Limit, %	Limit, %
1,1-Dichloroethene	50.0	49.0	98	70	129
Benzene	50.0	49.9	100	73	129
Trichloroethene	50.0	50.1	100	77	122
Toluene	50.0	50.4	101	75	123
Chlorobenzene	50.0	45.7	91	73	125

NEW ENGLAND TESTING LABORATORY, INC. 1254 Douglas Avenue North Providence, RI 02904


1-888-863-8522

PRO L NO

CHAIN OF CUSTODY RECORD

PROJ. NO		PRO.	JECT N/	AME/LOCATION		_			<u> </u>				
NSOS	102	C	`o∯	eys Texaco vilonmental ebs newpoltenv.com					Р			/ /	
CLIENT	lewp	017	En	viormental					R E S		.//		
REPORT	0: 8	ten a	with	100 Now to / ten com	A	~	0	NO.	E R V		<u><u> </u></u>	/ /	
INVOICE	0:	b	Elar	() ··· ··		S O I L	O T H E R	OF	Ą		1/2		
DATE	TIME	C O M P	G R A B	SAMPLE I.D.	u s	L	Ŕ	CONTAINERS	E				REMARKS
6/4/14	am		Х	MMW-1 ••>	$\langle $	_		2	HCQ	X	7-(-(-	-({	
			1	MMW-2	N T			1	1	K	+ + + + + + + + + + + + + + + + + + +	+	
				MMW-3						+			
				MW-2						╞╂	+ - + - + -	╉╶┼	
				MW-3 •.						┼╂			
				MW-29						┝╂╴		+-+	
V	V		V	MW-30V	7	-			J	V			
		_							V	V			
			_										
				· · · · · · · · · · · · · · · · · · ·		+							
·			-									_∔	
					+	+						<u> </u>	
						-							
				/	_	_							
Sampled by	(Signature			Date/Time Received by: (Signature)				Date/Time					
	Z	Ľ		6/4 14:40 Tothe			6/4			ratory). rece ed 🛛 🗸	Remarks:		Special Instructions: List Specific Detection Limit Requirements:
Relinquished	l by: (Signa	ature)		Date/Time Socelved by: (Signature)				Date/Time					
Relinguished	by: (Sign	ature)		Date/Time TReelved for Laboratory by: (Signature)	_		<u> </u>	Date/Time					
1	h		-	GMIN 15:33 ANRI			الم ا	1/14/15:	zu				
*Netlab s	ubcontra	acts f	ne folle	owing tests: Radiologicals, Radon, Øsbestos, UCMBs, Percharat									Turnaround (Business Days)

sbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates

REPORT OF ANALYTICAL RESULTS

NETLAB Case Number B0618-40

Prepared for:

Newport Environmental P.O. Box 957 North Scituate, RI 02857

Report Date: June 25, 2015

Juin Wojcik

Deputy Director New England Testing Laboratory, Inc. Lab # RI010

NEW ENGLAND TESTING LABORATORY, INC. 1254 Douglas Avenue, North Providence, RI 02904 (401) 353-3420

SAMPLES SUBMITTED and REQUEST FOR ANALYSIS:

The samples listed in Table I were submitted to New England Testing Laboratory on June 18, 2015. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the samples provided to us by the client which are indicated on the custody record. The case number for this sample submission is B0618-40.

Custody records are included in this report.

Site: Coffey's Texaco

Sample ID	Date Sampled	Matrix	Analysis Requested
NMW-3	6/18/15	Water	Table II
MW-2	6/18/15	Water	Table II
MW-3	6/18/15	Water	Table II
MW-29	6/18/15	Water	Table II
MW-30	6/18/15	Water	Table II
MW-31	6/18/15	Water	Table II

TABLE I, Samples Submitted

TABLE II, Analysis and Methods

ANALYSIS	PREPARATION METHOD	DETERMINATIVE METHOD
Volatile Organic Compounds	5030	8260C

These methods are documented in:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, USEPA/OSW.

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Volatile Organic Compounds

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

RESULTS: VOLATILE ORGANIC COMPOUNDS

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

Case No.: <u>B0618-40</u>	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: <u>NMW-3</u>
Matrix: (soil/water) WATER	Lab File ID: C062331.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/18/2015
% Moisture	Date Analyzed: 6/24/2015
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	ug/L	Q
75-01-4	Vinyl Chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
67-64-1	Acetone	5.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U
75-09-2	Methylene Chloride	1.0	U
1634-04-4	tert-Butyl methyl ether	1.0	U
156-60-5	trans-1,2 Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
78-93-3	2-Butanone	5.0	U
594-20-7	2,2-Dichloropropane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
74-95-3	Dibromomethane	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
106-93-4	Ethylene Dibromide	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
108-88-3	Toluene	1.0	U
10061-02-6	Trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
591-78-6	2-Hexanone	5.0	U
127-18-4	Tetrachloroethene	1.0	U
124-48-1	Chlorodibromomethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: <u>NMW-3</u>
Matrix: (soil/water) WATER	Lab File ID: C062331.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/18/2015
% Moisture	Date Analyzed: 6/24/2015
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
100-41-4	Ethylbenzene		1.0	U
1330-20-7	m & p-Xylene		2.0	U
95-47-6	o-Xylene		1.0	U
100-42-5	Styrene		1.0	U
75-25-2	Bromoform		1.0	U
98-82-8	Isopropylbenzene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
108-86-1	Bromobenzene		1.0	U
96-18-4	1,2,3-Trichloropropane		1.0	U
95-49-8	2-Chlorotoluene		1.0	U
103-65-1	n-Propylbenzene		1.0	U
108-67-8	1,3,5-Trimethylbenzene		1.0	U
106-43-4	4-Chlorotoluene		1.0	U
98-06-6	tert-Butylbenzene		1.0	U
95-63-6	1,2,4-Trimethylbenzene		1.0	U
135-98-8	sec-Butylbenzene		1.0	U
99-87-6	p-Isopropyltoluene		1.0	U
75-87-3	Chloromethane		1.0	U
75-65-0	tert butyl alcohol		5.0	U
541-73-1	1,3-Dichlorobenzene		1.0	U
109-99-9	Tetrahydrofuran		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
60-29-7	Diethyl Ether		1.0	U
104-51-8	n-Butylbenzene		1.0	U
95-50-1	1,2-Dichlorobenzene		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
87-68-3	Hexachlorobutadiene		1.0	U
91-20-3	Naphthalene		1.0	U
87-61-6	1,2,3-Trichlorobenzene		1.0	U
994-05-8	Tert-amyl Methyl Ether		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
142-28-9	1,3-Dichloropropane		1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
637-92-3	Ethyl Tert-butyl ether		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>		Client Name:	Newport Enviro	nmental
Method: 8260		Lab Sample ID:	NMW-3	
Matrix: (soil/water) WAT	ER	Lab File ID:	C062331.D	
Sample wt/vol: 5.0	(g/ml) ML	Date Sampled:	6/18/2015	
% Moisture		Date Analyzed:	6/24/2015	
Soil Extract Volume:	(uL)	Dilution Factor:	1.0	
Analyst's Initials: MM		Soil Aliquot Volu	ıme:	(uL)
CAS NO.	COMPOUND	UNITS:	ug/L	Q

1.0

U

Diisopropyl Ether

108-20-3

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: MW-2
Matrix: (soil/water) WATER	Lab File ID: C062327.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/18/2015
% Moisture	Date Analyzed: 6/24/2015
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
75-01-4	Vinyl Chloride		1.0	U
74-83-9	Bromomethane		1.0	U
75-00-3	Chloroethane		1.0	U
67-64-1	Acetone		5.0	U
75-35-4	1,1-Dichloroethene		1.0	U
75-15-0	Carbon Disulfide		1.0	U
75-09-2	Methylene Chloride		1.0	U
1634-04-4	tert-Butyl methyl ether		1.0	U
156-60-5	trans-1,2 Dichloroethene		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
78-93-3	2-Butanone		5.0	U
594-20-7	2,2-Dichloropropane		1.0	U
156-59-2	cis-1,2-Dichloroethene		1.0	U
67-66-3	Chloroform		1.1	
74-97-5	Bromochloromethane		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
563-58-6	1,1-Dichloropropene		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
71-43-2	Benzene		1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
79-01-6	Trichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
75-27-4	Bromodichloromethane		1.0	U
74-95-3	Dibromomethane		1.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
106-93-4	Ethylene Dibromide		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	U
108-88-3	Toluene		1.0	U
10061-02-6	Trans-1,3-Dichloropropene		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
591-78-6	2-Hexanone		5.0	U
127-18-4	Tetrachloroethene		1.0	U
124-48-1	Chlorodibromomethane		1.0	U
108-90-7	Chlorobenzene		1.0	U
630-20-6	1,1,1,2-Tetrachloroethane		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: B0618-40	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: <u>MW-2</u>
Matrix: (soil/water) WATER	Lab File ID: C062327.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/18/2015
% Moisture	Date Analyzed: 6/24/2015
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
100-41-4	Ethylbenzene		1.0	U
1330-20-7	m & p-Xylene		2.0	U
95-47-6	o-Xylene		1.0	U
100-42-5	Styrene		1.0	U
75-25-2	Bromoform		1.0	U
98-82-8	Isopropylbenzene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
108-86-1	Bromobenzene		1.0	U
96-18-4	1,2,3-Trichloropropane		1.0	U
95-49-8	2-Chlorotoluene		1.0	U
103-65-1	n-Propylbenzene		1.0	U
108-67-8	1,3,5-Trimethylbenzene		1.0	U
106-43-4	4-Chlorotoluene		1.0	U
98-06-6	tert-Butylbenzene		1.0	U
95-63-6	1,2,4-Trimethylbenzene		1.0	U
135-98-8	sec-Butylbenzene		1.0	U
99-87-6	p-Isopropyltoluene		1.0	U
75-87-3	Chloromethane		1.0	U
75-65-0	tert butyl alcohol		5.0	U
541-73-1	1,3-Dichlorobenzene		1.0	U
109-99-9	Tetrahydrofuran		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
60-29-7	Diethyl Ether		1.0	U
104-51-8	n-Butylbenzene		1.0	U
95-50-1	1,2-Dichlorobenzene		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
87-68-3	Hexachlorobutadiene		1.0	U
91-20-3	Naphthalene		1.0	U
87-61-6	1,2,3-Trichlorobenzene		1.0	U
994-05-8	Tert-amyl Methyl Ether		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
142-28-9	1,3-Dichloropropane		1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
637-92-3	Ethyl Tert-butyl ether		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>		Client Name: Newport Environmental	
Method: 8260		Lab Sample ID: MW-2	
Matrix: (soil/water) WAT	ER	Lab File ID: C062327.D	
Sample wt/vol: 5.0	(g/ml) ML	Date Sampled: 6/18/2015	
% Moisture		Date Analyzed: 6/24/2015	
Soil Extract Volume:	(uL)	Dilution Factor: 1.0	
Analyst's Initials: MM		Soil Aliquot Volume: (uL)	
CAS NO.	COMPOUND	UNITS: ug/L Q	

108-20-3	Diisopropyl Ether	1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: MW-3
Matrix: (soil/water) WATER	Lab File ID: C062328.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/18/2015
% Moisture	Date Analyzed: 6/24/2015
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
75-01-4	Vinyl Chloride		1.0	U
74-83-9	Bromomethane		1.0	U
75-00-3	Chloroethane		1.0	U
67-64-1	Acetone		5.0	U
75-35-4	1,1-Dichloroethene		1.0	U
75-15-0	Carbon Disulfide		1.0	U
75-09-2	Methylene Chloride		1.0	U
1634-04-4	tert-Butyl methyl ether		4.5	
156-60-5	trans-1,2 Dichloroethene		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
78-93-3	2-Butanone		5.0	U
594-20-7	2,2-Dichloropropane		1.0	U
156-59-2	cis-1,2-Dichloroethene		1.0	U
67-66-3	Chloroform		1.0	U
74-97-5	Bromochloromethane		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
563-58-6	1,1-Dichloropropene		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
71-43-2	Benzene		1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
79-01-6	Trichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
75-27-4	Bromodichloromethane		1.0	U
74-95-3	Dibromomethane		1.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
106-93-4	Ethylene Dibromide		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	U
108-88-3	Toluene		1.0	U
10061-02-6	Trans-1,3-Dichloropropene		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
591-78-6	2-Hexanone		5.0	U
127-18-4	Tetrachloroethene		1.0	U
124-48-1	Chlorodibromomethane		1.0	U
108-90-7	Chlorobenzene		1.0	U
630-20-6	1,1,1,2-Tetrachloroethane		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>	Client Name:	Newport Environn	nental
Method: 8260	Lab Sample ID:	MW-3	
Matrix: (soil/water) WATER	Lab File ID:	C062328.D	
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled:	6/18/2015	
% Moisture	Date Analyzed:	6/24/2015	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: MM	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
100-41-4	Ethylbenzene		1.0	U
1330-20-7	m & p-Xylene		2.0	U
95-47-6	o-Xylene		1.0	U
100-42-5	Styrene		1.0	U
75-25-2	Bromoform		1.0	U
98-82-8	Isopropylbenzene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
108-86-1	Bromobenzene		1.0	U
96-18-4	1,2,3-Trichloropropane		1.0	U
95-49-8	2-Chlorotoluene		1.0	U
103-65-1	n-Propylbenzene		1.0	U
108-67-8	1,3,5-Trimethylbenzene		1.0	U
106-43-4	4-Chlorotoluene		1.0	U
98-06-6	tert-Butylbenzene		1.0	U
95-63-6	1,2,4-Trimethylbenzene		1.0	U
135-98-8	sec-Butylbenzene		1.0	U
99-87-6	p-Isopropyltoluene		1.0	U
75-87-3	Chloromethane		1.0	U
75-65-0	tert butyl alcohol		5.0	U
541-73-1	1,3-Dichlorobenzene		1.0	U
109-99-9	Tetrahydrofuran		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
60-29-7	Diethyl Ether		1.0	U
104-51-8	n-Butylbenzene		1.0	U
95-50-1	1,2-Dichlorobenzene		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
87-68-3	Hexachlorobutadiene		1.0	U
91-20-3	Naphthalene		1.0	U
87-61-6	1,2,3-Trichlorobenzene		1.0	U
994-05-8	Tert-amyl Methyl Ether		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
142-28-9	1,3-Dichloropropane		1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
637-92-3	Ethyl Tert-butyl ether		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>		Client Name:	Newport Enviro	nmental
Method: 8260		Lab Sample ID:	MW-3	
Matrix: (soil/water) WAT	ER	Lab File ID:	C062328.D	
Sample wt/vol: 5.0	(g/ml) ML	Date Sampled:	6/18/2015	
% Moisture		Date Analyzed:	6/24/2015	
Soil Extract Volume:	(uL)	Dilution Factor:	1.0	
Analyst's Initials: MM		Soil Aliquot Volu	ime:	(uL)
CAS NO.	COMPOUND	UNITS:	ug/L	Q

1.0

U

Diisopropyl Ether

108-20-3

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: MW-29
Matrix: (soil/water) WATER	Lab File ID: C062329.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/18/2015
% Moisture	Date Analyzed: 6/24/2015
Soil Extract Volume: (uL)	Dilution Factor: <u>1,10</u>
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	ug/L	Q
75-01-4	Vinyl Chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
67-64-1	Acetone	5.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U
75-09-2	Methylene Chloride	1.0	U
1634-04-4	tert-Butyl methyl ether	31	
156-60-5	trans-1,2 Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
78-93-3	2-Butanone	5.0	U
594-20-7	2,2-Dichloropropane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
71-43-2	Benzene	304	
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
74-95-3	Dibromomethane	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
106-93-4	Ethylene Dibromide	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
108-88-3	Toluene	2.2	
10061-02-6	Trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
591-78-6	2-Hexanone	5.0	U
127-18-4	Tetrachloroethene	1.0	U
124-48-1	Chlorodibromomethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: MW-29
Matrix: (soil/water) WATER	Lab File ID: C062329.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/18/2015
% Moisture	Date Analyzed: 6/24/2015
Soil Extract Volume: (uL)	Dilution Factor: 1,10_
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
100-41-4	Ethylbenzene		1.0	U
1330-20-7	m & p-Xylene		2.3	
95-47-6	o-Xylene		1.0	U
100-42-5	Styrene		1.0	U
75-25-2	Bromoform		1.0	U
98-82-8	Isopropylbenzene		4.8	
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
108-86-1	Bromobenzene		1.0	U
96-18-4	1,2,3-Trichloropropane		1.0	U
95-49-8	2-Chlorotoluene		1.0	U
103-65-1	n-Propylbenzene		3.3	
108-67-8	1,3,5-Trimethylbenzene		1.0	U
106-43-4	4-Chlorotoluene		1.0	U
98-06-6	tert-Butylbenzene		1.0	U
95-63-6	1,2,4-Trimethylbenzene		1.0	U
135-98-8	sec-Butylbenzene		1.0	U
99-87-6	p-Isopropyltoluene		1.0	U
75-87-3	Chloromethane		1.0	U
75-65-0	tert butyl alcohol		130	
541-73-1	1,3-Dichlorobenzene		1.0	U
109-99-9	Tetrahydrofuran		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
60-29-7	Diethyl Ether		1.0	U
104-51-8	n-Butylbenzene		1.0	U
95-50-1	1,2-Dichlorobenzene		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
87-68-3	Hexachlorobutadiene		1.0	U
91-20-3	Naphthalene		1.0	U
87-61-6	1,2,3-Trichlorobenzene		1.0	U
994-05-8	Tert-amyl Methyl Ether		3.0	
75-71-8	Dichlorodifluoromethane		1.0	U
142-28-9	1,3-Dichloropropane		1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
637-92-3	Ethyl Tert-butyl ether		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>		Client Name: Newport Environmental	
Method: 8260		Lab Sample ID: MW-29	
Matrix: (soil/water) WAT	TER	Lab File ID: C062329.D	
Sample wt/vol: 5.0	(g/ml) ML	Date Sampled: 6/18/2015	
% Moisture	-	Date Analyzed: 6/24/2015	
Soil Extract Volume:	(uL)	Dilution Factor: 1,10	
Analyst's Initials: MM		Soil Aliquot Volume: (uL)	
CAS NO.	COMPOUND	UNITS: ua/L Q	

108-20-3	Diisopropyl Ether	4.4	

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: MW-30
Matrix: (soil/water) WATER	Lab File ID: C062423.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/18/2015
% Moisture	Date Analyzed: 6/24/2015
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	ug/L	Q
75-01-4	Vinyl Chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
67-64-1	Acetone	5.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U
75-09-2	Methylene Chloride	1.0	U
1634-04-4	tert-Butyl methyl ether	20	
156-60-5	trans-1,2 Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
78-93-3	2-Butanone	5.0	U
594-20-7	2,2-Dichloropropane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
71-43-2	Benzene	86	
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
74-95-3	Dibromomethane	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
106-93-4	Ethylene Dibromide	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
108-88-3	Toluene	2.2	
10061-02-6	Trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
591-78-6	2-Hexanone	5.0	U
127-18-4	Tetrachloroethene	1.0	U
124-48-1	Chlorodibromomethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: <u>MW-30</u>
Matrix: (soil/water) WATER	Lab File ID: C062423.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/18/2015
% Moisture	Date Analyzed: 6/24/2015
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND U	NITS: <u>ug/L</u>	Q
100-41-4	Ethylbenzene	77	
1330-20-7	m & p-Xylene	38	
95-47-6	o-Xylene	3.9	
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
98-82-8	Isopropylbenzene	41	
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
108-86-1	Bromobenzene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
103-65-1	n-Propylbenzene	110	
108-67-8	1,3,5-Trimethylbenzene	12	
106-43-4	4-Chlorotoluene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	7.0	
135-98-8	sec-Butylbenzene	17	
99-87-6	p-Isopropyltoluene	3.8	
75-87-3	Chloromethane	1.0	U
75-65-0	tert butyl alcohol	20	
541-73-1	1,3-Dichlorobenzene	1.0	U
109-99-9	Tetrahydrofuran	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
60-29-7	Diethyl Ether	1.0	U
104-51-8	n-Butylbenzene	26	
95-50-1	1,2-Dichlorobenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
91-20-3	Naphthalene	77	
87-61-6	1,2,3-Trichlorobenzene	1.0	U
994-05-8	Tert-amyl Methyl Ether	2.3	
75-71-8	Dichlorodifluoromethane	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
637-92-3	Ethyl Tert-butyl ether	1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>		Client Name:	Newport Enviro	nmental
Method: 8260		Lab Sample ID:	MW-30	
Matrix: (soil/water) WAT	ER	Lab File ID:	C062423.D	
Sample wt/vol: 5.0	(g/ml) ML	Date Sampled:	6/18/2015	
% Moisture		Date Analyzed:	6/24/2015	
Soil Extract Volume:	(uL)	Dilution Factor:	1.0	
Analyst's Initials: MM		Soil Aliquot Volu	ıme:	(uL)
CAS NO.	COMPOUND	UNITS:	ug/L	Q

1.0

U

Diisopropyl Ether

108-20-3

Case No.: <u>B0618-40</u>	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: MW-31
Matrix: (soil/water) WATER	Lab File ID: C062424.D
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled: 6/18/2015
% Moisture	Date Analyzed: 6/24/2015
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	ug/L	Q
75-01-4	Vinyl Chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
67-64-1	Acetone	5.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U
75-09-2	Methylene Chloride	1.0	U
1634-04-4	tert-Butyl methyl ether	21	
156-60-5	trans-1,2 Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
78-93-3	2-Butanone	5.0	U
594-20-7	2,2-Dichloropropane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
71-43-2	Benzene	2.1	
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
74-95-3	Dibromomethane	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
106-93-4	Ethylene Dibromide	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
108-88-3	Toluene	2.2	
10061-02-6	Trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
591-78-6	2-Hexanone	5.0	U
127-18-4	Tetrachloroethene	1.0	U
124-48-1	Chlorodibromomethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: MW-31
Matrix: (soil/water) WATER	Lab File ID: C062424.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/18/2015
% Moisture	Date Analyzed: 6/24/2015
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
100-41-4	Ethylbenzene		49	
1330-20-7	m & p-Xylene		97	
95-47-6	o-Xylene		9.3	
100-42-5	Styrene		1.0	U
75-25-2	Bromoform		1.0	U
98-82-8	Isopropylbenzene		10	
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
108-86-1	Bromobenzene		1.0	U
96-18-4	1,2,3-Trichloropropane		1.0	U
95-49-8	2-Chlorotoluene		1.0	U
103-65-1	n-Propylbenzene		21	
108-67-8	1,3,5-Trimethylbenzene		35	
106-43-4	4-Chlorotoluene		1.0	U
98-06-6	tert-Butylbenzene		1.0	U
95-63-6	1,2,4-Trimethylbenzene		140	
135-98-8	sec-Butylbenzene		2.9	
99-87-6	p-Isopropyltoluene		1.5	
75-87-3	Chloromethane		1.0	U
75-65-0	tert butyl alcohol		16	
541-73-1	1,3-Dichlorobenzene		1.0	U
109-99-9	Tetrahydrofuran		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
60-29-7	Diethyl Ether		1.0	U
104-51-8	n-Butylbenzene		7.4	
95-50-1	1,2-Dichlorobenzene		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
87-68-3	Hexachlorobutadiene		1.0	U
91-20-3	Naphthalene		54	
87-61-6	1,2,3-Trichlorobenzene		1.0	U
994-05-8	Tert-amyl Methyl Ether		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
142-28-9	1,3-Dichloropropane		1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
637-92-3	Ethyl Tert-butyl ether		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>		Client Name: Newport Environmental	
Method: 8260		Lab Sample ID: <u>MW-31</u>	
Matrix: (soil/water) WAT	ER	Lab File ID: C062424.D	
Sample wt/vol: 5.0	(g/ml) <u>ML</u>	Date Sampled: 6/18/2015	
% Moisture		Date Analyzed: 6/24/2015	
Soil Extract Volume:	(uL)	Dilution Factor: 1.0	
Analyst's Initials: MM	_	Soil Aliquot Volume: (uL)	
CAS NO.	COMPOUND	UNITS: ua/L Q	

1.0

U

Diisopropyl Ether

108-20-3

Case No.: <u>B0618-40</u>	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: VBLK062315
Matrix: (soil/water) WATER	Lab File ID: C062323.D
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled: 6/18/2015
% Moisture	Date Analyzed: 6/24/2015
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	ug/L	Q
75-01-4	Vinyl Chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
67-64-1	Acetone	5.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U
75-09-2	Methylene Chloride	1.0	U
1634-04-4	tert-Butyl methyl ether	1.0	U
156-60-5	trans-1,2 Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
78-93-3	2-Butanone	5.0	U
594-20-7	2,2-Dichloropropane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
74-95-3	Dibromomethane	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
106-93-4	Ethylene Dibromide	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
108-88-3	Toluene	1.0	U
10061-02-6	Trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
591-78-6	2-Hexanone	5.0	U
127-18-4	Tetrachloroethene	1.0	U
124-48-1	Chlorodibromomethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: VBLK062315
Matrix: (soil/water) WATER	Lab File ID: C062323.D
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled: 6/18/2015
% Moisture	Date Analyzed: 6/24/2015
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
100-41-4	Ethylbenzene		1.0	U
1330-20-7	m & p-Xylene		2.0	U
95-47-6	o-Xylene		1.0	U
100-42-5	Styrene		1.0	U
75-25-2	Bromoform		1.0	U
98-82-8	Isopropylbenzene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
108-86-1	Bromobenzene		1.0	U
96-18-4	1,2,3-Trichloropropane		1.0	U
95-49-8	2-Chlorotoluene		1.0	U
103-65-1	n-Propylbenzene		1.0	U
108-67-8	1,3,5-Trimethylbenzene		1.0	U
106-43-4	4-Chlorotoluene		1.0	U
98-06-6	tert-Butylbenzene		1.0	U
95-63-6	1,2,4-Trimethylbenzene		1.0	U
135-98-8	sec-Butylbenzene		1.0	U
99-87-6	p-Isopropyltoluene		1.0	U
75-87-3	Chloromethane		1.0	U
75-65-0	tert butyl alcohol		5.0	U
541-73-1	1,3-Dichlorobenzene		1.0	U
109-99-9	Tetrahydrofuran		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
60-29-7	Diethyl Ether		1.0	U
104-51-8	n-Butylbenzene		1.0	U
95-50-1	1,2-Dichlorobenzene		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
87-68-3	Hexachlorobutadiene		1.0	U
91-20-3	Naphthalene		1.0	U
87-61-6	1,2,3-Trichlorobenzene		1.0	U
994-05-8	Tert-amyl Methyl Ether		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
142-28-9	1,3-Dichloropropane		1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
637-92-3	Ethyl Tert-butyl ether		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>		Client Name: Newport Environmental	
Method: 8260		Lab Sample ID: VBLK062315	
Matrix: (soil/water) WAT	ER	Lab File ID: C062323.D	
Sample wt/vol: 5.0	(g/ml) ML	Date Sampled: 6/18/2015	
% Moisture		Date Analyzed: 6/24/2015	
Soil Extract Volume:	(uL)	Dilution Factor: 1.0	
Analyst's Initials: MM		Soil Aliquot Volume: (uL)	
CAS NO.	COMPOUND	UNITS: ug/L Q	

		 	~
108-20-3	Diisopropyl Ether	1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: VBLK062415
Matrix: (soil/water) WATER	Lab File ID: C062421.D
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled: 6/18/2015
% Moisture	Date Analyzed: 6/24/2015
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO. COMPOUND		UNITS:	ug/L	Q	
75-01-4	Vinyl Chloride		1.0	U	
74-83-9	Bromomethane	Bromomethane 1.0			
75-00-3	Chloroethane		1.0	U	
67-64-1	Acetone		5.0	U	
75-35-4	1,1-Dichloroethene		1.0	U	
75-15-0	Carbon Disulfide		1.0	U	
75-09-2	Methylene Chloride		1.0	U	
1634-04-4	tert-Butyl methyl ether		1.0	U	
156-60-5	trans-1,2 Dichloroethene		1.0	U	
75-34-3	1,1-Dichloroethane		1.0	U	
78-93-3	2-Butanone		5.0	U	
594-20-7	2,2-Dichloropropane		1.0	U	
156-59-2	cis-1,2-Dichloroethene		1.0	U	
67-66-3	Chloroform		1.0	U	
74-97-5	Bromochloromethane		1.0	U	
71-55-6	1,1,1-Trichloroethane		1.0	U	
563-58-6	1,1-Dichloropropene		1.0	U	
56-23-5	Carbon Tetrachloride		1.0	U	
71-43-2	Benzene		1.0	U	
107-06-2	1,2-Dichloroethane		1.0	U	
79-01-6	Trichloroethene		1.0	U	
78-87-5	1,2-Dichloropropane		1.0	U	
75-27-4	Bromodichloromethane		1.0	U	
74-95-3	Dibromomethane		1.0	U	
108-10-1	4-Methyl-2-pentanone		5.0	U	
106-93-4	Ethylene Dibromide		1.0	U	
10061-01-5	cis-1,3-Dichloropropene		1.0	U	
108-88-3	Toluene		1.0	U	
10061-02-6	Trans-1,3-Dichloropropene		1.0	U	
79-00-5	1,1,2-Trichloroethane		1.0	U	
591-78-6	2-Hexanone		5.0	U	
127-18-4	Tetrachloroethene		1.0	U	
124-48-1	Chlorodibromomethane		1.0	U	
108-90-7	Chlorobenzene		1.0	U	
630-20-6	1,1,1,2-Tetrachloroethane		1.0	U	

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>	Client Name: Newport Environmental
Method: 8260	Lab Sample ID: VBLK062415
Matrix: (soil/water) WATER	Lab File ID: C062421.D
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled: 6/18/2015
% Moisture	Date Analyzed: 6/24/2015
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: MM	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	ug/L	Q
100-41-4	Ethylbenzene		1.0	U
1330-20-7	m & p-Xylene		2.0	U
95-47-6	o-Xylene		1.0	U
100-42-5	Styrene		1.0	U
75-25-2	Bromoform		1.0	U
98-82-8	Isopropylbenzene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
108-86-1	Bromobenzene		1.0	U
96-18-4	1,2,3-Trichloropropane		1.0	U
95-49-8	2-Chlorotoluene		1.0	U
103-65-1	n-Propylbenzene		1.0	U
108-67-8	1,3,5-Trimethylbenzene		1.0	U
106-43-4	4-Chlorotoluene		1.0	U
98-06-6	tert-Butylbenzene		1.0	U
95-63-6	1,2,4-Trimethylbenzene		1.0	U
135-98-8	sec-Butylbenzene		1.0	U
99-87-6	p-lsopropyltoluene		1.0	U
75-87-3	Chloromethane		1.0	U
75-65-0	tert butyl alcohol		5.0	U
541-73-1	1,3-Dichlorobenzene		1.0	U
109-99-9	Tetrahydrofuran		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
60-29-7	Diethyl Ether		1.0	U
104-51-8	n-Butylbenzene		1.0	U
95-50-1	1,2-Dichlorobenzene		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
87-68-3	Hexachlorobutadiene		1.0	U
91-20-3	Naphthalene		1.0	U
87-61-6	1,2,3-Trichlorobenzene		1.0	U
994-05-8	Tert-amyl Methyl Ether		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
142-28-9	1,3-Dichloropropane		1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
637-92-3	Ethyl Tert-butyl ether		1.0	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>B0618-40</u>		Client Name:	Newport Enviror	mental
Method: 8260		Lab Sample ID:	VBLK062415	
Matrix: (soil/water) WAT	ER	Lab File ID:	C062421.D	
Sample wt/vol: 5.0	(g/ml) <u>ML</u>	Date Sampled:	6/18/2015	_
% Moisture		Date Analyzed:	6/24/2015	
Soil Extract Volume:	(uL)	Dilution Factor:	1.0	
Analyst's Initials: MM		Soil Aliquot Volu	ıme:	_ (uL)
CAS NO.	COMPOUND	UNITS:	ug/L	Q

1.0

U

Diisopropyl Ether

108-20-3

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name:	New England	Festing Laboratory	Contract:	Coffey's Texaco	
Lab Code:	RI010	Case No.: B0618-40	SAS No	.: SDG No	.: Newport E

	EPA	SMC1	SMC2	SMC3	тот
	SAMPLE NO.	#	#	#	OUT
01	VLCS062315	101	100	100	0
02	VBLK062315	101	102	114	0
03	MW-2	100	104	110	0
04	MW-3	101	103	105	0
05	MW-29	102	104	108	0
06	NMW-3	102	105	108	0
07	VLCS092415	99	100	95	0
08	VBLK062415	97	100	111	0
09	MW-30	99	99	109	0
10	MW-31	98	98	107	0

			QC LIMITS
SMC1	=	4-Bromofluorobenzene	(70-130)
SMC2	=	Toluene-D8	(70-130)
SMC3	=	1,2-Dichloroethane-D4	(70-130)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

Volatile Organics Laboratory Control Spike

Date Analyzed: 06/23/2015

Sample ID: VLCS062315

	Spike	Spike	Recovery,	Lower Control	Upper Control
Compound	Added	Result	%	Limit, %	Limit, %
1,1-Dichloroethene	50.0	61.0	122	70	129
Benzene	50.0	52.0	104	73	129
Trichloroethene	50.0	52.7	105	77	122
Toluene	50.0	51.8	104	75	123
Chlorobenzene	50.0	51.0	102	73	125

Volatile Organics Laboratory Control Spike

Date Analyzed: 06/24/2015

Sample ID: VLCS062415

	Spike	Spike	Recovery,	Lower Control	Upper Control
Compound	Added	Result	%	Limit, %	Limit, %
1,1-Dichloroethene	50.0	51.3	103	70	129
Benzene	50.0	48.6	97	73	129
Trichloroethene	50.0	47.8	96	77	122
Toluene	50.0	47.8	96	75	123
Chlorobenzene	50.0	48.7	97	73	125

NEW ENGLAND TESTING LABORATORY, INC.

1254 Douglas Avenue North Providence, RI 02904

1-888-863-8522

CHAIN OF CUSTODY RECORD

PROJ. NO.		PRO.	JECT N	ME/LOCATION	Ň											/ /	/ /		
1505	102		Cof	Ry's T	exau	>							PR		/	/ /			
	lewf	los t	E	NULLOCATION PRYS T. N(1/2011/ N(W forta N(W forta)	nentr	1			A		0	NO.	P R US UR V	TEST.			/ /	/ /	
		gott	(10)	newporti	tor i con	1			υĒ	S 0 1 L	O T H E R	OF	Å	7	' /		/	/	
	<u> </u>	<u>cia/</u>	(<u>3</u>)	MW fort.	env. Con	n				Ĺ	E R	CONTAINER	s V E	1/2	· /		/ /	' /	
DATE	TIME	Ö M P	Ř A B			SAMPL	E I.D.		s				E	RC	/				/
	am		Х			IMW-3		••	X			2	HCl	\mathbf{X}					
1			1			MW-	2	••	1			1							
						MW-	3	• •											
						MW-	29	••											
•						MW-	30	• .											
∇	\mathbf{V}		\checkmark			MW-	31	* *	V	'		V	V	V					
				~															
Sampled by	/: (Signatı	ıre)	Ø	_	6/18/	Date/Time	Received by:	(Signature)			6/	Date/Time	Lat Ter Co	ooratory F np. receiv oled 🗊	Remark ged:	» کُصر			Special Instructions: List Specific Detection Limit Requirements:
Relinquishe	The	K	1		6/18/	5 1600						Date/Time							
Relinquishe	ed by: KSig	nature)		[Date/Time	Received for L	_aboratory by: (Signat	ture)		6	Date/Time							
							my	Lap Pag	M			·0//5	jec						Turnaround (Business Days)

**Netlab subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates

80618-40

APPENDIX G

Water Level Gauging Sheets

Water Level Gauging Sheet June 4, 2014 Coffey's Texaco 48 Touro Street Newport, Rhode Island

WELL #	M.P. ELEVATIONS	DEPTH TO PETROLEUM	DEPTH TO WATER	PETROLEUM THICKNESS	EQUIVALENT HD ELEVATION
NMW-1	NS	-	5.33	0.00	NS
NMW-2	NS	-	5.39	0.00	NS
NMW-3	NS	-	6.45	0.00	NS
MW-1	101.00	-	5.07	0.00	95.93
MW-2	101.24	-	5.54	0.00	95.70
MW-3	100.44	-	5.10	0.00	95.34
MW-18	102.29	-	5.26	0.00	97.03
MW-25	100.54	-	4.77	0.00	95.77
MW-29	99.12	-	5.12	0.00	94.00
MW-30	99.94	-	5.65	0.00	94.29
MW-31	100.55	-	5.07	0.00	95.48

M.P. Elevations from historical data and unconfirmed

- = No separate phase product identified

NS = Not surveyed

Water Level Gauging Sheet June 18, 2015 Coffey's Texaco 48 Touro Street Newport, Rhode Island

WELL #	M.P. ELEVATIONS	DEPTH TO PETROLEUM	DEPTH TO WATER	PETROLEUM THICKNESS	EQUIVALENT HD ELEVATION
NMW-1	NS	-	NG	0.00	NS
NMW-2	NS	-	NG	0.00	NS
NMW-3	NS	-	6.58	0.00	NS
MW-1	101.00	-	NG	0.00	101.00
MW-2	101.24	-	5.63	0.00	95.61
MW-3	100.44	-	5.18	0.00	95.26
MW-18	102.29	-	NG	0.00	102.29
MW-25	100.54	-	4.87	0.00	95.67
MW-29	99.12	-	5.02	0.00	94.10
MW-30	99.94	-	5.85	0.00	94.09
MW-31	100.55	-	5.50	0.00	95.05

M.P. Elevations from historical data and unconfirmed

- = No separate phase product identified

NS = Not surveyed

NG = Not gauged

APPENDIX H

AST Removal Documentation, Transfer of Ownership Form and UST Temporary Closure Application

February 28, 2015

Ms. Leslie A. Gerundio Engineering Technician Office of Waste Management Underground Storage Tank Program Rhode Island Department of Environmental Management 235 Promenade Street Providence, RI 02908-5767

RE: Underground Storage Tanks – Transfer of Ownership 48 Touro Street, Newport, RI UST Facility I.D. #00734

Dear Ms. Gerundio:

On behalf of our client, Church Community Housing, enclosed please find a completed Underground Storage Tank (UST) Registration Form and a completed UST Temporary Closure Application for the referenced facility. Supporting documentation for the Temporary Closure Application is also attached.

Should you have any questions or require additional information, please contact me directly at (401) 497-8240.

Sincerely,

Bruce W. Clark Principal

BWC:km

Attachments: UST Registration Form UST Temporary Closure Application w/supporting documentation

Underground Storage Tank Registration Form

Complete this form if you are registering underground storage tanks with the State of Rhode Island Department of Environmental Management for the first time (e.g., new installations or newly discovered tanks), if the UST or property has transferred ownership, or there has been a change in the facility operator(s). All USTs used for regulated substances (e.g., gasoline, kerosene, diesel, AV fuel, etc.) must be registered regardless of size. USTs used for heating oil (e.g., #2 Fuel Oil) must be registered only if they are used at commercial facilities or at residences with 4 or more units and are greater than 1,100 gallons.

DEM Use Only	
Registration #:	
Data Entry by:	

🗌 Installation of New Tanks 🗌 Newly Discovered Tanks 🔀 Transfer of Ownership 🔲 Change in Operator

I. Property Information

Facility Name:	Former Coffey's Texaco				
Street Address:	48 Touro Street				
City: Newpo	ort	Sta	te Rhode Island	Zip Code: 💈	02840
Primary Contac	ct Name: Stephen Ostiguy				
Primary Cor (check all that	IXI FIUDEILV OWI	er 🔀 UST Owner	UST Operator	Other:	
Title: Executiv	ve Director	Company	y/Firm (if applicable): [Church Community H	lousing Corp.
Phone #: 401	-846-5114 Fax #	t: (401) 849-793	0 E-mail addr	ress: sostiguy@cchcnew	vport.org
Assessor's Plat:	17	Assessor	s Lot: 230		
Are there any U	ISTs at this address currently	registered with RII	DEM? (No @Yes,	UST ID #: 00734 (∩ I'm not sure
Are there any ac	ctive LUST remediation acti	vities on this proper	ty? • No 🔅 Yes,	LUST ID #:	l'm not sure

II. Property Owner Information

1

Owner Name:	Church Community Housing Co	orp.		
Mailing Address: 50 V	Vashington Square			
City: Newport		State	Rhode Island	Zip Code: 02840
Phone #: 401-846-511	4 Fax #: (401) 849-7930	E-mail address: sos	stiguy@cchcnewport.org
	check one) 2/Ltd. Partnership 🔲 Muni 1/Partnership 🗌 Other (Pleas	. –	State Federal (GSA	Facility ID#:
Date Property Purchas	ed: 1/27/2015			
II. Facility Classificat	tion			
Private Residence	🔲 Farm		State Government	Non-Profit Fire District
Multiple Residence	Industrial		Federal Government	Other
Education -Private	Commerical		City/Town Government	Gasoline Station
Education- State	Education- Town			Last Updated 12/15/2014

IV. Facility Operator Information

X Same as Property Owner

Operator Name	#
Mailing Addres	s:
City:	State Rhode Island Zip Code:
Contact Person	: Job Title:
hone #:	Fax #: E-mail address:
Ownership (please check one)
	orporate/Ltd. Partnership 🔲 Municipal 📄 State 📄 Federal (GSA Facility ID#:
	ndividual/Partnership 🔲 Other (Please Specify):
Effective Opera	tion Date:
Tank Owner	Information Same as Property Owner Same as Facility Operator
ank Owner N	ame:
failing Addres	s:
City:	State Rhode Island Zip Code:
Contact Person	: Job Title:
hone #:	Fax #: E-mail address:
	please check one)
	orporate/Ltd. Partnership 🔲 Municipal 🗌 State 🗌 Federal (GSA Facility ID#:
	ndividual/Partnership Other (Please Specify):
Desulatory	Information
Regulatory	Information
	facility get its potable water from? Public Water Private Well No Potable Water
	omponents located within 1,000 feet of a private drinking water well? (No (Yes @ Unknown
re any UST C	omponents located within 500 feet of a public water supply or reservoir? No Yes Unknown
	omponents located within, or adjacent to, regulated freshwater wetlands (Including, but not 🛛 🕥 🔿 Yes nps, ponds, marshes, watercourses, or 100-year flood plains?)
lave any hazar	dous materials leaks or spills ever occurred on this property? (No (Yes (Unknown If yes, incident report must be included with this application _
	r recovery wells installed in the vicinity of the UST(s)? (No (Yes)
A second s	er monitoring wells present on the property? (No @Yes
T	mply with Financial Responsibility Requirements (Rule 7.03)? 🤇 Private Insurance 🤇 Self-Insured 🤇 RI UST Fun

If Private Insurance or Self-Insured, supporting documentation must be attached

VII. Tank & Piping Information

	Tank #1	Tank #2	Tank #3	Tank #4
Date of Installation (MM/DD/YEAR) (If unknown, enter "99")	99	99		
Tank Capacity (Gallons)	10,000	10,000		
Registration Type (New Install, Discovery of old tank)	Change in Ownership	Change in Ownership		
Tank Type (Single/Dual Compartment)	Single-Compartment	Single-Compartment		
Tank Status	Temporarily Closed	Temporarily Closed		
Construction Type (Single Wall/Double Wall)	Single-Wall	Single-Wall		
Construction Material (Steel, Fiberglass)	Fiberglass	Fiberglass		
Corrosion Protection (only required for Steel tanks)	None	None		
Internal Protection (select all that apply) Press Ctrl to Select more than one	Internal Lining Wear Plate Submerged Fill Tube None Unknown			
Piping Method (Pressurized/Suction)	Pressurized	Pressurized		
Pipe Construction Type (Double Wall/Single Wall)	Double-Wall	Double-Wall		
Pipe Construction Material (Fiberglass, steel)	Flexible Plastic	Flexible Plastic		
Pipe Corrosion Protection (only required for steel)	Not Required	Not Required		
Monitoring & Leak Detection System (Check all that apply)	Line Leak Detector Sump Monitoring Precision Testing Interstitial Space Monitoring In-Tank Gauging System	Line Leak Detector Sump Monitoring Precision Testing Interstitial Space Monitoring In-Tank Gauging System	Line Leak Detector Sump Monitoring Precision Testing Interstitial Space Monitoring In-Tank Gauging System	Line Leak Detector Sump Monitoring Precision Testing Interstitial Space Monitoring In-Tank Gauging System
Overfill Prevention Equipment (check all that apply)	High-Level Alarm Flapper Valve Restrictor Ball Float Restrictor			
Spill Prevention Equipment (check all that apply)	Spill Containment Basin Shear Valve/Impact Valve Check Valve (Suction only) Dispenser Pan Fill tube spill bucket	Spill Containment Basin Shear Valve/Impact Valve Check Valve (Suction only) Dispenser Pan Fill tube spill bucket	Spill Containment Basin Shear Valve/Impact Valve Check Valve (Suction only) Dispenser Pan Fill tube spill bucket	Spill Containment Basin Shear Valve/Impact Valve Check Valve (Suction only) Dispenser Pan Fill tube spill bucket
Substance Stored	Regular/Midgrade Gasoline	Premium/Super Gasoline		
Where is Substance Consumed? (on-site/off-site)	Off-Site (e.g., gas stations)	Off-Site (e.g., gas stations)		

If you are registering more than 4 tanks, attach a separate form for more space

VIII. Facility Site Plan

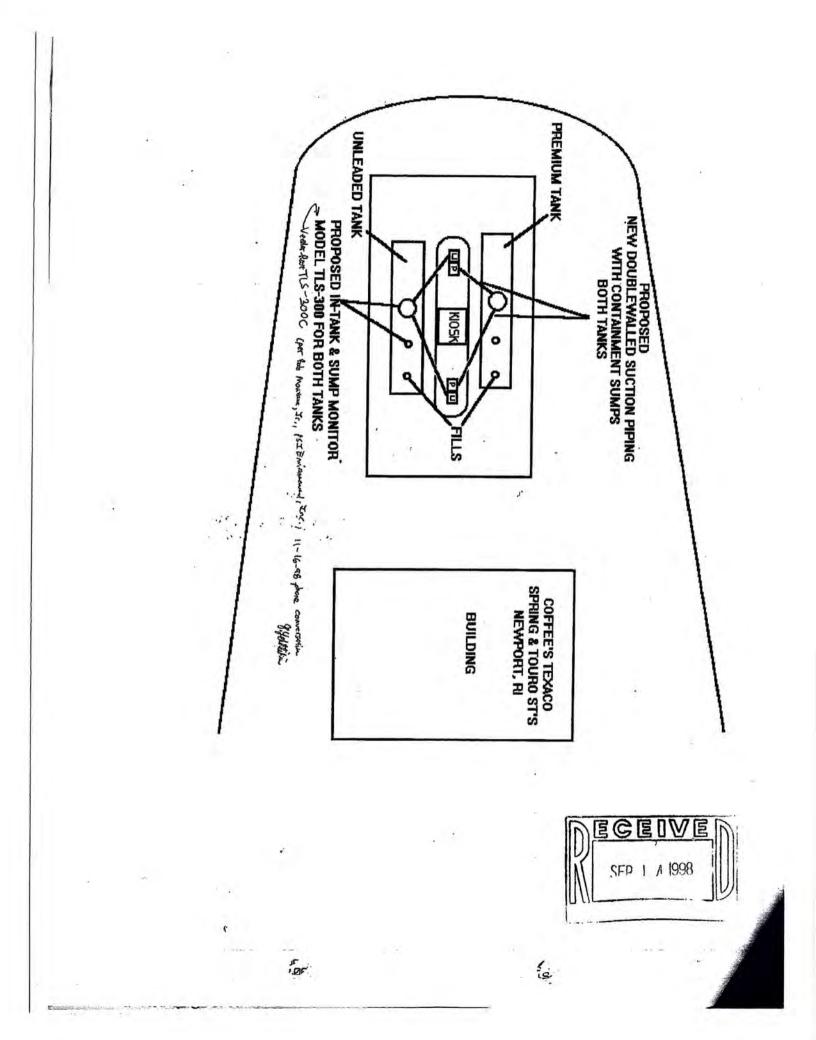
New UST Installation:

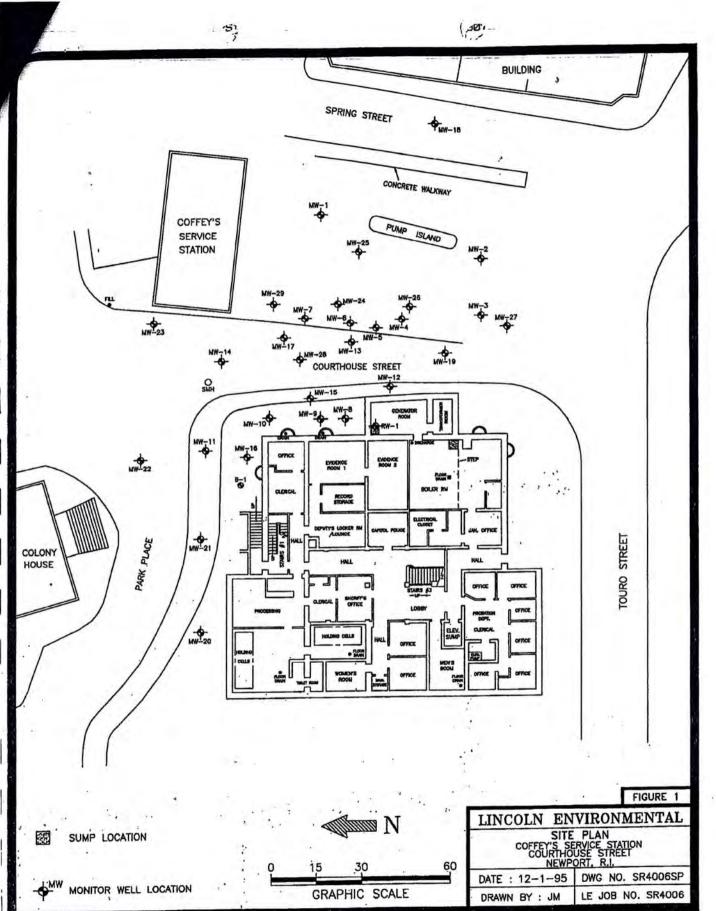
If this registration document is being submitted for installation of new USTs, a set of detailed engineering plans certified and signed by a Registered Professional Engineer and must be included. These plans should include a detailed site schematic showing the locations of all underground utilities, structures on the property, locations of all USTs and related equipment, as well as the location of groundwater wells and surface water bodies. Do not write in the space below and continue to Section IX if you are submitting this registration application for a new UST.

Existing USTs

If you are submitting this registration application for an existing tank and a detailed site plan is not available, use the space provided below to draw a approximation of property boundaries, roads, location of structures, USTs, piping, utility lines, groundwater wells, surface water and any other relevant information.

SEE ATTACHED PLANS


IX. Certification


I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Owner Name:

Owner Signature:

Date:				
	-	 	 -	_

DRAWN BY : JM

Underground Storage Tank (UST) Temporary Closure Application

Temporary closure of UST(s) is intended for short-term suspension of service only and is not for long-term closures or an alternative to permanent closure. Applicants seeking temporary closure must demonstrate that they intend to re-open the facility. Initial Temporary Closure approvals are granted for 180 days and if necessary, a one-time extension for an additional 180 days may be granted. Additional extensions are approved at the discretion of the director and require submittal of a Site Investigation Report (SIR) completed within the past 6 months. A completed Temporary Closure Application must be submitted to DEM 15 days prior to any anticipated temporary closure of any UST regulated under Rule 3.00 of the RI DEM Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials. To request a temporary closure, complete this form in its entirety and attach any documentation required. Incomplete forms or those missing original signatures or supporting documentation will not be processed. Temporary closures should not be considered active until approved by DEM.

Completed applications should be submitted to: Leslie Gerundio Department of Environmental Management - UST Program 235 Promenade Street Providence, RI 02908 **I. Facility Information** DEM UST Facility ID #: 00734 Former Coffey's Texaco Facility Name: Facility Address: 48 Touro Street Zip Code: 02840 City/Town: Newport C Commercial/Industrial Local/State/Federal Government C Residential Gas Station Facility Type: Primary Contact: Stephen Ostiguy, Church Community Housing Corp. 401-846-5114 Phone #: Primary Contact Mailing Address: 50 Washington Square, Newport, RI 02840 Initial Request
 C Request for an extension to an existing temporary closure This Temporary Closure application is a: II. Administrative Compliance Do you have any unsettled Letters of Non-Compliance (LNC) or Notices of Violation with DEM? (Yes (No Date of Last Line Tightness Test**: on file with DEM Date of Last Tank Tightness Test**: on file with DEM III. Tank Information: Complete for each tank you wish to temporarily close Non-Metallic or Coated Construction C Double Wall GASOLINE Tank Volume: 10,000 Tank Contents: Tank ID# Steel Construction Single Wall C Non-Metallic or Coated Construction C Double Wall Tank Volume: 10,000 Tank Contents: CASOLINE Tank ID# **Steel Construction** Single Wall C Non-Metallic or Coated Construction C C Double Wall Tank ID# Tank Volume: Tank Contents: C Single Wall Steel Construction C Non-Metallic or Coated Construction C Double Wall C **Tank Contents:** Tank ID# Tank Volume: C Steel Construction C Single Wall C Double Wall Non-Metallic or Coated Construction C Tank Contents: Tank ID# Tank Volume: Single Wall **Steel Construction** C C C Non-Metallic or Coated Construction C Double Wall **Tank Contents:**

C Single Wall

C

Tank Volume:

Tank ID#

Last Revised: 12/15/201-

Steel Construction

IV. Temporary Closure Preparation

Applicable items must be completed and proof of work (e.g., invoice, sworn affidavit, dated pictures) included with this application

- Contents of tank(s) have been evacuated to < 1" of product
- X All fill lines and access ports have been capped and secured
- All suction lines have been pumped out
- X All vent lines are uncapped and open
- Facility is currently in compliance with all applicable leak detection and spill response requirements*
- If tank of piping is constructed of steel, cathodic protection active tested within the last three years

Date of Last Cathodic Protection Lest:	Protection Test: ON FILE	Date of Last Cathodic
--	--------------------------	-----------------------

Testing Company Name:

Electricity to dispensers and pumps has been physically disconnected or locked out/tagged out

V. Temporary Closure Justification

Please provide a brief explanation of why you are applying for a temporary closure:

CCHC recently purchased the former Coffey's Texaco property and intends to redevelop the property as a public park to preserve the location of the original Town Spring. Ultimately, property ownership would pass to the City of Newport. At this time, there are no specific redevelopment plans or schedule proposed. This extension is being requested to allow time for fund raising efforts and the development of conceptual design plans.

VI. Temporary Closure Responsibilities

Please provide a brief explanation of your plan to comply with general operating requirements while in temporary closure. Be as specific as possible as general or vague plans will not be approved.

Please note that during temporary closures all general operational requirements must be maintained, including maintenance, testing and operation of all corrosion protection systems, regular facility inspections and corrective actions, compliance with all release investigation, reporting, and corrective action requirements, payment of UST registration fees, and maintaining the property to ensure that hazardous conditions do not develop.

The residual petroleum product in the USTs and associated piping was removed by the former owner in January 2015, prior to purchase. CCHC purchased the facility in late January and promptly implemented efforts to secure the property. A UST contractor was engaged to disconnect the electric service to the UST system and to remove the existing dispensers and secure product lines. The site building has been secured and the exterior of the property is paved. The property is being maintained to ensure hazardous conditions do not develop.

Subsurface Investigation has been conducted and release notification made to RIDEM. RIDEM has issued a Voluntary Procedure Letter and the site is being jointly regulated by RIDEM's Site Remediation and LUST sections.

I understand that submittal of this application does not constitute an approval and that I should not assume temporary closure has been granted until I have been notified by DEM. I understand that temporary closure does not release me from responsibilities outlined in the Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials and that I have reviewed and am able to comply with all applicable requirements. I understand that failure to meet these requirements may result in action by the Department of Environmental Management's Office of Compliance and Inspection who may, at their discretion, enforce financial penalties and future delivery restrictions. I acknowledge that DEM may revoke approval of the temporary closure at any time for failure to comply with the conditions outlined above. I understand that temporary closures are issued for a maximum of 180 days at a time and is not intended to be a substitute for permanent closure.

Owner Name (Please Print):	Owner Telephone #: 401-846-5114
Owner Signature:	Date:

EN	VIRC)NM	ENTA	IL 1 AL SH hess V	ERVI		02865		(40 FAX (40	01) 727 01) 727	
Address Phone#	12	5100	_ Contac	ILIAY II O.	2848	11	TETUL Coffey 8 Touro Sit Ruffort RIE 022 17-5700 Contact		Lab Ma	1-36	-15
			Arrive	Depart			L/	ABOR			
Depart Base	Arrive Site	Depart Site	Disposal Facility	Disposal Facility	Return Base		NAME		Per		OUTS
0	0 1		racinty	raciiity		and the second	Contraction of the second	Congo a	Diel	51	
9 ine	9:45	10:45					FL.			-	
		-		187				-		-	
	1						PAID Colle	4-18	2	-	
S. S. And		The second	-	the second		the second second					
-	-						-47754			1.1.1.1	1
							G1086+24				
				5							
							EQU	IPMENT		Mileage	
							Туре	Hours	To Site		m Site
						TK-14					
		1									
			1		Stall					the los-	
	and the second	SUPP	LIES /	MATER	IALS		T	DISPO			
TY	PE			OTHER		QUANTITY	(Bulk quantit	les subject to dis	sposal facility verifi	cation)	No. Ca
Drums								QUANTIT	Y Man	ifest or B / L	No.
3m-Pads	Bdl.					181	Bulk Liquid Dof-Tt	X 35	3G		18
6" absbt	bn. bags						Bulk Solids				
tyvek suits,	boots & glov	les		in sta			Drums			1.2	
Spedi-dri							T-Pak				
Misc.											
				and the second		SUBCON	TRACTORS		IVE SITE	DEPART	SITE
		Contraction of the	The second					ARA		DEPART	SITE
				JOB	DESCR	IPTION (Activ	ity Summary - add sheets as	needed)		and the second	and the second
								Stander and			
	and the second		p	Tump	lun	ISTE CAS	OLINE FROM	2×10,0	mo ust	2	
PCBs, wa material r each vehi	ter, or antifu esult in cros cle. I further	eeze in the s contamin agree that	product rep ation, I sha all overdue	presented. I	understand	that a sample of my costs related to dispo ed a late payment fee	out not limited to: degreasers, mir y waste shall be analyzed and co sal of the entire contents of the c of 1.5% per month and to pay al	mpared to the v contaminated m I costs of collect	vaste report. I agre aterial; plus, a dail tion, including reas	e that should y demurrage	my waste charge for
X Custome	er Signatur	re	-			Date	<u>1-15</u> X	estern Oil Rep	resentative		
And the			-	WHITE -	JOB FOL	DER YELLOW	- ACCOUNTING PINK - CI	USTOMER		-	

THIS ME Is an acknowledgemen or duplicate, covering	t that a bill of	lading has been issued	I and is not the Origi. of Lading, not a copy ended solely for filling or record.	Ship,	's No	
Carrier W	ESTE	RN OIL, IN	0	Carrie SCAC	er's NoR I R Dat	0005000:
TO: Consignee Street Destination		BRACEY A	ATMENT & RECYCLING NORT VENUE CT Zip 06450	FROM: FHE Shipper Street 48 'TOURO	COFFEY COFFEY	'S SERVICE STAN
Route				Vehicle Number		Hazmat Reg. No.
Number and Typ of Packages	e HM	I.D. Number	Description of Ar	Hono	d Pkg. Total Quantity	
1203			GALLONS UN 1203, GASOL (OFF SPEC COMMERCIAL)		VA. N/A 7.353	G
Remit COD t Address: City: NOTE: Where the rel	te is depen	dent on value, shi	ate: Zip:	Subject to Section 7 of conditions, if this shipment is to be delivered to the consignee without recourse on the consignor, the consignor shall sign the following statement: The carrier shall not make delivery of this shipment without payment of freight and all other lawful charges.	COD AMT:	COD FEE: Prepaid - Collect \$
hereby specifically si RECEIVED, subject to i carrier and are available marked, consigned, and to carry to delivery at as destination, and as to ea including the conditions NOTE: Liability Limi 14706(c)(1(A) and (E)	taled by the ndividually d to the ship id destined as aid destination ach party at on the back tation for 1 3).	a shipper to be no letermined rates or of per, on request; and indicated above, wi n, if on its route, or any time interested i hereof, which are he loss or damage in	he agreed or declared value of the property is t exceeding \$ Per contracts that have been agreed upon in writing between all applicable state and federal regulations; the Propert inch said company (the word company being understood otherwise to deliver to another carrier on the route to sain a fl or any of said Property that every service to be per reby agreed to by the shipper and accepted for himself in in this shipment may be applicable. See 49 U.S. property classified, described, packaged, marked	(Signature of Consignor) I the carrier and shipper, if applicable, otherwise y described above, in apparent good order, exe I throughout this contract as meaning any person I didestination. It is mutually agreed as to each o to add hereunder shall be subject to all the cor- nord hereunder shall be subject to all the cor- tor the series.	¢	FREIGHT CHARGE Prepaid Colle rules that have been established by ition of contents of packages unknow the property under the contract) agr y over all or any portion of said rout her printed or written, herein contain
and labeled, and are h he Department of Trans	proper cal portation. F	ndition for transport Per	lation according to the applicable regulations of	REQUIRED	DRIVER'S SIGNATURE:	Tento
SHIPPER: 1/6	2 25	Ti Ce	STEL S. STRIION	CARRIER: WESTE		-
EMERGENCY TELEPHONE I	RESPO	NSE 80	DATE: 22/- 23/- 25 00 240 5540	NAME OR CONTRACT	NUMBER	<u>TE:07-27-75</u>
09-BLC-Q 3 124	61 (Rev.	9/10)		3		
				1		

•

. 1

3 a ...

e ' '

Rhode Island Hydraulics Co., Inc.

1500 Ten Rod Road North Kingstown, RI 02852 US 401-295-1943 rihco@verizon.net www.rhodeislandhydraulics.com Invoice

BILL TO Bruce Clark Newport Environmental

VVOICE NO. DATE TERMS		DUE DATE	TOTAL DUE		ENCLOSED	
14-321	02/09/2015	Net 30	03/11/2015	\$1,500.00		
ACTIVITY				QTY	RATE	AMOUNT
Quote	ned at Touro Station nnect all gas related e ure lines	lectrical and remove		1	1,500.00	1,500.00

BALANCE DUE \$1,500.00

This page is intentionally left blank

NON-HAZARDOUS WASTE MANIFEST

the Add

	UNIFORM NON-HAZARDOUS WASTE	1. Generator's US EPA ID No.		Manifest	Document No.	2	. Page 1 of	
		NON APPLI	CAB				A	
	3. Generator's Name and Mailing Address	WO 7-417-15 I A. Non Hazardous Waste Manifest Documentation Number Number						
	NEIL F COFFEY INC							
	60 SACHUEST WAY	B. G.S.I. (Generator Site Address)						
	MIDDLETOWN RI 02848		Y'S SERV		TION			
				and the second sec	URO STRE	Contraction of the second s		
	4. Generator's Phone: 401-847-5100				Transporter Lice		mart	
	5. Transporter 1 Company	6. US EPA ID No.		D. Transporter Phone: 401-727-8600				
	WESTERN OIL, INC.	RIR000500025		E. S.T.I. (Transporter Lice	nse Plate #)		
	7. Transporter 2 Company	8. US EPA ID No.		F. Transp	orter Phone:			
	9. Designated Facility Name and Site Address			and the second	Facility (Not Req	Contract Contractory		
Generator	WESTERN OIL, INC.	10. US EPA ID No.		H. Facility	/'s Phone: 8	00-240-5	540	
ner	ONE DUCHESS WAY	RIR000500025						
ato	LINCOLN RI 02865	1111000000020					11.4153/01.11	
ř								
	11. US DOT Description (Including Proper Shipping Name, Hazar	d Class, and ID Number)	12. Co	ntainers	13. Total Quantity	14. Unit Weight/	I. Waste No.	
	a. NA 1993, COMBUSTIBLE LIQUIDS, N.O.S.		No.	Туре	Guantity	Volume		
	(OILAAVATER)-COMB. LIQ. PG III		Street.	MG			EPA	
	(VITSIA O.C)		001	FT	50	G	State	
		-1 -1 1-1			20		EPA	
	NUNE NONE (aly sol	ed Material			X80	-		
	NONE NONE (ally SOL	iels)	100	DM	Xoland	P	State	
	с.				1.150		EPA	
					1.	-		
		and the second	-	1993 - A			State	
	d.						EPA	
	A REAL PROPERTY AND A REAL						State	
	J. Additional Description for Materials Listed		K. Handli	na Codes f	or Waste Listed	Above		
	Above a.		Interim				1 Final	
	a. c. b. d.		Interim		na I	nterim	Final	
1							-	
	15. Special Handling Instructions and Additional Information							
	EMERCENCY CONTRACT # (000) 240 5540							
	EMERGENCY CONTACT # (800) 240-5540							
	ERG#128							
	16. General Certification: I hereby declare that the contents of th packed, marked and labeled, and are in all respects in proper con- ord off certification. Clark being and are in the time of the second secon	is consignment are fully and accurat	ely descril	ed above	by proper shipp	ing name an	d are classified,	
	and an applicable State laws and regulations.	union for transport by highway accord	ing to app	icable inter	national and nati	ional governr	ment regulations	
	Printed/Typed Name Signa	ture				Mo	onth Date Year	
¥	Erill Gottling D	M					73115	
_	Transporter 1 Acknowledgement Receipt of Materials 17. Printed/Typed Name Signa	ture	0				ath Data V	
a	Kaulus K	Acia ()	$\left(\right)$			Mo	onth Date Year	
Transporter	Transporter 2 Acknowledgement Receipt of Materials	fairs) Lain	for)			ZPLID	
3	18. Printed/Typed Name Signa	ture				Mo	nth Date Year	
er						10.00		
	19. Discrepancy Indication Space							
П							Sector Sector	
Facility								
ŧ	Facility Owner or Operator: Certification of receipt of hazardous ma	aterials covered by this manifest as n	oted in Iter	n 19.			/	
	Printed/Typed Name Signature					Mo	nth Date Year	

GENERATOR COPY

This page is intentionally left blank

WESTERN OIL INC. (401) 727-8600 ENVIRONMENTAL SERVICES (401) 727-8600 P.O. Box 518 (One Duchess Way) • Lincoln, RI 02865 FAX (401) 727-7667												
			1 1									/00/
		wp	nt s			Job Site:	ottey's ser	v. Stat	ion c	Date: 13	1.15	1-
Addres	S: T	UN P	204	751	-	Address:	8 Tourost	0285	7 J	ob No.:	7.40	FI S
Phone	* ian	d210	Contac	+ 0,11	c.0	Phone#	Contact	0205		Date Finis	hed:	
EPA ID		8110	_ Contac	13/0	C.C.	EPA ID#						
								Sec. 1				
Depart	Arrive	Depart	Arrive	Depart	Return		LA	BOR				
Base	Site	Site	Disposal Facility	Disposal Facility	Base		NAME			Per Diem	Hou	urs OT
7:00	8:00	10:15				1	.1			Diom	51	01
		0.15				Sine	<u></u>					-
			_			Kev.	1		_			
									-			
											1	
								1200				
							EQUI	PMENT				
							Туре	Hours		Mile	1	
						~ . 1 .	10		То	Site	From	Site
			-			TIC-L	72			1	Part -	1000
				1			Sur Ton Strange			1	Mest's	
		-	-							_		
				-								
		SUPP	LIES /	MATER	IALS		(Bulk quantitie	DISPO as subject to dis	Property and a second second	ity verificatio	an)	
TY	PE	QUA	ANTITY	OTHER	/TYPE	QUANTITY						
Drums			1)			0		QUANTIT	Y	Manifes	t or B / L M	No.
3m-Pade	Bdl.		1				Bulk Liquid	XS	0			
6" absbt	bn. bags						Bulk Solids	XXX)			
tyvek suits	, boots & glov	es					Drums					
Spedi-dr	i						T-Pak					
Misc.												
						SUBCONT	RACTORS					
								ARR	IVE SITE		DEPART	SITE
	1			JOB	DESC		ty Summary - add sheets as	needed)				
PU	10	Anit	- W A	RWPD	n-1	CITY HA	y putitinary - add sheets as	needed)				
	- pro	1	A			11000	sto 1	ANT				
Pul	up,	llur	n Ke	move	1	X LIS de	xx + 2 011 1	ANK	-			
1		11	1	1	1	¥275	whiste oil	+ An	Ik			
PCBs, wa material r	ater, or antifr esult in cros	eeze in the	product rep ation, I sha	presented. I Il become lia	understan able for all	d that a sample of my costs related to dispos	ut not limited to: degreasers, min waste shall be analyzed and com al of the entire contents of the co of 1.5% per month and to pay all	npared to the wontaminated ma	aste reportaterial; plu	rt. I agree th s, a daily de	at should m murrage ch	ny waste harge for
Custom	er Signatur	0					D X	torn Oil Day	2	Val	h	
Qualoni	si olgnatur	0		WHITE -	JOB FOI	and a second	ACCOUNTING PINK - CU	stern/Oil Rep STOMER	esentativ	ve		

APPENDIX I

SIR Checklist

APPENDIX "I"

Section 7 of the "Remediation Regulations" Site Investigation Report (SIR) Checklist

(The following information shall be completed and submitted with the SIR)

Contact Name: **Bruce Clark (Newport Environmental)** Contact Address: **P.O. Box 957 North Scituate, RI 02857** Contact Telephone: (401) 497-8240

Site Name: Former Coffey's Texaco Site Address: 48 Touro St. Newport, Rhode Island

OFFICE USE ONLY

SITE INVESTIGATION REPORT (SIR) SITE: PROJECT CODE: SIR SUBMITTAL DATE: CHECKLIST SUBMITTAL DATE:

DIRECTIONS: The box to the left of each item listed below is for the administrative review of the SIR submission and is for **RIDEM USE ONLY**. Under each item listed below, cross-reference the specific sections and pages in the SIR that provide detailed information that addresses each stated requirement. Failure to include cross-references shall delay review and approval. If an item is not applicable, simply state that it is not applicable and provide an explanation in the SIR.

- 7.03.A. List specific objectives of the SIR related to characterization of the Release, impacts of the Release and remedy.
 Section 1.1 p. 1, and Section 8.3 p. 6
- 7.03.B. Include information reported in the Notification Of Release. A copy of the Release notification form should be included in the SIR. Include information relating to short-term response, if applicable.
 Section 2.0 p. 2, and Appendix A p. 29

7.03.C. Include documentation of any past incidents, releases, or investigations.Appendix B p. 34

- 7.03.D. Include list of prior property Owners and Operators including past uses of the property, sequencing of property transfers and time periods of occupancy. Include supporting documentation.
 Section 3.0 p.2
 (Phase I Site Assessment available at www.dem.ri.gov/programs/benviron/waste/coffeys.htm)
 - Historical Sanborn Maps
 Phase I Site Assessment p. 224
 Historical Aerial Photos
 - Phase I Site Assessment Appendix F

7.03.E. Include previously existing environmental information which characterizes the Contaminated-Site and all information that led to the discovery of the Contaminated-Site.
 Section 2.0 pp. 1-2, and Section 4.0 p. 3

7.03.F. Include current uses and zoning of the Contaminated-Site, including brief statements of operations, *Last Update: 1/31/2014*

processes employed, waste generated, Hazardous Materials handled, and any residential activities on the site, if applicable. (This section should be linked to the specific objectives section demonstrating how the compounds of concern in the investigation are those that are used or may have been used on the site or are those that may have impacted the site from an off-site source.) **Urban location historically utilized as a petroleum distribution and automotive repair facility to be redeveloped as a park with ownership eventually passing to the city.**

- 7.03.G. Include a locus map showing the location of the site using US Geological Survey 7.5-min quadrangle map or a copy of a section of that USGS map.
 Figure 1 p. 19
- 7.03.H. Include a site plan, to scale, showing:
 - Buildings
 - Activities
 - Structures
 - North Arrow
 - Drinking Water Wells
 - Monitoring Wells
 - UIC Systems, septic tanks, USTs (former and current), piping and other underground structures
 - Groundwater Flow Direction
 - Outdoor Hazardous Materials storage and handling areas
 - Extent of paved areas
 - Location of environmental samples taken with analytical results, including soil borings, test pits, and groundwater monitoring wells, highlighting any exceedances with the corresponding sample depth and medium listed
 - Waste management and disposal areas
 - Lot Lines
 - Property Lines

Figure 3 p. 21, Figure 4 p. 22, and Figure 5 p. 23

- 7.03.I. Include a general characterization of the property surrounding the area including, but not limited to:
 - Location and distance to any surface water bodies within 500 ft of the site **Section 6.4 p. 5**

Location and distance to any Environmentally Sensitive Areas within 500 ft of the site *Last Update: 1/31/2014*

Section 6.5 p. 5

- Actual sources of potable water for all properties immediately abutting the site **Section 6.6 p. 5**
- Location and distance to all public water supplies, which have been active within the previous 2 years and within one mile of the site **Section 6.6 p.5**
- Determination as to whether the Release impacts any off-site area utilized for residential or industrial/commercial property or both.
 Former UST release impact off-site city and state-owned property non-UST related contaminant sources appear to be limited to within the property boundaries.
- Determination of the underlying groundwater classification and, if the classification is GB, the distance to the nearest GA area **Section 7.2 pp. 5-6**
- 7.03.J. Include classifications of surface and ground water at and surrounding the site that could be impacted by a Release. Section 7.1 p. 6, and Section 7.2 pp. 5-6
- 7.03.K. Include a description of the contamination from the Release, including:
 - Free liquids on the surface **Section 8.1 p. 6**
 - LNAPL and DNAPL Section 8.2 p. 6

- Concentrations of Hazardous Substances which can be shown to present an actual or potential threat to human health and any concentrations in excess of any of the remedial objectives; (reference Section 12 for requirements related to arsenic in soil). **Section 8.3 p. 6**
- Impact to Environmentally Sensitive Areas Section 8.4 p. 6
- Contamination of man-made structures
- Presence of excavated or stockpiled material and an estimate of its total volume **Section 8.8 p. 6**
- Environmental sampling locations, procedures and copies of the results of any analytical testing at the site Reference site plans and tables summarizing data.
 Section 9.1 pp. 7-8, Sections 9.1.1, 9.1.2, and 9.1.3 p. 8, Section 9.2 p. 9, Section 9.2.1 pp. 9-10, Table 1 p. 25, Table 2 p. 26, Table 3 p. 27, Figure 3 p. 21, Figure 4 p. 22, Appendix C pp. 35-43, Appendix D pp. 44-109, Appendix E pp. 110-142, and Appendix F pp. 143-206
- List of Hazardous Substances at the site Section 5.2.8 p. 4

- Indicate if the site has previously been or is currently under the jurisdiction or any program within the Department or Environmental Protection Agency Section 4.0 p. 2
- Discuss if the contamination falls outside of the jurisdiction of the Remediation Regulations, including but not limited to USTs, UICs, and wetlands. Section 1.1 p. 1
- 7.03.L. Include the concentration gradients of Hazardous Substances throughout the site for each medium impacted by the Release.
 Section 9.2.2 p. 10
- 7.03.M. Include the methodology and results of any investigation conducted to determine background concentrations of Hazardous Substances identified at the Contaminated-Site (see Section 12 for Special Requirements for Managing Arsenic in Soil).
 Section 9.3 p. 10
- 7.03.N. Include a listing and evaluation of the site specific hydrogeological properties which could influence the migration of Hazardous Substances throughout and away from the site, including but not limited to, where appropriate:
 - Depth to groundwater and elevation of groundwater above mean sea level Section 10.1 p. 11, and Appendix G pp. 207-209

Presence and effects of both the natural and man-made barriers to and conduits for contaminant migration Section 10.2 p. 11

- Characterization of bedrock and depth of bedrock below ground surface, if available **Section 10.3 p. 10**
- Groundwater contours, flow rates and gradients throughout the site, and location of groundwater monitoring wells depicted on a site figure drawn to scale. (a minimum of three (3) groundwater wells is required) Section 10.4 p. 10, and Figure 5 p. 23
- 7.03.O. Include a characterization of the topography, surface water and run-off flow patterns, including the flooding potential, of the site. **Section 11.0 p. 10**
- 7.03.P. Include the potential for Hazardous Substances from the site to volatilize and any and all potential impacts of the volatilization to structures within the site. Indoor air and/or soil gas analysis is required if appropriate.
 Section 12.0 p. 10
- 7.03.Q. Include the potential for entrainment of Hazardous Substances from the site by wind or erosion actions.
 Section 13.0 p. 11
- J7.03.R. Include detailed protocols for all fate and transport models used in the Site Investigation.Sections 14.1.1, 14.1.2, 14.1.2.1 p. 12, and Section 14.1.2.2 p. 13

7.03.S. Include a complete list of all samples taken, the location of all samples, parameters tested for *Last Update: 1/31/2014*

and analytical methods used during the Site Investigation. **Be sure to include the sample locations and analytical results on a site figure** as required in Rule 7.03.H. Please note that a representative number of soil samples taken should be analyzed for Priority Pollutant Metals, Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), Total Petroleum Hydrocarbons (TPH), and Polychlorinated Biphenyls (PCBs). All analytical results shall be summarized in a tabular format. Include justification for all sample locations, depths, and parameters analyzed. Same as above

Section 9.1 pp. 7-8, Sections 9.1.1, 9.1.2, and 9.1.3 p. 8, Section 9.2 p. 9, Section 9.2.1 pp. 9-10, Table 1 p. 25, Table 2 p. 26, Table 3 p. 27, Figure 3 p. 21, Figure 4 p. 22, Figure 5 p. 23, Appendix C pp. 35-43, Appendix D pp. 44-109, Appendix E pp. 110-142, and Appendix F pp. 143-206

7.03.T. Include construction plans and development procedures for all monitoring wells. Well construction shall be consistent with the requirements of Appendix 1 of the <u>Groundwater Quality Rules</u>. Include boring logs for monitoring wells and soil borings in an appendix of the SIR. Section 9.2 p. 9, and Appendix C pp. 35-43

7.03.U. Include procedures for the handling, storage and disposal of wastes derived from and during the investigation.

Non generated

7.03.V. Include a quality assurance and quality control evaluation summary report for sample handling and analytical procedures, including, but not limited to, chain-of-custody procedures and sample preservation techniques.

Appendix D p. 48, Appendix F p. 146, and p. 177

- 7.03.W. Include any other site-specific factor, that the Director believes, is necessary to make an accurate decision as to the appropriate Remedial Action to be taken at the site. **None** required.
- Include Remedial Alternatives. The Site Investigation Report **shall** contain a minimum of **2** remedial alternatives other than no action/natural attenuation alternative, unless this requirement is waived by the Department. It should be clear which of these alternatives is most preferable. All alternatives shall be supported by relevant data contained in the Site Investigation Report and consistent with the current and reasonably foreseeable land usage, and documentation of the following:

Compliance with Section 8 (RISK MANGEMENT);

Once the proposed remedy is implemented site will be compliant with applicable Method 1 soil standards

] Technical feasibility of the preferred remedial alternative;

- Compliance with Federal, State and local laws or other public concerns; and
- The ability of the Performing Party to perform the preferred remedial alternative

Sections 17.0, 17.1, 17.2, 17.3 p. 14, Section 17.4 pp. 14-15, and Section 17.5 p. 15

- 7.05 **Certification Requirements:** The Site Investigation Report and all associated progress reports shall include the following statements signed by an authorized representative of the party specified:
 - A statement signed by an authorized representative of the Person who prepared the Site Investigation Report certifying the completeness and accuracy of the information contained in that report to the best of their knowledge; and Section 19 p. 17
 - A statement signed by the Performing Party responsible for the submittal of the Site Investigation Report certifying that the report is a complete and accurate representation of the site and the Release and contains all known facts surrounding the Release to the best of their knowledge Section 19 p. 17
- **Progress Reports:** If the Site Investigation is not complete, include a schedule for the submission of periodic progress reports on the status of the investigation and interim reports on any milestones achieved in the project
- **Public Involvement and Notice:** Be prepared to implement public notice requirements per Section 7.07 and 7.09 of the Remediation Regulations when the Department deems the Site Investigation Report to be complete.
 - Indicate if the site falls within an Environmental Justice (EJ) area and, if applicable, include all EJ public notice documentation issued, and the list of recipients. Site is not located in such an area