Risks to Bees from Pesticide Exposure: "If you've seen one bee, you've not seen

Nancy Ostiguy, Ph.D., M.P.H. Department of Entomology, Penn State

them all

RI Pollinator Health Committee, November 3, 2016

What is a pesticide?

Antibiotics

Fungicides.

Acaricides

Herbicides

Nematicides

Insecticides

Rodenticides

Fungicide Target Sites

TARGET SITE	CLASS	EXAMPLES
Nucleic Acid Synthesis: RNA Polymerase I Adenosindeaminase DNA/RNA synthesis (proposed) DNA topoisomerase type II	A1: PenylamidesA2: HyroxypyrimidinesA3: HeteroaromaticsA4: Carboxylic Acids	Benalaxyl, Metalaxyl Dimethirimol Octhilione Oxolinic acid
Mitosis and Cell Division: β-tubulin assembly in mitosis (B1, B2, B3) Cell division (proposed) Delocalization of spectrin-like proteins	B1: Methyl benzimidazole carbamatesB2: N-phenyl carbamatesB3: Benzamides & thiazole carbamatesB4: PhenylureasB5: Benzamides	Benomyl, Thiphanate Diethofencarb Zoxamide Pencycuron Flopicolide
Respiration: Complex I NADH Complex II Complex III – cytochrome bc1 at Qo Complex III – cytochrome bc1 at Qi Uncouplers of oxidative phosphorylation Inhibit oxidative phosphorylation ATP production (proposed) Complex III – cytochrome bc1 at Q unknown	 C1: Pyrimidinamines C2: Phenyl benzamides C3: Methoxy carbamates C4: Cyano-imidozole C5: Dinitroanilines C6: Organo tin compounds C7: Thiphenecarboxamide C8: Triazolo-pyrimidylam e 	Diflumetorim Mepronil Azoxystrobin Cyazofamid Fluazinam Fentin acetate Silthiofam Ametoctradin
Amino Acid/Protein Synthesis	D1 – D5: Anilino-primidines	Streptomycin, Oxytetracycline
Signal Transduction	E1 – E3	Vinclozolin
Lipid Synthesis and Membrane Integrity	F1 – F7	lodocarb, Bt
Sterol Biosynthesis in Membranes	G1 – G4	Fenbuconazole, Spiroxamine
Cell Wall Biosynthesis	H3 – H5	Mandipropamid, Polyoxin
Melanin Synthesis in Cell Wall	l1 – l2	Pyroquilon, Fenoxanil
Host Plant Defense Induction	P1 – P5	Probenazole, Laminarin
Multiple Target Sites		Copper, Sulfur, Zineb, Chlorothalonil
Unknown Mode of Action		Cymoxanil, Methasulfocarb

Herbicide Target Sites

TARGET SITE	CLASS	EXAMPLES
Inhibition of Acetyl CoA Carboxylase+	A: Aryloxyphenoxy-propionate, Cyclohexanedione	Alloxydim, Sethoxydim
Inhibition of Acetolactate Synthase*	B: Sulfonylurea, Imidazolinone,	Chlorsulfuron, Cyclosulfamuron
Inhibition of Photosynthesis at Photosystem II*	C1: Triazine, Triazionone, Uracil C2: Urea, Amide C3: Nitrile, Benzothiadiazinone	Simazine, Bromacil Diuron, Fenuron Bromoxynil, Bentazon
Photosystem-1 – Electron Diversion*	D: Bipyridylium	Diquat, Paraquat
Inhibition of Protoporphyrinogen Oxidase+	E: Phenylpyrazole, Pyrimidindione	Bifenox, Butafenacil
Bleaching: Carotenoid biosynthesis inhibition (phytoene desaturase)* Inhibition of 4-hydroxyphenyl-pyruvate-dioxygenase Inhibition of carotenoid biosynthesis (unknown site)*	F1: Pyridazinone F2: Pyrazole F3: Triazole	Norflurazon Benzofenap, Pyrazoxyfen Amitrole
Inhibition of EPSP Synthase*	G: Glycine	Glyphosate
Inhibition of Glutamine Synthetase+	H: Phosphinic acid	Glufosinate-ammonium
Inhibition of Dihydropteroate Synthase*	I: Carbamate	Asulam
Microtubule Assembly Inhibition Inhibition of Mitosis / Microtubule Organization Inhibition of Cell Division	K1: Dinitroaniline, Pyridine K2: Carbamate K3: Chloroacetamide	Pendimethalin, dithiopyr Carbetamide Alachlor, Metolachlor
Inhibition of Cell Wall (cellulose) Synthesis*	L: Nitrile, Benzamide	Dichlobenil, Isoxaben
Uncoupling (Membrane disruption)	M: Dinitrophenol	Dinoseb
Inhibition of Lipid Synthesis	N: Thiocarbamate	Prosulfocarb
Indole Acetic Acid-like Action*	O: Phenoxy-carboxylic-acid	2, 4-D
Inhibition of Auxin Transport*	P: Phthalamate, Semicarbazone	Naptalam

Insecticide/Miticide Target Sites

TARGET SITE	CLASS	EXAMPLES
Nerve Action: Acetylcholine esterase inhibition	1A – Carbamates 1B - Organophosphates	Aldicarb Dimethoate
Nerve Action: GABA-gated chloride channel antagonists	2A – Cyclodienes 2B - Phenylpyrazoles	Chlordane Fipronil
Nerve Action: Sodium channel modulators	3A – Pyrethroids 3B	Permethrin DDT, Methoxychlor
Nerve Action: Nicotinic AChR agonist	4A – Neonicotinoids 4B – Nicotine 4C 4D - Butenolides	Imidacloprid Nicotine Sulfoxaflor Flupyradifurone
Nerve Action: nAChR allosteric activators	5 – Spinosyns	Spinetoram, Spinosad
Nerve & Muscle Action: Chloride channel activators	6 – Avermectins, Milbemycins	Abermectin
Growth Regulation: JH mimics	7A, 7B, 7C	Hydroprene, Fenoxycarb, Pyriproxyfen
Miscellaneous Multi-Target Sites	8A – 8E	Methyl bromide, Borax
Nerve Action: Selective Homopteran Feeding Blockers	9A & 9B	Pymetrozine, Flonicamid
Microbial Disruptor of Insect Gut Membrane	11A & 11B	Bt, Bacillus sphaericus
Inhibitors of Mitochondrial ATP Synthase	12A – 12D	Azocyclotin, Sulfuramid
Nerve Action: Octopamine receptor agonists	19	Amitraz
Energy Metabolism: Mitochondrial complex I electron transport inhibitors	21 A – METI acaricides & insecticides 21B	Fenproximate Rotenone
Lipid synthesis, growth regulation: Inhibition of Acetyl CoA Carboxylase	23 – tetronic & tetramic acid derivatives	Spirodiclofen

Conclusion 1

- Pesticides are classified by target organism.
- Mode of action may be unknown or not fully understood.
- Mode of action for target organisms is identical to mode of action for non-target organisms when target site is the same.
- A pesticide may have multiple target organisms.
- A pesticide may have multiple modes of action.
- It is possible to have same modes of action for different types of pesticides.

Chemical Characteristics Determine Toxicity

Stomach poison Eaten & absorbed through gut

Contact poison Absorbed through body wall

DISTRIBUTION

SYSTEMIC translocations through organism LOCAL impacts a localized area

Fumigants Eaten & absorbed tracheae

Bombus tericola

TARGET SITE (MODE of ACTION)

Exposure and Outcome

Exposure

- Acute
 - High dose
 - Short duration
- Subacute/subchronic
 - Moderate dose
 - Moderate duration
- Chronic
 - Low dose
 - Long duration

Outcome

- Acute
 - Now/Today
 - Severe (usually)
 - Death
- Subacute/subchronic
 - Months
 - Sublethal
 - Behavior, immunity
- Chronic
 - Years

Range of Bee Outcomes

- Acute Exposure/Outcome
 - Inhalation?
 - Ingestion (generally assumed that ingestion is more toxic than contact – not true)
 - Contact
- Subacute/Subchronic Exposure/Outcome
- Chronic Exposure/Outcome
 - Lethal Toxicity
 - Probability of overwintering, population impacts
 - Sublethal

Range of Bee Outcomes

- Sublethal (subacute/subchronic)
 - Reproduction
 - days to egg hatch or for larval development
 - Mobility
 - Trembling
 - Uncoordinated movement
 - Hyperactivity
 - Behavior
 - Learning/memory (PER)
 - Orientation maze test

- Nest development (B. impatiens, B. terrestris)
- Food avoidance or preference?

Potential for Adverse Outcomes

- Depends upon
 - Systemic/non-systemic
 - Application method
 - Chemical formulation
 - Risk of exposure
 - Prophylactic treatments (seeds, etc.)
 - Dose and duration of exposure
 - How fast chemical decomposes
 - Half-life (Temperature, moisture, sunlight, volatility)
 - Kind of environment "liked" by the chemical
 - pK_a, partitioning (octanol:water) coefficient
 - Soil mobility

Conclusion 2

- Exposure risk depends upon route of entry
- Risk of adverse outcome depends upon route of entry, translocation, detoxification, & target sites
- Toxicity information
 - Target insect/plant/pathogen
 - Most about contact LD_{50} , little about oral LD_{50} , other outcomes
 - Little information on non-target organisms
 - Most is known about honey bee adults
 - Little known about eggs, larvae and pupae, other bees
- Pesticide formulation and environmental conditions are critical
- Prophylactic treatments are risky.

Comparison of Five Insecticides across Three Species

C.D. Scott-Dupree, et al. (2009) Journal of Economic Entomology 102(1): 177-182

Contact LC₅₀*

Pesticide	Bombus impatiens	Megachile rotundata	Osmia lignaria
Clothianidin	0.39	0.08	0.10
Imidacloprid	3.22	0.17	0.07
Deltamethrin	6.90	0.13	8.90
Spinosad	8.95	1.25	4.7
Novaluron	>100	>100	

Comparison of Topical LC₅₀ in Apis mellifera and Bombus species

F. Sanchez-Bayo & K. Goka 2014 PLoS ONE 9(4): e94482

Pesticide	Apis mellifera	Bombus	Relative Sensitivity LC _{50 Am} / LC _{50 B}
Chlorpyrifos	0.07	0.09	0.78
Imidacloprid	0.06	0.02	3
Deltamethrin	0.02	0.28	0.07
Carbaryl	0.84	41.16	0.02
λ –Cyhalothrin	0.05	0.17	0.29
Permethrin	0.6	0.22	2.73
τ-fluvalinate	0.03	0.46	0.06

 LC_{50} : μ g/bee

If relatively sensitivity is < 1, honey bees are more susceptible

Comparison of LC₅₀ in Apis melifera and Osmia cornifrons

D.J. Biddinger et al. 2013 PLoS ONE 8(9): e72587

Pesticide μg/bee (formulation)	Apis mellifera LC ₅₀ (LC ₉₀)	Risk	Osmia cornifrons LC ₅₀ (LC ₉₀)	Risk	Relative Sensitivity LC _{50 Am} / LC _{50 Oc}
Acetamiprid (Assail)	64.6 (537)	0.12	5.2 (87.1)	0.06	12.42
Dimethoate (Dimethoate)	0.31 (0.46)	0.68	0.09 (1.43)	0.06	3.44
Phosmet (Imidan)	1.9 (27.5)	0.07	6.1 (14.6)	0.42	0.31
lmidacloprid (Provado)	0.15 (1.53)	0.09	3.82 (57.7)	0.07	0.04
λ-cyhalothrin (Warrior)	0.30 (3.4)	0.08	0.91 (5.2)	0.18	0.33

Risk is high if near 1.

If Relatively <u>Sensitivity</u> is < 1, honey bees are more susceptible.

Single Exposure to Formulated Pesticide and Interactions

D.J. Biddinger et al. 2013 PLoS ONE 8(9): e72587

Pesticide (formulation)	Apis mellifera LC ₅₀	Osmia cornifrons LC ₅₀	Relative Sensitivity LC _{50 Am} / LC _{50 Oc}
Acetamiprid (Assail)	64.6	4.0	16.15
Imidacloprid (Provado)	0.2	3.8	0.05
Fenbuconazole (Indar)	(Non-toxic)	(Non-toxic)	
Acetamiprid/Indar (1:1)	14.3	2.1	6.81
Imidacloprid/Indar (2:1)	0.3	6.6	0.04

LC₅₀: µg/bee

If relatively sensitivity is < 1, honey bees are more susceptible

Interaction of Pesticides in Apis mellifera and Bombus (topical LC₅₀)

F. Sanchez-Bayo & K. Goka 2014 PLoS ONE 9(4): e94482

Insecticide	Fungicide	Apis mellifera	Bombus	Relative Sensitivity LC _{50 Am} / LC _{50 B}
Cyhalothrin	Propiconazole	0.003	0.01	0.3
	Myclobutanil	0.004	0.02	0.2
	Penconazole	0.011	0.04	0.3
Acetamiprid	Propiconazole	0.076	0.95	0.08
	Fenbuconazole	1.76	22.2	0.08

If relatively sensitivity is < 1, honey bees are more susceptible

 LC_{50} : μ g/bee

Exposure Comparison: LC₅₀/LC₉₅, Relative Sensitivity (RS), Risk

INGESTED	Pesticide (LC ₅₀ /LC ₉₅) (μg a.i./bee)	Apis mellifera	Melipona quadrifasciata	RS	Rel. RISK
	Abamectin	0.01/0.02	0.015/0.033	0.67	1.1
	Deltamethrin	0.85/7.00	0.082/0.320	10.36	0.5
	Methamidophos	3.70/5.50	0.066/0.066	5.61	0.7

TOPICAL					
	Abamectin	7.8/13.8	134.6/471.6	0.06	2
	Deltamethrin	112.2/359.6	129.2/460.6	0.87	1.1
	Methamidophos	408.5/1537	296.6/1916	1.38	1.7
CONTACT					
CONTACT					
	Abamectin	15.4/83	3.8/14.7	4.05	0.7
	Deltamethrin	6.6/66.6	5.6/29.9	1.18	0.5
	Methamidophos	443/1537	96.1/251.1	4.61	0.7

If Relative Risk is > 1 risk is higher for honey bees

M.C.L. Del Sarto, et al. 2014 Apidologie 45: 626-636

Relative Sensitivity LC_{50 (A. mellifera)}/LC_{50 non-A. mellifera subgroup})

	Non- <i>Apis mellifera</i>	Species	# of cases	Median	Range
	Andrenidae	1	6	1.47	0.709-3.00
Apis	Apidae (Apinae/Apini)	2	5	1.09	1.04-1.51
mellifera	Apidae (Apinae/Bombini)	5	45	0.21	0.001-25.88
	Apidae (Apinae/Meliponini)	7	22	1.29	0.26-2085.7
	Halictidae (Nomminnae)	1	27	0.59	0.012-62.61
	Megachilidae (Megachilinae/Megachili ni)	1	29	0.55	0.01-11
	Megachilidae (Megachilinae/Osmiini)	2	16	0.20	0.001-25.88

If relatively sensitivity is < 1, honey bees are more susceptible M. Arena & F. Sgolastra 2014 Ecotoxicology 23:234:334.

Subchronic Exposure

- Dimethoate and fibronil increase mortality when honey bees exposed for 11 days to subacute []
- No effect on PER observed
- Deltamethrin, prochloraz, endosulfan, fibronil decreased olfactory learning in conditioning trials.
 - A. Decourtye et al. 2005 Archives of Environmental Contamination and Toxicology 48: 242-250
- Pesticides use within a pollinator dependent crop negatively impacts *Lassioglossum spp.* (sweat bees) abundance and species richness and reduces *B. impatiens* (eastern bumble bee) colony growth.

- Mallinger et al. 2015 J. of Insect Conservation 19:999-1010

- Buzz pollination is negatively impacted at imidacloprid [] ≤ 5 ng
 - Switzer & Combs 2016 Ecotoxicology 25:1150-1159

Conclusion 3

- Results among studies difficult to compare
 - Units (μ g/bee, μ g/kg, μ g/l)
 - Conditions
 - Pesticides (a.i.), formulations, solvents
 - Cages, food/water, etc.
 - Species
- Risk (distance between LC_{50} and LC_{90}) varies by species and pesticide
- Exposure routes change LC₅₀, relative sensitivity and relative risk of pesticide
- Interactions change LC_{50} , relative sensitivity and relative risk of pesticide

Pesticides in Pollen: Risk (quantity/LD₅₀) Clustered by Location

Neonicotinoids

- Nicotinic Acetylcholine Receptor Agonist
 - Low []: nervous system stimulation
 - High []: blockage of receptor, paralysis, death
- Binds more strongly to insect receptor than mammals
- Four types
 - Neonicotinoids (4A)
 - Acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiamethoxam
 - Nicotine (4B)
 - Sulfoxafor (4C)
 - Butenolides (4D)
 - Flupyradifurone (Sivanto)

Imidacloprid – Acute Outcome

- Oral LC₅₀ 5 ng/ honey bee
- Given the quantities observed in nectar and pollen, acute risk to honey bee is low
 - Would need to consume nearly 1 g of pollen or 2.6 ml nectar

Application	Nectar	Pollen
Seed dressing	<1 to 8.6 ppb	<1 to 51 ppb
Direct soil	1 to 23 ppb	9 to 66 ppb
Foliar	5 to 11 ppb	36 to 147 ppb

- Chronic risk is higher, thus important to know exposure rate, environmental half-life, rate of metabolism/excretion.
- Little is known about other pollinators.

Neonicotinoids - Sublethal

- Imidacloprid
 - Honey bees
 - Reduce learning, foraging and homing ability
 - Food avoidance/preference
 - Bumble bees
 - Impaired foraging ability (reduced colony size)
 - Reduced nest growth, reduced queen production
 - Food avoidance or preference (honey bees bumble bees, flies)
 - Non-target impacts
 - Increases red spider mite and slug populations
 - Killing predators, changing plant chemistry

Neonicotinoids - Sublethal

Thiamethoxam (honey bees/bumble bees)
 – Reduce ability to find home, food preference

Flupyradifurone - Sivanto

- Aphids, psyllids, whiteflies, stink bugs
- Readily translocated through plant systemic
- Degradation
 - DT₅₀ 8.3-251 days in soil (field study)
 - DT₅₀ 80.6 days in outdoor pond (Germany)
 - DT₅₀ photolysis in water 14 hours
- Mobility in soil
 - Parent compound low, increases with time (Brazil)
 - Major metabolite (DFA) high
 - Minor metabolite (6-CNA) low
- Honey bee exposure risk $(LD_{50}/LD_{100}) 0.43$

Flupyradifurone

		Adu (L h	lt Acute Oral D ₅₀ μg a.i./ oney bee)	Adult Acute Contact (LD ₅₀ μg a.i./ honey bee)		Adult Acute Contact (LD ₅₀ μg a.i./ bumble bee)		
	Flupryadifurone		1.2 122.8		3			
	Sivanto SL20	0	3.2	15.7		>100		
	Sivanto FS48	0	3.4	68.6				
	Flupryadifu	rone	Adult Honey BeeLarvChronic FeedingHoney(NOEC μg a.i./ L diet)(NOEC μg ae≥10000			Larvae Honey Bee C μg a.i./kg <u>></u> 10000	e g diet)	
Honey Bee Colonies		Semi Fi (up to 2 durin	eld Studies 200 g a.i./ha ig bloom)	Field Studies (up to 205 g a.i./ha during bloom)		Ful a (600, 2 μg a.	Full Colony (600, 2500, 10000 μg a.i./ kg diet)	
Flupryadifurone		No adv	erse effects	No adverse effects		No adv	No adverse effects	

Conclusion 4

- Pesticide risk to pollinators vary by location
 Crops, horticultural plants, insect perception
- Be careful what you wish for
- Short-lived compounds are less risky for pollinators
- Registration data may tell little about impact of pesticide on non-target organisms.

Conclusions

- Little information on, or available, to compare sublethal, subacute/subchronic impacts or quantities needed to produce effect.
- A pesticide's mode of action in one species tells little about other species.
- Mode of action by class of pesticide tells little about all modes of actions possible for that pesticide or class of pesticide.
 - Most information on modes of action research focus on target, not non-target organisms.

Conclusions

- Exposure risk depends upon route of entry.
- Risk of adverse outcome depends upon route of entry, detoxification, & target sites.
- Formulations and adjuvants matter.
- Prophylactic treatments are risky.
- Risk (distance between LC_{50} and LC_{90}) varies by species and pesticide.
- Exposure routes and pesticide interactions change LC₅₀, relative sensitivity and relative risk of pesticide.

THE END

Recommendations

- Plant natives
 - Feed the insects, feed the birds
- Plant to habitat
- Don't spray
 - Restrict materials available to non-licensed users
 - Never during bloom
 - Nesting materials
 - Larval food (critical for Lepidopterans)

Recommendations

- Spray less (IPM)
 - Re-educating the public: not all insects are bad and not all plant damage is bad.
 - If people are interested in butterflies, as well as bees, some plant damage is necessary (larvae of butterflies need to eat).
 - Soil improvement to improve plant health
 - Spiders, birds, and other insect predators are good
- Target spraying (\$\$) to eliminate only the most problematic herbivores, e.g. Japanese beetles, brown marmorated stink bugs.

Recommendations

- Do not 'stack' pesticides.
 - synergistic interactions among different classes of insecticides, among insecticides and fungicides and among insecticides and herbicides.
 - Because some of these interactions are unexpected (between chemicals we would never have guess could interact), it might be smart to use all chemicals singly.
 - Would help reduce acute impacts but may not reduce sublethal impacts in offspring.
 - Honey bees and bumble bees and even solitary bees collect pollen from multiple sources over several days

Relative LD₅₀ Sensitivity: Apis mellifera to non-Apis species

Apis mellifera

LD_{50 (A.} mellifera)/L D_{50 non-A.} mellifera)

Non- <i>Apis mellifera</i>	Cases	Median	Range
Andrena erythronii	6	1.47	0.71-3.00
Apis cerana	3	1.09	1.04-1.51
Apis florea	2	1.14	1.09-1.18
Bombus agrorum	3	0.5	0.30-5.00
B. lucorum	3	0.5	0.30-2.50
B. terrestris	32	0.20	0.001-25.88
B. terricola	6	0.05	0.009-0.23
Melipona beecheii	3	0.92	0.39-1.02
Nannotrigona perilampoides	6	1.95	1.16-2085.7
Trigona nigra	3	1.07	0.92-3.23
T. spinipes	6	1.21	0.26-33.38
Nomia melanderi	27	0.59	0.01-62.61
Megachile rotundata	29	0.55	0.01-11.00
Osmia cornifrons	5	0.33	0.04-12.42
O. lignaria	11	0.56	0.10-1.72