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Introduction & Purpose  

The “melting pot” was once synonymous with the idealistic concept of a post-racial society in 
America, centered on cultural acculturation and assimilation. In reality, America has yet to deal with 
much of its racist past as – for example – anti miscegenation laws existed until 1967 and Black people 
today continue to experience disproportionate police brutality (Hollinger 2003; Schwartz 2020). While 
the term “melting pot” has fallen out of vogue, it is perhaps a strikingly accurate description of city life 
during the summer heat.  

The phenomena in which urban areas are considerably hotter than surrounding areas is more 
commonly known as the urban heat island (Santamouris 2013). Increasingly, assessments of the effect 
at the micro-climate scale are painting stark pictures of the intra-urban heat distribution that exists 
(Hoffman et al., 2020; Wilson 2020). Extreme heat is dangerous to an individual’s health as it can cause 
heat stress, heat cramps and heat stroke, which can even lead to organ failure and death (Kilbourne, 
1997).  

Research has shown hotter areas within a city are commonly predominantly inhabited by low-
income, minority and other disenfranchised populations, who bear a double-edged sword of increased 
exposure to a hazard and lower adaptive capacity. Adequately addressing exposure to extreme heat is 
an important aspect of environmental justice.  

US President Joe Biden has declared several priorities for his administration, including 
addressing climate change and racial equity (White House, 2021). These two issues are directly tied to 
the urban heat island effect as the climate warms and extreme heat events are projected to become 
more frequent. At the same time, we must demand policy makers recognize the inherent ties between 
heat, health and equity. Increasingly, attention is being paid to teasing out the effects of racist historical 
policies and this trend has been facilitated in part by the release of digitized Home Owners’ Loan 
Corporation redlining maps by the University of Richmond and partners (Nelson et al., 2021).  

This project uses average ambient heat index data from an urban heat mapping campaign in 
Providence, Rhode Island to evaluate the relationship between the HOLC redlining maps, greenspace 
and exposure to extreme heat. The use of the average ambient heat index data is notable as it was 
calculated based on measurements of the ambient air temperature and relative humidity. Temperature 
and the urban heat island are often measured using land surface temperature because it can be easily 
calculated from satellite images across a large number of areas. The land surface temperature is a proxy 
and does not represent the actual temperature people in a community experience as ambient air 
temperature and heat index do. The heat index combines ambient air temperature and humidity 
(Anderson et al., 2013; National Weather Service, 2021). Because humidity can impede the body’s ability 
to cool itself, the heat index is a particularly important measure that more accurately captures the days 
when it is so hot and humid, it feels like you might be melting. While studies have utilized ambient heat 
index before and studies have evaluated land surface temperature and redlining, I have not seen any 
studies that utilize ambient air temperature or relative humidity to evaluate the micro-climate 
temperature effects of redlining policies.  

Background & Lit Review  

Understanding Extreme Heat, Health Effects & Climate-Driven Concerns 
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 Heat is the leading weather-related cause of death in the US despite the fact that most of these 
deaths are avoidable with outreach, education and intervention, according to the EPA (2020). When the 
body is unable to properly cool itself, individuals are at risk for developing heat-related illness, such as 
heat exhaustion, heat cramps and heat stroke (Kilbourne, 1997). Severe heat stroke leads to organ 
dysfunction and rapid death, while survivors may have permanent organ damage and increased risk of 
early mortality (Kilbourne, 1997; Dematte et al., 1998; Dixit et al., 1997; Wallace et al., 2007). Estimates 
indicate that 600 people in the US die each year of heat-related illness (Sarofim et al., 2016). However, 
data have shown that extreme heat contributes to substantially more deaths than official death 
certificates indicate, and this figure is likely an underestimation of the true burden (Medina-Ramón, et 
al. 2017).  

Certain populations are at increased risk. Adults over the age of 65 as well as young children are 
particularly vulnerable to heat-related illness and death as well as people certain pre-existing conditions 
like cardiovascular and respiratory illnesses Sarofim et al., 2016; Zanobetti et al., 2012; USGCRP, 2016; 
Kingsley et al., 2016; Gronlund, 2014). Additionally, studies have shown associations between being a 
minority, and particularly identifying as Black, as well as low-income and higher risk from extreme heat 
(Harlan et al., 2006; Mitchell and Chakraborty, 2014; Congressional Black Caucus, 2004).  

 A regional study of 15 communities in New England, including Providence, Rhode Island, found 
an association between the maximum daily heat index and rates of emergency department visits and 
deaths (Wellenius et al., 2017). Importantly, these effects occurred on days where the maximum daily 
heat index was lower than ≥100°F, the threshold at which the National Weather Service issues a heat 
advisory in this area (Wellenius et al., 2017). Assuming a causal relationship, the researchers suggest 
that lowering the threshold to ≥95°F may prevent up to 550 emergency department admissions and 14 
deaths per year in the study communities alone (Wellenius et al., 2017).  At the state level, researchers 
found that in Rhode Island an increase in the maximum daily temperature from 75 to 85◦F was 
associated with a nearly 24% increase in the rate of heat-related emergency department visits between 
2005 and 2012 and a 4% increase in all-cause mortality from 1999 to 2011 (Kingsley et al., 2016). This 
suggests people in Rhode Island are at increased risk of heat-related illness at temperatures as low as 
85◦F and that the current population of Rhode Island would experience substantially increased morbidity 
and mortality if maximum daily temperatures increase – a pattern currently projected as a result of 
climate change (Kingsley et al., 2016).  

Over the last few decades, hot summer temperature anomalies have become more common 
(Melillo et al., 2014). Extreme heat days are expected to increase in terms of frequency, intensity and 
duration as a result of climate change, resulting in a projected increase in heat-related mortality (Melillo 
et al., 2014; Gasparrini et al., 2105). This effect will be compounded in cities which are subject to the 
urban heat island effect. 

The Heat Island Effect & Vulnerability 

Many urban areas reach higher temperatures and stay hotter overnight compared to rural or 
suburban surroundings, a phenomena called the urban heat island (Santamouris, 2013). Heat islands 
effect increases electricity demand for air conditioning and pollutant emissions (Santamouris, 2013). 
Several characteristics of urban spaces contribute to the development of a heat island, including street 
canyons, thermal properties of building materials, anthropogenic heat, loss of green spaces and the 
urban greenhouse effect (Santamouris, 2013). Specifically, high density of urban infrastructure, including 
buildings and roads, absorb more incident solar radiation and emit more longwave radiation compared 
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to organic materials, contributing to the increased temperature (Santamouris, 2013). Loss of green 
space compounds the issue as green space provides a cooling effect through both shade and 
evapotranspiration (Santamouris, 2013). The magnitude of the urban heat island intensity varies across 
the US based on regional and local characteristics (Kenward et al., 2014; Kim et al., 2018).  Northern 
cities tend to have higher surface urban heat island than Southern cities, due in part to the contextual 
biome (Li et al., 2017). Regions with forested biomes have higher surface urban heat islands. (Li et al., 
2017).  

There are several determinants of heat-related mortality and morbidity, including age, housing 
characteristics, access to air conditioning, socioeconomic factors and location (Kovats and Hajat, 2007). 
These determinants support the idea that heat, health and equity are closely – and inextricably – tied. 
Living within a city, as described earlier, exposes a person to the urban heat island effect, but where 
they are within the city is also important. As the intensity of the heat island varies spatially within cities, 
location within a city may result in disproportionate exposure to extreme heat (Wilson, 2020; Hoffman 
et al., 2020).  

Investigating the Persistent Impact of Redlining 

Wilson (2020) argues that “the unevenly distributed heat exposure in cities observed today is 
due in part to past planning and investment decisions that shaped the location and character of urban 
development and, by extension, the distribution of ecological benefits.” Wilson is referring to the 
policies of the Home Owners’ Loan Corporation (HOLC), which originated to provide relief for 
households at risk of foreclosure or who had already lost their home and was later responsible for 
assessing the level of neighborhood risk for banks making loans (Hillier 2003). Working with real estate 
agents the HOLC assigned A to D grades to neighborhoods, ranking neighborhoods with less desirable 
characteristics with lower grades. The results were turned into color coded “residential security” or 
“mortgage security” maps, categorizing neighborhoods from “Best” (A, outlined in green), “Still 
Desirable” (B, outlined in blue), “Definitely Declining” (C, outlined in yellow), to “Hazardous” (D, outlined 
in red). They also directly influenced access to mortgage lending and at least partially influenced 
neighborhood demographics (Aaronsen et al., 2017; Mitchell and Franco, 2018). According to Hillier 
(2003), neighborhoods with Americans, as well as those with older housing and poorer households, 
were consistently given a fourth grade, or ‘hazardous,’ rating and colored red,” which contributed to the 
colloquial term ‘redlining’. 

Several recent studies have explored whether racist historical housing policies and have impacts 
the spatial distribution of the urban heat island (Hoffman et al., 2020; Wilson, 2020). One study found 
that areas that were targeted for disinvestment through past housing practices, like redlining, had 
higher mean land surface temperatures than those that received more favorable ratings (Wilson, 2020). 
Hoffman et al. (2019) conducted spatial analysis on 108 urban areas in the US and found that in 94% of 
studied areas there were consistent, city-scale patterns of elevated land surface temperature in 
formerly redlined areas. In some areas, the difference was as much as 7◦C and was 2.6◦C warmer on 
average across the US. Hoffman et al., 2020).  Today, poor and minority residents are disproportionately 
living in these areas in many cities (Wilson, 2020).  

Redlining practices have had considerable long-lasting effects that also contribute to adaptive 
capacity. Because homeownership is a primary means of building wealth, over time redlining and other 
policies exacerbated the racial wealth (Krivo & Kaufman, 2004). Redlining has been associated with 
health effects such as late-stage cancer diagnosis and birth outcomes, such as preterm birth, small-for-
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gestational age and perinatal mortality (Krieger et al., 2020; Nardone et al., 2020). Studies have shown 
that redlining resulted in sustained patterns of disinvestment, concentration of high-speed roadway 
construction and a paucity of green space in these areas (Rutan & Glass, 2018; Mohl, 20004; Heynen et 
al., 2006; Nardone et al., 2021). Evidence has also demonstrated an association between lack of green 
space as well as concentration of impervious surfaces and disadvantaged populations, such as those 
who are a minority or living in poverty (Jesdale et al., 2013; White-Newsome et al., 2009; Pearsall, 2017). 
Wilson (2020) argues that trees and vegetation contribute to adaptive capacity and are also an 
important conceptual linkage between hazard mitigation, urban heat management, and environmental 
equity.   

Despite rising heat and significant vulnerability, regional access to important adaptation 
strategies like air conditioning are not accessible or affordable to everyone. According to the 2015 
Residential Energy Consumption Survey (RECS), 25% of homes in New England do not use air-
conditioning equipment compared to 13% nationally (US EIA, 2018a).1 Among those who do have access 
to air conditioning equipment, 50% of households in New England use individual air-conditioning units 
compared to 27% of nationally (USA EIA, 2018). Conversely, only 27% of households have central air-
conditioning, compared to 64% of households nationally. (USA EIA, 2018a).  

Energy burden, the proportion of gross household income that is spent on energy, and energy 
security can exacerbate this issue as households that have a high energy burden or are energy insecure 
and have air conditioning equipment may struggle to afford the energy needed to use it. More than one-
third of New England households report any household energy insecurity with 21% reporting they 
reduce or forego food or medicine to pay energy costs (USA EIA, 2018b). As many as 15% of households 
have left their home at an unhealthy temperature and 7% reporting being unable to use cooling 
equipment due to energy insecurity (USA EIA, 2018b). A study found specifically that Providence, RI is 
one of the five cities with the greatest difference between the city and state energy burden, and among 
cities with the highest median energy burden (4.7%) (Drehobl & Ross, 2016). In Providence, households 
who identified as Latino have one of the highest energy burdens in the country (6.3%) (Drehobl & Ross, 
2016).  Low-income households have a 9.5% energy burden, while low-income families in multifamily 
households have a 7.1% energy burden (Drehobl & Ross, 2016).  

   

 
1 RECS percentages are crude estimates calculated from the high-level information provided by US EIA. 
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Methods 

Data Sources & Preparation 

 Heat index data were provided by the Rhode Island Department of Health from the Heat Watch 
program. To collect the data, Heat Watch volunteers were outfitted with thermal sensors to collect 
ambient air temperature and humidity data as well as GPS location at one data point per second. Each 
volunteer was assigned a route to drive throughout East Providence, Providence, Pawtucket and Central 
Falls with the thermal sensor on their car at 6:00-7:00AM, 3:00-4:00PM, 7:00-8:00PM on July 29, 2020 
and 12:00-1:00 AM on July 30, 2020. Program partner CAPA Strategies used the data to interpolate the 
ambient air temperature and heat index at each time point, provided as a raster file.  

 Given the role of infrastructure and green space in the development of an urban heat island, the 
most recent available (2016) data on urban imperviousness and tree canopy were downloaded from the 
Multi-Resolution Land Characteristics Consortium National Land Cover Database. The urban 
imperviousness data represents urban impervious surfaces as a percentage of developed surface over 
every 30-meter pixel in the US, identifying types of roads, core urban areas and energy production sites. 
The tree canopy data contains percent tree canopy estimates for each pixel and are derived from multi-
spectral Landsat imagery and other information by the United States Forest Service (MRLC, 2021). The 
raster layer disc image files were opened in QGIS, each clipped by the Rhode Island state boundary and 
saved as GeoTiffs before reading into R using the raster function. 

Census tract polygrams for Rhode Island were downloaded from the US Census Bureau using the 
tigris package in R. Using the extract function from the raster package, average and maximum heat 
index as well as tree canopy and urban imperviousness zonal statistics were calculated for each census 
tract at each time period. 

As described in the literature, several researchers have established the link between racist 
historical housing policies and health as well as environmental exposure. Many studies have examined 
the relationship, specifically between the federal government’s Home Owners’ Loan Corporation area 
descriptions, created between 1935 and 1940 (Aaronson et al., 2021). The HOLC assigned residential 
neighborhoods with grades that indicated their “mortgage security”, with “A” as the highest grade, 
representing the lowest risk for banks, and “D” as the lowest grade and highest risk for banks. The 
grades were used to create color-coded map and were highly influential in terms of who should receive 
loans and what areas of a city were deemed safe investments (Aaronson et al., 2021). Shapefiles of the 
HOLC maps from many US cities, including Providence, Woonsocket and Pawtucket/Central Falls, were 
digitized and made available by the Mapping Inequality project from the University of Richmond’s 
Digital Scholarship Lab and partners (Nelson et al., 2021). The US shapefile was loaded into QGIS. HOLC 
neighborhoods in other states besides Rhode Island were removed. HOLC neighborhoods were 
superimposed over current census tracts. Tract-level HOLC-grades were calculated using areal 
apportionment HOLC polgyons did not line up exactly with census tracts (Nardone et al. 2020; NCRC, 
2021). I used the Union function in QGIS join the layers and calculate the percent of overlapping 
polygons. I then assigned 1-4 weighting for the HOLC-sections, corresponding to grades A-D. The 
overlapping polygon area was calculated as was the percent it represented of the total census tract 
area. This data was saved as a Shapefile and read into R, where I calculated area-weighted census tract-
level grades through a series of mutations.  
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 To understand the relationship between the environmental exposure, historical housing policies 
and current social vulnerability, the most recent available data (2018) from the CDC Social Vulnerability 
Index were downloaded for the state of Rhode Island. Social vulnerability refers to factors, such as 
poverty, lack of transportation and crowded housing that can impede a community’s ability to prepare, 
respond and adapt to disasters (CDC, 2019). The Social Vulnerability Index uses 15 census variables as a 
measure of the potential negative effects on communities caused by external stressors (CDC, 2019).  

Exploratory Spatial Data Analysis & Statistical Analysis 

 Exploratory spatial data analysis was conducted to gain a deeper understanding of the heat 
index distribution within the study area. Based on summary statistics, the afternoon average heat index 
was selected for further exploration as it had the largest range of average and maximum temperatures.  

 A Moran’s I test was used to evaluate the existence of spatial dependence within the afternoon 
average heat index data. First, “Max-Min” or maximum-minimum and range weights were developed 
and tested to identify the optimal weighting for measuring the spatial process. Standardized and lag 
versions of the afternoon average heat index variable were created. The linear relationship between the 
standardized and lag variables was overlayed over a smoothed scatterplot of the variables and indicated 
likely positive spatial autocorrelation. The moran.test function was used to test for spatial 
autocorrelation using both weights, and the Moran’s I value was statistically significant (p<0.001) for 
both.  As a result, we reject the null hypothesis that census tract level afternoon average temperature is 
spatially random. The Max-Min was selected as the Moran’s I value was larger (0.12 vs 0.07).  The Max-
Min weight was used to create new variables for LISA clusters, based on the mean standardized and lag 
variables and statistical significance of the local Moran’s I value.  

 Then, a fully realized linear regression model, including sociodemographic and environmental 
variables, was developed to diagnose the source of the spatial dependence. The linear regression model 
was run iteratively to remove variables with relationships to the afternoon heat index that were not 
statistically significant. The final model is included below.  

lm([average afternoon heat index] ~ [percent poverty] + [census average weighed HOLC grade] + 
[percent minority] +  [percent tree canopy], data=).  

The LaGrange Multiplier test for spatial dependence returned no statistically significant results. 
For the sake of this project, the HOLC grade term was removed from the model. The LaGrange Multiplier 
test for spatial dependence indicated an error model should be run. None of the robust terms were 
statistically significant and the lag term was borderline statistically significant. The error term was 
statistically significant and smaller than the lag term. The error model indicated that spatial 
autocorrelation was addressed in the model. Results of a geographic weighted regression model are also 
included below.  
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Results 

Exploratory analysis of Heat Index Distribution 

 Initial examination of heat index distribution at the census tract level indicated a high likelihood 
of spatial clustering at all times throughout the day for both average and maximum heat index. The 
afternoon time period had the largest difference between the hottest and coolest census tracts. Some 
census tracts in the study had a maximum afternoon heat index that was 13◦F hotter than the coolest 
areas and afternoon average heat index that was 10◦F hotter. Afternoon average heat index was used as 
the independent variable for the remainder of the project.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Further analysis of the relationship between a standardized and lag afternoon average heat 
index variables indicated positive spatial clustering. Statistically significant LISA clusters were identified 
and approximately 20% of the study area was High-High clusters and 9% of the area was Low-Low, 
indicating spatial dependence is present.  

 

  

Figure 1. Distribution of average and maximum heat index at 6-7AM, 3-4PM, 7-8PM and 12-1AM (following day). 
Color for all images is set to the same, continuous scale. 

Figure 2. Distribution of High-High and 
Low-Low LISA clusters, indicating spatial 
dependence. 
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Exploratory Analysis of Select Dependent Variables 

Visual examination of the distribution of HOLC grades, tree canopy and HOLC grades 
superimposed on top of an interpolated temperature map indicated similar patterns of spatial 
clustering, confirming further analysis of the relationships was warranted. Specifically, in the maps it is 
clear that areas targeted for disinvestment have less tree canopy and higher temperatures. When HOLC 
grades were calculated to create weighted scores for current census tracts, the mean and median 
grades were close to a C (2.588 and 2.744, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

Fully Realized Linear Regression 

The fully realized linear regression demonstrated a statistically significant (p<0.01) association 
between increase in percent poverty, poorer HOLC grade and decreased percent tree canopy and higher 
temperatures, accounting for approximately 69% of the variation. As LaGrange Multiplier spatial 
dependence results indicated spatial autocorrelation was satisfactorily accounted for, a secondary 
model was developed to allow for continued analysis. This model contained the same variables with 
HOLC removed and confirmed a statistically significant (p<0.01) association between decrease in tree 
canopy and increase in afternoon average heat index, accounting 38% of the variation. For the second 
model, LaGrange Multiplier Spatial dependence results indicated a spatial error model should be 
developed and run to account for spatial autocorrelation, which addressed spatial autocorrelation 
adequately.  Beta coefficients for all models are included in Table 1.  

Figure 3. Left: spatial interpolation of average afternoon heat index with HOLC neighborhood grades superimposed 
on top; Top right: HOLC neighborhood grades in Providence, Pawtucket and Central Falls, Rhode Island, overlaid on 
top of current census tracts; Top bottom: spatial distribution of percent canopy with current census tracts. 
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Table 1 
Fully Realized Linear Regression Model Results 

Coefficient Estimate Standard Error p-value 
First model (R2: 0.689) 

Intercept 90.004 0.55 2*10-16* 
Percent Poverty -0.064 0.016 0.002* 
HOLC Grade 0.953 0.0160 0.02* 
Percent Minority 0.007 0.006 0.443 
Percent Tree Canopy -0.157 0;046 0.006* 

Second Model (R2: .3942) 
Intercept 90.004 0.55 2*10-16* 
Percent Poverty 0.026 0.550 .193 
Percent Minority 0.012 0.020 .151 
Percent Tree Canopy -0.061 0.017 -001* 

Spatial Error Model 
Intercept 90.411 0.614 2.2*10-16* 

Percent Poverty 0.026 0.0184 0.156 
Percent Minority 0.007 0.008 0.408 
Percent Tree Canopy -0.07 0.0164 2.219*10-5* 
*indicates statistical significance 

Table 1. Fully realized linear regression model results are summarized. 

 Finally, geographic weighted regression with Gaussian distribution was conducted to understand 
the spatial distribution of the results. The results indicate slight spatial variation in the model fit, 
residuals and tree canopy with better fit and more effect in some census tract areas than others. There 
is little evidence of spatial variation and consistent effect in the poverty variable, which is expected as 
the variable was not statistically significant in this regression model. There is also little spatial variation 
in the minority variable.   
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Figure 4. Graphed geographic weighted regression output for local R2, residuals, percent tree canopy, percent poverty 
percent minority.  
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Discussion & Conclusions 

These results demonstrate the persistent and harmful impact of reduced tree canopy on average 
afternoon heat index as well as the lasting effects of structural racism. They add to the growing body of 
evidence regarding the current effects of racist historical policy, like HOLC grades (Hoffman et al., 2020; 
Wilson 2020). Specifically, the are aligned with other findings that HOLC grades are associated with built 
environment characteristics, like tree canopy, and environmental conditions, like temperature or heat 
index (Hoffman et al., 2020; Jesdale et al. 2013; Nardone et al., 2021).  

Calculation of area-weighted HOLC scores may have masked true relationships and a more 
accurate approach should be considered in the future. Further studies should evaluate heat index and 
related variables at the HOLC neighborhood level. The correlation between HOLC and SES variables was 
not evaluated and could explain why an association was not seen between minority status and 
temperature and why the relationship with poverty was attenuated. More careful and thorough analysis 
is warranted. 

Afternoon average heat index was selected given the wide disparity in exposures. Given the 
even greater difference in maximum afternoon heat index, this relationship warrants further study. 
Additionally, given the scope of the project, I was not able to evaluate the differences in overnight 
temperatures. This relationship should be more fully evaluated and addressed as the overnight period is 
a critical time that allows the body to recover from the physiological stress if the environment has 
sufficiently cooled. These findings are rather limited and statistical significance may have been 
influenced by the relatively small sample size. Further analysis should evaluate wider areas for which 
interpolated heat index evidence is feasible based on the current data set. 

As Kingsley et al., (2016) suggest Rhode Island residents are at risk of health events at a heat index 
of as low as 85F, these results sound the alarm that urban residents may be subject to regular, 
unhealthy temperatures without reprieve. They mandate that additional analysis be conducted and call 
for both structural and individual-level programmatic interventions. One such suggestion is to update 
the current National Weather Service criteria for issuing heat advisories in this region (Wellenius et al. 
2017). These authors argue that lowering the guideline criteria could lead to substantially fewer deaths 
and emergency department visits in New England, and this is worth exploring at the regional, state and 
community levels.  

These findings also suggest an urban tree canopy program for areas that have been targeted for 
disinvestment might make a substantial difference in the exposure to extreme heat in these areas. 
Green space has been associated with a multitude of other benefits and may help address persistent 
inequities.  

 

  



13 
 

Bibliography 
 
Aaronson, D.; Hartley, D.; Mazumder, B. The Effects of the 1930s HOLC “Redlining” Maps. In Federal 
Reserve Bank of Chicago Working Paper No. 2017-12; Federal Reserve Bank of Chicago: Chicago, IL, USA, 
2017; pp. 1–102. 
 
Aaronson, D., Faber, J., Hartley, D., Mazumder, B., & Sharkey, P. (2021). The long-run effects of the 
1930s HOLC “redlining” maps on place-based measures of economic opportunity and socioeconomic 
success. Regional Science and Urban Economics, 86, 103622. 
https://doi.org/10.1016/j.regsciurbeco.2020.103622 
 
Anderson, G. B., Bell, M. L., & Peng, R. D. (2013). Methods to Calculate the Heat Index as an Exposure 
Metric in Environmental Health Research. Environmental Health Perspectives, 121(10), 1111–1119. 
https://doi.org/10.1289/ehp.1206273 
 
Congressional Black Caucus Foundation. (2004). African-Americans and climate change: an unequal 
burden. 
 
Dematte, J. E., O'Mara, K., Buescher, J., Whitney, C. G., Forsythe, S., McNamee, T., ... & Ndukwu, I. M. 
(1998). Near-fatal heat stroke during the 1995 heat wave in Chicago. Annals of internal medicine, 129(3), 
173-181. 
 
Dixit, S. N., Bushara, K. O., & Brooks, B. R. (1997). Epidemic heat stroke in a midwest community: risk 
factors, neurological complications and sequelae. Wisconsin medical journal, 96(5), 39-41. 
 
Drehobl, A., & Ross, L. (n.d.). How Energy Efficiency Can Improve Low Income and Underserved 
Communities. 56. 
 
Gasparrini, A., Guo, Y., Hashizume, M., Lavigne, E., Zanobetti, A., Schwartz, J., Tobias, A., Tong, S., 
Rocklöv, J., Forsberg, B., Leone, M., De Sario, M., Bell, M. L., Guo, Y.-L. L., Wu, C., Kan, H., Yi, S.-M., de 
Sousa Zanotti Stagliorio Coelho, M., Saldiva, P. H. N., … Armstrong, B. (2015). Mortality risk attributable 
to high and low ambient temperature: A multicountry observational study. The Lancet, 386(9991), 369–
375. https://doi.org/10.1016/S0140-6736(14)62114-0 
 
Gronlund, C. J., Zanobetti, A., Schwartz, J. D., Wellenius, G. A., & O’Neill, M. S. (2014). Heat, Heat Waves, 
and Hospital Admissions among the Elderly in the United States, 1992–2006. Environmental Health 
Perspectives, 122(11), 1187–1192. https://doi.org/10.1289/ehp.1206132 
 
Harlan, S. L., Brazel, A. J., Prashad, L., Stefanov, W. L., & Larsen, L. (2006). Neighborhood microclimates 
and vulnerability to heat stress. Social science & medicine, 63(11), 2847-2863. 
 
Heynen, N., Perkins, H. A., & Roy, P. (2006). The political ecology of uneven urban green space: The 
impact of political economy on race and ethnicity in producing environmental inequality in 
Milwaukee. Urban Affairs Review, 42(1), 3-25. 
 
Hillier, A. E. (2003). Redlining and the home owners' loan corporation. Journal of Urban History, 29(4), 
394-420. 
 

https://doi.org/10.1016/j.regsciurbeco.2020.103622
https://doi.org/10.1289/ehp.1206273
https://doi.org/10.1016/S0140-6736(14)62114-0
https://doi.org/10.1289/ehp.1206132


14 
 

Hoffman, J. S., Shandas, V., & Pendleton, N. (2020). The Effects of Historical Housing Policies on Resident 
Exposure to Intra-Urban Heat: A Study of 108 US Urban Areas. Climate, 8(1), 12. 
https://doi.org/10.3390/cli8010012 
 
Jesdale, B. M., Morello-Frosch, R., & Cushing, L. (2013). The racial/ethnic distribution of heat risk–related 
land cover in relation to residential segregation. Environmental health perspectives, 121(7), 811-817. 
 
Kenward, A., Yawitz, D., Sanford, T., & Wang, R. (2014). Summer in the city: hot and getting hotter. Clim 
Cent, Princeton, 1-29. 
 
Kilbourne, E. M. (1992). Illness due to thermal extremes. Public health and preventative medicine, 491-
501. 
 
Kilbourne, E. M. (1997). Heat waves and hot environments. The public health consequences of 
disasters, 245, 269. 
 
Kim, H., Gu, D., & Kim, H. Y. (2018). Effects of Urban Heat Island mitigation in various climate zones in 
the United States. Sustainable Cities and Society, 41, 841–852. 
https://doi.org/10.1016/j.scs.2018.06.021 
 
Kingsley, S. L., Eliot, M. N., Gold, J., Vanderslice, R. R., & Wellenius, G. A. (2016). Current and Projected 
Heat-Related Morbidity and Mortality in Rhode Island. Environmental Health Perspectives, 124(4), 460–
467. https://doi.org/10.1289/ehp.1408826 
 
Klinenberg, E. (2015). Heat wave: A social autopsy of disaster in Chicago. University of Chicago Press. 
 
Kovats, R. S., & Hajat, S. (2008). Heat Stress and Public Health: A Critical Review. Annual Review of Public 
Health, 29(1), 41–55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843 
 
Krieger, N., Wright, E., Chen, J. T., Waterman, P. D., Huntley, E. R., & Arcaya, M. (2020). Cancer Stage at 
Diagnosis, Historical Redlining, and Current Neighborhood Characteristics: Breast, Cervical, Lung, and 
Colorectal Cancers, Massachusetts, 2001–2015. American Journal of Epidemiology, 189(10), 1065–1075. 
https://doi.org/10.1093/aje/kwaa045 
 
Krivo, L. J., & Kaufman, R. L. (2004). Housing and wealth inequality: Racial-ethnic differences in home 
equity in the United States. Demography, 41(3), 585-605. 
 
Li, X., Zhou, Y., Asrar, G. R., Imhoff, M., & Li, X. (2017). The surface urban heat island response to urban 
expansion: A panel analysis for the conterminous United States. Science of The Total Environment, 605–
606, 426–435. https://doi.org/10.1016/j.scitotenv.2017.06.229 
 
Medina-Ramón, M., and J. Schwartz. 2007. Temperature, temperature extremes, and mortality: A study 
of acclimatization and effect modification in 50 U.S. cities. Occup. Environ. Med. 64(12):827–833. 
 
Melillo, J.M., T.C. Richmond, and G.W. Yohe (eds.). 2014. Climate change impacts in the United States: 
The third National Climate Assessment. U.S. Global Change Research 
Program. http://nca2014.globalchange.gov. 
 

https://doi.org/10.3390/cli8010012
https://doi.org/10.1016/j.scs.2018.06.021
https://doi.org/10.1289/ehp.1408826
https://doi.org/10.1146/annurev.publhealth.29.020907.090843
https://doi.org/10.1093/aje/kwaa045
https://doi.org/10.1016/j.scitotenv.2017.06.229
http://nca2014.globalchange.gov/


15 
 

Mitchell, B. C., & Chakraborty, J. (2014). Urban heat and climate justice: a landscape of thermal inequity 
in Pinellas County, Florida. Geographical Review, 104(4), 459-480. 
 
Mitchell, B.; Franco, J. HOLC “Redlining” Maps: The Persistent Structure of Segregation and Economic 
Inequality; National Community Reinvestment Coalition: Washington, DC, USA, 2018; pp. 1–29.  
 
Mohl, R. A. (2004). Stop the road: Freeway revolts in American cities. Journal of Urban History, 30(5), 
674-706. 
 
Multi-Resolution Land Characteristics Consortium. Data, 2021. https://www.mrlc.gov/data 
 
National Community Reinvestment Coalition. Redlining and neighborhood health, 2021. 
https://ncrc.org/holc-health/#_ftn21 
 
National Weather Service. Heat Index, 2021. https://www.weather.gov/safety/heat-index 
 
Nardone, A. L., Casey, J. A., Rudolph, K. E., Karasek, D., Mujahid, M., & Morello-Frosch, R. (2020). 
Associations between historical redlining and birth outcomes from 2006 through 2015 in California. 
PLOS ONE, 15(8), e0237241. https://doi.org/10.1371/journal.pone.0237241 
 
Nardone, A., Rudolph, K. E., Morello-Frosch, R., & Casey, J. A. (2021). Redlines and Greenspace: The 
Relationship between Historical Redlining and 2010 Greenspace across the United States. Environmental 
Health Perspectives, 129(1), 017006. https://doi.org/10.1289/EHP7495 
 
Nelson, R.K., Winling, L., Marciano, R., Connolly, N.,  et al., “Mapping Inequality,” American Panorama, 
ed. Robert K. Nelson and Edward L. Ayers, accessed April 24, 2021, 
https://dsl.richmond.edu/panorama/redlining/]. 
 
Pearsall, H. (2017). Staying cool in the compact city: vacant land and urban heating in Philadelphia, 
Pennsylvania. Applied geography, 79, 84-92. 
 
Rigolon, A., & Németh, J. (2018). What shapes uneven access to urban amenities? Thick injustice and the 
legacy of racial discrimination in Denver’s parks. Journal of Planning Education and Research, 
0739456X18789251. 
 
Rutan, D. Q., & Glass, M. R. (2018). The lingering effects of neighborhood appraisal: evaluating 
redlining's legacy in Pittsburgh. The Professional Geographer, 70(3), 339-349. 
 
Santamouris, M. Energy and Climate in the Urban Built Environment. (2013). United Kingdom: CRC Press. 
 
 Sarofim, M.C., S. Saha, M.D. Hawkins, D.M. Mills, J. Hess, R. Horton, P. Kinney, J. Schwartz, and A. St. 
Juliana. 2016. Chapter 2: Temperature-related death and illness. The impacts of climate change on 
human health in the United States: A scientific assessment. U.S. Global Change Research 
Program. https://health2016.globalchange.gov. 
 
Schwartz, S. A. (2020). Police brutality and racism in America. EXPLORE, 16(5), 280–282. 
https://doi.org/10.1016/j.explore.2020.06.010 
 

https://doi.org/10.1371/journal.pone.0237241
https://doi.org/10.1289/EHP7495
https://health2016.globalchange.gov/
https://doi.org/10.1016/j.explore.2020.06.010


16 
 

US Centers for Disease Control and Prevention. Place and Health, 2019: 
https://www.atsdr.cdc.gov/placeandhealth/svi/fact_sheet/fact_sheet.html 
 
US Energy Information Administration. Residential Energy Consumption Survey – Air conditioning in 
homes in the Northeast and Midwest regions, 2015, 2018a. 
https://www.eia.gov/consumption/residential/data/2015/hc/php/hc7.7.php 
 
US Energy Information Administration. Residential Energy Consumption Survey – Household Energy 
Insecurity, 2015, 2018b. https://www.eia.gov/consumption/residential/data/2015/hc/php/hc11.1.php.  
 
US Environmental Protection Agency. Climate change indicators – Heat-related deaths, 2020. 
https://www.epa.gov/climate-indicators/climate-change-indicators-heat-related-deaths 
 
 USGCRP, 2016: The Impacts of Climate Change on Human Health in the United States: A Scientific 
Assessment. Crimmins, A., J. Balbus, J.L. Gamble, C.B. Beard, J.E. Bell, D. Dodgen, R.J. Eisen, N. Fann, 
M.D. Hawkins, S.C. Herring, L. Jantarasami, D.M. Mills, S. Saha, M.C. Sarofim, J. Trtanj, and L. Ziska, Eds. 
U.S. Global Change Research Program, Washington, DC, 312 pp.  http://dx.doi.org/10.7930/J0R49NQX 
 
Wallace, R. F., Kriebel, D., Punnett, L., Wegman, D. H., & Amoroso, P. J. (2007). Prior heat illness 
hospitalization and risk of early death. Environmental research, 104(2), 290-295. 
 
Wellenius, G. A., Eliot, M. N., Bush, K. F., Holt, D., Lincoln, R. A., Smith, A. E., & Gold, J. (2017). Heat-
related morbidity and mortality in New England: Evidence for local policy. Environmental Research, 156, 
845–853. https://doi.org/10.1016/j.envres.2017.02.005 
 
White-Newsome, J., O'Neill, M. S., Gronlund, C., Sunbury, T. M., Brines, S. J., Parker, E., ... & Rivera, Z. 
(2009). Climate change, heat waves, and environmental justice: Advancing knowledge and 
action. Environmental Justice, 2(4), 197-205. 
 
Wilson, B. (2020). Urban Heat Management and the Legacy of Redlining. Journal of the American 
Planning Association, 86(4), 443–457. https://doi.org/10.1080/01944363.2020.1759127 
 
 Zanobetti, A., M.S. O’Neill, C.J. Gronlund, and J.D. Schwartz. 2012. Summer temperature variability and 
long-term survival among elderly people with chronic disease. P Natl. Acad. Sci. USA 109(17):6608–6613. 
 
 
 
 
 
 

https://www.eia.gov/consumption/residential/data/2015/hc/php/hc11.1.php
https://www.epa.gov/climate-indicators/climate-change-indicators-heat-related-deaths
http://dx.doi.org/10.7930/J0R49NQX
https://doi.org/10.1016/j.envres.2017.02.005
https://doi.org/10.1080/01944363.2020.1759127

